

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Serenity Built Homes Model: Jernigan Job

THE PLACEMENT PLAN NOTES:

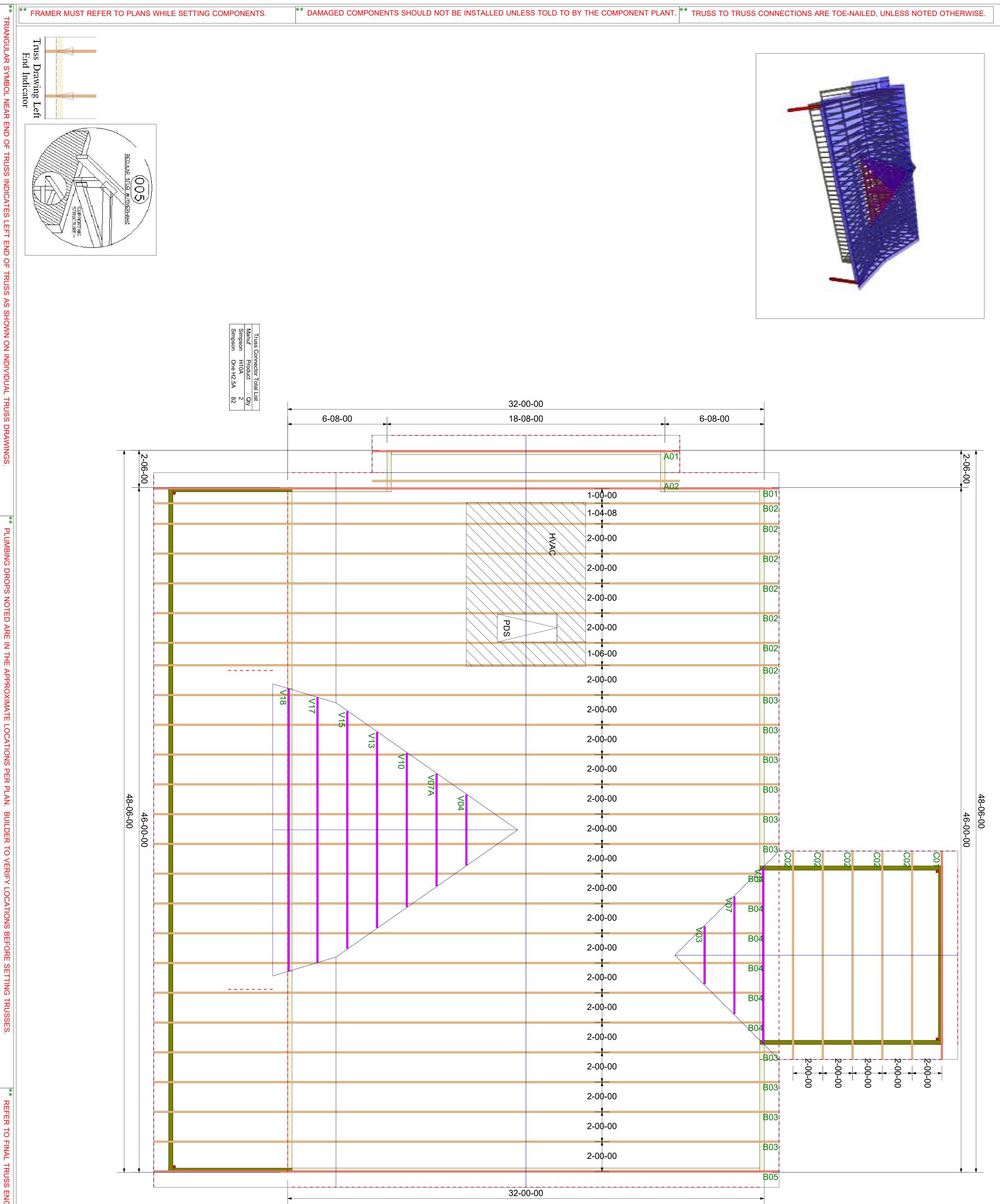
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _

Date: _____

General Notes:

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. ** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.

Date: 23	Serenity Built Homes	@	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	00/00/00	00/00/	00/00/	\mathbf{Q}
NTS /20/202 Designer: NC roject Numb Sheet Numb	Jernigan Job	CARTER	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Trues" evaluates from the Trues Plate Institute 502 PlOnifeir Driver	00 N N	/00 Z Z	N :	Revisions
	PLACEMENT PLAN		of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	ame ame	ame	ame	ame

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23120047-01 250 Grand Nad-Roof-Jernigan 1518

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I62662184 thru I62662202

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

December 21,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V17	Valley	1	1	Job Reference (optional)	162662184

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:35 ID:QsLItbiZTdZeA75uPesRvBy90CG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

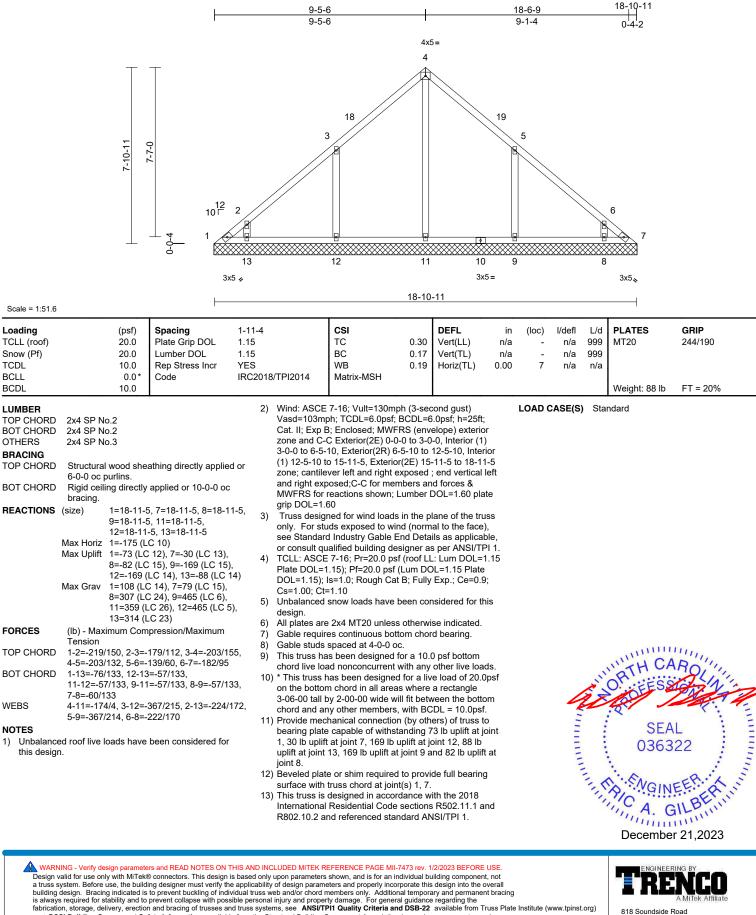
17-8-12

Scale = 1:52.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.22 0.27	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
I	8=17-9-6, Max Horiz 1=169 (LC Max Uplift 1=-22 (LC 9=-197 (L Max Grav 1=162 (LC	applied or 6-0-0 oc 5=17-9-6, 6=17-9-6 9=17-9-6 C 11) (10), 6=-200 (LC 15) C 14) C 24), 5=128 (LC 34) C 24), 8=459 (LC 23)	5) 7 6) 7) 8) , 8)	only. For stu see Standard or consult qu. TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced s design. Gable require Gable studs s This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b	snow loads have so continuous bo spaced at 4-0-0 s been designed a nonconcurren as been designed n chord in all are y 2-00-00 wide v	ind (norm End Detai esigner as sf (roof LL ((Lum DC at B; Fully been cor ttom chor bc. for a 10.0 with any ed for a liv as where vill fit betw	al to the face ils as applicat s per ANSI/TF :L=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing.) psf bottom other live loar e load of 20.0 a rectangle veen the botto), ole, ol 1. 1.15 l.15 l; ds. opsf					
FORCES	(lb) - Maximum Com Tension) Provide mech	y other member nanical connection capable of with	on (by oth	ers) of truss t	0					
TOP CHORD	1-2=-203/241, 2-3=- 4-5=-100/176	,	. 11		ft at joint 9 and 2 e or shim require			a					
BOT CHORD	1-9=-104/170, 8-9=- 5-6=-104/133	104/133, 6-8=-104/1	,		russ chord at joi designed in acco		ith the 2018	-				TH CA	0117
	2 0- 201/0 2 0- 40	9/231, 4-6=-401/232	12		Residential Cod							N' CA	- ····

