

RE: 3822905 - Furr, Meadows, 1 Shad	y Grove	Trenco 818 Soundside Rd Edenton, NC 27932
Site Information:		
Project Customer: Furr Construction Pr Lot/Block: 1 Address:	oject Name: Subdivision: SHADY GROVE	
City: LILLINGTON	State: NC	
Name Address and License # of Struct Name: Address:	ural Engineer of Record, If there is a License	one, for the building. #:
City, County:	State:	
General Truss Engineering Criteria & I Loading Conditions):	Design Loads (Individual Truss Desi	ign Drawings Show Special
Design Code: IRC2015/TPI2014	Design Program: MiTek	20/20 8.6
Wind Code: ASCE 7-10 Wind Speed: 130 mph	Design Method: MWFR	S (Envelope)/C-C hybrid Wind ASCE 7-10
Roof Load: 40.0 psf	Floor Load: N/A psf	
This package includes 47 individual, date	d Truss Design Drawings and 0 Additi	onal Drawings.
	-	

NO.	Seal#	Job ID#	I russ Name	Date	NO.	Seal#	Job ID#	I russ Name	Date
1 2	l63012606 l63012607	3822905 3822905	A01 A02	1/12/24 1/12/24	25	163012630	3822905 3822905	E04 E05	1/12/24
3 4 5	163012608 163012609	3822905	A03 A04	1/12/24	20	163012631 163012632	3822905		1/12/24
6	I63012610	3822905	A06	1/12/24	29	I63012633	3822905	E09	1/12/24
8	I63012612	3822905	B01 B02	1/12/24	30 31 32	I63012636	3822905	E11	1/12/24
10 11	I63012615	3822905	B03	1/12/24	34	163012630	3822905	G02 G03	1/12/24
12	I63012617	3822905	B05 C01	1/12/24	35	I63012640	3822905	H01 H02	1/12/24
14	163012619 163012620	3822905	Č02	1/12/24	37 38	l63012642	3822905 3822905	JA1 JA2	1/12/24
16 17	163012621 163012622	3822905 3822905	C04 C05	1/12/24	39 40	163012644 163012645	3822905 3822905	JA3 JA4	1/12/24
18 19	163012623 163012624	3822905 3822905	ČJ1 CJ2	1/12/24 1/12/24	41	163012646	3822905 3822905	JB1 V01	1/12/24
20 21	163012625 163012626	3822905 3822905	D01	1/12/24 1/12/24	43 44	l63012648 l63012649	3822905 3822905	V02 V03	1/12/24 1/12/24
22 23	l63012627 l63012628	3822905 3822905	E02 E03	1/12/24 1/12/24	45 46	l63012650 l63012651	3822905 3822905	V04 V05	1/12/24 1/12/24

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

January 12,2024

1 of 2

RE: 3822905 - Furr, Meadows, 1 Shady Grove

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: Furr ConstructionProject Name:Lot/Block: 1Subdivision: SHADY GROVEAddress:City, County: LILLINGTONState: NC

 No.
 Seal#
 Job ID#
 Truss Name
 Date

 47
 163012652
 3822905
 V06
 1/12/24

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A01	Hip Girder	1	2	Job Reference (optional)	163012606

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:45 ID:eDfXayTPWgHnMYUGZiDUXnzagrF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:Edge,0-0-6], [3:0-5-12,0-2-0], [8:0-5-12,0-2-0], [9:Edge,0-0-6]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.39	Vert(LL)	-0.08	13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	-0.17	13	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.19	Horz(CT)	-0.04	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	5/TPI2014	Matrix-MS		Wind(LL)	0.18	13	>999	240	Weight: 358 lb	FT = 20%
			2)	All loads are	considered equal	lv applier	to all plies			Vert: 3=	-29 (B) 8=-29 (B) 16=-	-24 (B) 11=-24 (B)
	2v4 SP No 2		-/	except if note	ed as front (F) or h	ack (B)	ace in the I (DAD		13=-49	(B) 5=	-59 (B) 24=-29 (B) $25=-29$ (B)
BOT CHORD	2x4 SP No 2			CASE(S) sec	tion Ply to ply co	nnection	s have been			26=-29	(B) 27	'=-29 (B) 28=-29	(B) $29=-29$ (B)
WERG	2x4 SP No.2			provided to d	listribute only load	Is noted	as (F) or (B)			30=-29	(B) 31	=-29 (B) 33=-77	(B) $34=-24$ (B)
WEDGE	2,44 OF NU.2 L off: 2x4 SP No 3			unless other	vise indicated	ie neteu i	ue (:) e: (±),			35=-24	(B) 36	6=-24 (B) 37=-24	(B) $38=-24$ (B)
WEDGE	Dight: 2x4 SP No.3		3)	Unbalanced	roof live loads hav	/e been (considered fo	r		39=-24	(B) 40)=-24 (B) 41=-24	(B) $42=-77$ (B)
BRACING	Right. 224 SF 110.5		0)	this design.							(_),	2.(2), 2.	(2), 12 (2)
TOP CHORD	Structural wood shee	athing directly applie	d or 4)	Wind: ASCE	7-10; Vult=130mp	oh (3-sec	ond gust)						
		anning unechy applie	u ui	Vasd=103mp	h; TCDL=6.0psf;	BCDL=6	.0psf; h=25ft	;					
	2-0-0 oc purlins, exc	-0 max): 3-8		Cat. II; Exp C	; Enclosed; MWF	RS (env	elope) exterio	or					
	Rigid ceiling directly	applied or 9-8-3 oc		zone; cantile	ver left and right e	exposed	end vertical	left					
bor onord	bracing.			and right exp	osed; Lumber DC	DL=1.60 p	plate grip						
REACTIONS	(size) 2=0-3-8.9	=0-3-8		DOL=1.60									
	Max Horiz 2=-127 (L0	C 6)	5)	Provide adec	uate drainage to	prevent v	vater ponding	g.					
	Max Uplift 2=-1100 (I	C 8) 9=-1100 (I C 9	9) 6)	This truss ha	s been designed	tor a 10.0) pst bottom						
	Max Grav 2=1703 (I	C 15) 9=1703 (I C 1	16) -	chord live loa	ad nonconcurrent	with any	other live loa	ids.					
FORCES	(lb) Maximum Com	prossion/Maximum	(0) ()	^ I his truss h	ias been designed	tor a liv	e load of 20.0	Upst					
FORCES	(ib) - Maximum Com	pression/maximum		2 06 00 toll h	n chord in all area	is where	a reclangle	~ m					
	1_2_0/31 2_32481	/1706 3-43365/24	130	s-06-00 tail t	y 2-00-00 wide w		leen the bott	om					
	4-5=-3365/2439 5-7	=-3365/2439	۵U, ۵۱	All boorings (are accumed to be		2 cruching						
	7-8=-3365/2439, 8-9	=-2482/1707, 9-10=	0/31	canacity of 5	65 nei	5 01 110.	2 crushing						
BOT CHORD	2-16=-1451/2091. 15	5-16=-1451/2097.	9)	Provide med	banical connection	n (hv oth	ers) of truss t	n					eres.
	13-15=-2779/3937, 1	2-13=-2779/3937,	0)	bearing plate	capable of withst	anding 1	100 lb uplift a	at				1111100	
	11-12=-1359/2042, 9	-11=-1360/2036		ioint 2 and 12	100 lb uplift at ioin	t 9					13	IN TH CA	ROUL
WEBS	3-16=-43/217, 8-11=	-44/217, 4-15=-425/	441, 10) This truss is	designed in accor	dance w	ith the 2015				15	R	D. Clark
	3-15=-1257/1694, 5-	15=-588/453,		International	Residential Code	sections	R502.11.1 a	nd			2.2	1 con	Distin
	5-13=-42/278, 5-12=	-587/451,		R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.			4		10 10	
	7-12=-425/441, 8-12	=-1258/1695	11) Graphical pu	rlin representatior	n does no	ot depict the s	size				. C.	K
NOTES				or the orienta	ation of the purlin a	along the	top and/or			-		CEA	1 1 2
1) 2-ply truss	s to be connected toget	her with 10d		bottom chord	l					=		SEA	L : : :
(0.131"x3	") nails as follows:		12) "NAILED" inc	dicates 3-10d (0.1-	48"x3") c	or 3-12d					0363	22 : =
Top chore	ds connected as follows	: 2x4 - 1 row at 0-9-0	0	(0.148"x3.25	") toe-nails per NI	DS guidli	nes.			-			: :
oc.			LC	DAD CASE(S)	Standard						2	N	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Bottom ch	nords connected as follo	ows: 2x6 - 2 rows	1)	Dead + Roo	of Live (balanced):	: Lumber	Increase=1.	15,			1.	N.E.	Riki
staggered	1 at 0-9-0 oc.		,	Plate Increa	ase=1.15						25	S. GIN	EFIANS
Web conr	nected as follows: 2x4 -	1 row at 0-9-0 oc.		Uniform Loa	ads (lb/ft)						1	/C	BEN
				Vert: 1-3:	=-60, 3-8=-60, 8-1	0=-60, 1	7-20=-20					11, A. G	ILLIN
				Concentrate	ed Loads (lb)							in num	um,

January 12,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A02	Нір	1	1	Job Reference (optional)	163012607

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:47 ID:LbCSXkBMAIFBUsff9fosZkzagrd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

30-10-0 5-10-12 11-10-11 18-0-5 24-0-4 29-11-0 0-11-0 5-10-12 5-11-15 6-1-11 5-11-15 5-10-12 5x8 = 3x6= 3x6= 5x8= 2x4 II 5 0-1-15 ⊠23 0-1-153 4 6 7 4-7-3 \boxtimes \boxtimes \boxtimes \boxtimes 12 8 4-10-11 ²⁴25 4-5-4 4-5-4 21²² 8 0-8-0 g • 14 13 12 11 10 2x4 II 4x8 = 4x6= 4x6= 2x4 II 4x6= 4x6= 5-9-0 11-10-11 18-0-5 24-2-0 29-11-0 5-9-0 6-1-11 6-1-11 6-1-11 5-9-0

Scale = 1:56.7

Plate Offsets ((X, Y): [2:Edge,0-0-10]	, [3:0-4-0,0-1-9], [7:	0-4-0,0-1-	9], [8:Edge,0-0	-10]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.62 0.42 0.41	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.21 0.04 0.12	(loc) 11-13 11-13 8 11-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 176 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-11-11 oc purlins, e 2-0-0 oc purlins (3-3- Bigid cordina directly	athing directly applie xcept 12 max.): 3-7.	2) ed or 3)	Wind: ASCE Vasd=103m Cat. II; Exp (zone and C- 2-1-0 to 5-10 (1) 10-1-11 t Interior (1) 2 right expose for members Lumber DOI Provide ade	7-10; Vult=130m ph; TCDL=6.0psf; C; Enclosed; MWF C Exterior (2) -0-1 0-12, Exterior (2) -0 0: 24-0-4, Exterior 8-3-3 to 30-10-0 z d; end vertical lef s and forces & MW L=1.60 plate grip I guate drainage to	ph (3-sec BCDL=6 FRS (env 1-0 to 2- 5-10-12 to (2) 24-0 (2) 24-0 cone; can t and righ /FRS for DOL=1.60 prevent	cond gust) 6.0psf; h=25ft elope) exteri 1-0, Interior (0 10-1-11, Int 4 to 28-3-3, tilever left an nt exposed;C reactions shi 0 water pondin	t; or (1) terior nd -C own; a.						
REACTIONS	kijd čelinig directij 5 bracing. (size) 2=0-3-8, 8 Max Horiz 2=149 (LC Max Uplift 2=-269 (LC Max Grav 2=1252 (L	=0-3-8 : 11) C 9), 8=-269 (LC 8) C 1), 8=1252 (LC 1	4) 5)	This truss ha chord live loa * This truss I on the bottor 3-06-00 tall I	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	for a 10. with any d for a liv as where vill fit betw	0 psf bottom other live loa e load of 20. a rectangle veen the bott	ads. Opsf com						
FORCES	(lb) - Maximum Com	pression/Maximum	6)	All bearings	are assumed to b	e SP No.	2 crushing							
TOP CHORD	1-2=0/31, 2-3=-1774/ 4-5=-2156/695, 5-7=- 7-8=-1773/512, 8-9=	/513, 3-4=-2158/69 ⁻ -2165/700, 0/31	7, 7)	Provide mec bearing plate	chanical connectio chanical connectio capable of withs 69 lb unlift at joint	n (by oth tanding 2 8	ers) of truss 269 lb uplift a	to t						
BOT CHORD	2-14=-417/1398, 13- 11-13=-613/2165, 10 8-10=-290/1398	14=-419/1395,)-11=-292/1395,	8)	This truss is International	designed in accord Residential Code	rdance w sections	ith the 2015 8 R502.11.1 a	and				TH CA	Bo	
WEBS	3-14=0/214, 7-10=0/2 3-13=-407/983, 5-13= 7-11=-411/993	212, 4-13=-403/271 =-46/48, 5-11=-427,	, 9) /296,	Graphical pu or the orienta	ation of the purlin	n does no along the	ot depict the set top and/or	size		4	L'IL	ORCEESS	icht -	
NOTES 1) Unbalance this design	ed roof live loads have l n.	been considered fo	L (DAD CASE(S)	Standard					Contraction of the second seco		SEA 0363	L 22 BERIN	Manufattan.

- 1) Unbalanced roof live loads have been considered for this design.

G mmm January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A03	Нір	1	1	Job Reference (optional)	163012608

0-1-15

6-1-4 6-1-4

6-3

6-6-11

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:48

30-10-0

0-11-0

Page: 1 ID:l0gBdGawURV30Q_5sEvfghzagti-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-4-2 8-4-12 14-11-8 21-6-4 25-6-14 29-11-0 4-4-2 4-0-10 6-6-12 6-6-12 4-0-10 4-4-2 3x8= 4x8 = 4x8 =20 0-1-15 H 3 21 ⊠ 5 4 (h 12 81 2x4 🖌 2x4. 2 6 19 22

Scale = 1:55.5

Plate Offsets (X, Y): [1:Edge,0-0-2], [3:0-4-0,0-1-9], [5:0-4-0,0-1-9], [7:Edge,0-0-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.62 0.42 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.14 0.05 0.07	(loc) 9-10 9-10 7 10-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SPF No.2(flat) Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 4-2-4 oc purlins, exc 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. T-Brace: Easten (2X) T and I	athing directly applied ept -5 max.): 3-5. applied or 10-0-0 oc 2x4 SPF No.2 - 4-12	2) d or 3) 4) 2, 4-9 5)	Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-0 3-0-0 to 8-4 (1) 12-7-11 tt Interior (1) 25 right exposed for members Lumber DOL Provide adeo This truss ha chord live loa * This truss ha on the bottom	7-10; Vult=130m h; TCDL=6.0psf; b; TCDL=6.0psf; c; Enclosed; MWF C Exterior (2) 0-0- 12, Exterior (2) 8- b 21-6-4, Exterior 5-8-6 to 30-10-0 z d ; end vertical lef and forces & MW =1.60 plate grip E juate drainage to s been designed d nonconcurrent ias been designed n chord in all area	ph (3-sec BCDL=6 RS (env 0 to 3-0- 4-12 to 1 (2) 21-6- one; can t and righ (FRS for DOL=1.6(prevent for a 10.1 with any d for a liv is where	cond gust) .0psf; h=25ft; elope) exterior 0, Interior (1) 2-7-11, Interior 4 to 25-8-6, tilever left and reactions shor water ponding 0 psf bottom other live load e load of 20.0 a rectangle	r or C wn; ds. psf					
REACTIONS	Fasten (2X) 1 and 1 of web with 10d (0.1 o.c., with 3in minimu Brace must cover 9 (size) 1=0-3-8, 7 Max Horiz 1=-198 (L Max Uplift 1=-234 (L Max Grav 1=1196 (I	braces to narrow edg 31"x3") nails, 6in m end distance. 20% of web length. 7=0-3-8 C 10) C 12), 7=-264 (LC 13 .C 1), 7=1253 (LC 1)	ge 6) 7) 3) 8)	3-06-00 tall b chord and an All bearings a capacity of 5 Provide mecl bearing plate joint 1 and 20 This truss is	y 2-00-00 wide w y other members are assumed to be 65 psi. hanical connectio capable of withsi 34 lb uplift at joint designed in accor	ill fit betv e SP No. n (by oth tanding 2 7. rdance w	veen the botto 2 crushing ers) of truss to 34 lb uplift at ith the 2015	m					U
FORCES	(Ib) - Maximum Com Tension 1-2=-1774/540, 2-3= 3-4=-1264/471, 4-5= 5-6=-1580/503, 6-7=	pression/Maximum 1584/513, 1261/473, 1770/537, 7-8=0/31	9)	International R802.10.2 ar Graphical pu or the orienta bottom chord	Residential Code nd referenced star rlin representation ation of the purlin	sections ndard AN n does no along the	R502.11.1 ar ISI/TPI 1. t depict the si top and/or	nd ze		4	i'''	OR FESE	ROLIN
BOT CHORD	1-12=-386/1412, 10 9-10=-386/1619, 7-9 2-12=-270/237, 3-12 4-12=-541/280, 4-10 5-9=-103/538, 6-9=-	-12=-386/1619,)=-353/1407 ?=-102/539,)=0/249, 4-9=-543/27 270/236	10 9, LC	 Warning: Add truss system always require DAD CASE(S) 	ditional permanen (not part of this c red. Standard	it and sta omponer	bility bracing f nt design) is	or				SEA 0363	L 22
NOTES 1) Unbalance this design	ed roof live loads have	been considered for										A. G January	E.E.R

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A04	Нір	1	1	Job Reference (optional)	163012609

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:48 ID:Nzlallh8h?IQmCv34O5YCHzagur-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-4-0,0-1-9], [4:0-4-0,0-1-9], [6:Edge,0-0-6]

Scale = 1:58.1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.36	Vert(LL)	-0.08	8-15	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.46	Vert(CT)	-0.17	8-15	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.33	Horz(CT)	0.01	6	n/a	n/a			
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Wind(LL)	0.03	8-15	>999	240	Weight: 166 lb	FT = 20%	
			2)	Wind: ASCE	7 10: Vult 120mp	h (2 aac	and quat)							
	Over CD Ne O		2)	Vinu. ASCE	7-10, $Vuit=13011pi$		One gusi)							
	2X4 SF NU.2 2x6 SP No.2			Cat II: Exp C	: Enclosed: MWFF	RS (env	elone) exterio	or						
MERS	2x0 SF N0.2 2x4 SP No 3 *Excen	+* 12-1-2×4 SP No 2		zone and C-0	C Exterior (2) 6-8-1	2 to 9-8	-12. Interior	(1)						
OTHERS	2x4 SPF No 2(flat)	12 1.2.4 01 110.2		9-8-12 to 10-	10-12, Exterior (2)	10-10-	2 to 14-11-8	3,						
NEDGE	Right: 2x4 SP No.3			Interior (1) 14	I-11-8 to 19-0-4, É	xterior (2) 19-0-4 to	,						
BRACING	· · · j · · · · · · · · · · ·			23-3-3, Interi	or (1) 23-3-3 to 30-	-10-0 zc	ne; cantileve	er left						
	Structural wood she	athing directly applie	d or	and right exp	osed ; end vertical	right ex	posed;C-C f	or						
	5-0-8 oc purlins, ex	cept end verticals, ar	nd	members and	d forces & MWFRS	for rea	ctions showr	ר;						
	2-0-0 oc purlins (6-0	-0 max.): 2-4.		Lumber DOL	=1.60 plate grip D0	DL=1.60)							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	3)	Provide adec	uate drainage to p	revent	vater ponding	g.						
	bracing.		4)	I his truss ha	s been designed fo	ora 10.0) pst bottom	, da						
NEBS	T-Brace:	2x4 SPF No.2 - 3-10)	* This trues h		for a liv	other live loa	aus. Onof						
	Fasten (2X) T and I	braces to narrow ed	ge ⁵⁾	on the botton	as been designed	whore	e ioau oi 20.0	opsi						
	of web with 10d (0.1	31"x3") nails, 6in		3-06-00 tall h	v 2-00-00 wide will	l fit hetv	een the bott	om						
	o.c., with 3in minimul	m end distance.		chord and an	v other members.	with BC	DL = 10.0ps	f.						
	Brace must cover 9	30% of web length.	6)	Bearings are	assumed to be: . J	Joint 11	SP No.2							
REACTIONS	(size) 6=0-3-8, 1	11=0-3-8, 12= Mecha	anical	crushing cap	acity of 565 psi, Jo	int 6 SF	No.2 crushi	ng						
	Max Horiz 12=-322 (LC 13)		capacity of 5	65 psi.			0						
	Max Uplift 6=-241 (L	.C 13), 11=-20 (LC 8)	, 7)	Refer to girde	er(s) for truss to tru	iss conr	ections.							
	12=-145 (Max Cray C 075 (10	L(13)	8)	Provide mech	nanical connection	(by oth	ers) of truss t	to						
	12_912 (LC	(LC I), $I = 154 (LC I)$,		bearing plate	capable of withsta	nding 1	45 lb uplift at	t				MITTIN	111.	
	(lb) Maximum Cam	-C Z)		joint 12, 241	lb uplift at joint 6 a	nd 20 lb	uplift at joint	t 11.				WHILL CA	Dalle	
FURGES	(ID) - Maximum Com	pression/waximum	9)	This truss is	designed in accord	lance w	th the 2015				1	aTHOM	10/11/	
	1-2553/216 2-3	445/233 3-4774/3	34	International	Residential Code s	sections	R502.11.1 a	and		/	5.	01585	12 11	20
	4-5=-987/322, 5-6=-	1266/376. 6-7=0/31.	10	Rouz. 10.2 al	lu referenceu stant	doog n	JOI/TETT.	cizo			Z R		and a second	
	1-12=-858/300		10	or the orients	tion of the nurlin a	long the	top and/or	SIZE		-		:0	K	-
BOT CHORD	11-12=-193/318, 10-	-11=-193/318,		bottom chord		iong ine				-		0.54	1	-
	8-10=-126/664, 6-8=	-203/987	11) Warning: Add	ditional permanent	and sta	bility bracing	for				SEA		=
NEBS	5-8=-413/323, 1-10=	-154/639, 4-8=-13/3	09,	truss system	(not part of this co	mponer	t design) is			Ξ	- 1	0363	22 :	Ξ.
	3-8=-95/292, 2-10=-	12/124, 3-10=-516/2	16	always requir	ed.	•	0,			-		. 00007	:	5
NOTES			LC	AD CASE(S)	Standard					-	2	N		1
1) Unbalance	ed roof live loads have	been considered for		(-)							- 1	N.ENO	cR. A	3
this desigr	۱.										31	S, GINF	- A :	£
											1	C A	BEIN	
												11, A. G	L	
												111111	1111.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILD January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A05	Нір	1	1	Job Reference (optional)	163012610

