

RE: J0923-5134 Precision/58 Liberty Meadows/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0923-5134 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 18 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	157763285	A1-GE	4/13/2023
2	157763286	A2	4/13/2023
3	157763287	A3	4/13/2023
4	157763288	A4-GE	4/13/2023
5	157763289	A5	4/13/2023
6	157763290	A6-GE	4/13/2023
7	157763291	B1-GE	4/13/2023
8	157763292	B2	4/13/2023
9	157763293	B3	4/13/2023
10	157763294	C1-GE	4/13/2023
11	157763295	C2	4/13/2023
12	157763296	C3	4/13/2023
13	157763297	D1-GE	4/13/2023
14	157763298	D2	4/13/2023
15	157763299	P1SG	4/13/2023
16	157763300	P2	4/13/2023
17	157763301	VB1	4/13/2023
18	157763302	VB2	4/13/2023

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech Inc. Exettevill

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

KENL

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/58 Liberty Meadows/Ha	arnett			
J0923-5134	A6-GE	GABLE	1						
Comtech, Inc., Fayetteville, NO	C 28309				Job Reference (optional) 8.430 s Jan 6 2022 MiTek Indust	tries, Inc. Thu Apr 13 13:10:43 2023 Page 1			
	L	10-7-15	ID:9fna8k_aSfLE 29-7-0	CIAbt3H	8pzSXOz-DnpUPbuptsGRFxF 3ρ-9-8	4wQqy1jc2HxUxtfRAGUQ09buzR79Q			
	I	10-7-15	18-11-1		1-2-8				
		4x6 🚧				Scale = 1:100.1			
		6 7							
	8.	00 12	10.00 12						
		5	9						
		4	10						
		3	R IO						
	12			*					
	3	6 35 34 33 32 31 3	30 ²⁹ 28	13					
	3x4 =	4	$x_6 = \frac{26}{3}$	14					
	4-4	4	25		15				
	6				16 4x4				
			24 13.00 12		17				
				23					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	~~~~~~	21 ₂₀ 3x10	* 0 1 4			
				4x6 ∖\ ²²	2 20				
		16-7-14	25-3-8		29-7-0				
		16-7-14 01 [12:0 4 0 0 4 0] [12:0 7 11 0 0	8-7-10		4-3-8				
	1.0-1-14,0-1-1], [7.0-3-15,0-2-	0j, [12.0-4-0,0-4-8j, [18.0-7-11,0-0-	3						
LOADING (psf)	SPACING- 2-0 Plate Grip DOI 1	-0 <b>CSI.</b> 15 TC 0.12	DEFL. in Vert(LL) -0.00	(loc) 18	l/defl L/d n/r 120	PLATES         GRIP           MT20         244/190			
TCDL 10.0	Lumber DOL 1.	15 BC 0.05	Vert(CT) -0.00	18	n/r 120				
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI201	S WB 0.17 Matrix-S	Horz(C1) 0.02	18	n/a n/a	Weight: 244 lb FT = 20%			
TOP CHORD 2x6 SP N	No.1		TOP CHORD	Structur	al wood sheathing directly a	pplied or 6-0-0 oc purlins.			
BOT CHORD 2x6 SP N OTHERS 2x4 SP N	No.1 No.2		BOT CHORD	Rigid ce	iling directly applied or 10-0-	-0 oc bracing.			
SLIDER Right 2x	6 SP No.1 1-8-15								
REACTIONS. All bea	rings 29-7-0.								
(lb) - Max Hor	rz 1=-590(LC 13)	inimt(a) 10, 00, 04, 05, 06, 06, 04 av	(appl 1 = 100/1 C 0) 07-	444/1 0 4	4)				
wax Opi	22=-440(LC 13), 33=-123(	LC 12), 30=-171(LC 13), 28=-106(L	-C 13), 25=-145(LC 13), 2	23=-102(l	LC 13),				
May Gra	21=-110(LC 13), 20=-290(	LC 13) s at ioint(s) 1 22 33 34 35 36 31	1 30 28 26 25 24 23	21 20					
	except 27=404(LC 13), 18	=391(LC 13), 32=285(LC 13)	1, 50, 20, 20, 20, 23, 24, 25, 5	21, 20					
FORCES. (lb) - Max C	omp /Max Ten - All forces 2	50 (lb) or less except when shown							
TOP CHORD 1-2=-20	64/269, 2-3=-243/267, 3-4=-2	21/308, 4-5=-252/352, 5-6=-335/42	23, 6-7=-249/287,						
7-8=-20 17-18=	61/289, 8-9=-348/403, 9-10=· ≔540/392	239/268, 15-16=-328/232, 16-17=-{	515/387,						
BOT CHORD 1-36=-	311/420, 35-36=-311/420, 34	35=-311/420, 33-34=-311/420, 32-	33=-311/420,						
31-32= 21-22=	-311/420, 30-31=-311/420, 2 -287/400, 20-21=-287/400, 1	9-30=-311/420, 28-29=-311/420, 27 8-20=-287/400, 26-27=-444/588, 25	5-26=-471/626,						
24-25=	-441/601, 23-24=-440/601, 2	2-23=-442/614							
WEDO 002-1	200/114, 10 20-202/200								
NOTES- 1) Unbalanced roof live l	oads have been considered f	or this design.				White CAD			
2) Wind: ASCE 7-10; Vu	It=130mph Vasd=103mph; T	CDL=6.0psf; BCDL=6.0psf; h=15ft;	Cat. II; Exp C; Enclosed;	MWFRS	(envelope)	RTHORNO			
DOL=1.60	-C Exterior(2) zone;C-C for n	tembers and forces & MWFRS for r	reactions shown; Lumber	DOL=1.6	50 plate grip	SS AN ANT			
3) Truss designed for wi	ind loads in the plane of the t	uss only. For studs exposed to wir	nd (normal to the face), se	ee Standa	ard Industry				
4) All plates are 2x4 MT2	20 unless otherwise indicated	u building designer as per ANSI/TP	11.		E	SEAL =			
5) Gable requires continu	uous bottom chord bearing.				E	036322			
7) This truss has been de	esigned for a 10.0 psf bottom	chord live load nonconcurrent with	any other live loads.		E	$\lambda = $			
<li>8) * This truss has been will fit between the box</li>	designed for a live load of 30 ttom chord and any other me	Opsf on the bottom chord in all area nbers.	as where a rectangle 3-6-	0 tall by	2-0-0 wide	N. SNOWER . X S			
9) Provide mechanical co	onnection (by others) of truss	to bearing plate capable of withsta	nding 100 lb uplift at joint	(s) 18, 32	2, 34, 35, 36,	A GINER A			
26, 24 except (jt=lb) 1 10) Beveled plate or shir	=138, 27=141, 22=440, 33=1 m required to provide full bea	23, 30=171, 28=106, 25=145, 23=1 ing surface with truss chord at joint	02, 21=110, 20=290. (s) 1, 27, 32, 33, 34, 35,	36. 31. 3	0. 28. 26. 25.	A. GILBINN			
24, 23.						April 12 2022			
11) This truss is designe	a in accordance with the 201 ANSI/TPL1.	o international Residential Code se	ctions R502.11.1 and R8	u2.10.2 a	ina	April 13,2023			
WARNING - Verify de			E PAGE MII-7473 rev 1/2/2023	BEFORE	SE.				
Design valid for use or a truss system Reform	hly with MiTek® connectors. This des	gn is based only upon parameters shown, ar	nd is for an individual building co	into the over	not	TRENCO			
building design. Bracin is always required for	ng indicated is to prevent buckling of stability and to prevent collapse with	ndividual truss web and/or chord members of ossible personal iniury and property damage	only. Additional temporary and p b. For general guidance regard	ermanent b	pracing	A MiTek Affiliate			
fabrication, storage, de	elivery, erection and bracing of trusse	s and truss systems, see ANSI/TPI1 Quality	y Criteria and DSB-22 available t Association (www.shcacompo	e from Trus	s Plate Institute (www.tpinst.org)	818 Soundside Road			
	, ava	and a substant saliding component				Edenion, NC 2/932			