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-10-11, Exterior(2R) 5-10-11 to 11-10-11, Interior (1) 11-10-11 to 14-4-8, Exterior(2E) 14-4-8 to 17-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V18	Valley	1	1	Job Reference (optional)	162662185

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:35 ID:QsLItbiZTdZeA75uPesRvBy90CG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V04	Valley	1	1	Job Reference (optional)	162662186

12 10 ∟

1

1-7-15

0-0-4

1-11-10

2-4-1

2-4-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:33 ID:JO2oks9uxOj?c1KK74wQ0by903x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-4-0

1-11-15

3x5 = 2

4-8-2

÷

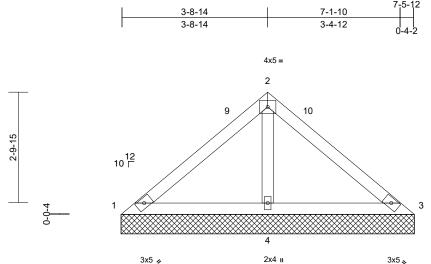
3

Page: 1

2x4 🍫 2x4 💊 4-8-2

818 Soundside Road Edenton, NC 27932

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER KETERKENCE PAGE MIT-44 3 rev. 1/2/2/23 DEFORE USC.
 Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


	R802.10.2 ar	id referenced standard ANSI/TPI 1.	
laximum	LOAD CASE(S)	Standard	
idered for			
gust)			
sf; h=25ft;			
e) exterior			IN A CAPO'
left and right			N'alti on O
d;C-C for			O .:= SSI
ns shown;			and light
of the truss			3 12
the face),			E : SEAL E
s applicable,			
r ANSI/TPI 1.			= ; 036322 ; =
m DOL=1.15			5 1 3 3
.15 Plate			ショント アン・ストラー
.; Ce=0.9;			December 21,2023
			MA GINER ANS
ered for this			CA SUBLIN
			A. GILLIN
aring.			
-			December 21,2023
		FERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.	ENGINEERING BY
		shown, and is for an individual building component, not ters and properly incorporate this design into the overall	
ckling of individual	truss web and/or chord m	embers only. Additional temporary and permanent brac	
ose with possible pe	ersonal injury and proper	y damage. For general guidance regarding the	A MiTek Affiliate

Scale = 1:25.9	X X/v [2:0.2.9.5 data]											
Plate Offsets (X, Y): [2:0-2-8,Edge]	1				-						
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix	0.17 0.14 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 15 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-8-2 oc purlins. Rigid ceiling directly bracing. (size) 1=4-8-2, 3 Max Horiz 1=-42 (LC Max Grav 1=226 (LC	y applied or 10-0-0 or 3=4-8-2 C 12) C 14), 3=-15 (LC 15)	8) This chor 9) * Thi and or 3-06 c chor 10) Prov bear 1 anu 11) This Inter	d live load nonce s truss has been e bottom chord -00 tall by 2-00- d and any other ide mechanical ing plate capabl d 15 lb uplift at j truss is designe national Reside	designed for a 10. oncurrent with any n designed for a liv in all areas where 00 wide will fit betw members. connection (by oth e of withstanding 1 oint 3. d in accordance w ntial Code sections	other live loa e load of 20.0 a rectangle veen the botto 5 lb uplift at j ith the 2018 s R502.11.1 a	Opsf om to oint					
FORCES	(lb) - Maximum Com Tension 1-2=-302/102, 2-3=-	pression/Maximum	/ 1002	2.10.2 and reference ASE(S) Stand	enced standard AN ard	ISI/TPI 1.						
BOT CHORD	1-3=-65/221											
NOTES 1) Unbalance	ed roof live loads have	been considered for	r									
Vasd=103 Cat. II; Exp zone and (exposed ; members a Lumber D	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown DL=1.60	r right ;						4	in	OR SS	ROW
only. For see Stands or consult	signed for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (l (normal to the face) d Details as applicat gner as per ANSI/TF), ble, 인 1.								SEA 0363	
Plate DOL	=1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	um DOL=1.15 Plate								THE REAL	S. ENGIN	EERA
 Unbalance design. 	ed snow loads have be	een considered for th	nis								A. C	ILBEIT
6) Gable requ	uires continuous botto	m chord bearing.									Decembe	1111,

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518					
23120047-01	V07A	Valley	1	1	Job Reference (optional)	162662187				

3-1-10

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:34 ID:F2h_jLNpTE6JOyHzkZmtHby903e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-5-12

Scale = 1.29.6

Scale = 1:29.6													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.29 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	7-5-12 oc purlins. Rigid ceiling directly bracing.	3=7-6-6, 4=7-6-6 : 11) C 21), 3=-26 (LC 20), C 14) C 20), 3=102 (LC 21) C 21) npression/Maximum -100/254	6 7 8 9 , 1	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 1, 26 lb upliff Beveled plat surface with surface with This truss is International 	snow loads have b es continuous both spaced at 4-0-0 oc as been designed fi ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wil hy other members. hanical connection e capable of withstat t at joint 3 and 80 II e or shim required truss chord at joint designed in accorc Residential Code	Lum DC B; Fully one choic or choic or a 10. with any for a liv s where Il fit betw h (by oth anding 2 b uplift a to provis ((s) 1, 3. dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live load re load of 20.0 a rectangle ween the botto ers) of truss t 26 lb uplift at ji at joint 4. de full bearing tith the 2018 s R502.11.1 a	ds. Dpsf om oint					
	NOTES I) Unbalanced roof live loads have been considered for				R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard						mini	1111	

- 1)
- this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-6-6, Exterior(2E) 4-6-6 to 7-6-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS

for reactions shown; Lumber DOL=1.60 plate grip

- DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Structure Building Component Approximation **Component** (available from Truss Plate Institute (www.tpinst.org)) and **PCB Building Component Scitut Information**. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V10	Valley	1	1	Job Reference (optional)	162662188

5-1-11

5-1-11

9

12 10 ∟

3x5 🛷

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-11-15

4-3-10

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:34 ID:c0Vtm3RyHmlbVjAxX7M2_fy903Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 =2

9-11-4

4-9-9

10 3 4 2x4 II 3x5 💊 10-3-6 90 20%

Page: 1

Scale	=	1:35.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.48 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing.	C 21)́, 3=-73 (LC 20), ₋C 14)	6 7 8 8-15 9	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar 0) Provide mec	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w y other members hanical connection	(Lum DC B; Fully been cor com chor c. for a 10.0 with any f for a liv s where s where ill fit betv	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ds. Dpsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Con Tension 1-2=-136/436, 2-3=	-249/191	1:	1, 73 lb uplift 1) Beveled plat surface with 2) This truss is International	e capable of withst at joint 3 and 126 e or shim required truss chord at join designed in accor Residential Code nd referenced star Standard	b lb uplift to provi t(s) 1, 3. dance w sections	at joint 4. de full bearing ith the 2018 \$ R502.11.1 a	g					UT1

- this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 7-3-15, Exterior(2E) 7-3-15 to 10-3-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description).

