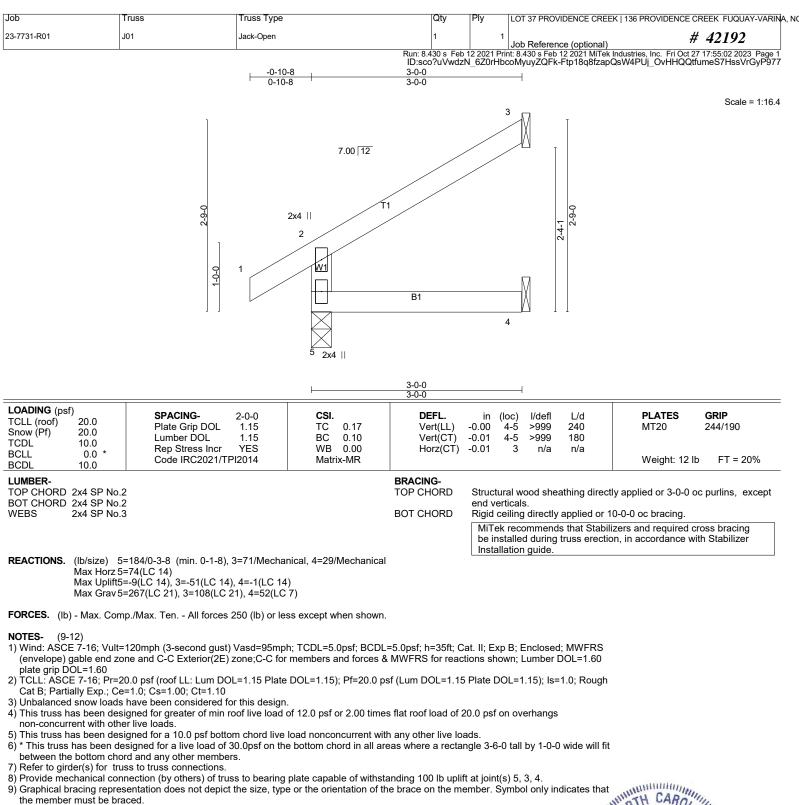
Mark Morris, P.E.

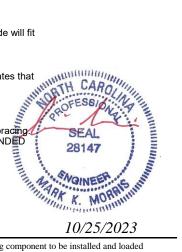
#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 42192 JOB: 23-7731-R01 JOB NAME: LOT 37 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. *31 Truss Design(s)*


Trusses:

J01, M02, M03, M05, M07, M08, P01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R19B, R20, R21, R22, V01


Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 12) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

LOAD CASE(S) Standard

lob	Truss	Truss Type		Qty	Ply LOT 37 P	ROVIDENCE CREEP	(136 PROVIDENCE	CREEK FUQUAY-VARIN
23-7731-R01	M02	ROOF SPECIAL		8	1	((° 1)	Ŧ	# 42192
				Run: 8.430 s Feb	12 2021 Print: 8 430 s	erence (optional) Feb 12 2021 MiTek li	adustries Inc. Fri Oct.	27 17:55:03 2023 Page 1
	-0-10-8	1	2-7-8	3		3-8-0		PiV4CGWWb2OiyP976
	0-10-8	1	2-7-8	3	I	1-0-8	I	
					5x5 =			Scale = 1:9.8
[3		2x4	
			4.00 12	_			4	
						10 T2		Т
						10 12		
4								
-0-1-5-4	2		T1		W1		W3	ę
1-2-0	1					\ W2 \		1-2-0
1								
0-6-12				B1	'+•†'			
							X	
		$\overline{\mathbf{N}}$			6		5	
		\square			2x4			
		$ \times $					3x6 =	
		214						
		3x4 =						
		L	2-7-8			3-8-0		
			2-7-8	3		1-0-8	1	
OADING (psf) CLL (roof) 40.0	SPACING-	2-0-0	CSI.	DEFL.	in (loc) I/de		PLATES	GRIP
now (Pf) 20.0	Plate Grip DOL Lumber DOL	1.00 1.00	TC 0.22 BC 0.12	Vert(LL) Vert(CT)	-0.00 9 >99 -0.00 6 >99		MT20	244/190
CDL 10.0 CLL 0.0 *	Rep Stress Incr Code IRC2021/TI	NO DI2014	WB 0.10 Matrix-MP	Horz(CT)	0.00 5 n 0.00 9 >99	/a n/a 19 240	Woight: 10	lb FT = 20%
CDL 10.0		-12014		Wind(LL)	0.00 9 298	9 240	Weight: 19	ID FI = 20%
UMBER- OP CHORD 2x6 SP N	lo 2 *Except*			BRACING- TOP CHORD	Structural wood	sheathing directly	applied or 2-7-8	oc purlins, except
T2: 2x4 S	SP No.2				end verticals.			oc purmis, except
BOT CHORD 2x4 SP N VEBS 2x4 SP N	lo.2 lo.3 *Except*		I	BOT CHORD	Rigid ceiling dire	,)-0-0 oc bracing. zers and required (araca brasing
W3: 2x4					be installed dur	ing truss erection	n, in accordance v	
	2=247/0-3-8 (min. 0-1-8),	5=415/Mechan	ical		Installation guid	le.		
EACTIONS. (lb/size)								
Max Hor)						
Max Hor Max Gra	v2=344(LC 2), 5=483(LC 2)							
Max Hor Max Gra ORCES. (lb) - Max. C	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces		except when shown.					
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3	v 2=344(LC 2), 5=483(LC 2) omp./Max. Ten All forces 14/0 107, 5-6=0/307		except when shown.					
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3	v 2=344(LC 2), 5=483(LC 2) omp./Max. Ten All forces 14/0 107, 5-6=0/307		except when shown.					
Max Hór Max Gra OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)	v 2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces I4/0 107, 5-6=0/307 25/0	250 (lb) or less						
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live	v 2=344(LC 2), 5=483(LC 2) omp./Max. Ten All forces 14/0 107, 5-6=0/307	250 (Ib) or less	1.	5.0psf; h=35ft; C	at. II; Exp B; Enclo	sed; MWFRS		
Max Hor Max Gra ORCES. (Ib) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considere	250 (Ib) or less d for this desigr Vasd=95mph;	n. TCDL=5.0psf; BCDL=5					
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considere ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m	۱. TCDL=5.0psf; BCDL=5 lembers and forces & M	IWFRS for reac	tions shown; Lumb	er DOL=1.60		
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vt (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P Cat B; Partially Exp.;	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considere ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m DL=1.00 Plate D	۱. TCDL=5.0psf; BCDL=5 lembers and forces & M	IWFRS for reac	tions shown; Lumb	er DOL=1.60		
Max Hor Max Gra ORCES. (Ib) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vu (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Vu (at B; Partially Exp.;) Unbalanced snow loa) This truss has been of	v2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces I4/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m vL=1.00 Plate D or this design.	n. TCDL=5.0psf; BCDL=5 lembers and forces & M OL=1.00); Pf=20.0 psf	IWFRS for reac	tions shown; Lumb Plate DOL=1.15);	er DOL=1.60 Is=1.0; Rough		
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been of non-concurrent with of	v2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces I4/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r	250 (Ib) or less d for this design Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of	n. TCDL=5.0psf; BCDL=5 lembers and forces & M OL=1.00); Pf=20.0 psf	IWFRS for reac	tions shown; Lumb Plate DOL=1.15);	er DOL=1.60 Is=1.0; Rough		
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 VEBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been o non-concurrent with o) Provide adequate dra	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r other live loads. ainage to prevent water pon-	250 (Ib) or less d for this design Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding.	TCDL=5.0psf; BCDL=5 nembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f	IWFRS for reac (Lum DOL=1.15 flat roof load of 2	ions shown; Lumt Plate DOL=1.15); 0.0 psf on overha	er DOL=1.60 Is=1.0; Rough ngs		
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 VEBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been o non-concurrent with o) Provide adequate dra	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r other live loads. ainage to prevent water pon-	250 (Ib) or less d for this design Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding.	TCDL=5.0psf; BCDL=5 nembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f	IWFRS for reac (Lum DOL=1.15 flat roof load of 2	ions shown; Lumt Plate DOL=1.15); 0.0 psf on overha	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	TH CARO	11/17.
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.; Unbalanced snow loa) This truss has been on non-concurrent with on provide adequate dra	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r other live loads. ainage to prevent water pon-	250 (Ib) or less d for this design Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding.	TCDL=5.0psf; BCDL=5 nembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f	IWFRS for reac (Lum DOL=1.15 flat roof load of 2	ions shown; Lumt Plate DOL=1.15); 0.0 psf on overha	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	TH CAROL	
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13) Unbalanced roof live Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.; Unbalanced snow loa) This truss has been on non-concurrent with of Provide adequate dra	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r other live loads. ainage to prevent water pon-	250 (Ib) or less d for this design Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding.	TCDL=5.0psf; BCDL=5 nembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f	IWFRS for reac (Lum DOL=1.15 flat roof load of 2	ions shown; Lumt Plate DOL=1.15); 0.0 psf on overha	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	TH CARO	
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 VEBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been o non-concurrent with o) Provide adequate dra	v2=344(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r other live loads. ainage to prevent water pon-	250 (Ib) or less d for this design Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding.	TCDL=5.0psf; BCDL=5 nembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f	IWFRS for reac (Lum DOL=1.15 flat roof load of 2	ions shown; Lumt Plate DOL=1.15); 0.0 psf on overha	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	TH CARO ROFESSION SEAL	
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 VEBS 3-5=-42 IOTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; V((envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P(Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been o) This truss has been	v2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min r other live loads. ainage to prevent water pon- designed for a 10.0 psf botto of designed for a 10.0 psf botto to designed for a 10.0 psf botto thord and any other membe truss to truss connections. , 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 4, 2, 43, 44, 45, 46, 47, 48 for the intended use of this sonnection device(s) shall b n of such connection device	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding. m chord live lo 30.0psf on the l rs. 13, 14, 15, 16, s, 49, 50, 51, 52 truss. e provided suffi (s) is the respo	TCDL=5.0psf; BCDL=5 iembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f ad nonconcurrent with a bottom chord in all area 17, 18, 19, 20, 21, 22, 2 has/have been modifie cient to support concen nsibility of others.	IWFRS for reac (Lum DOL=1.15 flat roof load of 2 any other live loa is where a rectar 23, 24, 25, 26, 2 ad. Building desi ttrated load(s) 26	tions shown; Lumb Plate DOL=1.15); 0.0 psf on overha ads. ngle 3-6-0 tall by 1 7, 28, 29, 30, 31, 3 gner must review b 30 lb down at 2-9-	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	SEAL 28147	JIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 VEBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; P Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been o) This trus has been o) This truss has been o	v2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces I4/0 107, 5-6=0/307 25/0 loads have been considered ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ds have been considered fi designed for greater of min n ther live loads. ainage to prevent water pom designed for a 10.0 psf botto designed for a 10.0 psf botto chord and any other membe truss to truss connections. , 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 42, 43, 44, 45, 46, 47, 48 for the intended use of this connection device(s) shall bo	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m PL=1.00 Plate D or this design. oof live load of ding. m chord live lo 30.0psf on the l rs. 13, 14, 15, 16, s, 49, 50, 51, 52 truss. e provided suffi (s) is the respo	TCDL=5.0psf; BCDL=5 iembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f ad nonconcurrent with a bottom chord in all area 17, 18, 19, 20, 21, 22, 2 has/have been modifie cient to support concen nsibility of others.	IWFRS for reac (Lum DOL=1.15 flat roof load of 2 any other live loa is where a rectar 23, 24, 25, 26, 2 ad. Building desi ttrated load(s) 26	tions shown; Lumb Plate DOL=1.15); 0.0 psf on overha ads. ngle 3-6-0 tall by 1 7, 28, 29, 30, 31, 3 gner must review b 30 lb down at 2-9-	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	SEAL 28147	and the second se
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 /EBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Vi (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been of non-concurrent with of) Provide adequate dra 0 nor-concurrent with of) Provide adequate dra 0 This truss has been of non-concurrent with of) Provide adequate dra 0 Nefer to girder(s) for 0) Load case(s) 1, 2, 3 36, 37, 38, 39, 40, 4 that they are correct 1) Hanger(s) or other of The design/selection 2) In the LOAD CASE(v2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces I4/0 107, 5-6=0/307 25/0 loads have been considere- ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ds have been considered fi designed for greater of min r other live loads. ainage to prevent water pon- designed for a 10.0 psf botto designed for a live load of chord and any other membe truss to truss connections. , 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 42, 43, 44, 45, 46, 47, 48 for the intended use of this connection device(s) shall be n of such connection devices S) section, loads applied to rd	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m DL=1.00 Plate D or this design. toof live load of ding. m chord live lo 30.0psf on the l rs. 13, 14, 15, 16, 5, 49, 50, 51, 52 truss. e provided suffi (s) is the respo the face of the	n. TCDL=5.0psf; BCDL=5 lembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f ad nonconcurrent with a bottom chord in all area 17, 18, 19, 20, 21, 22, 2 has/have been modifie cient to support concen nsibility of others. truss are noted as front	IWFRS for reac (Lum DOL=1.15 flat roof load of 2 any other live loa is where a rectar 23, 24, 25, 26, 2 ad. Building desi ttrated load(s) 26	tions shown; Lumb Plate DOL=1.15); 0.0 psf on overha ads. ngle 3-6-0 tall by 1 7, 28, 29, 30, 31, 3 gner must review b 30 lb down at 2-9-	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	SEAL 28147	A MARKEN AND A MARKAN AND AND AND AND AND AND AND AND AND A
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-34 OT CHORD 2-6=0/3 VEBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vt (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Pt Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been of non-concurrent with of) Provide adequate dra (D) Provide adequate dra (D) Totik truss has been of non-concurrent with of) Provide adequate dra (D) Totik truss has been of non-concurrent with of) Provide adequate dra (D) Provide adequate dra (D) Provide adequate dra (D) Provide adequate dra (D) Cad case(s) 1, 2, 3 (a, 37, 38, 39, 40, 4 that they are correct (D) Hanger(s) or other of The design/selection 2) In the LOAD CASE(OAD CASE(S) Standa	v2=34 $\dot{4}$ (LC 2), 5=483(LC 2 omp./Max. Ten All forces 14/0 107, 5-6=0/307 25/0 loads have been considere- ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered for designed for greater of min ro ther live loads. ainage to prevent water pom designed for a 10.0 psf botto designed for a live load of thotal and any other membe truss to truss connections. , 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 42, 43, 44, 45, 46, 47, 48 for the intended use of this connection device(s) shall bin n of such connection devices S) section, loads applied to	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m DL=1.00 Plate D or this design. toof live load of ding. m chord live lo 30.0psf on the l rs. 13, 14, 15, 16, 5, 49, 50, 51, 52 truss. e provided suffi (s) is the respo the face of the	n. TCDL=5.0psf; BCDL=5 lembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f ad nonconcurrent with a bottom chord in all area 17, 18, 19, 20, 21, 22, 2 has/have been modifie cient to support concen nsibility of others. truss are noted as front	IWFRS for reac (Lum DOL=1.15 flat roof load of 2 any other live loa is where a rectar 23, 24, 25, 26, 2 ad. Building desi ttrated load(s) 26	tions shown; Lumb Plate DOL=1.15); 0.0 psf on overha ads. ngle 3-6-0 tall by 1 7, 28, 29, 30, 31, 3 gner must review b 30 lb down at 2-9-	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	SEAL 28147	A A A A A A A A A A A A A A A A A A A
Max Hor Max Gra ORCES. (lb) - Max. C OP CHORD 2-3=-32 OT CHORD 2-6=0/3 VEBS 3-5=-42 OTES- (13)) Unbalanced roof live) Wind: ASCE 7-16; Vt (envelope) gable end plate grip DOL=1.60) TCLL: ASCE 7-16; Pt Cat B; Partially Exp.;) Unbalanced snow loa) This truss has been of) Load case(s) 1, 2, 3 36, 37, 38, 39, 40, 4 that they are correct The design/selection 2) In the LOAD CASE(OAD CASE(S) Standa) Dead + Snow (balance Uniform Loads (plf)	v2=34À(LC 2), 5=483(LC 2 omp./Max. Ten All forces I4/0 107, 5-6=0/307 25/0 loads have been considere- ult=120mph (3-second gust) zone and C-C Exterior(2E) r=40.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10 ds have been considered fi designed for greater of min r other live loads. ainage to prevent water pon- designed for a 10.0 psf botto designed for a live load of chord and any other membe truss to truss connections. , 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 42, 43, 44, 45, 46, 47, 48 for the intended use of this connection device(s) shall be n of such connection devices S) section, loads applied to rd	250 (Ib) or less d for this desigr Vasd=95mph; zone;C-C for m DL=1.00 Plate D or this design. toof live load of ding. m chord live lo 30.0psf on the l rs. 13, 14, 15, 16, 5, 49, 50, 51, 52 truss. e provided suffi (s) is the respo the face of the	n. TCDL=5.0psf; BCDL=5 lembers and forces & M OL=1.00); Pf=20.0 psf 12.0 psf or 2.00 times f ad nonconcurrent with a bottom chord in all area 17, 18, 19, 20, 21, 22, 2 has/have been modifie cient to support concen nsibility of others. truss are noted as front	IWFRS for reac (Lum DOL=1.15 flat roof load of 2 any other live loa is where a rectar 23, 24, 25, 26, 2 ad. Building desi ttrated load(s) 26	tions shown; Lumb Plate DOL=1.15); 0.0 psf on overha ads. ngle 3-6-0 tall by 1 7, 28, 29, 30, 31, 3 gner must review b 30 lb down at 2-9-	er DOL=1.60 Is=1.0; Rough ngs -0-0 wide will fit	SEAL 28147	223

Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVID	ENCE CREEK FUQUAY-VARIN
23-7731-R01	M02	ROOF SPECIAL	8	1	Job Reference (optional)	# 42192
		Run: 8. ID:scc	430 s Feb ?uVwdzN	12 2021 Pri 6Z0rHbc	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. F coMyuyZQFk-BGwnZV9vVB385pDob80s3	Fri Oct 27 17:55:04 2023 Page 2 MI7gLxEXSQkALcw8yP975

ID:sco?uVwdzN_6Z0rHbcoMyuyZQFk-BGwnZV9vVB385pDob80s?iMI7gLxEXSQkALcw8yP97

Concentrated Loads (Ib)	
Vert: 10=-260(F) 2) Dead + Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf)	
Vert: 1-3=-100, 5-7=-20, 3-4=-180(F=-80)	
Concentrated Loads (lb)	
Vert: 10=-260(F)	
3) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00	
Uniform Loads (plf) Vert: 1-3=-80, 5-7=-20, 3-4=-160(F=-80)	
Concentrated Loads (lb)	
Vert: 10=-260(F)	
4) Dead + 0.75 Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-50, 5-7=-20, 3-4=-130(F=-80)	
Concentrated Loads (lb)	
Vert: 10=-260(F) 5) Dead + 0.75 Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-57, 5-7=-20, 3-4=-109(F=-80)	
Concentrated Loads (lb)	
Vert: 10=-260(F)	
6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf) Not: $1.2 = 20.5.7 = 20.2.4 = 141(E = 80)$	
Vert: 1-3=-29, 5-7=-20, 3-4=-141(F=-80) Concentrated Loads (lb)	
Vert: 10=-260(F)	
7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25	
Úniform Loads (plf)	
Vert: 1-3=-20, 5-7=-40, 3-4=-100(F=-80)	
Concentrated Loads (lb)	
Vert: 10=-260(F) 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=67, 2-3=58, 5-7=-10, 3-4=-22(F=-80)	
Horz: 1-2=-77, 2-3=-68, 3-4=68	
Concentrated Loads (Ib)	
Vert: 10=-260(F)	
9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=-1, 2-3=-44, 5-7=-20, 3-4=-124(F=-80)	
Horz: 1-2=-19, 2-3=24, 3-4=-24	
Concentrated Loads (lb)	
Vert: 10=-260(F)	
10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=36, 2-3=24, 5-7=-10, 3-4=-56(F=-80) Horz: 1-2=-46, 2-3=-34, 3-4=34	
Concentrated Loads (lb)	
Vert: 10=-260(F)	
11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=9, 2-3=13, 5-7=-10, 3-4=-56(F=-80)	
Horz: 1-2=-19, 2-3=-23, 3-4=34 Concentrated Loads //b)	
Concentrated Loads (lb) Vert: 10=-260(F)	
12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=9, 2-3=5, 5-7=-20, 3-4=-75(F=-80)	
Horz: 1-2=-29, 2-3=-25, 3-4=25	
Concentrated Loads (lb)	
Vert: 10=-260(F) 13) Dead + 0.6 MWERS Wind (Neg. Internal) Right: Lumber Increase=1.60 Plate Increase=1.60	
13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)	
Vert: 1-2=-1, 2-3=-6, 5-7=-20, 3-4=-75(F=-80)	
Horz: 1-2=-19, 2-3=-14, 3-4=25	
Concentrated Loads (lb)	111
Vert: 10=-260(F)	Inn
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=19, 2-3=24, 5-7=-10, 3-4=-70(F=-80)	
Horz: $1_{2}=29$ $2_{3}=34$ $3_{4}=20$	
Horz: 1-2=-29, 2-3=-34, 3-4=20 Concentrated Loads (lb)	111
Horz: 1-2=-29, 2-3=-34, 3-4=20 Concentrated Loads (lb) Vert: 10=-260(F) 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	

LOAD CASE(S) Standard

10/25/2023

Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDENCE CREEK FUQUAY-VARI	NA, NC
23-7731-R01	M02	ROOF SPECIAL	8		Job Reference (optional) # 42192	

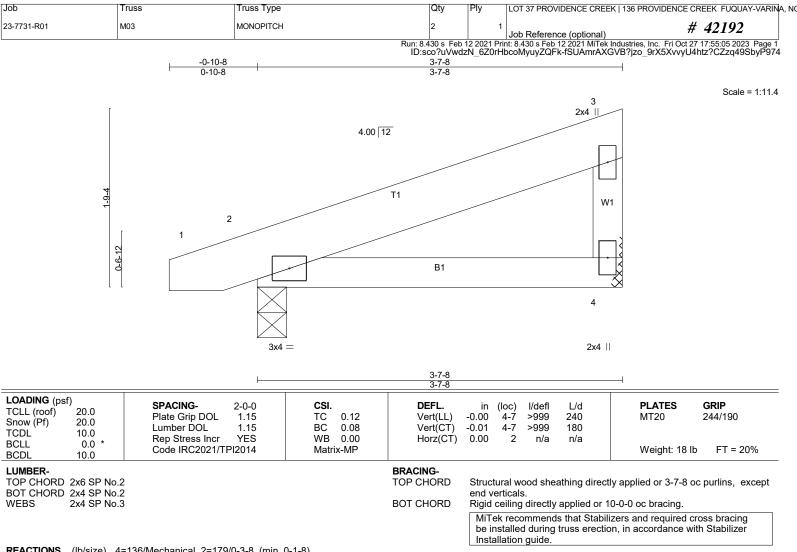
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Oct 27 17:55:04 2023 Page 3 ID:sco?uVwdzN_6Z0rHbcoMyuyZQFk-BGwnZV9vVB385pDob80s?iMI7gLxEXSQkALcw8yP975

LOAD CASE(S) Standard	
Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 5-7=-10, 3-4=-70(F=-80)	
Horz: 1-2=-5, 2-3=-20, 3-4=20	
Concentrated Loads (lb)	
Vert: 10=-260(F) 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, I	Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=19, 2-3=24, 5-7=-10, 3-4=-70(F=-80) Horz: 1-2=-29, 2-3=-34, 3-4=20	
Concentrated Loads (lb)	
Vert: 10=-260(F) 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, I	Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=5, 2-3=10, 5-7=-10, 3-4=-70(F=-80)	
Horz: 1-2=-15, 2-3=-20, 3-4=20 Concentrated Loads (lb)	
Vert: 10=-260(F)	
 Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, I Uniform Loads (plf) 	Plate Increase=1.60
Vert: 1-2=9, 2-3=5, 5-7=-20, 3-4=-90(F=-80)	
Horz: 1-2=-29, 2-3=-25, 3-4=10	
Concentrated Loads (lb) Vert: 10=-260(F)	
19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60,	Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 5-7=-20, 3-4=-90(F=-80)	
Horz: 1-2=-15, 2-3=-10, 3-4=10	
Concentrated Loads (lb) Vert: 10=-260(F)	
20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-2=-100, 2-3=-20, 5-7=-20, 3-4=-100(F=-80) Concentrated Loads (lb)	
Vert: 10=-260(F)	
 Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) 	
Vert: 1-3=-69, 5-7=-20, 3-4=-112(F=-80)	
Concentrated Loads (lb) Vert: 10=-260(F)	
22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf) Vert: 1-3=-32, 5-7=-20, 3-4=-155(F=-80)	
Concentrated Loads (Ib)	
Vert: 10=-260(F)	
23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf)	
Vert: 1-3=-20, 5-7=-20, 3-4=-100(F=-80)	
Concentrated Loads (lb) Vert: 10=-260(F)	
24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Incr	ease=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-28, 2-3=-32, 5-7=-20, 3-4=-112(F=-80)	
Horz: 1-2=-22, 2-3=-18, 3-4=18	
Concentrated Loads (lb) Vert: 10=-260(F)	
25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Ind	crease=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-36, 2-3=-40, 5-7=-20, 3-4=-112(F=-80)	
Horz: 1-2=-14, 2-3=-10, 3-4=18	
Concentrated Loads (lb)	
Vert: 10=-260(F) 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lum	ber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-28, 2-3=-32, 5-7=-20, 3-4=-123(F=-80) Horz: 1-2=-22, 2-3=-18, 3-4=7	
Concentrated Loads (lb)	
Vert: 10=-260(F) 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lun	ober Increase=1.60. Plate Increase=1.60
Uniform Loads (plf)	iber increase= 1.00, Flate increase= 1.00
Vert: 1-2=-39, 2-3=-43, 5-7=-20, 3-4=-123(F=-80)	
Horz: 1-2=-11, 2-3=-7, 3-4=7 Concentrated Loads (lb)	
Vert: 10=-260(F)	
28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Uniform Loads (plf)	Increase=1.60, Plate Increase=1.60
Vert: 1-2=-58, 2-3=-62, 5-7=-20, 3-4=-142(F=-80)	
Horz: 1-2=-22, 2-3=-18, 3-4=18	

Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK	136 PROVIDENCE CREEK FUQUAY-VARIN	۹, NC
23-7731-R01	M02	ROOF SPECIAL	8	1	Job Reference (optional)	# 42192	

Run: 8.430 s. Feb 12 2021 Print: 8.430 s.Feb 12 2021 Mi Lek Industries, Inc. Fri Oct 27 17:55:04 2023. Page 4 ID:sco?uVwdzN_6Z0rHbcoMyuyZQFk-BGwnZV9vVB385pDob80s?iMI7gLxEXSQkALcw8yP975.

