Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF	
72338972	A1	Truss	7	1	Job Reference (optional)	
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Gina Tolley Run: 8.62 S		Run: 8.62 S Sep	22 2022 Pri	nt: 8.620 S S	Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:28	Page: 1

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:28 $ID:evUC1d?ak6Tsv4ti9g5qZ6yRYik-v2CknN34oE_WCG9wc8QOylFd9wF8r_AOBB2q?SyQburderseteendersetee$

-0-10-8 0-10-8	8-8-7 8-8-7 38 38 38 40 40 12-8-0 12-8-0	$+ \frac{14-9-10}{6-1-3} + \frac{14-9-10}{6-1-3} + \frac{14-9-10}{7x8} + \frac{12}{7x8} + \frac{12}{7x$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6-11-2 9-3-6 B= 9 10-7 10	43-0-0 6-0-14 5x 1 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 5 4 5 4 5	49-2-6 6-2-6 8 0 78 8 8 9 49 8 8 9 49 8 8 9 49 8 8 9 49 5 1-12 5	11 9 17 5x8= +51-4-0	55-3-9 6-1-3 7 16 51	64-0-0 8-8-7 8-7	64-10-8 0-10-8
Plate Offsets (X,)	r): [2:0-4-14,0	0-0-13], [4:0-4-0,0-4-8], [1	2:0-4-0,0-4-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.62 DEFL 0.81 Vert(LL 0.95 Horz(C	in) -0.34) -0.58 T) 0.04	(loc) 21-22 21-22 14	l/defl L >999 24 >832 18 n/a n	/d PLATES 40 MT20 30 /a Weight: 5	GRIP 244/190 13 lb FT = 20%	
TOP CHORD BOT CHORD WEBS SLIDER REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.1 *Exce 2x4 SP No.3 *Exce Left 2x4 SP No.3 (lb/size) Max Horiz Max Uplift Max Grav (lb) - N 2-3=-8 12-13= 2-40=- 24-46= 5-27=- 5-27=-	pt* B2:2x4 SP No.2 pt* W5:2x4 SP No.1, W6: 1-11-0, Right 2x4 SP No 2=967/0-5-4, (min. 0-1-8 (req. 0-4-14) 2=-191 (LC 11) 2=-58 (LC 10), 14=-225 2=1042 (LC 21), 14=-149 Max. Comp./Max. Ten A 64/0, 3-38=-1260/52, 4-3 =-2342/562, 13-14=-1088, 220/1122, 40-41=-117/11 =0/785, 23-46=0/785, 193 344/2018, 14-52=-344/2 1397/245, 6-27=-789/133	2x4 SP No.2 3 1-11-0), 14=1425/0-3-8, (min. 0-1- (LC 11), 27=-40 (LC 7) 5 (LC 24), 27=4145 (LC 2) II forces 250 (lb) or less exc 8=-1255/129, 4-5=-829/158 0 22, 29-41=-117/1122, 29-42 23=0/785, 19-47=0/785, 47- 1018 , 10-18=-25/389, 11-18=-71	12), 27=3834/0-3-1 ept when shown. , 5-39=0/964, 6-39 2=-66/347, 28-42= 48=0/785, 18-48=(16/341, 7-27=-2390	ERACING TOP CHORD BOT CHORD WEBS 3, WEBS =0/1117, 6-7=0/1144, -66/347, 28-43=-66/34)/785, 18-49=-141/170)/362, 25-26=-1370/28	Structur 2-0-0 oc Rigid ce 10-0-0 c 1 Row a 2 Rows 7-8=-262/253, 7, 27-43=-66/3 3, 17-49=-141 6, 9-25=-1358.	al wood shea c purlins (6-0- iling directly oc bracing: 20 th midpt at 1/3 pts 8-9=-262/25 847, 27-44=-4 /1703, 17-50 /325, 9-20=-5	athing direc 0 max.): 6 applied or)-25 3, 9-10=-1: 431/276, 44 =-141/170: 50/924, 18-	tly applied or 4 -10. 6-0-0 oc bracil 6-27, 11 5-27, 7-2 283/428, 10-1 4-45=-431/276 3, 16-50=-141, 20=-92/912, 1	4-4-1 oc purlins, exce ng. Except: -18 27, 9-25 1=-1508/425, 11-12= -, 26-45=-431/276, 24 /1703, 16-51=-344/20 1-16=-104/500,	ept 2112/531, 4-26=0/785, 018,
