

RE: J0723-3722 Precision/59 Liberty Meadows/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Truss Name

VA2

VA3

Date

3/6/2023

3/6/2023

Site Information:

Customer: Project Name: J0723-3722 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

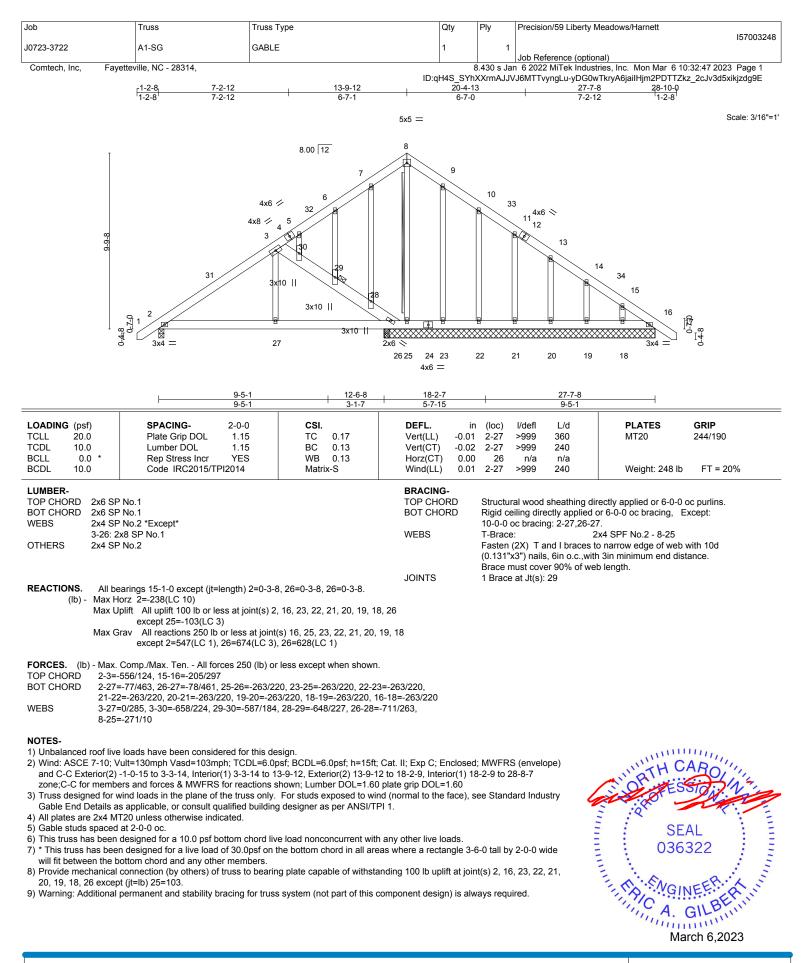
Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

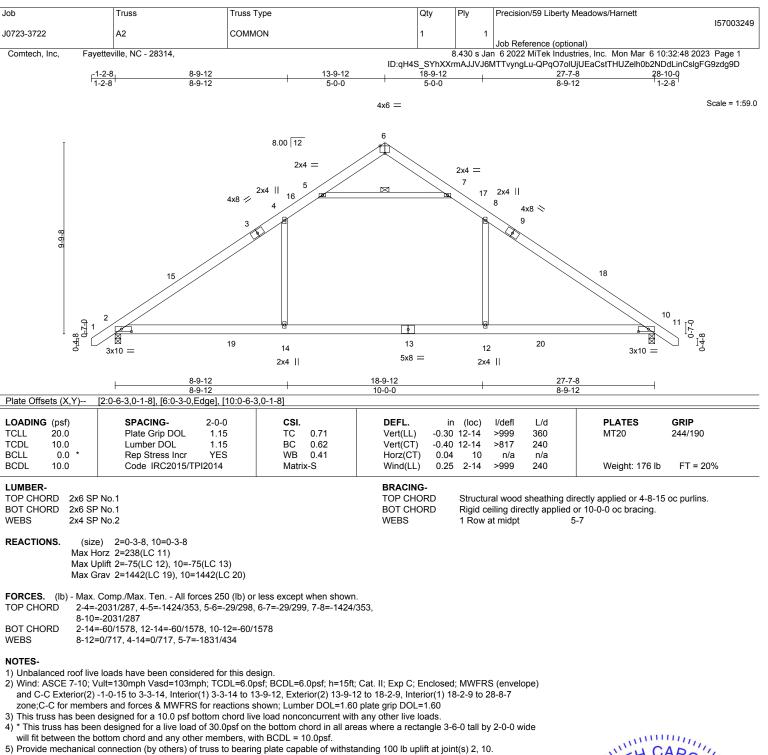
This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#
1	157003248	A1-SG	3/6/2023	21	157003268
2	157003249	A2	3/6/2023	22	157003269
3	157003250	A3	3/6/2023		
4	157003251	A4	3/6/2023		
5	157003252	B1-GE	3/6/2023		
6	157003253	B2	3/6/2023		
7	157003254	B3	3/6/2023		
8	157003255	B4	3/6/2023		
9	157003256	B5-GE	3/6/2023		
10	157003257	C1-GE	3/6/2023		
11	157003258	C2	3/6/2023		
12	157003259	C3	3/6/2023		
13	157003260	C4	3/6/2023		
14	157003261	D1-GE	3/6/2023		
15	157003262	D2	3/6/2023		
16	157003263	M1-GE	3/6/2023		
17	157003264	M2	3/6/2023		
18	157003265	M3	3/6/2023		
19	157003266	P1	3/6/2023		
20	157003267	VA1	3/6/2023		

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

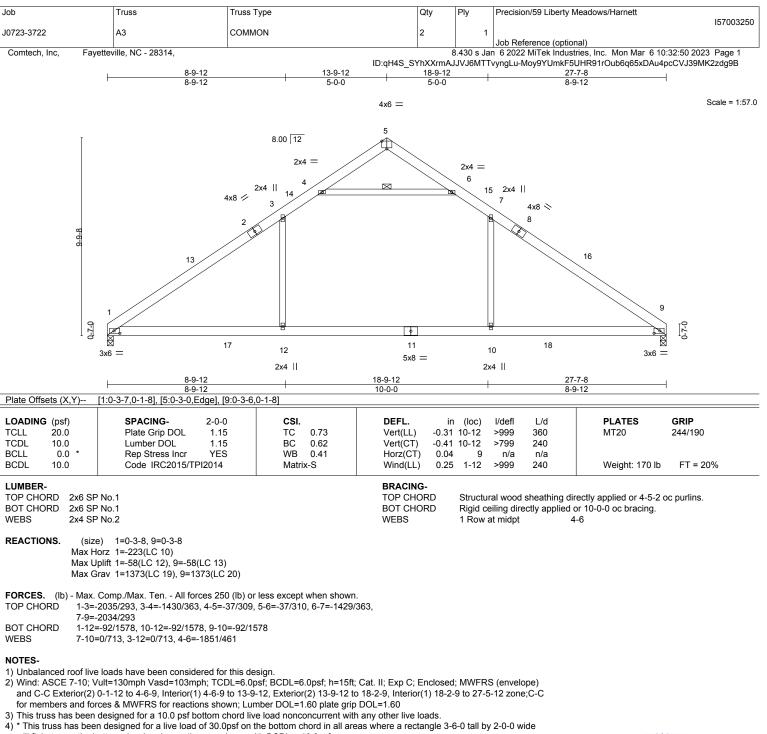

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023


North Carolina COA: C-0844

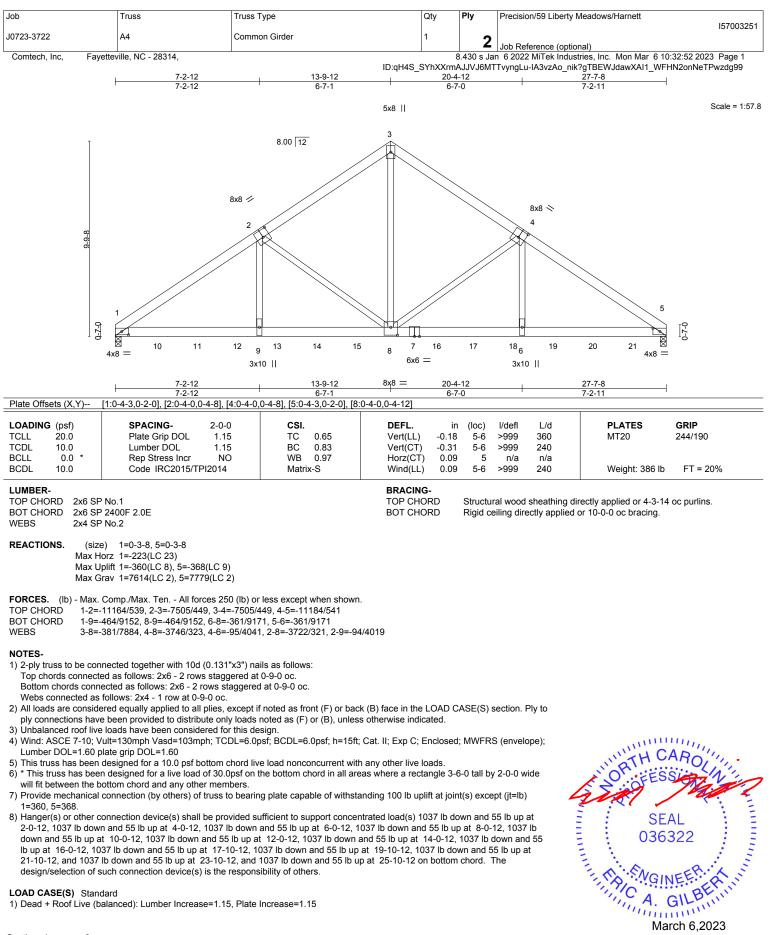
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road


will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

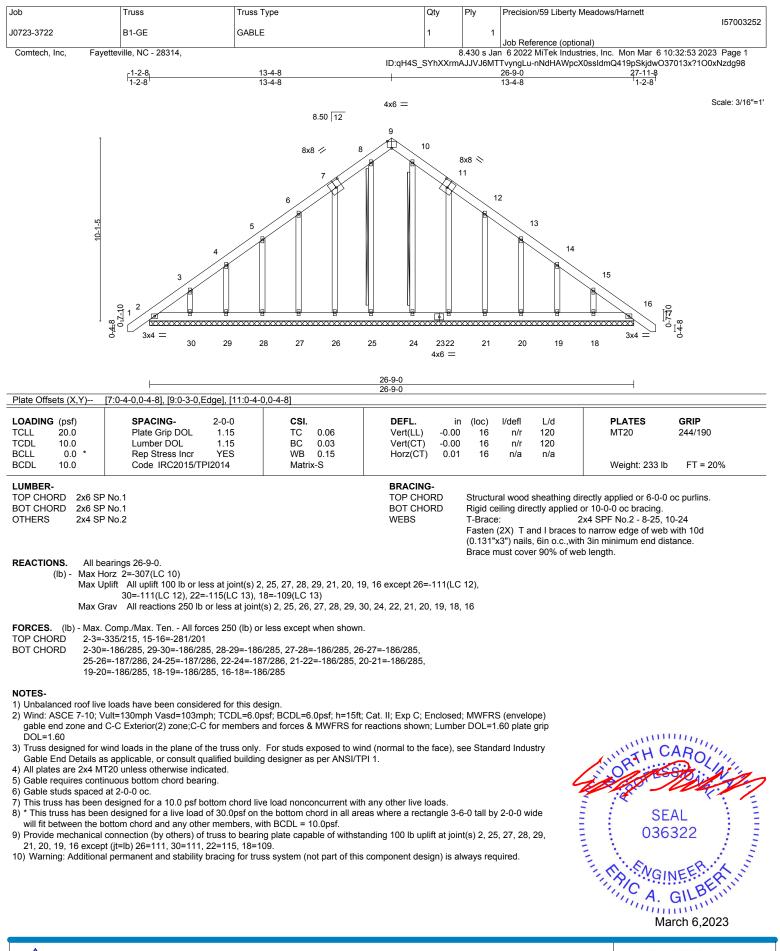
A MITEK A 818 Soundside Road Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