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:49 ID:ZOZTsRFtflcGn2Vaju10zOzah?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-4-0,0-1-9], [3:0-4-0,0-1-9], [6:Edge,0-0-2]

Scale = 1:59.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.09	8-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.16	8-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.07	8-15	>999	240	Weight: 162 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x6 SP N	0.2
WEBS	2x4 SP N	o.3 *Except* 12-1:2x4 SP No.2
OTHERS	2x4 SPF I	No.2(flat)
WEDGE	Right: 2x4	I SP No.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	4-4-3 oc p	ourlins, except end verticals, and
	2-0-0 oc j	ourlins (6-0-0 max.): 2-3.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
WEBS	T-Brace:	2x4 SPF No.2 - 2-10,
		3-10
	Fasten (2	X) T and I braces to narrow edge
	of web wi	th 10d (0.131"x3") nails, 6in
	o.c.,with 3	Bin minimum end distance.
	Brace m	ust cover 90% of web length.
REACTIONS	(size)	6=0-3-8, 11=0-3-8, 12= Mechanical
	Max Horiz	12=-345 (LC 13)
	Max Uplift	6=-252 (LC 13), 11=-37 (LC 18),
		12=-188 (LC 13)
	Max Grav	6=1025 (LC 20), 11=89 (LC 3),
		12=907 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-687/	256, 2-3=-565/282, 1-12=-895/309,
	3-5=-1342	2/540, 5-6=-1310/319, 6-7=0/31
BOT CHORD	11-12=-2	16/336, 10-11=-216/336,
	8-10=-33/	663, 6-8=-249/995
WEBS	1-10=-12	5/654, 3-8=-414/945, 5-8=-522/429,
	2-10=-85/	157, 3-10=-343/199
NOTES		

Unbalanced roof live loads have been considered for

1)

this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 6-8-12 to 9-8-12, Interior (1) 9-8-12 to 12-5-8, Exterior (2) 12-5-8 to 16-8-7, Interior (1) 16-8-7 to 17-5-8, Exterior (2) 17-5-8 to 21-11-0, Interior (1) 21-11-0 to 30-10-0 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6)
- Bearings are assumed to be: , Joint 11 SP No.2 crushing capacity of 565 psi, Joint 6 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at joint 12, 252 lb uplift at joint 6 and 37 lb uplift at joint 11.
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A06	Common	3	1	Job Reference (optional)	163012611

Scale = 1:70.6

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:49 ID:eQ67tsxZDzAbTd3kXpj8AkzahAb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-1-12], [5:Edge,0-0-6], [7:0-3-8,0-2-0], [9:0-0-12,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.66 0.43 0.39	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.15 0.01 0.07	(loc) 7-9 7-9 5 7-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 *Excep Right: 2x4 SP No.3 Structural wood shea 4-0-7 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 5=0-3-8, 1 Max Horiz 11=-382 (I Max Horiz 11=-382 (I Max Uplift 5=-254 (Lu 11=-150 (I Max Grav 5=1070 (L 11=978 (L (lb) - Maximum Com Tension 1-2=-593/183, 2-4=- 4-5=-1391/286, 5-6= 10-11=-278/370, 9-1 7-9=-21/615, 5-7=-22 2-7=-510/1159, 4-7=	t* 1-2:2x6 SP No.2 t* 11-1:2x4 SP No.2 athing directly applied cept end verticals. applied or 10-0-0 oc 2-7, 2-9 0=0-3-8, 11= Mechar LC 13) C 13), 10=-92 (LC 13 LC 13) C 20), 10=117 (LC 1) C 20) pression/Maximum 1480/612, 0/31, 1-11=-1057/195 0=-278/370, 28/1041 -615/504, 2-9=-341/2	3) 4) 1 or 5) 6) 7) nical 8)), 8)), LC	This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are crushing capa capacity of 56 Refer to girde Provide mech bearing plate joint 11, 254 I This truss is o International R802.10.2 ar	s been designed fo d nonconcurrent w as been designed to h chord in all areas y 2-00-00 wide will y other members, , assumed to be: , J acity of 565 psi, Joi 55 psi. er(s) for truss to tru- nanical connection capable of withsta b uplift at joint 5 ar designed in accord. Residential Code s d referenced stance Standard	r a 10.0 ith any for a live where fit betw with BC oint 10 int 5 SP ss conn (by othen nding 1 nd 92 lb ance wi eactions dard AN	psf bottom other live loa e load of 20.1 a rectangle reen the bott DL = 10.0psi SP No.2 No.2 crushi ections. ers) of truss I 50 lb uplift at uplift at joint th the 2015 R502.11.1 a SI/TPI 1.	ids. Dpsf om f. ng to 10.					ROY
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1031 Cat. II; Exp zone and C 9-8-12 to 1 Interior (1) right expose members a Lumber DC	d roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; BC c C; Enclosed; MWFR3 2-C Exterior (2) 6-8-12 4-11-8, Exterior (2) 14 17-11-8 to 30-10-0 zo sed ; end vertical right and forces & MWFRS : DL=1.60 plate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 9-8-12, Interior (1) i-11-8 to 17-11-8, ne; cantilever left and exposed;C-C for for reactions shown; L=1.60)							Wannun		SEAI 03632	ER R L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	A07	Common	1	1	Job Reference (optional)	163012612

Scale = 1:70.6

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:49 ID:eQ67tsxZDzAbTd3kXpj8AkzahAb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-1-12], [5:Edge,0-0-6], [7:0-3-8,0-2-0], [9:0-0-12,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.66 0.43 0.39	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.15 0.01 0.07	(loc) 7-9 7-9 5 7-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 2x6 SP No.2 2x4 SP No.3 *Except Right: 2x4 SP No.3 Structural wood shea 4-0-3 oc purlins, exc Rigid ceiling directly a bracing. 1 Row at midpt 2 (size) 5=0-3-8, 10 Max Horiz 10=-382 (L Max Uplift 5=-259 (LC Max Grav 5=1071 (LC	* 1-2:2x6 SP No.2 * 10-1:2x4 SP No.2 athing directly applie tept end verticals. applied or 10-0-0 oc 2-7, 2-9 0= Mechanical C 13), 10=-238 (LC C 20), 10=1003 (LC	4) 5) d or 6) 7) ; 8) 13) 20)	* This truss I on the botton 3-06-00 tall I chord and a Bearings are capacity of 5 Refer to gird Provide mec bearing platt joint 10 and This truss is International R802.10.2 a DAD CASE(S)	has been designed m chord in all areas by 2-00-00 wide winy other members, a assumed to be: , 665 psi. ler(s) for truss to tru- chanical connection a capable of withst 259 lb uplift at joint designed in accorru Residential Code nd referenced star Standard	I for a liv s where II fit betw with BC Joint 5 S uss conrr (by oth anding 2 t 5. dance w sections idard AN	e load of 20. a rectangle veen the bott DL = 10.0ps SP No.2 crus ections. ers) of truss 38 lb uplift a ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf form if. hing to t t					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum											
TOP CHORD	1-2=-600/204, 2-4=-1 4-5=-1393/294, 5-6=0	483/620, 0/31, 1-10=-1068/23	32										
BOT CHORD WEBS	9-10=-278/369, 7-9=- 2-7=-507/1158, 4-7=- 1-9=-74/771	-21/615, 5-7=-229/1 -615/504, 2-9=-324/	041 222,										11
NOTES												UNU CA	Dille
1) Unbalance this design	ed roof live loads have b n.	been considered for									H	ORTHUR	6.94
	- /- III: VIIII-1 KOMOD (- BI STALLA

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 6-8-12 to 9-8-12, Interior (1) 9-8-12 to 14-11-8, Exterior (2) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 30-10-0 zone; cantilever left and right exposed; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	B01	Hip Girder	1	2	Job Reference (optional)	163012613

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:50 ID:jpSMU3J76uaqCcs0v?gk1szah2M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:54.1

Plate Offsets (X, Y): [3:0-5-12,0-2-0], [6:0-3-12,0-2-0], [14:0-5-12,0-2-8], [19:0-2-12,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.88 0.33	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.25 0.13 0.25	(loc) 18-19 18-19 10 18-19	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 308 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Except 2-20,19-16,15-14,13 2x4 SP No.2 Structural wood shea 5-9-11 oc purlins, ex 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 19	t* -10:2x6 SP No.2 athing directly applie ccept -6 max.): 3-6. applied or 9-9-0 oc 9-20	1) d or 2)	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chord staggered at Web connect All loads are except if note CASE(S) sec provided to d unless otherw	be connected toge ails as follows: onnected as follows: ls connected as follows: ls connected as follows: ls connected as follows: 2x4 - considered equally d as front (F) or ba tion. Ply to ply conn istribute only loads vise indicated.	ther with s: 2x4 - ows: 2) w at 0- - 1 row applied ck (B) f nection: noted a	th 10d 1 row at 0-9- k6 - 2 rows 9-0 oc. at 0-9-0 oc. t o all plies, ace in the LC s have been as (F) or (B),	-0 DAD	12) "NA (0.1 LOAD (1) De Pl; Ur	ILED" in 48"x3.2 CASE(S) ead + Rc ate Incre hiform Lc Vert: 1-3 16-19=- oncentra Vert: 3= 18=-62 37=-77	dicate: 5") toe- of Live ase=1 bads (lt 3=-60, 20, 14- ted Loa -29 (F) (F), 17: (F), 38:	s 3-10d (0.148"x3 nails per NDS gu ndard (balanced): Lum .15 b/ft) 3-6=-60, 6-11=-6 15=-20, 13-28=-2 ads (lb) , 20=-24 (F), 32=-29 =-24 (F), 39=-24	") or 3-12d idlines. ber Increase=1.1! 0, 20-25=-20, 20 29 (F), 21=-24 (F), (F), 33=-29 (F), (F), 40=-62 (F),	5,
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=-127 (L0 Max Uplift 2=-825 (L0 Max Grav 2=1329 (L (lb) - Maximum Com Tension	0=0-3-8 C 6) C 8), 10=-832 (LC 9) .C 15), 10=1341 (LC pression/Maximum	3) (4) (16)	Unbalanced r this design. Wind: ASCE Vasd=103mp Cat. II; Exp C zone; cantilev and right exp	oof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR /er left and right ex osed; Lumber DOL	been c (3-sec CDL=6 S (enve posed ; =1.60 p	considered fo ond gust) .0psf; h=25ft; elope) exteric end vertical olate grip	r or left		41=-62	(F), 42	=-82 (F)		
TOP CHORD BOT CHORD	1-2=0/31, 2-3=-1854 4-5=-4172/2886, 5-6 6-7=-3242/2133, 7-8 8-9=-3170/2073, 9-1 10-11=0/31 2-21=-1051/1578, 20	/1216, 3-4=-4148/29 =-2825/1886, =-4536/2956, 0=-1482/962, 0-21=-144/237,	901, 5) 6) 7)	DOL=1.60 Provide adeq This truss has chord live loa * This truss h on the bottom	uate drainage to pr s been designed fo d nonconcurrent w as been designed f n chord in all areas	event v r a 10.0 ith any for a live where	vater ponding) psf bottom other live loa e load of 20.0 a rectangle	g. ds.)psf				TH CA	ROTIN	
	19-20=-29/158, 4-19 18-19=-2694/4073, 1 16-17=-2519/3996, 1 7-16=-830/1292, 14- 13-14=-169/282, 8-1 12-13=-300/472, 10-	I=-399/412, 17-18=-2694/4073, 15-16=-1111/1713, 15=-1619/2553, 4=-136/231, 12=-729/1170	8) 9)	3-06-00 tall b chord and an All bearings a capacity of 56 Provide mech bearing plate	y 2-00-00 wide will y other members. are assumed to be a 55 psi. manical connection capable of withsta	fit betw SP No.: (by othe nding 8	veen the botto 2 crushing ers) of truss t 25 lb uplift at	om		4		OT FERS	A.	1111
WEBS	8-16=-1713/2701, 3- 19-21=-929/1381, 3- 5-19=-216/229, 5-18 5-17=-1287/925, 6-1 7-17=-1387/902, 8-1 9-12=-1186/769, 9-1 12-14=-575/933	21=-172/223, 19=-1950/2811, =-140/270, 7=-1023/1592, 5=-1905/1201, 4=-957/1496,	10) 11)	joint 2 and 83) This truss is of International R802.10.2 ar) Graphical pui or the orienta bottom chord	2 Ib uplift at joint 10 designed in accorda Residential Code s Id referenced stand lin representation of tion of the purlin all	0. ance wi ections lard AN does no ong the	th the 2015 R502.11.1 a SI/TPI 1. ot depict the s top and/or	nd iize		HILE.			EP. K	
NOTES												2011111	True	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	B02	Нір	1	1	Job Reference (optional)	l63012614

16-11-8

5-0-0

20-4-0

3-4-8

-0-10

	I	6-8-0	4-3-8	1-0-0	5-0
Scale = 1:55.3					
Plate Offsets (X, Y):	[2:Edge,0-0-6], [3:0-4-0,0	0-1-9], [5:0-4-0,0-1-9], [9:	Edge,0-5-14], [15:0-3-0	,0-0-8]	

6-8-0

					-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.12	15-16	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.25	16-17	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.92	Horz(CT)	0.17	9	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.10	15-16	>999	240	Weight: 148 lb	FT = 20%

10-11-8

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2 *Except* 2-18:2x6 SP No.2
WEBS	2x4 SP No.3
WEDGE	Left: 2x4 SP No.3
SLIDER	Right 2x4 SP No.2 1-1-4
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-11-8 oc purlins, except
	2-0-0 oc purlins (3-8-11 max.): 3-5.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing. Except:
	10-0-0 oc bracing: 17-18
REACTIONS	(size) 2=0-3-8, 9=0-3-8
	Max Horiz 2=169 (LC 11)
	Max Uplift 2=-217 (LC 12), 9=-217 (LC 13)
	Max Grav 2=1000 (LC 1), 9=1000 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/31, 2-3=-1317/392, 3-4=-1759/561,
	4-5=-1798/571, 5-6=-1793/497,
	6-7=-3299/868, 7-8=-1933/532,
	8-9=-573/169, 9-10=0/31
BOT CHORD	2-19=-309/1000, 18-19=-29/53, 17-18=0/60,
	4-17=-373/255, 16-17=-241/1463,
	15-16=-748/3051, 14-15=-276/1250,
	6-15=-242/1169, 13-14=-375/1612,
	12-13=-6/60, 7-13=-3/48, 11-12=-54/222,
	9-11=-209/867
WEBS	3-19=-215/134, 5-16=-48/498,
	17-19=-232/1014, 3-17=-269/978,
	5-17=-263/466, 6-16=-1612/519,
	8-11=-555/150, 7-14=-1462/327,
	7-15=-513/2229, 8-13=-158/711,
	11-13=-202/834
NOTES	

this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 6-9-12, Exterior (2) 6-9-12 to 10-9-12, Interior (1) 10-9-12 to 16-9-12, Exterior (2) 16-9-12 to 21-0-11, Interior (1) 21-0-11 to 24-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3)

- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 9 SP No.2 crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 2 and 217 lb uplift at joint 9.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	B03	Нір	1	1	I630 Job Reference (optional)	012615

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:51 ID:SvBY2UZAFLIPJKG8w2akfHzah4d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:65.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.68	Vert(LL)	-0.16	16-17	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	1.00	Vert(CT)	-0.35	16-17	>820	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.22	10	n/a	n/a			
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Wind(LL)	0.16	16-17	>999	240	Weight: 164 lb	FT = 20%	
			10/1		20- 451/122 6	17_ 24/4	52		10) Wor	ning: Ac	Idition		stability brasing	for
	2v4 CD No 2		VVI	- 60 - 4	-20=-431/132, 0- 2-20331/267 7-1	17=-34/4			trus	s sveten	n (not r	ar permanent and	nent design) is	, 101
	2X4 SF NU.2 2x4 SP No 2 *Excord	+* 2 10.2v6 SD No 2		F	3-18=-169/139 18	-20=-13	3/1110		alwa	avs requ	ired	bart of this compe	field design) is	
WERS	2x4 SF N0.2 Excep	1 2-19.2X0 3F 110.2		4	-18=-174/869 9-1	12=-740/	191			ACE(C)	Stor	adard		
OTHERS	2x4 SF No.3 2x4 SPE No.2(flat)			e P	8-15=-1826/319 8	-16=-49	5/2217		LUAD	A3E(3)	Star	luaru		
WEDGE	L off: 2v/ SP No 3			1	2-14=-230/971.9	-14=-189	9/954							
SLIDER	Right 2x4 SP No 2	1-1-4	NC	TES	,									
BRACING	Right 2x+ OF 140.2	114	1)	Unhalanced	roof live loads hav	e heen (considered fo	nr.						
	Structural wood chor	athing directly applied	i) tor	this design		C DCCII C		,,						
TOP CHORD		atring unectly applied	2)	Wind ASCE	7-10: Vult=130mm	h (3-sec	ond aust)							
	2-0-0 oc purlins (5-4)	-2 max): 4-6	_/	Vasd=103mc	h: TCDL=6.0psf:	BCDL=6	.0psf: h=25ft	:						
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc		Cat. II: Exp C	: Enclosed: MWF	RS (env	elope) exteri	, or						
Ber energy	bracing Except			zone and C-0	C Exterior (2) -0-1	1-0 to 2-	1-0, Interior (1)						
	6-0-0 oc bracing: 18-	-19		2-1-0 to 9-3-7	12, Exterior (2) 9-3	3-12 to 1	3-6-11, Interi	or						
WEBS	T-Brace:	2x4 SPF No.2 - 7-17		(1) 13-6-11 to	0 14-3-12, Exterior	r (2) 14-3	3-12 to 18-6-	11,						
	Fasten (2X) T and I	braces to narrow edd	ae	Interior (1) 18	3-6-11 to 24-6-8 zo	one; can	tilever left an	d						
	of web with 10d (0.1	31"x3") nails, 6in	5	right exposed	d; end vertical left	and righ	nt exposed;C	-C						
	o.c.,with 3in minimur	m end distance.		for members	and forces & MW	FRS for	reactions she	own;						
	Brace must cover 9	00% of web length.		Lumber DOL	=1.60 plate grip D	OL=1.60)							
REACTIONS	(size) 2=0-3-8, 1	0=0-3-8	3)	Provide adec	juate drainage to p	orevent v	vater pondin	g.						
	Max Horiz 2=225 (LC	C 11)	4)	This truss ha	s been designed f	or a 10.0) pst bottom							
	Max Uplift 2=-246 (Le	C 12), 10=-246 (LC 1	3)	chord live loa		with any	other live loa	ids.					CR. C.	
	Max Grav 2=1000 (L	.C 1), 10=1000 (LC 1) 5)	on the better	as been designed	nor a liv	e load of 20.	opsi					in the	
FORCES	(lb) - Maximum Com	pression/Maximum		3-06-00 tall b	v 2-00-00 wide wi	ll fit hotu	a reclarigie	om				TH UA	Roite	
	Tension			chord and an	v other members	ii iii betw	leen the bott	om			N	A	ALIN'L	
TOP CHORD	1-2=0/31, 2-3=-1338	/421, 3-4=-1109/380	, 6)	Bearings are	assumed to be: J	oint 2 SF	P No 2 crushi	ina			61	FEST	2N/	2
	4-5=-1127/415, 5-6=	-1137/419,	0)	capacity of 5	65 psi. Joint 10 SF	^o No.2 ci	rushing capa	citv			Ď	12/ /	1. 4	-
	6-7=-1459/414, 7-8=	-3262/828,		of 565 psi.			3.11			-	19	.Q	N	-
	8-9=-2337/592, 9-10	=-583/159, 10-11=0/3	³¹ 7)	Provide mech	nanical connectior	h (by oth	ers) of truss	to			:	SEA	L i	=
BOT CHORD	2-20=-304/1052, 19-	20=-15/51,		bearing plate	capable of withsta	anding 2	46 lb uplift a	t		=		OLA	-	Ξ
	18-19=-128/0, 5-18=	-161/129,		joint 2 and 24	16 lb uplift at joint	10.				=	- 1	0363	22	Ξ
	17-18=-126/1125, 16	0-17=-832/3215,	8)	This truss is	designed in accore	dance w	ith the 2015			-			1	5
	10-10=-190/1104, 7-	10 = 129/1000, 14 = 9/70		International	Residential Code	sections	R502.11.1 a	and		-	-	·	a .!	-
	9.14 - 10 = -397/1910, 10	$2 - \frac{49}{220}$		R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.				- 1	N. SNOW	FHIX	
	10-12=-200/868	3 + 0/220,	9)	Graphical pu	rlin representation	does no	ot depict the	size			1	S. GIN	1. 43	
	10 12-200/000			or the orienta	ition of the purlin a	along the	top and/or				1	A C	IL BEIN	
				pottom chord	l.							1111. 0	in in it	
												201111	True .	

