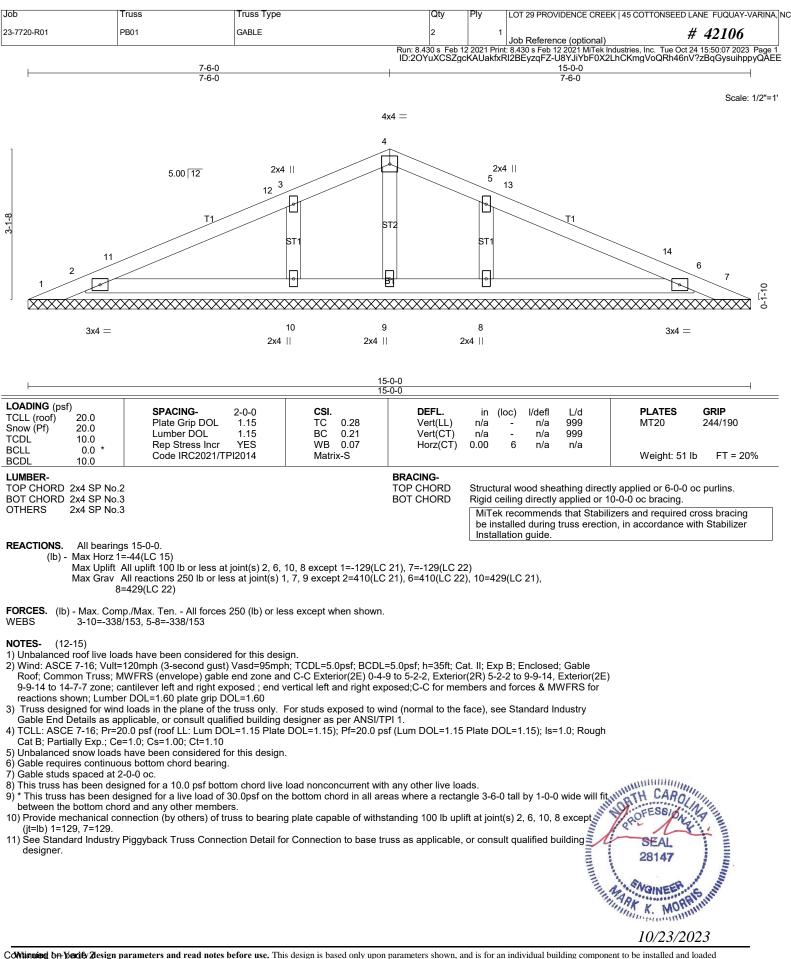
Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 42106 JOB: 23-7720-R01 JOB NAME: LOT 29 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. 23 Truss Design(s)

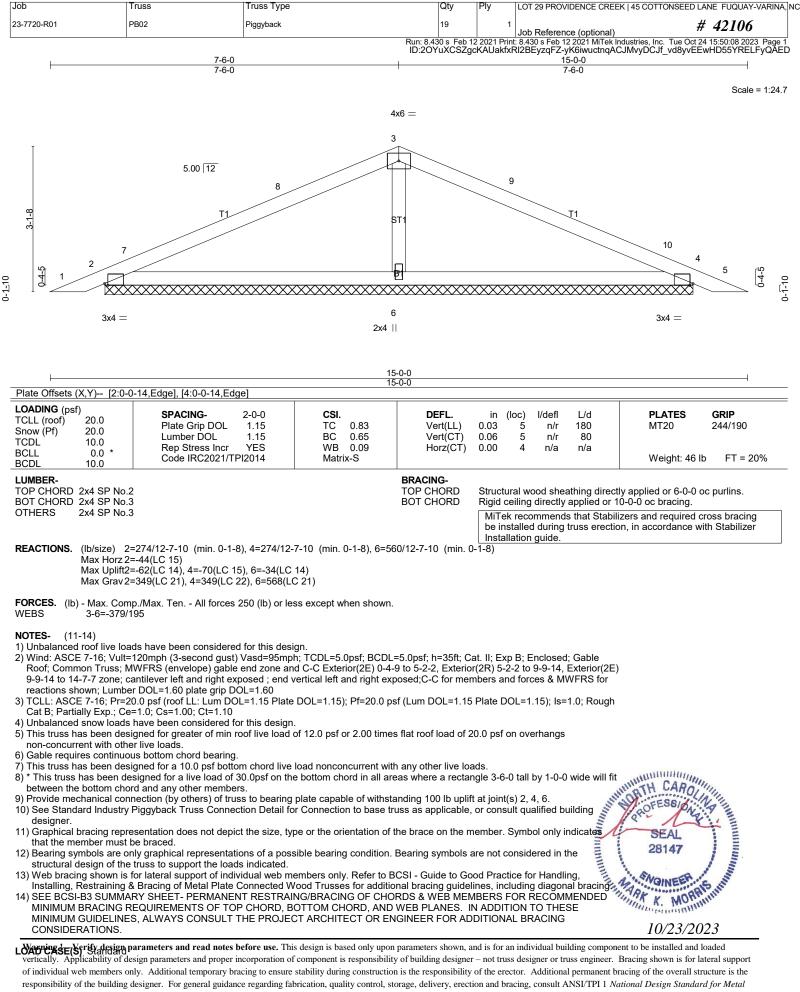

Trusses:

PB01, PB02, R01, R02, R03, R03A, R04, R05, R07, R08, R09, R10, R11, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10

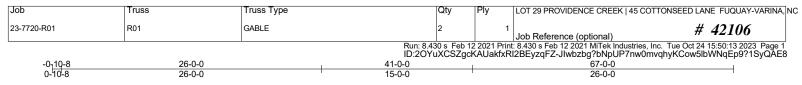
Warning !--- Verify design parameters and read notes before use.

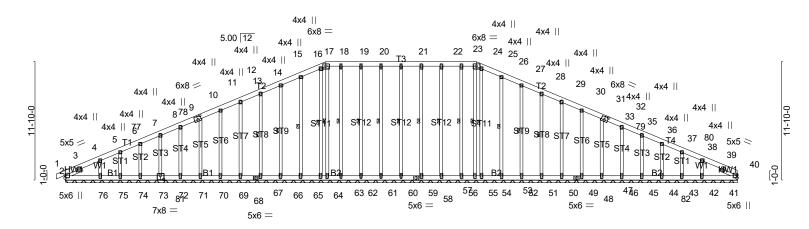
This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTO	DNSEED LANE FUQUAY-VARINA, NC
23-7720-R01	PB01	GABLE	2	1	Job Reference (optional)	# 42106
		Run:	8.430 s Feb 1	2 2021 Prin	t: 8.430 s Feb 12 2021 MiTek Industries. Inc.	Tue Oct 24 15:50:07 2023 Page 2


ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-U8YJiYbF0X2LhCKmgVoQRh46nV?zBqGysuihppyQAEE

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard


10/23/2023

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Me Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Scale = 1:114.9

H					67-0-0					
Plate Offsets (X	(,Y) [9:0-4-	0,0-4-0], [33:0-4-0,0-	4-0], [73:0-4-0,0	-4-8]						
Snow (Pf) CDL SCLL	20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc Code IRC2021	1.15 YES	CSI. TC 0.06 BC 0.06 WB 0.22 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 1 0.00 1 0.01 40	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 69	GRIP 244/190 97 lb FT = 20%
UMBER- OP CHORD 2: OT CHORD 2: /EBS 2: /THERS 2:	2x6 SP No.2 2x4 SP No.3 2x4 SP No.3	lo.3 -° 1-10-0, Right :	2x4 SP No.3 -° ⁻	I-10-0	BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling 1 Row at m MiTek rec	g directly idpt ommend d during	applied or 21-59 14-66 26-53 s that Stabi	ctly applied or 6-0-(10-0-0 oc bracing.), 20-60, 19-61, 18- 5, 13-67, 17-63, 22- 5, 27-52, 28-51, 29- ilizers and requirection, in accordance	-62, 16-64, 15-65 -57, 23-56, 24-55 -50, 25-54 I cross bracing
	. 71,	171(LC 15) I uplift 100 lb or less 72, 73, 74, 75, 57, 5								
Ν	Max Grav A 55, 65= 71= 50=	105(LC 15), 761 l reactions 250 lb or 53, 45, 44, 43, 42, 5 -293(LC 45), 66=289 -284(LC 45), 57=287 -287(LC 45), 49=286	9(LC 14) less at joint(s) 2 4 except 59=28 (LC 45), 67=28 (LC 44), 56=29	2, 40, 62, 64, 72, 73, 7(LC 44), 60=287(L0 7(LC 45), 69=286(L0 5(LC 44), 52=293(L0	74, 75, 63, C 44), 61=295(LC 44 C 45), 70=288(LC 45 C 45), 51=289(LC 45),),				
FORCES. (Ib) - FOP CHORD	Max Grav A 55, 65: 71: 50: 76: • Max. Comp 13-14=-106, 18-19=-132.	105(LC 15), 76=-1 I reactions 250 lb or 53, 45, 44, 43, 42, 5 293(LC 45), 66=286 284(LC 45), 57=287 -287(LC 45), 49=286 -261(LC 54) /Max. Ten All forc 261, 14-15=-122/29 326, 19-20=-132/32 326, 24-25=-132/32	9(LC 14) less at joint(s) 2 4 except 59=28 (LC 45), 67=28 (LC 45), 67=28 (LC 45), 47=28 es 250 (lb) or le r, 15-16=-136/3 5, 20-21=-132/3	2, 40, 62, 64, 72, 73, 7(LC 44), 60=287(L) 7(LC 45), 69=286(LC 6(LC 44), 52=293(LC 8(LC 45), 46=284(LC ss except when show 29, 16-17=-134/329, 26, 21-22=-132/326,	74, 75, 63, 2 44), 61=295(LC 44 2 45), 70=288(LC 45 2 45), 51=289(LC 45 2 45), 41=274(LC 55 /n. 17-18=-132/326, 22-23=-132/326,),),				
F ORCES. (Ib) - TOP CHORD	Max Grav A 55, 65: 71: 50: 76: • Max. Comp 13-14=-106 18-19=-132, 23-24=-132, 28-29=-106,	105(LC 15), 76=-1 I reactions 250 lb or 53, 45, 44, 43, 42, 5 293(LC 45), 66=286 284(LC 45), 57=287 -287(LC 45), 49=286 -261(LC 54) /Max. Ten All forc 261, 14-15=-122/29 326, 19-20=-132/32 326, 24-25=-132/32	9(LC 14) ess at joint(s) 2 4 except 59=28 (LC 45), 67=28 (LC 44), 56=29 (LC 45), 47=28 es 250 (lb) or le 7, 15-16=-136/3 5, 20-21=-132/3 5, 25-26=-134/3	2, 40, 62, 64, 72, 73, 7(LC 44), 60=287(L1 7(LC 45), 69=286(L0 5(LC 44), 52=293(L0 8(LC 45), 46=284(L0 ss except when show 29, 16-17=-134/329, 26, 21-22=-132/326, 29, 26-27=-136/329,	74, 75, 63, 244), 61=295(LC 44 245), 70=288(LC 45 245), 51=289(LC 45 245), 41=274(LC 55 70. 17-18=-132/326, 22-23=-132/326, 27-28=-122/297,),),),	Enclosed 4 to 19-3 0-3-10, C orces & N andard Ir 1.15); Is= rerhangs	; Gable -10, Corner(3E) MWFRS for ndustry 1.0; Rough	SEAL 28147	A South and a south a

