Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 41725 JOB: 23-7208-R01 JOB NAME: LOT 5 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. 23 Truss Design(s)

Trusses:

PB01, PB02, R01, R02, R03, R03A, R04, R05, R07, R08, R09, R10, R11, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVI	DENCE CREEK DRIVE
23-7208-R01	PB01	GABLE	2	1	Job Reference (optional)	# 41725
		Rur	:8.430 s Feb	12 2021 Pri	nt: 8.430 s Feb 12 2021 MiTek Industries, In	c. Fri Oct 13 17:56:54 2023 Page 2

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-eFqg7vvl5L3hN7NVCdz_9ixVav6Kh323xPyjv0yTmPN 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Mee Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Scale = 1:114.9

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVIDEN	ICE CREEK DRIVE
23-7208-R01	R01	GABLE	2	1	Job Reference (optional)	# 41725
		Ru ID:	n: 8.430 s Feb 2OYuXCSZgo	12 2021 Pri KAUakfxF	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fr RI2BEyzqFZ-SPBxOy_2gBqq52qeZu4OPz	ri Oct 13 17:57:00 2023 Page 2 zBacKC65l9yJKP17gyTmPH

NOTES- (15-18)

7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

8) Provide adequate drainage to prevent water ponding.

9) All plates are 3x6 MT20 unless otherwise indicated.

10) Gable requires continuous bottom chord bearing.

11) Gable studs spaced at 2-0-0 oc.

12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except (jt=lb) 41=105, 76=119.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

Scale = 1:117.4

F	8-10-5	15-5-12	26-0-0	36-6-12	42-0-12	47-6-12	57-1-10	67-0-0			
Plate Offsets	s (X,Y) [22:0-	4-0,0-4-8]	10-0-4	10-0-12	0-0-0	0-0-0	5-0-14	3-10-0			
LOADING (p TCLL (roof) Snow (Pf) TCDL BCLL BCDL	sf) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc Code IRC2021	2-0-0 - 1.15 1.15 r YES /TPI2014	CSI. TC 0.69 BC 0.67 WB 0.93 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.31 20-21 -0.43 20-21 0.03 17	l/defi L/d >999 240 >893 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 525 lb FT = 20%			
LUMBER- TOP CHORE BOT CHORE WEBS SLIDER REACTIONS (Ib)	 2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W9: 2x6 SP Left 2x4 SP All bearing Max Horz 2[±] 	* *Except* DSS, B5: 2x4 SP No. <i>:</i> *Except* No.2 No.3 -Ø 1-11-0, Right s 0-3-8 except (jt=len; =172(LC 14)	2 2x4 SP No.3 -& gth) 14=Mechan	∮ 1-11-0 ical.	BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 6-0-0 oc bra 1 Row at mi MiTek rec be installe Installatior	rood sheathing direct g directly applied or 9 acing: 19-21 dpt 6-26, ommends that Stabil d during truss erection n guide.	tly applied or 6-0-0 oc purlins. 9-8-5 oc bracing. Except: 7-24, 8-24, 8-22, 9-19, 10-17, 12-17 lizers and required cross bracing on, in accordance with Stabilizer			
	Max Uplift All uplift 100 lb or less at joint(s) except 2=-102(LC 14), 26=-229(LC 14), 17=-146(LC 15), 14=-126(LC 15) 15) Max Grav All reactions 250 lb or less at joint(s) except 2=628(LC 41), 26=2357(LC 45), 17=3149(LC 45), 14=664(LC 43)										
FORCES. (I TOP CHORE BOT CHORE WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-394/0, 3-4=-694/117, 6-38=0/293, 6-39=-1177/275, 7-39=-1127/305, 7-40=-1040/327, 40-41=-1040/327, 8-41=-1040/327, 8-42=-1182/289, 42-43=-1182/289, 9-43=-1182/289, 9-10=-29/454, 10-11=0/479, 11-44=0/261, 12-13=-863/204, 13-14=-401/0 BOT CHORD 2-28=-191/580, 27-28=-191/580, 26-27=-191/580, 26-45=-42/415, 25-45=-42/415, 25-46=-42/415, 24-46=-42/415, 24-47=-19/1310, 23-47=-19/1310, 23-48=-19/1310, 22-48=-19/1310, 22-49=0/839, 18-49=0/839, 18-50=0/839, 50-51=0/839, 17-51=0/839, 16-17=-101/731, 16-52=-101/731, 15-52=-101/731, 15-53=-101/731, 14-53=-101/731 WEBS 4-28=0/286, 4-26=-816/239, 6-26=-1684/299, 6-24=-17/1003, 8-24=-455/59, 8-22=-553/197, 21-22=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-21=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-12=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-12=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-12=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-21=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-21=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-21=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-8										
 NOTES- (13-16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2B) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough (28147) Cat B; Partially Exp.; Ce=1.0); Cs=1.0; Ci=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 											