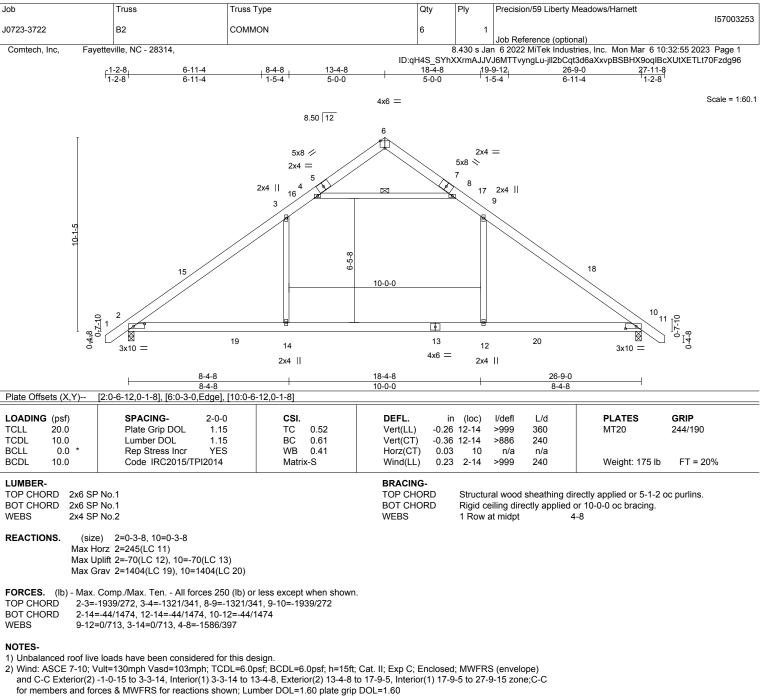
Job	Truss	Truss Type	Qty	Ply	Precision/59 Liberty Meadows/Harnett
10700 0700					157003251
J0723-3722	A4	Common Girder	1	2	lab Deference (artismal)
				-	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Mon Mar 6 10:32:52 2023 Page 2
			ID:qH4S_SYhXXrn	nAJJVJ6M1	TvyngLu-IA3vzAo_nik?gTBEWJdawXAI1_WFHN2onNeTPwzdg99

LOAD CASE(S) Standard


Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb)

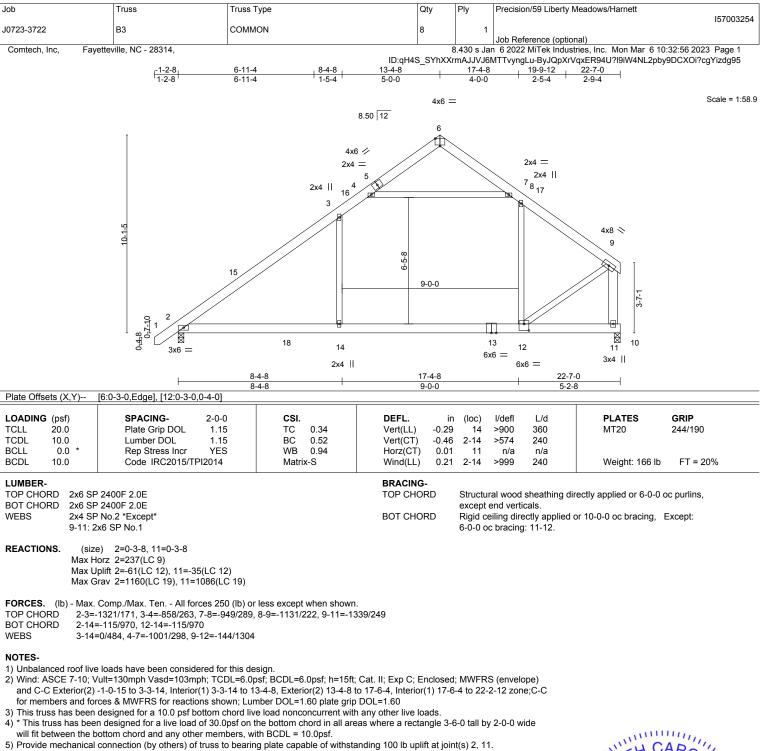
Vert: 8=-868(B) 10=-868(B) 11=-868(B) 12=-868(B) 13=-868(B) 14=-868(B) 15=-868(B) 16=-868(B) 17=-868(B) 18=-868(B) 19=-868(B) 20=-868(B) 21=-868(B) 20=-868(B) 20=-86


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

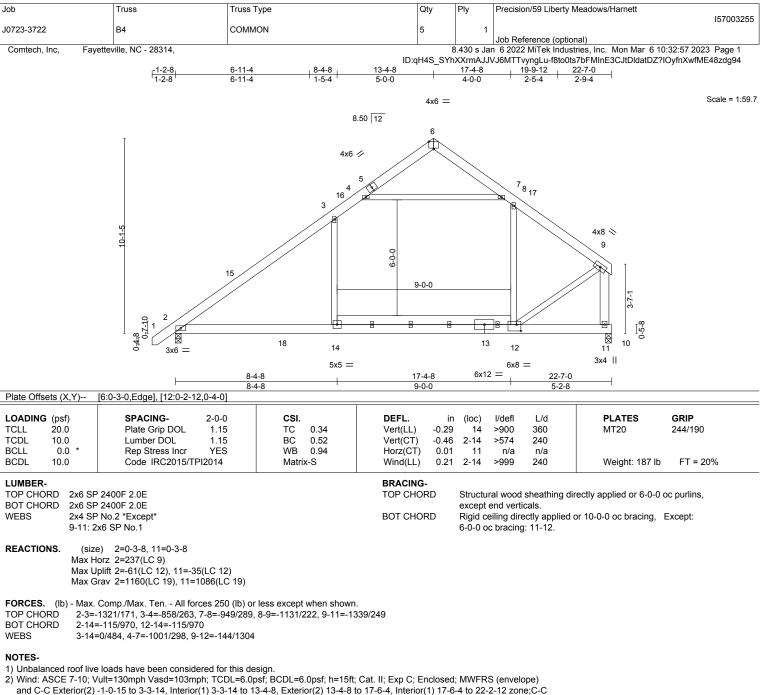
A MiTek Affil 818 Soundside Road

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



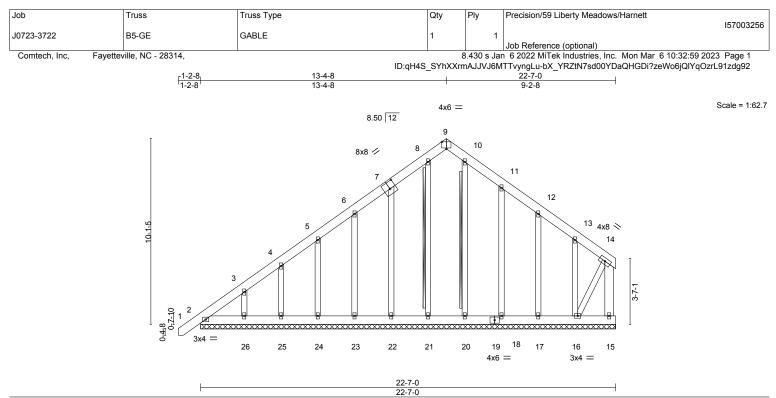
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)-- [7:0-4-0,0-4-8], [9:0-3-0,Edge]

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.05	DEFL. Vert(LL) -0.	in (loc) 00 1	l/defl n/r	L/d 120	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.	00 1	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.15	Horz(CT) 0.	00 15	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 216 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

WEBS

LUMBER-

LOWIDER.	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1 *Except*
	14-16: 2x4 SP No.2
OTHERS	2x4 SP No.2

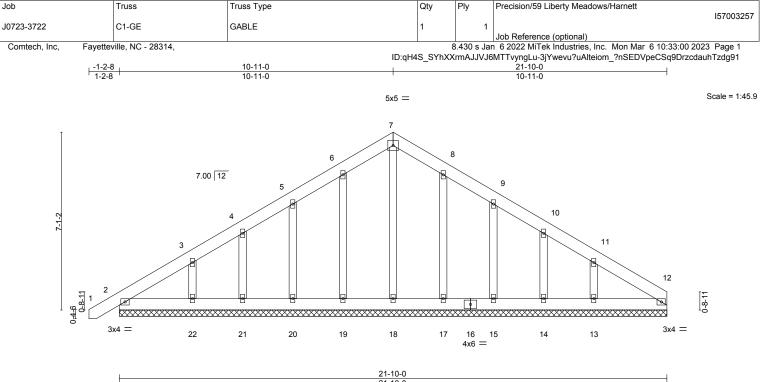
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 - 8-21, 10-20 T-Brace: Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 22-7-0. Max Horz 2=308(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 15, 21, 23, 24, 25, 17 except 22=-106(LC 12), 26=-116(LC 12), 18=-109(LC 13), 16=-290(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 15, 21, 22, 23, 24, 25, 26, 20, 18.17.16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-343/221


NOTES-

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 21, 23, 24, 25, 17 except (jt=lb) 22=106, 26=116, 18=109, 16=290.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system. Before use, the building designer must verify the applications of design had the property incorporate into design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			21-10-0					1
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00	<u></u> 1	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	1	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00	12	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	. ,				Weight: 162 lb	FT = 20%

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 OTHERS

2x4 SP No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 21-10-0. Max Horz 2=206(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 17, 15, 14 except 22=-119(LC 12), 13=-127(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 18, 19, 20, 21, 22, 17, 15, 14 except 13=262(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

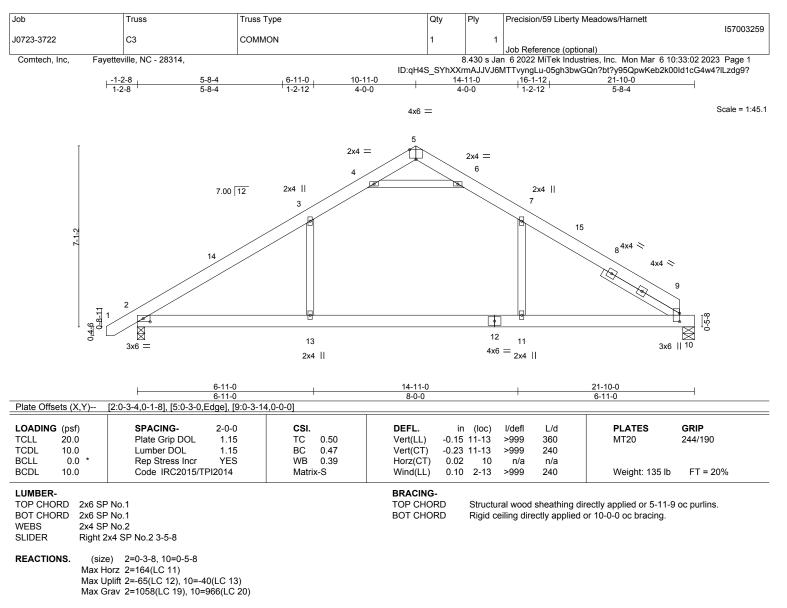
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 17, 15, 14 except (jt=lb) 22=119, 13=127.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1478/222, 3-4=-1089/286, 4-5=-84/493, 5-6=-77/502, 6-7=-1079/292, 7-9=-1480/239