NOTES 1) Unbalance 2) Wind: ASC exterior zo for reaction 3) WARNING guidance, and TPI. T of the temp manufactu 4) Provide ad 5) All plates a 6) This truss (7) * This truss (7) * This truss (7) * This truss (7) Provide nd 1) Provide nd 2) WARNING 9) Provide nd 2) WARNING 9) Provide nd 1) Load case (2) Magnitude 13) Graphical 14) In the LOA LOAD CASE(S) 1) Dead + R	s-2/=- 12-16= 12-16= the control of the control of	Instruct, 0:21=7(8)(132) =-364/273, 5-29=0/1076, - been considered for this (3-second gust) Vasd=1) 2) zone; cantilever left an 2) zone; cantilever left an 2) zone; cantilever left an 2) zone; cantilever left an the owner's authorized ag raint/bracing and the perr or bracing. The water ponding. bitherwise indicated. r a 10.0 psf bottom chord for a live load of 20.0psf or members, with BCDL = 1 ze at joint(s) 27 greater th (by others) of truss to bea ance with the 2015 Interm- nodified. Building designe 0 on this truss have been does not depict the size o boads applied to the face of number Increase=1.15, Pl-	1. torio-carsos, IT-16=-71 4-29=-867/156, 7-26=-94/19 design. 33mph; TCDL=6.0psf; BCDI dright exposed ; end vertica .60 nd experience for proper an liling & Bracing of Metal Plat ent shall contract with a que nanent individual truss mem live load nonconcurrent with n the bottom chord in all are .0.0psf. an input bearing size. rring plate capable of withsta ational Residential Code see r must review loads to verify applied uniformly across all t the orientation of the purlir f the truss are noted as fror ate Increase=1.15	L=6.0psf; h=35ft; C al left and right exp ad safe handling ar e Connected Wood liffied registered de her restraint/bracii h any other live loa bas where a rectan anding 58 lb uplift a ctions R502.11.1 a y that they are corm gravity load cases a along the top and tt (F) or back (B).	A solution of the intended us with no adjustments.	I; MWFRS (en s and forces & al handling and ntly produced I he design and o responsibility 0-00 wide will I joint 27 and 2: renced standa e of this truss.	velope) MWFRS I erection by SBCA inspection r for truss fit between 25 lb uplift ard ANSI/			CAR 9510 154919 23/2023 GINEER 8 B.	A DAMANA AND AND AND AND AND AND A DAMANA AND AND AND AND AND AND AND AND AND
This design is ba component is res governing codes truss is fabricated (BCSI) for genera	sed upon parameters sponsibility of the Build and ordinances. Build d by a UFPI plant. Bra al guidance regarding	shown, and is for an indi ding Designer. Building D ding Designer accepts re acing shown is for lateral storage, erection and bra	vidual building component to resigner shall verify all desig sponsibility for the correctne support of truss members o rcing available from SBCA a	b be installed and l on information on th ss or accuracy of t nly and does not re and Truss Plate Ins	oaded vertically. Appli his sheet for conformar he design information eplace erection and pe titute.	icability of desi nce with condit as it may relat rmanent braci	ign paramete tions and req e to a specifi ng. Refer to	ers and pro uirements c building. Building C	per incorporati of the specific Certification is omponent Safe	on of building and valid only when ety Information	围

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
72338972	A1	Truss	7	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:28 Page: 2 ID:evUC1d?ak6Tsv4ti9g5qZ6yRYik-v2CknN34oE_WCG9wc8QOylFd9wF8r_AOBB2q?SyQbur

Uniform Loads (lb/ft)

Vert: 1-38=-60, 6-39=-60, 6-10=-60, 10-15=-60, 30-34=-20, 20-25=-20

Trapezoidal Loads (lb/ft)