Continuing bn periods and the provide the provided and the prediction and the provided and the provided and

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTONSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R01	GABLE	2	1	Job Reference (optional) # 42106
					: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:14 2023 Page 2 2BEyzqFZ-nUTzAxgeMgxL1HM6aTQ4DAtNYJR_Kzd_TTuZZvyQAE7

NOTES- (15-18)

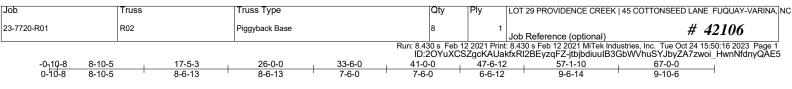
7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

8) Provide adequate drainage to prevent water ponding.

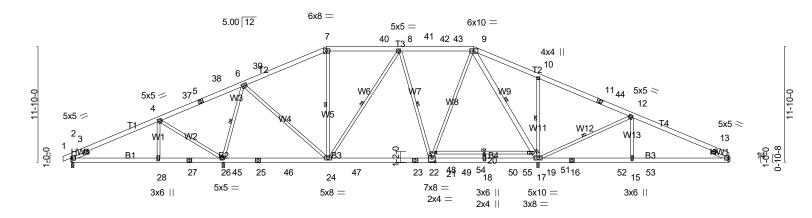
9) All plates are 3x6 MT20 unless otherwise indicated.

10) Gable requires continuous bottom chord bearing.

11) Gable studs spaced at 2-0-0 oc.


12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except (jt=lb) 41=105, 76=119.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

10/23/2023

Scale = 1:117.4

Prise Offseis (XY) 220-40.0-4.8 Dote Dote Dote Dote Dote Dote Dote IODING (pd) 20.0 PLATES GRIP 20.0 PLATES GRIP MT20 224/190 Show (P) 20.0 Linber DOL 1.15 BC 0.67 Vert(CT) 0.03 20.21 PLATES GRIP MEDL 0.0 Code (FC222)(TPL2014 Meth-MRH Vert(CT) 0.03 20.21 980 240 Weight: 525 lb FT = 20% BCLL 0.0 Code (FC222)(TPL2014 Meth-MRH Weight: 526 lb FT = 20% BCDL 0.0 Code (FC222)(TPL2014 Meth-MRH Weight: 526 lb FT = 20% BCDL 0.0 Code (FC222)(TPL2014 Meth-MRH Weight: 526 lb FT = 20% BCDL 0.0 Code (FC222)(TPL2014 Meth-MRH Structural wood sheathing directly applied or 9-0-0 co purlins. BCD CHORD Structural wood sheathing directly applied or 9-0-0 co purlins. Rgd calling directly applied or 9-0-0 co purlins. BCD CHORD Structural wood sheathing directly applied or 9-0-0 co purlins. Rgd - 7.24, 8-24, 8-2	F	<u>8-10-5</u> 8-10-5	15-5-12	26-0-0		<u>36-6-12</u> 10-6-12	42-0-12	47-6-12	57-1-10 9-6-14	67-0-0	
TCLL (roof) 20.0 PFACING-2-0-0 CSI. DEFL. In (loc) Undert Col PFACING-2-0 CMP Snow (P) 20.0 Lumber DOL 1.15 BC 0.67 Vert(C1) -0.32-21 >893 180 BCLL 0.0 Rep Stress Incr VES WB 0.33 Horz(C1) -0.43 20-21 >893 180 BCLL 10.0 Code IRC2021/TPI2014 Matrix-MSH BRACING- Weight: 525 lb FT = 20% LUMBER- TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 9-8-5 oc bracing. Except: BOT CHORD BOT CHORD Structural wood sheathing directly applied or 9-8-5 oc bracing. Except: WEBS 2x4 SP No.3 * Except' WEBS No.3 * Except * WEBS 1 Row at midpt 6-26, 7-24, 8-24, 9-29, 9-19, 10-17, 12-17 W: Store	Plate Offsets			10-0-4		10-0-12	0-0-0	0-0-0	5-0-14	5-10-0	
TOP CHORD 2x6 SP No.2 *Except* TOP CHORD Structural wood sheathing directly applied or 9-8-5 oc bracing. Except: B0T CHORD 2x6 SP No.3 *Except* B0T CHORD B0T CHORD B0T CHORD B0T CHORD B0T CHORD B0T CHORD Chord of the structural wood sheathing directly applied or 9-8-5 oc bracing. Except: 6-0-0 oc bracing: 19-21 WEBS 2x4 SP No.3 *Except* WES No at midpt 6-26, 7-24, 8-24, 8-22, 9-19, 10-17, 12-17 MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS. All bearings 0-3-8 except (It=length) 14=Mechanical. WEBS 1Rew at midpt 6-20, 724, 8-24, 8-22, 9-19, 10-17, 12-17 Max Uplift All uplift 100 lb or less at joint(s) except 2=-102(LC 14), 26=-229(LC 14), 17=-146(LC 15), 14=-126(LC 15), 14=-126(LC 15), 14=-126(LC 43) 15) Max Grav All reactions 250 lb or less at joint(s) except 2=628(LC 41), 26=-22557(LC 45), 17=3149(LC 45), 14=664(LC 43) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-38=-394/0, 3-4=-694/117, 6-38=-0/238, 6-39=-1177/275, 7-39=-1127/305, 7-40=-1040/327, 40-41=-1040/327, 8-42=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-10=-294/54, 10-11-04/79, 11-453=-604/204, 13-14=-401/0 BOT CHORD 2-28=-191/580, 27-	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0 *	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.67 0.93	Vert(LL) Vert(CT)	-0.31 2Ò-21 -0.43 20-21	>999 240 >893 180	MT20	244/190
REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical. (lb) - Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-102(LC 14), 26=-229(LC 14), 17=-146(LC 15), 14=-126(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=628(LC 41), 26=2357(LC 45), 17=3149(LC 45), 14=664(LC 43) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-394/0, 3-4=-694/117, 6-38=0/293, 6-39=-1177/275, 7-39=-1127/305, 7-40=-1040/327, 40-41=-1040/327, 8-41=-10/731, 12-38-83/204, 13-14=-401/0 BOT CHORD 2-28=-191/580, 27-28=-191/580, 26-27=-191/580, 26-45=-42/415, 25-45=-42/415, 24-46=-42/415, 24-46=-42/415, 24-47=-19/1310, 23-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 14-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 15-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/731, 12-53=-101/7	LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W9: 2x6 SP	*Except* DSS, B5: 2x4 SP No.2 *Except* No.2	:4 SP No.3 -° 1	-11-0		TOP CHORD BOT CHORD	Rigid ceiling 6-0-0 oc bra 1 Row at mid MiTek reco be installed	directly applied or 9 cing: 19-21 dpt 6-26, 7 ommends that Stabil d during truss erection	9-8-5 oc bracing. Ex 7-24, 8-24, 8-22, 9-19 izers and required cr	cept: 9, 10-17, 12-17 oss bracing
TOP CHORD 2-3=-394/0, 3-4=-694/117, 6-38=0/293, 6-39=-1177/275, 7-39=-1127/305, 7-40=-1040/327, 40-41=-1040/327, 8-41=-1040/327, 8-42=-1182/289, 9-43=-1182/289, 9-43=-1182/289, 9-10=-29/454, 10-11=0/479, 11-44=0/261, 12-13=-863/204, 13-14=-401/0 BOT CHORD 2-28=-191/580, 27-28=-191/580, 26-27=-191/580, 26-45=-42/415, 25-45=-42/415, 25-46=-42/415, 24-46=-42/415, 24-46=-42/415, 24-47=-19/1310, 23-47=-19/1310, 23-47=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 22-48=-19/1310, 16-17=-101/731, 16-52=-101/731, 15-53=-101/731, 14-53=-101/731 WEBS 4-28=0/286, 4-26=-816/239, 6-26=-1684/299, 6-24=-17/1003, 8-24=-455/59, 8-22=-553/197, 21-22=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-17=-1114/287, 12-15=0/280, 18-20=-360/0		Max Horz 2= Max Uplift A 15 Max Grav A	a172(LC 14) All uplift 100 lb or less a 5) All reactions 250 lb or le	, t joint(s) excep	ot 2=-102(LC	,,	X P	(<i>//</i>	,		
12-17=-1114/287, 12-15=0/280, 18-20=-360/0	TOP CHORD	2-3=-394/0 40-41=-104 9-10=-29/4 2-28=-191/ 25-46=-42/ 22-48=-19/ 16-17=-10	, 3-4=-694/117, 6-38=0 40/327, 8-41=-1040/327 54, 10-11=0/479, 11-44 580, 27-28=-191/580, 2 415, 24-46=-42/415, 24 1310, 22-49=0/839, 18 1/731, 16-52=-101/731,	/293, 6-39=-11 7, 8-42=-1182/2 9=0/261, 12-13 26-27=-191/58 9-47=-19/1310 949=0/839, 18- 15-52=-101/7	77/275, 7-3 289, 42-43= =-863/204,), 26-45=-42 23-47=-19/ 50=0/839, 5 31, 15-53=-	89=-1127/30 -1182/289, 13-14=-401 2/415, 25-45 /1310, 23-45 50-51=0/839 101/731, 14	9-43=-1182/289, /0 5=-42/415, 3=-19/1310, 9, 17-51=0/839, -53=-101/731	,			
 NOTES- (13-16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Reugh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 		21-22=-54 12-17=-11	/1139, 9-21=-28/1256, 14/287, 12-15=0/280, 1	9-19=-1829/15 8-20=-360/0	8, 17-19=-1	920/133, 10)-17=-865/263,				
	3) TCLL: ASC Cat B; Parti 4) Unbalanced 5) This truss h	E 7-16; Pr=20 ially Exp.; Ces d snow loads nas been desi	J.0 psf (roof LL: Lum D0 =1.0; Cs=1.00; Ct=1.10 have been considered to gned for greater of min	JL=1.15 Plate for this design.	DOL=1.15)	; Pt=20.0 ps	f (Lum DOL=1.18	Plate DOL=1	Inclosed; Gable 3-10, Exterior(2R) or(2E) 60-3-10 to FRS for reactions .15); Is=1.0; Rough erhangs	SEAL 28147	P P P P P P P P P P P P P P P P P P P