GI A. GILIN December 21,2023

RTH

0

Contraction of the

CAR

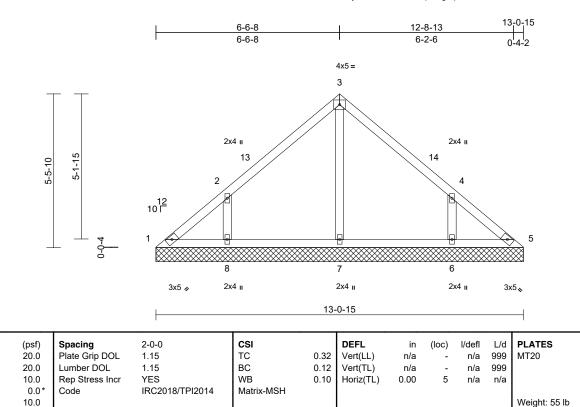
SEAL

036322

anninnin ann

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V13	Valley	1	1	Job Reference (optional)	162662189


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Dec 20 07:50:34 ID:FJDPI9aTTSFvxZ5FEeatTBy903N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LUWDER		
TOP CHORD	2x4 SP N	o.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=13-0-15, 5=13-0-15, 6=13-0-15,
		7=13-0-15, 8=13-0-15
	Max Horiz	1=-124 (LC 10)
	Max Uplift	1=-28 (LC 10), 6=-142 (LC 15),
		8=-145 (LC 14)
	Max Grav	
		6=437 (LC 21), 7=276 (LC 20),
		8=437 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD		110, 2-3=-203/115, 3-4=-203/115,
	4-5=-107/	
BOT CHORD		02, 7-8=-41/83, 6-7=-41/83,
	5-6=-41/8	
WEBS	3-7=-191/	0, 2-8=-379/198, 4-6=-379/198

WFBS

NOTES

Scale = 1:41 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-6-12, Exterior(2R) 3-6-12 to 9-6-12, Interior (1) 9-6-12 to 10-1-4, Exterior(2E) 10-1-4 to 13-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4)
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1, 145 lb uplift at joint 8 and 142 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckting of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V15	Valley	1	1	Job Reference (optional)	162662190

Loading

TCDL

BCLL

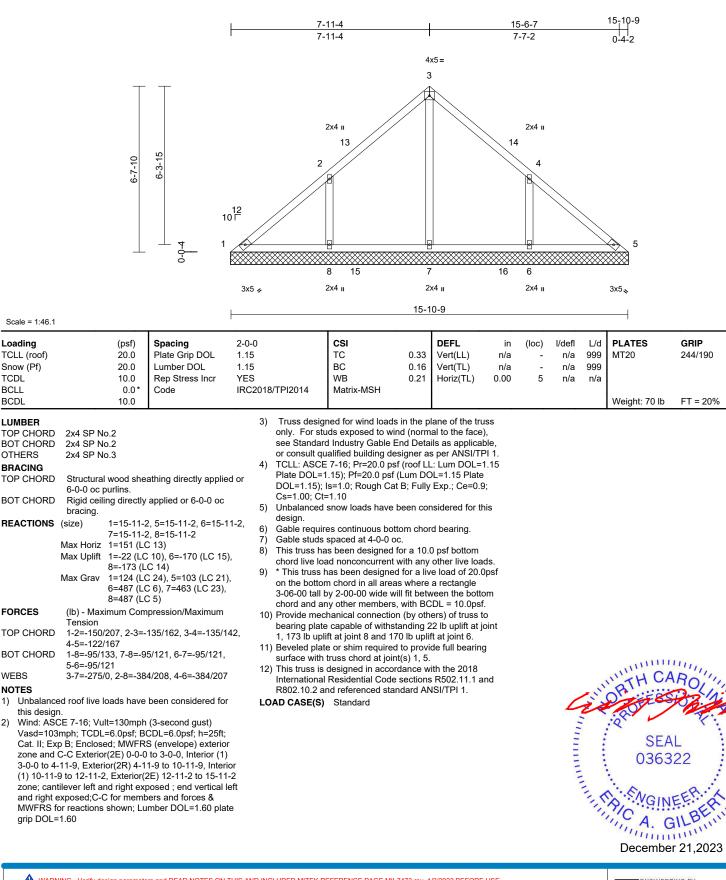
BCDL

LUMBER

OTHERS

FORCES

WEBS


NOTES

1)

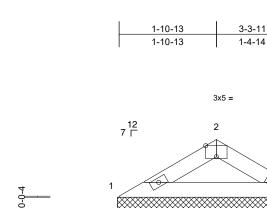
2)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Dec 20.07:50:35 ID:QsLItbiZTdZeA75uPesRvBy90CG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

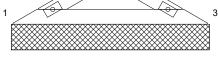
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


1111111111

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V03	Valley	1	1	Job Reference (optional)	162662191

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:33 ID:6m152WLNa6UwnNbkXMm0cgy907Z-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


3-9-10

Page: 1

0-9-14

1-1-9

2x4 🍃 2x4 👟

3-9-10

Scale = 1:22.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

	A, T). [2.0-2-0,Euge]				_							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.11 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exp zone and C exposed ; (members a Lumber DC 3) Truss desi only. For s see Standa or consult (4) TCLL: ASC Plate DOL= DOL=1.15; Cs=1.00; C 5) Unbalance design.	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-9-10 oc purlins. Rigid ceiling directly bracing. (size) 1=3-10-8, Max Horiz 1=-23 (LC Max Uplift 1=-15 (LC Max Uplift 1=-15 (LC Max Grav 1=176 (LC (Ib) - Maximum Com Tension 1-2=-276/105, 2-3=- 1-3=-79/231 ed roof live loads have b. E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi 0 B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC DL=1.60 plate grip DC DL=1.15); Pf=20.0 psf (L	applied or 10-0-0 or 3=3-10-8 (12) 14), 3=-15 (LC 15) 20), 3=176 (LC 21) pression/Maximum 276/105 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and r ght exposed; C-C for for reactions shown; L=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1.15 Plate b; Fully Exp.; Ce=0.9 pen considered for the	8) This trus chord liv 9) * This trus chord liv 9) * This tru on the b 3-06-00 c 10) Provide bearing 1 and 15 11) Beveled surface 12) This trus Internati R802.10 LOAD CASE r r r r r s s), ole, PI 1. 1.15	uds spaced at 4-0-0 s has been designe e load nonconcurrer iss has been design totom chord in all arr tall by 2-00-00 wide d any other membe mechanical connect olate capable of with Ib uplift at joint 3. plate or shim require with truss chord at jc s is designed in acc onal Residential Coo .2 and referenced st (S) Standard	d for a 10.1 ht with any led for a liv eas where will fit betw rs. ion (by oth histanding 1 ed to provi bint(s) 1, 3. ordance w de sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 5 lb uplift at j de full bearing ith the 2018 s R502.11.1 a	Opsf om oont g		C		Veignt: 10 Ib ORTH CA ORTEESS SEA 0363	ROWN AND AND AND AND AND AND AND AND AND AN
.,		g.									Decembe	r 21,2023

NGINEERING

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schult before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V07	Valley	1	1	Job Reference (optional)	162662192

3-10-13

3-10-13

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-11-14

-0-0

2-3-9

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:33 ID:6m152WLNa6UwnNbkXMm0cgy907Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-3-11

3-4-14

3

4x5 = $7 \frac{12}{7}$ 4x5 = $7 \frac{12}{7}$ 4 $2x4 \neq 2x4 =$ 2x4 = 7 -9 -10 CSI = 0.28 =