Vert: 38=-150 (F=-50)-to-4=-135 (F=-35), 4=-135 (F=-35)-to-5=-109 (F=-9), 5=-109 (F=-9)-to-39=-100

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
72338972	A1G	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:29 Page: 1 ID:CHoKSOJxYg6q_WyW5VR6qSyRY?8-NFm6?j4jZX6NpQj6AsxdUznxjKnJad4XQroOYuyQbuq

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
72338972	A2	Truss	2	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:29 Page: 1 ID:9xRVRuYs4WV7mRvAj_Ha5SyRY_r-NFm6?j4iZX6NpQj6AsxdUznjVKd0aQHXQroOYuyQbug

72338972 A2 Truss 2 1 Job Reference (optional)	Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
	72338972	A2	Truss	2	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:29 Page: 2 $ID: 9xRVRuYs4WV7mRvAj_Ha5SyRY_r-NFm6? j4iZX6NpQ j6AsxdUznjVKd0aQHXQroOYuyQbuq$

Vert: 1-37=-60, 6-38=-60, 6-11=-60, 11-16=-60, 23-29=-20, 21-22=-20, 20-33=-20

Trapezoidal Loads (lb/ft)

Vert: 37=-150 (F=-40)-to-4=-135 (F=-40), 4=-135 (F=-40)-to-5=-109 (F=-40), 5=-109 (F=-40)-to-38=-100 (F=-40)

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation by the Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility of the design information and permanent bracing. Refer to Building. Component Section (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF	
72338972	A3	Truss	1	1	Job Reference (optional)	
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Gina Tolley F		/ Run: 8.62 S Sep	22 2022 Pri	nt: 8.620 S S	Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:30	Page: 1

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:30 UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Gina Tolley

governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
72338972	A4	Truss	2	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:30 Page: 1 ID:7rQpF8EIY1bU0iS1HKnseUyRXxM-rRKUC35KKrEERallkZSs1AKwTjwLJvQgfVXx4KyQbup