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 10=-260(F) 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-66, 2-3=-70, 5-7=-20, 3-4=-142(F=-80) Horz: 1-2=-14, 2-3=-10, 3-4=18 Concentrated Loads (lb) Vert: 10=-260(F 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-58, 2-3=-62, 5-7=-20, 3-4=-153(F=-80) Horz: 1-2=-22, 2-3=-18, 3-4=7 Concentrated Loads (lb) Vert: 10=-260(F) 31) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-69, 2-3=-73, 5-7=-20, 3-4=-153(F=-80) Horz: 1-2=-11, 2-3=-7, 3-4=7 Concentrated Loads (lb) Vert: 10=-260(F) 32) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 5-7=-20, 3-4=-140(F=-80) Concentrated Loads (lb) Vert: 10=-260(F 33) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 5-7=-10, 3-4=-106(F=-80) Horz: 1-2=-16, 2-3=16, 3-4=-16 Concentrated Loads (lb) Vert: 10=-260(F) 34) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=6, 5-7=-10, 3-4=-74(F=-80) Horz: 1-3=-16, 3-4=16 Concentrated Loads (lb) Vert: 10=-260(F) 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 5-7=-20, 3-4=-174(F=-80) Concentrated Loads (lb) Vert: 10=-260(F) 36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-94, 5-7=-20, 3-4=-112(F=-80) Concentrated Loads (lb) Vert: 10=-260(F 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 5-7=-20, 3-4=-155(F=-80) Concentrated Loads (lb) Vert: 10=-260(F 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-75, 5-7=-20, 3-4=-109(F=-80) Concentrated Loads (lb) Vert: 10=-260(F 39) 7th Unbal.Dead + 0.75 Śnow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 60 SEAL 28147 C. MORREEN C. MORRE Uniform Loads (plf) Vert: 1-2=-7, 2-3=-11, 5-7=-20, 3-4=-137(F=-80) Horz: 1-2=-22, 2-3=-18, 3-4=18 Concentrated Loads (lb) Vert: 10=-260(F) 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-53, 2-3=-57, 5-7=-20, 3-4=-91(F=-80) Horz: 1-2=-22, 2-3=-18, 3-4=18 Concentrated Loads (lb) Vert: 10=-260(F 41) 9th Unbal.Dead + 0.75 Śnow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase= ANARA Uniform Loads (plf) Vert: 1-2=-15, 2-3=-19, 5-7=-20, 3-4=-137(F=-80) Horz: 1-2=-14, 2-3=-10, 3-4=18 Concentrated Loads (lb) Vert: 10=-260(F)


Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136	PROVIDENCE CREEK FUQUAY-VARINA, N
23-7731-R01	M02	ROOF SPECIAL	8	.	1 Job Reference (optional)	# 42192
		÷.	Run: 8.430 s Feb 1	2 2021 P	rint: 8.430 s Feb 12 2021 MiTek Industrie	es. Inc. Fri Oct 27 17:55:04 2023 Page 5

ID:sco?uVwdzN_6Z0rHbcoMyuyZQFk-BGwnZV9vVB385pDob80s?iMI7gLxEXSQkALcw8yP975

LOAD CASE(S) Standard 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-3=-65, 5-7=-20, 3-4=-91(F=-80) Horz: 1-2=-14, 2-3=-10, 3-4=18 Concentrated Loads (lb) Vert: 10=-260(F 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-7, 2-3=-11, 5-7=-20, 3-4=-148(F=-80) Horz: 1-2=-22, 2-3=-18, 3-4=7 Concentrated Loads (lb) Vert: 10=-260(F) 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-53, 2-3=-57, 5-7=-20, 3-4=-102(F=-80) Horz: 1-2=-22, 2-3=-18, 3-4=7 Concentrated Loads (lb) Vert: 10=-260(F) 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-3=-22, 5-7=-20, 3-4=-148(F=-80) Horz: 1-2=-11, 2-3=-7, 3-4=7 Concentrated Loads (lb) Vert: 10=-260(F 46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-64, 2-3=-68, 5-7=-20, 3-4=-102(F=-80) Horz: 1-2=-11, 2-3=-7, 3-4=7 Concentrated Loads (lb) Vert: 10=-260(F 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 5-7=-20, 3-4=-174(F=-80) Concentrated Loads (lb) Vert: 10=-260(F) 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-94, 5-7=-20, 3-4=-112(F=-80) Concentrated Loads (lb) Vert: 10=-260(F) 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-3=-100, 5-7=-20, 3-4=-180(F=-80) Concentrated Loads (lb) Vert: 10=-260(F) 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-3=-20, 5-7=-20, 3-4=-180(F=-80) Concentrated Loads (lb) Vert: 10=-260(F 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-3=-80, 5-7=-20, 3-4=-160(F=-80) Concentrated Loads (lb) Vert: 10=-260(F) 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-3=-20, 5-7=-20, 3-4=-160(F=-80) Concentrated Loads (lb) Vert: 10=-260(F)

10/25/2023

REACTIONS. (lb/size) 4=136/Mechanical, 2=179/0-3-8 (min. 0-1-8) Max Horz 2=49(LC 10) Max Uplift4=-33(LC 14), 2=-40(LC 10) Max Grav4=178(LC 21), 2=239(LC 21)

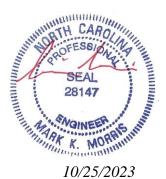
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

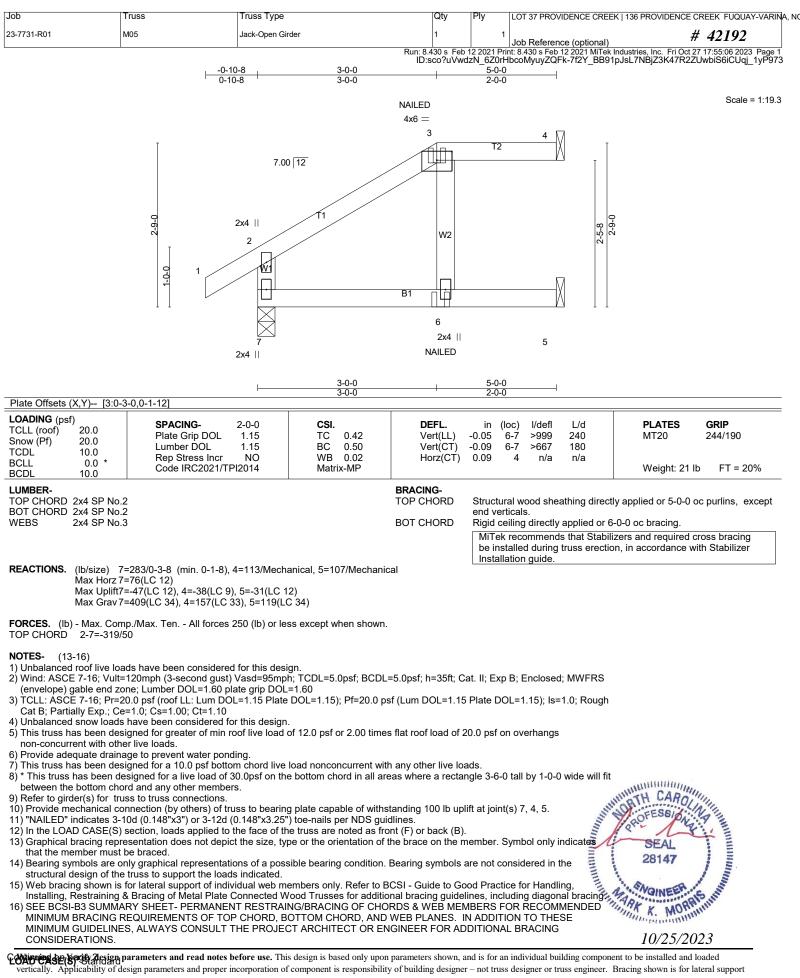
NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

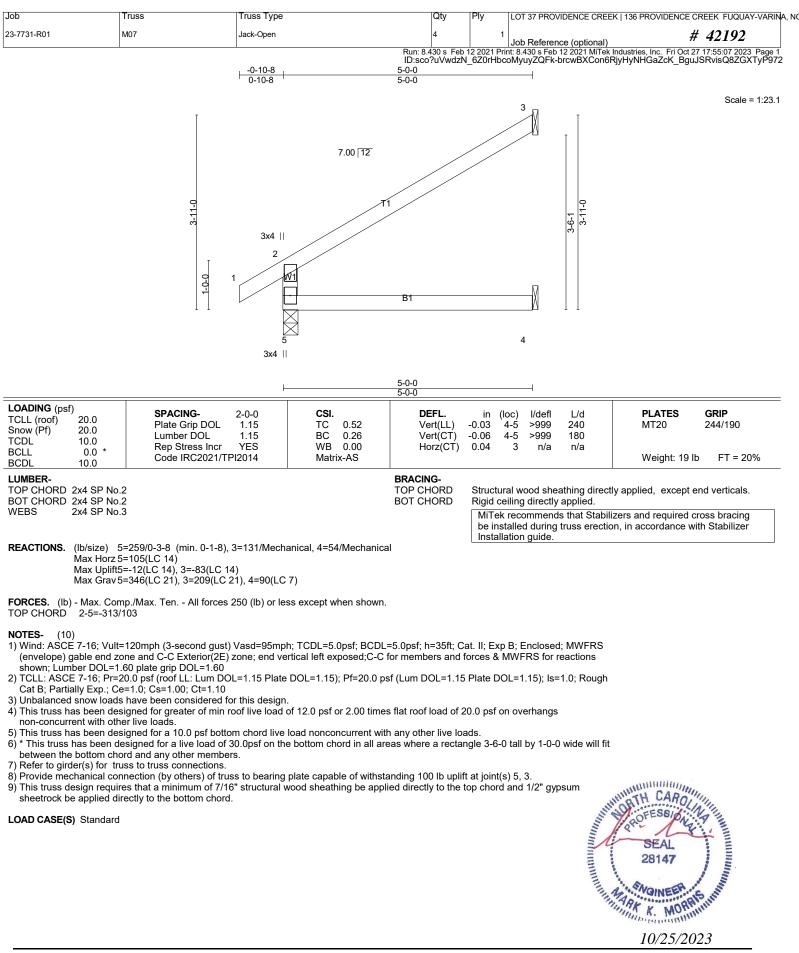

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

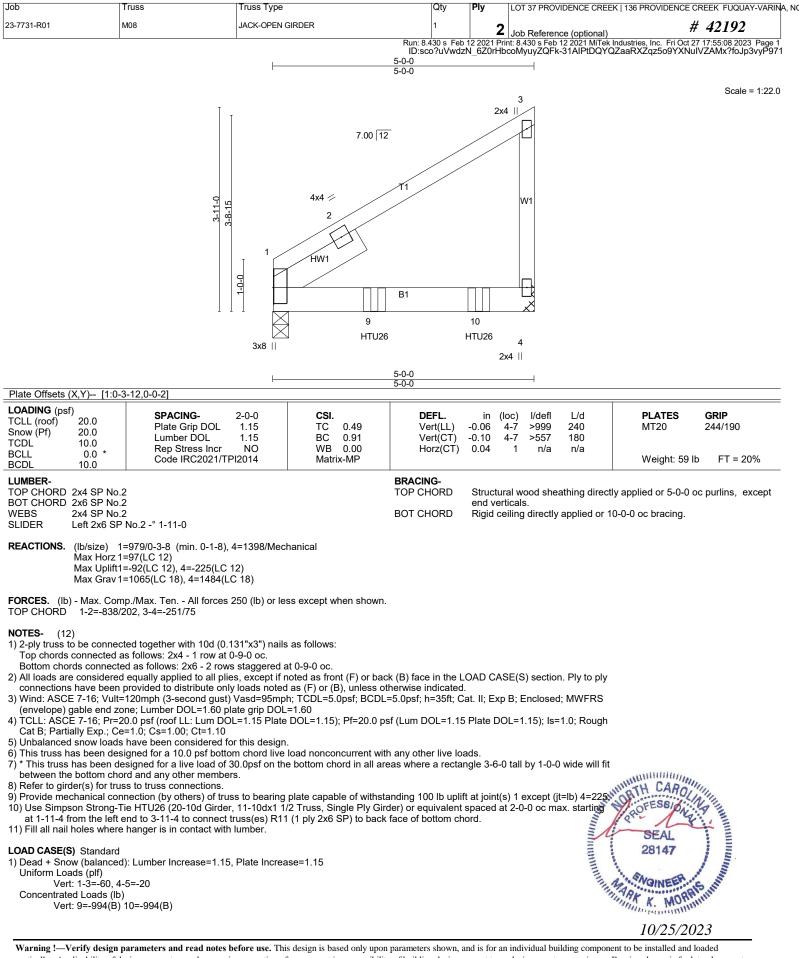

between the bottom chord and any other members.

