Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 42591 JOB: 23-8202-R01 JOB NAME: LOT 11 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. 22 Truss Design(s)

Trusses:

J01, J03, J04, J05, J06, R01, R02, R02A, R02B, R03, R03A, R04, R05, R06, R07, R08, R09, SR01, SR02, V01, V02, V03

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=123.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.

11/10/2023

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 4=251/Mechanical, 2=344/0-3-8 (min. 0-1-8) Max Horz 2=83(LC 11) Max Uplift4=-77(LC 8), 2=-114(LC 8) Max Grav 4=290(LC 19), 2=449(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=114.

- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-5=-20 Concentrated Loads (lb) Vert: 8=-43(F) 9=-123(F)

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11/10/2023

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

⊢		9-6-14		19-0-0			28-5-2			37-8-8	
Plate Offset	ts (X,Y) [2:0-3	-0,0-1-12]		3-3-2			<u>9-0-2</u>			3-3-0	
LOADING (J TCLL (roof) Snow (Pf) TCDL BCLL BCDL	psf) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.77 0.96 0.71 ix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.37 14-16 -0.59 14-16 0.13 11	l/defl >999 >755 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 244/190 D FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	2x4 SP No.2 D 2x4 SP No.2 B2: 2x4 SP I 2x4 SP No.3	*Except* No.1				BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at m MiTek rec	ood shea g directly dpt ommends	athing direct applied. 5-14, 7 s that Stabil	lly applied, except en 7-14, 3-17, 9-11 izers and required cro	d verticals.
REACTIONS. (Ib/size) 17=1559/0-3-8 (min. 0-1-13), 11=1496/Mechanical Max Horz 17=108(LC 14) Max Uplift17=-207(LC 14), 11=-185(LC 15)							ı Stabilizer				
FORCES. TOP CHOR BOT CHOR WEBS	FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-18=-571/93, 3-18=-457/105, 3-4=-2592/388, 4-19=-2521/402, 5-19=-2448/404, 5-6=-1954/390, 6-7=-1954/390, 7-20=-2402/404, 8-20=-2474/402, 8-9=-2546/388, 9-21=-334/82, 10-21=-415/70, 2-17=-446/148, 10-11=-305/88 BOT CHORD 16-17=-377/2390, 15-16=-225/2098, 15-22=-225/2098, 14-22=-225/2098, 14-23=-222/2080, 13-23=-222/2080, 12-13=-222/2080, 11-12=-298/2312 WEBS 5-16=-45/441, 5-14=-712/25, 6-14=-165/1257, 7-14=-684/222, 7-12=-39/399, 3-17=-2256/314 9-11=-2339/337										
NOTES- (1) Unbalance 2) Wind: AS (envelope Interior(1 exposed; 3) TCLL: AS Cat B; Pa 4) Unbalance 5) This truss non-conce 6) This truss 7) * This trus between 8) Refer to (9) Provide n 11=185. 10) This trus sheetroo	(11) sed roof live loar SCE 7-16; Vult= e) gable end zor) 24-0-15 to 32- C-C for membe SCE 7-16; Pr=2(artially Exp.; Ce- sed snow loads s has been desi urrent with othe s has been desi iss has been desi iss has been desi the bottom chor girder(s) for trus mechanical conr ss design requir ck be applied di	ds have been considere 120mph (3-second gust ne and C-C Exterior(2E) 9-2, Exterior(2E) 32-9-2 rs and forces & MWFRS 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min r live loads. gned for a 10.0 psf botto signed for a live load of d and any other membe s to truss connections. nection (by others) of tru res that a minimum of 7/	d for this designed -0-10-8 to 3-1 to 37-6-12 zo 5 for reactions 0L=1.15 Plate or this design. roof live load of the control live 30.0psf on the rs, with BCDL ss to bearing 16" structural rd.	jn. 1; TCDL=5.1 1-2, Interio ne; cantilev shown; Lur DOL=1.15) of 12.0 psf c load noncol ⇒ bottom ch .= 10.0psf. plate capat wood shea	0psf; BCDL: r(1) 3-11-2 f mer left and r mber DOL= ; Pf=20.0 ps or 2.00 times ncurrent with ord in all are ole of withsta thing be app	=5.0psf; h=35ft; C o 13-11-1, Exterio ight exposed ; end 1.60 plate grip DC of (Lum DOL=1.15 s flat roof load of 2 n any other live loa eas where a rectar anding 100 lb uplif blied directly to the	at. II; Exp B; I or(2R) 13-11- d vertical left a bL=1.60 is Plate DOL= 20.0 psf on ov ads. ngle 3-6-0 tall it at joint(s) es is top chord ar	Enclosed I to 24-0- and right I.15); Is= verhangs by 1-0-0 ccept (jt=l d 1/2" gy	; MWFRS 15, 1.0; Rough wide will fit b) 17=207, psum	SEAL 28147	ALL DA TO THE REAL PROPERTY OF