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45	COTTONSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R02	Piggyback Base	8	1	Job Reference (optional)	# 42106
						ies, Inc. Tue Oct 24 15:50:16 2023 Page 2 WVhuSYJbyZA7zwoi_HwnNfdnyQAE5

NOTES- (13-16)

6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x6 MT20 unless otherwise indicated.

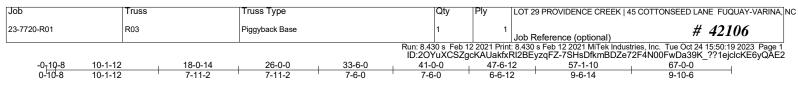
9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

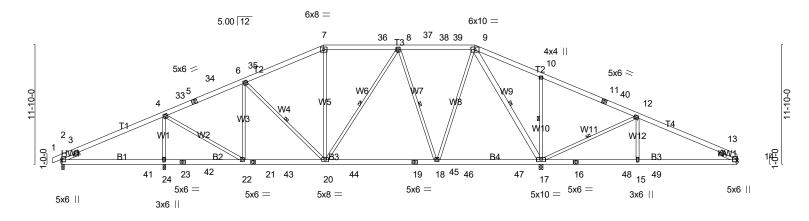
11) Refer to girder(s) for truss to truss connections.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 2, 229 lb uplift at joint 26, 146 lb uplift at joint 17 and 126 lb uplift at joint 14.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated


15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

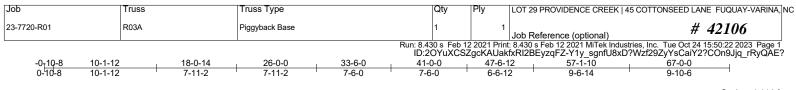

LOAD CASE(S) Standard

10/23/2023

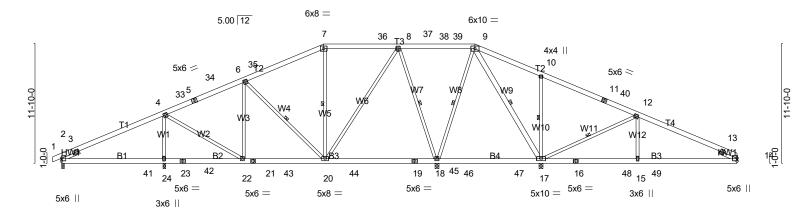
Scale = 1:114.3

LOADNO (psi) TCLL (rot) SPACING 2-0-0 Plate 6/ip OL 2-0-0 11 C3 TC DT DEFL m (rot) Udeft L/d PLATES GRP CDL 0.0 Plate 6/ip OL 1.15 TC 0.01 10.02/17 0.33 16.7 9.999 160 M120 2.441190 EQL 0.0 Personance VPS 1.00 Marix-MSH Marix-MSH M202 17 n/a n/a EQL 0.0 Personance VPS 1.00 Marix-MSH M202 17 n/a n/a EQL 0.0 Personance VPS 2.65 Pro.2 Structural wood sheathing directly applied or 5-1-12 oc purlins. BOT CHORD 2x8 SP No.3 Structural wood sheathing directly applied or 5-1-12 oc purlins. Nor at marking 0.820, 820, 810, 81-11, 10-17, 12-17 WEBS 2x4 SP No.3 Structural wood sheathing directly applied or 5-1-12 oc purlins. Nor at marking 0.820, 820, 810, 81-11, 10-17, 12-17 Meta Mark Dirat All process 20 No.3 1-11-10 Mark Dirat All process 20, 810, 81-11, 10-17, 12-17 Meta Mark Dirat		0-1-12 18-0-1 0-1-12 7-11-		<u> </u>		47-6-12 10-4-0	_	57-1-10 9-6-14	67-0-0 9-10-6
LUMBER- TOP CHORD 2x6 SP No.2 'Except' BOT CHORD 2x6 SP No.3 'Except' WEBS 2x4 SP No.3 'Except' WEBS 2x4 SP No.3 'Structural wood sheathing directly applied or 5-1-12 oc purlins. BOT CHORD 2x6 SP No.2 'Except' WEBS 2x4 SP No.3 'Structural wood sheathing directly applied or 5-1-12 oc purlins. BOT CHORD 2x6 SP No.3 'Except' WEBS 2x4 SP No.3 'Structural wood sheathing directly applied or 5-1-12 oc purlins. BOT CHORD 2x6 SP No.3 'Except' WEBS 2x4 SP No.3 'S 1-11-0, Right 2x4 SP No.3 - '1-11-0 REACTIONS. All bearings 0-3-8 except (It=length) 14=Mechanical. (ib) 'Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=194(LC 10), 24=-187(LC 14), 17=-245(LC 11), 14=-125(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=594(LC 54), 24=2081(LC 45), 17=3134(LC 45), 14=646(LC 43) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3a=-356/455, 34=-4559/466, 4-3a=-1719/447, 5-33=-1638/456, 6-34=-1526/474, 6-35=-1632/452, 7-35=-1551/480, 7-36=-1433/488, 36=-37=-1433/488, 8-37=-1433/488, 8-38=-1161/386, 9-39=-1161/386, 9-39=-1161/386, 9-10=0/576, 10-11=0/576, 11-40=0/384, 12-40=-0/327, 12-13=-282/189, 13-14=-4380 BOT CHORD 2-41=-363/443, 24-41=-363/443, 24-42=-363/443, 22-23=-363/443, 21-22=-263/1492, 20-43=-263/1492, 20-44=-26/39(-14)=-141/1412, 19-45=-144/1412, 18-45=-144/1412, 18-46=-20/780, 46-47=-20/780, 14-4=-144/1412, 19-45=-144/1412, 18-45=-26/99, 15-44=-36/99, 19-44=-96/99, WEBS 4-24=-1706/255, 4-22=0/1338, 6-22=-485/72, 6-20=-328/3131, 7-20=0/281, 8-20=-80/485, 8-18=-871/258, 9-18=-137/1383, 9-17=-2048/276, 10-17=-865/262, 12-17=-1141/276, 12-15=0/397 NOTES- (13-16)	TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0	D Plate Grip I D Lumber DC D * Code IBC2	DOL 1.15 DL 1.15 Incr YES	TC 0.71 BC 0.64 WB 1.00	Vert(LL) Vert(CT)	0.13 24-27 -0.29 18-20	>904 >999	240 180	MT20 244/190
 (ib) - Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-194(LC 10), 24=-187(LC 14), 17=-245(LC 11), 14=-125(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=594(LC 54), 24=2081(LC 45), 17=3134(LC 45), 14=646(LC 43) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-356/455, 3-4=-559/466, 4-33=-1719/447, 5-33=-1650/451, 5-34=-1638/456, 6-34=-1526/474, 6-35=-1632/452, 7-35=-1551/480, 7-36=-1433/488, 36-37=-1433/488, 8-37=-1433/488, 8-38=-1161/386, 38-39=-1161/386, 9-39=-1161/386, 9-10=0/576, 10-11=0/576, 11-40=0/384, 12-40=0/327, 12-13=-828/198, 13-14=-438/0 BOT CHORD 2-41=-363/443, 24-41=-363/443, 24-42=-363/443, 24=2-363/443, 3=262/1780, 17=20/281, 8=20=-80/485, 8=18=-871/258, 9=18=-137/1383, 9=17=-2048/276, 10-17=-865/262, 12=17=-1141/276, 12=15=0/397 NOTES- (13-16) 	LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S B4: 2 WEBS 2x4 S W9: 2	SP No.2 SP No.2 *Except* X6 SP DSS SP No.3 *Except* 2x6 SP No.2	ght 2x4 SP No.3 -° 1-	-11-0	TOP CHORD BOT CHORD	Rigid ceiling 1 Row at mi MiTek rec be installe	directly dpt ommend d during	applied or 6-20, i Is that Stabi	10-0-0 oc bracing. 8-20, 8-18, 9-17, 10-17, 12-17 lizers and required cross bracing
TOP CHORD 2-3=-356/455, 3-4=-559/466, 4-33=-1719/447, 5-33=-1650/451, 5-34=-1638/456, 6-34=-1526/474, 6-35=-1632/452, 7-35=-1551/480, 7-36=-1433/488, 36-37=-1433/488, 8-37=-143/480, 9-10=0/576, 10-11=0/576, 11-01=0/576, 11-01=0/576, 12-12=-263/1432, 22-42=-363/443, 23-42=-363/443, 22-23=-363/443, 22-24=-14/1412, 18-45=-144/1412, 18-45=-20/780, 46-47=-20/780, 16-17=-96/699, 14-49=-96/699 WEBS 4-24=-1706/255, 4-22=0/1338, 6-22=-485/72, 6-20=-328/311, 7-20=0/281, 8-20=-80/485, 8-18=-871/258, 9-18=-137/1383, 9-17=-2048/276, 10-17=-865/262, 12-17=-1141/276, 12-15=0/397 NOTES- (13-16)	(Ib) - Max Max	Horz 2=172(LC 14) Uplift All uplift 100 lb or l 15) Grav All reactions 250 lk	ess at joint(s) except	t 2=-194(LC 10), 24=					
19-45=-144/1412, 18-45=-144/1412, 18-46=-20/780, 46-47=-20/780, 17-47=-20/780, 16-17=-96/699, 16-48=-96/699, 15-48=-96/699, 15-49=-96/699, 14-49=-96/699 WEBS 4-24=-1706/255, 4-22=0/1338, 6-22=-485/72, 6-20=-328/311, 7-20=0/281, 8-20=-80/485, 8-18=-871/258, 9-18=-137/1383, 9-17=-2048/276, 10-17=-865/262, 12-17=-1141/276, 12-15=0/397 NOTES- (13-16)	TOP CHORD 2-3 6-3 8-3 10- BOT CHORD 2-4	=-356/455, 3-4=-559/466, 4=-1526/474, 6-35=-1632 7=-1433/488, 8-38=-1161 11=0/576, 11-40=0/384, 1=-363/443, 24-41=-363/4	, 4-33=-1719/447, 5-3 2/452, 7-35=-1551/48 /386, 38-39=-1161/3 12-40=0/327, 12-13= 443, 24-42=-363/443	33=-1650/451, 5-34= 0, 7-36=-1433/488, 86, 9-39=-1161/386, -828/198, 13-14=-43 , 23-42=-363/443, 22	1638/456, 36-37=-1433/488, , 9-10=0/576, 8/0 2-23=-363/443,				
 NOTES- (13-16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Reugh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 	19 16- WEBS 4-2- 8-1:	45=-144/1412, 18-45=-14 17=-96/699, 16-48=-96/6 4=-1706/255, 4-22=0/133 8=-871/258, 9-18=-137/1	4/1412, 18-46=-20/7 99, 15-48=-96/699, 1 8, 6-22=-485/72, 6-2	80, 46-47=-20/780, 5-49=-96/699, 14-49 0=-328/311, 7-20=0,	17-47=-20/780,)=-96/699 /281, 8-20=-80/485				
With Destination of the second s	 3) TCLL: ASCE 7-16 Cat B; Partially E: 4) Unbalanced snov 5) This truss has be 	6; Pr=20.0 psf (roof LL: Lt xp.; Ce=1.0; Cs=1.00; Ct v loads have been consid en designed for greater o	um DOL=1.15 Plate I =1.10 ered for this design.	DOL=1.15); Pf=20.0	psf (Lum DOL=1.1	5 Plate DOL=1	.15); ls=	d; Gable kterior(2R) 0-3-10 to orces & 1.0; Rough	SEAL 28147

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTONSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R03	Piggyback Base	1	1	Job Reference (optional) # 42106
					t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:20 2023 Page 2 RI2BEyzqFZ-berER?IOyWhVICpGwkXUTR6EvkKEkUusrPLtmZyQAE1


NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 194 lb uplift at joint 2, 187 lb uplift at joint 24, 245 lb uplift at joint 17 and 125 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

10/23/2023

Scale = 1:114.3

1	10-1-12	18-0-14	26-0-0	1	37-2-12	I	47-6-12	I.	57-1-10	67-0-0	I
	10-1-12	7-11-2	7-11-2	1	11-2-12	1	10-4-0	1	9-6-14	9-10-6	1
OADING (pst	f)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		0.69	Vert(LL)	0.13 24-27	>903	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		0.56	Vert(CT)	-0.23 18-20	>999	180		21.0.100
CDL	10.0	Rep Stress Incr	YES	WB		Horz(CT)	0.02 2	n/a	n/a		
CLL	0.0 *	Code IRC2021/T			-MSH	(,				Weight: 512 I	b FT = 20%
CDL	10.0									5	
UMBER-						BRACING-					
	2x6 SP No.2					TOP CHORD				tly applied or 5-10-15	
OT CHORD	2x6 SP No.2					BOT CHORD				10-0-0 oc bracing, E	xcept:
	B4: 2x6 SP E						6-0-0 oc bra			7 00 0 40 0 40 0 4	
EBS	2x4 SP No.3					WEBS	1 Row at mi	·		7-20, 8-18, 9-18, 9-17	
	W9: 2x6 SP I			11.0						lizers and required cr	
LIDER	Len 2x4 SP i	No.3 -° 1-11-0, Right 2x	4 SP N0.3 -* 1-	11-0			be installed Installation		truss erection	on, in accordance wit	h Stabilizer
EACTIONS.		s 0-3-8 except (jt=lengt	h) 14=Mechanic	al.							
(lb) -	Max Horz 2=								~		
		Il uplift 100 lb or less a	t joint(s) except	2=-197(LC	; 10), 24=-′	168(LC 14), 18=-1	162(LC 10), 17	=-272(L	С		
), 14=-124(LC 15)						、 、			
		Il reactions 250 lb or le =1811(LC 39), 14=676		cept 2=619	9(LC 54), 24	4=1555(LC 45), 1	8=2078(LC 44	·),			
	17	=1011(LC 39), 14-070	(LC 33)								
BOT CHORD	11-40=0/27 2-41=-372/4 21-22=-201 19-45=-8/3 15-49=-93/ 4-24=-1246	395, 8-38=-39/300, 38- 1, 12-13=-896/195, 13- 491, 24-41=-372/491, 2 /1067, 21-43=-201/106 79, 18-45=-8/379, 16-1 761, 14-49=-93/761 5/236, 4-22=0/755, 6-20 62, 9-17=-319/51, 10-1	-14=-464/0 24-42=-372/491, 37, 20-43=-201/ 7=-93/761, 16-4 0=-576/193, 8-20	23-42=-37 1067, 20-44 8=-93/761, 0=-119/100	72/491, 22- 4=-8/379, 1 , 15-48=-93	23=-372/491, 19-44=-8/379, 3/761, 365/330,),				
IOTES- (13) Unbalancec) Wind: ASCI Roof; Hip T 19-3-10 to 3 67-0-0 zone MWFRS for) TCLL: ASC Cat B; Parti) Unbalancec	3-16) d roof live load E 7-16; Vult=1 russ; MWFRS 32-8-6, Interior c; cantilever lef r reactions sho E 7-16; Pr=20 ally Exp.; Ce= d snow loads l	Is have been considered (20mph (3-second gust 6 (envelope) gable end r(1) 32-8-6 to 34-3-10, 1 fit and right exposed; e own; Lumber DOL=1.60 0.0 psf (roof LL: Lum DO -1.0; Cs=1.00; Ct=1.10 have been considered 1 gned for greater of min r live loads. an truss requires extrea ee Guide to Good Pract and TPI. The building in and inspection of the assumes not responsible sign parameters and proper ly. Additional temporary b esigner. For general guida	ed for this design) Vasd=95mph; zone and C-C E Exterior(2R) 34- end vertical left a 0 plate grip DOL DL=1.15 Plate E for this design.	n. TCDL=5.0 Exterior(2E) 3-10 to 47- and right ex =1.60 DOL=1.15);	0psf; BCDL) -0-10-8 to -6-12, Inter kposed; po Pf=20.0 p:	=5.0psf; h=35ft; C 5-9-14, Interior(1 ior(1) 47-6-12 to 6 rch left exposed;C sf (Lum DOL=1.1	Cat. II; Exp B; E) 5-9-14 to 19- 50-3-10, Exteri C-C for membe 5 Plate DOL=1	Enclosed 3-10, Ex or(2E) 6 ors and f .15); Is=	d; Gable (terior(2R)) 0-3-10 to orces & 1.0; Rough	SEAL 28147	A THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL
) This truss h	as been desig	gned for greater of min	roof live load of	12.0 psf or	r 2.00 time	s flat roof load of	20.0 psf on ov	erhangs	1st	A NOWER	In
non-concur	rent with othe	r live loads.				al a stalla su all'			- 1 I	AP	and a
and erection	n guidance, se	an truss requires extreme ee Guide to Good Pract	tice for Handling	perience to g, Installing	r proper ar & Bracing	of Metal Plate Co	and erection. F onnected Woo	or gener d Trusse register	es ("BCSI"),	Mining K. MOHIM	hr.
professiona	I for the desig	in and inspection of the	temporary insta	allation rest	traint/braci	ng and the perma	nent individual	l truss m	lember	10/23/202	23
jestraint/bra	cing. MiTek	assumes no responsibi	lity for truss ma	nufacture,	hạndling, e	rection, or bracin	g			10,20,20	
owanuineg on h	ø englé y 2 lesign pa	arameters and read notes	béfore use. This	design is base	ed only upon	parameters shown,	and is for an indi	vidual bu	ilding compon	ent to be installed and lo	aded
vertically. App	plicability of des	sign parameters and proper	incorporation of c	omponent is	responsibilit	y of building designe	er – not truss desi	igner or ti	uss engineer.	Bracing shown is for lat	eral support
of individual w	eb members on	ly. Additional temporary b	racing to ensure st	ability during	g constructio	n is the responsibility	y of the erector.	Additiona	al permanent b	bracing of the overall stru	cture is the
responsibility of	of the building d	esigner. For general guida	nce regarding fabri	ication, quali	ty control, st	orage, delivery, erec	tion and bracing,	consult A	ANSI/TPI 1 N	ational Design Standard	for Metal

