

RE: 3822895 - Furr, Mayview - Elev.	C, 4 Shady Grove	l renco 818 Soundside Rd Edenton, NC 27932
Site Information:		
Project Customer: Furr Construction	Project Name:	
Lot/Block: 4 Address:	Subdivision: SHADY G	ROVE
City:	State: NC	
Name Address and License # of Strue Name: Address: City, County:	ctural Engineer of Record, I	f there is one, for the building. License #: State:
General Truss Engineering Criteria & Loading Conditions):	Design Loads (Individual 1	russ Design Drawings Show Special
Design Code: IRC2015/TPI2014	Design Progra	m: MiTek 20/20 8.6
Wind Code: ASCE 7-10	Design Metho	d: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10
Wind Speed: 130 mph		
Roof Load: 40.0 psf	Floor Load: N	J/A psf
This package includes 20 individual, dat	ted Truss Design Drawings a	nd 0 Additional Drawings.

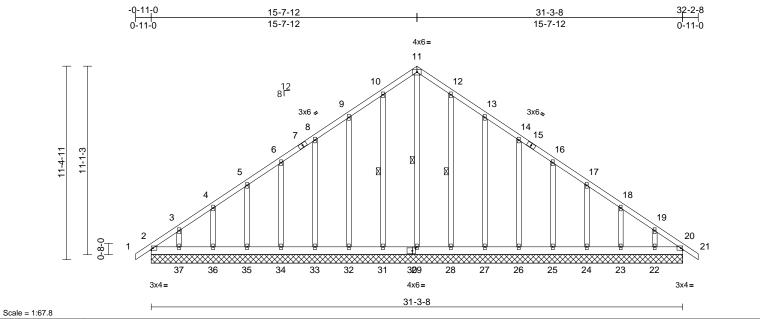
No.	Seal#	Job ID#	Truss Nar	ne Date
1	l63088190 l63088191	3822895 3822895	A01 A02	1/17/24
2 3	163088192	3822895	A03	1/17/24 1/17/24
4	l63088193 l63088194	3822895 3822895	A04	1/17/24 1/17/24
4 5 6 7	163088195	3822895	A06	1/17/24
7 8	l63088196 l63088197	3822895 3822895	A07 D01	1/17/24 1/17/24
9	163088198 163088199	3822895	D02	1/17/24
10 11	163088200	3822895 3822895	D03 D04	1/17/24 1/17/24
12 13	163088201	3822895 3822895	E02	1/17/24 1/17/24
14	163088203	3822895	Ē03	1/17/24
16	163088204 163088205	3822895 3822895	G01 G02	1/17/24 1/17/24
17	163088206	3822895	Ğ03	1/17/24
18 19	l63088207 l63088208	3822895 3822895	PB01 V01	1/17/24 1/17/24
20	163088209	3822895	V02	1/17/24

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Fox, Steve

My license renewal date for the state of North Carolina is December 31, 2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Fox, Steve

January 17,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A01	Common Supported Gable	1	1	Job Reference (optional)	163088190

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:27 ID:UolyNl2sxuK2di9HW2fTBezPn2N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8:27 Page: 1

Plate Offsets (X, Y): [15:0-0-0,0-0-0], [30:0-2-4,0-2-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.10	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999	101120	244/100
BCLL	0.0*	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.01	20	n/a	n/a	1	
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 253 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE WEBS REACTIONS	 2x4 SP No.2 2x6 SP No.2 2x6 SP No.3 Structural wood she 10-00 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=31-3-6, 23=31-3-6, 26=31-3-7, 33=31-3-6, 33=31-3-6, 33=31-3-6, 33=31-3-6, 29=31-3-6, 33=31-3-6, 29=31-3-6, 29=31-3-6, 29=31-3-6, 33=-10-2, 33=-102, 33=-102, 35=-106, 37=-162, Max Grav 2=231 (L 23=162, L 	athing directly applied applied or 6-0-0 oc 11-29, 10-31, 12-28 20=31-3-8, 22=31-3- 3, 24=31-3-8, 25=31-3 3, 24=31-3-8, 32=31-3 3, 31=31-3-8, 32=31-3 3, 37=31-3-8, 33=31-3 2, 11), 38=368 (LC 11 C 8), 23=-225 (LC 13 C 13), 25=-111 (LC 1 C 13), 25=-112 (LC 1 C 13), 27=-112 (LC 1 C 13), 29=-12 (LC 11 C 12), 32=-109 (LC 1 LC 12), 36=-91 (LC 1 LC 12), 36=-91 (LC 1 LC 12), 38=-174 (LC	TOP CHORE l or BOT CHORE 8, 3-1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	 1-2=0/31, 2-3=-3 4-5=-253/273, 5-8 9=-202/302, 9 10-11=-330/389, 12-13=-272/311, 14-16=-138/150, 17-18=-49/117, 1 19-20=-202/184, 2-37=-272/277, 3 35-36=-187/229, 33-34=-187/229, 28-29=-187/229, 28-29=-187/229, 24-25=-187/229, 24-25=-187/229, 22-23=-187/229, 11-29=-342/223, 9-32=-165/133, 6-34=-158/127, 5 4-36=-161/127, 3 12-28=-148/110, 14-26=-157/125, 17-24=-157/121, 19-22=-143/93 ced roof live loads had set and set and	6=-207/25 10=-272/2 11-12=-3 13-14=-2 16-17=-7 8-19=-14 20-21=0/ 6-37=-18 34-35=-1 32-33=-1 23-23=-1 23-24=-1 23-24=-1 23-24=-1 10-31=-1 -33=-157 -35=-158 -37=-154 16-25=-1 18-23=-1 we been	i2, 6-8=-184/2 153, 30/380, 02/227, 1/106, 4/137, 31 7/229, 87/250, 87/250,	255,	only see or c 4) All µ 5) Gat 6) Gat 7) This cho 8) * Th on t 3-0 cho 9) All µ cap	y. For s Standa consult c plates a ble requipale studs s truss h ford live lo his truss the botto 6-00 tall rrd and a bearings acity of	tuds ex and Indu qualified re 2x4 ires co s space has bee bad not has be bom cho by 2-0 any oth s are as 565 ps	br wind loads in the xposed to wind (n xposed to wind (n xpty Gable End E d building designed MT20 unless other mediat 2-0-0 oc. en designed for a nconcurrent with een designed for rord in all areas wh 00-00 wide will fit 1 her members. ssumed to be SP	ne plane of the truss ormal to the face), Jetails as applicable, er as per ANSI/TPI 1. erwise indicated. chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom No.2 crushing
FORCES	29=366 (L 32=177 (L 34=180 (L	,	9), Cat. II; E 9), zone and 9), 2-1-0 to 9), (2) 18-7- exposed members	I3mph; TCDL=6.0psf xp C; Enclosed; MW d C-C Corner (3) -0-1 15-7-12, Corner (3) 1 12 to 32-2-8 zone; cc ; end vertical left and s and forces & MWFI DOL=1.60 plate grip	FRS (env 1-0 to 2-1 5-7-12 to antilever I d right exp RS for rea	elope) exterio -0, Exterior (18-7-12, Ext eft and right posed;C-C for actions shown	or 2) erior		111100	A. A	SEA 1860	EFP. Turn

January 17,2024

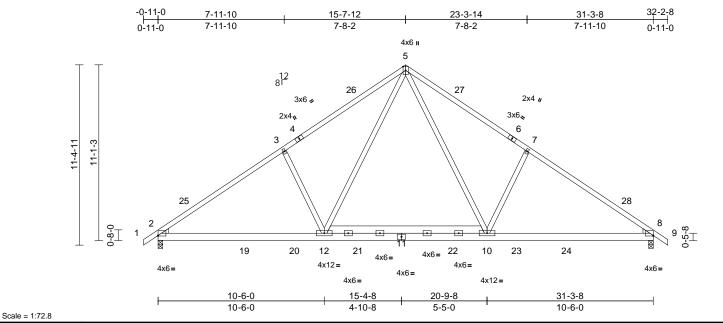
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A01	Common Supported Gable	1	1	Job Reference (optional)	163088190

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 174 lb uplift at joint 2, 12 lb uplift at joint 29, 94 lb uplift at joint 31, 109 lb uplift at joint 32, 102 lb uplift at joint 33, 102 lb uplift at joint 34, 106 lb uplift at joint 35, 91 lb uplift at joint 36, 162 lb uplift at joint 37, 86 lb uplift at joint 28, 112 lb uplift at joint 27, 99 lb uplift at joint 26, 111 lb uplift at joint 24, 225 lb uplift at joint 23 and 174 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:27 ID:UolyNl2sxuK2di9HW2fTBezPn2N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A02	Common	4	1	Job Reference (optional)	163088191

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:30 ID:hCvXAqsut4BMaHYkcJRn1BzPn6U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