Scale = 1:26.2

Scale = 1:26.2											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.28 BC 0.28 WB 0.08 Matrix-MP	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood sh 7-9-10 oc purlins. Rigid ceiling directl bracing. (size) 1=7-9-10 Max Horiz 1=-50 (L Max Uplift 1=-13 (L 4=-51 (L Max Grav 1=108 (L 4=554 (L (lb) - Maximum Con Tension 1-2=-108/272, 2-3=	C 21), 3=-13 (LC 20), C 14) .C 20), 3=108 (LC 21) .C 21) mpression/Maximum =-108/272	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mee bearing plat 1, 13 lb uplif 11) This truss is Internationa	snow loads have been col res continuous bottom chor spaced at 4-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betv ny other members. chanical connection (by oth e capable of withstanding 1 ft at joint 3 and 51 lb uplift a designed in accordance w I Residential Code sections and referenced standard AN	DL=1.15 Plate Exp.; Ce=0.9; asidered for this d bearing. D psf bottom other live loads e load of 20.0p; a rectangle veen the bottom ers) of truss to 3 lb uplift at join t joint 4. ith the 2018 s R502.11.1 and	s. sf n					
NOTES 1) Unbalanc this desig	ed roof live loads haven.	e been considered for	r								Della

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Exterior(2R) 3-0-7 to 4-10-1, Exterior(2E) 4-10-1 to 7-10-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	V11	Valley	1	1	Job Reference (optional)	162662193

3-5-2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:34 ID:6m152WLNa6UwnNbkXMm0cgy907Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 $\frac{5 \cdot 10 \cdot 1}{5 \cdot 10 \cdot 1}$ $\frac{11 \cdot 2 \cdot 3}{5 \cdot 4 \cdot 2}$ $\frac{4 \times 5 =}{0 \cdot 5 \cdot 15}$ $\frac{11 \cdot 2 \cdot 3}{5 \cdot 4 \cdot 2}$ $\frac{11 \cdot 2 \cdot 3}{0 \cdot 5 \cdot 15}$

3x5	1

2x4 II

11-8-2

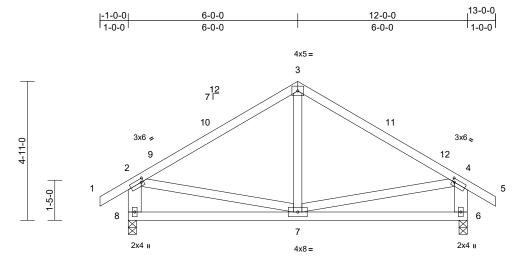
Scale	=	1.32 1

30ale - 1.32.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	1-11- 1.15 1.15 YES IRC2	4 018/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.53 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc purlins. Rigid ceiling direc bracing. (size) 1=11-9 Max Horiz 1=-74 (Max Uplift 1=-79 (4=-94 (tty applied or 6-0-0 oc -0, 3=11-9-0, 4=11-9-(LC 12) LC 21), 3=-79 (LC 20) LC 14) -C 20), 3=73 (LC 21), -) I,	 Plate DOL=⁻ DOL=1.15); Cs=1.00; Cs=1.00; Cs Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss la on the botton 3-06-00 tall i chord and at Provide med 	snow loads have es continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all are- by 2-00-00 wide v y other members hanical connectio	F (Lum DC at B; Fully been cor ttom chor cc. for a 10.1 with any d for a liv as where vill fit betw s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for t d bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss	e 9; his ads. 0psf om to					
this desig	Tension 1-2=-117/531, 2-3 1-4=-355/159, 3-4 2-4=-743/228 ed roof live loads ha	!=-355/159 ve been considered fo		 79 Ib uplif Beveled plat surface with This truss is International 	e capable of withs t at joint 3 and 94 e or shim require truss chord at joi designed in acco Residential Code nd referenced sta Standard	lb uplift a d to provi nt(s) 1, 3. rdance w e sections	at joint 4. de full bearin ith the 2018 s R502.11.1 a	g				WH CA	ROUL

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 8-9-0, Exterior(2E) 8-9-0 to 11-9-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 036322 December 21,2023

3x5 👟


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	C02	Common	5	1	Job Reference (optional)	162662194

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:32 ID:bwO9VpcIItAFLGzsYr86EJy904d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

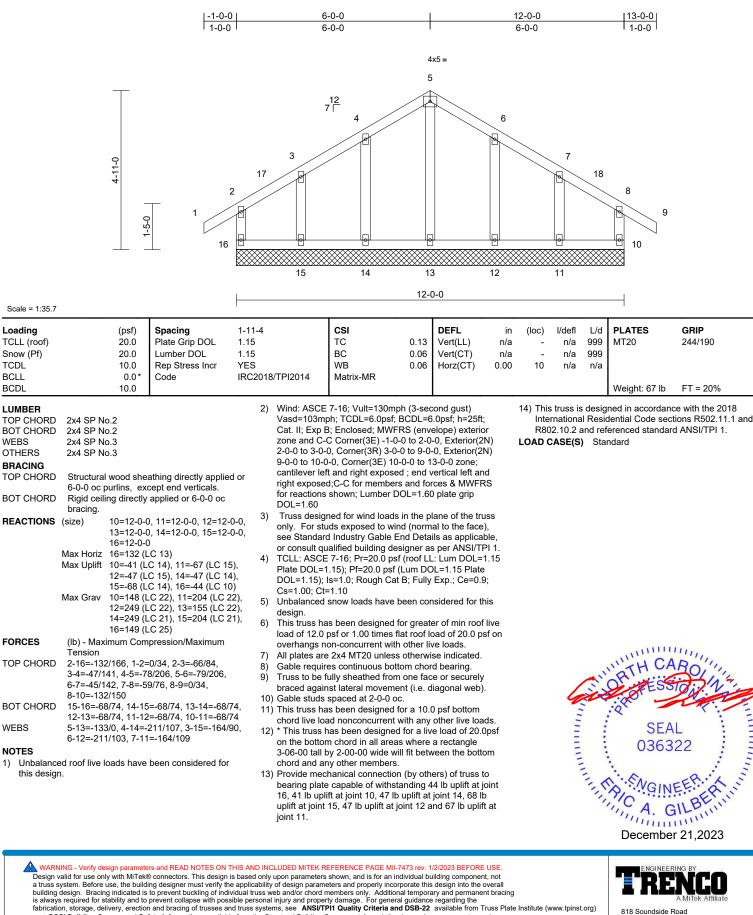
	6-0-0	12-0-0	
	6-0-0	6-0-0	
Scale = 1:40.8			
Plate Offsets (X, Y): [2:0-1-0,0-1-8], [4:0-1-0,0-1-8]			