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PR	OVIDENCE CREEK DRIVE
23-7208-R01	R02	Piggyback Base	8	1	Job Reference (optional)	# 41725
		Run: ID:201	8.430 s Feb 'uXCSZgcK	12 2021 Pri AUakfxRl2	int: 8.430 s Feb 12 2021 MiTek Industries 2BEyzqFZ-PoJhoe?JCo4YKM_1gJ6	s, Inc. Fri Oct 13 17:57:02 2023 Page 2 6sUOHmD8k2ZUXFneu8BZyTmPF

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 2, 229 lb uplift at joint 26, 146 lb uplift at joint 17 and 126 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

Scale = 1:114.3

 	10-1-12	18-0-14	26-0-0		37-2-12		47-6-12		57-1-10 9-6-14	67-0-0	———————————————————————————————————————
LOADING (pst TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/7	2-0-0 1.15 1.15 YES IPI2014	CSI. TC BC WB Matr	0.71 0.64 1.00 ix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 24-27 -0.29 18-20 0.04 17	l/defl >904 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 512 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 *E B4: 2x6 SP DS 2x4 SP No.3 *E W9: 2x6 SP No Left 2x4 SP No	Except* IS Except* 5.2 5.3 -Ø 1-11-0, Right 2	2x4 SP No.3 -&	ð 1-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at mi MiTek rec be installe Installatior	rood shea g directly idpt ommend d during n guide.	athing direct applied or 1 6-20, 8 s that Stabil truss erectio	tly applied or 5-1-12 or 10-0-0 oc bracing. 3-20, 8-18, 9-17, 10-1 izers and required cro on, in accordance with	c purlins. 7, 12-17 ss bracing Stabilizer
REACTIONS. (lb) -	REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical. (lb) - Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-194(LC 10), 24=-187(LC 14), 17=-245(LC 11), 14=-125(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=594(LC 54), 24=2081(LC 45), 17=3134(LC 45), 14=646(LC 43)										
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	 43) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-356/455, 3-4=-559/466, 4-33=-1719/447, 5-33=-1650/451, 5-34=-1638/456, 6-34=-1526/474, 6-35=-1632/452, 7-35=-1551/480, 7-36=-1433/488, 36-37=-1433/488, 8-37=-1433/488, 8-38=-1161/386, 38-39=-1161/386, 9-39=-1161/386, 9-10=0/576, 10-11=0/576, 11-40=0/384, 12-40=0/327, 12-13=-828/198, 13-14=-438/0 BOT CHORD 2-41=-363/443, 24-41=-363/443, 24-42=-363/443, 23-42=-363/443, 22-23=-363/443, 21-22=-263/1492, 21-43=-263/1492, 20-43=-263/1492, 20-44=-144/1412, 19-44=-144/1412, 19-45=-144/1412, 18-45=-144/1412, 18-46=-20/780, 46-47=-20/780, 17-47=-20/780, 16-17=-96/699, 16-48=-96/699, 15-48=-96/699, 14-49=-96/699 WEBS 4-24=-1706/255, 4-22=0/1338, 6-22=-485/72, 6-20=-328/311, 7-20=0/281, 8-20=-80/485, 8-18=-871/258, 9-18=-137/1383, 9-17=-2048/276, 10-17=-865/262, 12-17=-1141/276, 12-15=0/397 										
NOTES- (13 1) Unbalanced 2) Wind: ASCU Roof; Hip T 19-3-10 to 3 67-0-0 zone MWFRS for 3) TCLL: ASC Cat B; Parti 4) Unbalanced 5) This truss h non-concurr	 NOTES- (13-16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2B) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces 8 MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Reugh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 										