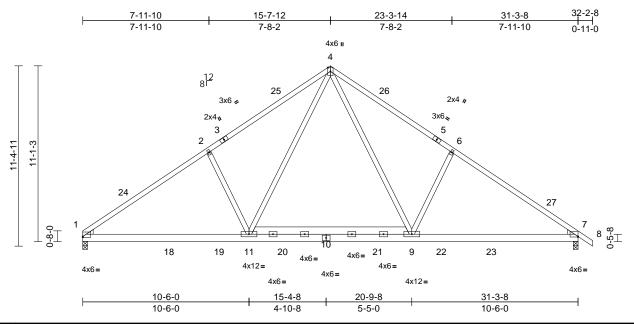
Page: 1

Plate Offsets (X, Y): [2:Edge,0-0-6], [8:Edge,0-0-6]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MS	0.93 0.58 0.91	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.17 0.03	(loc) 10-12 10-12 8 12-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 209 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS		applied or 10-0-0 oc 3=0-3-8 C 10) C 12), 8=-341 (LC 13	c 3 6) A 7) F d. b 8) T I F S) LOA	on the bottom -06-00 tall by hord and an All bearings a capacity of 56 Provide mech- bearing plate bint 2 and 34 This truss is con- ternational	nanical connectio capable of withs 1 lb uplift at joint designed in account Residential Code Id referenced sta	as where ill fit betw , with BC e SP No. n (by oth tanding 3 8. rdance w sections	a rectangle veen the both DL = 10.0psi 2 crushing ers) of truss t 41 lb uplift at th the 2015 R502.11.1 a	om f. to t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD													
BOT CHORD	,	,											
WEBS	5-12=-337/942, 5-10 3-12=-556/452, 7-10												un
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-0 to 19 (1) 18-7-1: exposed ; members Lumber D 3) All plates a 4) This truss	ed roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1 7-12 to 18-7-12, Inte lever left and right ght exposed; C-C for for reactions shown; L=1.60 • a 10.0 psf bottom) rior								and the second second	SEA SEA 1860	• •

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 15-7-12, Exterior (2) 15-7-12 to 18-7-12, Interior (1) 18-7-12 to 32-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are 4x6 MT20 unless otherwise indicated. 3) 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

EN



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A03	Common	3	1	Job Reference (optional)	163088192

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:30 ID:9C2B5cVVd3k_pHXkfEM_88zPn5g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

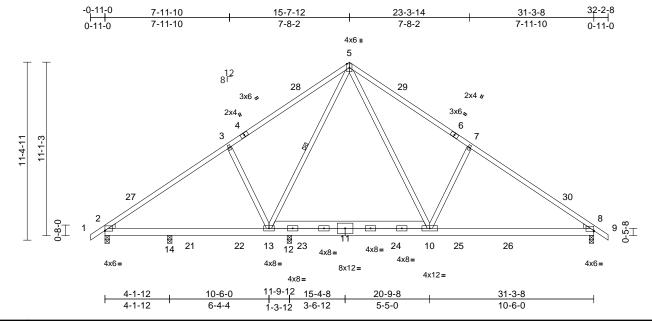
Plate Offsets (X, Y): [1:Edge,0-0-10], [7:Edge,0-0-6]

Scale = 1:72.8

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.93	Vert(LL)	-0.10	9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.17	9-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/7	FPI2014	Matrix-MS		Wind(LL)	0.08	11-14	>999	240	Weight: 207 lb	FT = 20%
	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-362 (Li Max Uplift 1=-311 (Li	applied or 10-0-0 oc 7=0-3-8 C 8) C 12), 7=-341 (LC 13	6) / (6) / (7) (1) / (2) / (on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 1 and 341 lb This truss is International	hanical connection capable of withst uplift at joint 7. designed in accord Residential Code nd referenced star	s where II fit betw with BC SP No. (by oth anding 3 dance w sections	a rectangle veen the bott DL = 10.0ps 2 crushing ers) of truss t i11 lb uplift at ith the 2015 5 R502.11.1 at	om f. to t joint					
	Max Grav 1=1356 (L	_C 19), 7=1411 (LC 2	20)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-1918/465, 2-4= 4-6=-1774/572, 6-7=	,											
BOT CHORD	1-11=-446/1749, 9-1 7-9=-232/1496	,											
WEBS	4-11=-339/947, 4-9= 2-11=-555/452, 6-9=	,										TH CA	un.
NOTES											0	"TH CA	Roill
) Unbalance	ed roof live loads have	been considered for										Rime	

- 1) Unbalanced roof live loads have been consid this design
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 15-7-12, Exterior (2) 15-7-12 to 18-7-12, Interior (1) 18-7-12 to 32-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are 4x6 MT20 unless otherwise indicated. 3) 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

January 17,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A04	Common	2	1	Job Reference (optional)	163088193

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:31 ID:hZYf0uuCsCvIGLY44gSj_6zPn59-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:Edge,0-0-6], [8:Edge,0-0-10]

Scale = 1:73.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.81	Vert(LL)	-0.08	10-20	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.17	10-20	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.87	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.09	10-20	>999	240	Weight: 209 lb	FT = 20%

LUMBER TOP CHORD	2x4 SP N	n 2
BOT CHORD		n 2
WEBS	2x4 SP N	•
WEDGE	Left: 2x4 S	
	Right: 2x4	
BRACING	ragina 270	
TOP CHORD	Structural	wood sheathing directly applied or
	4-1-8 oc p	0,11
BOT CHORD		ing directly applied or 10-0-0 oc
201 0110112	bracing.	
WEBS	1 Row at	midpt 5-13
REACTIONS	(size)	2=0-3-8, 8=0-3-8, 12=0-3-8,
	. ,	14=0-3-8
	Max Horiz	2=-368 (LC 10)
	Max Uplift	2=-151 (LC 12), 8=-294 (LC 13),
	•	12=-224 (LC 12), 14=-59 (LC 12)
	Max Grav	2=532 (LC 1), 8=1008 (LC 20),
		12=1091 (LC 19), 14=321 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/31,	2-3=-638/311, 3-5=-569/345,
	5-7=-1093	3/488, 7-8=-1209/369, 8-9=0/31
BOT CHORD	2-14=-418	3/573, 13-14=-208/573,
	12-13=-27	7/642, 10-12=-15/506,
	8-10=-218	
WEBS		1/863, 5-13=-481/58,
	7-10=-564	4/453, 3-13=-553/452
NOTES		

1) Unbalanced roof live loads have been considered for

this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 15-7-12, Exterior (2) 15-7-12 to 18-7-12, Interior (1) 18-7-12 to 32-2-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom

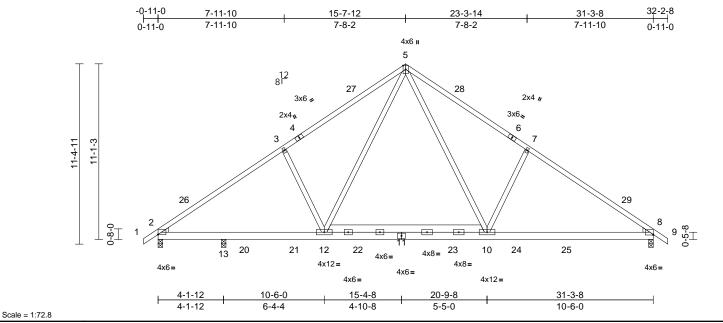
chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
5) All bearings are assumed to be SP No.2 crushing

capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 2, 294 lb uplift at joint 8, 59 lb uplift at joint 14 and 224 lb uplift at joint 12.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

January 17,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A05	Common	2	1	Job Reference (optional)	163088194

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:31 ID:2nt_eQ9?gygAvkEINHsttlzPn4p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

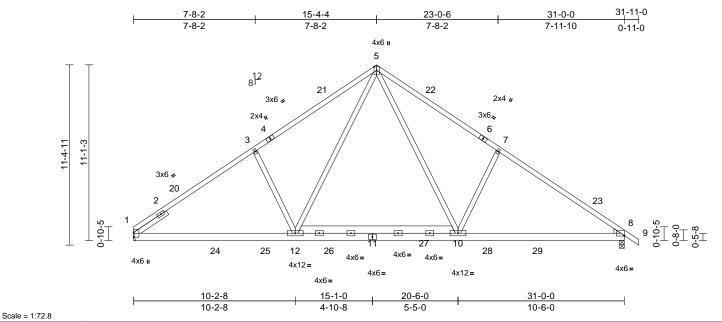
Plate Offsets (X, Y): [2:Edge,0-0-2], [8:Edge,0-0-6]

	-	1	-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.91	Vert(LL)	-0.11	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.19	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-MS		Wind(LL)	0.08	10-12	>999	240	Weight: 209 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=-368 (L Max Uplift 2=-305 (L 13=-41 (L Max Grav 2=1203 (L	3=0-3-8, 13=0-3-8 C 10) C 12), 8=-343 (LC 13 C 12) C 12), 8=1387 (LC 2	5) 6) 1. 7) 3), LO	on the bottom 3-06-00 tall b chord and an All bearings a capacity of 50 Provide medi bearing plate joint 2, 343 lb This truss is o International	hanical connection capable of withst o uplift at joint 8 ar designed in accor Residential Code nd referenced star	s where ill fit betw , with BC e SP No. n (by othe anding 3 nd 41 lb u dance wi sections	a rectangle veen the bott DL = 10.0ps 2 crushing ers) of truss 05 lb uplift a uplift at joint ith the 2015 \$ R502.11.1 a	to t 13.					
FORCES	13=240 (L (Ib) - Maximum Com	,											
TOP CHORD	Tension 1-2=0/31, 2-3=-1752 5-7=-1736/574, 7-8=	2/446, 3-5=-1611/547 1875/456, 8-9=0/31	,										
BOT CHORD	2-13=-457/1605, 12- 10-12=-99/1064, 8-1	13=-420/1605,										mun	un.
WEBS	5-12=-307/768, 5-10 7-10=-555/452, 3-12											"TH CA	Rojin
NOTES	,										5	OFESS	ice N''
this desigr 2) Wind: ASC Vasd=103 Cat. II; Exp	ed roof live loads have). CE 7-10; Vult=130mph mph; TCDL=6.0psf; B(p C; Enclosed; MWFR C-C Exterior (2) -0-11-	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior								ALL DAY		SEA SEA	
2-1-0 to 15 (1) 18-7-12 exposed ; members ; Lumber D	C-C Exterior (2) -0-11- 5-7-12, Exterior (2) 15- 2 to 32-2-8 zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	7-12 to 18-7-12, Intel lever left and right ght exposed;C-C for for reactions shown; L=1.60									A. A	STEVEN	E.F. Hummin

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom

3) chord live load nonconcurrent with any other live loads.