Job	Truss	Truss Type	Qty	Ply	Precision/58 Liberty Meadows/Harnett
10923-5134	46-CE	GABLE	1	1	157763290
30323-3134	AU-OL		1	· ·	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28	3309				8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Apr 13 13:10:43 2023 Page 2
		ID:9fn	a8k_aSfLl	EiCIAbt3H8	BpzSXOz-DnpUPbuptsGRFxHwQqy1jc2HxUxtfRAGUQ09buzR79Q

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





REACTIONS. (lb/size) 2=486/0-3-8 (min. 0-1-8), 6=486/0-3-8 (min. 0-1-8) Max Horz 2=-128(LC 10) Max Uplift 2=-117(LC 12), 6=-117(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-455/102, 3-4=-465/192, 4-5=-465/192, 5-6=-455/102

BOT CHORD 2-10=-17/331, 9-10=-17/331, 8-9=-17/331, 6-8=-17/331 4-9=-137/374

# WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=117.6=117.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

## LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) ENGINEERING BY RENCO

April 13,2023



Vert: 1-2=-60, 2-3=-60, 1-3=-20

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

April 13,2023

Job	Truss	Truss Type	Qty	Ply	Precision/58 Liberty Meadows/Harnett
					157763293
J0923-5134	B3	COMMON GIRDER	1	2	
				<b></b>	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	8309				8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Apr 13 13:10:45 2023 Page 2
		ID:hv//2nm	VDCoOdET	Luv//hcohu	

ID:hxY3pmLvDCe?dFTuxKh62hywwcV-9AwEqHw3PTX8UEQIYF_Vp17a6IQC7HVZykVGgmzR79O

#### LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 3=-998(B) 5=-990(B) 6=-990(B) 7=-990(B) 8=-990(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITEK 818 Soundside Road Edenton, NC 27932



April 13,2023

TRENCO A MITEK Affiliate

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



BCDL	10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 51 lb	FT = 20%
				BRACING-			
TOP CHO	RD 2x6 SF	P No.1		TOP CHORD	Structural wood sheathing di	rectly applied or 5-0-8 or	c purlins, except
BOT CHO	RD 2x6 SF	P No.1			end verticals.		
WEBS	2x6 SF	° No.1		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.	
OTHERS	2x4 SF	P No.2					

#### REACTIONS.

SI IDER

NS. All bearings 5-0-8. (lb) - Max Horz 2=249(LC 12)

Left 2x6 SP No.1 1-2-6

Max Uplift All uplift 100 lb or less at joint(s) 6, 7, 2 except 8=-130(LC 12), 9=-256(LC 12) Max Grav All reactions 250 lb or less at joint(s) 6, 7, 8, 9 except 2=304(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-449/384

WEBS 3-9=-314/305

#### NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7, 2 except (jt=lb) 8=130, 9=256.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard



April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)



Plate Offs	sets (X,Y)	[2:0-7-11,0-0-2]										
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	-0.01	2-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	2014	Matrix	k-P	Wind(LL)	0.00	2	****	240	Weight: 50 lb	FT = 20%

### LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x6 SP No.1

 SLIDER
 Left 2x6 SP No.1 3-1-10

BRACING-TOP CHORD

 
 TOP CHORD
 Structural wood sheathing directly applied or 5-0-8 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=210/Mechanical, 2=257/0-3-8 (min. 0-1-8) Max Horz 2=171(LC 12) Max Uplift 7=-111(LC 12)

Max Grav 7=241(LC 19), 2=257(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 4-7=-270/249

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-12 to 3-4-1, Interior(1) 3-4-1 to 5-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=111.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

#### LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

E RENCO



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

April 13,2023





Max Uplift 1=-20(LC 12), 3=-24(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



- will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Edenton, NC 27932





RE: J0923-5135 Precision/58 Liberty Meadows/Harnett **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0923-5135 Lot/Block: Address: City:

Model: Subdivision: State:

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	157763303	ET1	4/13/2023
2	157763304	ET2	4/13/2023
3	157763305	ET3	4/13/2023
4	157763306	F1	4/13/2023
5	157763307	F2	4/13/2023
6	157763308	F3	4/13/2023
7	157763309	F4	4/13/2023
8	157763310	F5	4/13/2023
9	157763311	F6	4/13/2023
10	157763312	F7	4/13/2023
11	157763313	F8	4/13/2023
12	157763314	F9	4/13/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Precision/58 Liberty Meadows/Harnett
J0923-5135	ET1	GABLE	1	1	157763303
Comtech, Inc, Fayette				8.430 s Ja	Job Reference (optional) n 6 2022 MiTek Industries, Inc. Thu Apr 13 12:06:19 2023 Page 1
-		II	D:hxY3pmLvDCe?	dFTuxKh	62hywwcV-xcxA?keBvaa4WLzBKmR3on?wkt8iJpDWzF?hzrzR85o
0-1-8		17-1-0			1-3-0 1-11-0
H		17-1-0			Scale = 1:42.9
			3x6 FP =		3x6 = 3x4 = 3x4 = 3x4 = 3x6 =
1 2 3 T <b>R</b> RR	4 5 6		11 12 13 A <u>a</u> A	14 1	516 17 18 46 19 47 20 21 बाह्य हिर्म हिर्म मि निर्हा
045					5-0
					₩ ₩ ₩
44 43 42	41 40 39	38 37 36 35 34	33 32	31 3	10 29 28 27 26 25 24 23 22
3x4 =		3x6 FP=			3x4    4x6    3x6    5x8    4x6    3x4    3x4 = 3x4 =
					5,4 <u> </u>
				17	7-5-8
<u>  1-4-0   2-8-0</u>   1-4-0   1-4-0	<u>4-0-0 5-4-0 6-8-0 8</u> 1-4-0 1-4-0 1-4-0 1	<u>-0-0 9-4-0 10-8-0 12-0-0 13-4-0</u> 4-0 1-4-0 1-4-0 1-4-0 1-4-0	<u>+ 14-8-0 + 16-0-0</u> + 1-4-0 + 1-4-0	17-1-0	17-7-0 20-4-0 22-3-0 25-3-0 14-8 2-9-0 1-11-0 3-0-0
Plate Offsets (X,Y) [17	7:0-1-8,Edge], [18:0-1-8,Edge	, [20:0-1-8,Edge], [24:0-3-0,Edge], [27:0	-3-0,Edge]		0-1-8
				(100)	
TCLL 40.0	Plate Grip DOL 1.00	TC 0.20	/ert(LL) -0.01	(100)	>999 480 MT20 244/190
TCDL 10.0	Lumber DOL 1.00 Rep Stress Incr VES	BC 0.13 \ WB 0.39 F	/ert(CT) -0.03	25-26 22	>999 360 n/a n/a
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S	1012(01) 0.00	22	Weight: 128 lb FT = 20%F, 11%E
LUMBER-		B	BRACING-		
TOP CHORD 2x4 SP N	o.1(flat)	т	OP CHORD	Structur	al wood sheathing directly applied or 6-0-0 oc purlins,
WEBS 2x4 SP N	o.1(flat) o.3(flat)	В	SOT CHORD	except e Rigid ce	end verticals. eiling directly applied or 10-0-0 oc bracing, Except:
OTHERS 2x4 SP N	o.3(flat)			6-0-0 oc	bracing: 27-29,22-24.
REACTIONS. All bear	ings 17-7-0 except (jt=length)	22=Mechanical.			
(lb) - Max Uplit Max Gray	t All uplift 100 lb or less at jo	int(s) except 30=-145(LC 4)	37 36 34 33 3	2 31 000	ant
Max Gray	22=624(LC 1), 29=741(LC	1), 29=741(LC 1)	57, 50, 54, 55, 5	2, 31 6206	εμι
FORCES (lb) - Max Co	mn /Max Ten - All forces 25	) (lb) or less except when shown			
TOP CHORD 21-22=-	611/0, 16-17=-651/0, 17-18=-	1053/0, 18-19=-1048/0, 19-20=-1048/0,			
20-21=- BOT CHORD 26-27=0	676/0 )/651, 25-26=0/1053, 24-25=0	/676			
WEBS 16-29=-	620/0, 16-27=0/785, 17-27=-4	66/0, 17-26=0/494, 18-26=-257/0, 21-24	=0/818,		
20-24=-	442/0, 20-25=0/457, 19-25=-2	62/0			
NOTES-					
2) All plates are 1.5x3 MT	20 unless otherwise indicated	r mis design. I.			
3) Plates checked for a pl	us or minus 1 degree rotation	about its center.			
5) Refer to girder(s) for true	uss to truss connections.				
6) Provide mechanical co	nnection (by others) of truss to	b bearing plate capable of withstanding 1	45 lb uplift at joir	nt 30.	TH CARO
Strongbacks to be atta	ched to walls at their outer en	ds or restrained by other means.	13-100 (0.131 X	s) naiis.	OR SESSION ALL
<ol> <li>CAUTION, Do not erect</li> <li>Hanger(s) or other con</li> </ol>	t truss backwards.	vided sufficient to support concentrated l	oad(s) 86 lb dow	n at 18-1	0.12.86 lb
down at 20-10-12, and	86 lb down at 22-10-12, and	94 lb down at 25-1-8 on top chord. The	e design/selection	n of such	connection
device(s) is the respon	sibility of others.	face of the truss are noted as front (E) of	r back (B)		E SEAL E
			r buok (D).		<u> </u>
1) Dead + Floor Live (bala	'd anced): Lumber Increase=1 ମଣ	), Plate Increase=1.00			
Uniform Loads (plf)	,				E CANDINEER AS
Vert: 22-44=-1 Concentrated Loads (It	U, 1-21=-100 b)				A CONTRACTOR
Vert: 17=-86(F	ý 21=-94(F) 46=-86(F) 47=-86	6(F)			A. GILLIN
					April 13.2023
					· · ·····
WARNING - Verify des	ign parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENCE PAGE N	MII-7473 rev. 1/2/2023	BEFORE US	SE. ENGINEERING BY
Design valid for use only a truss system. Before u	with MiTek® connectors. This design se, the building designer must verify the	is based only upon parameters shown, and is for an e applicability of design parameters and properly in	n individual building c ncorporate this design	omponent, r into the ove	
building design. Bracing	indicated is to prevent buckling of ind	ividual truss web and/or chord members only. Addi	itional temporary and	permanent t	bracing A MiTek Affiliate