 BOT CHORD
 2-13=-82/1157, 11-13=-82/1157, 9-11=-82/1157

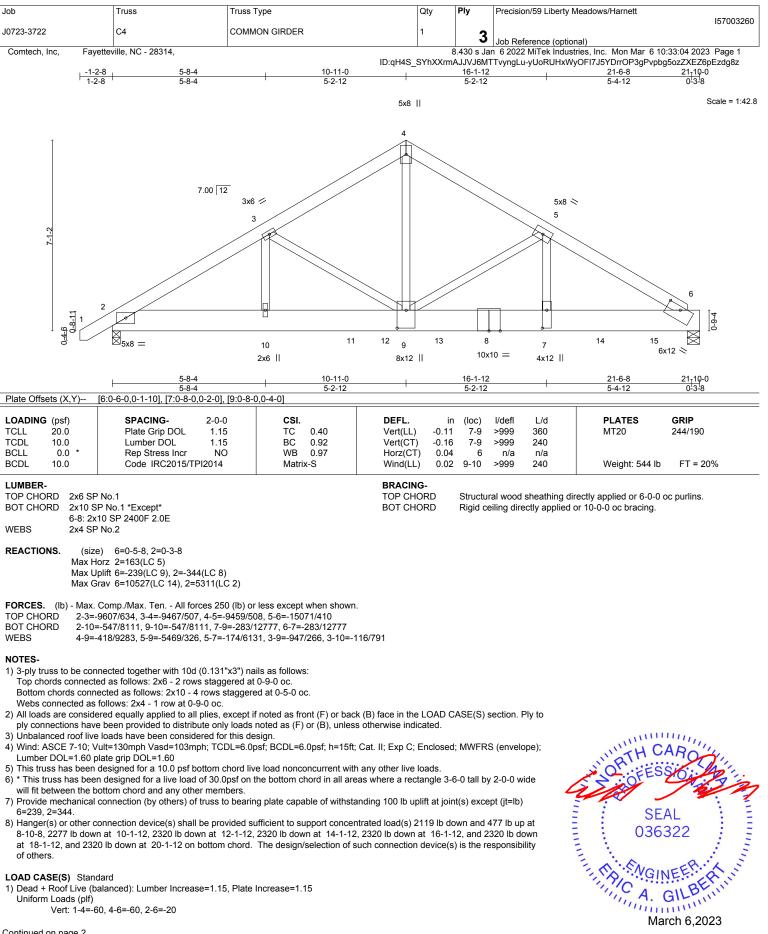
WEBS 7-11=0/492, 3-13=0/449, 4-6=-1664/425

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-13 to 3-4-0, Interior(1) 3-4-0 to 10-11-0, Exterior(2) 10-11-0 to 15-0-12, Interior(1) 15-0-12 to 21-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

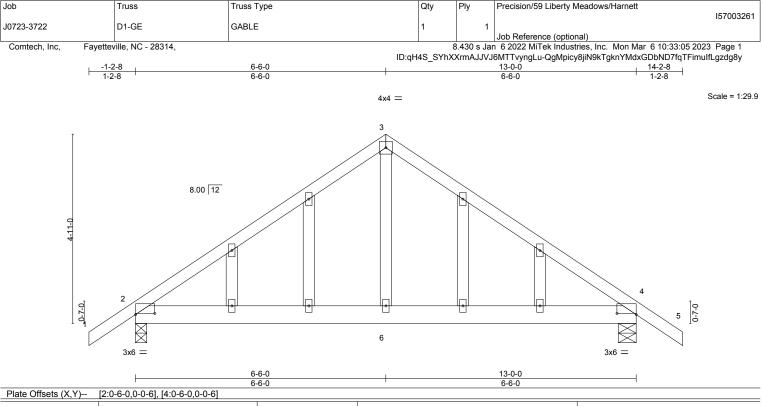
A MiTek Affilia 818 Soundside Road

818 Soundside Road Edenton, NC 27932

Continued on page 2

ᄊ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Precision/59 Liberty Meadows/Harnett
					157003260
J0723-3722	C4	COMMON GIRDER	1	2	
				3	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Jar	1 6 2022 MiTek Industries, Inc. Mon Mar 6 10:33:04 2023 Page 2


8.430 s Jan 6 2022 Mi lek Industries, Inc. Mon Mar 6 10:33:04 2023 Page 2 ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-yUoRUHxWyOFI7J5YDrrOP3gPvpbg5ozZXEZ6pEzdg8z

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 8=-598(F) 7=-598(F) 11=-2119(F) 12=-606(F) 13=-598(F) 14=-598(F) 15=-598(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

_OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.01	2-6	>999	360	MT20	244/190
TCDL 1	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.03	2-6	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	4	n/a	n/a		
BCDL 1	10.0	Code IRC2015/TI	PI2014	Matrix	k-S	Wind(LL)	0.02	2-6	>999	240	Weight: 78 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 4=0-5-8 Max Horz 2=-154(LC 10)

Max Uplift 2=-136(LC 12), 4=-138(LC 13) Max Grav 2=586(LC 1), 4=592(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-605/168, 3-4=-606/168 TOP CHORD

BOT CHORD 2-6=-20/416. 4-6=-20/416 WEBS 3-6=0/323

NOTES-

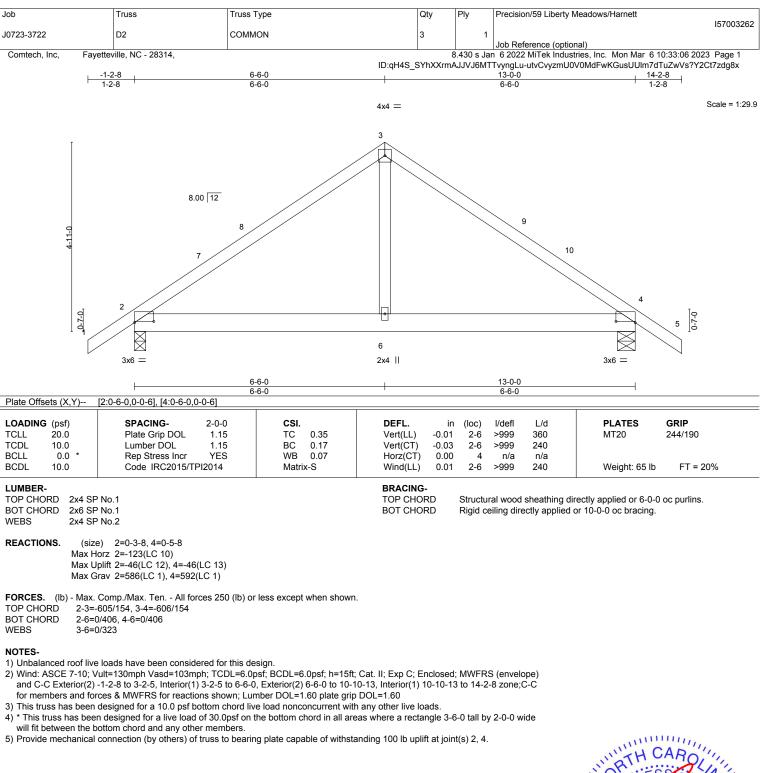
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

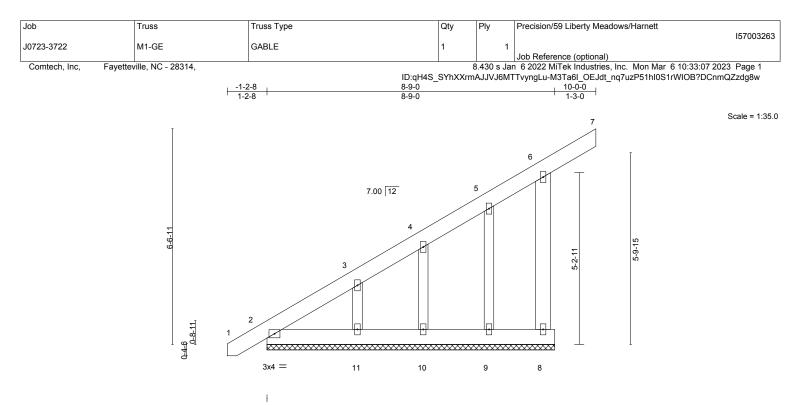
All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=136, 4=138.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) 0.00	7	n/r 120	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	6	n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.00		n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 74 lb FT = 20%

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS OTHERS 2x4 SP No.2 TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-9-0.

(lb) -Max Horz 2=293(LC 12)

2-3=-333/250

Max Uplift All uplift 100 lb or less at joint(s) 9, 10 except 8=-130(LC 12), 11=-121(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD

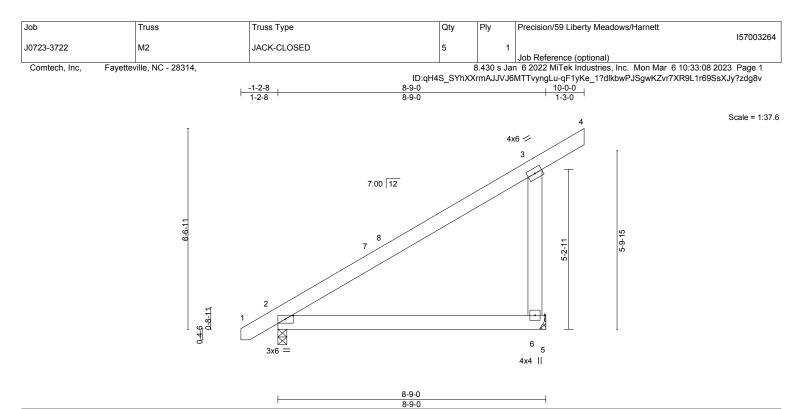
NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 10 except (jt=lb) 8=130, 11=121.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES GR	IP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.29	Vert(LL) -0.03	2-6	>999	360	MT20 244	/190
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -0.06	2-6	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.02	2-6	>999	240	Weight: 62 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=201(LC 12)

Max Uplift 6=-122(LC 12)

Max Grav 6=456(LC 19), 2=399(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-363/312

NOTES-

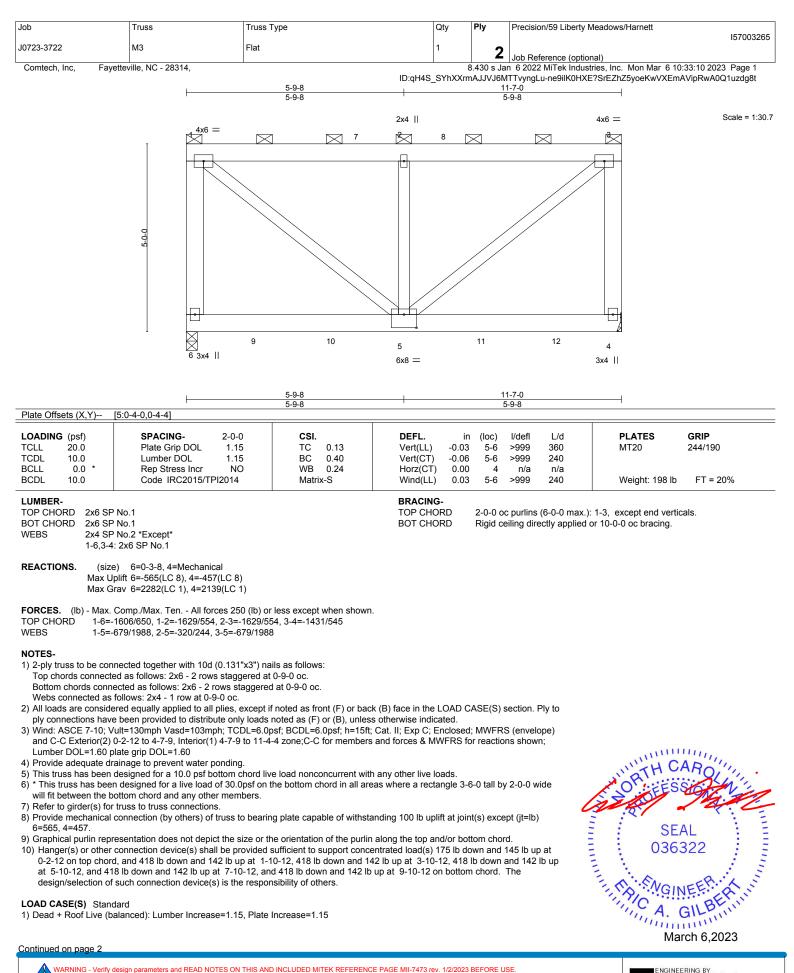
1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-13 to 3-4-0, Interior(1) 3-4-0 to 10-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=122.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