January 17,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A06	Common	8	1	Job Reference (optional)	163088195

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:32 ID:Xo0eYCodQxDo9jCIQCn4zizPn4?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

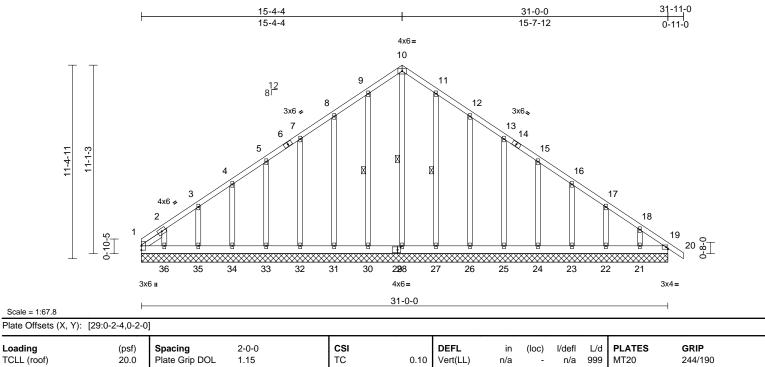
Plate Offsets (X, Y): [8:Edge,0-0-6]

Looding	(205)	Creating	2.0.0		CSI		DEFL	in	(10.0)	l/d of	1 /4	PLATES	GRIP
Loading	(psf)	Spacing	2-0-0		TC	0.00		in	(loc)	l/defl	L/d	-	
TCLL (roof)	20.0	Plate Grip DOL	1.15		-	0.98	Vert(LL)	-0.10		>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.17	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	TRIACAA	WB	0.90	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Wind(LL)	0.08	10-19	>999	240	Weight: 209 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Left 2x4 SP No.2 2 Structural wood she Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=-361 (L Max Uplift 1=-306 (L Max Grav 1=1345 (L	athing directly applie applied or 10-0-0 or nical, 8=0-3-8 C 8) C 12), 8=-339 (LC 1	9)	on the botto 3-06-00 tall 1 chord and a Bearings are capacity of 5 Refer to girc Provide mee bearing platt joint 1 and 3 This truss is International	ler(s) for truss to tru chanical connection e capable of withsta 39 lb uplift at joint 8 designed in accord Residential Code s nd referenced stan	where I fit betw with BC Joint 8 S uss conr (by oth unding 3 J. lance w sections	a rectangle veen the bott DL = 10.0ps SP No.2 crusi nections. ers) of truss i 06 lb uplift a ith the 2015 i R502.11.1 a	om f. hing to t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-3=-1774/457, 3-5= 5-7=-1755/568, 7-8=												
BOT CHORD	1-12=-429/1685, 10- 8-10=-232/1478												
WEBS	5-12=-327/881, 5-10 7-10=-554/452, 3-12											ORTH CA	inin.
NOTES												TH CA	Roill
 Unbalance this design 	ed roof live loads have n.	been considered for									E.	OFFESS	ion Vin

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-3-8 to 3-3-8, Interior (1) 3-3-8 to 15-7-12, Exterior (2) 15-7-12 to 18-7-12, Interior (1) 18-7-12 to 32-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

All plates are 4x6 MT20 unless otherwise indicated. 3) 4) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.


January 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A07	Common Supported Gable	1	1	Job Reference (optional)	163088196

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:32 ID:uZPpILTIE8HrtKU3izoCFWzPn37-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TCLL (roof)	(psi) 20.0	Plate Grip DOL	2-0-0 1.15			0.10	Vert(LL)	n/a	(100)		999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a			999	WITZO	244/100
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.01	19		n/a	1	
BCDL	10.0	Code		15/TPI2014	Matrix-MS	0.20	11012(01)	0.01	10	n/a	n/a	Weight: 253 lb) FT = 20%
-												, °	
LUMBER				FOP CHORD	1-2=-144/144, 2-								the plane of the truss
TOP CHORD	2x4 SP No.2				4-5=-209/253, 5- 8-9=-271/354, 9-			302,					(normal to the face), Details as applicable,
BOT CHORD	2x6 SP No.2				10-11=-330/380,								ner as per ANSI/TPI 1.
OTHERS SLIDER	2x4 SP No.3 Left 2x4 SP No.2 1	1 = 10			12-13=-202/227,								herwise indicated.
	Len 2x4 SP NO.2	1-0-12			15-16=-71/105, 1							ntinuous bottom	
BRACING	0	- the local allocation are all a			17-18=-144/136,							ed at 2-0-0 oc.	onora boaring.
TOP CHORD	Structural wood she	atning directly applie	aor		19-20=0/31		,						a 10.0 psf bottom
BOT CHORD	10-0-0 oc purlins. Rigid ceiling directly		E	BOT CHORD	1-36=-188/230, 3	35-36=-18	8/230,						h any other live loads.
BOT CHORD	bracing.	applied of 0-0-0 oc			34-35=-188/230,	33-34=-1	88/230,						r a live load of 20.0psf
WEBS	1 Row at midpt	10-28, 9-30, 11-27			32-33=-188/230,	31-32=-1	88/230,		Óon	the botto	om cho	ord in all areas w	here a rectangle
REACTIONS		19=31-0-0, 21=31-0	0		30-31=-188/230,				3-	06-00 tal	l by 2-0	00-00 wide will fi	t between the bottom
REACTIONS		0, 23=31-0-0, 24=31-0			27-28=-188/230,							ner members.	
		0, 26=31-0-0, 27=31			25-26=-188/230,								P No.2 crushing
		0, 30=31-0-0, 31=31			23-24=-188/230,				ca	pacity of	565 ps	si.	
		0, 33=31-0-0, 34=31	0 0		21-22=-188/230,								
		0, 36=31-0-0, 37=31		NEBS	10-28=-343/223, 8-31=-165/133, 7								
	Max Horiz 1=-361 (L	.C 8), 37=-361 (LC 8)		5-33=-159/127, 4								
	Max Uplift 1=-250 (L				3-35=-162/130, 2								
		.C 13), 24=-111 (LC			11-27=-148/110,								
		.C 13), 26=-112 (LC			13-25=-157/125,								
		.C 13), 28=-13 (LC 1			16-23=-157/121,							mun	unin.
		.C 12), 31=-109 (LC			18-21=-142/93							"TH CI	ARO
		(LC 12), 33=-102 (LC		NOTES							5	R	
		(LC 12), 35=-97 (LC (LC 12), 37=-250 (LC		1) Unbalance	d roof live loads ha	ave been o	considered fo	r			5.	O'.FES	SIGA
	Max Grav 1=291 (L0		, 10)	this design							35	1.007	MA: Y -
		LC 11), 23=191 (LC 2	20) 2	2) Wind: ASC	E 7-10; Vult=130n	nph (3-sec	cond gust)				-	2 34	124. 3
		LC 20), 25=181 (LC 2		Vasd=103r	nph; TCDL=6.0ps	f; BCDL=6	0.0psf; h=25ft;					CE	AI : =
		LC 20), 27=187 (LC 2			C; Enclosed; MW			or				SE/	∧∟ : =
		LC 13), 30=196 (LC			C-C Corner (3) 0-0							186	03 : =
		LC 19), 32=181 (LC			-4-4, Corner (3) 15			r (2)			-		- 1 - 2 -
		LC 19), 34=181 (LC			1-11-0 zone; canti						3	N	1 3
	35=178 (l	_C 19), 36=256 (LC	19),		end vertical left an ind forces & MWF						1	S.S.Nou	FER. I
	37=291 (l	,			DL=1.60 plate grip			,			11	0'N GIN	E. OTS
FORCES	(lb) - Maximum Com	pression/Maximum		Lumber DC		201-1.00	<i>,</i>					ORTHES SEA 186	EFUN
	Tension												
												in min	ine.