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Precision/58 Liberty Me	eadows/Harnett	157763304
J0923-5135	ET2	GABLE	1	1	Job Reference (optiona	al)	137703304
Comtech, Inc, Faye	tteville, NC - 28314,		ID:hvY3nml vD	8.430 s Jan	6 2022 MiTek Industri	es, Inc. Thu Apr 13 1	2:06:20 2023 Page 1
0 ₁₁₇ 8			10.11XT SpinLvD			guixrereiteyinc_reir	0118
							Scale = 1:22.8
1 2	3	4 5	6 7	8	9	10	11 12
	•			~~~~~~			
24 23 3x4 =	22	21 20	19 18	1	7 16	15	14 13 3x4 =
<u>  1-4-0</u> 1-4-0  -	2-8-0 4-0-0 1-4-0 1-4-0	<u> </u>	0 <u>8-0-0</u> 0 1-4-0	9-4-0 1-4-0	10-8-0 1-4-0	12-0-0 1 1-4-0	<u>3-4-0 13-10-0</u> 1-4-0 0-6-0
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20	-0-0 <b>CSI.</b> 1.00 TC 0.06 1.00 BC 0.02 YES WB 0.03 14 Matrix-R	DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0	in (loc) /a - /a - 00 13	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 59 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP OTHERS 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structura except ei Rigid ceil	I wood sheathing dire nd verticals. ling directly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 13-10-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job		Truss	Truss Type		Qty	Ply	Precision/58 Liberty Meadows	J/Harnett	157763305
J0923-5135		ET3	GABLE		1	1			107703003
Comtoch	Ino Equation	villo NC 29214				9 420 c. lo	Job Reference (optional)	Thu Apr 12 12:06:	21 2022 Page 1
Contech,	inc, rayelle	VIIIE, NC - 20314,		ID:h	xY3pmLvDCe?	o.430 S Ja dFTuxKh6	62hvwwcV-u?3wQPfRRBgole7a	aRBTXtC5IShr npJr	oQZUo2kzR85m
0 _[ 1]8							,		0 _[ 1_8
									Scale = 1:16.9
1	2	3	4	5		6	7	8	9
Ī		0	0	•		•	•		• [
19									20
									• 0-C-
	_								
│┟┢┴		•	•	•		•	•		
18	17	7 16	15	14		13	12	11	10
3x4 3	=								3x4 =
L	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0		8-0-0	9-4-0	10-4-0
1	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1	1-4-0	1-4-0	1-0-0

1	1-4-0	1-4-0	I	1-4-0	1-4-0	I	1-4-0	1	1-	-4-0	1-4-0	1-0-0
LOADING	i (psf)	SPACING-	2-0-0	cs	l.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WE	0.03	Horz(CT)	0.00	10	n/a	n/a		
BCDL	5.0	Code IRC2015/TI	PI2014	Ma	trix-R						Weight: 45 lb	FT = 20%F, 11%E

### LUMBER-

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

**REACTIONS.** All bearings 10-4-0.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)





			25-3-0					
Plate Offsets (X,Y)	[20:0-1-8,Edge], [21:0-1-8,Edge], [26:0-	17-5-4 1-8,Edge], [27:0-1-8,Edge]	]				7-9-12	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.86 BC 0.88 WB 0.57 Matrix-S	DEFL. Vert(LL) - Vert(CT) - Horz(CT)	in (loc) 0.26 27-28 0.36 27-28 0.05 22	l/defl >801 >582 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 M18AHS Weight: 127 lb	<b>GRIP</b> 244/190 186/179 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Struct excep Rigid	tural wood ot end verti ceiling dire	sheathing dir cals. ectly applied c	ectly applied or 2-2-0 o r 6-0-0 oc bracing.	c purlins,
REACTIONS. (size Max U Max G	e) 30=0-3-0, 19=Mechanical, 22=0-3-{ lplift 19=-44(LC 3) Grav 30=880(LC 10), 19=367(LC 4), 22=	3 1620(LC 1)						
FORCES.         (lb) - Max.           TOP CHORD         2-3=-           8-9=-         14-11           BOT CHORD         29-30           10-21         21-2           WEBS         2-300           10-22         5-28-           15-21         15-21	Comp./Max. Ten All forces 250 (lb) or -1831/0, 3-4=-2998/0, 4-5=-2998/0, 5-6= -2550/0, 9-10=-2550/0, 10-12=-1084/0, 7 5=-539/378, 15-16=-539/378, 16-17=-53 0=0/1100, 28-29=0/2536, 27-28=0/3294, -28-838/124, 20-21=-378/539, 19-20=-94 -1378/0, 2-29=0/952, 3-29=-917/0, 3-28 3=-1131/0, 17-19=-485/120, 17-20=-360 =-379/0, 8-24=-644/0, 5-27=-219/410, 8- 1=-421/0	less except when shown. -3353/0, 6-7=-3353/0, 7-8: l2-13=0/1342, 13-14=0/13 9/378 26-27=0/3353, 24-26=0/3 3/887 =0/589, 12-22=-1594/0, 1 /195, 14-22=-835/0, 10-24 26=0/790, 7-26=-476/0, 14	=-3353/0, 42, 3031, 23-24=0/1932 2-23=0/1193, =0/817, 4-21=0/875,	), ,				
NOTES- 1) Unbalanced floor liv 2) All plates are MT20 3) All plates are 3x4 M 4) Plates checked for a 5) Refer to girder(s) for 6) Provide mechanical 7) Recommend 2x6 str Strongbacks to be a	e loads have been considered for this de plates unless otherwise indicated. T20 unless otherwise indicated. a plus or minus 1 degree rotation about i r truss to truss connections. connection (by others) of truss to bearin rongbacks, on edge, spaced at 10-0-0 o ttached to walls at their outer ends or re	esign. ts center. g plate capable of withstar c and fastened to each tru strained by other means.	nding 44 lb uplift at iss with 3-10d (0.13	joint 19. 11" X 3") nai	ls.	C	OPTICESS	AROLIN

8) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



<b> </b>						17-3-8						
Plate Offsets ()	(,Y) [7:0-3-0,Edge],	[19:0-1-8,	Edge]			17-3-8						
LOADING (psi TCLL 40.1 TCDL 10.1 BCLL 0.1 BCDL 5.1	) SPACING ) Plate Gri ) Lumber I ) Rep Stre ) Code IR	<b>G-</b> p DOL DOL ss Incr C2015/TP	2-0-0 1.00 1.00 YES Pl2014	<b>CSI.</b> TC BC WB Matriz	0.53 0.76 0.49 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.34 0.06	(loc) 19 19 15	l/defl >826 >600 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 94 lb	<b>GRIP</b> 244/190 186/179 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)					BRACING TOP CHOP BOT CHOP	RD RD	Structu except Rigid c	ral wood end verti eiling dire	sheathing dir cals. ectly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS.	(size) 23=0-3-0, 1 Max Grav 23=931(LC	5=Mechai 1), 15=93	nical 7(LC 1)									
FORCES. (Ib TOP CHORD	- Max. Comp./Max. Ter 2-3=-1960/0, 3-4=-32 10-11=-3205/0, 11-13	n All for 49/0, 4-5=	ces 250 (lb) or =-3249/0, 5-7=	less except -3924/0, 7-8	when showr =-3924/0, 8-	n. 10=-3215/0,						
BOT CHORD	22-23=0/1168, 20-22 15-16=0/1167	=0/2719, 1	19-20=0/3589,	18-19=0/39	24, 17-18=0	/3924, 16-17=0/27	24,					
WEBS	2-23=-1463/0, 2-22=0 7-19=-419/0, 13-15=- 8-17=-1077/0	)/1030, 3-2 1464/0, 12	22=-989/0, 3-2 3-16=0/1037,	20=0/676, 5-3 11-16=-990/	20=-435/0, 5 0, 11-17=0/6	5-19=0/755, 614, 10-17=-57/264	1,					
NOTES- 1) Unbalanced 2) All plates are 3) All plates are	floor live loads have bee MT20 plates unless other 3x6 MT20 unless other	en conside nerwise in rwise indic	ered for this de dicated. cated	esign.								

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Scitcu Information. Storage that the component development of the prevent oclapse with possible for the Storage trust and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Scitcu Information. Storage the component development of the prevent oclapse trust and trust of the component development of the prevent oclapse trust and trust of the component development of the prevent oclapse trust and trust of the component development of the prevent oclapse trust and the prevent occase the term of the component occase the prevent occase the term of the term occase the prevent occase the term of the prevent occase the term of the prevent occase the term occase te and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





			17-3-8 17-3-8		
Plate Offsets (X,Y) [8:0-3-	-0,Edge], [20:0-1-8,Edge]				
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.96 BC 0.99 WB 0.72 Matrix-S	<b>DEFL.</b> ir Vert(LL) -0.27 Vert(CT) -0.37 Horz(CT) 0.08	n (loc) l/defl L/d 19-20 >761 480 19-20 >547 360 19-10 n/a n/a	PLATES         GRIP           MT20         244/190           M18AHS         186/179           Weight:         98 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1( BOT CHORD 2x4 SP No.1( WEBS 2x4 SP No.3( REACTIONS. (size) 23 Max Grav 23	(flat) (flat) (flat) 3=0-3-0, 15=Mechanical 3=1009(I.C 1), 15=1242(I.C 1)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathi except end verticals. Rigid ceiling directly ap	ing directly applied or 3-8-11 oc purlins, plied or 10-0-0 oc bracing.
FORCES. (lb) - Max. Comp TOP CHORD 2-4=-2156// 10-11=-437 BOT CHORD 22-23=0/12 15-16=0/15 WEBS 2-23=-1593 8-20=-590/0 9-18=-582/7	0./Max. Ten All forces 250 (lb) or 0, 4-5=-3636/0, 5-6=-3636/0, 6-8= 75/0, 11-13=-2753/0 ?71, 21-22=0/3006, 20-21=0/4062, 562 8/0, 2-22=0/1152, 4-22=-1106/0, 4 0, 13-15=-1960/0, 13-16=0/1522, 188	less except when shown. -4658/0, 8-9=-4651/0, 9-10= 19-20=0/4651, 18-19=0/465 -21=0/804, 6-21=-545/0, 6-2( 11-16=-1538/0, 11-18=0/539	-4375/0, i1, 16-18=0/3943, D=0/1067, ,		
<ul> <li>NOTES-</li> <li>1) Unbalanced floor live loads</li> <li>2) All plates are MT20 plates</li> <li>3) Plates checked for a plus of</li> <li>4) Refer to girder(s) for truss</li> <li>5) Recommend 2x6 strongbas</li> <li>5) Recommend 2x6 strongbas</li> <li>5) Recommend 2x6 strongbas</li> <li>6) CAUTION, Do not erect truss</li> <li>6) CAUTION, Do not erect truss</li> <li>7) Hanger(s) or other connect chord. The design/selection</li> <li>8) In the LOAD CASE(S) sector</li> <li>LOAD CASE(S) Standard</li> <li>1) Dead + Floor Live (balance Uniform Loads (plf)</li> <li>Vert: 15-23=-10, 1</li> </ul>	s have been considered for this da unless otherwise indicated. or minus 1 degree rotation about i to truss connections. toks, on edge, spaced at 10-0-0 o d to walls at their outer ends or re uss backwards. tion device(s) shall be provided st on of such connection device(s) is tion, loads applied to the face of th ed): Lumber Increase=1.00, Plate 1-14=-100	esign. ts center. c and fastened to each truss strained by other means. ufficient to support concentra the responsibility of others. ne truss are noted as front (F Increase=1.00	with 3-10d (0.131" X ted load(s) 463 lb doo ) or back (B).	3") nails. wn at 13-8-4 on top	SEAL 036322

Concentrated Loads (lb) Vert: 25=-383(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



			<u>13-6-8</u> 13-6-8			
Plate Offsets (X,Y)	[7:0-3-0,Edge], [15:0-1-8,Edge]					
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	<b>CSI.</b> TC 0.86 BC 0.82 WB 0.46 Matrix-S	DEFL.         in           Vert(LL)         -0.17           Vert(CT)         -0.24           Horz(CT)         0.03	l (loc) l/defl L/d 15-16 >929 480 15-16 >675 360 12 n/a n/a	<b>PLATES</b> MT20 Weight: 73 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ectly applied or 4-6-8 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size	e) 18=0-3-0, 12=Mechanical					

Max Grav 18=725(LC 1), 12=731(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1440/0, 3-4=-2227/0, 4-5=-2227/0, 5-7=-2080/0, 7-8=-2080/0, 8-10=-1581/0 BOT CHORD 17-18=0/895, 16-17=0/1963, 15-16=0/2338, 14-15=0/2080, 13-14=0/2080, 12-13=0/821