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

11/10/2023

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREE	K TBD DAVINHALL DRI	VE FUQUAY-VARINA, NC	
23-8202-R01	R02A	Roof Special	1	1	lob Doforence (#	42591	
		<u> </u>	Run: 82.430 s Feb 1	2 2021 Print	1300 Reierence (optional) :: 8.430 s Feb 12 2021 MiTek Ir	ndustries, Inc. Sat Nov 11	15:02:03 2023 Page 1	
-0-10-82-3	-8 8-3-13	15-2-0 19-0-0	ID:zSnl_VDJ 24-0-0	Fy_hu?pm(DjJgrKyZRJv-oq3mMDlkcn 30-10-4	n4_U8hN6fzVhwP2dhl(37-8-8	GwlpABjewnZyKEN2	
0-10-8 2-3	-8 6-0-5	6-10-3 3-10-0	5-0-0	1	6-10-4	6-10-4		
			5x12 =				Scale = 1:72.7	
		5.00 12						
T		3x4	7					
		6		2x4				
	3	$x8 = 28^{29}2$		T2 ⁸ 30	3x8 <>			
	4x4 🕬	5	/ \ <u>\</u>		9 44 5			
1-0	4				4x4 = 10			
8		B4 ///7/	prw			31		
5x8 🖈	3 27 T1			W12		4x8 ×	2	
1 ²	W5 W5	2 000	W11		W13 W14	11		
0-0-	₩4 ₩	2220 N	 			\$\$6 \$	-1-1 	
- 26	$\frac{1}{25}$ $\frac{1}{6}$ $x_{8} = 23$	0 W8 19 21 20 19	32 34 33 35 23	$x^4 = 17$	14 13		-	
20 4x6 =	=3x4	= 21 3x4	2x4	4x8 = 4x	<pre></pre>	3x4	П	
		6x6 =	2x4					
		6x8 =						
		$2x4 \equiv$						
<u>2-3</u>	-8 8-3-13 -8 6-0-5	<u> </u>	<u>-0 24-0-0</u> -0 3-11-0		<u>30-10-4</u> 6-10-4	<u> </u>		
Plate Offsets (X,Y) [13:	0-2-8,0-1-12], [22:0-2-4,0-3	-4], [24:0-6-0,0-3-4]	1					
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in (le	oc) I/defl L/d	PLATES	GRIP	
Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.50	Vert(LL)	-0.30 18-	19 >999 240	MT20	244/190	
TCDL 10.0	Rep Stress Incr	YES WB 0.88	Horz(CT)	0.19	12 n/a n/a			
BCDL 0.0	Code IRC2021/TP	2014 Matrix-AS				Weight: 250 I	b FT = 20%	
LUMBER-			BRACING-					
TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	0.2 2 *Excent*		TOP CHORD	Structur Rigid ce	al wood sheathing direct	ly applied, except er	nd verticals.	
B5: 2x4 SF	P No.1		Boronona	6-0-0 oc	bracing: 17-19	loopt.		
WEBS 2x4 SP No W1 W16:2	0.3 *Except* 2x6 SP No 2, W2 [,] 2x4 SP N	lo 2	WEBS	1 Row a	t midpt 7-20	incur and up outing days	hussing	
,				be inst	alled during truss erection	on, in accordance wit	h Stabilizer	
REACTIONS (lb/size)	12=1564/Mechanical 26=1	623/0-3-8 (min 0-1-15)		Installa	ation guide.			
Max Horz	26=107(LC 18)	020/0 0 0 (11111: 0 1 1 10)						
Max Uplift	12=-147(LC 15), 26=-174(L	C 14)						
FORCES. (lb) - Max. Con	mp./Max. Ten All forces 2	50 (lb) or less except when shown.	0547/045					
28-29=-2	2/349, 3-27=-3242/337, 4-2 519/321, 6-29=-2496/328, (27=-3183/354, 4-5=-2616/304, 5-28 5-7=-2556/395, 7-8=-2492/389, 8-3	=-2547/315, 0=-2372/306,					
9-30=-24	37/304, 9-10=-2504/283, 1	0-31=-2553/302, 11-31=-2688/289,	2-26=-1525/208,					
BOT CHORD 25-26=-7	488/203 6/322, 23-24=-473/3057, 23	2-23=-308/2938, 21-22=-480/0, 6-2	2=-435/171,					
20-32=-4	5/1799, 16-32=-45/1799, 10	6-33=-45/1799, 15-33=-45/1799, 14	-15=-199/2413,					
WEBS 4-23=0/3	11, 4-22=-752/208, 20-22=	0/1971, 7-22=-257/1661, 19-20=-61	7/82, 7-19=-590/1	12,				