January 17,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	A07	Common Supported Gable	1	1	Job Reference (optional)	163088196

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 250 lb uplift at joint 1, 13 lb uplift at joint 28, 94 lb uplift at joint 30, 109 lb uplift at joint 31, 102 lb uplift at joint 32, 102 lb uplift at joint 33, 104 lb uplift at joint 34, 97 lb uplift at joint 35, 208 lb uplift at joint 36, 86 lb uplift at joint 27, 112 lb uplift at joint 26, 99 lb uplift at joint 25, 111 lb uplift at joint 24, 71 lb uplift at joint 23, 225 lb uplift at joint 22 and 250 lb uplift at joint 1.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:32 ID:uZPpILTIE8HrtKU3izoCFWzPn37-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	I.	Truss Type		ty	Ply	Eure M	lawiow -		4 Shady Grove	
					-	Piy 1	,		,	+ Shauy Grove	163088197
3822895 Builders FirstSor	D01 urce (Sumter, SC), Sumter,		Attic	Run: 8.63 S Nov 1 2023				eference (o		ed Jan 17 10-38-33	Page: 1
and an	SEAL SEAL 1860		12 ¹² 4x6 + 5 54 38 437 1 3x8	8= 8x12= 3x6= 3 3x6= 4x8= '-11-8 10-9-12	14-9-3 1-8 1 -0 -9-11 6x8= 12 12 13 14 12 14 12 12 14 12 12 12 12 12 12 12 12 12 12	3 14 14 225 25	20-7-11 3-0-7 56 56 56 56 56 56 56 56 56 56 56 56 56	17 18 4x6 55 3 II	24-10- 0-11-0 0-11-0 9 20		
Scale = 1:75.7 Plate Offsets (X, Y): [2:Edge,0-0-0], [[10:0-5-8,0-3-0], [12:0-	6-3-12 6-5 6-3-12 0-1-	0 0 0 40		17-5-8 2-1-4 0-1-12	<u>23</u> 6-	3-11-0 -3-12			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.07 BC 0.07 WB 0.19 Matrix-MS	Vert(C	L) n T) n	in (lo n/a n/a 01 2	oc) l/defl - n/a - n/a 20 n/a	999 999	PLATES MT20 Weight: 289 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	1 Brace at Jt(s): 39, 30, 29, 34, 25 (size) 2=23-11-0, 22=23-11-0	-6-0, Right 2x6 SP No. thing directly applied o omax.): 10-12. applied or 10-0-0 oc 32-40, 27-43 .20=23-11-0, 0, 23=23-11-0,	.2 BOT CHORD or WEBS	1-2=0/34, 2-4=-293/180, -15-6=-254/202, 6-7=-194/18-9=-277/239, 9-10=-227, 10-11=-210/159, 11-12=-212/131, 13-14=-252/228, 15-16=-18-20=-245/108, 20-21=02-38=-190/284, 37-38=-113/33-37=-113/252, 31-33=-28-31=-110/190, 26-28=-23-26=-54/219, 22-23=-55/20-22=-55/216, 34-36=-330-32=-55/130, 25-27=-55/36-37=-183/154, 7-36=-123-24=-183/159, 15-24=-9-40=-173/210, 39-40=-173/217, 13-43=-442=-227/246, 41-42=-27/246, 41-42-27/246, 41-42-27/246, 41-42-27/246, 41-42-27/246, 41-42-27/246, 41444, 414440,	99, 7-8=- (131, 210/159, 277/241, 147/134, 176/106, 1/34 90/284, 81/139, 81/142, 5/216, 73, 32-34= 5/130, 24, 73/159, 173/163, 73/210, 173/177,	252/237, =-55/130,	3) 4) 5) 6) 7) 8)	Vasd=103i Cat. II; Exp zone and C 2-2-6 to 9- (1) 17-11-1 exposed ; (members a Lumber DC Truss des only. For s see Standa or consult Provide ad All plates a Gable requ Gable stud This truss l	mph; TC > C; Enc C-C Exte 11-8, E> 11 to 24 end verta and forc DL=1.6C igned fc studs exard Indu qualifiec lequate are 2x4 I uires con Is space has beec has beec	closed; MWFRS erior (2) -0-9-101 kterior (2) 9-11-8 -8-10 zone; cant tical left and righ es & MWFRS fo) plate grip DOL= or wind loads in ti toposed to wind (r isstry Gable End I d building design drainage to prev MT20 unless oth ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with	DL=6.0psf; h=25ft; (envelope) exterior o 2-2-6, Interior (1) to 17-11-11, Interior lever left and right t exposed;C-C for r reactions shown; e1.60 ne plane of the truss normal to the face), Details as applicable, er as per ANSI/TPI 1. ent water ponding. erwise indicated. chord bearing.
	31=23-11-0 37=23-11-0 46=23-11-0 46=23-11-0 46=23-11-0 22=-30 (LC 32=-31 (LC 33=-69 (LC 50=-34 (LC 50=-34 (LC 22=181 (LC 26=242 (LC 31=257 (LC 31=257 (LC 37=316 (LC	8), 20=-34 (LC 9), 2 13), 23=-432 (LC 13), 2 9), 37=-381 (LC 12), 3 (LC 12), 46=-91 (LC 8), 3 (LC 1), 20=360 (LC 1), 2 1), 20=360 (LC 1), 2 1), 23=373 (LC 21), 2 18), 33=293 (LC 23), 2 20), 38=181 (LC 1), 2 1), 50=360 (LC 1))), , NOTES	37-41=-253/269, 23-44=- 44-45=-209/232, 18-45=- 10-39=-94/88, 11-39=-11 30-31=-144/0, 28-29=-13 34-37=-119/104, 33-34=- 31-34=-31/55, 23-25=-12 25-26=-226/0, 25-28=-31, 8-34=-171/110, 6-41=-58 38-42=-113/45, 27-43=-3 14-25=-154/73, 16-44=-5 22-45=-113/42 roof live loads have been	253/271, 227/246, 1/76, 12-3 8/0, 287/111, 5/146, /52, 32-4(/51, 5-42= 8/12, 8/52, 17-4)=-42/25, =-99/26, 45=-99/32,	,	on the bott 3-06-00 tal	om cho Il by 2-0	rd in all areas wh 0-00 wide will fit	

January 17,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

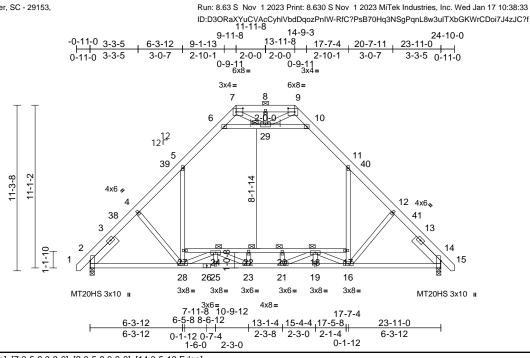
818 Soundside Road Edenton, NC 27932

RENCO

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	D01	Attic	1	1	Job Reference (optional)	163088197

- 10) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 2, 34 lb uplift at joint 20, 381 lb uplift at joint 37, 432 lb uplift at joint 23, 69 lb uplift at joint 33, 23 lb uplift at joint 38, 11 lb uplift at joint 22, 91 lb uplift at joint 2 and 34 lb uplift at joint 20.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:32 ID:D3ORaXYuCVAcCyhIVbdDqozPnIW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

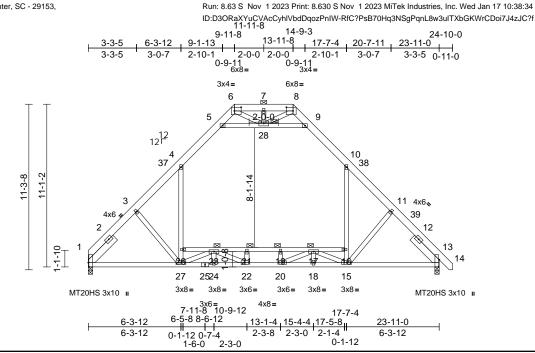
Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	D02	Attic	4	1	Job Reference (optional)	163088198

Scale = 1:78.5

Plate Offsets (X, Y): [2:0-5-13,Edge], [7:0-5-8,0-3-0], [9:0-5-8,0-3-0], [14:0-5-13,Edge]