January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	B04	Roof Special	4	1	Job Reference (optional)	163012616

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:52 ID:1dE8lKTf?BVy2kYuHCz98ozah7K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:74

Plate Offsets (X, Y): [10:Edge,0-5-14], [14:0-6-0,Edge], [18:0-0-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	-0.11	16-17	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.24	16-17	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.81	Horz(CT)	0.16	10	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.12	16-17	>999	240	Weight: 168 lb	FT = 20%)
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x4 SP No.3 - 1-1-4 Structural wood she 3-1-5 oc purlins. Rigid ceiling directly bracing, Except: 8-3-10 oc bracing: 1 10-0-0 oc bracing: 1 (size) 1= Mecha Max Horiz 1=-276 (L Max Uplift 1=-229 (L	t* 1-19:2x6 SP No.2 2-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 6-17. 8-19 nnical, 10=0-3-8 C 8) C 12), 10=-263 (LC 1 C 1), 10=989 (LC 1)	2) lo.2 d or 3) 4) (3) 5) 6)	Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-(3-3-8 to 11-9 (1) 14-9-12 tt exposed ; en members an Lumber DOL This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearings are crushing cap Refer to girdt	7-10; Vult=130mp h; TCDL=6.0psf; E ; Enclosed; MWFF C Exterior (2) 0-3-6 -12, Exterior (2) 11 b 24-6-8 zone; can d vertical left and r d forces & MWFRS =1.60 plate grip D0 s been designed for d nonconcurrent w has been designed for a chord in all areas by 2-00-00 wide will y other members. assumed to be; , acity of 565 psi. er(s) for truss to tru	h (3-sec 3CDL=6 RS (env 3 to 3-3- 1-9-12 tt tilever la right exp 5 for rea OL=1.6(or a 10.1 vith any for a liv with any for a liv s where I fit betv Joint 10	white(EL) cond gust) .0.psf; h=25ft; elope) exterice 8, Interior (1) b 14-9-12, Inte eft and right bossed; C-C for citions shown D psf bottom other live loar e load of 20.C SP No.2 hections.	or erior ; ds. opsf		2353	240	weight. 100 hb		,
FURCES	(ID) - Maximum Com Tension	pression/iviaximum	7)	Provide meci	nanical connection	(by oth anding 2	ers) of truss to 29 lb unlift at	0						
TOP CHORD	1-3=-1239/339, 3-4= 4-5=-1296/463, 5-6= 6-7=-1619/375, 7-8= 8-9=-2315/500, 9-10	1216/347, 1051/344, 3038/619,)=-620/148, 10-11=0/	8) 31	joint 1 and 26 This truss is International R802.10.2 ar	53 lb uplift at joint 1 designed in accord Residential Code s nd referenced stan	l0. lance w sections dard AN	ith the 2015 R502.11.1 a	nd					11111	
BOT CHORD	1-20=-311/1080, 19- 4-18=-262/242, 17-1 16-17=-508/2834, 19 7-16=-114/915, 14-1 13-14=-6/67, 8-14=- 10-12=-165/903	-20=-6/30, 18-19=0/1 18=-168/1299, 5-16=-187/1183, 15=-328/1893, 86/538, 12-13=-41/22	05, LC 25,	DAD CASE(S)	Standard					(Marine)		ORTH CA	HOL I	
WEBS	3-20=-219/135, 3-18 18-20=-318/1091, 6- 7-17=-1644/454, 5-1 8-16=-327/1964, 8-1 9-12=-710/150, 9-14 12-14=-180/977, 6-1	3=-206/190, -18=-763/295, 18=-427/1167, 15=-1785/290, I=-154/921, 7=-27/465								1111 March		0363	22 E.R. 0	annun
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for										lanuary	12 202	1
												Janualy	12,2024	т

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	B05	Common	4	1	Job Reference (optional)	163012617

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:52 ID:1dE8lKTf?BVy2kYuHCz98ozah7K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58 Plate Offsets (X, Y): [6:Edge,0-0-14]

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.42 0.32 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.02	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-MS		Wind(LL)	0.04	8-17	>999	240	Weight: 141 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SUDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 Cat. II; Ex zone and 3-3-8 to 1 (1) 14-9-1 exposed ; members Lumber D Lumber D 2) This truss chord live	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Left 2x4 SP No.3 Left 2x4 SP No.2 2 Structural wood sheat 4-8-4 oc purlins. Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=-276 (L0 Max Grav 1=932 (LC (Max Uplift 1=-229 (L0 Max Grav 1=932 (LC (Ib) - Maximum Com Tension 1-3=-1218/348, 3-4= 4-5=-1277/420, 5-6= 1-10=-311/1155, 8-1 6-8=-161/1007 4-8=-245/624, 5-8=-4 3-10=-377/322 ed roof live loads have n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BC pC; Enclosed; MWFRS C-C Exterior (2) 0-3-8 t 1-9-12, Exterior (2) 0-3-8 t 1-9-12, Exterior (2) 11-3 2 to 24-6-8 zone; cantil end vertical left and rig and forces & MWFRS i (OL=1.60 plate grip DO has been designed for load nonconcurrent wit	2-6-0 athing directly applie applied or 10-0-0 oc nical, 6=0-3-8 C 8) C 12), 6=-263 (LC 13 C 12), 6=-263 (LC 13 C 12), 6=-989 (LC 1) pression/Maximum -1243/421, -1304/342, 6-7=0/31 0=-72/768, 413/339, 4-10=-237/3 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-3-8, Interior (1) 9-12 to 14-9-12, Inte lever left and right pht exposed;C-C for for reactions shown; L=1.60 a 10.0 psf bottom th any other live load	4) 5) d or 7) 8) 3) LOA 575, rior	* This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 56 Refer to girde Provide mech bearing plate joint 1 and 26 This truss is of International I R802.10.2 an AD CASE(S)	as been designed in chord in all areas y 2-00-00 wide will y other members, in assumed to be: , J 55 psi. er(s) for truss to trunanical connection capable of withsta 31b uplift at joint 6 designed in accord Residential Code so d referenced stand Standard	for a liv, where fit betw with BC oint 6 S ss conn (by oth nding 2 ance wi ections dard AN	e load of 20. a rectangle veen the bott DL = 10.0ps P No.2 crus vections. ers) of truss 29 lb uplift a th the 2015 R502.11.1 a ISI/TPI 1.	Opsf f. hing to t and				SEA ORTEESS SEA O3633	ROUTING 22 E.R. HILLING	Manuality
												111111111	1111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minum January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	C01	Common Structural Gable	1	1	Job Reference (optional)	163012618

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:53 ID:Q19slwjyRvIYcXEG6SGZWEzaPDo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-8,Edge], [20:0-3-12,0-0-1]

Scale = 1:73

Loading TCLL (roof) TCDL BCLL BCDL	(r 2 1 1	psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.48 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.06 -0.03	(lo 30- 30-	bc) I/de 33 >99 33 >99 2 n	fl L 9 24 9 14 a r	/d 40 30 /a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20 ^o	%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left 2x6 SP No 2-6-0 Structural wood 6-0-0 oc purlin Rigid ceiling d bracing. 1 Row at midp 1 Brace at Jt(s) (size) 2=0 23= 26= 35= Max Horiz 2=- Max Uplift 2=2 24= 24= 26= 35= Max Grav 2=6 22= 24= 24= 26= 35= Max Grav 2=6 22= 24= 24= 26= 35= Max Grav 2=6 22= 24= 24= 26= 35= Max Grav 2=6 22= 24= 24= 26= 35= Max Grav 2=6 22= 24= 24= 24= 24= 24= 24= 24= 24= 24=	lo.2 2- od shea ns. directly a pt 1 s): 8 D-3-8, 2(1 =14-7-0, =	-6-0, Right 2x6 SP N thing directly applie applied or 10-0-0 oc 10-11, 13-26 0=14-7-0, 22=14-7-0 24=14-7-0, 22=14-7-0 24=14-7-0, 25=14 27=14-7-0, 28=0-3 2 10) 12), 20=-50 (LC 11) C 13), 23=-66 (LC 2 C 13), 25=-164 (LC 2 8), 27=-313 (LC 12 2 11) 1), 20=363 (LC 22) C 20), 27=329 (LC 12 C 20), 27=329 (LC 12) C 20), 27=329 (LC 12)	E No.2 V d or 1 20, 7-0, -8, 13), 3 2), 20), 4 20), 5 9), 6 22) 7	NOT CHORD 2 NUTES NUTES NUTES NUnbalanced this design. Nund: ASCE Vasd=103mp Cat. II; Exp C zone and C-1 2-1-0 to 13-1 16-1-8 to 27 end vertical I forces & MW DOL=1.60 pl NTuss design only. For stu see Standard or consult qu All plates are Gable studs NThis truss ha chord live loa * This truss ha	2-30=-321/597, 28-3 27-28=-179/597, 26- 25-26=-288/470, 24- 25-26=-288/470, 22- 20-22=-288/470 10-11=-209/108, 8-5 13-26=-138/73, 14-2 16-24=-182/155, 17- 18-22=-308/286, 4-3 roof live loads have 7-10; Vult=130mph oh; TCDL=6.0psf; B- 2; Enclosed; MWFR C Corner (3) -0-11-0 -8, Corner (3) -0-11-0 -9, Corner (3) -0-11-0 -9, Corner (3) -0-11-0 -9, Corner (3) -0-11-0 -8, Corner (3) -0-11-0 -8, Corner (3) -0-11-0 -9, Corner (3) -0-11-0 -8, Corner (3) -0-11-0 -8, Corner (3) -0-11-0 -9, Corner (3) -0-11-0 -8, Corner (3) -0-11-0 -9, Corner (3) -0, Corner (3) -0, Corner (3) -0,	30=-179 -27=-22 -25=-22 -23=-23=-22 -23=-23=-23=-23=-23=-23=-23=-23=-23=-23=	9/597, 38/470, 38/470, 38/470, 38/470, 38/470, 38/470, 7, 5-6=-33/21 9/185, 42/112, 50 considered for cond gust) .0psf; h=25ft; elope) exterior -0, Exterior (2 i-1-8, Ext	, 2) (2) ed; and ss sle, PI 1. ds. psf	9) 10) 11) 12) 13) LOA 1)	Provide bearing 2, 45 lb i uplift at j joint 22, and 50 ll This trus Internation R802.10 Load cas designer correct fr Graphica of the or bottom c In the LC of the tru D CASE Plate Ir Uniform Vert: 12-2	necha late c alate c plift a 2 313 lb o uplift d o uplift o uplift o uplift s is de o uplift s is de o uplift s is de o uplift a 2 and c 2 and	nica apa a joir , 66 upli at jo sigrevia has revie n re pon o ASE not a so trevie n re s (lt =-20	al connection (by ble of withstand ht 26, 164 lb upift at joint if at joint 27, 50 joint 20. red in accordam lential Code sec grenced standar s/have been mo ew loads to verit nded use of this presentation door of the purlin alon E(S) section, loa- ted as front (F) of ndard (balanced): Lur 15 //ft) 0, 28-35=-20, 1-	r others) of ng 37 lb up ft at joint 2 23, 318 lb lb uplift at ce with the tions R502 d ANSI/TP dified. Build y that they truss. es not depi g the top a ds applied or back (B).	truss to blift at joint 5, 136 lb uplift at joint 20 2015 .11.1 and 1. ding are ct the size nd/or to the face ase=1.15, 39=-60,
TOP CHORD	Tension 1-2=0/35, 2-4= 5-9=-195/48, 5 12-13=-162/12 14-16=-195/71 17-18=-321/15 20-21=0/35, 4 8-11=-633/380	=-449/2 9-10=-1 27, 13-1 1, 16-17 54, 18-2 I-6=-548 0, 11-27	0, 4-5=-229/36, 41/88, 10-12=-168/ 14=-171/106, '=-245/113, 20=-515/326, 3/319, 6-8=-571/331 '=-749/441	130, 8	on the bottor 3-06-00 tall t chord and ar All bearings capacity of 5	n chord in all areas by 2-00-00 wide will by other members, v are assumed to be \$ 65 psi.	where fit betw vith BC SP No.	a rectangle <i>v</i> een the botto DL = 10.0psf. 2 crushing	em			111111 Martin			EER.	

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulcapes with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	C01	Common Structural Gable	1	1	Job Reference (optional)	163012618
Builders FirstSource (Sumter, SC	c), Sumter, SC - 29153,	Run: 8.63 S Nov 1 2	023 Print: 8.	630 S Nov 1	2023 MiTek Industries, Inc. Fri Jan 12 10:56:53	Page: 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:53 ID:Q19slwjyRvIYcXEG6SGZWEzaPDo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Trapezoidal Loads (lb/ft)

Vert: 30=-21 (F=-1)-to-29=-26 (F=-6), 29=-26 (F=-6)-Vert. 30-21 (1 = 1)1053-20 (1 = 0), 23-20 (1 = 0), (F=-7)-to-39=-68 (F=-8), 4=-1 (F)-to-6=-2 (F), 6=-2 (F)-to-8=-5 (F), 8=-5 (F)-to-11=-7 (F), 11=-7 (F)to-40=-8 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	C02	Common	2	1	Job Reference (optional)	163012619

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:53 ID:6N79maJkv2ITVt7wBlwSgczagC8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.9	
Plate Offsets (X, Y):	[2:0-3-4,0-0-1], [10:0-5-4,0-0-1]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.69 0.39	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.25 -0.03 0.11	(loc) 15-18 15-18 2 15-18	l/defl >999 >559 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 159 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10 Cat. II; E: zone and 2-1-0 to 1 16-1-8 to end vertic forces & DOL=1.6	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood sheat 4-3-14 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-387 (Li Max Uplift 2=-291 (Li Max Grav 2=1112 (Li Max Grav 2=1112 (Li Max Grav 2=1112 (Li Max Grav 2=1112, 1) 1-2=0/35, 2-4=-1204 6-8=-1300/536, 8-10 2-15=-454/115, 13-12-13=-517/43, 10-1 6-12=-364/711, 8-12 6-15=-379/650, 4-15 exed roof live loads have in. C-C Exterior (2) -0-11-13-1-8, Exterior (2) -0-11-13-1-8, Exterior (2) 13-1 27-20 zone; cantilever can light expose Guilt and right expose 0 plate grip DOL=1.60 	2-6-0, Right 2x6 SP N athing directly applie applied or 9-7-10 oc 6-12, 6-15 0=0-3-8, 13=0-3-8 C 10) C 12), 10=-288 (LC - C 19), 10=-128 (LC - C 19), 10=-1128 (LC C 18) pression/Maximum /386, 4-6=-1292/543 =-1232/379, 10-11= 15=-51/743, 2=-219/339 =-490/437, =-491/436 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1-8 to 16-1-8, Interior left and right expose d;C-C for members a hown; Lumber	3) 4) 4) 10, 10, 13) 20), 13) 20), 13) 20), 5, 0/35 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings : capacity of 5 Provide mec bearing plate joint 2 and 21 This truss is International R802.10.2 ar DAD CASE(S)	s been designed fo ad nonconcurrent w has been designed in chord in all areas y 2-00-00 wide will by other members, in are assumed to be 65 psi. hanical connection is capable of withsta 38 Ib uplift at joint 1 designed in accord Residential Code s and referenced stand Standard	or a 10.0 ith any for a liv where fit betw with BC SP No. (by oth- nding 2 0. ance wi sections dard AN	D) psf bottom other live load e load of 20.C a rectangle veen the botto DL = 10.0psf 2 crushing ers) of truss t 91 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1.	ds.)psf om		Contraction of the second s		SEA 0363	ROUL 22 ILBERT	A A A A A A A A A A A A A A A A A A A
												11111111	1111	

January 12,2024

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	C03	Common	3	1	Job Reference (optional)	163012620

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:54 ID:UnguwcDribf3S9CHRxmW3xzag9g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

January 12,2024

818 Soundside Road Edenton, NC 27932

Scale =	1:81.9
---------	--------

Plate Offsets (X, Y): [1:0-3-4,0-0-1], [9:0-5-4,0-0-1]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.70 0.39	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.26 -0.03 0.11	(loc) 14-17 14-17 1 14-17	l/defl >999 >555 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x6 SP N 2-6-0 Structural wo 4-3-14 oc pu Rigid ceiling bracing. 1 Row at mid (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1= 12	No.2 2 bood shea irlins. directly : =0-3-8, 9 =-379 (LC =-261 (LC =1059 (L1 =-165 (L1)	-6-0, Right 2x6 SP I applied or 9-7-1 oc 5-11, 5-14 =0-3-8, 12=0-3-8 C 8) C 12), 9=-288 (LC 1: C 19), 9=1129 (LC 2 C 18)	3; 4; No.2 5; ed or 6; 7; 3) 20),	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mecl bearing plate joint 1 and 28 This truss is International R802.10.2 ar DAD CASE(S)	s been designed fu d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members, are assumed to be 55 psi. nanical connection capable of withsta 88 lb uplift at joint 5 designed in accord Residential Code s nd referenced stan Standard	or a 10.0 vith any for a liv s where Il fit betw with BC SP No. SP No. (by oth anding 2 dance w sections dard AN) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 2 crushing ers) of truss i 61 lb uplift ar ith the 2015 R502.11.1 a ISI/TPI 1.	ads. Opsf om f. to t					
FORCES	(lb) - Maximu	um Comp	pression/Maximum											
TOP CHORD	1-3=-1173/39	96, 3-5=-	-1293/553,											
BOT CHORD	5-7=-1302/53	37, 7-9=- 120, 12-1	-1235/380, 9-10=0/3 14=-52/745,	35										11.
WEBS	11-12=-52/74 5-11=-364/71 5-14=-381/65	45, 9-11⊧ 11, 7-11⊧ 56, 3-14⊧	=-219/941 =-490/437, =-491/437									- II	HTH CA	ROUTIN
NOTES 1) Unbalance this design 2) Wind: AS	ed roof live load n. CE 7-10; Vult=1	ds have I 130mph	been considered for (3-second gust)	r							June 1	i)	SEAL	Rill
Vasd=103 Cat. II; Ex zone and 3-0-0 to 1 16-1-8 to end vertic forces & N DOL=1.60	Brnph; TCDL=6. p C; Enclosed; C-C Exterior (2 3-1-8, Exterior (27-2-0 zone; ca al left and right /WFRS for read) plate grip DOL	0psf; BC MWFRS 0 0-0-0 to (2) 13-1- antilever exposed ctions sh L=1.60	DL=6.0psf; h=25ft; § (envelope) exterio o 3-0-0, Interior (1) 8 to 16-1-8, Interior left and right expos- d;C-C for members a hown; Lumber	r (1) ed ; and							THUR.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	C04	Common	1	1	Job Reference (optional)	163012621

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:54 ID:UnguwcDribf3S9CHRxmW3xzag9g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:81.9
---------	--------