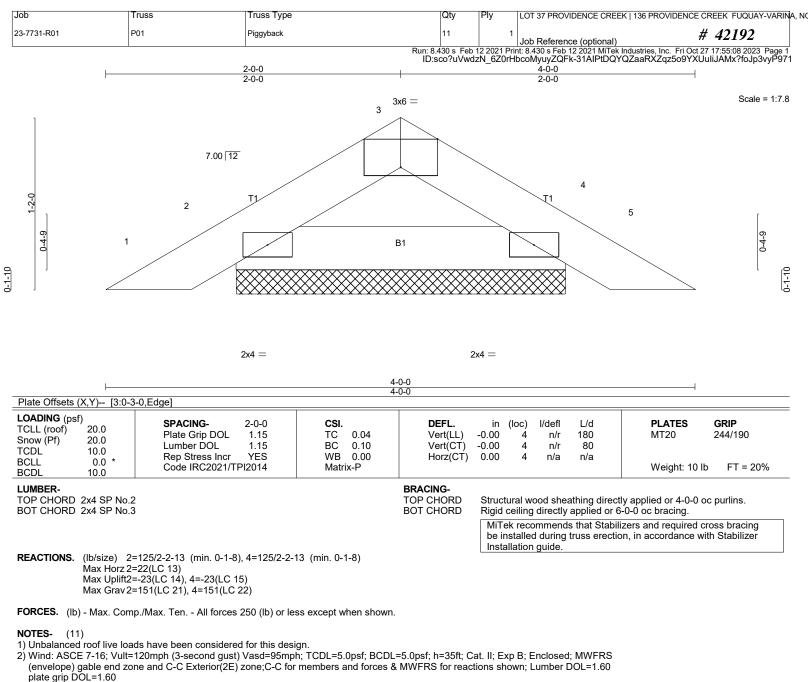
7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

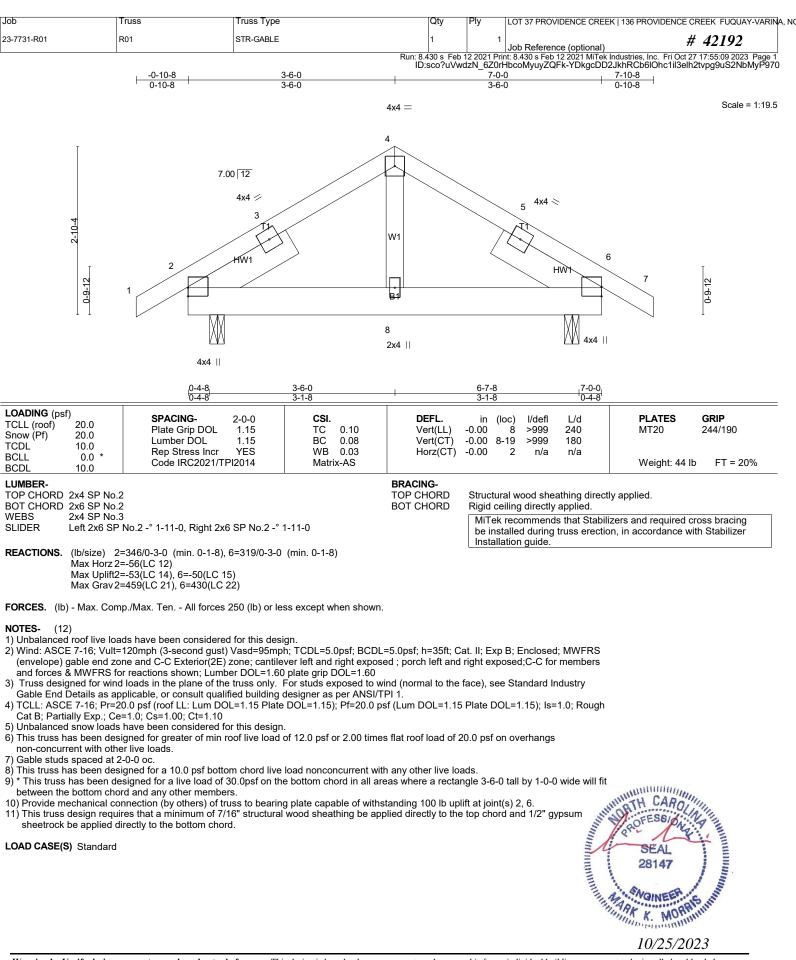
LOAD CASE(S) Standard

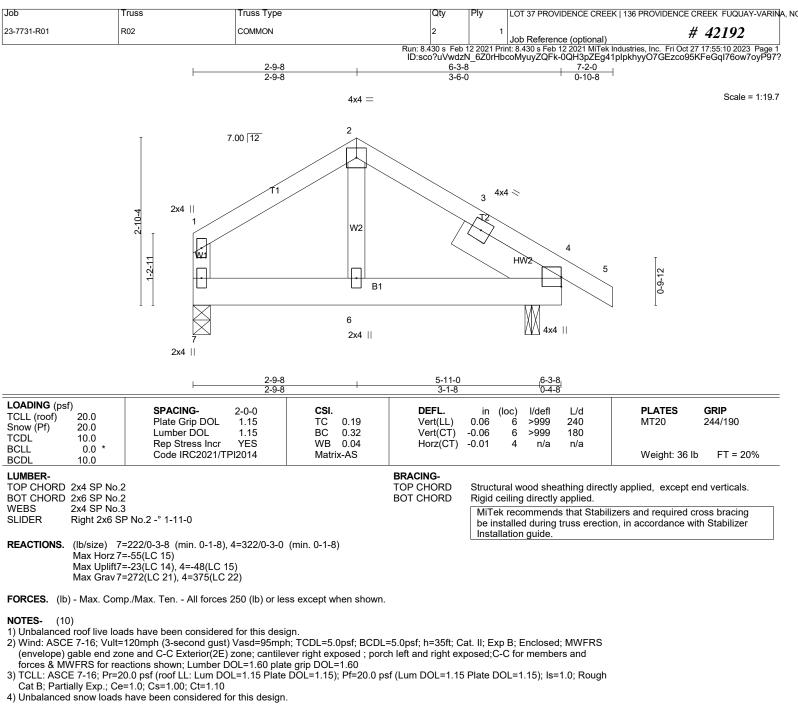

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDENCE CREEK FUQUAY-VARINA, N
23-7731-R01	M05	Jack-Open Girder	1	1	Job Reference (optional) # 42192
					nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Oct 27 17:55:07 2023 Page 2 MyuyZQFk-brcwBXCon6RjyHyNHGaZcK_DJuGqRvMsQ8ZGXTyP972


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 3=-48(F) 6=-11(F)


- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.


LOAD CASE(S) Standard

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

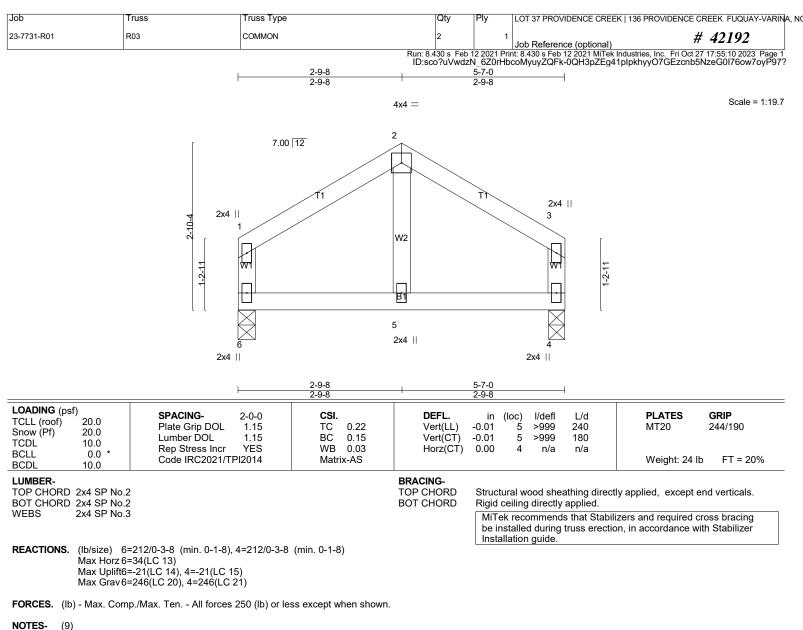
10/25/2023

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

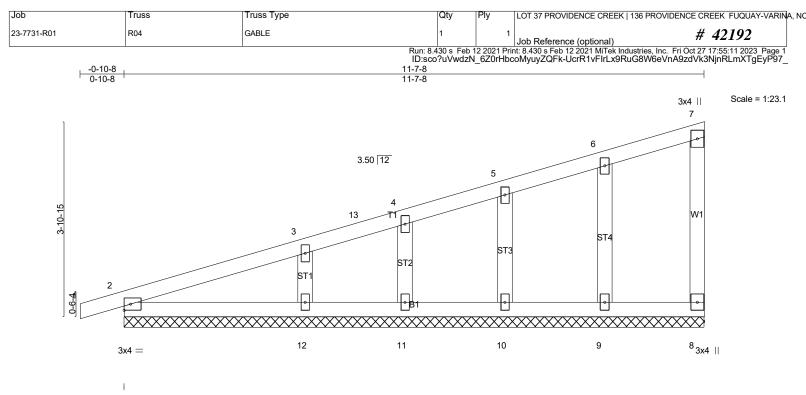
7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10/25/2023

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


LOAD CASE(S) Standard

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

```
LOAD CASE(S) Standard
```

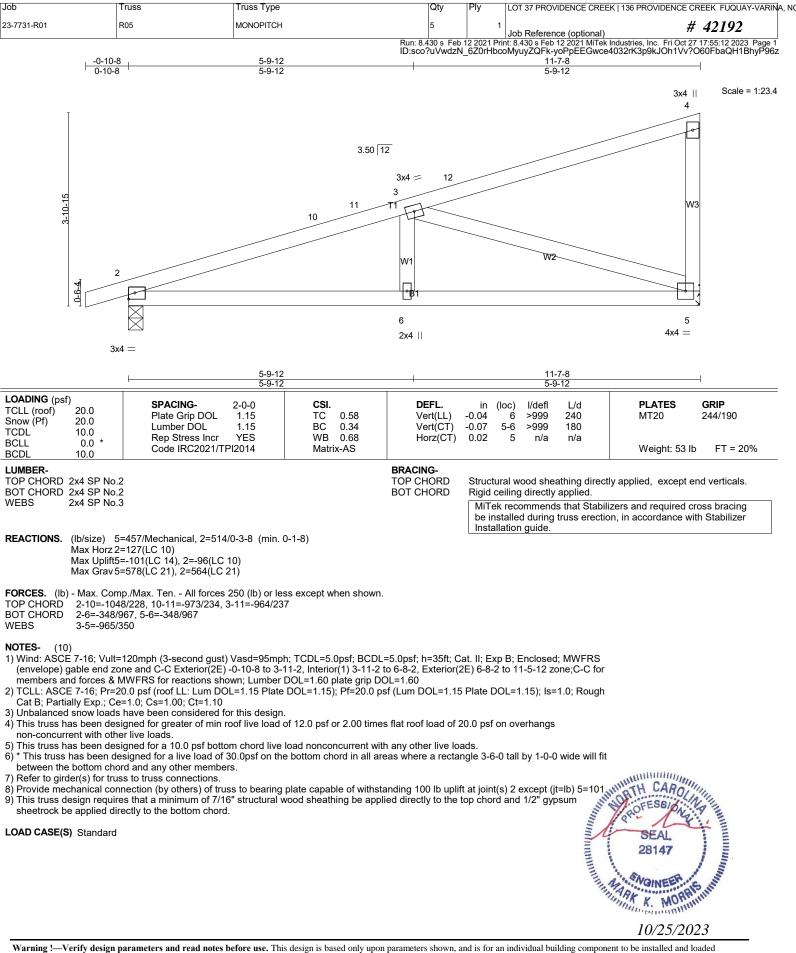

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.14 BC 0.09 WB 0.06 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.00 1 n/r 180 0.00 1 n/r 80 0.00 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 53 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 oc purlins,except 10-0-0 oc bracing.
OTHERS 2x4 SP No.3					ilizers and required cross bracing tion, in accordance with Stabilizer