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVIDEN	CE CREEK DRIVE
23-7208-R01	R03	Piggyback Base	1	1	Job Reference (optional)	# 41725
		Run: 8 ID	430 s Feb 1 20YuXCS	2 2021 Prir ZgcKAUa	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fr kfxRI2BEyzqFZ-t_t40_0xz6CPyWZDE0d5	ri Oct 13 17:57:03 2023 Page 2 1cpwjX3flwhO0Idik?yTmPE

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 194 lb uplift at joint 2, 187 lb uplift at joint 24, 245 lb uplift at joint 17 and 125 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

Scale = 1:114.3

 	10-1-12 10-1-12	18-0-14	26-0	-0	37-2-12		47-6-12 10-4-0		57-1-10 9-6-14	67-0-0	
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip D0 Lumber D0L Rep Stress I Code IRC202	2-0-0 DL 1.15 1.15 ncr YES 21/TPI2014	CSI. TC BC WB Matr	0.69 0.56 0.98 ix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 24-27 -0.23 18-20 0.02 2	l/defl >903 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 512 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W9: 2x6 SP Left 2x4 SP I	*Except* DSS *Except* No.2 No.3 -Ø 1-11-0, Rig	ht 2x4 SP No.3	-Ø 1-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 6-0-0 oc bra 1 Row at mi MiTek reco be installed	ood shea directly cing: 17 dpt ommend d during	athing direct applied or 1 -18. 6-20, 5 s that Stabil truss erectio	tly applied or 5-10-15 c 10-0-0 oc bracing, Exo 7-20, 8-18, 9-18, 9-17, lizers and required cros on, in accordance with	ic purlins. cept: 10-17, 12-17 ss bracing Stabilizer
Installation guide. REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical. (lb) - Max Horz 2=172(LC 14) Max Uplift 100 lb or less at joint(s) except 2=-197(LC 10), 24=-168(LC 14), 18=-162(LC 10), 17=-272(LC 15), 14=-124(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=619(LC 54), 24=1555(LC 45), 18=2078(LC 44), 17=1811(LC 39), 14=676(LC 55)											
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-373/459, 3-4=-612/475, 4-33=-1279/380, 5-33=-1194/384, 5-34=-1179/388, 6-34=-1042/407, 6-35=-892/352, 7-35=-762/379, 7-36=-701/395, 36-37=-701/395, 8-37=-701/395, 8-38=-39/300, 38-39=-39/300, 9-39=-39/300, 9-10=-29/465, 10-11=0/480, 14 -0=0/214, 42 -42 -42 -42 -42 -42 -42 -42 -42 -42											
BOT CHORD	2-41=-372/ 21-22=-201 19-45=-8/3 15-49=-93/	491, 24-41=-372/49 1/1067, 21-43=-201 79, 18-45=-8/379, 1 761, 14-49=-93/761	1, 24-42=-372/ 1067, 20-43=-2 6-17=-93/761,	491, 23-42=-3 01/1067, 20- 16-48=-93/76	372/491, 22- 44=-8/379, 1 1, 15-48=-93	23=-372/491, 19-44=-8/379, 3/761,					
WEBS	4-24=-1246 9-18=-253/	6/236, 4-22=0/755, 0 62, 9-17=-319/51, 1	6-20=-576/193, 0-17=-863/262,	8-20=-119/10 12-17=-1138)02, 8-18=-1 3/276, 12-15	365/330, =0/397					
 NOTES- (13-16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2E) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough (at B; Partially Exp.; Ce=1.0); C S=1.00; C t=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling, and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCS!"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual building component to be installed and loaded Texperior of Parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded to the before the for the former of the representation former on the representation of parameters shown, and is for an individual building component to											
vertically. App	plicability of des	sign parameters and pro	opper incorporation	of component i	is responsibilit	y of building designe	er – not truss desi	igner or tr	uss engineer.	Bracing shown is for later	al support
of individual w	or individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the effector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general studence regarding fabrication quality control storage delivery erection and bracing consult ANSI/TPL1 National Design Standard for Metal										