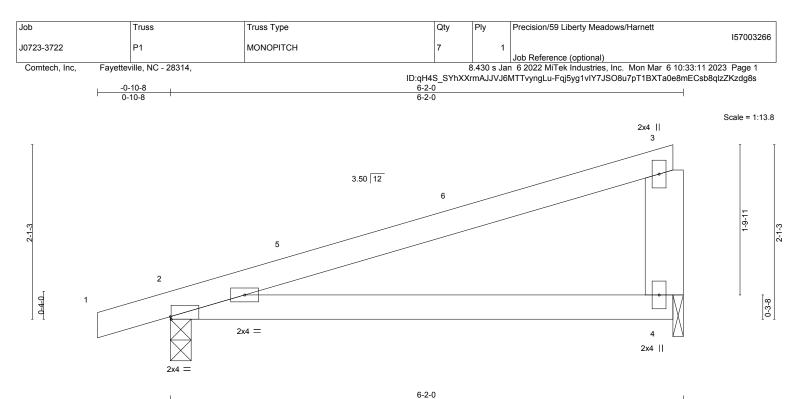
818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Precision/59 Liberty Meadows/Harnett
					157003265
J0723-3722	M3	Flat	1	2	
				2	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Jar	6 2022 MiTek Industries, Inc. Mon Mar 6 10:33:10 2023 Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 6 10:33:10 2023 Page 2 ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-ne9ilK0HXE?SrEZhZ5yoeKwVXEmAVipRwA0Q1uzdg8t


LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-60, 4-6=-134(F=-114) Concentrated Loads (lb)

Vert: 1=-175 5=-418(B) 9=-418(B) 10=-418(B) 11=-418(B) 12=-418(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

						6-2-0						7
Plate Off	sets (X,Y)	[2:0-0-2,Edge]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.06	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.12	2-4	>582	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TE	PI2014	Matri	x-P	Wind(LL)	0.13	2-4	>526	240	Weight: 23 lb	FT = 20%

BRACING-

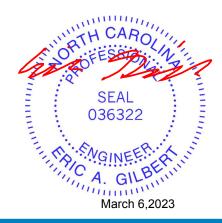
TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=68(LC 8)

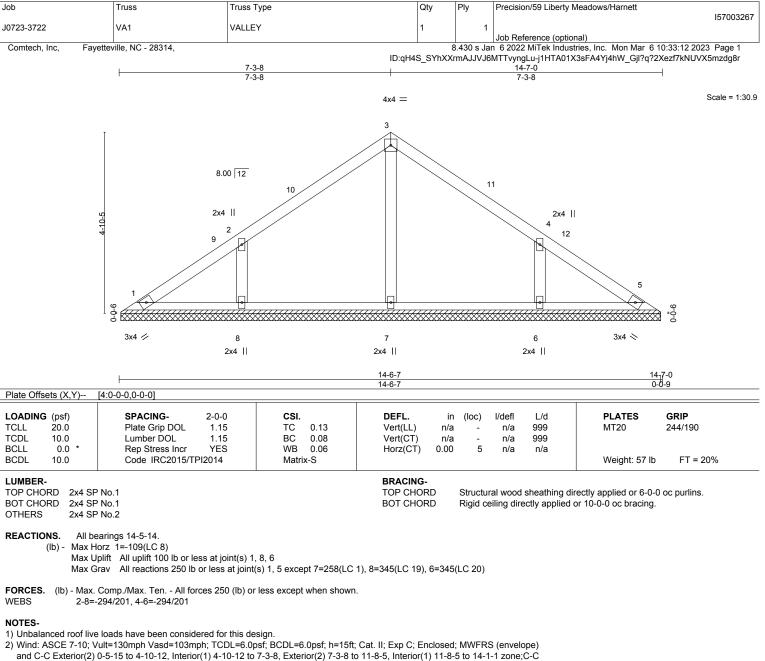

Max Uplift 2=-120(LC 8), 4=-95(LC 8) Max Grav 2=298(LC 1), 4=227(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=120.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

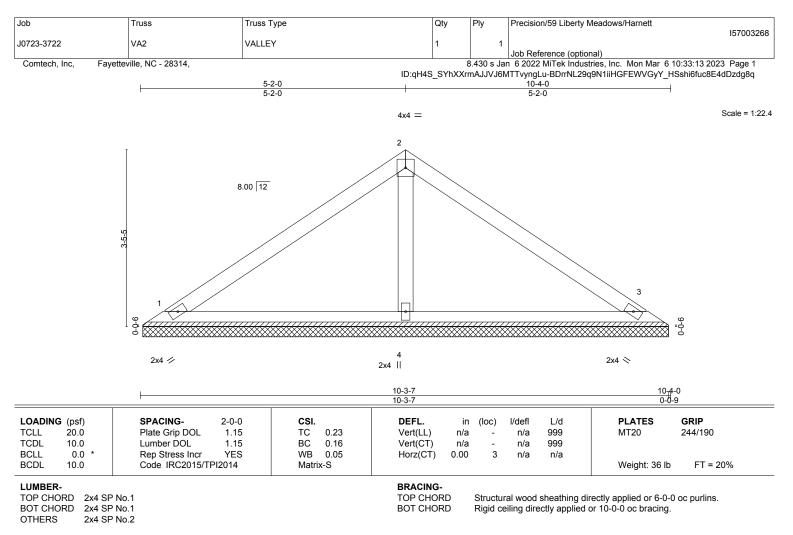
A MiTek Affili 818 Soundside Road Edenton, NC 27932

for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

REACTIONS. (size) 1=10-2-14, 3=10-2-14, 4=10-2-14 Max Horz 1=-75(LC 8) Max Uplift 1=-23(LC 12), 3=-30(LC 13)

Max Grav 1=186(LC 1), 3=186(LC 1), 4=377(LC 1)

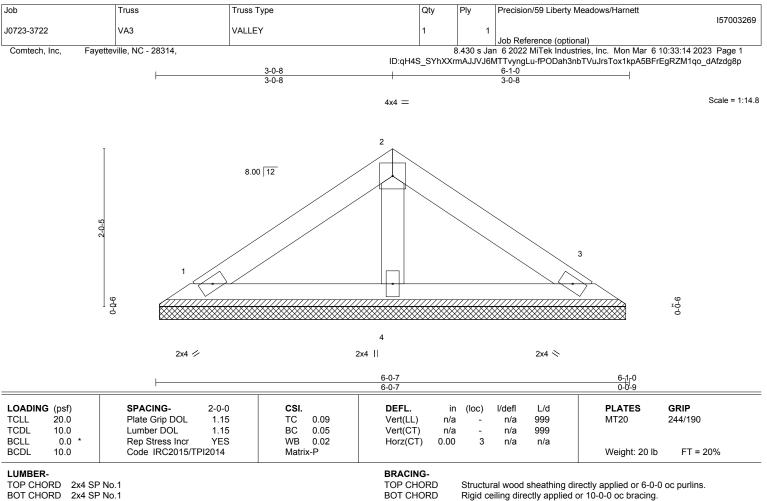
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. 1=5-11-14, 3=5-11-14, 4=5-11-14 (size) Max Horz 1=-41(LC 10)

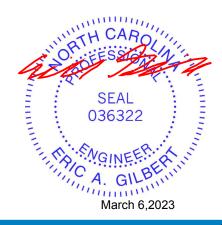
Max Uplift 1=-17(LC 12), 3=-21(LC 13)

Max Grav 1=111(LC 1), 3=111(LC 1), 4=186(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

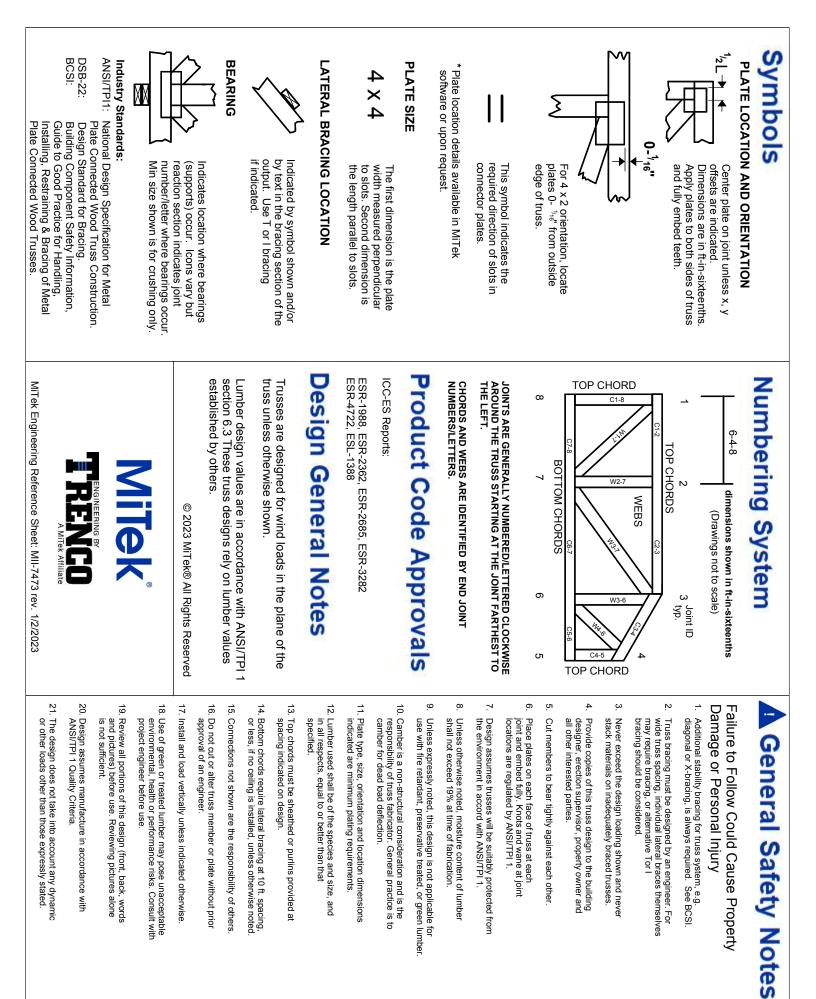
NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RE: J0723-3723 Precision/59 Liberty Meadows/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0723-3723 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

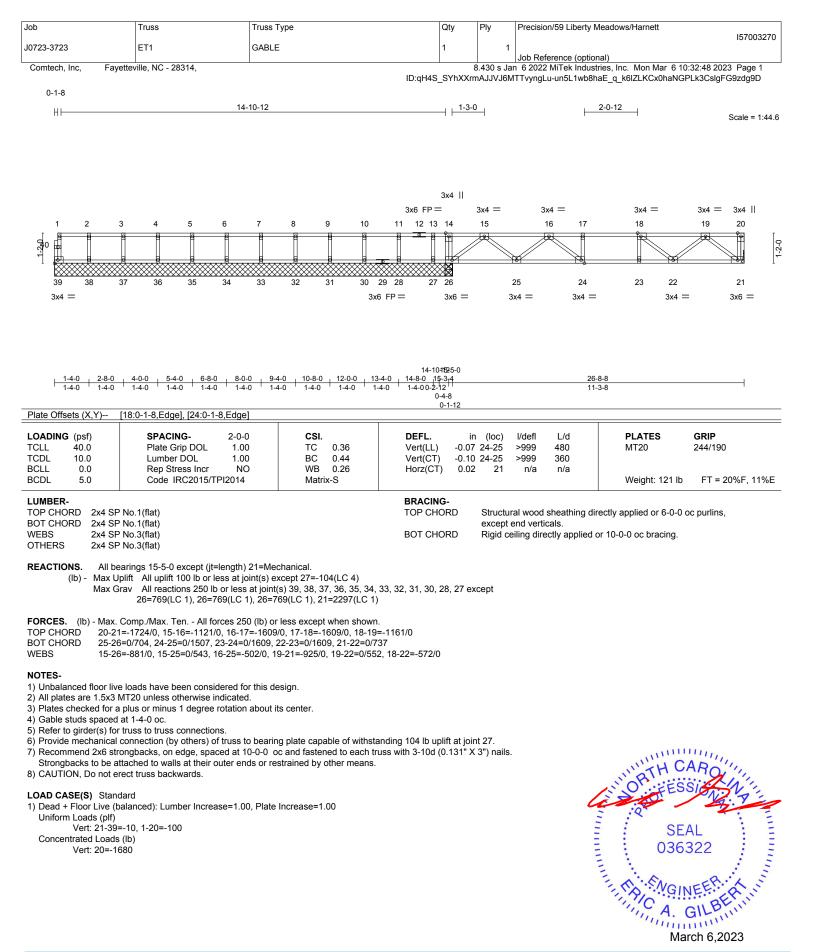
This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	157003270	ET1	3/6/2023
2	157003271	ET2	3/6/2023
3	157003272	ET3	3/6/2023
4	157003273	F1	3/6/2023
5	157003274	F2	3/6/2023
6	157003275	F3	3/6/2023
7	157003276	F4	3/6/2023
8	157003277	F5	3/6/2023
9	157003278	F6	3/6/2023
10	157003279	F6A	3/6/2023
11	157003280	F7	3/6/2023
12	157003281	F8	3/6/2023
13	157003282	FG-1	3/6/2023
14	157003283	FG-2	3/6/2023
15	157003284	FG-3	3/6/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type			Qty	Ply	Precision/59 Liberty	Meadows/Harnett	157003271
J0723-3723	ET2	GABLE			1	1	1		157003271
Comtech, Inc, Fa	yetteville, NC - 28314,					2 4 2 0 o 1	Job Reference (option	onal) stries, Inc. Mon Mar 6	10:22:50 2022 Page 1
	yelleville, NC - 20514,			ID:qH4				BUh3HuUszNoHM56jA	
0 ₁ 18									0 ₁ 1 ₇ 8
									Scale = 1:21.
1 2	2 3	4	5	6	-	7	8	9	10 11
		•					•		
22 2	21 20	19	18	17		16	15	14	13 12
3x4 =		10	10						3x4 =
<u> 1-4-0</u> 1-4-0	+ 2-8-0 + 4- 1-4-0 1-	0-0 <u>5-4</u> 4-0 1-4	-0	<u>6-8-0</u> 1.4-0	<u>8-0-0</u> 1-4-0	+	9-4-0 10- 1-4-0 1-4	3-0 <u>12-0-0</u> -0 14-0	<u></u>
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.00 1.00	CSI. TC 0.06 BC 0.01 WB 0.03	DEF Vert(Vert(Horz	(LL) n/a (CT) n/a	-	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2		Matrix-R					Weight: 55 lb	FT = 20%F, 11%E
	P No.1(flat) P No.1(flat)				CING- CHORD		Iral wood sheathing c end verticals.	irectly applied or 6-0-0) oc purlins,