Plate Offsets (X, Y): [1:0-3-4,0-0-1], [9:0-5-4,0-0-1]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.56	Vert(LL)	-0.18	11-13	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.27	11-13	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.39	Horz(CT)	0.03	9	n/a	n/a			
BCDI	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0 11	13-16	>999	240	Weight [.] 157 lb	FT = 20%	
2022	1010	0000			indan <i>i</i> , ino		11110(22)			- 000	2.0	rreigna for io		
			4)	* This truss h	has been designed	d for a liv	e load of 20.	.0psf						
	D 2X4 SP No.2			3-06-00 tall h	v 2-00-00 wide wi	ill fit hetw	veen the hot	tom						
	D 2X4 SP No.2			chord and an	v other members	with BC	DI = 10.000	sf						
	2X4 3F INU.3	2-6-0 Right 2v6 SP	No 2 5)	All bearings a	are assumed to be	SP No	2 crushing							
SLIDER	2-6-0	2-0-0, Right 2x0 01	110.2 0)	capacity of 5	65 psi.		2 or doning							
BRACING			6)	Provide mecl	hanical connectior	n (by oth	ers) of truss	to						
TOP CHOR	D Structural wood shea	athing directly applie	ed or	bearing plate	capable of withst	anding 2 o	40 lb uplift a	at						
	4-2-12 oc purlins.		7)	This truss is	designed in accord	dance wi	ith the 2015							
BOT CHOR	D Rigid ceiling directly	applied or 9-11-7 o	с ,	International	Residential Code	sections	R502 11 1	and						
	bracing.	5 44 5 40		R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.	ana						
WEBS	1 Row at midpt	5-11, 5-13	10		Standard									
REACTION	S (size) 1=0-3-8, 9	9=0-3-8	L.		otandara									
	Max Horiz 1=-379 (L	C 10)												
	Max Uplift 1=-240 (L	C 12), 9=-271 (LC 1	13)											
	Max Grav 1=1145 (L	_C 19), 9=1200 (LC	20)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
	D 1-3=-1352/358 3-5=	-1338/517												
	5-7=-1338/509, 7-9=	-1351/352.9-10=0/	35											
BOT CHOR	D 1-13=-436/1223. 11-	-13=-35/815.												
	9-11=-203/1024	,											11.	
WEBS	5-11=-352/763, 7-11	=-486/440,										N' I CA	DIL	
	5-13=-353/768, 3-13	8=-485/441									1	THUA	ROIL	
NOTES											3	A SEGO	Do In	1
1) Unbalar	nced roof live loads have	been considered fo	r								22	COT LOU	Mi a	1
this desi	ign.									4			1.	-/
2) Wind: A	SCE 7-10; Vult=130mph	(3-second gust)									6 8	. ~		2
Vasd=1	03mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;	,									SEA		-
Cat. II; E	Exp C; Enclosed; MWFR	S (envelope) exterio	or							=		0000		-
zone an	d C-C Exterior (2) 0-0-0 t	to 3-0-0, Interior (1)								1		0363.	22 :	-
3-0-0 to	13-1-8, Exterior (2) 13-1	-8 to 16-1-8, Interio	r (1)							-			्र	2
16-1-8 t	o 21-2-0 zone; cantilever	ieπ and right expos	sed;								1	·	0	2
forces of	MWERS for reactions of		anu								20	NOINE	En	5
	60 plate grip DOI = 1 60	nown; Lumber									1	N/	· Ch	8
2) This true	ou plate grip DOL=1.60	r a 10.0 pcf bottom									1	A G	IL BY	
a institus	sa uga deen desidded lof	a iu.u usi uullom												

DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

G minim

January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	C05	Common Girder	1	3	Job Reference (optional)	163012622

Scale = 1:77.7

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:55 ID:CnONIHAnKZU_p8AH0K9oENzag8S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y):	[1:0-4-8,0-4-0], [4:0-4-0,0-2-8],	[7:0-4-8,0-4-0], [8:0-4-4,0-1-8],	, [9:0-5-0,0-4-4], [11:0-4-4,0-1-8]

Loa TCL TCD BCL BCC	ding L (roof) L L		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.99 0.53	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.22 0.05 0.11	(loc) 9-11 9-11 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 514 lb	GRIP 244/190 FT = 20%
LUM TOP BOT TOP BOT REA FOR TOP BOT WEE	CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD	2x4 SP N 2x6 SP N 2x4 SP N Left: 2x4 S Right: 2x4 Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-833 4-6=-574t 1-11=-156 8-9=-1463 4-9=-2618	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	athing directly applied applied or 10-0-0 oc 7=0-3-8 C 23) LC 8), 7=-1976 (LC 9 .C 15), 7=7813 (LC 1 pression/Maximum =-5749/1535, 1=-1502/6535, 1=-1463/6214 =-2777/779, -740/3032,	; dor ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	 a) Unbalanced this design. b) Wind: ASCE Vasd=103mg Cat. II; Exp C zone; cantile and right exp DOL=1.60 c) This truss ha chord live loa c) This truss rhon the bottor 3-06-00 tall to chord and ar c) All bearings a capacity of 5 c) Provide med bearing plate joint 1 and 19 c) This truss is International R802.10.2 an c) Use Simpsor 11-10dx1 1/2 	roof live loads hav 7-10; Vult=130m ph; TCDL=6.0psf; C; Enclosed; MWF vor left and right e toosed; Lumber DC s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members are assumed to be 65 psi. hanical connection a capable of withs 376 lb uplift at join designed in accor Residential Code an Strong-Tie HTU: 1 Truss) or equiva	ve been (ph (3-sec BCDL=6 FRS (env exposed DL=1.60 for a 10.1 for a 10.1 for a 10.1 for a 10.1 swhere ill fit betv , with any e SP No. n (by oth tanding 1 to 7. dance w sections ndard AN 26 (20-10 lent space	considered for cond gust) 0.0psf; h=25ft elope) exterior ; end vertical plate grip 0 psf bottom other live loa e load of 20.0 a rectangle veen the botts 2 crushing ers) of truss t 504 lb uplift a ith the 2015 a R502.11.1 a USI/TPI 1. 6d Girder, yed at 2-0-0 o	r or left ds. Dpsf om t o at					
NOT 1)	TES 3-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn All loads a except if n CASE(S) s provided t unless oth	2-11=-492 s to be conne- ') nails as fo s connecter ords conner at 0-7-0 oc. ected as fol are consider oted as fror section. Ply o distribute ierwise indic	2/3201 ected toge llows: as follows cted as foll- lows: 2x4 - ed equally it (F) or ba- to ply conr only loads ated.	ther with 10d 5: 2x4 - 1 row at 0-9-0 cows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA lections have been noted as (F) or (B),	L) AD	max. starting connect truss 1) Fill all nail ho CAD CASE(S)) Dead + Roo Plate Increa Uniform Lo Vert: 12- Concentrate Vert: 9=- (B), 21=- (B), 25=- (B), 30=-	at 1-10-14 from t (s(es) to back face lies where hanger Standard of Live (balanced) ase=1.15 ads (lb/ft) 15=-20, 1-4=-60, ed Loads (lb) 912 (B), 17=-919 802 (B), 22=-802 912 (B), 26=-912 912 (B), 31=-912	the left er of bottor is in cor : Lumber 4-7=-60 (B), 18=- (B), 23=- (B), 27=- (B)	nd to 25-11-6 n chord. ttact with lum Increase=1. Increase=1. 767 (B), 19=- 802 (B), 24= 912 (B), 28=	to ber. 15, -835 -906 -912		Mannan .		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	CJ1	Jack-Open Girder	4	1	Job Reference (optional)	163012623

3-0-8

3-0-8

-1-5-10

1-5-10

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:55 ID:Vx1WvUW6JWz_UunHqp7F3YzahDj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x8 🛛

3-0-8

Scale = 1:25.6

Plate Offsets (X, Y): [2:0-3-0,0-0-3]

	() , E ,-													
Loading	(p	sf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0.0	Plate Grip DOL	1.15		тс	0.17	Vert(LL)	0.01	5-8	>999	240	MT20	244/190
TCDL	10	0.0	Lumber DOL	1.15		BC	0.09	Vert(CT)	0.01	5-8	>999	180		
BCLL	().0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10	0.0	Code	IRC2015	/TPI2014	Matrix-MP							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No Structural wood 3-0-8 oc purlins Rigid ceiling di bracing. (size) 2=0 Max Horiz 2=13 Max Uplift 2=-9 (LC Max Grav 2=1 (LC	1.2 2 d shea s. rectly 4-11, hanica 37 (LC 33 (LC 12) 40 (LC 3)	2-6-0 athing directly applied applied or 10-0-0 oc 4= Mechanical, 5= al 5 (1), 4=-89 (LC 12), 3 2 (1), 4=-54 (LC 4), 5=2	6) 7) d or 8) LO 1) 5=-6 34	Provide mect bearing plate 4, 93 lb uplift This truss is International R802.10.2 ar In the LOAD of the truss a AD CASE(5) Dead + Roce Plate Incree Uniform Loa Vert: 1-2: Trapezoidal Vert: 2=0 (F=26, B:	hanical connection capable of withsta at joint 2 and 6 lb designed in accorc Residential Code s do referenced stan CASE(S) section, re noted as front (I Standard of Live (balanced): isse=1.15 ads (lb/ft) =-60 Loads (lb/ft) 0 (F=30, B=30)-to-7 =26)-to-3=-30 (F=1	(by oth anding 8 uplift at lance w sections dard AN loads ap F) or ba Lumber /=-9 (F=	ers) of truss t 9 lb uplift at j joint 5. rtb the 2015 R502.11.1 a SI/TPI 1. oplied to the f ck (B). Increase=1. 26, B=26), 7=), 3=-30 (F=	o oint and face 15, =-9 15,					
FORCES	(lb) - Maximum	Com	pression/Maximum		B=15)-to-	-4=-46 (F=7, B=7),	6=0 (F=	=10, B=10)-	-2					
	Tension				B=2)	=9, D=9), 0=-3 (F	=9, D=9)-10-5=-15 (F	=2,					
TOP CHORD	1-2=0/41, 2-4=	-132/	128		B=2)									
BOT CHORD	2-5=-83/50													
NOTES			(C)											
 Wind: ASS Vasd=103 Cat. II; Ex zone; can and right (DOL=1.60 This truss chord live * This trus on the bol 3-06-00 ta chord and Bearings capacity c Refer to g 	CE /-10; Vult=130 Smph; TCDL=6.0p p. C; Enclosed; M tilever left and rig exposed; Lumber) has been design load nonconcurre s has been desig ttom chord in all a lb y2-00-00 wid il by 2-00-00 wid il any other memb are assumed to b of 565 psi. jirder(s) for truss	on property of the second seco	(3-second gust) (2-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior bosed ; end vertical le =1.60 plate grip a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle fit between the bottor bint 2 SP No.2 crushin ss connections.	oft s. ssf ng							Caroline.		SEA 0363	RO 1222 E.F.R.H.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I

TRENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	CJ2	Diagonal Hip Girder	2	1	Job Reference (optional)	163012624

-1-3-9

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:56 ID:0vMngbB?I8NUJPtyIGua3pzaQHd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-1-7

4-1-7

Page: 1

4x6 🛛

Scale	= 1.	24.3	

Plate Offsets (X, Y): [2:0-3-8,Edge]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	0.02	5-8	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	5-8	>999	240			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 18 lb	FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex zone; cant and right e DOL=1.60 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Bearings a	10.0 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 Structural wood sh 4-1-7 oc purlins. Rigid ceiling directl bracing. (size) 2=0-3-14 Mechani Max Horiz 2=50 (LC Max Uplift 2=-178 ((LC 6) Max Grav 2=146 (I (LC 3) (Ib) - Maximum Con Tension 1-2=0/14, 2-4=-122 2-5=-102/18 CE 7-10; Vult=130mpf p C; Enclosed; MWFI litever left and right e exposed; porch left ar p late grip DOL=1.60 has been designed to an oncourrent w s has been designed to m chord in all areas II by 2-00-00 wide wil any other members. are assumed to be:.	2-6-0 eathing directly applied y applied or 10-0-0 or 4, 4= Mechanical, 5= cal C 6) LC 6), 4=-64 (LC 6), 5 LC 1), 4=69 (LC 1), 5= mpression/Maximum 2/185 h (3-second gust) BCDL=6.0psf; h=25ft; RS (envelope) exterio ad right exposed; Lum or a 10.0 psf bottom vith any other live load for a live load of 20.0 s where a rectangle I fit between the botto Joint 2 SP No.2 crush	IRC2015/TPI2014 6) Provide r bearing p 4, 178 lb 7) This trus Internatio 80 2.10. 6) Provide r bearing p 4, 178 lb 7) This trus Internatio 80 2.10. 8) In the LC of the tru LOAD CASE 1) Dead + Plate In Uniform 5=-32 Vert: 7=-19 (F=1: B=10 (F=0, r left bber ds. psf om	Matrix-MP mechanical connectiv Jate capable of withs uplift at joint 2 and 3 s is designed in acco mal Residential Cod 2 and referenced sta AD CASE(S) section ss are noted as from (S) Standard Roof Live (balanced crease=1.15 Loads (lb/ft) 1-22-60 bidal Loads (lb/ft) 2=0 (F=30, B=30)-tc 3, B=13)-to-4=-62 (F) -1c-8=-6 (F=7, B=7) B=0)	on (by oth standing 6 2 lb uplift ordance w e sections andard AN n, loads a t (F) or ba b; Lumber -75-19 (F e-1, B=-1 , 8=-6 (F=	ers) of truss ³⁴ Ib uplift at at joint 5. ith the 2015 is R502.11.1 a JSI/TPI 1. pplied to the ck (B). Increase=1. ³ , B=13), 3=-), 6=0 (F=10, ⁷ , B=7)-to-5: ³	to joint and face .15, 35 , =-21		Manutan.		Weight: 18 lb WHICH CA OFESS SEA 0363	FT = 20%	annaw Marina
capacity o	f 565 psi.		-							15	GIN	EF. A.	5
Refer to gi	irder(s) for truss to tr	uss connections.								1	CAC	II BEIN	
											111.6	in in it.	
												12 2024	
											January	12,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

g) B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	D01	Common Supported Gable	1	1	Job Reference (optional)	163012625

Scale = 1:42.3

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:56 ID:EIB4YDR4I02SItzDT50fJpzag5X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-1-8,0-3-1], [8:0-1-8,0-3-1]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 81 lb	FT = 20%

BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS		Weight: 81 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 No.2 2-5-15 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=11-11- 13=11-11 15=11-11 Max Horiz 2=192 (LC Max Uplift 2=-59 (LC 10=-170 (13=-131 (15=-59 (L 10=197 (L 10=197 (L 12=158 (L 14=205 (L)	2-5-15, Right 2x6 SP athing directly applied applied or 10-0-0 oc 3, 8=11-11-8, 10=11- -8, 12=11-11-8, -8, 14=11-11-8, -8, 14=11-11-8, -8, 19=11-11-8, -8, 19=11-11-8, -2, 19=11-11-11-11-11-11-11-11-11-11-11-11-11-	1) 2) d or 11-8, 3) () 4) 5) 13), 6) 12), 7) 0), 8)	Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp (zone and C- 1-11-12 to 5 Exterior (2) & right expose for members for members for members for members for members for members for set standar or consult qu Gable studs This truss he chord live loù * This truss he chord live loù 3-06-00 tall 1 chord and an All bearings	roof live loads have been of 7-10; Vult=130mph (3-sec ph; TCDL=6.0psf; BCDL=6 C; Enclosed; MWFRS (env C Corner (3) -0-11-0 to 1-1 -11-12, Corner (3) 5-11-12 3-11-12 to 12-10-8 zone; cc d; end vertical left and right and forces & MWFRS for =-1.60 plate grip DOL=1.60 ned for wind loads in the pl uds exposed to wind (norm d Industry Gable End Deta alified building designer as res continuous bottom chor spaced at 2-0-0 oc. as been designed for a 10.0 ad nonconcurrent with any m chord in all areas where by 2-00-00 wide will fit betw ny other members. are assumed to be SP No. 165 psi.	onsidered for ond gust) Opsf; h=25ft; slope) exterior 1-12, Exterior (2) to 8-11-12, intilever left and t exposed;C-C reactions shown; ane of the truss al to the face), Is as applicable, per ANSI/TPI 1. d bearing. P psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom 2 crushing		N
FORCES	(Ib) - Maximum Com	pression/Maximum	9)	Provide med bearing plate	hanical connection (by othe capable of withstanding 5	∍rs) of truss to 9 lb uplift at joint	C S S S S S S S S S S S S S S S S S S S	Piver
TOP CHORD	1-2=0/35, 2-3=-75/3 4-5=-152/165, 5-6=- 7-8=-70/31, 8-9=0/3	8, 3-4=-118/95, 152/165, 6-7=-74/52, 5	40	2, 15 lb uplif uplift at joint joint 10, 59 l	t at joint 8, 131 lb uplift at jo 14, 130 lb uplift at joint 11, b uplift at joint 2 and 15 lb u designed in second 5 lb u	int 13, 177 lb 170 lb uplift at Iplift at joint 8.	E SEA	
BOT CHORD	2-14=-97/156, 13-14 12-13=-97/156, 11-1 10-11=-97/156, 8-10	- =-97/156, 2=-97/156,)=-97/156	10)	International R802.10.2 a	Residential Code sections nd referenced standard AN	R502.11.1 and SI/TPI 1.	0363	22
WEBS	5-12=-124/60, 4-13= 3-14=-209/185, 6-11 7-10=-212/178	189/160, 189/158,	LO	AD CASE(S)	Standard		THE RANGIN	EERCALI
NOTES							A. C	HLBL.

January 12,2024

Engineering by REENCE A Mitek Athilate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E01	Monopitch	6	1	Job Reference (optional)	163012626

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:56 ID:NK6pagqpaEjbKy9N6htnOizaQI4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

8-11-8

Scale = 1:28.7	
Plate Offsets (X, Y):	[2:0-4-6,Ed

Loading (CLL) (col) (csl) 200 Spacing Plate Gip DOL 1.15 2-0-0 1.15 CSI BC 0.6 DEFL Vert(CL) 0.02 6-9 3-9 2-44 PLATES CRIP C4/190 CLL CDL 0.00 Immer DOL Rep Stress Intr. VES VES 0.16 Vert(CL) 0.02 2 n/v	Plate Offsets (2	X, Y): [2:0-4-6,Edge]													
 LUMER IOP CHORD 24 SP No.2 S07 CHORD 24 SP No.2 S08 CHORD 24 SP No.2 S08 CHORD 24 SP No.2 S07 CHORD 24 SP No.2 S07 CHORD 54 SP No.2 S07 CHORD 55 SP No.2 S07 CHORD 54 SP NO.2 S07 CH	Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MS	0.62 0.56 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.28 -0.23 -0.02	(loc) 6-9 6-9 2	l/defl >372 >465 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%	
January 12,2024	LUMBER TOP CHORD 30T	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.2 *- 2 Structural wood she 5-9-13 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=131 (LC Max Uplift 2=-269 (L Max Grav 2=410 (LC (lb) - Maximum Com Tension 1-2=0/13, 2-4=-836/ 5-6=-85/77 2-6=-559/497 4-6=-502/532 CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bir p C; Enclosed; MWFR C-C Exterior (2) -0-11- 9-12 zone; cantilever I al left exposed; porch I bers and forces & MW imber DOL=1.60 plate has been designed for load nonconcurrent wi s has	t* 6-4:2x4 SP No.3 2-6-0 athing directly applied xcept end verticals. applied or 6-3-8 oc 6= Mechanical C 8) C 8), 6=-250 (LC 8) C 1), 6=350 (LC 1) pression/Maximum 1253, 4-5=-67/56, (3-second gust) C CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1) left and right exposed VFRS for reactions grip DOL=1.60 r a 10.0 psf bottom th any other live load for a live load of 20.0p where a rectangle fit between the bottor int 2 SP No.2 crushin ss connections.	6) 7) d or LO d or LO 1; 1; 4;C- ls. psf m g	Provide mecl bearing plate joint 2 and 25 This truss is International R802.10.2 ar AD CASE(S)	Matrix-MS hanical connection capable of withsta 50 lb uplift at joint (designed in accord Residential Code nd referenced stan Standard	a (by oth anding 2 5. dance w sections dard AN	Lers) of truss to 69 lb uplift at ith the 2015 R502.11.1 at ISI/TPI 1.	nd				Veright: 42 lb NH CA OR FESS SEA 0363		Mannung
													January	12,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E02	Half Hip Girder	1	1	Job Reference (optional)	163012627

Page: 1

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS Left 2x4 SP No.2 -- 2-6-0 SI IDER BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. BOT CHORD Rigid ceiling directly applied or 7-6-14 oc bracing. **REACTIONS** (size) 2=0-3-8, 6= Mechanical Max Horiz 2=55 (LC 23) Max Uplift 2=-336 (LC 4), 6=-302 (LC 4) Max Grav 2=405 (LC 1), 6=377 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-4=-655/592, 4-5=-115/88, 5-6=-175/1282-7=-578/641, 6-7=-589/653 BOT CHORD WEBS 4-7=-86/173, 4-6=-553/515

NOTES

Scale = 1:25.8

Loading

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

TCLL (roof)

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- bearing plate capable of withstanding 302 lb uplift at joint 6 and 336 lb uplift at joint 2.
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 71 lb down and 114 lb up at 3-0-0, and 34 lb down and 38 lb up at 5-0-12, and 34 lb down and 40 lb up at 7-0-12 on top chord, and 67 lb down and 104 lb up at 3-0-0, and 18 lb down and 40 lb up at 5-0-12, and 20 lb down and 39 lb up at 7-0-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-4=-60, 4-5=-60, 6-8=-20
 - Concentrated Loads (lb)
 - Vert: 4=-11 (F), 7=-23 (F), 12=-11 (F), 13=-19 (F), 14=-18 (F), 15=-20 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E03	Half Hip	1	1	Job Reference (optional)	163012628

5-0-0

5-0-0

-0-11-0

0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:57 ID:Vj4jHpRcVnMsAEFIrPEkIXzaQG0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7<u>-11-8</u>