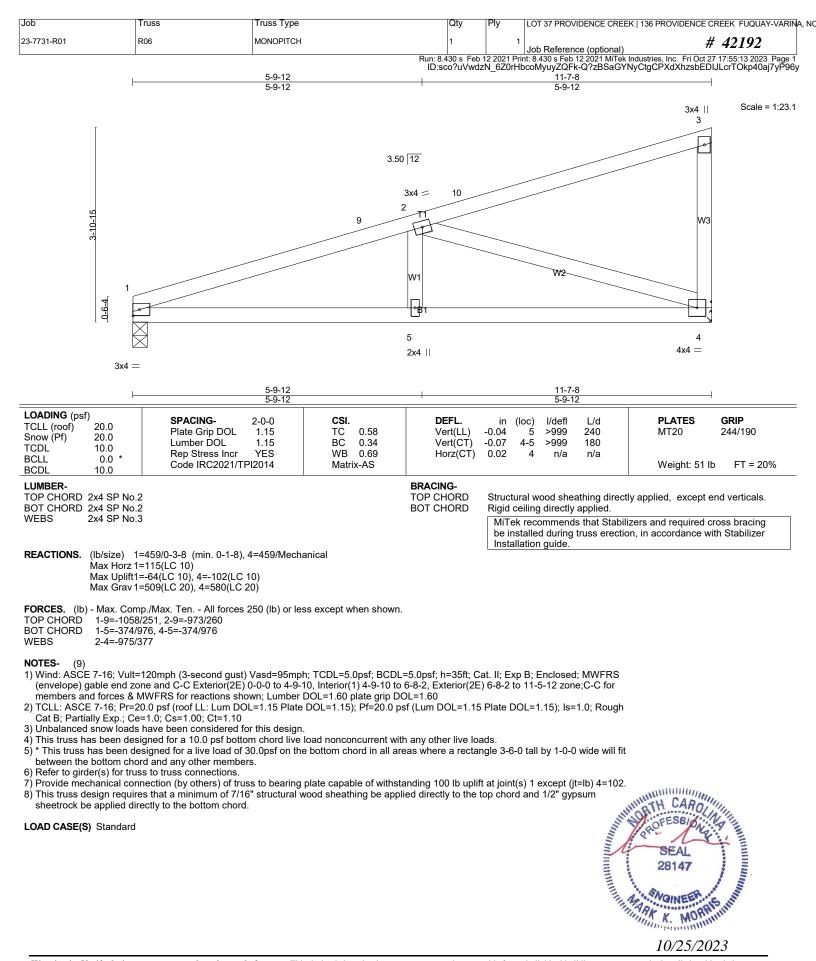
REACTIONS. All bearings 11-7-8.

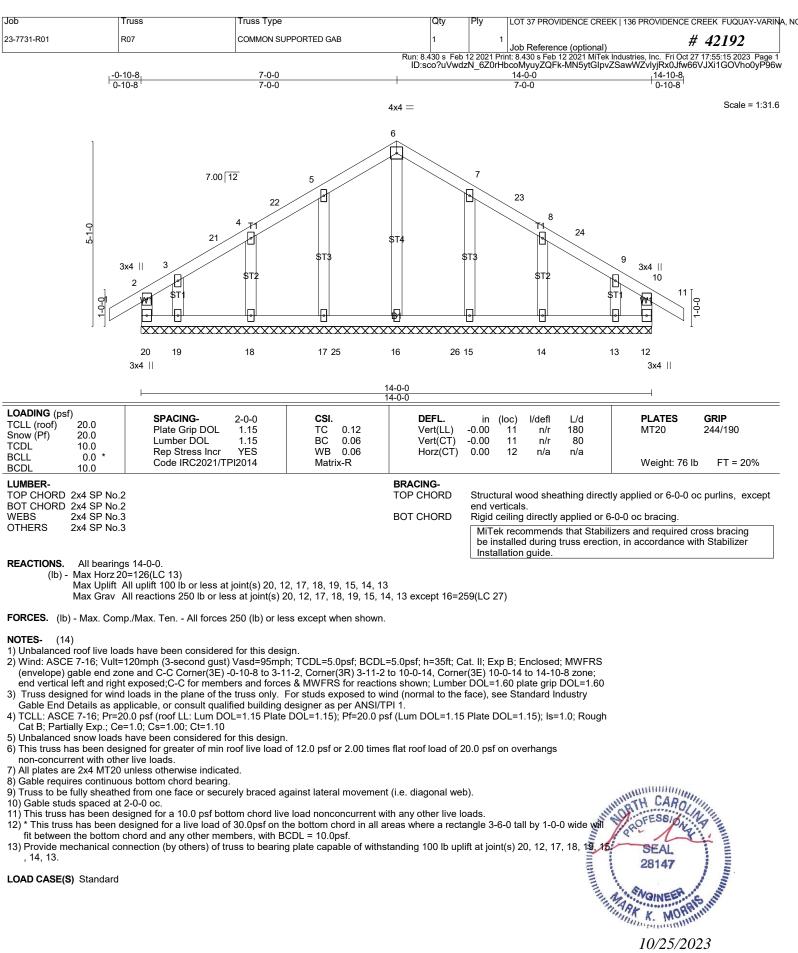
(lb) - Max Horz 2=124(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 9, 10, 11, 12

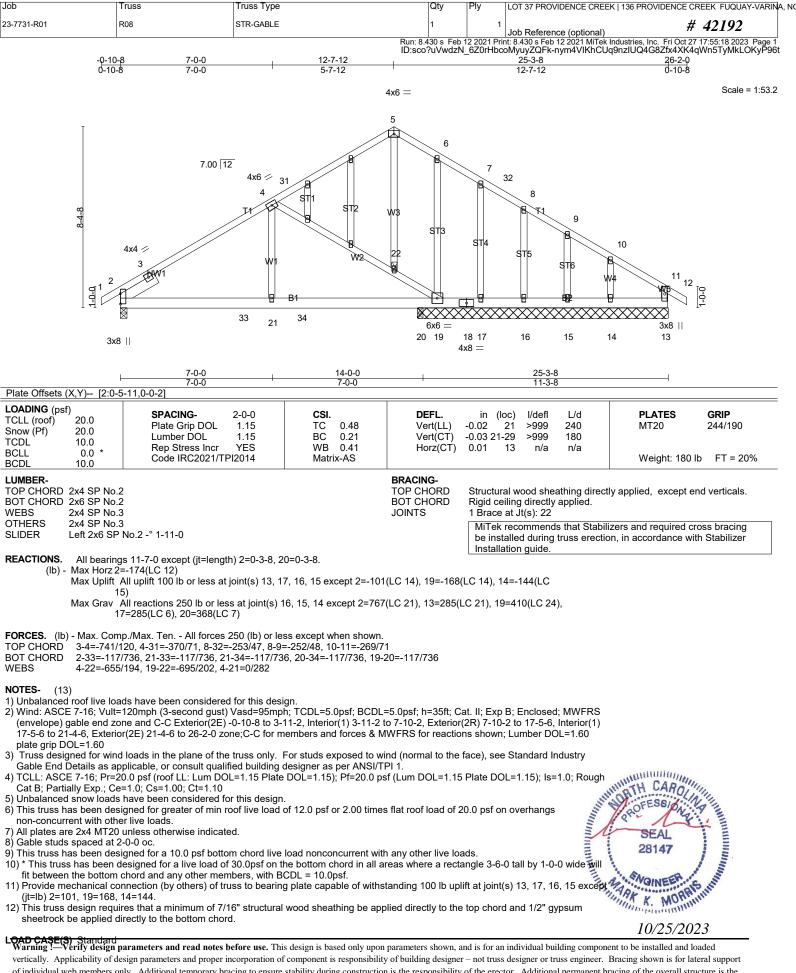
Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11 except 12=284(LC 21)