Loading	(psf)	Spacing	2-0-0		CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(psi) 20.0	Plate Grip DOL	2-0-0 1.15			0.47	Vert(LL)	-0.17	. ,	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.31		>933	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES		WB	0.33	· · ·	0.05	14	>332 n/a	n/a	101120115	10//143
BCDL	10.0	Code		15/TPI2014	Matrix-MS	0.40	Wind(LL)	0.00		>999	240	Weight: 212 lb	FT - 20%
DODL	10.0	Code	11(020	13/11/2014	Wath A-WO		WING(LL)	0.22	20-52	2333	240	Weight. 212 lb	11 = 2078
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP 2400F 2.0E 7-9:2x6 SP No.2 2x4 SP No.1 2x4 SP No.3 *Excep SP No.2 Left 2x6 SP No.2 2 2-6-0 Structural wood she 5-7-11 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Brace at Jt(s): 29, 22, 20, 24, 18	or 2x6 SP DSS *Exc t* 5-28,11-16,6-10:2 2-6-0, Right 2x6 SP athing directly applie coept 0-0 max.): 7-9. applied or 10-0-0 or 14=0-3-8 C 10) 2 12), 14=-22 (LC 13	V xept* 2x4 No.2 ed or N 1 2c 2	VEBS VOTES) Unbalance this design. 2) Wind: ASC Vasd=103r Cat. II; Exp zone and C 2-2-6 to 9 18-2-7 to 2 exposed ; e	27-28=-19/797, 11-17=-1/956, 6 10-29=-1867/34 12-16=-387/347 8-29=-163/77, 9 20-21=-248/0, 2 24-25=-97/122, 16-18=-1329/0, 18-21=-57/787 d roof live loads h	-29=-1865, 5, 4-28=-3, 7-29=-229/3 4-28=-132 23-24=-44, 18-19=-10: ave been of mph (3-sec fr, BCDL=6 VFRS (env -9-10 to 2- 9-11-8 to 1 illever left at dright exp	6, 16-17=-2 343, 35/345, 9/325, 125, 22-23=-2 9/0, 1776, 5/131, considered for cond gust) .0psf; h=25fi elope) exteri 2-6, Interior i 8-2-7, Interior i	1/800, 248/0, 21 248/0, 0r 1) 21 21 21 21 21 21 21 21 21 21 21 21 21	11) Pro bes 2 a 12) Thi Inte R8 13) Gra or t bot 14) Atti LOAD	vide me aring pla nd 22 lb s truss is rnationa 02.10.2 aphical p he orien tom cho c room (CASE(S	chanic te capa uplift a s desig al Resi and ref ourlin re tation o rd. checke) Sta	al connection (b) able of withstand it joint 14. ned in accordand dential Code sec erenced standar presentation dou of the purlin alon d for L/360 deflet ndard	v others) of truss to ing 22 lb uplift at joint ce with the 2015 tions R502.11.1 and d ANSI/TPI 1. se not depict the size g the top and/or ction.
FORCES	(lb) - Maximum Com Tension		3	Lumber DC B) Provide add	DL=1.60 plate grip equate drainage t	DOL=1.60) water pondin	g.					9m.
TOP CHORD	1-2=0/34, 2-4=-1724 5-6=-947/256, 6-7=- 8-9=0/623, 9-10=-26 11-12=-1678/142, 12 14-15=0/34 2-28=-153/1353, 25 23-25=0/2253, 21-22 16-19=0/2066, 14-11 24-27=-153/149, 22 20-22=-1854/0, 18-2 17-18=-158/155	26/494, 7-8=0/623, %495, 10-11=-947/2: 2-14=-1724/117, -28=0/2253, 3=0/2718, 19-21=0/2 6=-23/1125, -24=-1854/0,	56, 6 2066, 8 9	 All plates a This truss f chord live li * This truss on the bott 3-06-00 tall chord and a Ceiling dea 6-29, 10-29 (s).5-27, 11 Bottom chor chord dead 22-24, 20-2 	ord live load (40.0 l load (5.0 psf) ap 22, 18-20, 17-18 s are assumed to	ess otherwi d for a 10. Int with any led for a liv eas where will fit betw rs. n member (5.0psf) of psf) and a plied only f	se indicated. D psf bottom other live loz e load of 20. a rectangle veen the bott (s). 5-6, 10-1 n member dditional bott o room. 24-2	ads. Opsf om 1, com			and the second second	SEA SEA 1860	

January 17,2024


Page: 1

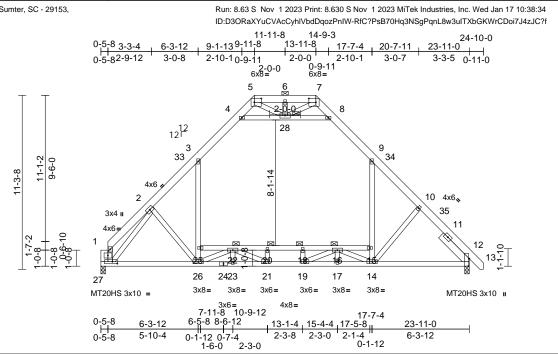
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	D03	Attic	4	1	Job Reference (optional)	163088199

Scale = 1:78.5

Plate Offsets (X, Y): [1:0-3-8,Edge],	[6:0-5-8,0-3-0], [8:0-5-8,0	-3-0], [13:0-5-13,Ec	dge]								
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing 2-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC	5 5	CSI TC BC WB Matrix-MS	0.47 0.55 0.40	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.31 0.05 0.22		l/defl >999 >931 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 210 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP 2400F 2.0E - 6-8:2x6 SP No.2 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 *Excep No.2 SLIDER Left 2x6 SP No.2 2 2-6-0 BRACING TOP CHORD Structural wood she 5-7-9 oc purlins, exc 2-0-0 oc purlins (10- BOT CHORD Rigid ceiling directly bracing. JOINTS 1 Brace at Jt(s): 28, 21, 19, 23, 17 REACTIONS (size) 1=0-3-8, 1 Max Horiz 1=-353 (L Max Uplift 13=-22 (L Max Grav 1=1460 (L FORCES (lb) - Maximum Com Tension TOP CHORD 1-3=-1727/113, 3-4= 4-5=-947/258, 5-6=- 7-8=0/624, 8-9=-26/ 10-11=-1679/142, 17 13-14=0/34 BOT CHORD 1-27=-145/1358, 24-	or 2x6 SP DSS *Except* t* 4-27,10-15,5-9:2x4 SP 2-6-0, Right 2x6 SP No.2 athing directly applied or rept 0-0 max.): 6-8. applied or 10-0-0 oc 13=0-3-8 C 10) C 13) .C 2), 13=1502 (LC 2) pression/Maximum -1681/150, 26/495, 6-7=0/624, 495, 9-10=948/256, 1-13=-1725/117, .27=0/2255, 2=0/2719, 18-20=0/2066, 5=-23/1125, 23=-1854/0,	 WEBS WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-(3-1-9 to 9-11) 18-2-7 to 24-exposed; em members an Lumber DOL 3) Provide adeet 4) All plates are 5) All plates are 6) This truss h on the bottor 3-06-00 tall the chord live load 5-28, 9-28; N 10-16 9) Bottom chord chord lead 5-28, 9-28; N 10-16 9) Bottom chord chord lead 12-23, 19-21 	26-27=-19/801, 4-2 26-27=-19/801, 4-2 10-16=-1/956, 5-28 9-28=-1870/345, 3- 11-15=-387/347, 7- 6-28=-229/324, 8-2 21-22=-248/0, 19-2 23-27=-1329/0, 22- 17-18=-106/131, 1! 17-20=-57/788 roof live loads have 7-10; Vult=130mp ph; TCDL=6.0psf; E C: Enclosed; MWFI C: Exterior (2) 0-0- C: Exterior (2) 0-0- C: Exterior (2) 0-1- 8, Exterior (2) 9-1 8-10 zone; cantile- nd vertical left and rd d roces & MWFRS =1.60 plate grip Di quate drainage to pa a MT20 plates unle 2x4 MT20 unless as been designed fr ad nonconcurrent v as been designed n chord in all areas by 2-00-00 wide will y other members. load (5.0 psf) on m Wall dead load (5.0 d live load (40.0 ps oad (5.0 psf) applie , 17-19, 16-17 are assumed to be	3=-1866/, 27=-39; 28=-229, 28=-229, 20=-248, 20=-248, 20=-248, 23=-44, 5-17=-1; e been of h (3-sec 3CDL=6, RS (env.) 10 to 3-1- 1-8 to 1 ver left at right exp. S for real 0 revent to s other otherwith or a 10.0, with any for a live s where Il fit betwo nember(0,05f) on f) and a ad only to 3	i8, 15-16=-21/ '343, 1/346, 3/78, '326, (0, 23-24=-97/ '775, 329/0, considered for cond gust) .0psf; h=25ft; elope) exterion 9, Interior (1) 8-2-7, Interior and right vosed;C-C for ctions shown; 0) water ponding wise indicated se indicated. 0) psf bottom other live loado e load of 20.0 a rectangle veen the botto (s). 4-5, 9-10, member(s).4-1 dditional botto o room. 23-266	800, 122, r (1)	 Probe 13. This This Inte R80 Grador to the set of th	vide me tring plat s truss is trnationa 02.10.2 a uphical p he orien tom choi c room c CASE(S	chanic te capa s desig al Resid and ref urlin re tation o rd. checke) Sta	al connection (by able of withstandii ned in accordance dential Code sect erenced standarce presentation doe of the purlin along d for L/360 deflec	others) of truss to ng 22 lb uplift at joi e with the 2015 ions R502.11.1 and ANSI/TPI 1. s not depict the siz the top and/or tion.