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVIDE	NCE CREEK DRIVE
23-7208-R01	R03A	Piggyback Base	1	1	Job Reference (optional)	# 41725
		Run: 8. ID::	430 s Feb 1 2OYuXCS	2 2021 Prir ZgcKAUal	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. F kfxRl2BEyzqFZ-Il6asM3R1LirR7s_Tsi1BS	Fri Oct 13 17:57:07 2023 Page 2 S_d?9TuEk4_wwbvtmyTmPA

NOTES- (13-16)

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x5 MT20 unless otherwise indicated.

) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Refer to girder(s) for truss to truss connections.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 168 lb uplift at joint 24, 162 lb uplift at joint 18, 272 lb uplift at joint 17 and 124 lb uplift at joint 14.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

Scale = 1:115.3

F	10-1-12	18-0-14	26-0-	<u>)</u>	37-2-12		47-6-12		59-4-4	67-0-0	
	10-1-12	7-11-2	7-11-	2	11-2-12		10-4-0		11-9-0	1-1-12	
LOADING (p TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI . TC BC WB	0.63 0.56 0.99	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 25-28 -0.23 19-21 0.03 16	l/defl >904 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2021/T	PI2014	Matri	x-MSH					Weight: 515 lb	FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS SLIDER	 2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W9: 2x6 SP Left 2x4 SP I 	*Except* DSS *Except* No.2 No.3 -Ø 1-11-0, Right 2	x4 SP No.3 -2	1-11-0	I	BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at mi MiTek reco be installed Installation	ood shea directly dpt mmends d during t guide.	athing directl applied or 10 6-21, 7 that Stabili truss erectio	y applied or 5-11-14 o 0-0-0 oc bracing. -21, 8-19, 9-19, 10-18 zers and required cro n, in accordance with	oc purlins. 3, 12-18 ss bracing Stabilizer
REACTIONS. All bearings 0-3-8. (Ib) - Max Horz 2=167(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 25=-163(LC 14), 19=-246(LC 11), 14=-180(LC 11), 16=-110(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=617(LC 54), 25=1536(LC 45), 19=2712(LC 45), 14=452(LC 55), 16=1234(LC 39)											
FORCES. (I TOP CHORI BOT CHORI	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-372/461, 3-4=-608/480, 4-34=-1244/378, 5-34=-1174/383, 5-6=-1030/406, 6-35=-874/346, 7-35=-745/374, 7-36=-686/390, 36-37=-686/390, 8-37=-686/390, 8-38=0/335, 38-39=0/335, 9-39=0/335, 9-10=-941/395, 10-11=-793/283, 11-40=-854/259, 12-40=-933/249, 12-13=-362/352, 13-14=-60/277 BOT CHORD 2-41=-359/487, 25-41=-359/487, 25-42=-359/487, 24-42=-359/487, 23-24=-359/487, 22-23=-181/1052, 22-43=-181/1052, 21-43=-181/1052, 21-44=-6/375, 20-44=-6/375, 20-45=-6/375, 17-18=-270/664, 17-48=-270/664, 48-49=-270/664, 16-49=-270/664, 14-16=-241/266										
 WEBS 4-29=-12221231, 4-23=00737, 6-21=-392/197, 6-21=-1227/025, 6-19=-1363/333, 9-19=-1164/3200, 9-18=-262/1203, 10-18=-858/263, 12-16=-1078/211 NOTES- (12-15) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-50-50, 57-10-8 to 5-9-14, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-50-50, 57-10-8 to 5-9-14, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-50-50, 57-10-8 to 5-9-14, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-50-50, 57-10-8 to 57-10-8 to 5-9-14, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-50-50, 57-10-10-20, 57-10-20, 57-10-20, 57-10, 57-10-20, 57-10, 57-10-20, 57-10,											
vertically. A of individual responsibility	pplicability of des web members on y of the building d	sign parameters and proper ly. Additional temporary b lesigner. For general guida	incorporation of racing to ensure nce regarding fab	component is stability durin rication, qual	s responsibility ag construction lity control, stor	of building designer is the responsibility rage, delivery, erect	r – not truss desi of the erector. ion and bracing,	gner or tru Additional consult A	ss engineer. 1 permanent br NSI/TPI 1 Na	Bracing shown is for later racing of the overall struct ational Design Standard f	ral support ture is the <i>for Metal</i>