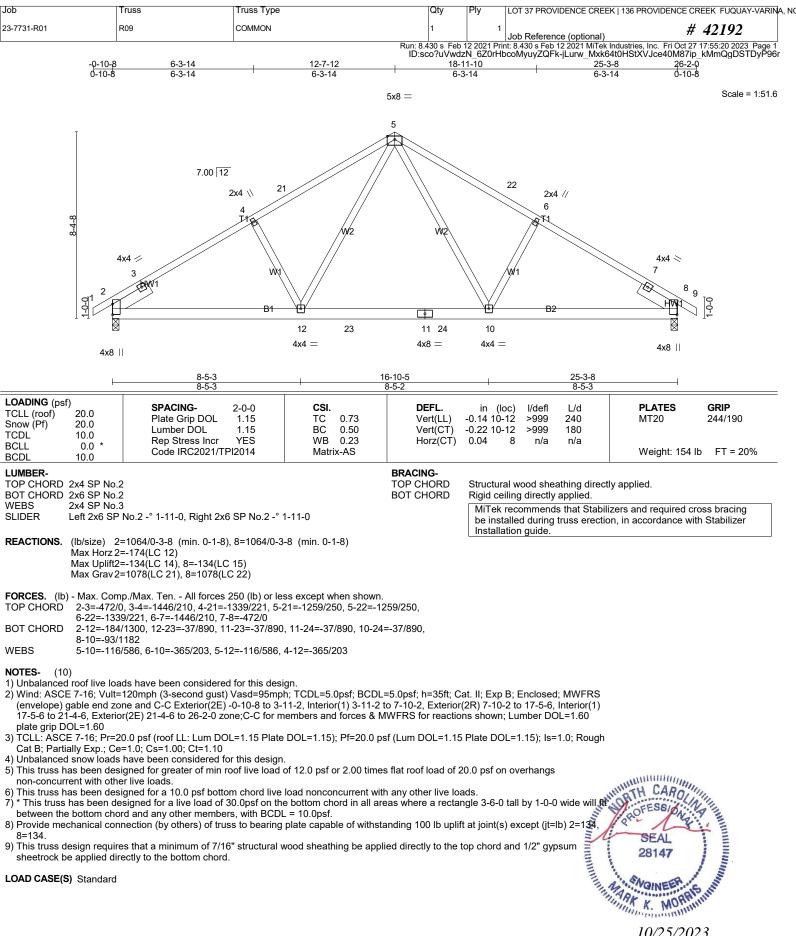

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

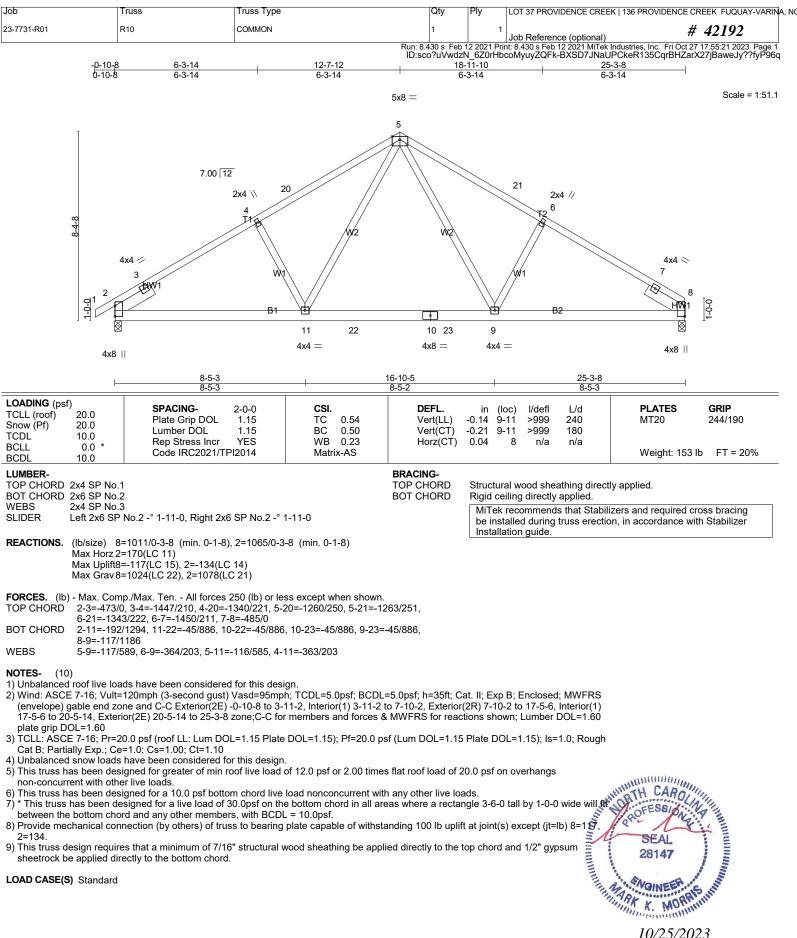

NOTES-

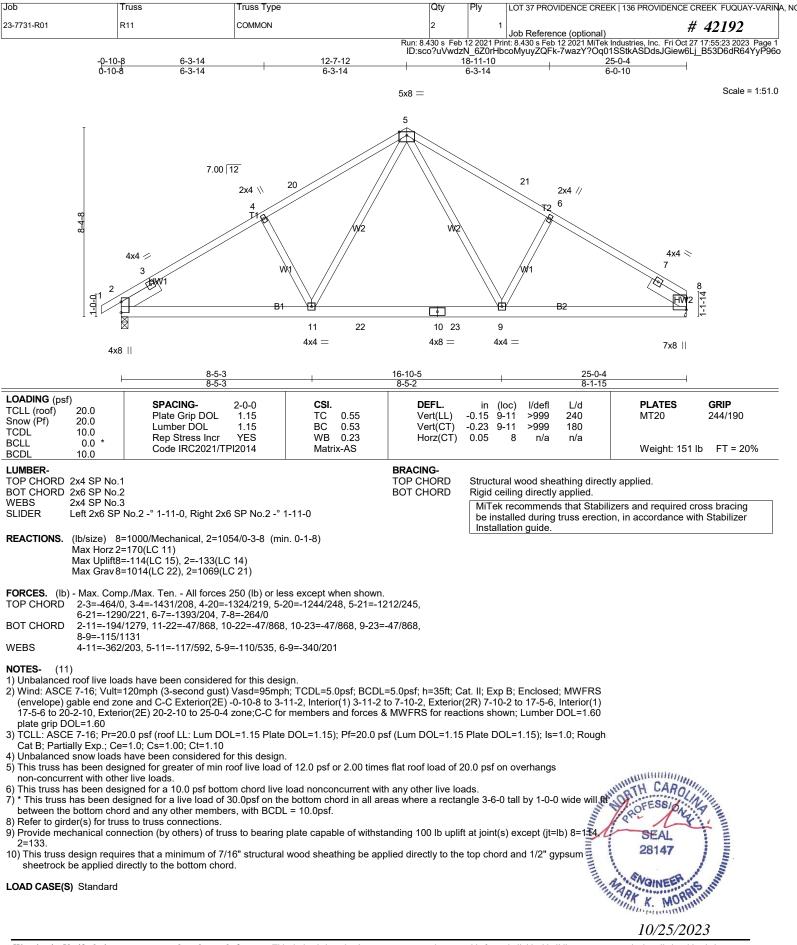

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 6-8-2, Corner(3E) 6-8-2 to 11-5-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.

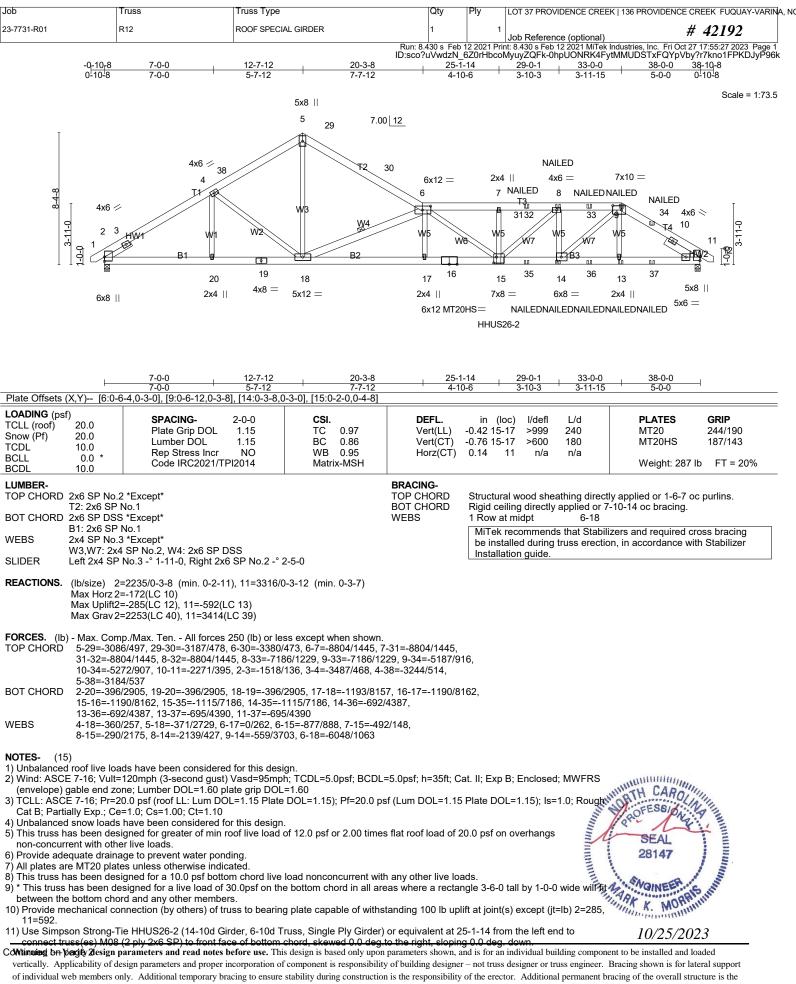
8) Gable studs spaced at 2-0-0 oc.
9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 9, 10, 11, 12
LOAD CASE(S) Standard mannet


10/25/2023




10/25/2023


vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.



10/25/2023

10/25/2023

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVID	ENCE CREEK FUQUAY-VARIN	A, NC
23-7731-R01	R12	ROOF SPECIAL GIRDER	1	1	Job Reference (optional)	# 42192	
					nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. F)rHbcoMyuyZQFk-UtNsbjSzrZ5k_V3P?AS		

NOTES- (15)

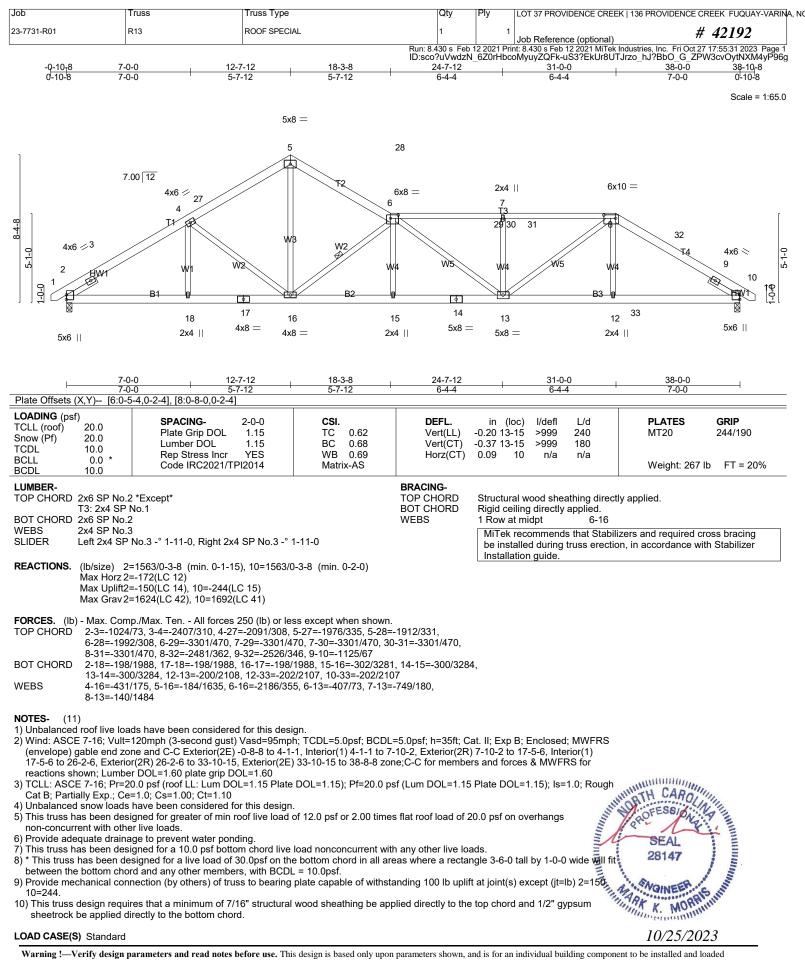
12) Fill all nail holes where hanger is in contact with lumber.

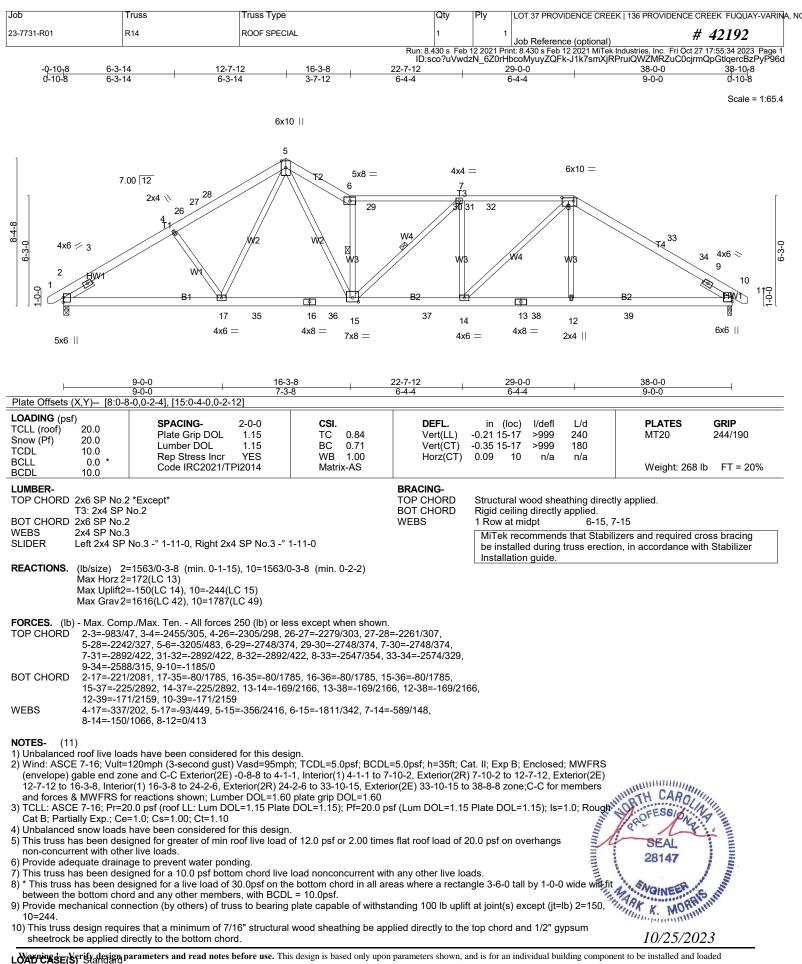
13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

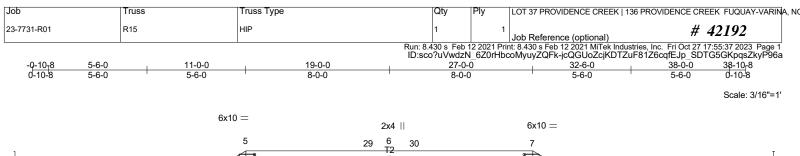
14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

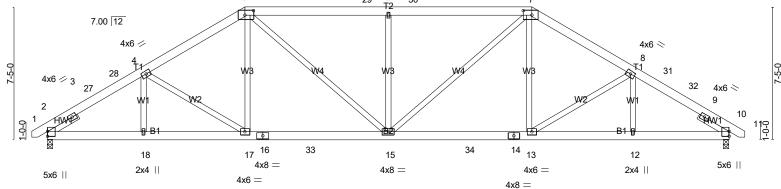
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

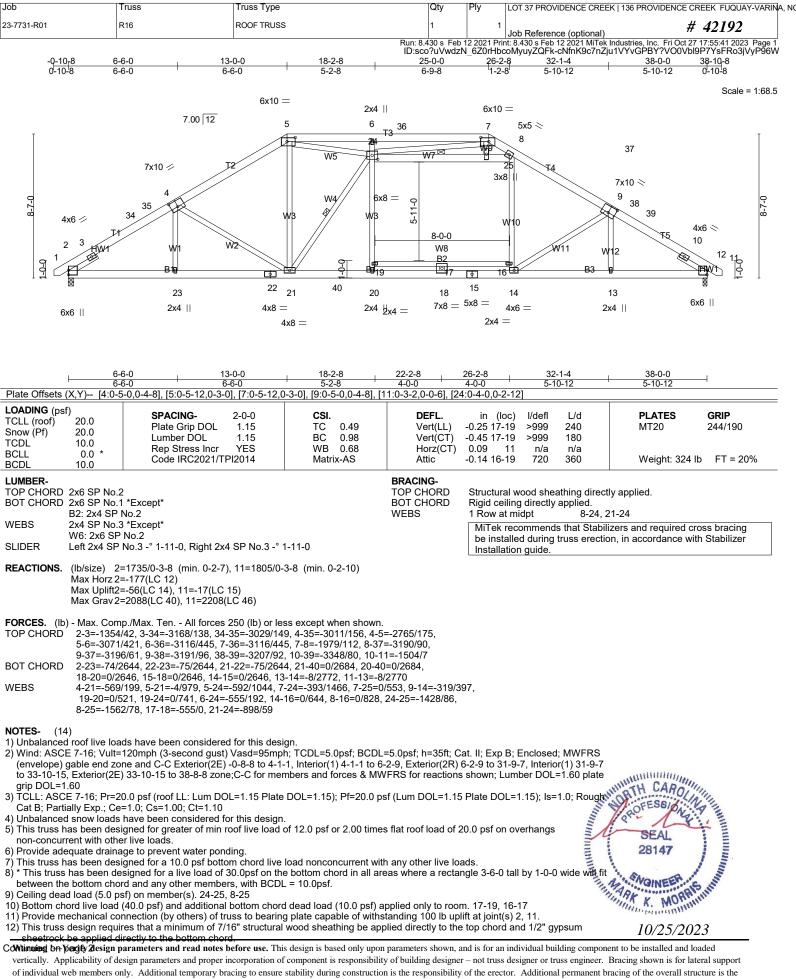

Uniform Loads (plf) Vert: 5-6=-60, 6-9=-60, 9-12=-60, 21-25=-20, 1-5=-60


Concentrated Loads (lb)