January 17,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	D04	Attic	2	1	Job Reference (optional)	163088200

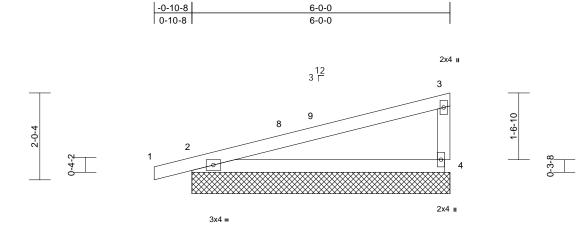
Scale = 1:74.8

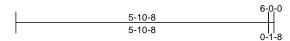
Plate Offsets (X, Y): [5:0-5-8,0-3-0], [7:0-5-8,0-3-0], [12:0-5-13,Edge], [27:0-3-12,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.47	Vert(LL)	-0.18	14-17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.31	16-18	>906	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.04	12	n/a	n/a		
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS		Wind(LL)	0.22	14-31	>999	240	Weight: 212 lb	FT = 20%
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	0.0* 10.0 2x6 SP 2400F 2.0E 5-7:2x6 SP No.2 2x4 SP No.1 2x4 SP No.3 *Excep SP No.2 2x6 SP No.2 2x6 SP No.2 Right 2x6 SP No.2 - Structural wood she 5-7-15 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins, e 2-0-0 c purlins, e 2-0	Rep Stress Incr Code or 2x6 SP DSS *Exc t* 3-26,9-14,4-8,27-1 - 2-6-0 athing directly applie xcept end verticals, a 0-0 max.): 5-7. applied or 10-0-0 oc 27=0-3-8 LC 10) C 13) (LC 2), 27=1468 (LC pression/Maximum 602/137, 3-4=-929/2 584, 6-7=0/584, 09/255, 9-10=-1641/ 2-13=0/34, 1-27=-19. 3-26=0/2148, 1=0/2674, 17-19=0/2 4=-23/1105, -22=-1843/0,	YES IRC20 v ept* 1:2x4 d or 1:2x4 d or 1:4x4 d or 1:2x4 d or	VEBS VOTES) Unbalanceed this design. 2) Wind: ASCI Vasd=103rr Cat. II; Exp zone and C 3-0-11 to 9- (1) 18-2-7 td exposed; e members al Lumber DO 3) Provide ade 4) All plates ar 5) All plates ar 5) All plates ar 5) This truss h chord live ld chord and a 3) Ceiling deax 8-28; Wall 8) Bottom cho chord dead	WB Matrix-MS 25-26=-6/719, 3-2 9-15=-2/953, 4-28 8-28=-1762/344, 10-14=-409/348, 5-28=-225/348, 7 20-21=-254/0, 18 22-26=-1300/0, 2 16-17=-102/143, 16-19=-67/732, 2 1 roof live loads hat 5-7-10; Vult=130m ph; TCDL=6.0psf C; Enclosed; MWF C Exterior (2) 0-2 11-8, Exterior (2) 9 24-8-10 zone; ca nd vertical left and the optical left and the opti	0.60 25=0/889, 3=-1805/3 2-26=-26 6-28=-15 -28=-235, -19=-242, 1-22=-29, 14-16=-1: -27=-147/ we been (aph (3-sec ; BCDL=6 FRS (env t-12 to 3-0 9-11-8 to antilever (b) so the sec so the sec is otherwi for a 10.0 ; with any d for a liv as where vill fit betv s. member on memb osf) and a	Horz(CT) Wind(LL) 14-15=-22/7 44, 4/334, 7/77, (291, 0, 22-23=-10 831, 336/0, 5/39 considered for cond gust) .0psf; h=25ft elope) exteri 0-11, Interior 18-2-7, Inter eft and right posed;C-C fo ctions shown 0) water pondin wise indicated. 0 psf bottom other live loa e load of 20. a rectangle veen the bott (s). 3-4, 8-9, per(s).3-25, S	0.04 0.22 '97,)2/97, or ; or (1) ior r ;; g. ed. ads. Opsf om 4-28, -15 om	12 14-31 11) Pro bea 12. 12) Thi Inte R80 13) Grr bot 14) Atti LOAD 0	n/a >999 wide me aring pla s truss is ernationa 02.10.2 : aphical p he orien tom cho c room c CASE(S	n/a 240 chanict te capa s desig al Resi and ref urlin rr tation n checke) Sta	Weight: 212 lb al connection (by able of withstandi ined in accordance dential Code sect rerenced standare presentation doe of the purlin along d for L/360 deflee ndard	FT = 20% rothers) of truss to ng 23 lb uplift at joint eve with the 2015 ions R502.11.1 and d ANSI/TPI 1. is not depict the size g the top and/or ction.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job		Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
382	2895	E01	Monopitch Supported Gable	1	1	Job Reference (optional)	163088201

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:35 ID:FutiCTeLkmxgP4LdRCJx5BzPnMG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

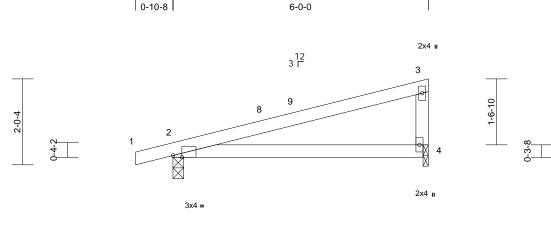
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.49 0.45	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2015/TPI2	WB 014 Matrix-MP	0.00	Horz(CT)	0.00	2	n/a	n/a	Weight: 21 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=6-0-0, 4 Max Horiz 2=92 (LC Max Uplift 2=-126 (L 5=-126 (L Max Grav 2=291 (LC (LC 1)	cept end verticals. applied or 10-0-0 oc 4=6-0-0, 5=6-0-0 8), 5=92 (LC 8) C 8), 4=-90 (LC 12), C 8)	on th 3-06 chor 7) All b ed or 8) Prov bear joint 9) This Inter R80, LOAD C	s truss has been design te bottom chord in all ar -00 tall by 2-00-00 wide d and any other membe earings are assumed to city of 565 psi. ide mechanical connect ing plate capable of witi 2, 90 lb uplift at joint 4 a truss is designed in acc national Residential Co 2.10.2 and referenced s ASE(S) Standard	reas where e will fit betw ers. b be SP No. tion (by oth hstanding 1 and 126 lb cordance w de sections	a rectangle veen the botton 2 crushing ers) of truss to 26 lb uplift at uplift at joint 2. ith the 2015 R502.11.1 and	n					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/13, 2-3=-149/											
BOT CHORD NOTES	2-4=-135/151											
 Wind: ASC Vasd=103r Cat. II; Exy zone and C 2-1-8 to 5- end vertica MWFRS fo grip DOL= Truss desi only. For s see Standa or consult 4 Gable requ Gable stud This truss I 	E 7-10; Vult=130mph mph; TCDL=6.0psf; B o C; Enclosed; MWFR C-C Corner (3) -0-10-6 10-4 zone; cantilever 1 al left exposed;C-C for or reactions shown; Lu 1.60 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig- irres continuous botton is spaced at 2-0-0 oc. has been designed for oad nonconcurrent wi	CDL=6.0psf; h=25ft; S (envelope) exterio 8 to 2-1-8, Exterior (2 left and right expose members and force mber DOL=1.60 pla n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom	2) d; s& te ss , ole, 11.						Contraction of the second	and the second second	SEA SEA 1860	L D3 EEEROTUU

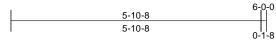
818 Soundside Road Edenton, NC 27932

E EN 1111 January 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	E02	Monopitch	5	1	Job Reference (optional)	163088202


6-0-0


-0-10-8

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:35 ID:ufYOayNYv?AnmhfO9awnCYzPnMc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