WEBS 2-18=-1120/0, 2-17=0/710, 3-17=-680/0, 3-16=0/338, 5-15=-457/131, 8-14=0/269,

10-12=-1030/0, 10-13=0/971, 8-13=-912/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the fabrication and the fabrication of the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





<b>—</b>			1	3-10-0			
Plate Offset	ts (X,Y)	[7:0-3-0,Edge], [15:0-1-8,Edge]	I	3-10-0			
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.82 BC 0.80 WB 0.44 Matrix-S	DEFL. ir Vert(LL) -0.18 Vert(CT) -0.24 Horz(CT) 0.03	n (loc) l/defl L/d 3 15-16 >915 480 4 15-16 >667 360 3 12 n/a n/a	<b>PLATES</b> MT20 Weight: 74 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHOR BOT CHOR WEBS	RD 2x4 SP RD 2x4 SP 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTION	I <b>S.</b> (size Max G	e) 18=0-3-0, 12=0-3-8 rav 18=741(LC 1), 12=741(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1480/0, 3-4=-2306/0, 4-5=-2306/0, 5-7=-2216/0, 7-8=-2216/0, 8-10=-1571/0

 BOT CHORD
 17-18=0/916, 16-17=0/2021, 15-16=0/2436, 14-15=0/2216, 13-14=0/2216, 12-13=0/848

 WEBS
 2-18=-1147/0, 2-17=0/735, 3-17=-704/0, 3-16=0/364, 5-15=-438/177, 10-12=-1058/0,

10-13=0/926, 8-13=-938/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





1			1	0-4-0				1
			1	0-4-0				1
Plate Offse	ets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge]						
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.24 BC 0.42 WB 0.21 Matrix-S	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (loc) l/defl 06 10-11 >999 07 10 >999 01 7 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 Weight: 52 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHOI BOT CHOI WEBS	RD 2x4 SP RD 2x4 SP 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood except end verti Rigid ceiling dire	sheathing direc cals. ectly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,
REACTIO	<b>NS.</b> (size Max G	e) 12=0-3-0, 7=0-3-0 irav 12=548(LC 1), 7=548(LC 1)						
FORCES. TOP CHO	(lb) - Max. RD 2-3=-	Comp./Max. Ten All forces 250 (lb) or 999/0, 3-4=-1319/0, 4-5=-999/0	less except when shown.					

BOT CHORD 11-12=0/666, 10-11=0/1319, 9-10=0/1319, 8-9=0/1319, 7-8=0/666

WEBS 2-12=-833/0, 2-11=0/434, 3-11=-449/0, 5-7=-833/0, 5-8=0/434, 4-8=-449/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



		10	)-0-8					
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge]		-0-0					
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.28 BC 0.44 WB 0.21 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.06 10-11 -0.07 10 0.01 7	l/defl >999 >999 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 Weight: 51 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	<ul> <li>No.1(flat)</li> <li>No.1(flat)</li> <li>No.1(flat)</li> <li>No.3(flat)</li> <li>(a) 12=0.2.0.7=Machapiagi</li> </ul>	i	BRACING- TOP CHORE BOT CHORE	D Struct excep D Rigid	ural wood t end verti ceiling dire	sheathing dire cals. ectly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
Max (	Grav 12=532(LC 1), 7=539(LC 1)							
FORCES.         (lb) - Max           TOP CHORD         2-3=           BOT CHORD         11-1           WEBS         2-12	Comp./Max. Ten All forces 250 (lb) or -959/0, 3-4=-1240/0, 4-5=-971/0 2=0/648, 10-11=0/1240, 9-10=0/1240, 8- =-811/0, 2-11=0/405, 3-11=-402/0, 5-7=-	less except when shown. 9=0/1240, 7-8=0/633 794/0, 5-8=0/440, 4-8=-432/0						

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)





Max Grav 8=500(LC 1), 5=459(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-578/0

BOT CHORD 7-8=0/578, 6-7=0/578, 5-6=0/578

WEBS 2-8=-700/0, 3-5=-695/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 676 lb down at 1-10-4 on top

chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

### LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-100

Concentrated Loads (lb)

Vert: 2=-631(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



		10-0-8						14-4-0	
Plate Offsets (X,Y)	[3:0-3-0,Edge], [4:0-1-8,Edge], [7:0-3-0, [21:0-1-8,0-0-8], [22:0-1-8,0-0-8]	Edge], [9:0-3-0,Edge], [12:0-	1-8,Edge], [15:0-	3-12,I	Edge], [	16:0-3-0	0-0-0], [17:0-3	3-0,Edge], [20:Edge,0-	-1-8],
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.83 BC 0.99 WB 0.88 Matrix-S	DEFL. Vert(LL) -( Vert(CT) -( Horz(CT) (	in 0.11 0.16 0.03	(loc) 17 17 13	l/defl >999 >759 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 Weight: 108 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD		Structu except Rigid ce	ral wood end verti eiling dire	sheathing dire cals. ectly applied o	ectly applied or 6-0-0 c or 6-0-0 oc bracing.	oc purlins,
REACTIONS. (size Max U Max G	e) 20=0-3-0, 10=0-8-8, 13=0-8-0 plift 10=-284(LC 3) rav 20=2267(LC 3), 13=4757(LC 1)								
FORCES.         (lb) - Max.           TOP CHORD         2-3=-           BOT CHORD         18-20           11-12         WEBS           2-20         5-15=           8-12=         8-12=	Comp./Max. Ten All forces 250 (lb) or 4197/0, 3-4=-5207/0, 4-5=-2819/0, 5-6= 0=0/3051, 17-18=0/5207, 16-17=0/5207, 2=-416/0, 10-11=-416/0 =-3737/0, 2-18=0/1421, 3-18=-1232/0, 3 00/2826, 4-15=-3093/0, 8-10=0/503, 7-1 =-763/0	less except when shown. 0/3050, 6-7=0/3050, 7-8=0/5 15-16=0/5207, 13-15=0/567 -17=-324/0, 4-16=0/511, 5-1 3=-2592/0, 7-12=0/431, 6-13	982 7, 12-13=-982/0, 3=-4392/0, =-707/0,						
NOTES- 1) Unbalanced floor live 2) Plates checked for a 3) Provide mechanical 4) Recommend 2x6 str Strongbacks to be a 5) CAUTION, Do not e 6) Hanger(s) or other of down at 3-2-4, 917 The design/selection 7) In the LOAD CASE( LOAD CASE(S) Stand	e loads have been considered for this de plus or minus 1 degree rotation about it connection (by others) of truss to bearin ongbacks, on edge, spaced at 10-0-0 o ttached to walls at their outer ends or re rect truss backwards. onnection device(s) shall be provided su b down at 5-2-4, 917 lb down at 7-2-4, n of such connection device(s) is the res S) section, loads applied to the face of th dard	esign. Is center. g plate capable of withstand c and fastened to each truss strained by other means. Ifficient to support concentra and 911 lb down at 9-2-4, a ponsibility of others. ne truss are noted as front (F	ing 284 lb uplift a with 3-10d (0.13 ted load(s) 917 lb and 1222 lb down ^c ) or back (B).	t joint 1" X 3 dowi at 11	10. 3") nails n at 1-2 1-2-4 or	2-4, 917 I n top cho	b rd.	OR LESS	AROUNT
1) Dead + Floor Live (b Uniform Loads (plf)	palanced): Lumber Increase=1.00, Plate	Increase=1.00						0363	322