2-11-8

0-8-0

Scale = 1:25.9

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.26	Vert(LL)	0.04	7-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.21	Vert(CT)	-0.03	7-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.21	Horz(CT)	-0.01	2	n/a	n/a		
BCDL	10.0	Code	IRC20	5/TPI2014	Matrix-MS							Weight: 37 lb	FT = 20%
			5) * This truss h	as been designed	l for a liv	e load of 20.	0psf					
	2X4 SP N0.2			3-06-00 tall h	v 2-00-00 wide wi	ill fit hetu	a rectangle	om					
WERS	2X4 SF NU.2 2x4 SP No 2 *Excord	+* 5 6·2v4 SD No 2		chord and an	v other members								
SLIDER	Left 2v4 SP No 2 2	1 3-0.274 SF NO.2	6) Bearings are	assumed to be: Je	oint 2 SF	P No.2 crush	ina					
BRACING				capacity of 5	65 psi.			5					
	Structural wood she	athing directly applie	dor 7) Refer to girde	er(s) for truss to tru	uss conr	nections.						
TOP CHORD	6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0)	cept end verticals, ar	nd 8) Provide mech bearing plate	nanical connection capable of withsta	n (by oth anding 2	ers) of truss 255 lb uplift a	to t					
BOT CHORD	Rigid ceiling directly bracing.	applied or 7-0-14 oc	; 9	joint 2 and 2 ²) This truss is	1 lb uplift at joint (designed in accord	6. dance w	ith the 2015						
REACTIONS	(size) 2=0-3-8, 6 Max Horiz 2=75 (LC Max Uplift 2=-255 (LC Max Grav 2=371 (LC	6= Mechanical 8) C 8), 6=-211 (LC 8) C 1), 6=309 (LC 1)	1	International R802.10.2 ar 0) Graphical pu or the orienta	Residential Code nd referenced stan rlin representation ition of the purlin a	sections ndard AN n does no along the	R502.11.1 a ISI/TPI 1. ot depict the e top and/or	and size					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	1-2=0/13, 2-4=-427/6 5-6=-86/81	643, 4-5=-21/26,											
BOT CHORD	2-7=-651/417, 6-7=-6	627/407											
WEBS	4-7=-256/165, 4-6=-4	448/693											
NOTES													U11.
1) Unbalance this design	ed roof live loads have n.	been considered for									15	TH CA	Roilin
2) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)									5	O'n ince	A. Aller
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;								6	i A	115 1	
Cat. II; Exp	p C; Enclosed; MWFR	S (envelope) exterior	r							-		10 -0	ver /
zone and	C-C Exterior (2) -0-11-0	0 to 2-1-0, Interior (1)							-			
2-1-0 to 5-	-0-0, Exterior (2) 5-0-0	to 7-9-12 zone;								=	:	SEA	L : =
cantilever	left and right exposed	; end vertical left								=	:	0262	22 : =
exposed;	porch left and right exp	osea; U-U for membe	ers							1		0303	44 <u>;</u> ;
	nlate arin DOI -1 60	ns snown; Lumber								-	. · · · · ·	•	1 3
 BOL=1.00 Provide ac 	dequate drainage to pre	event water ponding								S	1 .	· En	Airs
 This truss 	has been designed for	a 10.0 psf bottom									25	GINI	Et. als
chord live	load nonconcurrent wit	th any other live load	ds.								11	C	ILBE IN

- zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 5-0-0, Exterior (2) 5-0-0 to 7-9-12 zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E04	Half Hip	1	1	Job Reference (optional)	163012629

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:57 ID:13aBC5qJjwWBdJG5GqKTaUzaQFV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.6

Plate Offsets (X, Y): [2:0-4-6,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	-0.05	7-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.45	Vert(CT)	-0.10	7-10	>898	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.02	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.07	7-10	>999	240	Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SUDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.2	t* 5-6:2x4 SP No.2	5)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are	has been designed in chord in all area by 2-00-00 wide with any other members. assumed to be: J	d for a liv is where ill fit betw loint 2 SF	e load of 20. a rectangle veen the bott	0psf om ina					
BRACING TOP CHORD	 D Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-5. D Rigid ceiling directly applied or 10-0-0 oc broging D Rigid ceiling directly applied or 10-0-0 oc D Ri												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; 9)	This truss is	designed in accor	dance w	th the 2015						
REACTIONS	(size) 2=0-3-8, 6 Max Horiz 2=107 (LC Max Uplift 2=-159 (LC Max Grav 2=371 (LC	6= Mechanical C 11) C 8), 6=-113 (LC 8) C 1), 6=309 (LC 1)	10	R802.10.2 ar Oraphical pu or the orienta	residential Code and referenced star rlin representation ation of the purlin a	ndard AN n does no along the	ISI/TPI 1. ISI/TPI 1. Ist depict the stop and/or	size					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard								
TOP CHORD	1-2=0/13, 2-4=-348/ ⁻ 5-6=-135/147	114, 4-5=-43/49,											
BOT CHORD	2-7=-359/319, 6-7=-	182/249											
WEBS	4-7=-40/353, 4-6=-6	67/411											
NOTES													UTT
 Unbalance this design Wind: ASC Vasd=103 Cat II: Ex 	ed roof live loads have n. CE 7-10; Vult=130mph Smph; TCDL=6.0psf; B(p.C: Enclosed: MWER;	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior	r							4	ALL I	OR CEESS	ROUNT
zone and 2-1-0 to 7- cantilever right expo for reactio DOL=1.60					THUNK.		SEA 0363	L 22					
 Provide ad This truss chord live 	dequate drainage to pro has been designed for load nonconcurrent wi	event water ponding. r a 10.0 psf bottom th any other live load	Is.									A C NGIN	EERALIUN

- zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-0-0, Exterior (2) 7-0-0 to 7-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 11111111 January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E05	Monopitch	8	1	Job Reference (optional)	163012630

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:57

7-11-8

3x6 II

ale = 1:27.6	

Sc

Plate Offsets (X, Y):	[2:0-4-6,Edge],	[5:Edge,0-3-8]
-----------------------	-----------------	----------------

2-7-14

Plate Offsets	(X, Y): [2:0-4-6,Edge],	[5:Edge,0-3-8]										
Loading TCLL (roof)	(psf) 20.0 10.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15	CSI TC BC	0.72	DEFL Vert(LL) Vert(CT)	in 0.31 -0.24	(loc) 5-8 5-8	l/defl >299 >395	L/d 240 240	PLATES MT20	GRIP 244/190
BCLI	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.04	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS	0.00	11012(01)	0.01	_			Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	2-6-0 athing directly applie cept end verticals. applied or 9-8-12 or 5= Mechanical C 8) C 8), 5=-222 (LC 8)	6) Provide r bearing r joint 5 ar 7) This trus Internatio R802.10 ed or LOAD CASE	nechanical connection late capable of withs d 245 lb uplift at joint s is designed in acco nal Residential Code 2 and referenced sta (S) Standard	n (by oth standing 2 t 2. rdance w a sections indard AN	ers) of truss 1 :22 lb uplift at ith the 2015 \$ R502.11.1 a USI/TPI 1.	to t and					
	Max Grav 2=371 (L0	C 1), 5=309 (LC 1)										
FORCES	(Ib) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD	1-2=0/13, 2-4=-490/ 2-5=-311/308	744, 4-5=-197/199										
NOTES												
 Wind: ASt Vasd=103 Cat. II; Ex zone and 2-1-0 to 7 end vertic C for men shown; Lu This truss chord live * This trus on the bol 3-06-00 ta chord and Bearings capacity of 	CE 7-10; Vult=130mph Smph; TCDL=6.0psf; Bi p C; Enclosed; MWFR C-C Exterior (2) -0-11- 9-12 zone; cantilever I al left exposed; porch I hbers and forces & MW imber DOL=1.60 plate has been designed fo load nonconcurrent wi is has been designed fi tom chord in all areas all by 2-00-00 wide will any other members. are assumed to be: Joi f 565 psi	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio 0 to 2-1-0, Interior (1 left and right expose left and right expose /FRS for reactions grip DOL=1.60 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto int 2 SP No.2 crushin	or 1) d; d;C- ds.)psf om						No on the second		SEA 0363	ROLINE L L 22 EER
5) Refer to g	irder(s) for truss to trus	ss connections.								14	C	BEIN

- 3) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 crushing 4) capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GILB The Green January 12,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E06	Monopitch	6	1	Job Reference (optional)	l63012631

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:58 ID: tr 50 t083 I 67 sav XrbWG oy GzaQDp-RfC?Ps B70 Hq 3NSgPqnL8 w 3 u I TXbGKWrCD oi 7J4z JC? fight for the set of the

Page: 1

3x6 =

Scale = 1:29.2

6)

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MS	0.42 0.26 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.05 -0.01	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-1-8	7) 8) ^{d or} LOA	Provide mech bearing plate joint 2 and 19 This truss is o International R802.10.2 ar AD CASE(S)	nanical connection capable of withsta 0 lb uplift at joint 4 designed in accord Residential Code s d referenced stan Standard	(by othe anding 2 4. dance wi sections dard AN	ers) of truss t 19 lb uplift at th the 2015 R502.11.1 a SI/TPI 1.	ind						
FORCES	Max Horiz 2=104 (LC Max Uplift 2=-219 (L Max Grav 2=328 (LC (lb) - Maximum Com Tension	C 8) C 8), 4=-190 (LC 8) C 1), 4=265 (LC 1) pression/Maximum												
TOP CHORD BOT CHORD	1-2=0/13, 2-3=-181/ 2-4=-165/120	168, 3-4=-153/150												
 NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp zone and 0 2-1-0 to 6-end vertica C for mem shown; Lu 2) This truss chord live chord live 3) * This truss on the bott 3-06-00 ta chord and 4) All bearing at using ANS designer s 6) Provide me bearing place 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi o C; Enclosed; MWFR C-C Exterior (2) -0-11- 8-12 zone; cantilever I al left exposed; porch I bers and forces & MW mber DOL=1.60 plate has been designed foi load nonconcurrent wi s has been designed foi load nonconcurrent wi s has been designed foi load nonconcurrent wi s has been designed foi load nonconcurrent wi s as been designed foi load nonconcurrent wi s as a subsect designed foi foi all areas II by 2-00-00 wide will any other members. Is are assumed to be S foi 565 psi. joint(s) 4 considers pa for the subsect of the subsect hould verify capacity of echanical connection (ate at joint(s) 4.	(3-second gust) (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1 left and right exposed /FRS for reactions grip DOL=1.60 r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor SP No.2 crushing arallel to grain value formula. Building of bearing surface. (by others) of truss to) 1; ; c- ss. osf m							V. HIIIIII		SEAL 03632	ER. R.	A SAMULTING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E07	Half Hip	1	1	Job Reference (optional)	163012632

5-0-0

5-0-0

-0-11-0

0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:58 ID:xGZY9nkolAlvzRnGzJelSbzaQD2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

6-11-8

1-11-8

0-8-0

Scale = 1:25.9

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

-			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.26	Vert(LL)	0.04	7-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.21	Vert(CT)	-0.03	7-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.18	Horz(CT)	-0.01	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 *Excep Left 2x4 SP No.2 - 2 Structural wood shea 6-0-0 oc purlins, exa 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-0, € Max Horiz 2=75 (LC Max Uplift 2=-228 (L Max Grav 2=331 (LC	t* 5-6:2x4 SP No.2 2-6-0 athing directly applied cept end verticals, an -0 max.): 4-5. applied or 8-1-5 oc B= Mechanical 8) C 8), 6=-185 (LC 8) C 1), 6=269 (LC 1)	5) 6) d or 7) d 8) 9)	* This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girdt Provide mecl bearing plate joint 2 and 18 This truss is International R802.10.2 ar)) Graphical pu or the orienta	as been designed in chord in all areas y 2-00-00 wide will y other members. assumed to be: Jo 65 psi. er(s) for truss to tru nanical connection capable of withsta 85 lb uplift at joint 6 designed in accord Residential Code s and referenced stand rlin representation tion of the purlin al	for a liv where fit betv int 2 SI ss conr (by oth nding 2 ance w sections dard AN does no ong the	e load of 20. a rectangle veen the bott P No.2 crushi ections. ers) of truss i 28 lb uplift a ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	Opsf om ing to t and size					
FORCES	(lb) - Maximum Com	pression/Maximum	L	DAD CASE(S)	Standard								
TOP CHORD	1-2=0/13, 2-4=-310/4	473, 4-5=-6/4, 5-6=-4	7/36										
BOT CHORD	2-7=-488/302, 6-7=-4	463/291											
WEBS	4-7=-270/164, 4-6=-3	383/611											
NOTES													
 Unbalance this design Vasd=103 Cat. II; Ex zone and 2-1-0 to 5 cantilever exposed; and forces DOL=1.60 Provide ad 4) This truss 	ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B(p C; Enclosed; MWFR3 C-C Exterior (2) -0-11- -0-0, Exterior (2) 5-0-0 left and right exposed porch left and right exposed porch left and right exposed b) plate grip DOL=1.60 dequate drainage to pri- has been designed for	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1) to 6-9-12 zone; ; end vertical left osed;C-C for member ns shown; Lumber event water ponding. a 10.0 psf bottom) Prs							L'anna anna anna anna anna anna anna ann		SEA 0363	ROWR L

Δ chord live load nonconcurrent with any other live loads.

A. GILBER January Januar January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E08	Half Hip Girder	1	1	Job Reference (optional)	163012633

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:58

ID: fThlq03kOSh4ibLS2Udd2lzaQCd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.8

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	-0.01	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.02	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.12	Horz(CT)	-0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.02	6-7	>999	240	Weight: 34 lb	FT = 20%
			7	Provide mec	hanical connection) (by oth	ore) of truce	to					
	2v4 SP No 2		1,	hearing plate	at ioint(s) 2			10					
BOT CHORD	2x4 SF N0.2 2x4 SP No.2		8	Provide med	hanical connection) (by oth	ers) of truss	to					
WERS	2x4 SP No 2		0,	bearing plate	capable of withsta	anding 2	97 lb uplift a	at					
SLIDER	Left 2x4 SP No 2 2	2-6-0		joint 2 and 2	51 lb uplift at joint (6.							
BRACING			9	, This truss is	designed in accord	dance w	ith the 2015						
TOP CHORD	Structural wood she	athing directly applie	ad or	International	Residential Code	sections	R502.11.1	and					
	6-0-0 oc purlins ex	cept end verticals a	nd	R802.10.2 a	nd referenced stan	ndard AN	ISI/TPI 1.						
	2-0-0 oc purlins (6-0	-0 max.): 4-5.	10	Graphical pu	rlin representation	does no	ot depict the	size					
BOT CHORD	Rigid ceiling directly	applied or 8-7-1 oc		or the orienta	tion of the purlin a	along the	top and/or						
	bracing.			bottom chord	l. 								
REACTIONS	(size) 2=0-3-0, 6	6= Mechanical	1	 Hanger(s) or 	other connection	device(s) snall be	74 16					
	Max Horiz 2=55 (LC	4)		down and 11	Albunat 3-0-0 a	and 34 lb	down and 3	7 1 10 38 lb					
	Max Uplift 2=-297 (L	C 4), 6=-251 (LC 4)		up at 5-0-12	on top chord and	1 67 lb da	wn and 104	L lh					
	Max Grav 2=357 (LC	C 1), 6=306 (LC 1)		up at 3-0-0.	and 18 lb down an	nd 40 lb	up at 5-0-12	2 on					
FORCES	(lb) - Maximum Com	pression/Maximum		bottom chord	I. The design/sele	ection of	such connec	ction					
	Tension			device(s) is t	he responsibility o	f others.							
TOP CHORD	1-2=0/13, 2-4=-496/4	465, 4-5=-69/54,	1:	2) In the LOAD	CASE(S) section,	loads a	oplied to the	face					
	5-6=-127/92			of the truss a	re noted as front (F) or ba	ck (B).						
BOT CHORD	2-7=-457/489, 6-7=-	467/499	L	DAD CASE(S)	Standard								
WEBS	4-7=-77/141, 4-6=-4	49/431	1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1	.15,					
NOTES				Plate Increa	ise=1.15							minin	1111.
1) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)		Uniform Loa	ads (lb/ft)							IN TH CA	ROUL
Vasd=103	Smph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;		Vert: 1-4	=-60, 4-5=-60, 6-8	=-20					1.1	R	Chille
Cat. II; Ex	p C; Enclosed; MWFR	S (envelope) exterio	r	Concentrate	ed Loads (lb)					/	SI	OFESS	Di Vi
zone; can	tilever left and right exp	bosed ; end vertical	left	Vert: 4=-	11 (B), 7=-23 (B),	12=-11 (B), 13=-18 ((B)		2	27		a star
exposed;	porch left and right exp	osed; Lumber										:0	
2) Provide a	dequate drainage to pr	event water ponding								-		CEA.	r 13
 This trues 	has been designed for	r a 10 0 nef bottom								=		SEA	L <u>i i</u>
chord live	load nonconcurrent wi	th any other live load	ds.								:	0363	22 : =
 4) * This trus 	s has been designed f	or a live load of 20.0	psf										- 2
on the bot	tom chord in all areas	where a rectangle											- 1 S
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	m								20	N. ENG	-ERIX S
chord and	any other members.										1	S, GIN	EF. AN
5) Bearings a	are assumed to be: Joi	nt 2 SP No 2 crushir	าต								1		A REAL

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E09	Monopitch Girder	1	1	Job Reference (optional)	163012634

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:58 ID:BpBEIISQdbrO9fMoUvjMtFzaQC6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

HTU26

HTU26

Scale = 1:31.5

Plate Offsets (X, Y): [5:0-4-7,0-1-7]

Loading TCLL (roof)	(psf)	Spacing	2-0-0										
TCLL (roof)	20.0				CSI		DEFL	ın	(loc)	l/defl	L/d	PLATES	GRIP
- ()	20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.03	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.19	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP		Wind(LL)	0.03	5-6	>999	240	Weight: 35 lb	FT = 20%
LUMBER			6)	Provide mecl	nanical connection	(by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			bearing plate	at joint(s) 5.								
BOT CHORD	2x6 SP No.2		7)	Provide mecl	nanical connection	(by oth	ers) of truss	to					
WEBS	2x4 SP No.2			bearing plate	capable of withsta	anding 3	66 lb uplift a	t					
BRACING				joint 2 and 44	2 lb uplift at joint 5	5.							
TOP CHORD	Structural wood sheat 5-11-8 oc purlins, ex	athing directly applie xcept end verticals.	dor ⁸⁾	This truss is International	designed in accord Residential Code	lance w sections	th the 2015 R502.11.1 a	and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 8-6-11 oc	; 9)	Use Simpsor	Strong-Tie HTU2	dard AN 6 (20-16 Cirdor)	Girder,						
REACTIONS	(size) 2=0-3-0, 5 Max Horiz 2=100 (LC Max Uplift 2=-366 (LC Max Grav 2=510 (LC	5=0-1-8 C 19) C 4), 5=-442 (LC 4) C 1), 5=598 (LC 1)	40	spaced at 2-(end to 5-0-12 chord.	1 russ, Single Ply 0-0 oc max. starting to connect truss(e	g at 3-0 es) to fro	or equivalen 12 from the ont face of bo	t left ottom					
FORCES	(lb) - Maximum Com	nression/Maximum	11) Fill all nail no	CASE(S) costion	IS IN COR	lact with luff	iber.					
IONOLO		pression/maximum	11	of the truce a	CASE(S) Section,	iuaus aj E) or ba		lace					
TOP CHORD	1-2=0/13. 2-3=-943/6	649. 3-4=-26/17.	1.0		Stondard) 01 04	JK (D).						
	4-5=-87/63	, ,	1)	Dood L Bor	f Live (balanced):	Lumbor	Incrosco-1	15					
BOT CHORD	2-6=-683/890, 5-6=-6	683/890	1)	Plate Increa		Lumber	increase=1.	15,					
WEBS	3-6=-302/371, 3-5=-9	946/726			uds (lb/ft)								
NOTES				Vert: 1-4:	=-60. 5-7=-20								
 Wind: ASC Vasd=1037 Cat. II; Exp zone; canti exposed; p DOL=1.60 This truss f chord live l 3) * This truss on the botto 3-06-00 tall chord and a Bearings a capacity of 565 psi. 	E 7-10; Vult=130mph mph; TCDL=6.0psf; BC IC; Enclosed; MWFRS lever left and right exp orch left and right exp plate grip DOL=1.60 has been designed for oad nonconcurrent wit is has been designed for om chord in all areas w I by 2-00-00 wide will f any other members. re assumed to be: Joir 565 psi, Joint 5 SP No	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior boosed; end vertical I osed; Lumber a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto nt 2 SP No.2 crushin o.2 crushing capacit	r eft ds. psf m y of	Concentrate Vert: 6=-:	ed Loads (lb) 286 (F), 10=-249 (l	=)				A CHILLING		SEA 0363	ROLN BUILL

- 3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 5 SP No.2 crushing capacity of 565 psi.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI mmm January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E10	Monopitch	3	1	Job Reference (optional)	163012635