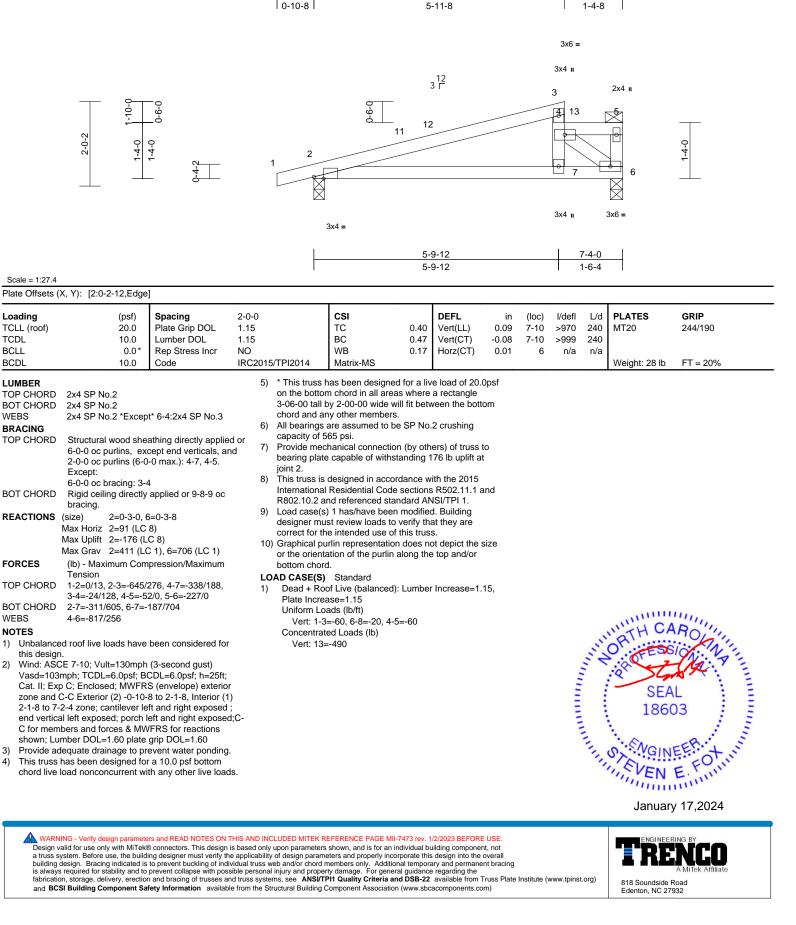
·		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	0.16	4-7	>428	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.12	4-7	>572	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014		0.00	1.0.2(01)	0.00	-			Weight: 21 lb	FT = 20%
LUMBER			6) Provide	mechanical connecti	ion (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			plate at joint(s) 4.								
BOT CHORD	2x4 SP No.2			mechanical connecti								
WEBS	2x4 SP No.2			plate capable of with		99 lb uplift a	t					
BRACING				nd 161 lb uplift at joir								
TOP CHORD	Structural wood she	athing directly appli		ss is designed in acco								
	6-0-0 oc purlins, ex		Internat	ional Residential Cod			and					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C	0.2 and referenced st	andard AN	NSI/TPL1.						
	bracing.		LOAD CAS	E(S) Standard								
REACTIONS	(size) 2=0-3-0,	4=0-1-8										
	Max Horiz 2=92 (LC	8)										
	Max Uplift 2=-199 (L	C 8), 4=-161 (LC 8))									
	Max Grav 2=291 (L	C 1), 4=230 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/13, 2-3=-149/	/189, 3-4=-151/182										
BOT CHORD	2-4=-216/136											
NOTES												
1) Wind: ASC	CE 7-10; Vult=130mph	n (3-second gust)										
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	,									
Cat. II; Exp	p C; Enclosed; MWFR	S (envelope) exterio	or									нь. -
	C-C Exterior (2) -0-10-										111110	in the
	-10-4 zone; cantilever										TH UA	ROM
	al left exposed; porch		ed;C-							5	On steed	in Ante
	bers and forces & MV									22	S. SEE	Ni. Si
	imber DOL=1.60 plate									2	······································	WAR: 2
	has been designed fo										14 24	1 1 2
	load nonconcurrent w								-		SEA	1 1 2
,	s has been designed t		opsi								100	E E
	tom chord in all areas all by 2-00-00 wide will		om								1860	J3 : E
	any other members.	In between the both	om							1	1	1 5
	any other members.	SP No 2 crushing								1	ORTH CA ORTEESS SEA 1860	A 1 8
capacity o		Cr 140.2 Grushing								2	NOIN	FERIL
	t joint(s) 4 considers p	arallel to grain value	2							11	O'N GIN	HI OTN
	SI/TPI 1 angle to grain									1	1, SVEN	ETUN
											THE N	in the second se
	should verify capacity of										EN	E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 17,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	E03	Monopitch	2	1	Job Reference (optional)	163088203

5-11-8


-0-10-8

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:35 ID:YWKnEhxP48zGHmAErElZ3FzPnLu-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-0

Page: 1

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	G01	Common Supported Gable	1	1	Job Reference (optional)	163088204

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:36 ID:usz6tWmZwKI08sFbfMVpeozPnNP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 7-1-12 14-3-8 15-2-0 0-10-8 7-1-12 7-1-12 0-10-8 4x6 = 4 12 4 Г 2x4 II 2x4 II 3 5 19 20 P ø 2-8-12 18 21 2 6 -4-3 6 0 0 P 6 10 9 8 3x4 = 2x4 🛛 2x4 🛛 2x4 🛚 3x4 = 14-3-8

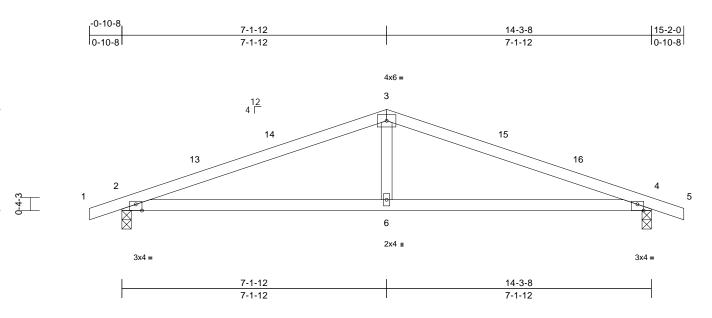
2-11-12

Scale = 1:31.	1									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYE	0-0 15 15 ES 8C2015/TPI2014	CSI TC 0.27 BC 0.23 WB 0.10 Matrix-MS	Vert(CT) r	in (loc) n/a - n/a - 00 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=14-3-8, 9=14-3-8, 15=14-3-8 (size) 2=-162 (L 8=-180 (L 10=-181 (15=-120 (Max Grav 2=241 (LC (LC 1), 9= 1), 11=24 (lb) - Maximum Com Tension 	2 13), 11=-60 (LC 13) C 8), 6=-120 (LC 9), C 13), 9=-112 (LC 1), LC 12), 11=-112 (LC 8), LC 9) C 1), 6=241 (LC 1), 8=43: 87 (LC 9), 10=439 (LC 1 (LC 1), 15=241 (LC 1) apression/Maximum	 only. For stusee Standard, or consult qu Gable required Gable studs: This truss hat chord live loa * This truss hat chord live loa * This truss hat chord and an All bearings a capacity of 5 Provide medible provide medible provide	hanical connection (by otl capable of withstanding ft at joint 6, 112 lb uplift a 10, 180 lb uplift at joint 8, 20 lb uplift at joint 6. designed in accordance w Residential Code section nd referenced standard A	hal to the face), ails as applicable, s per ANSI/TPI 1. rd bearing. 0 psf bottom other live loads. re load of 20.0psf a rectangle ween the bottom .2 crushing hers) of truss to 112 lb uplift at joint i joint 9, 181 lb 112 lb uplift at vith the 2015 s R502.11.1 and					
BOT CHORE WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 Cat. II; E zone and 2-1-8 to ⁻¹ (2) 101-1 exposed members	4-5=-95/172, 5-6=-8 2-10=-25/70, 9-10=0 6-8=-14/73 4-9=-72/67, 3-10=-2 ced roof live loads have	0/84, 6-7=0/17 //60, 8-9=0/60, 87/322, 5-8=-287/322 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-1-8, Exterior (2) 2 to 10-1-12, Exterior lever left and right ght exposed;C-C for for reactions shown;						and the second second	SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA	EER.

January 17,2024

Page: 1

7



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	G02	Common	3	1	Job Reference (optional)	163088205

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:36 ID:f7wi?Rfw1ZclZT3sezrinvzPnNY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

2-8-12

2-11-12

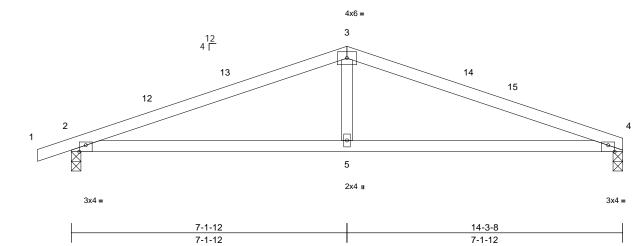
Plate Offsets (X, Y): [2:0-2-0,Edge], [4:0-2-0,Edge]

	() , [; - 3-]	,										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.69	Vert(LL)	0.19	6-12	>919	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.18	6-12	>961	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201			- (- /					Weight: 50 lb	FT = 20%
											Ŭ	
LUMBER			,	rings are assumed to	be SP No	2 crushing						
TOP CHORD				ty of 565 psi.								
BOT CHORD				e mechanical connect								
WEBS	2x4 SP No.3			plate capable of with		197 Ib uplift a	I					
BRACING			7) This tr	and 397 lb uplift at joi uss is designed in acc		ith the 201E						
TOP CHORD	Structural wood she	eathing directly applie		tional Residential Co			nd					
	4-1-9 oc purlins.		DOOD	0.2 and referenced s			ina					
BOT CHORD	Rigid ceiling directly	applied or 5-1-2 oc		SE(S) Standard		0/1111.						
	bracing.		LUAD CA	Standard								
REACTIONS	()											
	Max Horiz 2=-60 (LC	,										
	Max Uplift 2=-397 (L											
	Max Grav 2=624 (L											
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=0/17, 2-3=-1079	9/1228, 3-4=-1079/1	228,									
	4-5=0/17											
BOT CHORD	2-6=-1079/971, 4-6=	=-1079/971										
WEBS	3-6=-476/331											
NOTES												
,	ed roof live loads have	been considered fo	or									1111.
this desigr											Mul CI	10 111
	CE 7-10; Vult=130mph										THUM	HO !!!
	Bmph; TCDL=6.0psf; B									5	OFFESS	in Alle
	p C; Enclosed; MWFR									32	- OFLOC	1. 7 -
	C-C Exterior (2) -0-10- -1-12, Exterior (2) 7-1-										:0	to act :
	2 to 15-2-0 zone; cant		01							1 9		
	end vertical left and ri		loft								SEA	∖L : :
	exposed;C-C for mem								=	:	1000	
	or reactions shown; Lu		ate								1860	05 : 2
grip DOL=										2		1 2
	has been designed fo	r a 10.0 psf bottom								3		a: 3
	load nonconcurrent w		ıds.							1	SEA 1860	FER. + S
	s has been designed									11,	10.00	···· 20 5
on the bot	tom chord in all areas	where a rectangle									1,SVEN	E. JIN
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	om								"IIIII	11111
chord and	any other members.											