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTONSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R03A	Piggyback Base	1	1	Job Reference (optional) # 42106
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:23 2023 Page 2 N2BEyzqFZ-0DWM30nHFR34cgYrcs4B53klRyODxr1JXNaXNtyQAE_

NOTES- (13-16)

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x5 MT20 unless otherwise indicated.

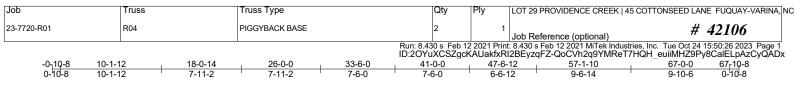
) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.

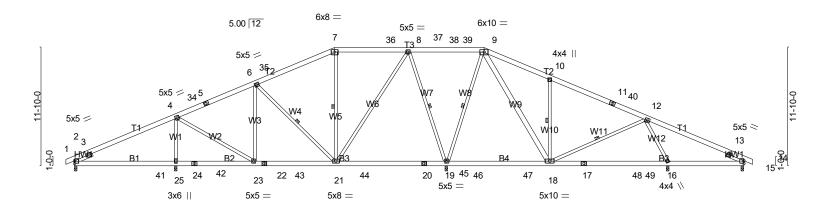
11) Refer to girder(s) for truss to truss connections.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 168 lb uplift at joint 24, 162 lb uplift at joint 18, 272 lb uplift at joint 17 and 124 lb uplift at joint 14.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

10/23/2023

Scale = 1:115.3

	10-1-12	18-0-14	26-0-0	37-2-1	2	47-6-12		59-4-4	67-0-0)
	10-1-12	7-11-2	7-11-2	11-2-1		10-4-0		11-9-8	7-7-1	
LOADING (psf TCLL (roof) Snow (Pf) TCDL	f) 20.0 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0.63 BC 0.56	DEFL. Vert(LL) Vert(CT)	in (loc) 0.13 25-28 -0.23 19-21	l/defl >904 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2021/TF	YES PI2014	WB 0.99 Matrix-MSH	Horz(CT)	0.03 16	n/a	n/a	Weight: 515 I	b FT = 20%
LUMBER- TOP CHORD BOT CHORD					BRACING- TOP CHORD BOT CHORD WEBS		directly	applied or 10-	r applied or 5-11-14 -0-0 oc bracing. 21, 8-19, 9-19, 10-1	·
	2x4 SP No.3 W9: 2x6 SP N Left 2x4 SP N		4 SP No.3 -° 1-11	-0			d during t		ers and required cr , in accordance wit	
	11 Max Grav A						· ·			
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	2-3=-372/4 6-35=-874/3 8-38=0/335 12-40=-933 2-41=-359/4 22-23=-181 20-45=-6/37 16-49=-270	0./Max. Ten All forces 61, 3-4=-608/480, 4-34= 346, 7-35=-745/374, 7-3 , 38-39=0/335, 9-39=0/3 /249, 12-13=-362/352, 7 487, 25-41=-359/487, 22 /1052, 22-43=-181/105 75, 19-45=-6/375, 17-18 /664, 14-16=-241/266 /231, 4-23=0/737, 6-21:	1244/378, 5-34 36=-686/390, 36-3 335, 9-10=-941/3 13-14=-60/277 5-42=-359/487, 2 2, 21-43=-181/10 3=-270/664, 17-4	=-1174/383, 5-6=-1 37=-686/390, 8-37= 95, 10-11=-793/28: 4-42=-359/487, 23 52, 21-44=-6/375, 5 3=-270/664, 48-49=	030/406, =-686/390, 3, 11-40=-854/259 -24=-359/487, 20-44=-6/375, =-270/664,	,				
NOTES- (12 1) Unbalancec 2) Wind: ASCI Roof; Hip Ti 19-3-10 to 3 67-10-8 zon forces & MV 3) TCLL: ASCI Cat B; Partii 4) Unbalancec 5) This truss h non-concur 6) WARNING: and erection jointly produ professiona restraint/bra	9-19=-1164 2-15)	/230, 9-18=-262/1203, Is have been considered 20mph (3-second gust) is (envelope) gable end z r(1) 32-8-6 to 34-3-10, E eft and right exposed; ; tions shown; Lumber D .0 psf (roof LL: Lum DC 1.0; Cs=1.00; Ct=1.10 have been considered for gned for greater of min r live loads. an truss requires extrem the Guide to Good Practic and TPI. The building of n and inspection of the assumes no responsibility arameters and read notes if ign parameters and proper if y. Additional temporary br esigner. For general guident	10-18=-858/263,	12-16=-1078/211		at. II; Exp B; I) 5-9-14 to 19- i1-2-2, Exterio exposed;C-C 5 Plate DOL=1 20.0 psf on ov nd erection. F innected Woo vith a qualified nent individua	Enclosed 3-10, Ex r(2E) 61- for memi 1.15); Is= erhangs or genera d Trusse registere I truss mo	; Gable terior(2R) 2-2 to bers and 1.0; Rough 1.0; Rough al handling s ("BCSI"), ed design ember	SEAL 28147	
Covitinuing by a vertically. App of individual w responsibility of	Section 2 plicability of des yeb members onl of the building de	irameters and read notes lign parameters and proper i y. Additional temporary br esigner. For general guidan	before use. This de incorporation of con acing to ensure stab ce regarding fabrica	sign is based only upon aponent is responsibiliti ility during construction tion, quality control, s	n parameters shown, ty of building designe on is the responsibility torage, delivery, erec	and is for an indi r - not truss des v of the erector. tion and bracing.	ividual bui igner or tru Additional , consult A	lding componen uss engineer. B l permanent bra NSI/TPI 1 <i>Nati</i>	It to be installed and lo racing shown is for lat cing of the overall stru <i>ional Design Standard</i>	aded eral support cture is the <i>for Metal</i>

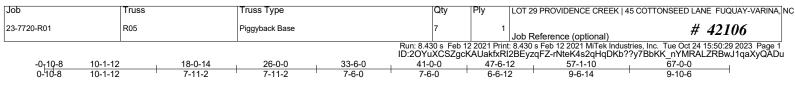
Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTONS	EED LANE FUQUAY-VARINA, NC
23-7720-R01	R04	PIGGYBACK BASE	2	1	Job Reference (optional)	# 42106
	·				:: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tu I2BEyzqFZ-QoCVh2q9YMReT7HQH_euiil	

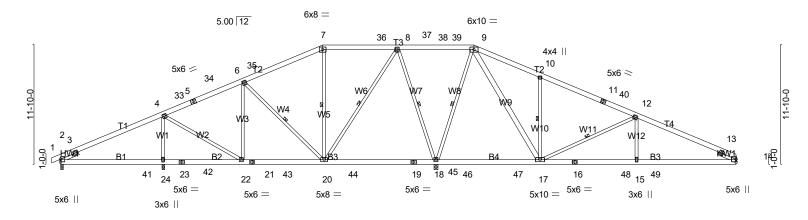
NOTES- (12-15)

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x6 MT20 unless otherwise indicated.


) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 163 lb uplift at joint 25, 246 lb uplift at joint 19, 180 lb uplift at joint 14 and 110 lb uplift at joint 16.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

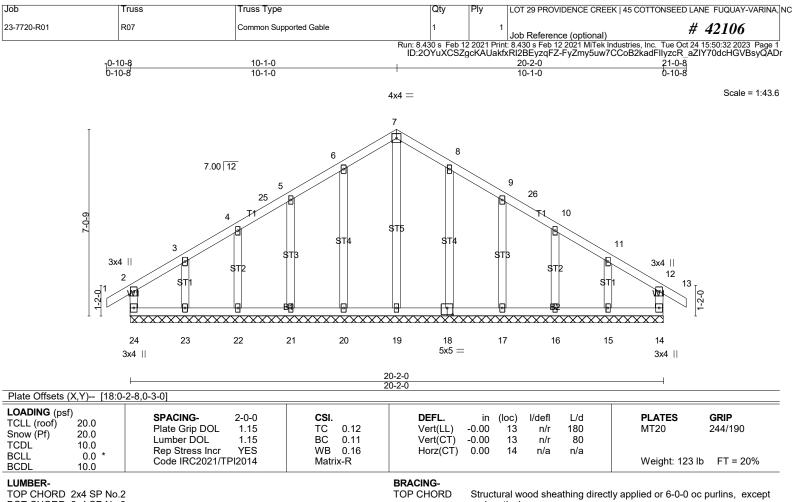

LOAD CASE(S) Standard

10/23/2023

Scale = 1:114.3

	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 7-11-2	37-2		47-6-12 10-4-0		57-1-10 9-6-14	67-0-0 9-10-6
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	5) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.65 BC 0.52 WB 0.98 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.14 24-27 -0.23 18-20 0.03 14	l/defl >894 >999 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 512 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 * B4: 2x6 SP D 2x4 SP No.3 * W7: 2x4 SP N Left 2x4 SP N	SS *Except* Io.2, W8: 2x4 SP No.1 Io.3 -° 1-11-0, Right 2x	4 SP No.3 -° 1-1	1-0	BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling 6-0-0 oc bra 1 Row at m MiTek rec	g directly acing: 18- idpt ommend d during	applied or -20,17-18. 6-20, s that Stabi	otty applied or 5-1-9 oc purlins. 10-0-0 oc bracing, Except: 7-20, 8-20, 8-18, 9-18, 10-17, 12-17 ilizers and required cross bracing ion, in accordance with Stabilizer
	Max Horz 2=1 Max Uplift Al 15) Max Grav Al	l uplift 100 lb or less at	t joint(s) except 2	2=-195(LC 10), 24				C	
TOP CHORD	2-3=-358/45 6-34=-868/3 8-37=-474/3 11-40=-649/	/Max. Ten All forces 6, 3-4=-580/464, 4-33 58, 6-35=-665/286, 7- 34, 8-38=0/927, 38-39 183, 12-40=-725/174,	=-1082/331, 5-33 35=-517/314, 7-3 =0/927, 9-39=0/ 12-13=-1664/31	3=-1012/335, 5-3 36=-474/334, 36- 927, 9-10=-739/3 3, 13-14=-631/0	4=-1003/339, 37=-474/334, 34, 10-11=-590/207,				
BOT CHORD	21-22=-157/ 19-45=-495/ 16-17=-201/ 4-24=-1052/	62, 24-41=-361/462, 2 899, 21-43=-157/899, 1256, 18-45=-495/256, 1461, 16-48=-201/146 233, 4-22=0/561, 6-20 372, 9-18=-1754/267, 2	20-43=-157/899 18-46=-383/198 1, 15-48=-201/1 =-731/202, 7-20	, 20-44=-495/256 , 46-47=-383/198 461, 15-49=-201/ =-368/83, 8-20=-	, 19-44=-495/256, , 17-47=-383/198, 1461, 14-49=-201/14 165/1324,	461			
 a) TCLL: ASCI Cat B; Partia 4) Unbalanced 5) This truss have 	E 7-16; Pr=20. ally Exp.; Ce= I snow loads h	s have been considere 20mph (3-second gust (envelope) gable end (1) 32-8-6 to 34-3-10, f t and right exposed ; e wn; Lumber DOL=1.60 0 psf (roof LL: Lum DO 1.0; Cs=1.00; Ct=1.10 ave been considered f ned for greater of min live loads.	or this design.	JL=1.15); Pf=20.	D pst (Lum DOL=1.1	5 Plate DOL=	1.15); IS=	; Gable terior(2R) 0-3-10 to prces & 1.0; Reugh	SEAL 28147 10/23/2023
. <u></u>									10/23/2023

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTONSEED LANE FUQUAY-VARINA, NC	
23-7720-R01	R05	Piggyback Base	7	1	Job Reference (optional) # 42106	
	Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:30 2023 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-JZR0XPtgbby4ykaBWqiqtYXyHmnP40hK8znO6zyQADt					


NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 2, 164 lb uplift at joint 24, 277 lb uplift at joint 18 and 176 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/23/2023

BOT CHORD 2x4 SP No.3 end verticals 2x4 SP No 3 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing WFBS 2x4 SP No 3 OTHERS MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 24=-171(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 21, 22, 23, 17, 16, 15 except 19=262(LC 27), 20=305(LC

5), 18=302(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14-17)

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-1-0, Exterior(2N) 4-1-0 to 5-3-6, Corner(3R) 5-3-6 to 14-10-10, Exterior(2N) 14-10-10 to 16-1-0, Corner(3E) 16-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

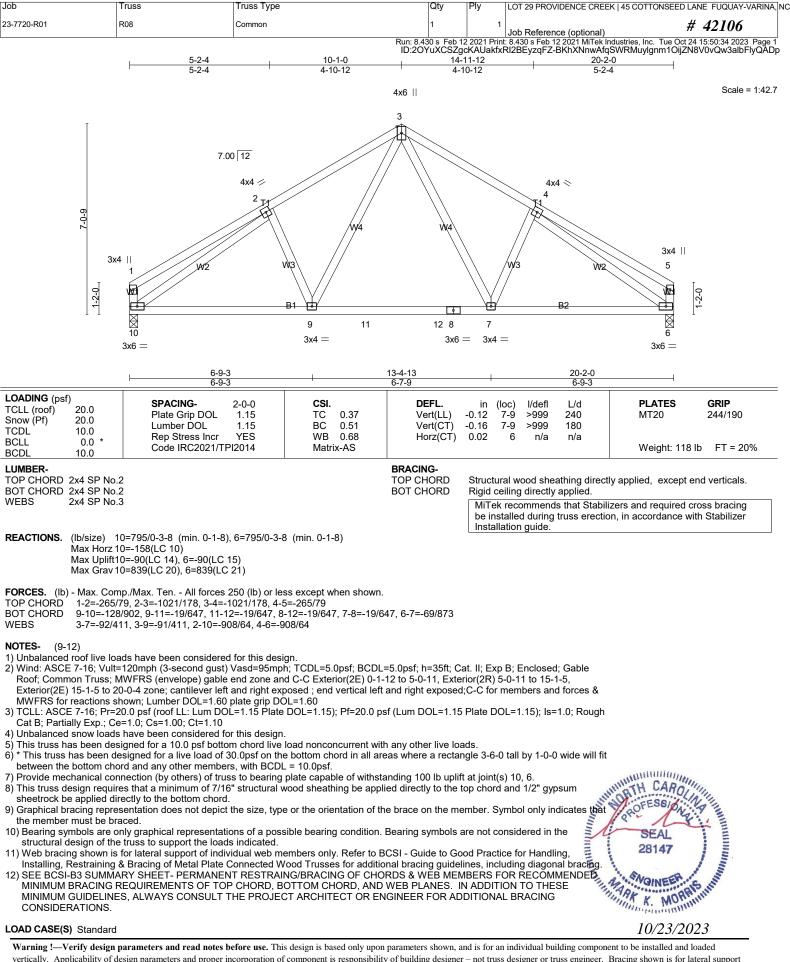
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