Bits - (140-10) (100) (2113													
A set of the s	ł	8-8-7 8-8-7	<u>14-9-10 21-</u> 6-1-3 6-2	0-0 <u>26-11-3</u> 1-6 5-11-3 5x8≠	+ 37 + 10 5x5= 5x8	- <u>0-13</u> -1-11 }=	+ 43-0 + 5-1 5x5=	0-0 + 1-3 5x8 ≈	<u>49-2-6</u> 6-2-6	<u>+ 55-3-</u> 6-1-≎	- <u>9</u> 3	<u>64-0-0</u> 8-8-7	64-10-8 + + 0-10-8
Plane Offices (K, Y): [30+40.0+40] [11:0+4.0,0+40] [18:0+40,0+40] Leading (pro) Specing 2-0-0 CSI 0.0 DEFL in (no.) Viet List Specing 2-4-0 CSI DEFL in (no.) Viet List Specing 2-4-40 T/2 2-4-40 D/2 D/2 <thd 2<="" th=""> D/2 <thd 2<="" th=""></thd></thd>	о ф г с с с с с с с с с с с с с с с с с с	7x8 3 22 524 524 524 524 524 524 524 524 524	$\begin{array}{c} 5x5 = \\ 6^{12} \\ 4 \\ 12 \\ 3 \\ 3 \\ 3 \\ 5x5 = 5x8 = \\ -0 \\ -0 \\ -21 \\ -8 \\ -8 \\ -12 \\ -8 \\ -8 \\ -12 \\ -8 \\ -8 \\ -12 \\ -8 \\ -8 \\ -8 \\ -12 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -$	5 W5 2 19 33 5x8= 2 32 10	6 7 73 10 10 10 10 10 10 10 10 10 10	18 35 7x8=	8 74 74 74 74 74 74 74 74 74 74 74 74 74	9 W5 B1 36 17 5x8=	37 16 51-4-0 8-5-12	x5 _x 10 38 15 5x5=	7x8s 11 39 40 64 12	B1 0 -0-0 -8-0	5x5≈ 12 1314 7x10 ⊪
Landmap (pr) Pacing 0.00 CSI DEFL in (pol) Mathematical Stress of the second state of t	Plate Offsets (X, Y)): [3:0-4-0,0-4	4-8], [11:0-4-0,0-4-8], [18:0-/	4-0,0-4-8]									
LUMBER TOP CHORD 2x6 SP No.2 "Except" T5:2x6 SP No.1 BRACING TOP CHORD Structural wood sheathing directly applied or 2:2-0 or putlins, except BOT CHORD 2x6 SP No.3 BT ALL DT CHORD Structural wood sheathing directly applied or 2:2-0 or putlins, except BUER Lit 2x6 SP No.3 BT ALL BT CHORD Pige dashing directly applied or 2:2-0 or putlins, except BUER Lit 2x6 SP No.3 13=2x1450-38, (min. 0:2-15), 22=275800-3-8, (min. 0:-0-1) WES 1 Row at mdpt 0-19, 0-18, 8-17, 10-17, 3-22 REACTIONS (bixize) 13=2x1450-38, (min. 0:2-15), 22=275800-3-8, (min. 0:-0-1) WES 1 Row at mdpt 0-19, 0-18, 8-17, 10-17, 3-22 REACTIONS (bixize) 13=2x14162, 22=2x2756, C2 2 22=2x756, C2 2 22=2x756, C2 2 FORCES (b) Max Comp. Max. Ten All forces 250 (b) or less except when show. 12=2x-1733/318, 32=40=-7700733, 11-12=-43021055, 12=3728072, 0-10=-3378928, 7.8=3378928, 8=9=3130914, 9-10=-3564966, 10-11=-4087/1031, 11-12=-43021055, 12=372776, C2 12=2x-2001823, 21=34=-3682704, 19=2x-38280264, 19=2x-38280264, 19=3x-38378928, 7.8=33109, 33:4=-35584966, 10-11=-4087/1031, 11-12=-43021055, 12=354246, 9=2720207, 6=24243, 20=3280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=32-38280264, 19=3	Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.89 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.56 0.18	(loc) l/defl 17-18 >999 17-18 >999 13 n/a	L/d PI 240 M 180 n/a W	LATES IT20 /eight: 500 lb	GRIP 244/190 FT = 20%	
Max Grav 13=2474 (LC 2), 22=2775 (LC 2) FORCES (Ib) - Max: Com, 21 (trons 250 (Ib) or less except when shown. TOP CHORD 1, 22=451 (H57), 2, 3=203410, 3, 4=2820709, 4, 5=-3105/844, 5-6=2722/807, 6-7=-3378/928, 8-9=-3130914, 9-10=3564/966, 10-11=-4087/1031, 11-12=-4302/1055, 122=-2807/82776, 21-22=-2807/823, 21-31=-680/2604, 20:32=-388/2604, 19-32=-3862/2604, 19-32=-3862/2604, 19-32=-3863/	LUMBER TOP CHORD BOT CHORD WEBS SLIDER REACTIONS	2x6 SP No.2 *Excep 2x6 SP No.1 2x4 SP No.3 Left 2x4 SP No.3 1 (lb/size) Max Horiz 2 Max Uplift	t* T5:2x6 SP No.1 I-11-0, Right 2x4 SP No.3 - 13=2415/0-3-8, (min. 0-2-15 22=-199 (LC 15) 13=-272 (LC 11), 22=-276 (1-11-0), 22=2758/0-3-8, (min. (_C 10))-3-4)	BRACING TOP CHOI BOT CHOI WEBS	RD RD	Structural 2-0-0 oc p Rigid ceilir 1 Row at r	wood sheathin, urlins (3-3-14 n ng directly appli nidpt	g directly app nax.): 5-9. ed or 6-0-0 c 6	blied or 2-2-0 o oc bracing. 5-19, 8-18, 8-1	oc purlins, exce 7, 10-17, 3-22	ept