6-7-8

-0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:59 ID:cT_3faJzvQoKAaIR8JV0FDzaQB?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	J/TPI2014	CSI TC BC WB Matrix-MP	0.53 0.30 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.07 0.01 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
BCDL10.0CodeIRC2015/TP120LUMBER60Provi beariTOP CHORD2x4 SP No.270BOT CHORD2x6 SP No.271WEBS2x4 SP No.271BRACING2x4 SP No.252TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.81BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.10.010.0REACTIONS(size)2=0-3-0, 4=0-1-8 Max Horiz2=105 (LC 11)						anical connection at joint(s) 2, 4. nanical connection capable of withsta Ib uplift at joint 4. Jesigned in accord Residential Code s d referenced stand Standard	(by othe (by othe nding 1 ance with ections dard AN	ers) of truss to ers) of truss to 41 lb uplift at th the 2015 R502.11.1 ar SI/TPI 1.	o o nd					
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	=0-3-0, 4 =105 (LC =-141 (LC =318 (LC	=0-1-8 2 11) C 8), 4=-96 (LC 12) 2 1), 4=255 (LC 1)											
FORCES	(lb) - Maxim	ium Com	pression/Maximum											
TOP CHORD BOT CHORD	1-2=0/13, 2 2-4=-142/12	-3=-242/2 26	225, 3-4=-153/160											
NOTES		-												
NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 6-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOI = 1.60, Data grin DOI = 1.60									ROLA					
2) This truss	has been des	igned for	a 10.0 psf bottom									KS	OFESS	The
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 														
 Bearings a capacity of 	are assumed t	o be: Join	nt 2 SP No.2 crushin	g v of									0303	
565 psi.5) Bearing at using ANS designer s	; joint(s) 4 con SI/TPI 1 angle should verify c	siders pa to grain f apacity o	rallel to grain value ormula. Building f bearing surface.								3		A. G	E.R. KININ

- 4) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 4 SP No.2 crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GI 11. G. L. January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	E11	Jack-Open	5	1	Job Reference (optional)	163012636

3x4 u

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:59 ID:rKFTVSTRLCHDZy8N9cozVfzaQHG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-0-0

= 1:24.1		

1-5-0

0-8-0

Plate Offsets (X, Y): [2:0-1-8,0-0-3]

Scale

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2	CSI TC BC WB 014 Matri	0.14 0.11 0.00 ix-MP	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea 3-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Mechanic Max Horiz 2=54 (LC Max Uplift 2=-128 (LL (LC 8) Max Grav 2=181 (LC (LC 3) (lb) - Maximum Com Tension 1-2=0/13, 2-4=-86/15 2-5=-110/64	1-6-0 athing directly applied applied or 10-0-0 oc 4= Mechanical, 5= al 8) C 8), 4=-53 (LC 8), 5 C 1), 4=71 (LC 1), 5= pression/Maximum 59	5) Refe 6) Prov beau 4, 12 7) This d or Inter R80 LOAD C =-27 49	r to girder(s) fo ide mechanica ing plate capat 28 lb uplift at joi truss is design national Reside 2.10.2 and refe ASE(S) Stand	r truss to truss cor I connection (by oth ale of withstanding t int 2 and 27 Ib uplift ed in accordance w antial Code sections renced standard At dard	Inections. iners) of truss t 33 lb uplift at j at joint 5. ith the 2015 \$ R502.11.1 a NSI/TPI 1.	to oint and				weight. 13 ib	1 1 - 2078	
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp zone and (2-1-0 to 2- end vertica: exposed;C reactions s DOL=1.60 2) This truss chord live 3) * This truss on the bott 3-06-00 tal chord and 4) Bearings a capacity of	2E 7-10; Vult=130mph mph; TCDL=6.0psf; BG D C; Enclosed; MWFR: C-C Exterior (2) -0-11- 11-4 zone; cantilever I al left and right expose C-C for members and for shown; Lumber DOL=1 has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s nas been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi has been designed for load nonconcurrent wi has been designed for load nonco	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1 left and right exposed d; porch left and righ orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor pint 2 SP No.2 crushi) t; t osf m ng						M. CONTRACT		SEA 0363	ER. 11 12,2024	Mannunning.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

AMITek Affiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	G01	Common Supported Gable	1	1	Job Reference (optional)	163012637

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:56:59 ID:R_zTlhQ2TNGPbZlxzxdMRQzaQ9a-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:43.2	
Plate Offsets (X, Y):	[2:0-3-0.0-0-3]. [10:0-3-0.0-2-3]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	10	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 96 lb	FT = 20%
				14			100/4	20		44) Thi		ماممام		
	0.4 00 N	- 0		VV		-15=-150/54, 5-10	0=-102/1	30, 150		II) III:	s liuss is	Desig	neu in accoruant	ione PE02 11 1 and
	2X4 SP N	0.2			-	-1/=-160/127, 3- /_1/=-162/120 8-4	10=-100/ 13160/	130,		PS	12 10 2	and rof	erenced standar	
	2X4 SP N	0.2			, (-12182/123, 0-	13=100/	120,						
	2X4 5P IN	0.3 20 No 2 - 2	2 2 Diaht 2v/ CD		οτερ	12= 102/142				LUAD	SASE(S) Star	idard	
SLIDER	Len 2.4 C	5F INU.2 2	-5-2, Right 274 5F 1	1)	UIES	roof live loads hav	o boon (oncidorod fo	r					
	2-3-2			1)	this design	IOUI IIVE IOAUS Hav	e been d		1					
	Structuro	l wood chor	athing directly applie	dor 2)	Wind: ASCE	7-10. Vult-130mm	h (3-sec	ond quet)						
TOF CHORD	6-0-0 ocu		atting directly applie	u u i 2)	Vasd=103mr	h TCDI = 6.0 nsf	BCDI = 6	Onsf: h=25ft						
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 or		Cat. II: Exp C	: Enclosed: MWF	RS (env	elope) exterio	or					
Bor onone	bracing	ing anoony		•	zone and C-0	C Corner (3) -0-11	-0 to 2-0	-0, Exterior (2	2)					
REACTIONS	(size)	2=16-0-0	10=16-0-0 12=16-0)-0	2-0-0 to 8-0-0), Corner (3) 8-0-0	to 11-0	-0, Exterior (2	2)					
	(0120)	13=16-0-0	14=16-0-0 15=16-	-0-0	11-0-0 to 16-	11-0 zone; cantile	ver left a	and right						
		16=16-0-0), 17=16-0-0, 18=16-	-0-0.	exposed ; en	d vertical left and	right exp	osed;C-C for						
		19=16-0-0	, 23=16-0-0	,	members and	d forces & MWFR	S for rea	ctions shown	;					
	Max Horiz	2=198 (LC	, 11), 19=198 (LC 1	1)	Lumber DOL	=1.60 plate grip D	OL=1.60)						
	Max Uplift	2=-56 (LC	8), 10=-8 (LC 9),	3)	Truss desigr	ned for wind loads	in the p	ane of the tru	ISS					
		12=-131 (l	LC 13), 13=-101 (LC	C 13),	only. For stu	ds exposed to wir	d (norm	al to the face),					
		14=-106 (I	LC 13), 16=-107 (LC	C 12),	see Standard	I Industry Gable E	nd Deta	ils as applica	ble,					
		17=-99 (L0	C 12), 18=-140 (LC	12),	All plates are	anned building des	othorwi	s per ANSI/ I r	-11.					
		19=-56 (L	C 8), 23=-8 (LC 9)		Cable require	2X4 IVI 20 UNIESS		d bearing						
	Max Grav	2=170 (LC	20), 10=150 (LC 1)), 5) (1)	Gable stude	snaced at 2-0-0 or		u bearing.						111
		12=191 (L	C 20), 13=178 (LC 2	20), 0) 20), 7)	This truss ha	s heen designed f	,. ora 10 () nsf bottom					N''LL CA	Dilli
		14=189 (L	C 20), 15=170 (LC 2	22), ' <i>'</i> 10)	chord live los	d nonconcurrent v	vith anv	other live loa	eh			1	TH UA	RONIN
		10=191 (L	C = 19, $17 = 177$ (LC $C = 10$), $10 = 170$ (LC C	19), 20) 8)	* This truss h	as been designed	for a liv	e load of 20.0	ao. Dosf			1	1.200	C. HAM
		23=150 (L	C 1)	20), -,	on the botton	n chord in all areas	s where	a rectangle			/	12		The and
FORCES	(lb) - Max		nression/Maximum		3-06-00 tall b	y 2-00-00 wide wi	ll fit betv	veen the botto	om		4			N.U.
IONOLO	Tension		pression/maximum		chord and an	y other members.					-	(i i	· × •	1 1 1 E
TOP CHORD	1-2=0/31	2-3=-66/34	4 3-4=-122/106	9)	All bearings a	are assumed to be	SP No.	2 crushing			=	1	SEA	
	4-5=-105	/131. 5-6=-1	166/182. 6-7=-166/1	82.	capacity of 5	65 psi.					=	:	0262	22 : 2
	7-8=-98/1	03, 8-9=-68	3/40, 9-10=-51/14,	, 10	 Provide mecl 	nanical connectior	(by oth	ers) of truss t	0		1	- 1	0363	22 : 2
	10-11=0/3	31	. ,		bearing plate	capable of withst	anding 5	6 lb uplift at j	oint			2		1 2
BOT CHORD	2-18=-86	/144, 17-18	=-86/144,		2, 8 lb uplift a	at joint 10, 107 lb u	iplift at jo	000 lb up 16	~			2	·	all S
	16-17=-8	6/144, 15-1	6=-86/144,		uplint at joint	17, 140 ID UPIIT At	121 lb /	uplift at joint 1	aเ เว			20	NGIN	FERMAN
	14-15=-8	6/144, 13-1	4=-86/144,		56 lb unlift at	io upint at joint 13	lift at ioi	nt 10	۷,			11,	710	allin
	12-13=-8	6/144, 10-1	2=-86/144		50 ib upilit at		int at jui					100	IL A G	II D'
													1. 1. 1.	

January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	G02	Common	2	1	I6301263 Job Reference (optional)	38

8-0-0

8-0-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

2)

3)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:00 ID:4le98A9FfcUXyA3ihJEBYnzaQ9w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-0-0

8-0-0

Page: 1

16-11-0

b-11-d

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove
3822905	G03	Common	3	1	I63012639 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:00 ID:JUhZ1EGuXNdFXZFRiiulQgzaQ9n-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	0.24	7-10	>811	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.22	7-10	>869	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.34	Horz(CT)	-0.05	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 70 lb	FT = 20%
LUMBER			4) * This truss	has been design	ed for a liv	e load of 20.	0psf					

Scale = 1:44.5

LOWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.2 2-6-0, Right 2x4 SP No.2 2-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 7-2-2 oc bracing.
REACTIONS	(size) 2=0-3-0, 6=0-3-8
	Max Horiz 2=191 (LC 9)
	Max Uplift 2=-188 (LC 12), 6=-157 (LC 13)
	Max Grav 2=697 (LC 1), 6=644 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/31, 2-4=-678/760, 4-6=-714/764
BOT CHORD	2-7=-491/587, 6-7=-491/564
WEBS	4-7=-547/392
NOTES	

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 8-0-0, Exterior (2) 8-0-0 to 11-0-0, Interior (1) 11-0-0 to 16-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 crushing 5) capacity of 565 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint 6 and 188 lb uplift at joint 2. This truss is designed in accordance with the 2015 7)

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

\cap Contra Contra MANDER IN THE SEAL 036322 G mmm January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	H01	Monopitch Supported Gable	1	1	Job Reference (optional)	163012640

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:00 ID:kbQYoui5pIH?TFaYNz3_QUzaQ9C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

3-10-4

Scale =	1:23.1
---------	--------

CLL (roof) CDL CLL 3CLL 3CDL	(), 20 10 0 10	Operating Operating 0.0 Plate Grip DOI 0.0 Lumber DOL 0.0* Rep Stress Inc 0.0 Code	L 1.15 1.15 or YES IRC201	5/TPI2014	TC BC WB Matrix-MP	0.20 0.21 0.00	Vert(LL) Vert(CT) Horz(CT)	n/a n/a 0.00	- 2	n/a n/a n/a	999 999 n/a	MT20 Weight: 15 lb	244/190 FT = 20%
UMBER OP CHORE SOT CHORE VEBS SRACING OP CHORE SOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood 3-10-4 oc purling Rigid ceiling dir bracing. (size) 2=3- 	d sheathing directly a ns, except end vertica rectly applied or 10-0- 10-4, 4=3-10-4, 5=3-7	6) oplied or 8) 0 oc 9) 10-4 9)	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate joint 2, 58 lb This truss is International 	has been design in chord in all are by 2-00-00 wide by other member are assumed to 65 psi. hanical connecti e capable of with uplift at joint 4 a designed in acco Residential Coor	ed for a live eas where a will fit betw rs. be SP No.2 ion (by othe standing 1 nd 100 lb u ordance wi le sections	e load of 20.0 a rectangle een the botto 2 crushing ers) of truss t 00 lb uplift at iplift at joint 2 th the 2015 R502 11 1 a	Opsf om co 2.					
	Max Horiz 2=86 Max Uplift 2=-1 5=-1 Max Grav 2=21 (LC	\$ (LC 8), 5=86 (LC 8) 00 (LC 8), 4=-58 (LC 00 (LC 8) 0 (LC 1), 4=145 (LC 1)	12), Lo 1), 5=210	R802.10.2 ar	nd referenced st Standard	andard AN	SI/TPI 1.						
ORCES	(lb) - Maximum Tension	Compression/Maxim	um										
OP CHORD	0 1-2=0/17, 2-3= 0 2-4=-75/73	-62/25, 3-4=-93/165											
OTES													
) Wind: AS Vasd=10 Cat. II; E zone and 2-1-0 to ;	SCE 7-10; Vult=13(3mph; TCDL=6.0p xp C; Enclosed; M I C-C Corner (3) -0 3-8-8 zone; cantile [,]	Omph (3-second gust) sf; BCDL=6.0psf; h=2 WFRS (envelope) ext I-11-0 to 2-1-0, Exterio ver left and right expo	25ft; terior or (2) used ;									TH CA	RO

- grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	H02	Monopitch	5	1	Job Reference (optional)	163012641

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:00 ID:VPR?1R0nxRRSz5?LLj?rwlzaQ8p-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2x4 =

1-7-10

2x4 II

		3-10-4										
Scale = 1:23.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	-0.01	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.02	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP		Wind(LL)	0.01	4-7	>999	240	Weight: 15 lb	FT = 20%

	 8.4		-	n
	 IV		-	ĸ
_		_	_	

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2

WEBS 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-10-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-3-8, 4= Mechanical Max Horiz 2=86 (LC 8) Max Uplift 2=-100 (LC 8), 4=-60 (LC 12) Max Grav 2=210 (LC 1), 4=142 (LC 1) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/17, 2-3=-62/25, 3-4=-93/105 BOT CHORD 2-4=-49/73

NOTES

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-8-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 crushing 4) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 4 and 100 lb uplift at joint 2.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type Qty Ply Furr, Meadows, 1 Shad		Furr, Meadows, 1 Shady Grove		
3822905	JA1	Jack-Open	16	1	Job Reference (optional)	163012642

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:01 ID:J0H4uHmDvTAn2M1NBo0iYUzahEh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-7-0

12:0 1 0 0 0 1 10.

Plate Offsets (X, Y): [2:0-1-8,0-0-1]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.01 -0.01	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 2 Structural wood she 3-7-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Mechanic Max Horiz 2=187 (LC Max Uplift 4=-118 (L Max Grav 2=203 (LC (LC 3) (lb) - Maximum Com Tension 1-2=0/35, 2-4=-184/	2-6-0 athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= ral C 12) C 12), 5=-14 (LC 12) C 1), 4=113 (LC 19), apression/Maximum 98	d or LO	Provide mecl bearing plate 4 and 14 lb u This truss is International R802.10.2 ar AD CASE(S)	nanical connection capable of withsta plift at joint 5. designed in accord Residential Code s nd referenced stan Standard	(by oth nding 1 ance wi sections dard AN	ers) of truss to 18 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1.	p joint nd				Weight: 20 ib	11 - 20/8	
NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex zone and i 2-1-0 to 3- end vertica forces & M DOL=1.60 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Bearings a capacity o 5) Refer to gi	CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bi p C; Enclosed; MWFR C-C Exterior (2) -0-11- 6-4 zone; cantilever le al left and right expose IWFRS for reactions s 0 plate grip DOL=1.60 has been designed for load nonconcurrent wi s has been designed for load nonconcurrent with the been designed for load	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-0, Interior (1 ff and right exposed d;C-C for members a hown; Lumber r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto oint 2 SP No.2 crushi iss connections.	r) ; and ls. psf m							M. minim		SEA 0363	RO 22 E.P. H. 12,2024	Mannanna

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply Furr, Meadows, 1 Shady Grove		Furr, Meadows, 1 Shady Grove	100010010	
3822905	JA2	Jack-Open	4	1	Job Reference (optional)	l63012643	

2-1-12

3-7-0

-0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:01 ID:J0H4uHmDvTAn2M1NBo0iYUzahEh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.6

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

		-											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.01	8	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.01	8	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.02	6	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 25 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood shea 3-7-0 oc purlins. Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 7 (size) 2=0-3-8, 5 Mechanic Max Horiz 2=187 (LC Max Uplift 5=-56 (LC Max Grav 2=204 (LC (LC 19)	I-6-0 athing directly applie applied or 10-0-0 oc -8 5= Mechanical, 6= al 2 12) 2 12), 6=-75 (LC 12) 2 1), 5=62 (LC 19), 6	4) Bearings capacity 5) Refer to (6) Provide r bearing p 5 and 75 7) This truss Internatio R802.10. LOAD CASE	are assumed to be: of 565 psi. girder(s) for truss to nechanical connection late capable of withs lb uplift at joint 6. s is designed in acco- nal Residential Code 2 and referenced sta (S) Standard	, Joint 2 S truss con on (by oth tanding 5 rdance w e sections indard AN	GP No.2 crusi nections. ers) of truss i6 lb uplift at j ith the 2015 iR502.11.1 a ISI/TPI 1.	to joint						
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-2=0/35, 2-4=-94/18	8, 4-5=-50/48											
BOT CHORD	2-8=-137/148, 7-8=-2	20/50, 4-7=-12/66,											
	6-7=-190/266											111.	
WEBS	4-6=-296/212										11''' CA	Dille	
NOTES										15	THUA	ROIT	1.
 Wind: AS0 Vasd=103 Cat. II; Ex zone and 2-1-12 to 3 end vertic. forces & M DOL=1.60 This truss chord live * This truss on the bot 3-06-00 ta chord and 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bf p C; Enclosed; MWFR; C-C Exterior (2) -0-11- 3-6-4 zone; cantilever I al left and right expose IWFRS for reactions si p plate grip DOL=1.60 has been designed for load nonconcurrent wi is has been designed for tom chord in all areas is 11 by 2-00-00 wide will any other members.	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 2-1-12, Interior (eft and right exposed d;C-C for members a hown; Lumber r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the bottom	1) 1; and is. osf m						My minutes.	in the second se	SEA 0363	L 22 EER ILBER 12,2024	A Manual and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	JA3	Jack-Open Girder	1	1	Job Reference (optional)	163012644

-0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:01 ID:gKj6n2sgj7V?rBwgThdpCSzahDH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.6

Plate Offsets (X, Y): [2:0-3-12,0-0-1], [4:0-2-12,0-2-0], [7:Edge,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.14 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.00 -0.01	(loc) 9 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 1 Structural wood shea 3-7-0 oc purlins, exo 2-0-0 oc purlins: 4-6.	-6-0 athing directly applied	5) 6) d or 7) 8)	* This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 50 Refer to girde Provide mech bearing plate	as been designed n chord in all areas by 2-00-00 wide wi by other members. assumed to be: , 65 psi. er(s) for truss to tr hanical connection capable of withst	I for a liv s where II fit betw Joint 2 S russ con n (by oth anding 3	e load of 20. a rectangle veen the bott SP No.2 crust nections. ers) of truss t 8 lb uplift at j	Opsf om hing to joint					
BOT CHORD	Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Mechanica Max Horiz 2=122 (LC Max Uplift 2=-111 (LC 7=-140 (LC Max Grav 2=236 (LC 7, 155 (C)	applied or 10-0-0 oc = Mechanical, 7= al c 8), c 8), 6=-38 (LC 23), c 8) (15), 6=42 (LC 20), (15), 6=42 (LC 20),	9) 10 11	6, 111 lb upli This truss is (International R802.10.2 ar) Graphical pu or the orienta bottom chord) Hanger(s) or provided suff	ft at joint 2 and 14 designed in accord Residential Code nd referenced stan rlin representation tition of the purlin a l. other connection of icient to support co	0 lb uplit dance w sections indard AN does no along the device(s oncentra	t at joint 7. ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s top and/or) shall be ited load(s) 1	and size 187					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/35, 2-4=-147/1 2-9=-113/92, 8-9=-37 7-8=-152/143	pression/Maximum 116, 4-5=-92/97, 5-6 7/50, 5-8=-28/64,	=0/0 12	Ib down and Ib down and design/select responsibility) In the LOAD of the truss a	160 lb up at 1-11- 32 lb up at 2-1-12 tion of such conne of others. CASE(S) section, re noted as front (-12 on to 2 on botto ction de loads ap (F) or ba	p chord, and om chord. The vice(s) is the oplied to the ck (B).	l 37 he face					Della
 VEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103) Cat. II; Ex zone; can and right e DOL=1.60 3) Provide ad 4) This truss chord live 	5-r=-201/213 ed roof live loads have h. CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p C; Enclosed; MWFRS itilever left and right exp exposed; Lumber DOL= dequate drainage to pre has been designed for load nonconcurrent wit	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior posed ; end vertical le =1.60 plate grip event water ponding. a 10.0 psf bottom th any other live load	LC 1) r eft Is.	DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-4- Concentrate Vert: 4=-8	Standard of Live (balanced): ase=1.15 adds (lb/ft) =-60, 4-6=-60, 9-11 ed Loads (lb) 8 (F), 9=-9 (F)	Lumber 0=-20, 7	Increase=1.	15,		Contraction of the second seco		SEA 0363	L 22 EER. KINN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 12,2024