7-17=-18 2-24=-30	81/951, 15-17=-212/945, 8- 0/2511	15=-477/190, 10-15=-346/160, 11-1	3=-159/2119,					
2-2450	0/2311							
NOTES- (11-14) 1) Unbalanced roof live lo	ads have been considered	for this design						
2) Wind: ASCE 7-16; Vult	=120mph (3-second gust)	/asd=95mph; TCDL=5.0psf; BCDL	=5.0psf; h=35ft; C	at. II; Exp	B; Enclosed; MWFRS			
(envelope) gable end z 24-0-0 to 32-8-2 Exter	one and C-C Exterior(2E) - ior(2E) 32-8-2 to 37-5-12 zc	0-10-8 to 3-11-2, Interior(1) 3-11-2 i one: cantilever left and right expose	o 14-2-6, Exterior d · end vertical lef	(2R) 14-2- t and right	-6 to 24-0-0, Interior(1)	WINNITH CARO	11.	
members and forces &	MWFRS for reactions show	vn; Lumber DOL=1.60 plate grip DO	DL=1.60			FESSIA	1111	
3) TCLL: ASCE 7-16; Pr= Cat B: Partially Exp.: C	20.0 psf (roof LL: Lum DOL ce=1.0: Cs=1.00: Ct=1.10	=1.15 Plate DOL=1.15); Pt=20.0 ps	st (Lum DOL=1.15	Plate DO	L=1.15); Is=1.0; Rough	Part Ma		
4) Unbalanced snow load	s have been considered for	this design.	flotrosflaster	0.0 f		SEAL		
non-concurrent with oth	ner live loads.	or live load of 12.0 psf of 2.00 times		LU.U PST OF	i overhangs	28147		
6) This truss has been de	signed for a 10.0 psf bottor	n chord live load nonconcurrent with	n any other live loa	ads.	tall by 1-0.0 wide will fit	10 -		
between the bottom ch	ord and any other members	s, with BCDL = $10.0psf$.	eas where a rectai	ligie 3-0-0	tall by 1-0-0 wide winnit	A NOINEER C	o line	
8) Refer to girder(s) for true	uss to truss connections.	a to booring plato conchio of without	anding 100 lb unlif	t at iaint/a) over (it-lb) 12-147	WINK K. MORM	inter .	
26=174.	nnection (by others) of trus	s to bearing plate capable of withsta	anding 100 ib upin	t at joint(s) except (jt=ib) 12=147,	With Bernand		
10) This truss design requ	uires that a minimum of 7/1	5" structural wood sheathing be app	blied directly to the	e top chore	d and 1/2" gypsum	11/10/202	23	
Continuing on pergin zlesign	parameters and read notes be	fore use. This design is based only upon	parameters shown, a	and is for an	individual building compon	ent to be installed and lo	aded	
of individual web members	only. Additional temporary brack	corporation of component is responsibility	y of building designer n is the responsibility	r – not truss of the erec	tor. Additional permanent h	Dracing snown is for late racing of the overall strue	eral support	
responsibility of the building	g designer. For general guidance	e regarding fabrication, quality control, st	orage, delivery, erect	ion and bra	cing, consult ANSI/TPI 1 Na	ational Design Standard	for Metal	
Plate Connected Wood Trus	ss Construction and BCSI 1-03	Guide to Good Practice for Handling, In	stalling & Bracing o	of Metal Pla	te Connected Wood Trusses	from Truss Plate Institu	ite, 583	
D Onoirio Drive, Madison,	D'Onofrio Drive, Madison, WI 53719.							