 NOTES 1) Urbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; B-35f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions show; Lumber DCL=1.40 poltate (pip DCL=1.60 3) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing, & Bracing of Metal Plate Connected Wood Trusses ("BCGS"), jointy produced by SBCA and TPL. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MITek assumes no responsibility for truss manufacture, handling, erection, or bracing. All plates are 55X TT20 unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) *This truss has been designed for a title trustmational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/ TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 	FORCES TOP CHORD BOT CHORD WEBS	Max Grav (lb) - Ma 1-2=-45 12-13=- 1-22=-2 35-36=- 5-19=-2 4-19=-8	13=2474 (LC 2), 22=2775 (l ax. Comp./Max. Ten All fo 1/679, 2-3=-203/410, 3-4=- 1733/128 167/276, 21-22=-280/1823, 2 485/3371, 17-36=-485/337 18/1109, 6-19=-1065/282, 4 4/294	.C 2) rces 250 (lb) or less exce 2820/709, 4-5=-3105/844 21-31=-368/2604, 20-31= 1, 17-37=-605/3521, 16-3 5-18=-12/543, 8-17=-682	ept when shown. 4, 5-6=-2722/807, 368/2604, 20-32 87=-605/3521, 16- /266, 9-17=-278/1	6-7=-3378/92 2=-368/2604, 1 -38=-605/3521 1328, 10-17=-6	8, 7-8=-3378 9-32=-368/2 , 15-38=-605 372/312, 10-1	3/928, 8-9=-3 604, 19-33=- 5/3521, 15-39 15=-62/429, 7	130/914, 9-10= 435/3180, 33-3 9=-776/3733, 39 11-15=-254/245	-3564/966, 1 4=-435/3180 9-40=-776/37 5, 3-22=-3205	0-11=-4087/1 0, 18-34=-435/ 733, 13-40=-7 5/918, 3-21=-6	031, 11-12=-43 3180, 18-35=-4 76/3733 33/975, 4-21=-5	302/1055, 485/3371, 583/185,
N. SHINK OF S	 NOTES 1) Unbalanced 2) Wind: ASCE exterior zon for reactions 3) WARNING: guidance, se and TPI. Th of the tempo manufacture 4) Provide ade 5) All plates ar 6) This truss the bottom of 8) Provide med 9) This truss is TPI 1. 10) Graphical put 	I roof live loads have to 5 7-10; Vult=130mph (te and C-C Exterior (2); s shown; Lumber DOL This long span truss ee Guide to Good Pra- ee building owner or th thorary installation restra- e, handling, erection, or equate drainage to pre- e 5x5 MT20 unless of as been designed for has been designed for chanical connection (to a designed in accordar urlin representation do	been considered for this des (3-second gust) Vasd=103n) zone; cantilever left and rig =1.60 plate grip DDL=1.60 requires extreme care and locice for Handling, Installing e owner's authorized agent aint/bracing and the permar or bracing. when water ponding. herwise indicated. a 10.0 psf bottom chord live or a live load of 20.0psf on th nembers, with BCDL = 10.0 yo others) of truss to bearing nce with the 2015 Internatio bes not depict the size or th	ign. ph; TCDL=6.0psf; BCDL pht exposed ; end vertica experience for proper an- l & Bracing of Metal Plate shall contract with a qua ent individual truss mem cload nonconcurrent with le bottom chord in all are osf. plate capable of withsta nal Residential Code sec e orientation of the purlin	=6.0psf; h=35ft; (I left and right exp d safe handling at e Connected Woo lified registered di ber restraint/braci n any other live loa as where a rectar unding 276 lb uplif tions R502.11.1 at along the top and	Cat. II; Exp B; poosed;C-C for nd erection. Fr id Trusses ("B esign professi ing. MiTek as ads. ngle 3-06-00 ta it at joint 22 an and R802.10.2 d/or bottom ch	Enclosed; MM members and or general ha CSI"), jointly 1 onal for the d sumes no res all by 2-00-00 d 272 lb uplif and reference ord.	WFRS (enve d forces & M indling and e produced by lesign and in sponsibility fc 0 wide will fit I ft at joint 13. ced standard	lope) WFRS rection SBCA spection or truss between ANSI/	A CONTRACT OF A	0549 10/23/2	AROZ 1	annum Orth