Vert: 9=-149(F) 15=-1464(F) 8=-149(F) 14=-43(F) 13=-43(F) 32=-149(F) 33=-149(F) 34=-97(F) 35=-43(F) 36=-43(F) 37=-99(F)



10/25/2023

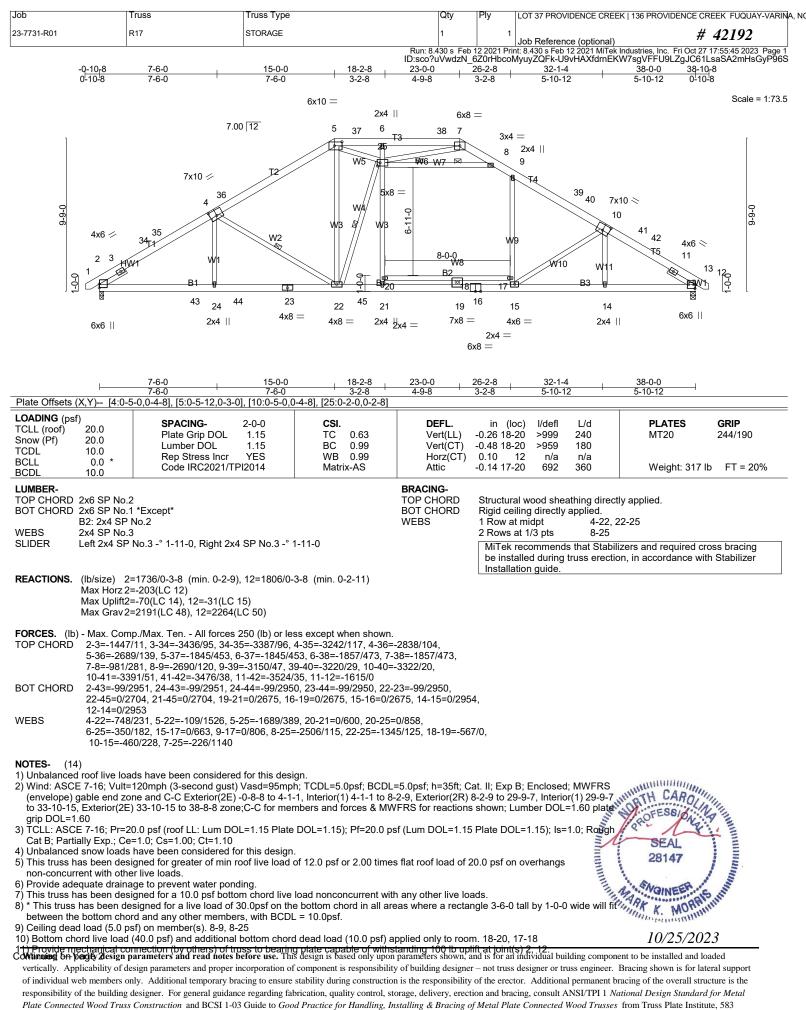


5-6-0	<u> </u>	19-0-0 8-0-0	27-0		32-6-0 5-6-0	38-0-0
Plate Offsets (X,Y) [5:0-5	-12,0-3-0], [7:0-5-12,0-3-0]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.54 BC 0.66 WB 0.83 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.13 15 >99 -0.22 15-17 >99 0.08 10 n/	9 240 9 180	PLATES GRIP MT20 244/190 Weight: 284 lb FT = 20%
	No.3 -° 1-11-0, Right 2x4 SP No.3 -°		BRACING- TOP CHORD BOT CHORD		ctly applied. ends that Stabi ing truss erecti	atly applied. Ilizers and required cross bracing ion, in accordance with Stabilizer
Max Hórz 2= Max Uplift2=	=1563/0-3-8 (min. 0-2-3), 10=1563/0 =-151(LC 12) =-136(LC 14), 10=-136(LC 15) =1862(LC 39), 10=1862(LC 39)	-3-8 (min. 0-2-3)				
TOP CHORD 2-3=-1131/ 5-29=-270 8-31=-2416 BOT CHORD 2-18=-212/ 15-34=-133 WEBS 4-17=-424/	p./Max. Ten All forces 250 (lb) or le 121, 3-27=-2603/315, 27-28=-2532/3 1/388, 6-29=-2701/388, 6-30=-2701/3 3/335, 31-32=-2532/324, 9-32=-2603 2135, 17-18=-212/2135, 16-17=-184 2/2087, 14-34=-132/2087, 13-14=-13 188, 5-17=-13/519, 5-15=-182/813, 6 19, 8-13=-424/189	324, 4-28=-2416/335, 4- 388, 7-30=-2701/388, 7- /315, 9-10=-1131/121 /2087, 16-33=-184/2087 2/2087, 12-13=-212/21	-5=-2419/352, -8=-2419/352, 7, 15-33=-184/208 35, 10-12=-212/213			
 2) Wind: ASCE 7-16; Vult= (envelope) gable end zor 20-2-9 to 33-10-15, Exten DOL=1.60 plate grip DOI 3) TCLL: ASCE 7-16; Pr=20 Cat B; Partially Exp.; Cee 4) Unbalanced snow loads 5) This truss has been desin non-concurrent with othe 6) Provide adequate draina 7) This truss has been desis 8) * This truss has been desis 8) * This truss has been desis 9) Provide mechanical conr 10=136. 10) This truss design require 	0.0 psf (roof LL: Lum DOL=1.15 Plate =1.0; Cs=1.00; Ct=1.10 have been considered for this desigr gned for greater of min roof live load	h; TCDL=5.0psf; BCDL -1, Exterior(2R) 4-1-1 to for members and force DOL=1.15); Pf=20.0 p h of 12.0 psf or 2.00 time load nonconcurrent wit e bottom chord in all ar L = 10.0psf. plate capable of withst	o 17-9-7, Interior(1) is & MWFRS for re isf (Lum DOL=1.15 is flat roof load of 2 th any other live loa eas where a rectar anding 100 lb uplif) 17-9-7 to 20-2-9, actions shown; Lu Plate DOL=1.15); 20.0 psf on overhar ads. ngle 3-6-0 tall by 1- t at joint(s) except	Exterior(2R) mber Is=1.0; Rough	AND RESERVING

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

10/25/2023


of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

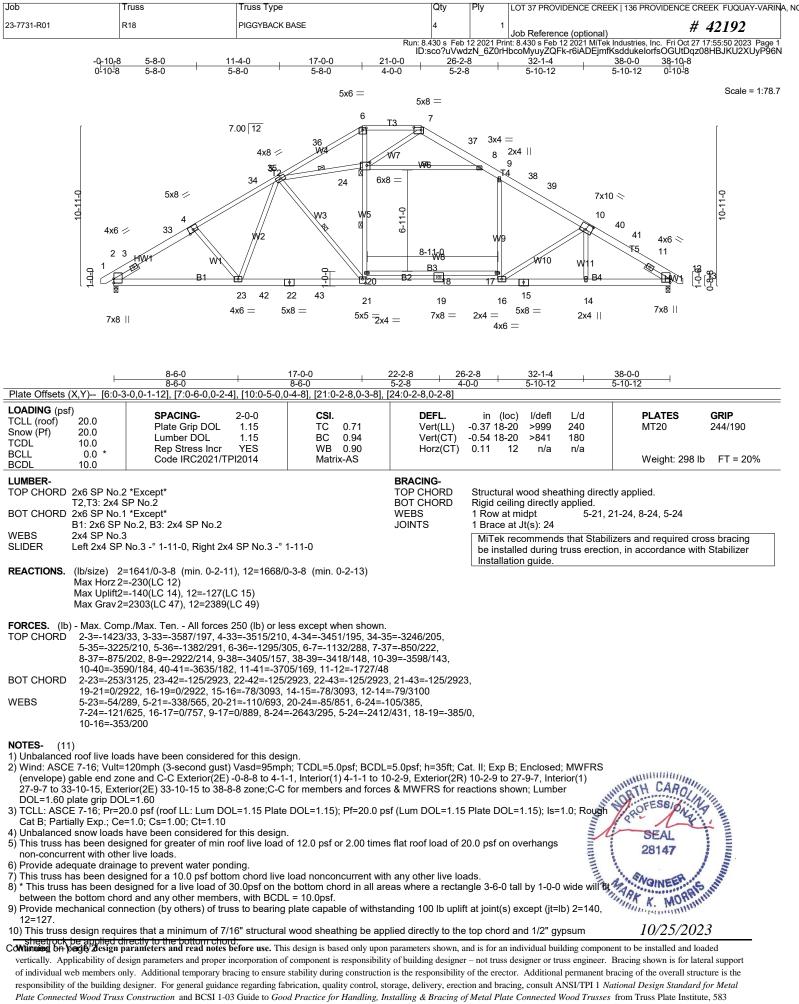
	Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDENCE CREEK FUQUAY-VA	ARINA, NO
	23-7731-R01	R16	ROOF TRUSS	1	1	Job Reference (optional) # 42192	
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Oct 27 1 ID:sco?uVwdzN_6Z0rHbcoMyuyZQFk-4aD9XVdIYsrlff75q6inXixBF?5C						nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Oct 27 17:55:42 2023 Pag)rHbcoMyuyZQFk-4aD9XVdIYsrlff75q6inXixBF?5O8ao0U5YcFxyP	ge 2 96V

NOTES- (14) 13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

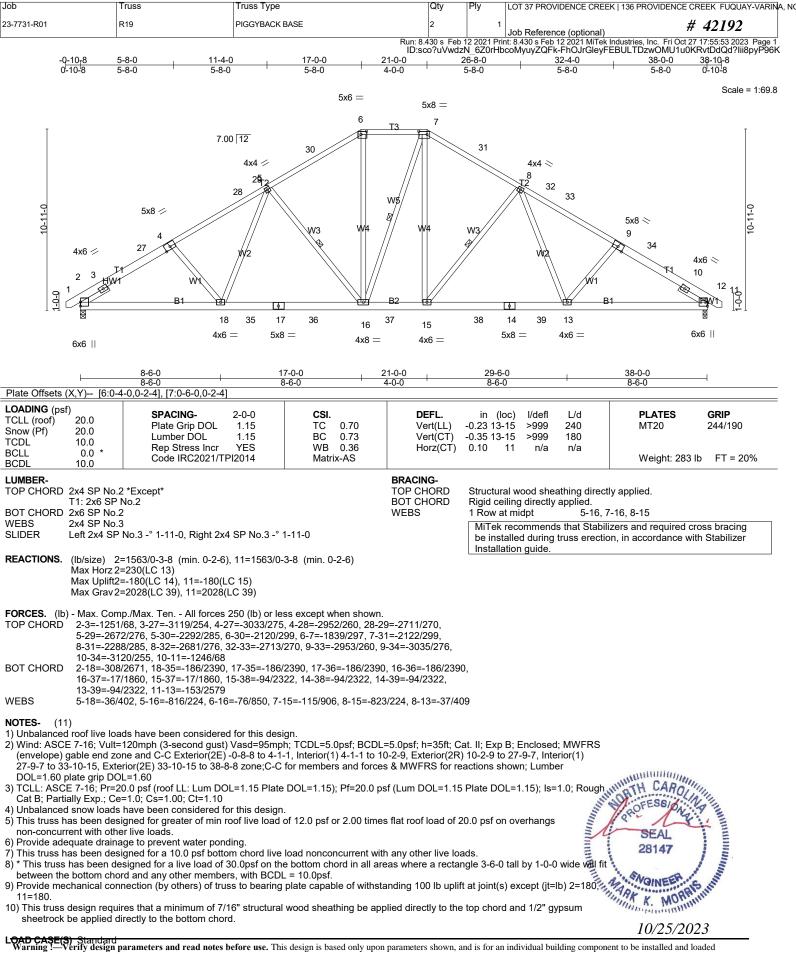
Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDENCE CREEK FUQUAY	Y-VARINA, NO
23-7731-R01	R17	STORAGE	1	1	Job Reference (optional) # 42192	
					nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Oct 27 17:55:46 2023 pcoMyuyZQFk-yLTgNtgFc5MB8GRt3ymjhY5r3cSG4JqbOiWqO	


NOTES- (14)