Flate Olisets (X, F). [2.0-1-0,0-1-0], [4.0-1-0,0-1-0							
Loading(psf)SpacingTCLL (roof)20.0Plate Grip DSnow (Pf)20.0Lumber DOLTCDL10.0Rep Stress IBCLL0.0*CodeBCDL10.0	_ 1.15	CSI TC 0.68 BC 0.29 WB 0.11 Matrix-MSH 0.11	Vert(CT) -0.05	(loc) l/da 6-7 >99 6-7 >99 6 n	99 240	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 8-2,6-4:2x6 BRACING TOP CHORD Structural wood sheathing directly 6-0-0 oc purlins, except end vertic BOT CHORD Rigid ceiling directly applied or 10-bracing. REACTIONS (size) 6=0-3-8, 8=0-3-8 Max Horiz 8=138 (LC 13) Max Uplift 6=-63 (LC 15), 8=-63 (L Max Grav 6=632 (LC 22), 8=632 (I FORCES (Ib) - Maximum Compression/Maxi Tension TOP CHORD 1-2=0/37, 2-3=-534/108, 3-4=-534/ 4-5=0/37, 2-8=-580/170, 4-6=-580/ BOT CHORD 7-8=-139/251, 6-7=-76/251 WEBS 3-7=0/189, 2-7=-29/265, 4-7=-32/2 NOTES 1) Unbalanced roof live loads have been consider this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gus Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h Cat. II; Exp B; Enclosed; MWFRS (envelope) e zone and C-C Exterior(2E) 10-0 to 13-0-0 z cantilever left and right exposed ; end vertical I right exposed; C-C for members and forces & M for reactions shown; Lumber DOL=1.60 pals (pol) L=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (toof LL: Lum D Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp; C Cas=1.00; Ct=1.10 	design. 5) This truss load of 12. overhangs applied or als. 0-0 oc 1) * This trus on the bot 3-06-00 ta chord and 8) One H2.5/ recommer UPLIFT at and does i 9) This truss Internation R802.10.2 265 red for st) =25ft; exterior rrior (1) zone; left and MWFRS grip DOL=1.15 Plate	ed snow loads have been co has been designed for grea .0 psf or 1.00 times flat roof s non-concurrent with other l has been designed for a 10 load nonconcurrent with an ss has been designed for a li ttom chord in all areas where all by 2-00-00 wide will fibe all by 2-00-00 wide will fibe all by 2-00-00 wide will fibe all by 2-00-00 wide will fibe to connect truss to bea t jt(s) 8 and 6. This connecti not consider lateral forces. is designed in accordance wind nal Residential Code sectior 2 and referenced standard A (S) Standard	ter of min roof live load of 20.0 psf on live loads. .0 psf bottom y other live loads. ve load of 20.0psf e a rectangle tween the bottom ectors rring walls due to on is for uplift only with the 2018 is R502.11.1 and		and the second s	SEA 0363	EER A

- 9-0-0 to 10-0-0, Exterior(2E) 10-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schult Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

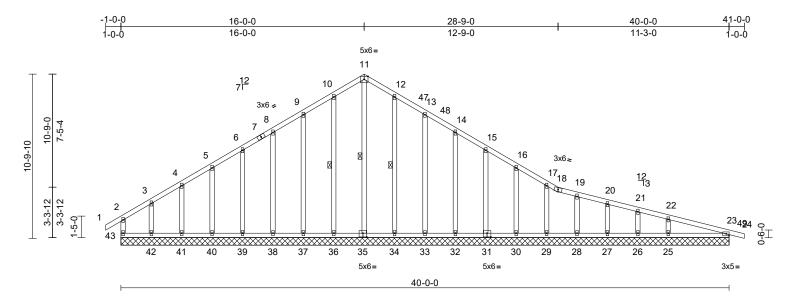

GILB

A. GIL December 21,2023

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	C01	Common Supported Gable	1	1	Job Reference (optional)	162662195

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Dec 20.07:50:32 ID:0EYtZ0SWbaPEf7vAkuuqfMy904r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

111111111

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	B05	Roof Special Supported Gable	1	1	Job Reference (optional)	162662196

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Wed Dec 20 07:50:31 ID:m9sKqtJYkhZaNgj6D9CnrXy906J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	1:75.8
-----------	--------

[31:0-3-0,0-3-0], [35:0-3-0,0-3-0]

	X, Y): [31:04	-3-0,0-3-0], [35:0-3-0,0-3-0]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matr	ix-MSH	0.21 0.14 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 269 lb	GRIP 244/190 FT = 20%
	Structural 6-0-0 oc p Rigid ceilir bracing. 1 Row at r (size) Max Horiz Max Uplift	.2 .3 .3 *Excep wood she: urlins, exu- ng directly nidpt 23=40-0-0 33=40-0-0 33=40-0-0 33=40-0-0 42=40-0-0 42=40-0-0 42=-254 (L 23=-86 (L 23=-54 (L 32=-49 (L 32=-49 (L 32=-49 (L 32=-54 (L 32=-54 (L) 33=-49 (L) 33=-49 (L) 33=-49 (L) 33=-49 (L) 33=-49 (L) 33=-49 (L) 33=-49 (L) 33=-49 (L)	t* 35-11:2x4 SP No. athing directly applie cept end verticals. applied or 6-0-0 oc 12-34, 11-35, 10-36 0, 25=40-0-0, 26=40 0, 31=40-0-0, 32=40 0, 31=40-0-0, 32=40 0, 31=40-0-0, 32=40 0, 34=40-0-0, 38=40 0, 37=40-0-0, 41=40 LC 12) C 11), 25=-74 (LC 1 C 11), 25=-74 (LC 1 C 11), 25=-74 (LC 1 C 15), 31=-50 (LC 1 C 15), 33=-55 (LC 1 C 15), 38=-50 (LC 1 C 14), 42=-128 (LC C 10), 44=-86 (LC 1	ed or)-0-0,]-0-0,]-0-0,]-0-0,]-0-0,]-0-0,]-0-0,]-0-0,]-0-0,]-0-0,]-0,]-0,]-0,]-0,]-0,]-0,]-0,]-0,]-0,]-1,]	FORCES TOP CHORD BOT CHORD	(lb) - M Tensio 2-43=- 3-4=-9 10-11= 12-13= 14-15= 16-17= 18-19= 20-21= 22-23= 42-43= 40-41= 38-39= 36-37= 33-34= 30-32= 28-29= 26-27=	26=126 28=207 30=202 32=205 34=252 36=260 38=205 40=169 42=208 44=266 laximum Con n 141/49, 1-2: 9/79, 4-5=-5	(LC 41) (LC 41) (LC 38) (LC 38) (LC 40) (LC 21) (LC 21) (LC 24) (LC 24) (LC 41) ompressi =0/35, 2- 56/107, 5 -113/214 1-12=-1 3-14=-1 5-16=-1 7-18=-1 1-22=-1 23-24=0/ -42=-66 -38=-66 2-33=-66 2-33=-67 7-28=-67	on/Maximum -3=-93/91, -6=-75/135, 9-10=-137/2 55/352, 13/235, 13/235, 13/235, 13/235, 13/235, 13/145, 40/170, 50/147, 65/115, 19 (189, 1489, 1489, 1490, 1400,	41), 38), 38), 22), 14), 21), 24), 1), 25),	this 2) Wir Vas Cat zon 3-0- (2N zon and MW grip	balance design d: ASC d=103r . II; Exp e and C -0 to 12) 20-0-C e; canti l right e: /FRS fo DOL=1	11-35 9-37= 5-40= 14-32 16-30 19-28 21-26 d roof li E 7-16 mph; TC B; Enco -0-0, C 0 to 37- lever led (posed 60	127/76, 4-41=-1 =-163/74, 15-31: =-163/74, 15-31: =-169/74, 20-27: =-118/45, 22-25: ive loads have b ; Vult=130mph (: CDL=6.0psf; BCL closed; MWFRS rner(3E) -1-0-0 tc orner(3R) 12-0-C 0-0, Corner(3R) 12-0-C bf and right expo ;C-C for membe	=-222/121, -165/73, 6-39=-126/74 125/66, 3-42=-141/114 =-161/74, =-147/72, =-186/60, =-306/95 een considered for 3-second gust) DL=6.0psf; h=25ft; (envelope) exterior 3-0-0, Exterior(2N) 0 to 20-0, Exterior 37-00 to 41-0-0 sed; end vertical left rs and forces & ber DOL=1.60 plate

December 21,2023

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of trusses and truss systems, see **ANSI/TPI Quality Criteria and DS2-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	B05	Roof Special Supported Gable	1	1	Job Reference (optional)	162662196

