

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1123-6628 BROADWAY, NC ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I62933651 thru I62933713

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

January 10,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

162933653
4

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:38 2024 Page 2 ID:IfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-5=-60, 5-8=-60, 8-18=-20 Concentrated Loads (lb)

Vert: 59=-205 61=-202 62=-202 64=-202 65=-207

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF		
11123-6628	B1GE	GARLE	1	1	I	62933655	
51125-0020	DIGE	GADLE	1	· ·	Job Reference (optional)		
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Ja	in 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:41 2024 F	Page 2	
		ID:lfeBPRqFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f					

NOTES-

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 33, 30, 29, 28, 27, 26, 25, 24, 23, 22, 20 except (jt=lb) 18=214, 32=196, 31=150, 21=155, 19=338.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROO	=	162933658
J1123-6628	C1A	ATTIC	1	1	Job Reference (ontional)		10200000
Comtech, Inc, Fayette	uille, NC - 28314,			8.430 s Ja	an 6 2022 MiTek Industrie	s, Inc. Tue Jan 9 09:26:46 2	024 Page 1
			14-1-1	G2qc3VX	Gnsy6k1y-RfC?PsB70Hq	3NSgPqnL8w3ul1XbGKWrCD	017J4ZJC?f
	⊢–	4-11-8 2-11-7 1-1-5 1-11-11 1-11-	11 1-1-5 2-7	1-7	4-11-8		
		6x8 =					Scale = 1:74.1
	12.3-1	2x6 = $12.00 \overline{12}$ $2x6 =$ 4 2x6 $6x8 \neq 3$ 2 2 4 7 7 7 7 7 7 7 7	2x6	= 14	2x6 7 6x8 \ 8		
	1-3-1		•				
	⊠ 5x8 =	= 12	11	10	5x8 =		
		3x10	6x8 =	3x10	II		
	⊢	4-11-8 17-0-8 4-11-8 12-1-0			<u>22-0-0</u> 4-11-8		
Plate Offsets (X,Y) [1:0)-4-6,0-2-8], [5:0-4-0,Edge], [§	<u>):0-4-6,0-2-8], [10:0-7-0,0-1-8], [12:0-7-0,0-1-</u>	8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. DEFI TC 0.53 Vert(BC 0.60 Vert(WB 0.13 Horz Matrix-S Wind	in _L) -0.19 CT) -0.27 CT) 0.01 (LL) 0.04	(loc) 10-12 10-12 9 10-12	l/defl L/d >999 360 >961 240 n/a n/a >999 240	PLATES GRIP MT20 244/19 Weight: 245 lb FT =) 0 = 20%
LUMBER- TOP CHORD 2x10 SP N BOT CHORD 2x10 SP N WEBS 2x6 SP No	lo.1 lo.1 .1	BRAG TOP BOT	CING- CHORD CHORD	Structur Rigid ce	al wood sheathing direc	tly applied or 6-0-0 oc purlin 10-0-0 oc bracing.	S.
REACTIONS. (size) Max Horz Max Grav	1=0-5-4, 9=0-3-8 1=-271(LC 8) 1=1338(LC 21), 9=1334(LC	20)					
FORCES. (lb) - Max. Cor TOP CHORD 1-3=-183 BOT CHORD 1-12=0/1 WEBS 7-10=0/9	mp./Max. Ten All forces 250 36/5, 3-4=-1035/194, 4-5=-37/ 026, 10-12=0/1032, 9-10=0/1 955, 3-12=0/971, 4-6=-1459/3) (lb) or less except when shown. 405, 5-6=-37/407, 6-7=-1033/194, 7-9=-1820 024 17)/0				
 NOTES- 1) Unbalanced roof live loa 2) Wind: ASCE 7-10; Vult= and C-C Exterior(2) 0-2; for members and forces 3) This truss has been des 4) * This truss has been de will fit between the botto 5) Ceiling dead load (10.0 6) Bottom chord live load (7) Attic room checked for L 	ads have been considered for -130mph Vasd=103mph; TCE -10 to 4-8-4, Interior(1) 4-8-4 & MWFRS for reactions sho signed for a 10.0 psf bottom c esigned for a live load of 30.0 om chord and any other meml psf) on member(s). 3-4, 6-7, 40.0 psf) and additional botto _/360 deflection.	this design. DL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Inter wn; Lumber DOL=1.60 plate grip DOL=1.60 hord live load nonconcurrent with any other I osf on the bottom chord in all areas where a pers. 4-6; Wall dead load (5.0psf) on member(s).7 m chord dead load (0.0 psf) applied only to r	C; Enclosed ior(1) 15-4-1 ve loads. rectangle 3-6 -10, 3-12 pom. 10-12	; MWFR 3 to 21-1 6-0 tall by	S (envelope) 0-4 zone;C-C 2-0-0 wide	WITH CARC	
					Contraction of the second	SEAL 036322	HI INTERNIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 10,2024