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREEK TBD DAVINHALL DRIVE FUQUAY-VARINA, NO
23-8202-R01	R02A	Roof Special	1	1	Job Reference (optional) # 42591
		Run: 82.	130 s Feb 1	2 2021 Print	t; 8,430 s Feb 12 2021 MiTek Industries, Inc. Sat Nov 11 15:02:03 2023 Page 2

ID:zSnl_VDJTy_hu?pmOjJgrKyZRJv-oq3mMDlkcm4_U8hN6fzVhwP2dhlGwlpABjewnZyKEN2

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

11/10/2023

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREEK TBD DAVINHALL DRIVE FUQUAY-VARINA, N
23-8202-R01	R02B	Roof Special	4	1	Job Reference (optional) # 42591
		Run:	82.430 s Feb 1	2 2021 Print	t: 8,430 s Feb 12 2021 MiTek Industries, Inc. Sat Nov 11 15:02:05 2023 Page 2

ID:zSnl_VDJTy_hu?pmOjJgrKyZRJv-IDBWnvK_80KikSrmE4?zmLULKVQEOdbTf071rRyKEN0

- 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

11/10/2023

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

11/10/2023

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREE	K TBD DAVINHALL DRIVE FUQUAY-VARINA, NC
23-8202-R01	R03A	Roof Special	1	1	lah Defense (antional)	# 42591
			Run: 82.430 s Feb 12	22021 Print	Job Reference (optional) : 8.430 s Feb 12 2021 MiTek Ir Oi Jark/vZB Iv DB/v2EL avb	ndustries, Inc. Sat Nov 11 15:02:06 2023 Page 1
-0-10-82-3	3-8 8-3-13	15-2-0 19-0-0	24-0-0	iy_nu :pin	30-10-4	<u>38-0-0 38-10-8</u>
0-10-8 2-3	3-8 6-0-5	6-10-3 3-10-0	5-0-0		6-10-4	7-1-12 0-10-8
		5 co (10)	12 =			Scale = 1:73.9
		5.00 12	7			
		3x4		2x4		
	3	3x8 = 29 30 2		2 ⁸ 31	2,40 \	
	4x4 -				3x8 <	
- -	4	×₩9			4x4 ≈ 10	
8-1		B4 ////	vvia			22
5x8 🖈	5X6 = 28 T1		// v	V12		<u>₹1</u> 32 5x8 ≈
	W		W11		W13 W14	¹¹ 12
0-1-					B7	W15
× 27	$26^{6x8} = 24^{24}$	$=$ $22^{21^{\circ}20}$ 33	3 ³⁵ 34 36 ^{2x4} 17 ^{34 36}	16 ¹⁸ 1	5 14	13
4x6 =	=3x4	3x4	2x4 4	4x8 = 4x8	3 = 6x6 =	3x4
		6x6 =	2x4			
		2x4 =				
2-3	3-8 8-3-13 3-8 6-0-5	<u>15-2-0 16-2-0 20-1-0</u> 6-10-3 1-0-0 3-11-0	24-0-0	+	30-10-4	38-0-0
Plate Offsets (X,Y) [23:	0-2-4,0-3-4], [25:0-5-12,0-3	B-8]	0110			
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in (lo	oc) l/defl L/d	PLATES GRIP
Snow (Pf) 20.0	Plate Grip DOL Lumber DOL	1.15 TC 0.57 1.15 BC 0.89	Vert(LL) Vert(CT)	-0.31 19- -0.58 19-	20 >999 240 20 >782 180	MT20 244/190
ICDL 10.0 BCLL 0.0 *	Rep Stress Incr	YES WB 0.88	Horz(CT)	0.20	13 n/a n/a	Weight: 253 lb ET - 20%
BCDL 10.0						
TOP CHORD 2x4 SP No	0.2		TOP CHORD	Structura	al wood sheathing direct	ly applied, except end verticals.
BOT CHORD 2x4 SP No B5: 2x4 SF	o.2 *Except* P No.1		BOT CHORD	Rigid ce 6-0-0 oc	iling directly applied. Ex bracing: 18-20	cept:
WEBS 2x4 SP No	0.3 *Except*		WEBS	1 Row a	t midpt 7-21	
W 1. 2X0 3	F NU.2, WZ. 284 SF NU.2			MiTek be inst	recommends that Stabili alled during truss erectio	zers and required cross bracing on, in accordance with Stabilizer
REACTIONS. (lb/size)	13=1642/0-3-8 (min 0-1-1	5) 27=1634/0-3-8 (min 0-1-15)		Installa	tion guide.	
Max Horz	27=-100(LC 15)	C 14)				
	13171(LC 15), 27175(L					
TOP CHORD 2-3=-300	mp./Max. Ten All forces 2)4/345, 3-28=-3271/332, 4-2	250 (lb) or less except when shown. 28=-3211/349, 4-5=-2645/301, 5-29=-	2576/312,			