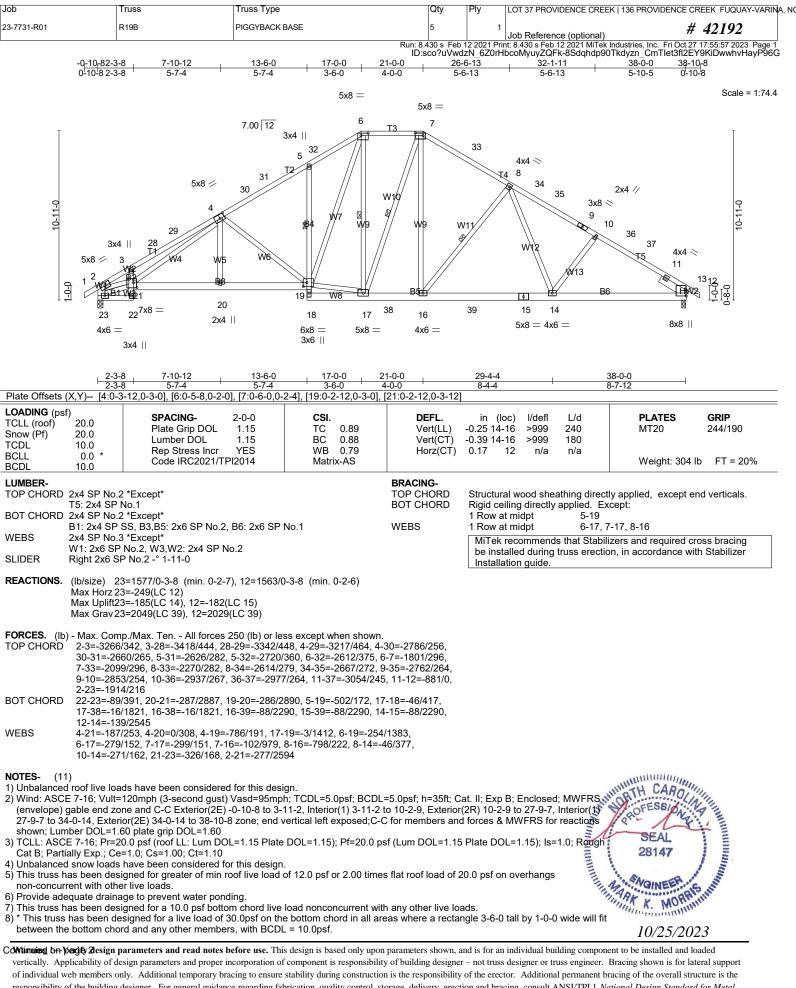
12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LOAD CASE(S) Standard


D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDEN	ICE CREEK FUQUAY-VARIN	۹, NC
23-7731-R01	R18	PIGGYBACK BASE	4	1	Job Reference (optional)	# 42192	
					nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri IbcoMyuyZQFk-r6iADEjmfKsddukeIorfsOGL		


LOAD CASE(S) Standard

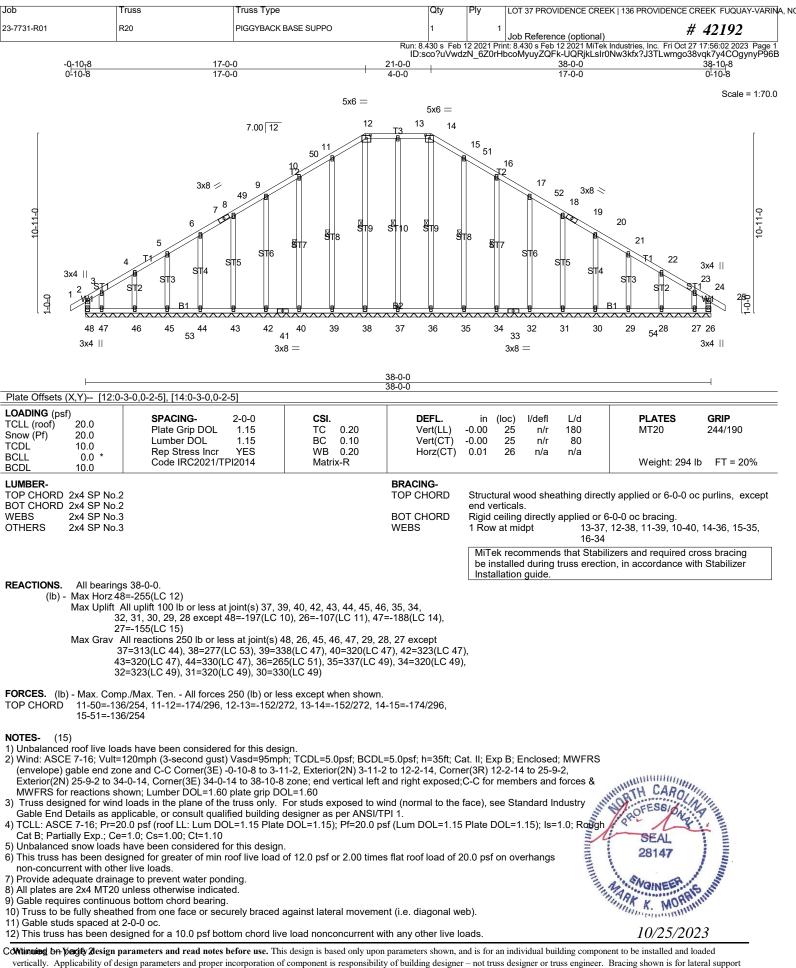
10/25/2023

vertically. Applicability of design parameters and read notes before user runs design is based only upon parameters shown, and is for an individual rolated and ro

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDEN	NCE CREEK FUQUAY-VARIN	A, NC
23-7731-R01	R19B	PIGGYBACK BASE	5	1	Job Reference (optional)	# 42192	
					nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri IbcoMyuyZQFk-8Sdqhdp90Tkdyzn_CmTlet		

NOTES- (11)


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 23=185, 12=182.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

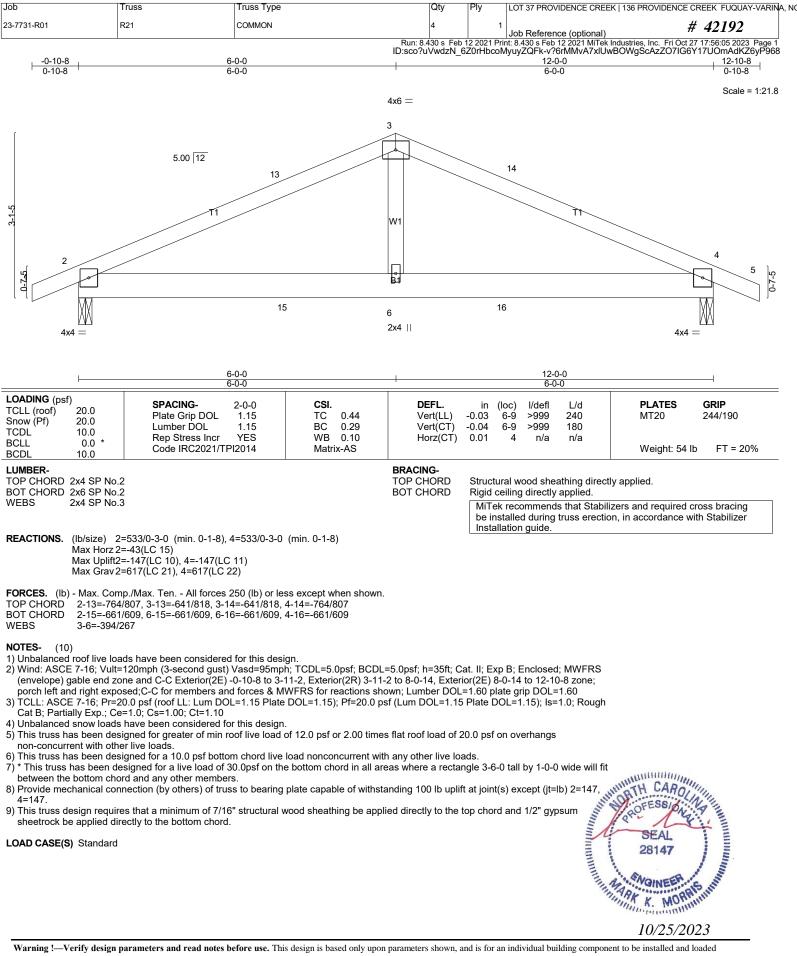
LOAD CASE(S) Standard

10/25/2023

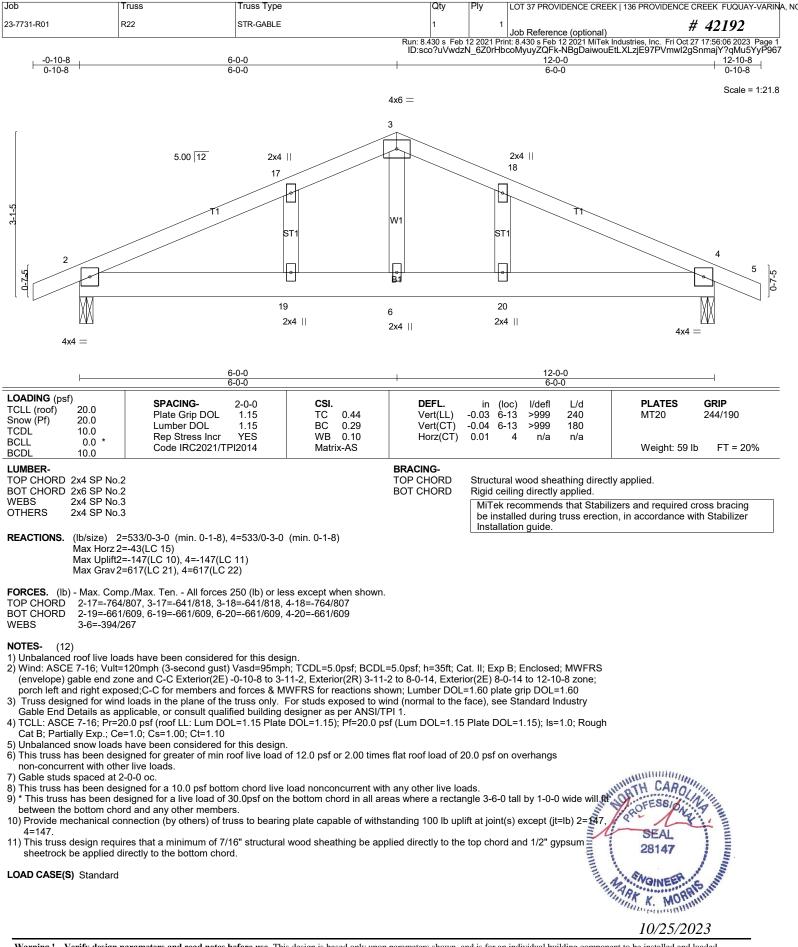
Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

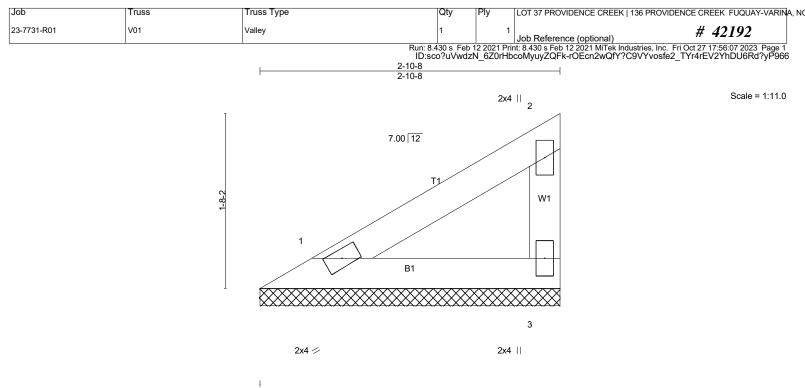
ſ	Job	Truss	Truss Type	Qty	Ply	LOT 37 PROVIDENCE CREEK 136 PROVIDENCE CREEK FUQUAY-VARIN	A, NC
	23-7731-R01	R20	PIGGYBACK BASE SUPPO	1	1	Job Reference (optional) # 42192	
						int: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Oct 27 17:56:04 2023 Page 2 pcoMyuyZQFk-QpYT90uYMdddl2pK6k5xQLr?HspNledFXWtn1gyP96	

NOTES- (15)


13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37, 39, 40, 42, 43, 44, 45, 46, 35, 34, 32, 31, 30, 29, 28 except (jt=lb) 48=197, 26=107, 47=188, 27=155.


LOAD CASE(S) Standard



10/25/2023

vertically. Applicability of design parameters and read notes before user finis design is based only apon parameters shown, and is to fair individual voltating component to be instanced and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.12 BC 0.09 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc end verticals. Rigid ceiling directly applied or	tly applied or 2-10-8 oc purlins, except 10-0-0 oc bracing.
					lizers and required cross bracing on, in accordance with Stabilizer

REACTIONS. (lb/size) 1=88/2-10-8 (min. 0-1-8), 3=88/2-10-8 (min. 0-1-8) Max Horz 1=44(LC 14) Max Uplift1=-3(LC 14), 3=-29(LC 14) Max Grav 1=114(LC 20), 3=114(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8-11)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 10) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- View pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED. 11) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECOMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

10/25/2023