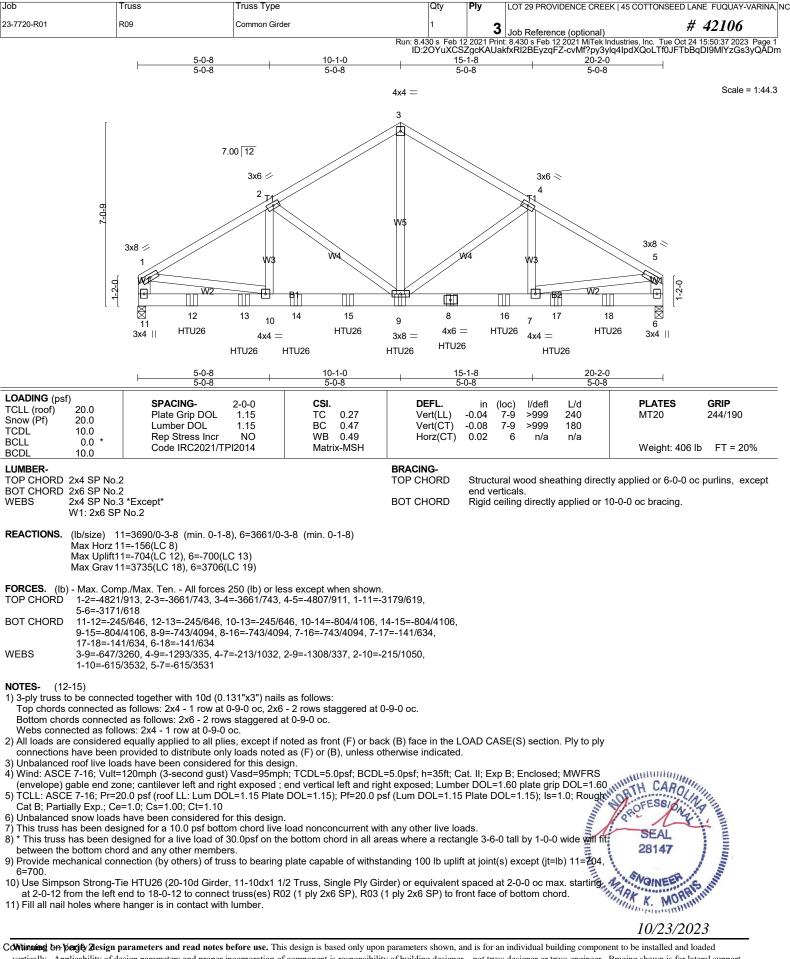
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 10) Gable studs spaced at 2-0-0 co.
 11) This truss has been designed for a 10.0 psf bottom chord inverticed from the bottom chord in all areas where a recommendation of the bottom chord in all areas where a recommendation of the bottom chord and any other members, with BCDL = 10.0psf.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15.

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTO	NSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R07	Common Supported Gable	1	1	Job Reference (optional)	# 42106
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:33 2023 Page 2						

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS


17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTO	ONSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R09	Common Girder	1	3	Job Reference (optional)	# 42106
Run; 8,430 s Feb 12 2021 Print; 8,430 s Feb 12 2021 MiTek Industries. Inc. Tue Oct 24 15:50:38 2023 Page 2						

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-46w1D8zhj2yxvzCj_WsiCEsPD?W3ylPW_CjpOWyQADI

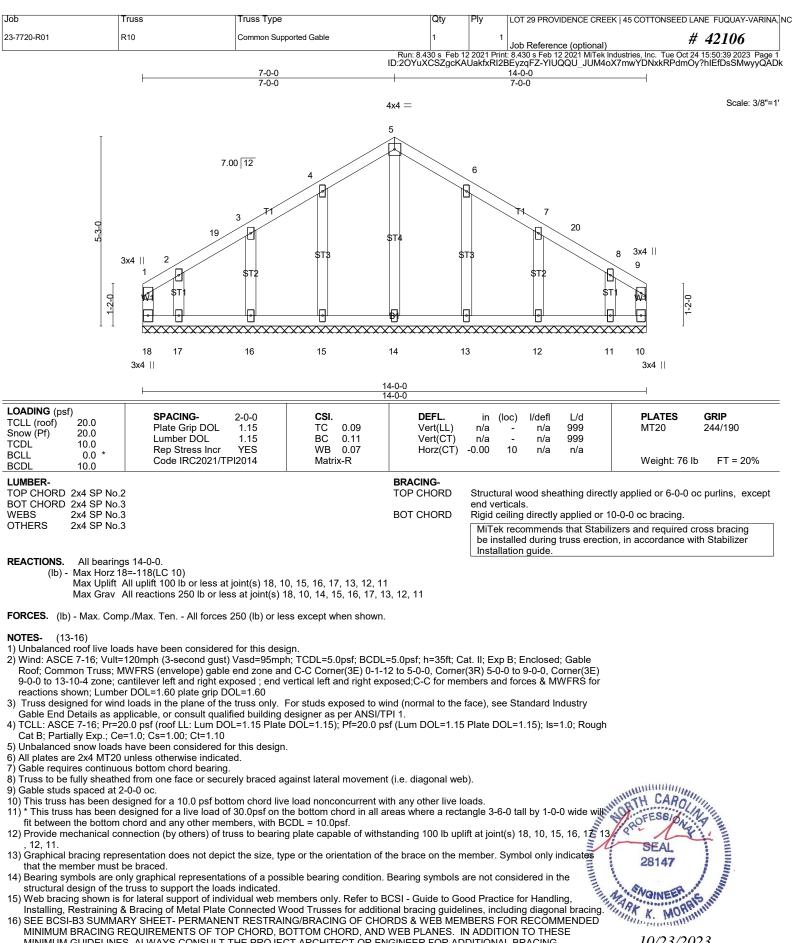
12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

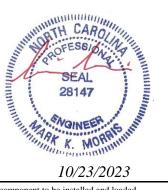
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 8=-644(F) ⁹=-644(F) 12=-644(F) 13=-644(F) 14=-644(F) 15=-644(F) 16=-644(F) 17=-644(F) 18=-626(F)

10/23/2023



MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS. CONSIDERATIONS. CONTINUED ON Pagidy Zesign parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral s


vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTONSEED LANE FUQUAY-VARINA, NC	
23-7720-R01	R10	Common Supported Gable	1	1	Job Reference (optional) # 42106	
	Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:40 2023 Page ID:2OYuXCSZgcKAUakfxRI2BEyzqFZ-0U2oeq?xEgCf9HL65xuAHfxoWoIEQIUpSWCwTOyQA					