29-30=-2 9-31=-24	2547/318, 6-30=-2525/325, 81/304 9-10=-2547/282 1	6-7=-2584/393, 7-8=-2536/390, 8-31= 0-32=-2711/301 11-32=-2797/288 2-	=-2416/306, -27=-1536/201			
11-13=-1 26.27= 7	563/251 75/325 24 25- 462/2080 2	2 24- 200/2064 22 22- 491/0 6 22-	- 425/171			
21-33=-2	2/1821, 17-33=-22/1821, 1	7-34=-22/1821, 16-34=-22/1821, 15-1	435/171, 16=-173/2503,			
14-15=-1 WEBS 4-24=0/3	73/2503, 13-14=-93/473 311, 4-23=-752/207, 21-23=	0/1993, 7-23=-254/1671, 20-21=-628/	/71, 7-20=-602/10	01,		
7-18=-18 2-25=-29	85/984, 16-18=-216/979, 8- 97/2530	16=-481/191, 10-16=-394/165, 11-14	=-124/2061,			
NOTES (10.12)						
1) Unbalanced roof live lo	bads have been considered	for this design.				
2) Wind: ASCE 7-16; Vul (envelope) gable end z	t=120mph (3-second gust) zone and C-C Exterior(2E) ·	Vasd=95mph; 1CDL=5.0psf; BCDL=5 0-10-8 to 3-11-2, Interior(1) 3-11-2 to	0.0pst; h=35ft; Ca 14-2-6, Exterior(it. II; Exp 2R) 14-2-	B; Enclosed; MWERS 6 to 24-0-0, Interior(1)	AND
24-0-0 to 34-0-14, Exte members and forces &	erior(2E) 34-0-14 to 38-10-8 MWFRS for reactions sho	3 zone; cantilever left and right expose wn: Lumber DOL=1.60 plate grip DOL	ed ; end vertical le _=1.60	eft and rig	ht exposed;C-C for	ORTH CAROLINI
3) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DO	_=1.15 Plate DOL=1.15); Pf=20.0 psf	(Lum DOL=1.15	Plate DO	L=1.15); ls=1.0; Rough	OROFESSION A HILL
4) Unbalanced snow load	Is have been considered fo	r this design.			1111	SEAL
ו חוז truss has been de non-concurrent with ot	esigned for greater of min ro her live loads.	boi live load of 12.0 pst or 2.00 times f	liat root load of 20	J.U pst or	overnangs	28147
 6) This truss has been de 7) * This truss has been de 	esigned for a 10.0 psf botton designed for a live load of 3	n chord live load nonconcurrent with a 0.0psf on the bottom chord in all area	any other live loa as where a rectan	ds. ale 3-6-0	tall by 1-0-0 wide with fit	Non al I
between the bottom ch	ord and any other member	s, with BCDL = 10.0psf.	ding 100 lb unliff	at ioint/a) except (it-lb) 12-171	ARECORD
27=175.				at joint(S	, except ((i=ib) 13-171,3	Municeronalition
9) This truss design requi sheetrock be applied d	ires that a minimum of 7/16 lirectly to the bottom chord.	" structural wood sheathing be applied	a directly to the to	op chord	and 1/2" gypsum	11/10/2023
Cowainuaed on people 2 lesign	parameters and read notes b	efore use. This design is based only upon pa	arameters shown, ar	nd is for an	individual building compone	ent to be installed and loaded
vertically. Applicability of	design parameters and proper in	corporation of component is responsibility of	of building designer	- not truss	designer or truss engineer.	Bracing shown is for lateral support
responsibility of the building	g designer. For general guidance	e regarding fabrication, quality control, stor	age, delivery, erection	on and brad	cing, consult ANSI/TPI 1 Na	tional Design Standard for Metal