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

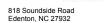
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.


4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

1530000	erty Meadows/Harnett	recision/59 Libert	Ply I	Qty		ре	Truss Ty	Truss	lob
15700327			1	1			GABLE	ET3	723-3723
0.20.51 2022 . Dogo 1	optional) ndustries, Inc. Mon Mar 6	ob Reference (opt						eville, NC - 28314,	Comtech, Inc, Fayet
	d0_VcYhRThQhu1qZeHSa				ID:gH4			eville, NC - 20314,	contech, inc, Fayer
0 ₁₁ 8				-					0 ₁₁₇ 8
Scale = 1:20									
40 44	<u>,</u>		-		0	F		^	
10 11	9	8	7		6	5	4	3	1 2
24		• •	•			<u>e</u> 	<u>•</u>		
		•	•		•	0	0		 d a
13 12 3x4 =	0 	15	16		17	18	19	20	22 21 3x4 =
3x4 =				800					3x4 =
-0 <u>12-7-8</u>	10-8-0 12-0 14	94-0 1-4-0		<u>8-0-0</u> 1-4-0	6-8-0 1-4-0	5-4-0 1-4-0	4-0-0 1-4-0	20 20 2-8-0 1-4-0	

BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS OTHERS 2x4 SP No.3(flat) BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

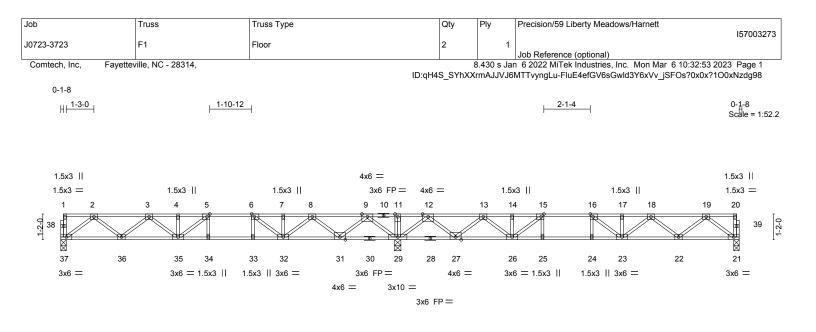
NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

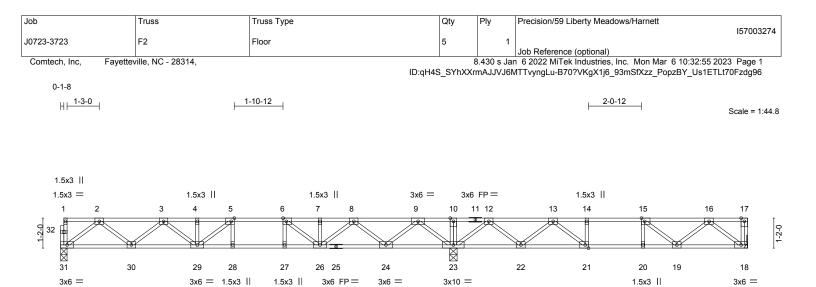
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	15-3-4			30-9-0 15-5-12							
Plate Offsets (X,Y)-	Plate Offsets (X,Y) [5:0-1-8,Edge], [6:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1-8,Edge]				S						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.74 BC 0.87 WB 0.54 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.16	23-24	l/defl >999 >853 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%F, 11%E		
BOT CHORD 2x4 WEBS 2x4 REACTIONS. (SP No.1(flat) SP No.1(flat) SP No.3(flat) Size) 37=0-3-0, 29=0-3-8, 21=0-3-0 x Grav 37=728(LC 3), 29=1989(LC 1), 21=	-739(LC 4)	BRACING- TOP CHOR BOT CHOR	D	except Rigid d	t end verti ceiling dire	cals.	ectly applied or 6-0-0 o r 10-0-0 oc bracing, I ,27-29,26-27.			
TOP CHORD 2- 8-	ax. Comp./Max. Ten All forces 250 (lb) or 3=-1450/0, 3-4=-2252/0, 4-5=-2252/0, 5-6= 9=-521/736, 9-11=0/2242, 11-12=0/2242, 1 +15=-1787/207, 15-16=-2337/0, 16-17=-23	-2276/0, 6-7=-1763/236, 7 2-13=-518/703, 13-14=-1	787/207,								
BOT CHORD 36 31	5-37=0/901, 35-36=0/1969, 34-35=0/2276, 1-32=-456/1270, 29-31=-1091/0, 27-29=-11 4-25=0/2337, 23-24=0/2337, 22-23=0/2008	33-34=0/2276, 32-33=0/22 10/0, 26-27=-424/1283, 25	276,								
WEBS 2- 8- 1	37=-1128/0, 2-36=0/714, 3-36=-676/0, 3-39 31=-1065/0, 19-21=-1146/0, 19-22=0/730, 2-27=0/1128, 13-27=-1079/0, 8-32=0/707, 5-26=-1020/0, 16-23=-156/376	5=0/362, 9-29=-1522/0, 9-3 18-22=-693/0, 18-23=0/38	0, 12-29=-1537/0	3							
,	r live loads have been considered for this de	esign.									

All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aft 818 Soundside Road Edenton, NC 27932

3x6 =

l	15-3-4 15-3-4					26-8-8				
Plate Offsets (X,		8,Edge], [21:0-1-8,Edge]					1			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.83 WB 0.50 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.20 0.03	(loc) 28 28 18	l/defl >999 >909 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2 BOT CHORD 2	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHOF BOT CHOF	RD	except	end vert	icals.	rectly applied or 6-0-0 or 6-0-0 oc bracing.	,	
REACTIONS.	(size) 31=0-3-0, 23=0-3-8, 18=Mechanica Max Grav 31=741(LC 3), 23=1724(LC 1), 18=				U	U	,	Ŭ		
FORCES. (Ib) - TOP CHORD	Max. Comp./Max. Ten All forces 250 (lb) or 17-18=-1835/0, 2-3=-1483/0, 3-4=-2315/0, 4- 7-8=-1892/0, 8-9=-677/263, 9-10=0/1758, 10 13-14=-1242/104, 14-15=-1242/104, 15-16=-	-5=-2315/0, 5-6=-2372/0, 6 -12=0/1758, 12-13=-482/6	6-7=-1892/0,							
BOT CHORD	13-141242/104, 14-131242/104, 13-16 30-31=0/919, 29-30=0/2017, 28-29=0/2372, 24-26=-29/1412, 23-24=-586/0, 22-23=-886/0 19-20=-104/1242, 18-19=0/652	27-28=0/2372, 26-27=0/23	,							
WEBS	2-31=-1150/0, 2-30=0/735, 3-30=-696/0, 3-29 8-24=-1014/0, 12-23=-1169/0, 12-22=0/754, 16-19=-46/407, 8-26=0/663, 6-26=-851/0, 5-7 14-21=-279/0	13-22=-766/0, 16-18=-818	3/0,							
2) All plates are 3	oor live loads have been considered for this de 3x4 MT20 unless otherwise indicated. d for a plus or minus 1 degree rotation about i	•							110.	

Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

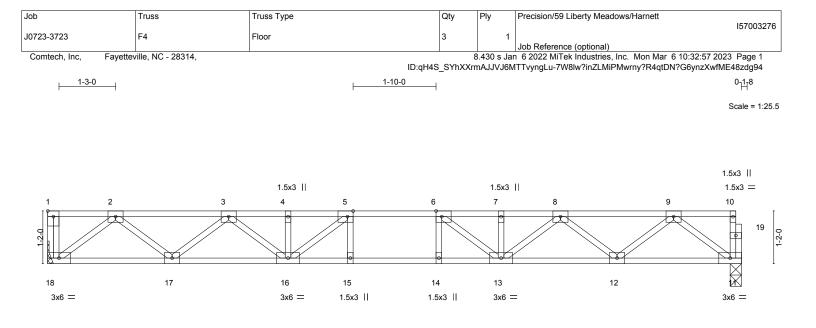
LOAD CASE(S) Standard

 Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 18-31=-10, 1-17=-100

Concentrated Loads (lb) Vert: 17=-1800

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A Mitek Atfiliate


[
Job		Truss Type	Qty	Ply	Precision/59 Liberty	/leadows/Harnett	157003275
J0723-3723		GABLE	1	1	Job Reference (option		0.22.56 2022 Dans 4
Comtech, Inc, Fay 0-1-8 ∐⊢ <u>1-3-0</u>	etteville, NC - 28314,	-12				iries, Inc. Mon Mar 61 101ErnCLeDEUCXdL32	
H							Scale = 1:44.5
	3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 5 3x4 = 3x6 =	34 33	3x4 = 6 FP = 3x4 9 10 11 32 31 30 x4 = 3x6 FP = 3x6 =		13 14 15 10 10 10 10 10 10 10 10 10 10	16 17 16 17 25 24	3x4 18 19 20 19 20 23 22 21 3x4
	<u>15-1-</u> 15-1-		16-7-4 15-3-4 0-1-12 1-4-0			-11-4 23-3-4 24-7-4 -4-0 1-4-0 1-4-0	
	[5:0-1-8,Edge], [6:0-1-8,Edge]					_	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.56 WB 0.41 Matrix-S	Vert(LL) -0.16	(loc) 34-35 34-35 21	l/defl L/d >999 480 >842 360 n/a n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP WEBS 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	except	al wood sheathing di end verticals. eiling directly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
(lb) - Max U	arings 11-7-0 except (jt=length) 3 plift All uplift 100 lb or less at joir rav All reactions 250 lb or less a 30=992(LC 1), 30=992(LC 1)	nt(s) 29	25, 24, 23, 22 except 38	=821(LC	3),		
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 1684/0, 3-4=-2691/0, 4-5=-2691/0 1613/0						
30-3 WEBS 2-38=	3=0/1023, 36-37=0/2310, 35-36=0. 2=0/954 =-1281/0, 2-37=0/860, 3-37=-815/0), 3-36=0/487, 10-30=-1196/0,					
NOTES- 1) Unbalanced floor livv 2) All plates are 1.5x3 l 3) Plates checked for a 4) Gable studs spaced 5) Provide mechanical 6) Recommend 2x6 str	connection (by others) of truss to ongbacks, on edge, spaced at 10- ttached to walls at their outer ends	this design. bout its center. bearing plate capable of withsta 0-0 oc and fastened to each tr	uss with 3-10d (0.131" X	· · /	6	036	ARO SSIDE V SAL S322 NEER RATION
							arch 6,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RENGINEERING BY A MITRIK Atfiliate