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	JA4	Jack-Open Girder	3	1	Job Reference (optional)	l63012645

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:02 ID:gKj6n2sgj7V?rBwgThdpCSzahDH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.6

Plate Offsets (X, Y): [2:0-1-12,0-3-1], [4:0-4-4,0-2-0], [6:Edge,0-1-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	0.00	6-9	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	-0.01	6-9	>999	240		
BCLL		0.0*	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MP		Wind(LL)	0.01	6-9	>999	240	Weight: 23 lb	FT = 20%
LUMBER				5) * This truss h	as been designed	for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No	o.2			on the bottor	n chord in all areas	s where	a rectangle						
BOT CHORD	2x4 SP No	o.2			3-06-00 tall t	y 2-00-00 wide wi	l fit betv	veen the bott	om					
WEBS	2x4 SP No	D.2		6	Chord and ar	ly other members.	laint 2		hina					
SLIDER	Left 2x6 S	P No.2 2	2-6-0	0	capacity of 5	65 nsi		or No.2 clus	ning					
BRACING	<u> </u>			. 7	Refer to gird	er(s) for truss to tr	uss con	nections						
TOP CHORD	Structural	wood she	athing directly applie	dor 8	Provide mec	hanical connection	(by oth	ers) of truss	to					
	2-0-0 oc p	urline: 4-5	ept		bearing plate	capable of withsta	anding 3	1 lb uplift at	joint					
BOT CHORD	Rigid ceili	na directly	applied or 10-0-0 or		5, 112 lb upli	ft at joint 2 and 12	6 lb upli	ft at joint 6.						
Der enerte	bracing.	ing anoonly		9) This truss is	designed in accord	dance w	ith the 2015						
REACTIONS	(size)	2=0-3-8, 5	5= Mechanical, 6=		International	Residential Code	sections	R502.11.1 a	and					
	, ,	Mechanic	al	1	R802.10.2 ai	id referenced stan	dard AN	ISI/TPT1.	oi70					
	Max Horiz	2=122 (LC	C 8)	1	or the orients	ation of the purlin a	long the	ton and/or	SIZE					
	Max Uplift	2=-112 (L	C 8), 5=-31 (LC 4),		bottom chord		liong the							
		6=-126 (L	C 8)	1	1) Hanger(s) or	other connection	device(s) shall be						
	Max Grav	2=237 (LC	C 15), 5=46 (LC 1), 6	=145	provided suff	icient to support c	oncentra	ated load(s) 1	187					
		(LC 15)			Ib down and	160 lb up at 1-11-	12 on to	p chord, and	37					
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum		lb down and	32 lb up at 1-11-1	2 on bo	ttom chord.	The					
TOP CHORD	1-2=0/35,	2-4=-190/	133, 4-5=0/0		responsibility	of others.	cuon uc	100(3) 13 110						
BOT CHORD	2-6=-92/7	9		1	2) In the LOAD	CASE(S) section,	loads a	oplied to the	face					(1) (
WEBS	4-6=-135/	157			of the truss a	re noted as front (F) or ba	ck (B).					"" CA	Dille
NOTES				L	OAD CASE(S)	Standard							THUA	ROIL
1) Unbalanc	ed roof live lo	oads have	been considered for	1) Dead + Roo	of Live (balanced):	Lumber	Increase=1.	15,			1	OFFESS	in the
this desig	n.		(a)		Plate Increa	ise=1.15					1	SE	101 ···································	The Sta
2) Wind: AS	CE 7-10; Vul	t=130mph	(3-second gust)		Uniform Loa	ads (Ib/ft)						g ø	51 4	a.c.
	n C: Enclose	=0.0psi; Bu	SUL=6.0psi; n=25ii;		Vert: 1-4	=-60, 4-5=-60, 6-7	=-20				-		0.54	
7008: 11, LA	tilever left ar	d right exr	osed · end vertical l	əft	Concentrate								SEA	L <u>1</u> 2
and right	exposed: Lui	mber DOL:	=1.60 plate grip	511	vent. 4=-	ы (F), ТТ=-9 (F)							0363	22 : =
DOL=1.60)		51								-			- : :
3) Provide a	dequate drai	nage to pro	event water ponding								-			1.5
This truss	has been de	esigned for	a 10.0 psf bottom									20	N. SNOW	ERIX S
chord live	load noncor	ncurrent wi	th any other live load	s.								1	S, GIN	5. 28 1
												1	CA O	II BEIN

- DOL=1.60 Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.

G

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	JB1	Jack-Open	4	1	Job Reference (optional)	163012646

2-8-13

2-8-13

12 8 Г

3x6 🍫

3

-0-11-0

0-11-0

2

2-9-7

Builders FirstSource (Sumter, SC), Sumter, SC - 29153.

2)

3)

4)

5)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri Jan 12.10:57:02 ID:C320IS1Ozwpo3a8PwiudvvzahEM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-5-14

Page: 1

11111111111

0-8-0 5 2x4 II 2-8-13 Scale = 1:29.4 Plate Offsets (X, Y): [2:0-1-8,0-0-7] PLATES Loading Spacing 2-0-0 CSI DEFL in l/defl L/d GRIP (psf) (loc) Plate Grip DOL TCLL (roof) 20.0 1.15 TC 0.11 Vert(LL) 0.00 5-8 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.07 Vert(CT) 0.00 5-8 >999 240 BCLL 0.0* Rep Stress Incr YES WB Horz(CT) 0.00 2 0.00 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-MP Weight: 15 lb FT = 20% LUMBER 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint TOP CHORD 2x4 SP No.2 4, 29 lb uplift at joint 2 and 2 lb uplift at joint 5. BOT CHORD 2x4 SP No.2 This truss is designed in accordance with the 2015 Left 2x4 SP No.2 -- 2-6-0 SLIDER International Residential Code sections R502.11.1 and BRACING R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or LOAD CASE(S) Standard 2-8-13 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-3-8, 4= Mechanical, 5= Mechanical Max Horiz 2=120 (LC 12) Max Uplift 2=-29 (LC 12), 4=-74 (LC 12), 5=-2 (LC 12) 2=171 (LC 1), 4=82 (LC 19), 5=44 Max Grav (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/31, 2-4=-166/60 BOT CHORD 2-5=-74/83 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0. Interior (1) C 2-1-0 to 2-8-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber CHARLEN AND DOL=1.60 plate grip DOL=1.60 SEAL This truss has been designed for a 10.0 psf bottom 036322 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi. G Refer to girder(s) for truss to truss connections. mmm January 12,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	V01	Valley	1	1	Job Reference (optional)	163012647

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:02 ID:6wJELaN0YeDtlwuJbCTHXjzahHn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

l/defl

n/a 999

n/a

L/d

999 n/a

n/a

PLATES

Weight: 104 lb

MT20

GRIP

244/190

FT = 20%

Page: 1

Scale = 1:62								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-
BCLL	0.0*	Rep Stress Incr	YES	WB	0.28	Horiz(TL)	0.04	7

BCLL		0.0*	Rep Stress Incr	YES	
BCDL		10.0	Code	IRC20	15/TPI2014
	0	- 0		2	2) Wind: As
TOP CHORD	2x4 SP N	0.2			
BOICHORD	2x4 SP N	0.2			
UTHERS	2X4 5P N	0.3			2-10-0 to
BRACING					(1) 9-10-
TOP CHORD	Structural	wood shea	athing directly applied	dor	exposed
	6-0-0 oc p	burlins.			and forc
BOT CHORD	Rigid celli	ng directly	applied or 6-0-0 oc		DOL=1.6
WERE	1 Pow of	midat	4 10	3	3) Truss d
WEDS	I ROW at		4-10		only. Fo
REACTIONS	(size)	1=18-7-3,	/=18-/-3, 8=18-/-3,	2	see Star
		9=18-7-3,	10=18-7-3, 11=18-7-	•3,	or consu
	Max Hariz	12=10-7-3	0, 10=10-7-0 C 12)	4	 All plates
	Max Liplift	1=-333 (L)	C 13) 7 70 (I C 13)	Ę	Gable re
	wax opint	8=-267 (L)	C 13), 7=-76 (LC 13), C 13), 9=-265 (LC 13)	5 6	Gable st
		1063 (1)	C 13), 3=-203 (LC 13 C 11), 1167 (LC 18), <u>7</u>	This trus
		12=-100 (1	C 12) 13=-217 (I C	12)	chord liv
	Max Grav	1=211 (1 C	C 11) 7=118 (I C 20)	, {	3) * This tru
		8=412 (LC	20), 9=521 (LC 20),		on the b
		10=587 (L	.C 13). 11=13 (LC 13).	3-06-00
		12=201 (L	C 19), 13=300 (LC 1	9)	chord ar
FORCES	(lb) - Max	imum Com	pression/Maximum	· · ·	 All bear
	Tension				
TOP CHORD	1-2=-310/	463, 2-3=-4	424/576, 3-4=-447/56	69,	using AN
	4-5=-446/	547, 5-6=-2	255/310, 6-7=-77/104	Ļ	designer
BOT CHORD	1-13=-50/	106, 12-13	=-7/10, 11-12=0/0,		11) Provide
	3-12=-177	7/117, 10-1	1=-8/9, 9-10=-8/9,		bearing
	8-9=-8/9,	7-8=-39/65			ioint 1.7
WEBS	4-10=-569	9/377, 2-13	=-294/239,		uplift at i
	5-9=-378/	321, 6-8=-3	345/290		joint 13,
NOTES					2) Beveled
1) Unbalance	ed roof live l	oads have	been considered for		surface
this desig	n.				(3) This trus

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-10 to 2-10-0, Interior (1) 2-10-0 to 6-10-0, Exterior (2) 6-10-0 to 9-10-0, Interior (1) 9-10-0 to 18-3-9 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 273 lb uplift at joint 1, 78 lb uplift at joint 7, 100 lb uplift at joint 12, 67 lb uplift at joint 11, 63 lb uplift at joint 10, 217 lb uplift at joint 13, 265 lb uplift at joint 9 and 267 lb uplift at joint 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 13.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	V02	Valley	1	1	Job Reference (optional)	163012648

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:02 ID:mVZBQUjDjYtlGOcunoU4CrzahHK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

15-4-13

11-3-0

Scale = 1:62

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.21	Vert(TL)	n/a	-	n/a	999	1	
BCLL	0.0	 Rep Stress Incr 	YES		WB	0.18	Horiz(TL)	0.04	6	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 83 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 6-0-0 oc purlins. Rigid ceiling direc bracing, Except: 10-0-0 oc bracing 1 Row at midpt (size) 1=15-4 8=15-4 11=15- Max Horiz 1=-305 Max Uplift 1=-278 7230	heathing directly appli tly applied or 6-0-0 oc : 10-11. 3-9 -13, 6=15-4-13, 7=15- -13, 9=15-4-13, 10=15 4-13, 16=15-4-13 (LC 13), 6=-1 (LC 20) (LC 13), 8=-268 (LC 20)	2) ed or 3) 4-13, 5-4-13, 4) 5) (, 6) (, 7)	Wind: ASC Vasd=103n Cat. II; Exp zone and C 3-0-10 to 5 t exposed ; 6 and forces DOL=1.60 Truss desi only. For s see Standa or consult c All plates a Gable requ Gable stud: This truss f	E 7-10; Vult=130 mph; TCDL=6.0ps C; Enclosed; MV -C Exterior (2) 0- -2-13, Exterior (2) o 15-1-3 zone; ca end vertical right (& MWFRS for real plate grip DOL=1 gned for wind bull tuds exposed to 1 real Industry Gable qualified building re 2x4 MT20 unle ires continuous b s spaced at 4-0-0 mas been designe	mph (3-sec sec sec sec VFRS (env) 0-10 to 3-(0 5-2-13 to antilever lei sexposed; C. actions shc .60 ds in the p wind (norm e End Deta designer a: ses otherwind ottom chori oc. d for a 10.1	cond gust) cond gust) cond gust) 6.0psf; h=25ft felope) exteric 0-10, Interior (8-2-13, Interi ft and right C- for membe wm; Lumber lane of the trr lane of t	; or ers uss), ble, PI 1.					
FORCES TOP CHORD BOT CHORD	7=-239 9=-24 11=-20 Max Grav 1=215 (LC 20 22), 10 19), 16 (Ib) - Maximum C Tension 1-2=-403/470, 2-3 4-5=-170/215, 5-6 1-11=-93/163, 10 9-10=-19/12, 8-9	(LC 13), 8=-268 (LC - LC 11), 10=-91 (LC 12 9 (LC 12), 16=-1 (LC 2 (LC 20), 6=0 (LC 13), 1, 8=452 (LC 20), 9=52 =17 (LC 13), 11=324 (=0 (LC 13) pompression/Maximum =-414/500, 3-4=-366/ =-1275 .11=0/0, 2-11=-258/19 .19(12 7-8=-19/12)	13), 7, 8) 3), 8) 7=348 24 (LC (LC 9) 10 454, 1 ¹ 88, 1 ¹	chord live lo * This truss on the bottom 3-06-00 tall chord and a All bearings capacity of 0) Bearing at 1 using ANSI designer sh 1) Provide me bearing pla	and nonconcurrent has been design orm chord in all ar by 2-00-00 wide any other membe s are assumed to 565 psi. joint(s) 11 consid /TPI 1 angle to g nould verify capac techanical connect te capable of with	nt with any need for a live eas where will fit betw rs, with BC be SP No. ers paralle rain formul city of bear ion (by oth standing 2	other live load e load of 20.0 a rectangle veen the bottu DL = 10.0psl 2 crushing I to grain valu a. Building ing surface. ers) of truss t	ds. Opsf om e		4		ORTH CA	ROLI

4-1-13

4-1-13

WEBS 3-9=-489/348, 4-8=-385/326, 5-7=-318/267 NOTES

6-7=-19/12

1) Unbalanced roof live loads have been considered for this design.

- joint 1, 1 lb uplift at joint 6, 209 lb uplift at joint 11, 91 lb uplift at joint 10, 24 lb uplift at joint 9, 268 lb uplift at joint 8, 239 lb uplift at joint 7 and 1 lb uplift at joint 6.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 16.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	V03	Valley	1	1	Job Reference (optional)	l63012649

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri Jan 12.10:57:03 ID:EVjrLGMqTWQNVNbuqjQGJozahGW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-6-10

bading	2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GR	RIP
CLL (roof)	1.15 TC 0.49 Vert(LL) n/a - n/a 999 MT20 244	14/190
CDL	1.15 BC 0.56 Vert(TL) n/a - n/a 999	
CLL	YES WB 0.28 Horiz(TL) -0.30 5 n/a n/a	
CDL	IRC2015/TPI2014 Matrix-MS Weight: 64 lb FT	Γ = 20%
	YES WB 0.28 Horiz(1L) -0.30 5 n/a n/a IRC2015/TPI2014 Matrix-MS Weight: 64 lb	F

9-7-13

LUMBER

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 10-0-0 oc	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing, 10-0-0 oc	ng directly applied or 6-0-0 oc Except: bracing: 8-9.
REACTIONS	(size)	1=12-2-6, 5=12-2-6, 6=12-2-6,
		14=12-2-6, 0=12-2-0, 9=12-2-0,
	Max Horiz	1=-275 (LC 13)
	Max Uplift	1=-134 (LC 13), 5=-5 (LC 20),
		6=-434 (LC 13), 8=-171 (LC 20),
		9=-137 (LC 12), 14=-5 (LC 20)
	Max Grav	1=30 (LC 23), 5=4 (LC 13), 6=682
		(LC 20), 7=503 (LC 22), 8=73 (LC
		13), 9=246 (LC 19), 14=4 (LC 13)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-48/3	06, 2-3=-214/341, 3-4=-205/308,
	4-5=-141/	216
BOT CHORD	1-9=-219/	136, 8-9=0/0, 2-9=-198/121,
	7-8=-117/	69, 6-7=-117/69, 5-6=-117/69
WEBS	3-7=-317/	139, 4-6=-506/389
NOTES		
1) Unhalance	ad roof live l	oads have been considered for

- of live loads have been considered for this design 2)
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-10 to 3-0-10, Interior (1) 3-0-10 to 3-7-10, Exterior (2) 3-7-10 to 6-7-10, Interior (1) 6-7-10 to 11-10-12 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 crushing 8)
- capacity of 565 psi. 9) Bearing at joint(s) 9 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 134 lb uplift at joint 1, 5 lb uplift at joint 5, 137 lb uplift at joint 9, 171 lb uplift at joint 8, 434 lb uplift at joint 6 and 5 lb uplift at joint 5.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 14.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	V04	Valley	1	1	Job Reference (optional)	163012650

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:03 ID:M??m3jW_PW3XZN4O5y9JKYzahGJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.6

		-			1		i							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	-0.15	5	n/a	n/a			
BCDL	10.0	Code	IRC20	015/TPI2014	Matrix-MS							Weight: 54 lb	FT = 20%	
BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 5-8-13 to end vertic forces & M	0.0 ⁻ 10.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 8 (size) 1=10-4-1: 7=10-4-1: 14=10-4-1 Max Horiz 1=-258 (L Max Uplift 1=-142 (L 6=-376 (L 9=-83 (LC Max Grav 1=41 (LC (LC 20), 7 13), 9=16 (lb) - Maximum Com Tension 1-2=-96/270, 2-3=-2 4-5=-56/151 1-9=-158/107, 8-9=(C 7-8=-64/40, 6-7=-64 3-7=-279/109, 4-6=- ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B p C; Enclosed; MWFR C-C Exterior (2) 0-0-11 10-1-3 zone; cantileve al left and right exposed MWFRS for reactions s	Rep Stress Incr Code eathing directly applied applied or 6-0-0 oc 3-9. 3, 5=10-4-13, 6=10-4 3, 8=10-4-13, 9=10-4 13 .C 13), 5=-5 (LC 20), .C 13), 5=-5 (LC 20), .C 13), 5=-5 (LC 20) .11), 5=4 (LC 13), 6= 7=448 (LC 22), 8=24 33 (LC 19), 14=4 (LC 10), 14=-5 (LC 20) .11), 5=4 (LC 13), 6= 7=448 (LC 22), 8=24 33 (LC 19), 14=4 (LC 0), 2-9=-115/52, 1/40, 5-6=-64/40 -453/349 e been considered for n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0 to 5-8-13, Interior (1 r left and right expose dc;C-C for members a shown; Lumber	YES IRC2(d or -13, -13, -13, 575 (LC 13) 8, 	 Truss desig only. For stu see Standard or consult qu Gable studs Gable studs This truss ha chord live loa This truss for on the bottor 3-06-00 tall h chord and ar All bearings capacity of 5 Bearing at jou using ANSI/ designer shot Provide mech bearing plate joint 1, 5 lb u uplift at joint This truss is International R802.10.2 a LOAD CASE(S) 	WB Matrix-MS and for wind load dds exposed to w d Industry Gable alified building dd es continuous bo spaced at 4-0-0 d s been designed n chord in all are- by 2-00-00 wide w y other members are assumed to b 65 psi. int(s) 9 considers FPI 1 angle to gra- build verify capacit e capable of withs plift at joint 5, 83 8, 376 lb uplift at e or shim require truss chord at joi designed in acco Residential Code nd referenced sta Standard	0.20 s in the p ind (norm End Deta esigner a: ttom choo for a 10.1 with any d for a liv d for a liv d for a liv d for a liv d for a liv the SP No. s parallel in formul ty of bear on (by oth tanding 1 lb uplift a joint 6 ar d to provin tt(s) 1, 14 rdance w e sections indard AN	Horiz(1L) lane of the tri ial to the face ils as applicas s per ANSI/T d bearing. 0 psf bottom other live load e load of 20. a rectangle veen the bott CDL = 10.0ps 2 crushing to grain value a. Building ing surface. ers) of truss 42 lb uplift a t joint 9, 99 II d 5 lb uplift a de full bearint 4. ith the 2015 s R502.11.1 a JSI/TPI 1.	-0.15 uss a), able, PI 1. ads. Opsf to t b at to t b at	5	n/a	n/a	Weight: 54 lb	FT = 20%	and annunners
DOI = 1.60) plate grip DOL=1.60										1	1, CA C	BEN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 12,2024

GILB

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	V05	Valley	1	1	Job Reference (optional)	163012651

2-7-10

2-7-10

2x4 II

3-7-14 3-4-6

-3-8

3-9-11

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:03 ID:0sn9jR3rafs?4RbDocz6CFzahFb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-9-12

4-2-2

2x4 II

7-1-13

1 2 -13 \bowtie 12 | 10 M 3

3x6 =

Scale = 1:32.1

Plate Offsets (X, Y): [2:0-3-0,0-2-1]