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PRO	VIDENCE CREEK DRIVE
23-7208-R01	R04	PIGGYBACK BASE	2	1	Job Reference (optional)	# 41725
		Run: 8 ID:20	430 s Feb uXCSZgcl	12 2021 Pri KAUakfxR	nt: 8.430 s Feb 12 2021 MiTek Industries, I2BEyzqFZ-AKojUN5KKG4QIbbZ8_I	Inc. Fri Oct 13 17:57:10 2023 Page 2 Fkp4c97MUdR4dQduqZT5yTmP7

NOTES- (12-15)

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x6 MT20 unless otherwise indicated.

) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 163 lb uplift at joint 25, 246 lb uplift at joint 19, 180 lb uplift at joint 14 and 110 lb uplift at joint 16.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

Scale = 1:114.3

 	10-1-12	18-0-14	26-0-0	37-2-12	I	47-6-12	57-1-10	67-0-0		
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.65 BC 0.52 WB 0.98 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.14 24-27 -0.23 18-20 0.03 14	l/defl L/d >894 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 512 lb FT = 20%		
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W7: 2x4 SP Left 2x4 SP All bearing	*Except* DSS *Except* No.2, W8: 2x4 SP No.1 No.3 -Ø 1-11-0, Right 2: s 0-3-8 except (it=length	, W9: 2x6 SP No. (4 SP No.3 -Ø 1-1) 18=0-4-0_14=N	2 I1-0 Iechanical	BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 6-0-0 oc bra 1 Row at mi MiTek reco be installed Installation	ood sheathing direct g directly applied or 1 lcing: 18-20,17-18. dpt 6-20, 7 ommends that Stabil d during truss erection guide.	tly applied or 5-1-9 oc purlins. 10-0-0 oc bracing, Except: 7-20, 8-20, 8-18, 9-18, 10-17, 12-17 lizers and required cross bracing on, in accordance with Stabilizer		
(lb) -	(Ib) - Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-195(LC 10), 24=-164(LC 14), 18=-277(LC 11), 14=-176(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=605(LC 54), 24=1360(LC 35), 18=3525(LC 45), 14=1016(LC 43)									
FORCES. (Ib TOP CHORD	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-3=-358/456, 3-4=-580/464, 4-33=-1082/331, 5-33=-1012/335, 5-34=-1003/339, 6-34=-868/358, 6-35=-665/286, 7-35=-517/314, 7-36=-474/334, 36-37=-474/334, 8-37=-474/334, 8-38=0/927, 38-39=0/927, 9-39=0/927, 9-10=-739/334, 10-11=-590/207,									
BOT CHORD	2-41=-361/ 21-22=-15 19-45=-499 16-17=-20 4-24=-1052	// 462, 24-41=-361/462, 2 7/899, 21-43=-157/899, 5/256, 18-45=-495/256, 1/1461, 16-48=-201/146 2/233, 4-22=0/561, 6-20	4-42=-361/462, 2 20-43=-157/899, 18-46=-383/198, 1, 15-48=-201/14 =-731/202, 7-20=	, 1014-062, 22- 3-42361/462, 22- 20-44495/256, 19 46-47383/198, 17 61, 15-49201/146 -368/83, 8-20165	23=-361/462,)-44=-495/256, /-47=-383/198, \$1, 14-49=-201/14 /1324,	61				
	8-18=-153 12-15=0/38	1/372, 9-18=-1754/267, 32	9-17=-321/1759,	10-17=-869/263, 12	2-17=-1064/265,					
NOTES- (13 1) Unbalanced 2) Wind: ASC Roof; Hip T 19-3-10 to 3 67-0-0 zone MWFRS fo 3) TCLL: ASC Cat B; Part 4) Unbalanced 5) This truss h non-concur	 IOTES- (13-16)) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2B) 60-3-10, Exterior(2B) 60-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces 8/WFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 i) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Reugh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 i) Unbalanced snow loads have been considered for this design. i) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 									
								10/12/2023		