March 6,2023

⁸¹⁸ Soundside Road Edenton, NC 27932

			<u>15-4-0</u> 15-4-0					
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8	,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.66 WB 0.41 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.16 14-15 -0.22 14-15 0.04 11	l/defl >999 >839 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (s	SP No.1(flat) SP No.1(flat) SP No.3(flat) ize) 18=Mechanical, 11=0-3-0 Grav 18=830(LC 1), 11=823(LC 1)		BRACING- TOP CHOR BOT CHOR	except	end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,
TOP CHORD 2-3 8-9 BOT CHORD 17-	x. Comp./Max. Ten All forces 250 (lb) o =-1691/0, 3-4=-2704/0, 4-5=-2704/0, 5-6=)=-1691/0 -18=0/1028, 16-17=0/2320, 15-16=0/2966 -12=0/1027	-2966/0, 6-7=-2704/0, 7-8	8=-2704/0,	20,				
WEBS 2-1	8=-1289/0, 2-17=0/864, 3-17=-818/0, 3-1	6=0/490, 5-16=-596/25, 9	-11=-1285/0,					

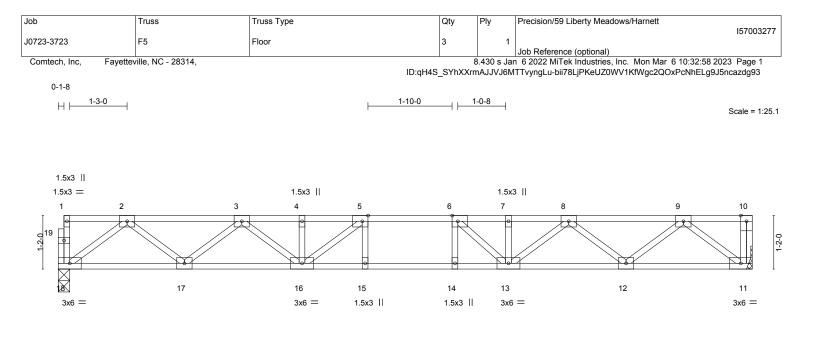
9-12=0/865, 8-12=-819/0, 8-13=0/490, 6-13=-596/25

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCI8. Building component forth. Information, and information. Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge]		15-1-8 15-1-8			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.36 BC 0.66 WB 0.40	DEFL. ir Vert(LL) -0.15 Vert(CT) -0.21 Horz(CT) 0.04	5 15 >999 480 14-15 >867 360	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 78 lb	FT = 20%F, 11%E
	? No.1(flat) No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0	oc purlins,
				Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
REACTIONS. (size Max G	e) 18=0-3-0, 11=Mechanical rav 18=812(LC 1), 11=818(LC 1)					
FORCES. (Ib) - Max.	Comp./Max. Ten All forces 250 (lb) or	less except when shown.				

TOP CHORD 2-3=-1662/0, 3-4=-2649/0, 4-5=-2649/0, 5-6=-2884/0, 6-7=-2641/0, 7-8=-2641/0, 8-9=-1663/0 BOT CHORD 17-18=0/1012, 16-17=0/2278, 15-16=0/2884, 14-15=0/2884, 13-14=0/2884, 12-13=0/2278, 11-12=0/1012 WEBS 2-18=-1267/0, 2-17=0/846, 3-17=-802/0, 3-16=0/475, 5-16=-562/38, 9-11=-1270/0, 9-12=0/847, 8-12=-800/0, 8-13=0/464, 6-13=-587/29

NOTES-

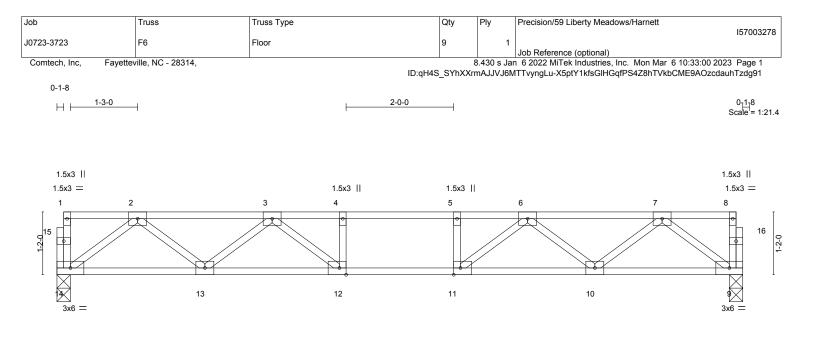
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

<u> </u>			<u>12-9-0</u> 12-9-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.35 BC 0.44 WB 0.30 Matrix-S	Vert(LL) -0.09	n (loc) l/defl L/d 9 12-13 >999 480 2 12-13 >999 360 3 9 n/a n/a	MT20	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	^{>} No.1(flat) ^{>} No.1(flat) ^{>} No.3(flat) :e) 14=0-3-0, 9=0-3-0		BRACING- TOP CHORD BOT CHORD	except end verticals.	hing directly applied or 6-0-0 pplied or 10-0-0 oc bracing.) oc purlins,

CTIONS. (size) 14=0-3-0, 9=0-3-0 Max Grav 14=681(LC 1), 9=681(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1333/0, 3-4=-2022/0, 4-5=-2022/0, 5-6=-2022/0, 6-7=-1333/0

BOT CHORD 13-14=0/841, 12-13=0/1790, 11-12=0/2022, 10-11=0/1790, 9-10=0/841

WEBS 2-14=-1053/0, 2-13=0/640, 3-13=-595/0, 3-12=0/499, 7-9=-1053/0, 7-10=0/640,

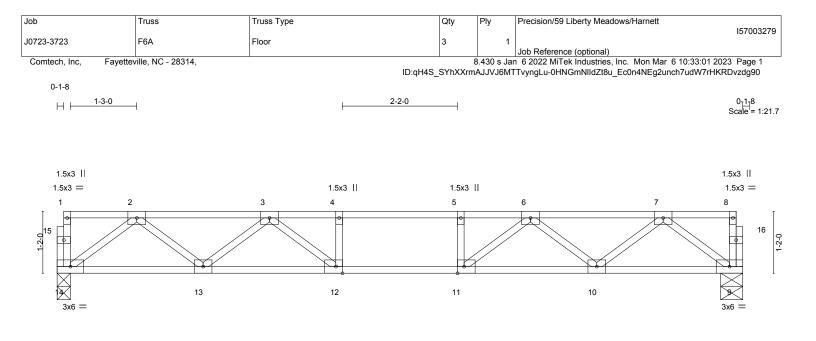
6-10=-595/0, 6-11=0/499

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			<u>12-11-0</u> 12-11-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]				1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.47 WB 0.31 Matrix-S	Vert(LL) -0.1	n (loc) l/defl L/d 0 12-13 >999 480 3 12-13 >999 360 3 9 n/a n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	² No.1(flat) ² No.1(flat) ² No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	<i>y</i>) oc purlins,

Max Grav 14=690(LC 1), 9=690(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1356/0, 3-4=-2072/0, 4-5=-2072/0, 5-6=-2072/0, 6-7=-1356/0

BOT CHORD 13-14=0/854, 12-13=0/1823, 11-12=0/2072, 10-11=0/1823, 9-10=0/854

WEBS 2-14=-1069/0, 2-13=0/654, 3-13=-609/0, 3-12=0/526, 4-12=-251/0, 5-11=-251/0,

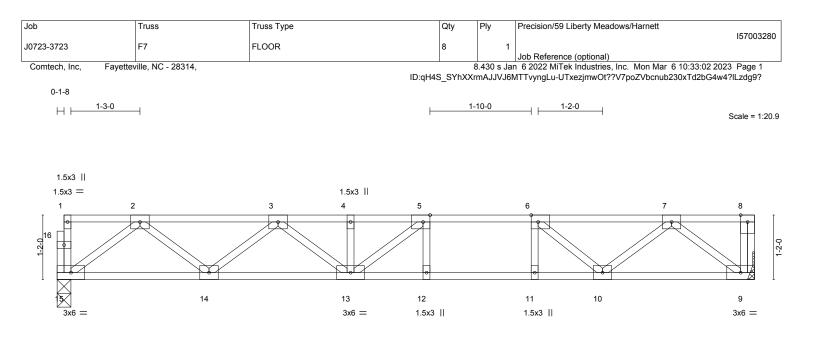
7-9=-1069/0, 7-10=0/654, 6-10=-609/0, 6-11=0/526

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

F				12-7-8 12-7-8			
Plate Offs	ets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge]					
LOADING TCLL TCDL BCLL BCDL	i (psf) 40.0 10.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.78 WB 0.32 Matrix-S	Vert(LL) -0.14	n (loc) l/defl L/d 4 12-13 >999 480 8 12-13 >821 360 2 9 n/a n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHO BOT CHO WEBS	RD 2x4 SF RD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	, ,,	oc purlins,

REACTIONS. (size) 15=0-3-0, 9=Mechanical

Max Grav 15=674(LC 1), 9=681(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1313/0, 3-4=-1995/0, 4-5=-1995/0, 5-6=-1895/0, 6-7=-1327/0

BOT CHORD 14-15=0/831, 13-14=0/1770, 12-13=0/1895, 11-12=0/1895, 10-11=0/1895, 9-10=0/807

2-15=-1040/0, 2-14=0/628, 3-14=-594/0, 3-13=0/288, 5-13=-224/289, 7-9=-1012/0,

WEBS 7-10=0/677, 6-10=-745/0

NOTES-

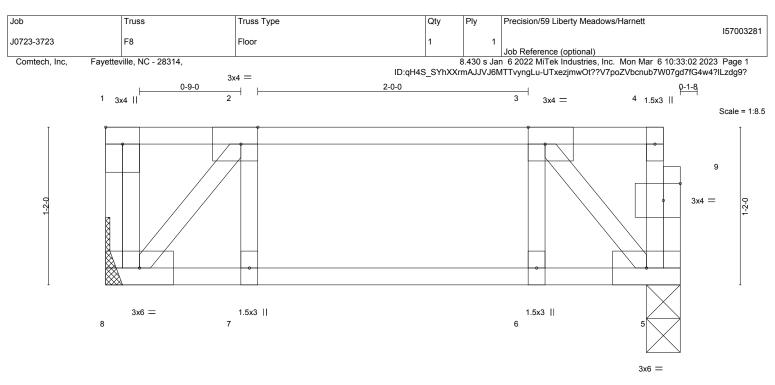
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCI8. Building component forth. Information, and information. Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	ļ		4-3-0			
			4-3-0			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,	Edge], [9:0-1-8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.06 WB 0.06 Matrix-S	DEFL. i Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	0 6 >999 360	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	² No.1(flat) ² No.1(flat) ² No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	<i>y</i>	oc purlins,

REACTIONS. (size) 8=Mechanical, 5=0-3-0 Max Grav 8=220(LC 1), 5=214(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-273/0, 3-5=-272/0

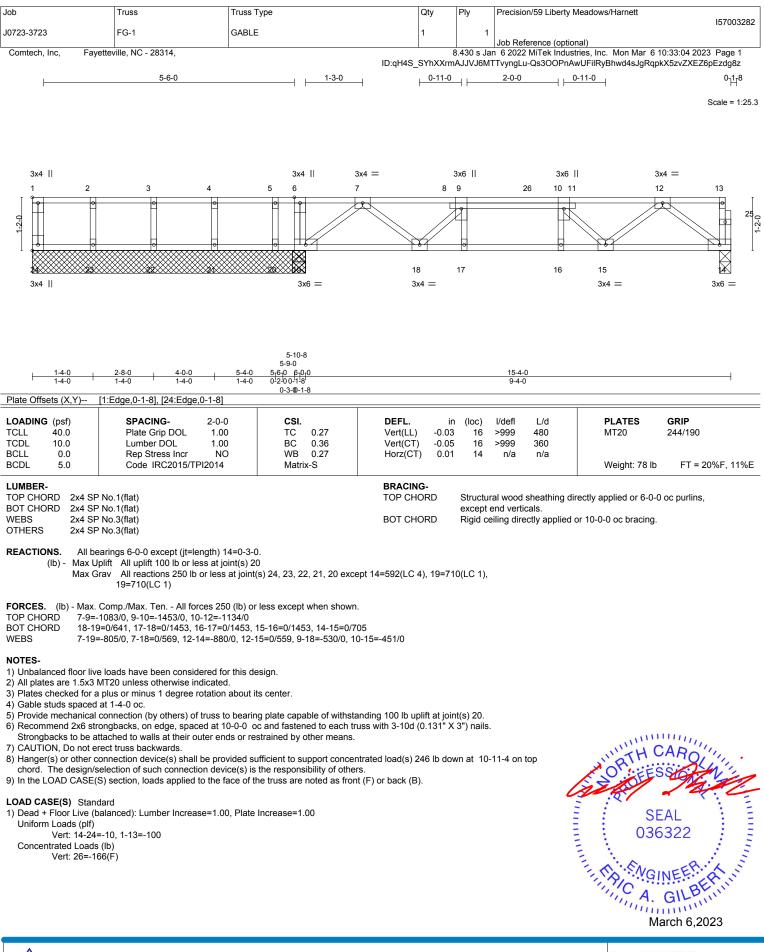
NOTES-

1) Unbalanced floor live loads have been considered for this design.