Loading TCLL (rod) (ps) 200 Spacing Plate Gip DOL 2-0-0 TLSL (rod) CSI TC DEFL TC in (loc) lodel Ldd PLATES GRIP CDL 10:0 0.01 Rep Stress Incr YES TC 0.02 Ver(TL) n/a - n/a 999 BCLL 0.01 Code IRC2015/TP12014 Watrix-S Weight: 30 lb FT = 20% LUMBER Code Provide adequate drainage to prevent water ponding. Gable steapures continuous bottom chord beering. Gable steapures continuous bottom - n/a N/a <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>													
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.20 Ver(TL) n/a - n/a 959 MT20 244/190 BCLL 0.01 Rep Stress Incr YES BC 0.11 Ver(TL) n/a - n/a 959 MT20 244/190 BCLL 0.01 Rep Stress Incr YES BC 0.11 Ver(TL) n/a - n/a 959 Mt20 244/190 BCLL 0.01 Rep Stress Incr YES BC 0.11 Ver(TL) n/a	Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0 Lumber DOL 1.15 BC 0.11 Ver(TL) n/a n/a n/a m/a m/a <td>TCLL (roof)</td> <td>20.0</td> <td>Plate Grip DOL</td> <td>1.15</td> <td>TC</td> <td>0.20</td> <td>Vert(LL)</td> <td>n/a</td> <td>-</td> <td>n/a</td> <td>999</td> <td>MT20</td> <td>244/190</td>	TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
BCLL 0.0° Rep Stress Incr YES WB 0.10 Horz(TL) 0.00 4 Na Na BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Matrix-S Weight: 30 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 So TCHORD Start SP No.2 So Cable study spaced at 4-00 oc. So Cable study spaced at 4-00 oc. This truss has been designed for a 10.0 pst botom OTP CHORD Structural wood shearhing directly applied or 10-0-0 oc metricing. So Cable study spaced at 4-00 oc. This truss has been designed for a 10.0 pst botom REACTIONS (size) 4=7.113, 5=7.1-13, 6=7.1-13 Max Horiz 6=-171 (LC 8) All bearings are assumed to be SP No.2 crushing capacity of 56 ps is. SOT CHORD DX (b) Max Horiz 6=-171 (LC 8) Horiz (LT 1), 5=26 fs ps. Na Learings are assumed to be SP No.2 crushing capacity of 56 ps is. Max Grav 4 = 125 (LC 19), 5=-163 (LC 13), 6=-163 (LC 13), 6=-163 (LC 14), 5=-163 (L	TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCDL 10.0 Code IRC2016/TP2014 Matrix-8 Weight: 30 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Phovide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing. Gable requires continuous bottom chord bearing. BOT CHORD 2x4 SP No.2 Statutural wood sheathing directly applied or fo-0 co purins. (6-00 max): 1-2. This truss has been designed for a 10.0 psf bottom chord and any other members. BTO CHORD Structural wood sheathing directly applied or for 0-0 co purins. (6-00 max): 1-2. This truss has been designed for a 10.0 psf bottom charcing. REACTIONS (size) 4-7-113, 5-7-1-13, 6-7-1-13 (size) 6-7-112 (C 2), for 3-6-7 (IC 2)	BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
LUMBER V4 SP No. 2 4 SP Code or 2018 5 Galabie studies spaced at 4-0-0 cc. VEBS 2x4 SP No. 2 5 Galabie studies spaced at 4-0-0 cc. 5 Galabie studies spaced at 4-0-0 cc. VEBS 2x4 SP No. 2 5 Galabie studies spaced at 4-0-0 cc. 5 Galabie studies spaced at 4-0-0 cc. VEBS 2x4 SP No. 3 5 Galabie studies spaced at 4-0-0 cc. 7 This truss has been designed for at 10.0 ps bottom REACTIONS Studiural wood sheathing directly applied or 50-0 co purins, except end verticals, and on the orbit and an ease where a rectangle 3-06-00 aut 10.0 ps bottom 6 * This truss has been designed for at 10.0 ps bottom REACTIONS Rigid celling directly applied or 10-0-0c For Clo 0 Provide mechanical connection (by others) of truss to bean opplice celling directly applied or 10-0-0c 6 10 Provide mechanical connection (by others) of truss to bean opplice celling directly applied or 10-0-0c 6 10 Provide mechanical connection (by others) of truss to bean opplice celling directly applied or 10-0-0c 10 Provide mechanical connection (by others) of truss to bean opplice celling directly applied or 10-0-0c 10 Provide mechanical connection (by others) of truss to bean opplice celling directly applied or 10-0-0c 10 Provide mechanical connection (by others) of truss to bean opplice celling directly	BCDL	10.0	Code	IRC2015/TPI2	014 Matrix-S							Weight: 30 lb	FT = 20%
 TOP CHORD 2:44 SP No.2 So Cable requires continuous bottom chord bearing. Gable studies spaced at 4-0-0 oc. This truss has been designed for a 100 psf bottom chord in all areas where a rectangle of 0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, except end vertical purlin end vertical purlins end vertical purlins end vertical purlins end vertical purlins end verti	LUMBER			4) Prov	de adequate drainag	e to prevent v	water ponding	J.					
BOT CHORD 2x4 SP No.2 6 Gable studs spaced at 4-0-0 oc. OTHERS 2x4 SP No.3 6 Gable studs spaced at 4-0-0 oc. BRACING Structural wood sheathing directly applied or 6-0-0 oc purlins, except end vertices, and 2-0-0 oc purlins, (6-0-0 max): 1-2. 7. This truss has been designed for a 10-0 psf bottom chord in all areas where a rectangle 3-0-6-0 ubit by 2-0-00 ubit by 2-0-0 ubit	TOP CHORD	2x4 SP No.2		5) Gabl	e requires continuous	bottom chor	d bearing.						
 WEBS 2x4 SP No.2 This truss has been designed for a loo pat bottom chord in low leads. Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, (6-0 max.): 1-2. BOT CHORD B Structural wood sheathing directly applied or bracing. BOT CHORD B (size) 4 = 7-1-13, 5=7-1-13, 6=7-1-13 (a=7-1-13 (a=7-1-13 (a=7-1)), (b=17) (b=17), (b=	BOT CHORD	2x4 SP No.2		6) Gabl	e studs spaced at 4-0	-0 oc.							
OTHERS 2x4 SP No.3 chord live load an onconcurrent with any other live loads. BRACING Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, 6(-0-0 max), 1-2. 8 BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 1 This truss has been designed for a live load of 20.0 pdf on the bottom chord in all areas where a rectangle 3-0-0 oc purlins, 6(-0-0 max), 1-2. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 4 First truss has been designed for a live load of 20.0 pdf on the bottom chord in all areas where a rectangle 3-0-0 oc purlins, 6(-0-0 max), 1-2. BOT CHORD 4 5-7.113, 6=-7.113, 6=-7.113, 6=-77 (LC 8) 10 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 4 6, 18 lb uplift at joint 4 and 162 (bu plift at joint 5. FORCES 10 Not service and the interational Residential Code sections R502.11.1 and R802.01.2 and referenced standard ANSI/PT 1. FORCES 10 Instrume Compression/Maximum Tension -5-4-34/32.22 NOTES 10 Undata code of the loads have been considered for this design. -20-112 (b 5-7.10), Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; code sections show; Lumber DOL=1.60 Driet grip DDL=1.60 SEAL 036.32.2 30 Truss designed for wind loads in the plane of the truss or the Service hor second th	WEBS	2x4 SP No.2		7) This	truss has been desigi	ned for a 10.0) psf bottom						
 BRACING BRACING Structural wood sheathing directly applied or 10-0-0 or purins, except end verticals, and 2-0-00 or purins, except end vertical end and y other members. 90 The bottom chord be SP No.2 crushing capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 571 bupilit at joint 6. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. 12) Graphical purin representation does not depict the size or the orientation of the purin along the top and/or bottom chord. 10 AD CASE(S) Standard 10 AD CASE(S) Standard 10 AD CASE(S) For reactions shown; Lumber DOL=160 plate grip D	OTHERS	2x4 SP No.3		chor	live load nonconcuri	rent with any	other live loa	ds.					
 TOP CHORD Structural wood sheathing directly applied or 6-00 co purifies, except end verticals, and 2-0-00 co purifies, except end verticals, and 2-0-00 co purifies, except end verticals, and 2-0-00 max.): 1-2. BOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. REACTIONS (size) 4-7-1-13, 6=7-1-13 Max Hozit 6=77 (LC 8) (Size) 4-7-1-13, 6=7-1-13 Max Hozit 6=77 (LC 8) (Diff t 4-18 (LC 9), 5=162 (LC 13), 6=-57 (LC 8) (Diff t 4-125 (LC 19), 5=327 (LC 20), 6=-136 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-6-100/115, 1-22=66/93, 2-3=-109/114, 3-4=-240/228 (Di - 16-2-00/115, 1-22=66/93, 1-2=-10-2-10, 1-16:10 (Di - 16-2-00/114, 10-2-10, 1-216) (Di - 16-00/114, 10-2-16, 10-2) (Di - 16-00/114, 10-2	BRACING			8) " I Ni	s truss has been desi	gned for a liv	e load of 20.0	pst					
 6-0-0 oc putins, escept end verticels, and 2-0-0 oc putins, escept end verticels, and 2-0-0-0 oc putins, escept end verticels, and 2-0-0-0-0 oc putins, escept end verticels, and 2-0-0-0-0 oc provide members. 9 All bearing plate capable of virbstanding 57 lb uplift at joint 4. 9 All bearing plate capable of virbstanding 57 lb uplift at joint 5. 10 Provide mechanical connection (by others) of truss to bearing plate capable of virbstanding 57 lb uplift at joint 5. 10 Provide mechanical connection (by others) of truss to bearing plate capable of virbstanding 57 lb uplift at joint 5. 10 Provide mechanical connection (by others) of truss to bearing plate capable of virbstanding 57 lb uplift at joint 5. 10 Provide mechanical connection (by others) of truss to bearing plate capable of virbstanding 57 lb uplift at joint 4. 10 Provide mechanical connection (by others) of truss to bearing plate capable of virbstanding 57 lb uplift at joint 5. 11 This truss designed in considered for this design. 11 Unbalanced roof live loads have been considered for this design. 12 Wind: ASCE 7-10; Vult=130mph (3-second gust) Yead-103mph; TCDL=6.0psf; h=25t; Context for the prosed; construction the proved iterib down during the tops and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed ; end verticel the and right exposed ; end verticel trust during during the there and the tap down during the provide the members. 13 Truss designed for vind loads in the plat	TOP CHORD	Structural wood shea	thing directly applie	dor Unu	00 tall by 2-00-00 wir	areas wriere	a reclarigie	m					
 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSITP1 1. Graphical purtin representation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard LOAD CASE(S) Standard LOAD CASE(S) Standard Seal, Logor, Call on with the construction of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Load CASE(S) Standard Seal, Logor, Call on with the construction of the purlin along the top and/or bottom chord. Load CASE(S) Standard Seal, Logor, Call on the publich at posed (cord) chorent be the first on p		6-0-0 oc purlins, exc	ept end verticals, a	nd chor	and any other mem	oers	leen the bott	////					
 BOT CHORD Right Defining diffectly applied on torbot de brains; REACTIONS (size) 4-7.1-13, 5-7.1-13, 6=7.1-13 Max Horiz 6=-171 (LC 8) Max Idpiff 418 (LC 9), 5=-162 (LC 13), 6=-57 (LC 8) Max Grav 4-125 (LC 19), 5=-327 (LC 20), 6=136 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) The truss is the beam of the truss and forces & MWFRS for reactions shown; Lumber DOL=-1.60 plate grip DOL=1.50 3) Truss designed for wind loads in the plane of the truss arbit Decide for wind loads in the plane of the truss 		2-0-0 oc puriins (6-0-	0 max.): 1-2.	9) All b	earings are assumed	to be SP No.	2 crushina						
 REACTIONS (size) 4=7-1-13, 5=7-1-13, 6=7-1-13 Max Horiz 6=-171 (LC 8) Max Upitf 4=-18 (LC 9), 5=-162 (LC 13), 6=-57 (LC 8) Max Grav 4=125 (LC 19), 5=327 (LC 20), 6=136 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-6100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6-195/217, 4-5=-195/217 WEBS 3-5-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOLL=1.60 polate (in DDL=1.60 3) Truss designed for wind loads in the plane of the truss at the plane of the wind brond 	BOICHORD	bracing	applied of 10-0-0 of	capa	city of 565 psi.		j						
 Kacholickie (act) for the formation of the problem of the	REACTIONS	(size) 4-7-1-13	5-7-1-13 6-7-1-13	10) Prov	de mechanical conne	ction (by oth	ers) of truss t	0					
 Max Upilit 4=-18 (LC 9), 5=-162 (LC 13), 6=-57 (LC 8) Max Grav 4=125 (LC 10), 5=327 (LC 20), 6=136 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-68=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 patts grap DDL=1.60 3) Truss designed for wind loads in the plane of the truss areb. Enverticed extended to wind loads in the plane of the truss 		Max Horiz 6=-171 (LC	C 8)	bear	ng plate capable of w	ithstanding 5	7 lb uplift at j	oint					
 has the product of the formation of the set of the formation of the purphene set of the set of the set of the set of the purphene set of the set of the set of the set of the purphene set of the set of the set of the purphene set of the purphene set of the purphene set of the purphene set of the set o		Max Uplift 4=-18 (LC	9), 5=-162 (LC 13).	6, 18	Ib uplift at joint 4 and	162 lb uplift	at joint 5.						
Max Grav 4=125 (LC 19), 5=327 (LC 20), 6=136 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss areb. Exercised to extend to extend to two forces the formed to the forces areb. Sectised to extend to extend to the forces the formed to the forces areb. Sectised to extend to extend to the forces areb. Sectised to extend to extend to the forces the formed to the forces areb. Sectised to extend to extend to the forces to the force of the forces to the force of the force of the forces to the force of the		6=-57 (LC	8)	11) I his	truss is designed in a	ccordance w	th the 2015	nd					
 6=136 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6=-195/217, 4-5=-195/217 BEST 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wink: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior 200e and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss areb. Screaved a neuroed to wind loads in the plane of the truss 		Max Grav 4=125 (LC	19), 5=327 (LC 20)			ctondard AN	R302.11.1 a	nu					
 FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; Colladous (1) (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for wind loads in the plane of the truss are by Ensturble exposed for the force of the force of the force of the truss are by Ensturble exposed for the force of the force of the truss are by Ensturble exposed for the force of the force of the truss are by Ensturble exposed for the force of the fo		6=136 (LC	1)	12) Gran	hical purlin represent	ation does no	of denict the s	ize					
Tension TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the truss arbit. For trutch exposed for wind loads in the plane of the trutch exposed for the form of the trutch exposed form of the trutch	FORCES	(lb) - Maximum Comp	pression/Maximum	or th	e orientation of the pu	rlin along the	top and/or	120					
 TOP CHORD 1-6=-100/115, 1-2=-86/93, 2-3=-109/114, 3-4=-240/228 BOT CHORD 5-6=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss reply. Eventued overand to the force) 		Tension		botto	m chord.								
BOT CHORD 5-6=-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss arbit. For stude oursend to twind (normal to the force)	TOP CHORD	1-6=-100/115, 1-2=-8	86/93, 2-3=-109/114	LOAD C	ASE(S) Standard								
 BOTCHORD 3-5-8-195/217, 4-5=-195/217 WEBS 3-5=-354/333 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss arehy. Expendence of the truss arehy. Expendence of the truss arehy. 		3-4=-240/228	05/047										
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) Truss designed for wind loads in the plane of the truss arehy. Expression wind (backs in the plane of the t	BOICHORD	5-6=-195/217, 4-5=-1	95/217									minin	11111
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss arehy. Every wind loads in the plane of the truss arehy. 	WEBS	3-5=-354/333										IN'TH CA	ROUL
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss apply. Expertised and the plane of the truss apply. 	NOTES											R	
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss exply. Exercised is the plane of the truss 	1) Unbalanc	ed roof live loads have t	been considered for	ſ						1	5.	O TA	DZ. MAN
 2) Wind: AGUE 1-10; Wind: Tother To	2) Wind: AS	n. ∩E 7-10: \/ult–130mpb./	(3-second quet)								ZR	109	
Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss orbit cent wind (centre) is the force)	Vasd=10	3mph TCDI =6 0psf BC	DI = 6 0 nsf h = 25 ft							-		:2	K : 3
zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss arbit. For stude oursead to the fone)	Cat. II: Ex	<pre>kp C: Enclosed: MWFRS</pre>	6 (envelope) exterio	r						-		CEA	n 1 E -
5-7-10 to 6-9-7 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss explusive for stude overaged to the force)	zone and	C-C Exterior (2) 0-1-12	to 5-7-10, Interior (1)						=	:	SEP	· - : =
end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude overaged to wind (correct to the force)	5-7-10 to	6-9-7 zone; cantilever le	eft and right expose	d ;							:	0363	22 : =
forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss apply. For stude overaged to wind (correct to the force)	end vertic	cal left and right exposed	d;C-C for members	and						-	i i		4 5
DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss apply For stude overaged to wind (correct to the force)	forces & I	MWFRS for reactions sh	own; Lumber								-	·	1 1 E
c) Truss designed for wind loads in the plane of the truss only increases and the plane of the truss of the trust of th	DOL=1.60	0 plate grip DOL=1.60	the stars of the st								2.0	N. SNOW	EER. AN
	3) I russ de	signed for wind loads in	the plane of the tru	55							1	AL GIN	F. ER.N

- Enclosed; MWFRS (env Cat. II; Exp zone and C-C Exterior (2) 0-1-12 to 5-7-10, Interior (1) 5-7-10 to 6-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

GI

11111111 January 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Furr, Meadows, 1 Shady Grove	
3822905	V06	Valley	1	1	Job Reference (optional)	163012652

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 10:57:04 ID:uuY57dK0d5V16giGWWs1YgzahFG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.3

Plate Offsets (X, Y): [3:0-4-8,0-2-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-S							Weight: 18 lb	FT = 20%	
LUMBER		-	4)	Gable require	es continuous bot	tom chor	d bearing.							
TOP CHORD	2x4 SP No.2		5)	Gable studs :	spaced at 4-0-0 o	с.	0							
BOT CHORD	2x4 SP No.2		6)	This truss ha	s been designed	for a 10.0) psf bottom							
WEBS	2x4 SP No.2			chord live loa	ad nonconcurrent	with any	other live loa	ds.						
OTHERS	2x4 SP No.3		7)	* This truss h	as been designed	d for a liv	e load of 20.0	Opsf						
BRACING				on the botton	n chord in all area	s where	a rectangle							
TOP CHORD	Structural wood she	athing directly applie	d or	3-06-00 tall b	y 2-00-00 wide w	ill fit betv	veen the botto	om						
	5-7-3 oc purlins, exc	cept end verticals, ar	nd	chord and an	y other members	•								
	2-0-0 oc purlins: 1-3		8)	All bearings a	are assumed to be	e SP No.	2 crushing							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		capacity of 5	65 psi.									
	bracing.		9)	Provide mech	hanical connection	n (by oth	ers) of truss t	0						
REACTIONS	(size) 4=5-6-10,	5=5-6-10, 6=5-6-10		bearing plate	capable of withst	anding 5	1 Ib uplift at j	oint						
	Max Horiz 6=-43 (LC	(8)	10)	6, 6 ID UPIIIT a	at joint 4 and 90 lb	upliπ at								
	Max Uplift 4=-6 (LC	13), 5=-90 (LC 8), 6=	=-51	I NIS TRUSS IS	designed in accor	dance w	Ith the 2015	nd						
	(LC 9)	,, (,,		Pene 10.2 or	Residential Code		R302.11.1 a	nu						
	Max Grav 4=25 (LC	10), 5=250 (LC 1), 6	=143 11)	Graphical pu	rlin representation	doos no	t denict the s	izo						
	(LC 1)		11)	or the orients	ation of the nurlin:	along the	ton and/or	5126						
FORCES	(lb) - Maximum Com	pression/Maximum		bottom chord		along the								
	Tension		1.04	AD CASE(S)	 Standard									
TOP CHORD	1-6=-108/194, 1-2=-	59/81, 2-3=-59/81,	207		otandara									
	3-4=-57/25													
BOT CHORD	5-6=-32/57, 4-5=-32/	/57											111	
WEBS	2-5=-182/326											IN'IL CA	DIL	
NOTES											1	THUA	ROIT	1.
1) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)									50	ON JESS	12. 1/1	11
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;								/	22	A PLO	PN.	2
Cat. II; Exp	b C; Enclosed; MWFR	S (envelope) exterior	r							4			2.	
zone and (C-C Corner (3) 0-1-12	to 3-1-12, Exterior (2	2)							-			· · ·	
3-1-12 to 4	1-2-13, Corner (3) 4-2-	13 to 5-2-4 zone;								=		SEA		
cantilever	left and right exposed	; end vertical left and	ł								- 8	0000		8 E -
right expos	sed;C-C for members a	and forces & MWFR	S									0363	22	
for reaction	ns snown; Lumber DO	L=1.60 plate grip								-	- 6			2
DOL=1.60		a tha miana af tha town									-	· ~	a !.	1
 Iruss des 	signed for wind loads in	i the plane of the true	55								2.0	NGINI	EEN	13
coo Stood	ard Inductry Cable En	d Dotaile as applicab	, 								1	N/O		N
or consult	aru muusuy Gable End	u Detalls as applicad	10, 11								1	AG	IL BY	
3) Provide ac	dequate drainage to pr	gilei as pel ANOI/TP										1111.0	in in it	
J FIUVIUE at	iequale urainaye lu pri	event water portuing	•										C CONTRACT	

January 12,2024

	ENGI	VEERI	NG BY		- 65
1000	D			T-I	П
	п	E.	١.	اعلة	
			A MITE	k Affi	liat

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