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
72338972	A5	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:30 Page: 1

ID:cOcJIYHhISRHKw1YJOK17dyRXw0-rRKUC35KKrEERallkZSs1AK?uj?OJu2gfVXx4KyQbup

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF	
72338972	A6	Truss	6	1	Job Reference (optional)	
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Gina Tolley Run: 8.62 S S		22 2022 Pri	nt: 8.620 S S	Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:31	Page: 1	

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF
72338972	A6G	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:31 Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Prof - CLAYTON LOW COUNTRY ROOF			
72338972	A6G	Truss	1	1	Job Reference (optional)			
UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Gina Tolley			Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:31					

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Mon Oct 23 08:21:31 ID:5TshUaky2JYFkMCcLaTA_wyRXu8-JdutPP6y59M53ktVHGz5ZOt9b7Hb2R2qu9HUcnyQbuo

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation by the Building Designer shall vertify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility of the design information as it may relate to a specific building. Certification is value of the specific building. Refer to Building Component Sector (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

component is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

In s design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of the prop

Job	Truss		Truss Type			Qty Ply Prof - CLAY					TON LOW COUNTRY ROOF					
72338972	V8		Truss	Truss			1	1 Job Reference				e (optional)				
UFP Mid Atlantic LLC, 5631 S. N	IC 62, Bur	lington, NC, Gina Toll	ley		Run: 8.62 S Sep	22 202	2 Print: 8.620	S Sep	p 22 2022	MiTek I	ndustr	ries, Inc	Mon Oct 23 08	:21:34	Page: 1	
ID:J7oN5P0yxB7d9IBHOhwL5UyRXv3-kCZ?2R8qO4IgwBc3zPXoB0VnULTcFwXGa7V9D6yQbul																
					<i>\</i>	<u>2-0-8</u> 2-0-8	3	<u>3-8-1</u> 1-8-6	4-1- 4 5 0-4-	2						
			+ 1-8-11 + + + + + + + + + + + + + + + + + +	0-0-4	10^{12}		3x4= 2 11 B1		34	3						
					3	ox4 💋			3x4 💊	i.						
							4-1-0		,	ł						
Plate Offsets (X, Y): [2:	0-2-0,Edg	e]			·											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI TC BC WB Matrix-MP	0.12 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	r r 0.0	in (lo n/a n/a 00	c) I/c - I - I 3 I	defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	6	
LUMBER BRACING TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-1-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=163/4-1-0, (min. 0-1-8), 3=163/4-1-0, (min. 0-1-8) Max Horiz 1=-40 (LC 6) Max Horiz 1=-40 (LC 10), 3=-20 (LC 11)																
 Provide mechanical conf This truss is designed in TPI 1. 	ection (by	r others) of truss to be	aring plate capable on ational Residential (of withsta	nding 20 lb uplift at joint tions R502.11.1 and R8	1 and 2 02.10.2	0 lb uplift at jo	hint 3.	ndard AN:	sı/		and a second	North C	AROUNT	the doct	
This design is based upon para component is responsibility of ti governing codes and ordinance truss is fabricated by a UFPI pl (BCSI) for general guidance reg	meters sh he Building s. Buildin ant. Bracin garding sto	own, and is for an ind g Designer. Building I g Designer accepts re ng shown is for lateral orage, erection and br	lividual building com Designer shall verify asponsibility for the c I support of truss me racing available from	ponent to all desig correctne mbers or SBCA a	be installed and loaded n information on this she ss or accuracy of the dei ly and does not replace nd Truss Plate Institute.	verticall eet for co sign info erection	ly. Applicabili nformance wi rmation as it r and permane	ty of d ith cor may re ent bra	design par nditions a elate to a acing. Re	ameters nd requi specific ifer to Bu	and p remen buildin uilding	proper in this of thing. Cert Compo	10/23/2 NGIN ncorporation of e specific buildin ification is valid onent Safety Info	g and only when		