January 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	G03	Common	2	1	Job Reference (optional)	163088206


-0-10-8

0-10-8

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:36 ID:UYpPpIwLddV1q?KHUll6ClzPnNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-1-12 14-3-8 7-1-12 7-1-12 4x6 =

2-8-12 2-11-12 0-4-3

Scale = 1:29.9	
----------------	--

Plate Offsets (X, Y): [2:0-2-0,Edge], [4:0-2-0,Edge]

		. ,										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	CSI TC BC WB 12014 Matrix-MS	0.70 0.69 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.19 -0.19 -0.02	(loc) 5-8 5-8 4	l/defl >897 >926 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-8 oc purlins. Rigid ceiling directly bracing.	athing directly appli applied or 4-11-15 4=0-3-0 16) C 8), 4=-345 (LC 9)	5) All caj 6) Pro bei joir ed or 7) Th Int oc R8 LOAD	bearings are assumed to bacity of 565 psi. ovide mechanical connect aring plate capable of wi at 4 and 397 lb uplift at jc is truss is designed in ac ernational Residential Cr 02.10.2 and referenced CASE(S) Standard	ction (by oth thstanding 3 pint 2. ccordance w ode sections	ers) of truss 45 lb uplift a ith the 2015 5 R502.11.1 a	t				Woght forb	
FORCES TOP CHORD BOT CHORD WEBS	,	6/1237, 3-4=-1086/1	249									
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 Cat. II; Ex zone and 2-1-8 to 7 (1) 10-1-1 exposed ; and right i MWFRS f grip DOL= 3) This truss chord live 4) * This trus	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bi φ C; Enclosed; MWFR C-C Exterior (2) -0-10- '-1-12, Exterior (2) -0-10- '-1-12, Exterior (2) -7-1- '2 to 14-3-8 zone; canti ; end vertical left and rig exposed;C-C for memb for reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio 8 to 2-1-8, Interior (12 to 10-1-12, Interio lever left and right ght exposed; porch pers and forces & imber DOL=1.60 pla r a 10.0 psf bottom th any other live loa or a live load of 20.0	; or left tte ds.							Annual	SEA SEA	ROWR L D3 EERO

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

VEN E. FUIT

Page: 1

January 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component development properties and properties and the properties of the properti and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

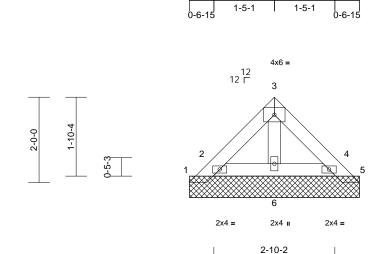
Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	PB01	Piggyback	11	1	Job Reference (optional)	163088207

0-6-15

1-5-1

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:36 ID:xfG4mO7JP23YHiiP3k2O_dzPnOE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-10-2

3-5-1

Page: 1

Our Our 111 January 17,2024 818 Soundside Road Edenton, NC 27932

E EN

Scale = 1:27.1

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.05 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	4-0-0 oc p	o.2 o.3 I wood shea ourlins. ing directly	athing directly applie applied or 6-0-0 oc 2=4-0-0, 4=4-0-0,	d or	 chord live loa This truss loon the botton 3-06-00 tall lochord and an All bearings capacity of 5 Provide med 	is been designe ad nonconcurren has been design in chord in all ar by 2-00-00 wide hy other membe are assumed to 65 psi. hanical connect	d for a 10. Int with any led for a live eas where will fit betw rs. be SP No. ion (by oth	other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t	Opsf om					
	Max Horiz Max Uplift	5=4-0-0, 6 1=-60 (LC 1=-65 (LC 5=-13 (LC 7=-74 (LC 1=65 (LC	5=4-0-0, 7=4-0-0 2 8) 2 10), 2=-74 (LC 12), 2 13), 6=-35 (LC 13),	=58	2, 65 lb uplif at joint 6 and 10) This truss is International R802.10.2 a 11) See Standar Detail for Co	Residential Co nd referenced s	uplift at joi pint 2. ordance w de sections tandard AN vback Trus e truss as a	nt 5, 35 lb up ith the 2015 s R502.11.1 a ISI/TPI 1. s Connection	lift Ind					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		LOAD CASE(S)	•	signer.							
TOP CHORD			1/36, 3-4=-23/40,											
BOT CHORD	2-6=-58/6	64, 4-6=-58	/64											<u>ни.</u>
WEBS	3-6=-84/2	26											WHY CA	Rout
NOTES												S	R	lin
 Unbalance this design 		oads have	been considered for									32	OFESS	ON: Vis
 Wind: ASC Vasd=103 Cat. II; Exp zone and exposed ; members Lumber D Truss des only. For 	CE 7-10; Vu mph; TCDL p C; Enclose C-C Exterio end vertical and forces a OL=1.60 pla signed for w studs expos	=6.0psf; B0 ed; MWFR3 r (2) zone; I left and rig & MWFRS ate grip DO ind loads in sed to wind	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; u=1.60 the plane of the true (normal to the face) d Details as applicab	ght ss								and the second second	SEA SEA SEA	D3

NOTES

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove		
3822895	V01	Valley	1	1	Job Reference (optional)	163088208	

2-6-12

2-6-12

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

2-3-6

0-0-8

2-7-4

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:37 ID:L9rV6AKYi4tm_jEwlaO8svzPnPF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-10-2

2-3-6

3

2x4 💊

4x6 = 2

4 2x4 II

5-1-7

Page: 1

EN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:27.4

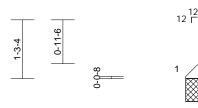
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	15/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-1-7 oc purlins. Rigid ceiling directly bracing. (size) 1=5-1-7, 3 Max Horiz 1=80 (LC Max Uplift 1=-2 (LC - (LC 12) Max Grav 1=65 (LC (LC 1)	applied or 6-0-0 oc 3=5-1-7, 4=5-1-7 9) 13), 3=-5 (LC 13), 4	8 ed or 9 1 =-108 L	on the botton 3-06-00 tall b chord and ar All bearings capacity of 5) Provide mech bearing plate 1, 5 lb uplift a 0) This truss is International	nanical connection capable of withs at joint 3 and 108 designed in acco Residential Code and referenced sta	as where vill fit betw e SP No. on (by oth tanding 2 Ib uplift a rdance w e sections	a rectangle veen the botto 2 crushing ers) of truss t 2 lb uplift at jo it joint 4. ith the 2015 5 R502.11.1 a	om o int					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-53/102, 2-3=-53												
BOT CHORD	1-4=-115/110, 3-4=-	115/110											
WEBS	2-4=-208/117												
NOTES	ed roof live loads have	been considered fo	r										
 this design Wind: ASC Vasd=103 Cat. II; Exp zone and 0 exposed; members; Lumber Do Truss dess only. For see Stand or consult Gable requisition Gable study 		(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri ght exposed;C-C for for reactions shown L=1.60 the plane of the tru (normal to the face) d Details as applical gner as per ANSI/TF m chord bearing.	; ight ; uss), ble,								and the second	SEA SEA SEA SEA	

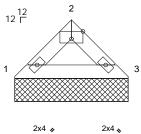
12 12 ∟

2x4 /

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.




Job	Truss	Truss Type	Qty	Ply	Furr, Mayview - Elev. C, 4 Shady Grove	
3822895	V02	Valley	1	1	Job Reference (optional)	163088209

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 10:38:37 ID:W?UEs6Gn7E7cGonmOKHkcezPnPL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x6 =

2-5-7

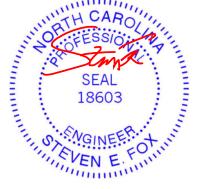

Scale = 1:24.9

Plate Offsets (X, Y): [2:0-3-0,Edge]

	() , [, -3-]	-											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MP							Weight: 8 lb	FT = 20%
LUMBER			8)	All bearings	are assumed to I	be SP No.	2 crushina						
TOP CHORE	2x4 SP No.2		- /	capacity of 5			5						
BOT CHORE	2x4 SP No.2		9)		hanical connecti								
BRACING					e capable of with	standing 2	2 lb uplift at j	joint					
TOP CHORE	O Structural wood she 2-5-7 oc purlins.	athing directly appli	ed or 10)	This truss is	uplift at joint 3. designed in acco								
BOT CHORE		applied or 10-0-0 o	C		Residential Cod			and					
	bracing.				nd referenced sta	andard AN	ISI/TPI 1.						
REACTIONS	()		LO	AD CASE(S)	Standard								
	Max Horiz 1=-35 (LC	,											
	Max Uplift 1=-22 (LC	<i>,,</i> , , , , , , , , , , , , , , , , , ,											
	Max Grav 1=98 (LC												
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORE		13/44											
BOT CHORE	, -	10/11											
NOTES													
	ced roof live loads have	been considered fo	or										
this desig													
2) Wind: AS	SCE 7-10; Vult=130mph	(3-second gust)											
)3mph; TCDL=6.0psf; B		,										11
	xp C; Enclosed; MWFR											MULL CA	DUN
	d C-C Exterior (2) zone;											"aTH UN	NO III
	; end vertical left and ri s and forces & MWFRS										N.	OR FESS	in min
	DOL=1.60 plate grip DC		ι,								33	- OF 2	1.7:
	DOL-1.00 plate grip DC		100								-	io A	MARCE -

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 17,2024