LOAD CASE(S) Standard

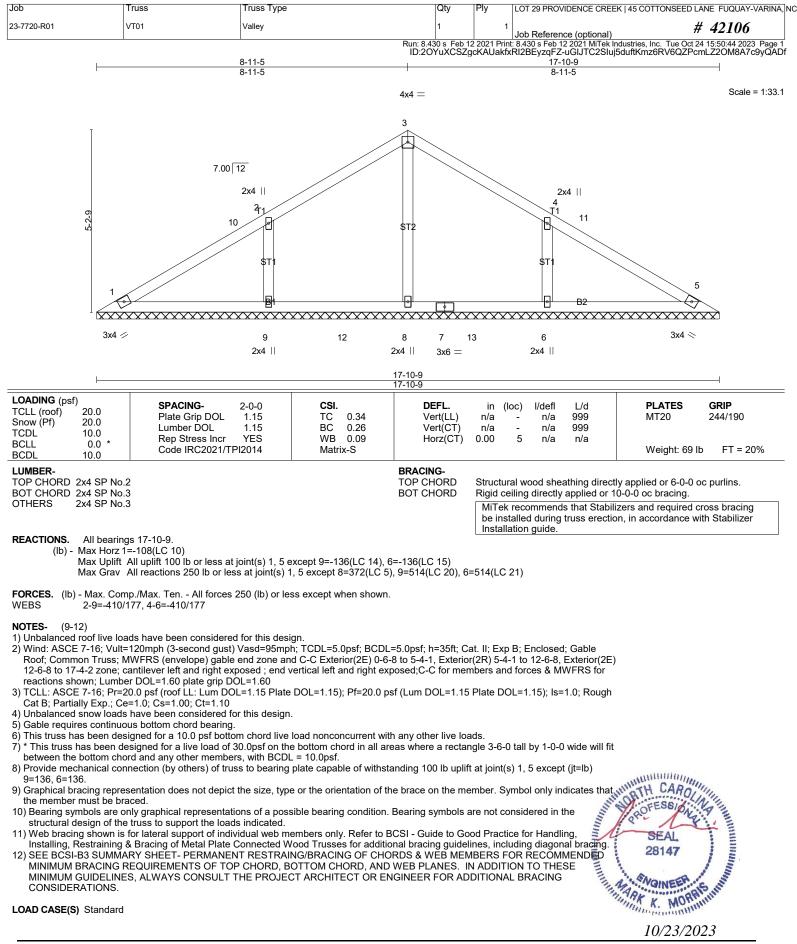
10/23/2023

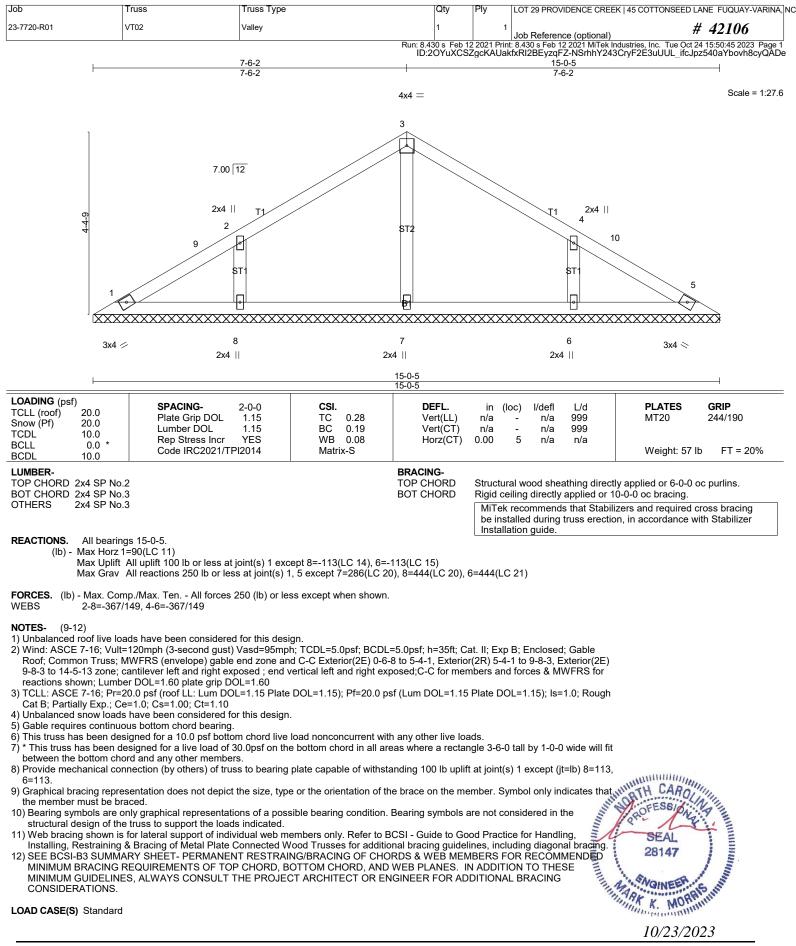
Job	Truss	Truss Type	Qty	Ply	LOT 29 PROVIDENCE CREEK 45 COTTO	NSEED LANE FUQUAY-VARINA, NC
23-7720-R01	R11	Common Girder	1	3	Job Reference (optional)	# 42106
Run: 8,430 s Feb 12 2021 Print: 8,430 s Feb 12 2021 MiTek Industries, Inc. Tue Oct 24 15:50:43 2023 Page 2						

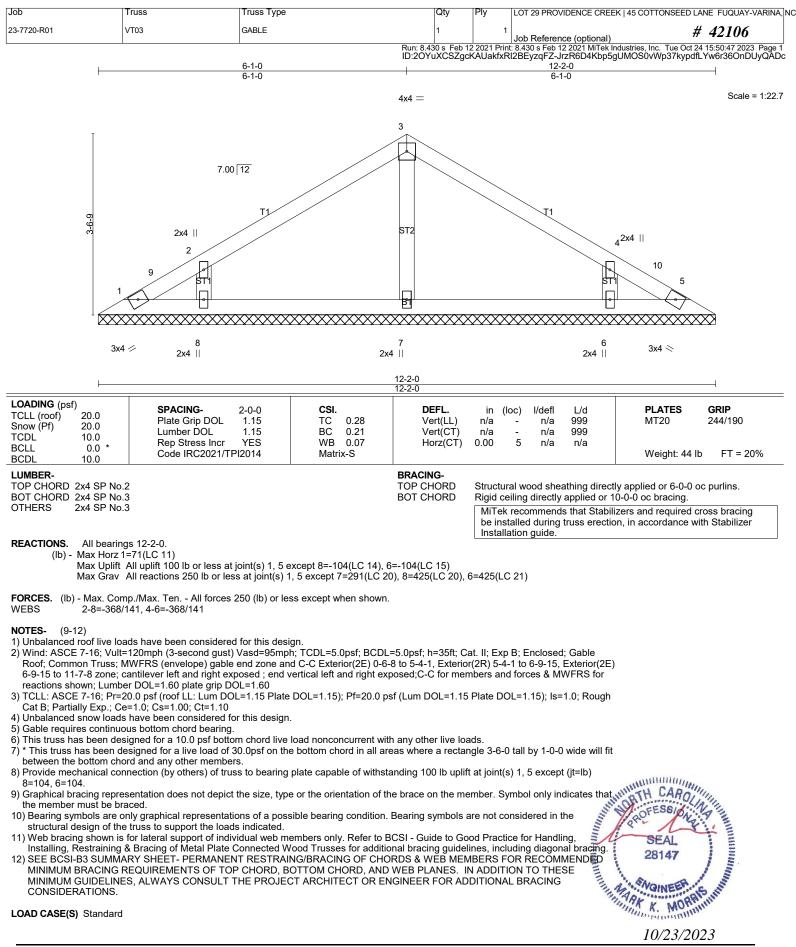
ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-Q3kwGs1qXbbE0k4hn3RtvHZIL0God1bF8UQa4jyQADg

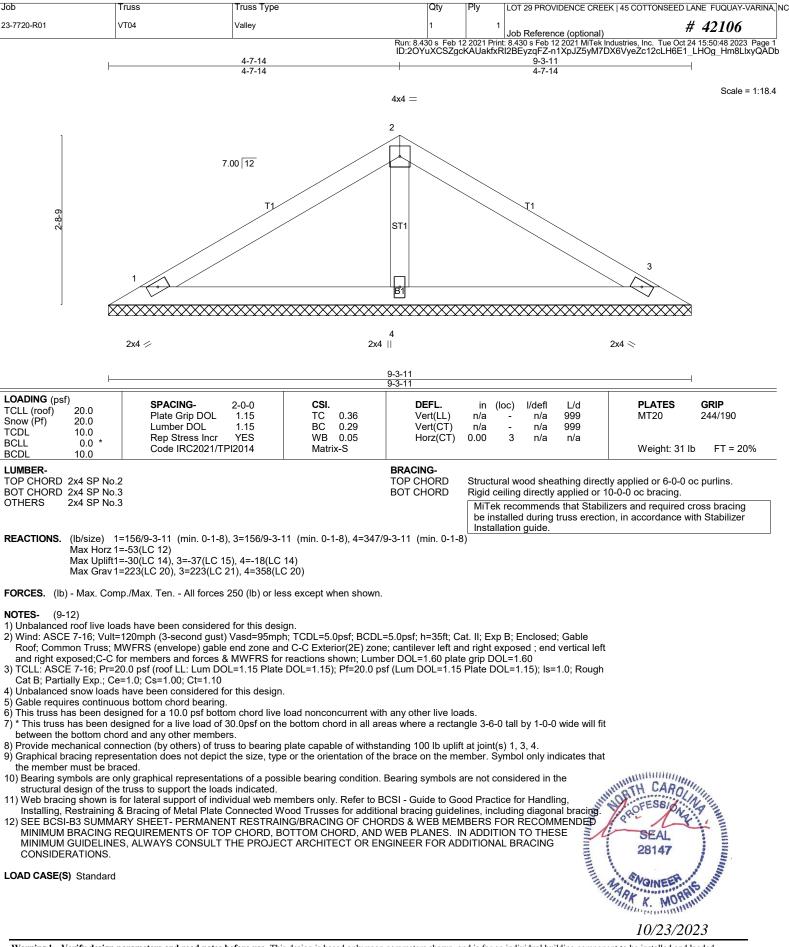
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

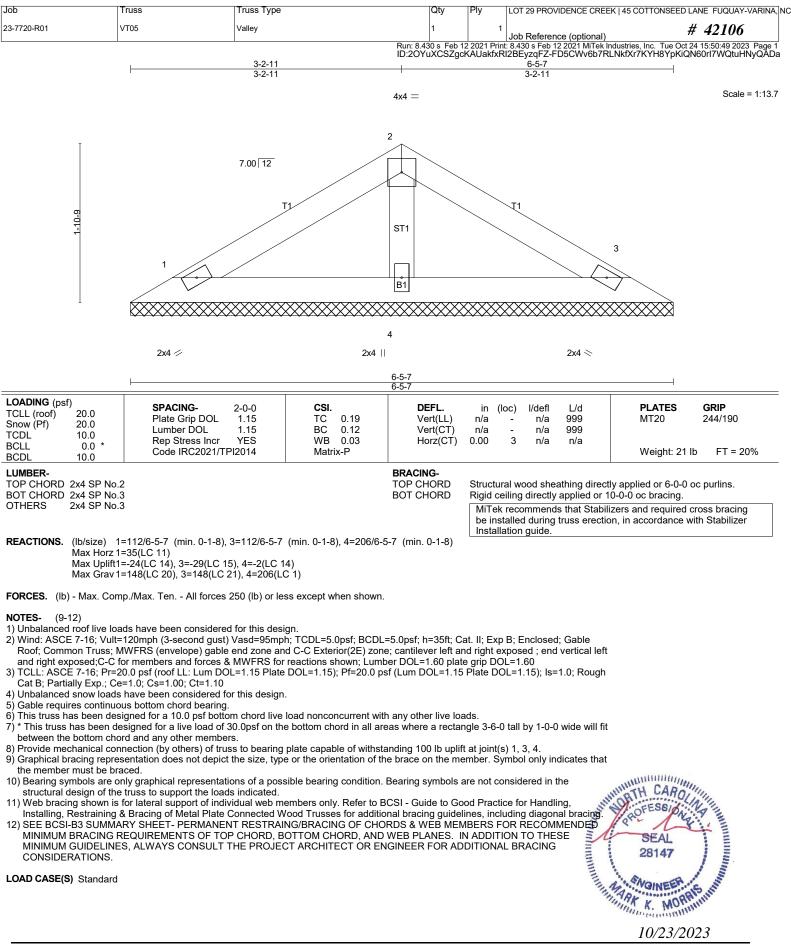
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-10=-20 Concentrated Loads (lb)


Vert: 13=-1002(F) 14=-996(F) 15=-996(F) 16=-996(F) 17=-996(F) 18=-996(F) 19=-996(F)




10/23/2023