Vert: 10-20=-10, 1-9=-100

Concentrated Loads (lb)

Vert: 7=-1142(B) 23=-837(B) 24=-837(B) 25=-837(B) 26=-837(B) 27=-837(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)





		Client:		Date: 11/7/2023	Page 2 of 6
1	icDecian	Project:			
	ISDESIGI	Address:		JOD Name: 56 LIBERTY MEADOWS	
BM2	Kerto-S LVL	. 1.750" X 24.000"	2-Ply - PASSE		
•			• • • • •	• • • • • • • •	
					2
					$\sum_{i=1}^{2}$
			· · · ·	· · · · · · · ·	<u> </u> ¥
1 SPF	End Grain 0-3-8			2 SPF End Grain 0-3-8	
			21: 1/0"		2 1/2"
,			21 1/2		3 1/2
1			21' 1/2"		1
Multi-Plv	v Analysis				
	,	f 10d Day and 12 (120,21) at 12	" Masteria and dist		
Fasten all	I plies using 3 rows c	of TUG Box halls (.128x3°) at 12	o.c Maximum end dist	ance not to exceed 6".	
Capacity	4	0.1 0 PLF			
Yield Limit p	er Foot 2	45.6 PLF			
Yield Limit p	er Fastener 8	1.9 lb.			
См	1				
Yield Mode	IN	/			
Edge Distan Min End Dis	ice 1 stance 3	1/2"			
Load Combi	ination D	+L			
Duration Fac	ctor 1	.00			
l .					
				Manufacturer Info	
Notes Calculated Struc	ctured Designs is responsible only of the	chemicals Handling & Installation	<ol> <li>For flat roofs provide proper drainage ponding</li> </ol>	Metsä Wood	
structural adequ design criterio	uacy of this component based on the	1. LVL beams must not be cut or drilled		301 Merritt 7 Building, 2nd Floor	
responsibility of ensure the co	f the customer and/or the contractor to omponent suitability of the intended	<ul> <li>reter to manufacturer's product information regarding installation requirements, multi-plus fastening details beam strength volume and and</li> </ul>	1	Norwalk, CT 06851 (800) 622-5850	
application, and	to verify the dimensions and loads.	approvals 3. Damaged Beams must not be used		www.metsawood.com/us	
1. Dry service c	conditions, unless noted otherwise	<ol> <li>Design assumes top edge is laterally restrained</li> <li>Provide lateral support at bearing points to avoid</li> </ol>	i		
2. LVL not to be	be treated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 6/28/20	126	

	-	C	lient:					Date:	11/7/20	023				Page 3 of 6
	Decision	Р	roject:					Input by	/: Neal B	aggett				
	Design	A	ddress:					Job Na Broiget	me: 58 LIB #.	ERTY MEA	DOWS			
DMA			750" V 4	14.000			A C C		#. Level: Lev	vel				
BINI	Nerto-5 L	VL 1.	(50 X)	14.000	) 2-1	Ply - P	A53	DED						
	2													
			1										_	<i>—</i>
		•	•	•	-	•	•						NA A	
•	•		•	•	•	•							X X	1'2"
	a ritte	-		-	and the second	all the	-						Ŵ	
				and the second second	and the second se	0.005.0.0							ш	<u> </u>
1 SPF 0	-3-8					2 SPF 0-3	⁵⁻⁸							
			7'11 1/2"										13	3 1/2"
/			7'11 1/2"				<del></del> ł							
Member In	formation						Read	tions U		NED Ib	(Uplift)			
Туре:	Girder		Application:	F	oor		Brg	Direction	Liv	/e	Dead	Snow	Wind	Const
Plies:	2		Design Met	hod: A	SD		1	Vertical	82	24	795	0	0	0
Moisture Con	dition: Dry		Building Co	de: IE	C/IRC 2015		2	Vertical	82	24	795	0	0	0
Deflection LL	: 480		Load Sharir	ng: N										
Deflection TL	: 360 Normal - II		Deck:	N	ot Checked									
Temperature:	Temp <= 10	0°F												
							Bear	rings						
							Bea	aring Leng	gth Dir.	Cap. F	React D/L lb	Total L	d. Case	Ld. Comb.
							1-	SPF 3.50	0" Vert	31%	795 / 824	1619 L		D+L
Analysis Re	sults						2 - :	SPF 3.50	0" Vert	31%	795 / 824	1619 L		D+L
Analysis	Actual	Location A	llowed (	Capacity	Comb.	Case	1							
Moment	2861 ft-lb	3'11 3/4" 2	6999 ft-lb 0	.106 (11%	) D+L	L								
Unbraced	2861 ft-lb	3'11 3/4" 1	3588 ft-lb 0	.211 (21%	) D+L	L								
Shear	1360 lb	6'6" 1	0453 lb C	.130 (13%	) D+L	L								
LL Defl inch	0.013 (L/7127)	3'11 13/16" 0	.188 (L/480) C	0.067 (7%)	L	L								
TL Defl inch	0.025 (L/3626)	3'11 13/16" 0	.250 (L/360) C	0.099 (10%	) D+L	L	1							
Design Not	tes						1							
1 Provide su may also b	pport to prevent lat	eral movement	and rotation at	the end be	earings. Late	ral support								
2 Fasten all	plies using 3 rows of	of 10d Box nails	s (.128x3") at 1	2" o.c. Max	imum end di	stance not								
to exceed	6". st page of calculation	ons for fastener	s required for s	enecified lo	ada									
4 Girders are	e designed to be su	pported on the	bottom edge o	nly.	aus.									
5 Top loads i	must be supported	equally by all p	lies.											
7 Bottom mu	e laterally braced a ist be laterally brace	at end bearings. ed at end bearir	nas.											
8 Lateral sle	nderness ratio base	ed on single ply	width.											
ID	Load Type	L	ocation Trib	Width	Side	Dead 0.9		Live 1 S	now 1.15	Wind 1.	6 Const. 1.	25 Comn	nents	
1	Uniform				Near Face	69 PLF	20	7 PLF	0 PLF	0 PL	F 0 P	LF F7		
2	Uniform				Тор	120 PLF		0 PLF	0 PLF	0 PL	F 0 P	LF WALL		
	Self Weight					11 PLF								
Notes		chemicals	5		6. For fla	t roofs provide p	roper drair	nage to prevent	Manufact	urer Info				
Calculated Structured structural adequacy	d Designs is responsible only of this component based	on the 1 11/1 been	& Installation	Irilled	pondin	g			Metsä Wo 301 Morrie	od t 7 Building	2nd Floor			
design criteria and responsibility of the	d loadings shown. It i customer and/or the contra	is the 2. Refer to ictor to regarding	o manufacturer's i installation requ	product inform irements, mu	nation Iti-ply				Norwalk, (	CT 06851				
application, and to ve	rify the dimensions and load	s. approvals	details, beam streng	th values, and	code				(800) 622 www.mets	awood.com/	us			
1. Dry service condit	tions, unless noted otherwise	<ol> <li>Jamageo</li> <li>4. Design as</li> <li>5. Provide I</li> </ol>	ssumes top edge is lat ateral support at be	erally restrained aring points to	avoid									
2. LVL not to be treat	ated with fire retardant or co	prrosive lateral dis	placement and rotatio	n	This	design is valid	until 6/2	8/2026						