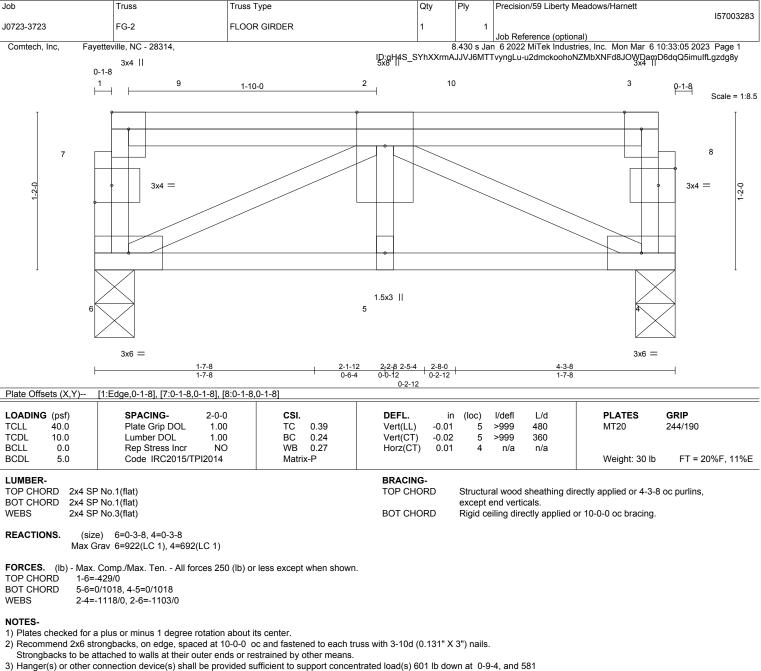
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MITek Affil 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

Ib down at 2-9-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

4) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

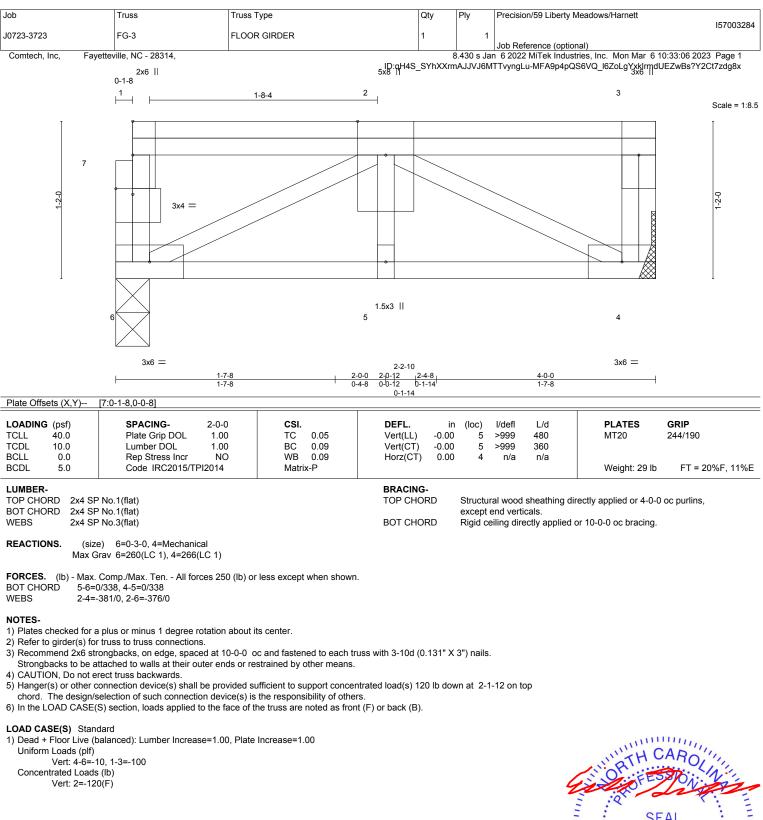
LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

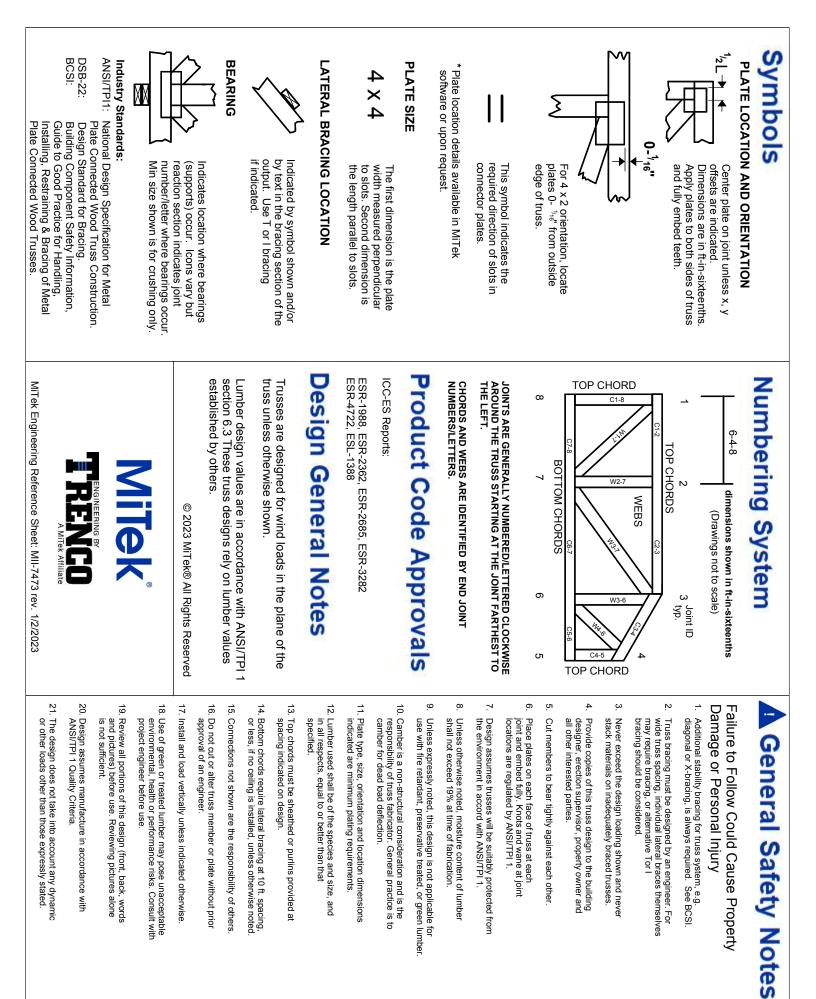
Vert: 4-6=-10, 1-3=-100 Concentrated Loads (lb)

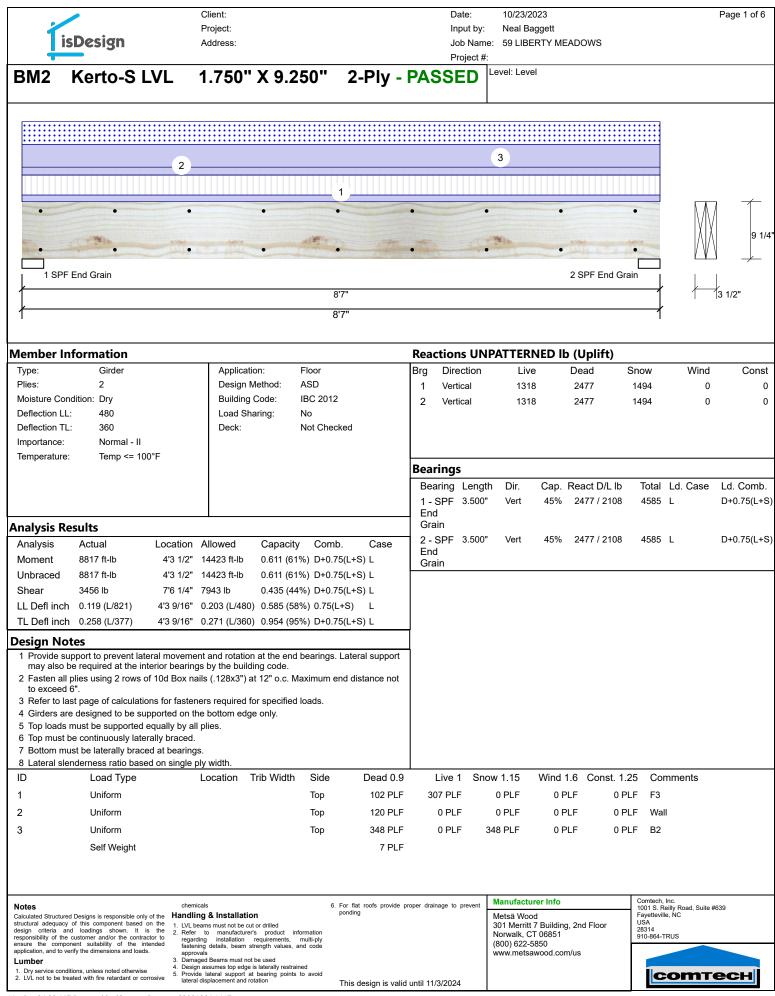
Vert: 9=-601(B) 10=-581(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road


Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

Version 21.80.417 Powered by iStruct[™] Dataset: 23091201.1447

		Client:			Date:	10/23/2023	Page 2 of 6
2		Project:			Input by:		5
	isDesign	Address:			Job Nam	e: 59 LIBERTY MEADOWS	
-					Project #		
BM2	Kerto-SLV	/L 1.750"	X 9.250"	2-Plv - PA	SSED	Level: Level	
			/ 01200	, .,			
•	•	•	• •	•		•	• •
•	•	•	• •	•		•	• <u>+ </u> ¥⊬ V \ .
15	SPF End Grain					2 SPF End Gra	ain L
			8'7"				3 1/2"
<i>†</i>			8'7'	1			
	A 1						
	y Analysis						
	I plies using 2 rows		128x3") at 12" o.c.	. Maximum enc	l distance n	ot to exceed 6".	
Capacity		0.0 %					
Load Yield Limit p		0.0 PLF 163.7 PLF					
Yield Limit p		81.9 lb.					
Yield Mode		IV					
Edge Distan Min. End Dis		1 1/2" 3"					
Load Combi		5					
Duration Fa		1.00					
ļ							
Notes		chemicals		flat roofs provide proper onding	rainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adeq	ictured Designs is responsible only of t juacy of this component based on t	he 1. LVL beams must not be cut	or drilled			Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA 28314
responsibility of	a and loadings shown. It is the off the customer and/or the contractor component suitability of the intender	to regarding installation	s product information requirements, multi-ply			Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and	d to verify the dimensions and loads.	 fastening details, beam st approvals Damaged Beams must not 				www.metsawood.com/us	
	conditions, unless noted otherwise	 Design assumes top edge i Provide lateral support at 	s laterally restrained bearing points to avoid				соттесн
2. LVL not to b	be treated with fire retardant or corrosi	lateral displacement and ro		is design is valid until	11/3/2024		Connech