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 43, 86 lb uplift at joint 23, 55 lb uplift at joint 33, 41 lb uplift at joint 34, 41 lb uplift at joint 36, 56 lb uplift at joint 37, 50 lb uplift at joint 38, 49 lb uplift at joint 39, 55 lb uplift at joint 40, 32 lb uplift at joint 41, 128 lb uplift at joint 42, 49 lb uplift at joint 32, 50 lb uplift at joint 31, 54 lb uplift at joint 30, 33 lb uplift at joint 29, 51 lb uplift at joint 28, 36 lb uplift at joint 27, 26 lb uplift at joint 26, 74 lb uplift at joint 25 and 86 lb uplift at joint 23.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:31 ID:m9sKqtJYkhZaNgj6D9CnrXy906J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

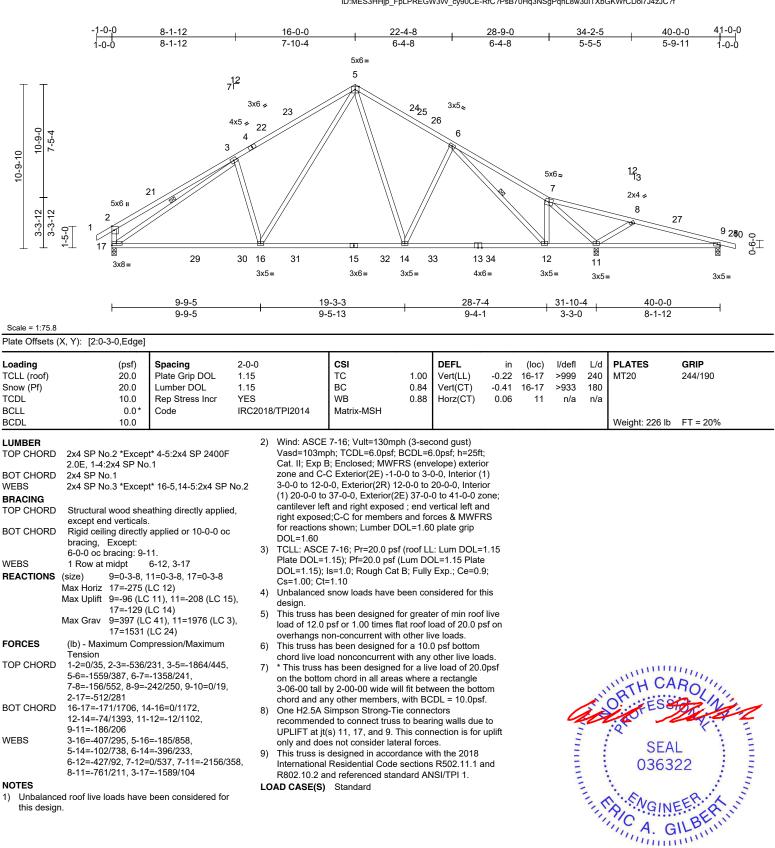
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	B04	Roof Special	6	1	Job Reference (optional)	162662197

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:31 ID:288 rTCMd6 kke0 hl7 fnoUh5 y907 X-RfC?PsB70 Hq3NSgPqnL8 w3ulTXbGKWrCDoi7J4 zJC?f

	 	8-1-12 8-1-12		<u>16-0-0</u> 7-10-4		<u>22-4-8</u> 6-4-8			34-2-5 5-5-5		40-0-0 5-9-11	41-0-0
10-9-10 3-3-12 3-3-12 7-5-4	3x8 II 1 16 3x8 =		3x6 7/7 4x5 = 3 2 2 28 28 15 3x5 =	21	5x6 = 4 14 14 3x6 =	2223 2 30 13 3 3x5=	3x5 4 5 12 32 4x6=	5xt 6 11 3x5	8 8 10		25	⁸ 26 g o B B 3x5=
	 	9-9-5 9-9-5		<u> </u>			<u>28-7-4</u> 9-4-1		<u>31-10-4</u> 3-3-0		-0-0 1-12	—
Scale = 1:74.2		1			1		1					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		18/TPI2014	CSI TC BC WB Matrix-M	0.98 0.84 0.88 SH	Vert(CT) -0	in (loc) 0.22 15-16 0.41 15-16 0.06 10	I/defl L/ >999 24 >930 18 n/a n/	0 MT20 0 /a	GRIP 244/1 24 lb FT = :	90
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	Max Horiz 16=-270 Max Uplift 8=-96 (L 16=-107 Max Grav 8=386 (L 16=1465 (lb) - Maximum Cor Tension 1-2=-446/174, 2-4= 4-5=-1560/390, 5-6 6-7=-160/557, 7-8= 1-16=-389/185	io.1 eathing directly apple s. y applied or 10-0-0 -10. 5-11, 2-16 10=0-3-8, 16=0-3- (LC 12) C 11), 10=-209 (LC (LC 14) C C 41), 10=1979 (L 5 (LC 24) mpression/Maximu =-1874/458, S=-1356/241, 239/254, 8-9=0/1	00F SP No.2 oblied, 1 oc 3 8 C 15), 4 C 15), 5 C 3), 5 m 6 7	Cat. II; Exp E zone and C- 4-1-12 to 12 (1) 20-0-0 to cantilever lei right expose for reactions DOL=1.60) TCLL: ASCE Plate DOL=7 DOL=1.15); Cs=1.00; Ct:) Unbalanced design.) This truss ha chord live loo * This truss ha chord live loo 3-06-00 tall l	ph; TCDL=(3; Enclosec C Exterior(C -0-0, Exteri -37-0-0, Ex ft and right d;C-C for m -shown; Lu E 7-16; Pr=2 1.15; Pf=20 Is=1.0; Rou =1.10 snow loads as been des psf or 1.00 oon-concurr as been des ad nonconc has been des ad nonconcurr has been des ad nonconcurr has been des been des been des ad nonconcurr	6.0psf; BCDL= 1; MWFRS (em- 2E) 0-1-12 to 4 or(2R) 12-0-0 to terior(2E) 37-0 exposed ; end nembers and fc mber DOL=1.6 20.0 psf (roof L 0.0 psf (Lum D ugh Cat B; Full a have been co signed for grean times flat roof ent with other I signed for a 10 uurrent with any esigned for a li all areas where wide will fit bet	6.0psf, h=25ft; relope) exterior -1-12, Interior (1) o 20-0-0, Interior -0 to 41-0-0 zone; vertical left and rces & MWFRS 0 plate grip L: Lum DOL=1.15 DL=1.15 Plate r Exp.; Ce=0.9; nsidered for this ter of min roof live oad of 20.0 psf or ve loads. 0 psf bottom o ther live loads. re load of 20.0gsf a rectangle ween the bottom	5 9 1			CARO	
 1-16=-389/185 BOT CHORD 15-16=-172/1715, 13-15=0/1172, 11-13=-77/1394, 10-11=-12/1100, 8-10=-189/203 WEBS 2-15=-418/207, 4-15=-188/869, 4-13=-102/738, 5-13=-395/233, 5-11=-431/96, 6-11=0/540, 6-10=-2160/362, 7-10=-757/211, 2-16=-1656/172 NOTES 1) Unbalanced roof live loads have been considered for this design. chord and any other members, with BCDL = 10.0psf. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10, 16, and 8. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard CARO (MILLING) COMD CASE(S) Standard COMD CASE(S) Standard COMD CASE(S) Standard 									The second secon			

minin December 21,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scher User Component Carbon and Component Advancement Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	B03	Roof Special	10	1	Job Reference (optional)	162662198

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:30 ID:MES3HHjp FpLPREGW3vv cy90CE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

December 21,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	B02	Roof Special	7	1	Job Reference (optional)	162662199