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PRO	VIDENCE CREEK DRIVE
23-7208-R01	R05	Piggyback Base	7	1	Job Reference (optional)	# 41725
		I	Run: 8.430 s Feb ' D:20YuXCSZqc	12 2021 Pri KAUakfxF	nt: 8.430 s Feb 12 2021 MiTek Industries, RI2BEyzgFZ-avTr6P8CcBT 92K8p6	Inc. Fri Oct 13 17:57:13 2023 Page 2 pRRjEf6ZWgeRUsJs2D4QyTmP4

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 2, 164 lb uplift at joint 24, 277 lb uplift at joint 18 and 176 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 24=-171(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 21, 22, 23, 17, 16, 15 except 19=262(LC 27), 20=305(LC

5), 18=302(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14-17)

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-1-0, Exterior(2N) 4-1-0 to 5-3-6, Corner(3R) 5-3-6 to 14-10-10, Exterior(2N) 14-10-10 to 16-1-0, Corner(3E) 16-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 10) Gable studs spaced at 2-0-0 oc.
 11) This truss has been designed for a 10.0 psf bottom chord live load noncentrative in the bottom chord in all areas where a rectangle of a fit between the bottom chord and any other members, with BCDL = 10.0psf.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23, 19, 17, 16, 15.

SEAL 28147 23 12/207 30 12/207 30

be installed during truss erection, in accordance with Stabilizer

Installation guide.

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVI	DENCE CREEK DRIVE
23-7208-R01	R07	Common Supported Gable	1	1	Job Reference (optional)	# 41725
		R	un: 8.430 s Feb 1	12 2021 Prii	nt: 8.430 s Feb 12 2021 MiTek Industries, In	c. Fri Oct 13 17:57:16 2023 Page 2

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-_U9_IRA5v6rZ0W2jVFM83LsIYneyr?3J?qHuhlyTmP1 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/12/2023

vertically. Applicability of begin parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVID	ENCE CREEK DRIVE
23-7208-R01	R09	Common Girder	1	3	Job Reference (optional)	# 41725
		F	Run: 8.430 s Feb 1	2 2021 Prir	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc.	. Fri Oct 13 17:57:22 2023 Page 2

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-peWF?UFsVybjkRWtrVTYIc6HnCbjFeSBNlkCuOyTmOx 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 8=-644(F) 9=-644(F) 12=-644(F) 13=-644(F) 14=-644(F) 15=-644(F) 16=-644(F) 17=-644(F) 18=-626(F)

10/12/2023

CONSIDERATIONS. Consider the connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Oronio D'Oronio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PRO	OVIDENCE CREEK DRIVE
23-7208-R01	R10	Common Supported Gable	1	1	Job Reference (optional)	# 41725
		Run: 8 ID:20	430 s Feb YuXCSZgo	12 2021 Pri KAUakfxF	nt: 8.430 s Feb 12 2021 MiTek Industries RI2BEyzqFZ-I0e0QAG61ZrQzkgGz	s, Inc. Fri Oct 13 17:57:24 2023 Page 2 wV0N1Bg4?NujeXUr3DJyHyTmO\

LOAD CASE(S) Standard

10/12/2023

Job	Truss	Truss Type	Qty	Ply	LOT 5 PROVIDENCE CREEK 135 PROVID	DENCE CREEK DRIVE
23-7208-R01	R11	Common Girder	1	3	Job Reference (optional)	# 41725
		R	un: 8.430 s Feb 1	12 2021 Prir	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc	. Fri Oct 13 17:57:27 2023 Page 2

ID:20YuXCSZgcKAUakfxRI2BEyzqFZ-AbJ82BI_JUD?qCOqe33j?gpAvDLSwvewX1RzZcyTmOs 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-10=-20 Concentrated Loads (lb)

Vert: 13=-1002(F) 14=-996(F) 15=-996(F) 16=-996(F) 17=-996(F) 18=-996(F) 19=-996(F)

10/12/2023