	Client:	Date:	11/7/2023	Page 4 of 6
<b>L</b> ieBasier	Project:	Input by:	Neal Baggett	
IsDesign	Address:	Job Nam	e: 58 LIBERTY MEADOWS	
		Project #		
BM1 Kerto-S LVL	1.750" X 14.000"	2-Ply - PASSED		
				$\Box$ $\neq$
	• • •	•••		NMA I
• • •	• • •	•		1'2"
		$\overline{\mathbf{v}}$		
	• • •			
1 SPF 0-3-8		2 SPF 0-3-8		
ł	7'11 1/2"			3 1/2"
<u>k</u>	7'11 1/0"	ł		
I	1 11 1/2	I		
Multi-Ply Analysis				
Fasten all plies using 3 rows of	10d Box nails (.128x3") at 12"	o.c Maximum end distance n	ot to exceed 6".	
Capacity 56.	2 %			
Load 138	3.0 PLF			
Vield Limit per Foot 245	5.6 PLF			
Yield Limit per Fastener 81.	9 lb.			
Yield Mode IV				
Edge Distance 1 1/	/2"			
Min. End Distance 3"				
Load Combination D+I	L			
Duration Factor 1.0	0			
Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the	Handling & Installation	ponding	Metsä Wood	
design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to	<ol> <li>LVL beams must not be cut or drilled</li> <li>Refer to manufacturer's product information regarding interlulation</li> </ol>		Norwalk, CT 06851	
ensure the component suitability of the intended application, and to verify the dimensions and loads.	regaroing instantation requirements, multi-ply fastening details, beam strength values, and code annrovals		(800) 622-5850	
Lumber	2. Damaged Beams must not be used     4. Design assumes top edge is laterally restrained		******.motaawoou.com/d5	
<ol> <li>Dry service conditions, unless noted otherwise</li> <li>LVL not to be treated with fire retardant or corrosive</li> </ol>	5. Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 6/09/2026		
		mis design is valid until 6/28/2026	1	



2		Client:		Date:	11/7/2023	Page 6 of
<b>T</b> i	isDesign	Project: Address:		Input by: Job Nam	iveai baggett ne: 58 LIBERTY MEADOWS	
<del>.</del>				Project #	t: The work has well	
GDH	Kerto-S L\	/L 1.750" X 11.87	′5'' 2-Ply - P	ASSED	Level: Level	
•	• • •	• • • •	• •	• •	• • • •	
	• • •		• •	• •		
1 SPF E	End Grain 0-3-8				2 SPF End Grain	0-3-8 //
<u> </u>			16'10"			3 1/2"
ł			16'10"			ł
/lulti-Ply	Analysis					
asten all j	plies using 2 rows	s of 10d Box nails (.128x3") a	t 12" o.c Maximum	end distance n	ot to exceed 6".	
apacity oad		0.0 % 0.0 PLF				
eld Limit per	r Foot	163.7 PLF				
eld Limit per	r Fastener	81.9 lb. 1				
eld Mode		IV				
dge Distance	e	1 1/2"				
in. End Dista	ance	3"				
uration Facto	tor	1.00				
		chomicals	6 Ear flat made and state	ropor draipage to provert	Manufacturer Info	
Notes Calculated Structu	ured Designs is responsible only o	f the Handling & Installation	<ul> <li>b. For flat roofs provide p ponding</li> </ul>	moper grainage to prevent	Metsä Wood	1
tructural adequa	and loadings shown. It is	the 1. LVL beams must not be cut or drilled the 2. Refer to manufacturer's product info	ormation		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	
nsure the com pplication. and to	ponent suitability of the inter verify the dimensions and loads.	nded regarding installation requirements, fastening details, beam strength values, a	multi-ply nd code		(800) 622-5850	
	,	<ol> <li>Damaged Beams must not be used</li> </ol>			www.metsaw00u.com/us	1
Lumber		<ol><li>Design assumes top edge is laterally restrain</li></ol>	ed			