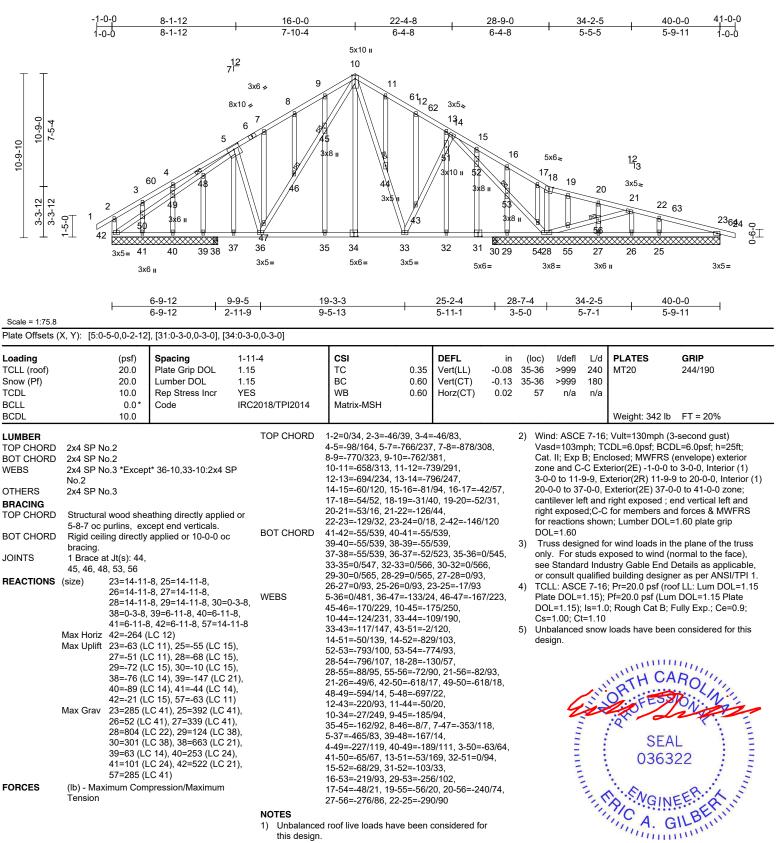
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:29 ID:9cRLbywldzbGanVhxKkVbhy90Fs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

41-0-0 1-0-0 8-1-12 16-0-0 25-0-0 28-9-0 34-2-5 40-0-0 8-1-12 7-10-4 9-0-0 3-9-0 5-5-5 5-9-11 5x6= 5 7¹² ³⁰31 3x6 🍬 29 32 4x5 💋 28 10-9-0 7-5-4 4 3x5、 3 10-9-10 6 12 |3 5x6= 27 7 2x4 🍫 5x6 u 8 3-3-12 3-3-12 2 33 ⁹ 340 0-∐ -2-0 2 19 X 35 36 17 15 18 16 14 13 12 11 4x8= 3x5= 2x4 II 2x4 II 2x4= 4x6= 3x5= 3x5= 3x5= 2x4= 2x4 II 2x4 II 3x5= 3x6= 14-6-0 20-0-0 12-0-0 17-6-0 28-7-4 31-10-4 40-0-0 12-0-0 2-6-0 3-0-0 2-6-0 8-7-4 3-3-0 8-1-12 Scale = 1:78.2 Plate Offsets (X, Y): [2:0-3-0,Edge]

-		-	-										
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.51	18-19	>743	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.86	18-19	>442	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.05	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/T	PI2014	Matrix-MSH								
BCDL	10.0											Weight: 234 lb	FT = 20%
LUMBER			1) L	Jnbalanced	roof live loads have	e been	considered fo	r					
TOP CHORD	2x4 SP 2400F 2 0F	*Except* 7-10:2x4 SP		his desian.									
	No.2, 1-4:2x4 SP No		2) V	Nind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)						
BOT CHORD					h; TCDL=6.0psf; E								
	No.2			Cat. II; Exp B	; Enclosed; MWFF	RS (env	elope) exterio	or					
WEBS	2x4 SP No.3 *Excep	ot* 18-5,14-5:2x4 SP N	o.2 z	zone and C-0	C Exterior(2E) -1-0	-0 to 3-	0-0, Interior (1)					
BRACING	·			3-0-0 to 12-0	-0, Exterior(2R) 12	2-0-0 to	20-0-0, Interio	or					
TOP CHORD	Structural wood she	athing directly applied			37-0-0, Exterior(28								
	2-2-0 oc purlins, ex		C		t and right exposed								
BOT CHORD		applied or 10-0-0 oc			;C-C for members			RS					
	bracing, Except:			for reactions shown; Lumber DOL=1.60 plate grip									
	6-0-0 oc bracing: 9-	11.		DOL=1.60									
WEBS	1 Row at midpt	3-19			7-16; Pr=20.0 psf								
REACTIONS	(size) 9=0-3-8, 2	11=0-3-8, 19=0-3-8			.15); Pf=20.0 psf (
	Max Horiz 19=-267 (LC 12)			s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.	9;					
	Max Uplift 9=-89 (LC	2 11), 11=-194 (LC 15		Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this									
	19=-126 (design.				115						
	Max Grav 9=401 (LC		0	s been designed fo	or areat	er of min roof	live						
	19=1439	(LC 24)			osf or 1.00 times fla								
FORCES	(lb) - Maximum Com	pression/Maximum			on-concurrent with			0. 0					
	Tension				s been designed for								11.
TOP CHORD	1-2=0/34, 2-3=-617/				d nonconcurrent w			ds.				11111 01	E III
	5-6=-1438/354, 6-7=	,	7) *	7) * This truss has been designed for a live load of 20.0psf								ROUL	
	7-8=-130/453, 8-9=-	295/132, 9-10=0/18,	c	on the botton	n chord in all areas	s where	a rectangle			/	5	n reco	in the la
	2-19=-547/264				y 2-00-00 wide wil						22	105	ON ST.
BOT CHORD	18-19=-179/1540, 1				y other members,			F.		Z	2		nun
	15-17=0/1104, 14-1	,			impson Strong-Tie					-	.0	. *	
	12-14=-121/1334, 1	1-12=-17/1042,			d to connect truss					-		SEA	L 18 E
WEBS	9-11=-87/257 3-18=-387/271, 18-2	2080/768			s) 11, 19, and 9. T			uplift		Ξ.		0000	• •
WLDO		81/484, 14-21=-80/4			s not consider late					=		0363	22 : :
	6-14=-361/225, 6-12	,	, 3) 1		designed in accord Residential Code s			اممر		-	6	•	1 2
	7-12=-64/572, 7-11=							ma			1	·	01. 3
	8-11=-734/210, 3-19				nd referenced stan	uaru Ar	NOI/TPL1.				2.0	NO.NOINI	EEN. AN
	20-22=-16/6, 22-23=	LOA	 UPLIF I at jt(s) 11, 19, and 9. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 							1	2 GIN	Start N	
	17-22=-75/0, 15-23=										1	A C	ILBUIN
NOTES	,											in a. C	in in it
													L L MARK

December 21,2023

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	B01	Roof Special Structural Gable	1	1	Job Reference (optional)	162662200

Continued on page 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:28 ID:zyDL9ZN3D8wfgsZ1oORyGCy90GZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

December 21,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518			
23120047-01	B01	Roof Special Structural Gable		1	Job Reference (optional)	162662200		
Carter Components (Sanford, NC	c), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:28						

ID:zyDL9ZN3D8wfgsZ1oORyGCy90GZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) _{N/A}

12) _{N/A}

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherubergenzeiten aurichter aurichter for the Studyuter Building Component Advance interpretenter and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