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREEK TBD DAVINHALL DRIVE FUQUAY-VARINA, NO
23-8202-R01	R03A	Roof Special	1	1	Job Reference (optional) # 42591
		Run: 82	.430 s Feb 1	2 2021 Print	t: 8.430 s Feb 12 2021 MiTek Industries. Inc. Sat Nov 11 15:02:06 2023 Page 2

ID:zSnl_VDJTy_hu?pmOjJgrKyZRJv-DPlu?ELcvhSZLcPyooWCJY1Ygvmu75actgtaNtyKEN?

- 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 12) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

11/10/2023

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

11/10/2023

- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 11.

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREEK TBD DAVINHALL DRIVE FUQUAY-VARINA, NO
23-8202-R01	R07	Common Girder	1	2	Job Reference (optional) # 42591
		Run: 82.43 ID:zSn	30 s Feb 12 I_VDJTy_	2 2021 Print hu?pmOjJ	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Nov 11 15:02:08 2023 Page 2 IgrKyZRJv-9oseQwMsRJiHbvZKvCYgOz6wDiUgb0TvL_MhRmyKEMz

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 11-15=-20

Concentrated Loads (lb)

Vert: 17=-1546(B) 19=-1476(B) 20=-1472(B) 21=-1472(B) 22=-1472(B) 23=-1472(B)

11/10/2023

(lb) - Max Horz 16=-21(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-0-0, Corner(3R) 4-0-0 to 8-0-0, Corner(3E) 8-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

- non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 11.

LOAD CASE(S) Standard

SEAL 28147 MONEER CORESSIONS MONEER C. MORRIS

Job	Truss	Truss Type	Qty	Ply	LOT 11 PROVIDENCE CREEK TBD DAVINHALL DRIVE FUQUAY-VARINA, N	
23-8202-R01	R09	Common Girder	1	2	Job Reference (optional) # 42591	
Run: 82.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Nov 11 15:02:09 2023 Page ID:zSnI VDJTy hu?pm0jJgrKyZRJv-d Q1dGNVBcq8C38XTw3vwBf896nqKSI2ae5EzCyKEN						

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 7-11=-20

Concentrated Loads (lb) Vert: 6=-1476(B) 15=-1476(B) 16=-1476(B) 17=-1476(B) 18=-1476(B)

11/10/2023

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-0-0, Corner(3R) 4-0-0 to 8-0-0, Corner(3E) 8-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

- non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 11.

LOAD CASE(S) Standard

SEAL 28147 MONEER CORESSIONS MONEER C. MORRIS

NOTES- (9)

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

11/10/2023

¹⁾ Unbalanced roof live loads have been considered for this design.

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

BRACING-TOP CHORD Structural wood sheathing directly applied or 4-1-0 oc purlins. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=105/4-1-0 (min. 0-1-8), 3=105/4-1-0 (min. 0-1-8) Max Horz 1=-8(LC 15) Max Uplift1=-13(LC 14), 3=-13(LC 15) Max Grav 1=111(LC 20), 3=111(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(9)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

```
LOAD CASE(S) Standard
```


11/10/2023

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

11/10/2023