Í is	5Design	F	Client: Project: Address:					Date: Input b Job Na	-	10/23/20 Neal Bag 59 LIBEF	gett				Page 3 of
		P	duress:					Projec		29 LIBE		ADOW5			
GDH	Kerto-S L	VL 1.	750" እ	(11.8	575" 2	2-Ply - I	PASS	SED	Lev	vel: Level					
		2													
		2													
							<u></u>								
					1										,
	and the second s		•		att the second		·	i -		•	National Anna anna anna anna anna anna anna a			M	14.7/0
		STATES AND A STATES	and the second			•	-	•	•	•			· · -		11 7/8"
1 SPF Er	nd Grain											2 SPF Er	nd Grain		
]					16'7									1 13	1/2"
I					16'7	[**								I	
lember In	formation						Reac	tions U	JNPA	TTERN	IED lb	(Uplift)			
Туре:	Girder		Applicati		Floor		Brg	Directio		Live		Dead	Snow	Wind	Con
Plies: Moisture Con	2 Idition: Drv		Design M Building		ASD IBC 2012		1	Vertical Vertical		0		1154 1154	1078 1078	0	
Deflection LL	,		Load Sha		No		2	vertical		0		1154	1078	0	
Deflection TL	: 240		Deck:		Not Checke	ed									
Importance:	Normal - II														
Temperature:	Temp <= 10	0°F					Deer	•							
							Bear	-							
								ring Ler	-	Dir.	•	React D/L I			Ld. Com
							1 - S End	SPF 3.5	00"	Vert	22%	1154 / 107	8 2232	2 L	D+S
nalysis Re	sults		I				Gra								
Analysis	Actual	Location A	llowed	Capaci	ty Comb.	Case		SPF 3.5	00"	Vert	22%	1154 / 107	8 2232	2 L	D+S
Moment	8751 ft-lb		2897 ft-lb		8%) D+S	L	End								
Unbraced	8751 ft-lb	8'3 1/2" 8	756 ft-lb	0.999	D+S	L	Gia								
				(100%)											
Shear	1897 lb	15'3 5/8" 1			9%) D+S	L									
	0.214 (L/904)	8'3 9/16" 0	```		,	L									
TL Defl inch	0.444 (L/436)	8'3 9/16" 0	.806 (L/240)	0.550 (5	5%) D+S	L	-								
esign No							4								
	pport to prevent lat be required at the in				d bearings. Li	ateral support									
2 Fasten all	plies using 2 rows o	•		•	Maximum end	d distance not									
to exceed 3 Refer to la	6". st page of calculatio	ons for fastener	s required fo	or specifie	d loads										
	e designed to be su		•	•											
	must be supported														
	be laterally braced a list be laterally brace			0.C.											
	nderness ratio base		0												
ID	Load Type	L	ocation 1	rib Width	n Side	Dead 0.9) I	_ive 1 S	Snow	1.15	Wind 1	.6 Const.	1.25 C	omments	
1	Uniform				Тор	120 PLF	-	0 PLF	120	PLF	0 PI	_F (PLF C	I-GE	
2	Tie-In	0-0-0 te	o 16-7-0 C	-6-0	Тор	20 PSF	-	0 PSF	20	PSF	0 P\$	SF C	PSF R/	AKE OH	
	Self Weight					9 PLF	-								
lotes		chemical	s			or flat roofs provide	proper drain	age to preve	nt Ma	anufactur	er Info		Comtec 1001 S.	Reilly Road, Suite	#639
Calculated Structured tructural adequacy	d Designs is responsible only of this component based	on the 1 IVI beam	& Installatio		ро	onding				etsä Wood 1 Merritt 7		, 2nd Floor	Fayette USA	ville, NC	
esign criteria an esponsibility of the	d loadings shown. It i customer and/or the contra	s the 2. Refer t ctor to regarding	o manufacturer' installation	s product requirements,	information multi-ply				No	orwalk, CT	06851	, 1 1001	28314 910-864	-TRUS	
nsure the compo opplication, and to ve	nent suitability of the in erify the dimensions and loads	tended fastening approvals	details, beam st	rength values,						00) 622-58 ww.metsav		ı/us			
umber	141	Design a	d Beams must not ssumes top edge i	s laterally restr	ained										
. Dry service condi	ated with fire retardant or co	5 Provide	lateral support at	bearing point	s to avoid									COMT	

Version 21.80.417 Powered by iStruct[™] Dataset: 23091201.1447

Client:	Date:	10/23/2023	Page 4 of 6
Project:	Input by		
isDesign Address:	Job Nan	ne: 59 LIBERTY MEADOWS	
	Project	<u><u><u>+</u></u></u>	
GDH Kerto-S LVL 1.750" X 11.875"	2-Ply - PASSED	Level: Level	
	Z-I IY - I ACCED		
			_
	• • • •	• • • •	
			. 11 7/8"
1 SPF End Grain		2 SPF End (
		2 SFF Ellu	
/	16'7"		3 1/2"
1	16'7"		
Multi-Ply Analysis			
Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12"	o.c. Maximum end distance r	not to exceed 6".	
Capacity 0.0 %			
Load 0.0 PLF			
Yield Limit per Foot 163.7 PLF			
Yield Limit per Fastener 81.9 lb.			
Yield Mode IV			
Edge Distance 1 1/2"			
Min. End Distance 3"			
Load Combination			
Duration Factor 1.00			
		Manufacturer Info	Comtech, Inc.
Notes chemicals Calculated Structured Designs is responsible only of the Handling & Installation	6. For flat roofs provide proper drainage to prevent ponding	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based on the 1. LVL beams must not be cut or drilled		301 Merritt 7 Building, 2nd Floor	USA 28314
design criteria and loadings shown. It is the 2. Refer to manufacturer's product information responsibility of the customer and/or the contractor to regarding installation requirements, multi-ply		Norwalk, CT 06851	28314 910-864-TRUS
application, and to verify the dimensions and loads. fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained			
1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive 3. Provide lateral support at beam points to avoid lateral displacement and rotation	This design is well-twell 44/9/0004		соттесн
	This design is valid until 11/3/2024	L	

	•	С	lient:					Dat	te:	10/23/20)23				Page 5 of
	Destars		roject:					-	ut by:	Neal Ba					
IS	Design	A	ddress:						Name	e: 59 LIBE	RTY ME	ADOWS			
		// / -		4 0 0 0					oject #:	Level: Leve	1				
BM1 k	Kerto-S LV	/L 1./	(50" X 1	4.000	2-1	PIY - P	AS	SED			•				
1 SPF	2	1	•	2 SPF											1'2"
/	ł	5'6 1/2"													3 1/2"
<u>/</u>		5'6 1/2"		\longrightarrow											
I	C	JU 1/2		I											
Member Inf	formation						Rea	ction	s UN	PATTERI	NED Ib	(Uplift)			
Туре:	Girder		Application:	Floo	or		Brg	Direc		Live		Dead	Snow	Wind	Con
Plies:	2		Design Meth				1	Vertic		1721		604	0	0	
Moisture Cond			Building Coo		2012		2	Vertic	cal	1721		604	0	0	
Deflection LL:	480		Load Sharin	•											
Deflection TL:			Deck:	Not	Checked										
Importance: Temperature:	Normal - II Temp <= 100	∘⊏													
remperature.	Temp <= 100	F					Bea	rings							
								aring l		n Dir.	Cap. I	React D/L lb	Total	Ld. Case	Ld. Com
								SPF 3	-	Vert	45%	604 / 1721	2324		D+L
								SPF 3		Vert	45%	604 / 1721	2324		D+L
Analysis Re	sults										-		-		
Analysis	Actual	Location A	llowed C	apacity	Comb.	Case	7								
Moment	2710 ft-lb	2'9 1/4" 20	6999 ft-lb 0	.100 (10%)	D+L	L									
Unbraced	2710 ft-lb	2'9 1/4" 18	8950 ft-lb 0	.143 (14%)	D+L	L									
Shear	2080 lb	1'5 1/2" 10	0453 lb 0	199 (20%)	D+L	L									
LL Defl inch	0.011 (L/5785)	2'9 1/4" 0.	.127 (L/480) 0	.083 (8%)	L	L									
TL Defl inch	0.014 (L/4282)	2'9 1/4" 0.	.169 (L/360) 0	.084 (8%)	D+L	L									
Design Not	es						Τ								
may also be 2 Fasten all p to exceed 6 3 Refer to las 4 Girders are 5 Top must be 6 Bottom must	poprt to prevent latele e required at the inte lies using 3 rows of ". t page of calculation designed to be sup e laterally braced at t be laterally braced derness ratio based	erior bearings 10d Box nails ns for fastener: ported on the end bearings. d at end bearir	by the building (.128x3") at 12 s required for s bottom edge or ngs.	code. 2" o.c. Maxin pecified load	num end di										
ID	Load Type			Width S	Side	Dead 0.9		Live 1	Sno	w 1.15	Wind 1	.6 Const. 1.	25 Con	nments	
1	Uniform				lear Face	105 PLF	3	15 PLF		0 PLF	0 PI		LF F4		
2	Uniform				ar Face	102 PLF		06 PLF		0 PLF	0 PI		LF F5		
-	Self Weight			1		11 PLF	5			. LI	511	. 01			
Notes		chemicals				t roofs provide p	proper dra	inage to p	vrevent	Manufactu	rer Info		Comtech, I 1001 S. Re	illy Road, Suite #	639
Calculated Structured structural adequacy of design criteria and responsibility of the c ensure the compon application, and to veri Lumber 1. Dry service conditi	Designs is responsible only of of this component based or loadings shown. It is ustomer and/or the contract ent suitability of the inter suitability of the inter fy the dimensions and loads. ons, unless noted otherwise ted with fire retardant or corr	1. LVL beam the nded 2. Refer to regarding fastening approvals 3. Damaged 4. Design as 5. Provide li	Beams must not be us sumes top edge is late ateral support at bea	roduct informati rements, multi- th values, and co sed erally restrained ring points to av	pondin ion ply ide oid	g			Ī	Metsä Woo 301 Merritt Norwalk, C (800) 622-5 www.metsa	7 Building 06851 850		Fayetteville USA 28314 910-864-TF	e, NC	
		lateral dis	placement and rotation	1		design is valio	l until 11	/3/2024							

Version 21.80.417 Powered by iStruct[™] Dataset: 23091201.1447

P		Client:		Date:	10/23/2023	Page 6 of 6
1	isDesign	Project: Address:		Input by: Job Nam		
Ţ.				Project #		
BM1	Kerto-S LV	′L 1.750'' X 14.	000" 2-Ply	- PASSED	Level: Level	
r						
•	• •	• •	• • • • •			M
	• •	• • •	· 17			1'2"
•	• •	• •	;_ j_			
1 SPF	:	2 SP	F/			
ſ	Ę	5'6 1/2"				3 1/2"
1	5	'6 1/2"				
-	Analysis					
Fasten all Capacity	plies using 3 rows	s of 10d Box nails (.128x3' 85.5 %) at 12" o.c Maxi	num end distance r	ot to exceed 6".	
oad		210.0 PLF				
′ield Limit pe ′ield Limit pe		245.6 PLF 81.9 lb.				
ield Mode		IV				
dge Distand lin. End Dist		1 1/2" 3"				
oad Combin	ation	D+L				
Duration Fac	tor	1.00				
Notes		chemicals		provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struct structural adequa	acy of this component based or	of the Handling & Installation	ponding	- ,	Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of	and loadings shown. It is the customer and/or the contract nponent suitability of the inte	the 2. Refer to manufacturer's product or to regarding installation requirement	s, multi-ply		Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and to Lumber	ponent suitability of the interponent suitability of the inter	approvals 3. Damaged Beams must not be used			www.metsawood.com/us	
1. Dry service co	onditions, unless noted otherwise treated with fire retardant or corre	 Design assumes top edge is laterally re Provide lateral support at bearing pre- 	ints to avoid			соттесн
		incrai displacement and rotation	This design	is valid until 11/3/2024		

This design is valid until 11/3/2024

CSD DESIGN