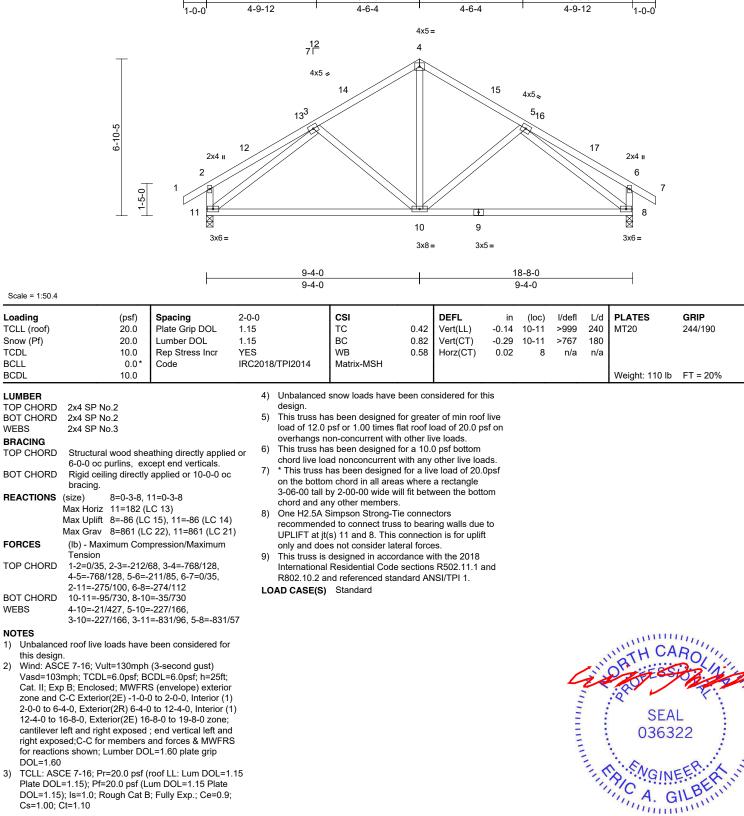
Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	A02	Common	1	1	Job Reference (optional)	162662201

9-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

-1-0-0

4-9-12


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:27 ID:J0KFDb Z46Zq?Lr76RODe9y90IL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

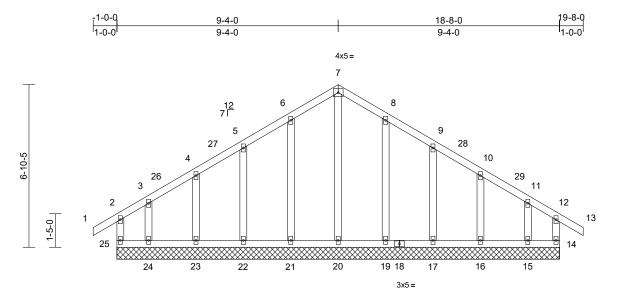
13-10-4

Page: 1

19-8-0

18-8-0

December 21,2023


VALUE IN VALUE

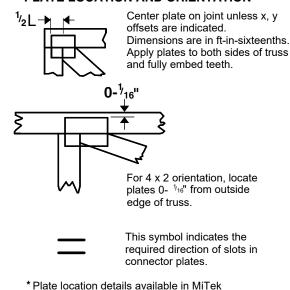
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	250 Grand Nad-Roof-Jernigan 1518	
23120047-01	A01	Common Supported Gable	1	1	Job Reference (optional)	162662202

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Dec 20 07:50:25 ID:30mPmigFC7HWtLs7b_w6bgy90II-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

18-8-0

Scale = 1:48.6											1		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.08 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 116	GRIP 244/190 b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-8-(21=18-8-(24=18-8-(24=18-8-(Max Horiz 25=177 (L Max Uplift 14=-94 (L 19=-47 (L 22=-52 (L 24=-112 (Max Grav 14=165 (L 19=246 (L 21=246 (L 21=246 (L	applied or 6-0-0 oc 0, 15=18-8-0, 16=18-8 0, 19=18-8-0, 20=18-8 0, 22=18-8-0, 23=18-8 0, 22=18-8-0 LC 13) .C 11), 15=-98 (LC 10 .C 15), 17=-52 (LC 15 .C 15), 21=-47 (LC 14 .C 14), 23=-43 (LC 14 (LC 11), 25=-114 (LC .C 24), 15=182 (LC 22 .C 22), 17=217 (LC 22 .C 22), 20=178 (LC 3- .C 21), 22=217 (LC 22 .C 21), 24=194 (LC 24	NOTES 1) Unbalanced this design. 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m Cat. II; Exp I zone and C- 2-0-0 to 6-4- 10, 2-0-0 to 6-4- 11, 2-4-0 to 16- 10, 2-0-0 to 6-4- 10, 2-0-0 to 6-4- 10, 2-0-0 to 6-4- 10, 2-0-0 to 6-4- 11, 2-4-0 to 16- 10, 2-0-0 to 6-4- 10, 2-0-0 to	snow loads have	24=-121/8 -16=-129/ we been of BCDL=6 FRS (environ- 0-0 to 2-0 to 2-0 to 2-0 to 12 16-8-0 to ocd ; end v rs and for DOL=1.6(s in the pi ind (norm End Deta sesigner as of (roof LL f (Lum DCt t B; Fully been cor	15, 8-19=-207/ (83, 11-15=-11) considered for cond gust) i.0psf; h=25ft; elope) exterior -0, Exterior(2 19-8-0 zone; vertical left and cress & MWFR -0 plate grip lane of the tru: al to the face) ils as applicab s per ANS/ITP :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th	75, 4/82 	on t 3-06 cho 13) Prov bea 25, uplit joint lb u 14) This Inte	he bottc 5-00 tall rd and a vide me ring plat 94 lb up ft at join t 24, 47 plift at jc s truss is rnationa 2.10.2 a	om cho by 2-0 iny oth chanic te capa lift at ju t 22, 4 lb uplit bint 16 s desig al Resid and ref	een designed for rd in all areas 10-00 wide will er members. al connection (able of withstar oint 14, 47 lb u 3 lb uplift at join ft at joint 19, 52 and 98 lb uplift ned in accorda dential Code se ferenced stand ndard	where a rectan fit between the by others) of tr ding 114 lb up plift at joint 21, at 23, 112 lb up I bu plift at joint : at joint 15. nce with the 20 ections R502.1	ngle bottom russ to blift at joint , 52 lb plift at nt 17, 43 018 1.1 and
FORCES TOP CHORD BOT CHORD	3-4=-69/86, 4-5=-60 6-7=-99/244, 7-8=-9 9-10=-47/140, 10-11 12-13=0/34, 12-14=- 24-25=-89/85, 23-24 21-22=-89/85, 20-21	· =0/34, 2-3=-105/107, /141, 5-6=-72/194, 9/244, 8-9=-72/194, I=-55/87, 11-12=-87/9	load of 12.0 overhangs n 7) All plates are 8) Gable requir 1, 9) Truss to be 1 braced again 5, 10) Gable studs 5, 11) This truss h 6, 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60	as been designed psf or 1.00 times on-concurrent wit e 2x4 MT20 unles res continuous bo fully sheathed from st lateral moverm spaced at 2-0-0 o as been designed ad nonconcurrent	flat roof lo th other lives otherwing ttom chor m one fact ent (i.e. d bc. for a 10.0	bad of 20.0 ps ve loads. se indicated. d bearing. ee or securely liagonal web). D psf bottom	f on		JA THILLING		SE 036	AL 322 VEEER.	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

December 21,2023

Symbols

PLATE LOCATION AND ORIENTATION

software or upon request.

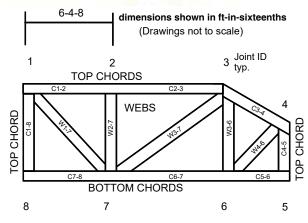
PLATE SIZE

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722. ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.