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	162033650			
J1123-6628	C1GE	GABLE	1	1	lah Deference (antional)	102933039			
Comtech, Inc, Faye	etteville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries,	Inc. Tue Jan 9 09:26:47 2024 Page 1			
	0.40.8		24-1-1	G2qc3vx0	Sinsy6k1y-RfC?PSB70Hq3N	ISGPqnL8w3u11XbGKWrCD017J4ZJC?f			
	0-10-8	4-11-8 2-11-7 1-1-5 1-11-11 1-11-	11 1-1-5 2-1	1-7	4-11-8 0-10-8				
		8x8 =				Scale = 1:74.1			
6									
	Ī	\wedge							
		12.00 12							
		5	<u> </u>						
		25		26					
	12.				27				
					¢,				
	₁₂ 1				11				
			¢			7			
	6x1	2 14	13	12	6x12 ∖\				
		3x10	6x8 =	3x10	Ш				
4-11-8 17-0-8 22-0-0 4-11-8 12-1-0 4-11-8									
Plate Offsets (X,Y)	[2:0-3-14,0-2-14], [6:0-4-0,0-2-1	2], [10:0-3-14,0-2-14], [12:0-7-0,0-1-8], [14:0-	-7-0,0-1-8]						
LOADING (psf)	SPACING- 2-0- Plate Grip DOI 1 1	0 CSI. DEF 5 TC 0.54 Vert(L. in II) -0.19	(loc) 12-14	I/defl L/d	PLATES GRIP MT20 244/190			
TCDL 10.0	Lumber DOL 1.1 Rep Stress Ipcr VE	5 BC 0.59 Vert(CT) -0.27	12-14	>975 240				
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S Wind	(CT) 0.01 I(LL) 0.06	12-14	>999 240	Weight: 263 lb FT = 20%			
LUMBER-		BRA	CING-	a					
BOT CHORD 2x10 SF	P No.1 P No.1	ВОТ	CHORD	Rigid ce	al wood sheathing directly iling directly applied or 10	-0-0 oc bracing.			
WEBS 2x6 SP OTHERS 2x4 SP	No.1 No.2								
REACTIONS. (size	e) 2=0-5-4, 10=0-3-8								
Max Ho Max Ur	orz 2=345(LC 11) olift 2=-26(LC 12), 10=-25(LC 1	3)							
Max G	rav 2=1362(LC 20), 10=1355(L	C 21)							
FORCES. (lb) - Max. (Comp./Max. Ten All forces 25	0 (lb) or less except when shown.							
8-10=	-1854/80	2/411, 0-7=-74/414, 7-8=-1039/203,							
WEBS 8-12=	0/1050, 12-14=0/1057, 10-12≕ 0/979, 4-14=0/995, 5-7=-1442/)/1049 306							
NOTES-									
 Unbalanced roof live Wind: ASCE 7-10: Vi 	loads have been considered fo ult=130mph Vasd=103mph; TC	r this design. DL=6.0psf: BCDL=6.0psf: h=15ft: Cat. II: Exp	C: Enclosed	: MWFRS	(envelope)				
gable end zone and to 22 5 15 zone: C C	C-C Exterior(2) -0-5-15 to 3-10	13, Interior(1) 3-10-13 to 11-0-0, Exterior(2) 1	1-0-0 to 15-4	4-13, Inter	ior(1) 15-4-13				
3) Truss designed for w	rind loads in the plane of the tru	ss only. For studs exposed to wind (normal t	o the face), s	ee Standa	ard Industry				
4) All plates are 2x6 MT	20 unless otherwise indicated.	building designer as per ANSI/TPL1.				ANY CARO			
5) Gable studs spaced a6) This truss has been a	at 2-0-0 oc. designed for a 10.0 psf bottom	chord live load nonconcurrent with any other l	ive loads.			NOP WE SENT IN ST			
7) * This truss has been will fit between the boots	n designed for a live load of 30.	Opsf on the bottom chord in all areas where a objects	rectangle 3-	6-0 tall by	2-0-0 wide				
 8) Ceiling dad load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).8-12, 4-14 9) Return the dead load (0.0 psf) on the there are bard load load (0.0 psf) on member(s).8-12, 4-14 									
10) Provide mechanical	10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.								
11) Attic room checked	The Attic room checked for L/300 denection.								
						A ShoweRik S			
						POUNE PERMIN			
						A. GILLIN			
						January 10,2024			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITEK Affiliate

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROO)F
J1123-6628	C1GR	ATTIC	1	2		162933660
Comtech, Inc, Fa	yetteville, NC - 28314,			8.430 s J	Job Reference (optional an 6 2022 MiTek Industrie	l) es, Inc. Tue Jan 9 09:26:49 2024 Page 1
			ID:IfeBPRgFF 14-1-1	vB4G2qc3V	cGnsy6k1y-RfC?PsB70Hq	J3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
		4-11-8 4-11-8 7-10-15 9-0 2-11-7 1-1	<u>-4 11-0-0 12-11-12</u> 1-5 1-11-12 1-11-12 1-1-5	2-11-7	22-0-0 4-11-8	
			6x8 =			Scale = 1:74.1
	T		5 1			
		4x6 =		x6 =		
		12.00 12		6		
				$\langle \rangle$		
		4x12 8x12 //			4x12 7 - 2:40 ->	
	12		4	\sim	8x12	
			æ		$\langle \rangle$	
		4-4-4	12-1-0		9	
	1-3-1					
		$\frac{1}{12} = \frac{13}{14} \frac{14}{12}$	11	10	15 16 $5x8 =$	
		3x10	6x8	= 3x10)	
		4-11-8	17-0-8		22-0-0	
Plate Offsets (X,Y)	[1:0-4-6,0-2-8], [3:0-10-4,0-	-4], [5:0-4-0,Edge], [7:0-10-4,0-1-4	4], [9:0-4-6,0-2-8], [10:0	-8-0,0-1-8], [12:0-8-0,0-1-8]	
LOADING (psf)	SPACING-	-0-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.58 1.15 BC 0.21	Vert(LL) -(Vert(CT) -().18 10-12).31 10-12	>999 360 >849 240	MT20 244/190
BCLL 0.0 *	Rep Stress Incr	NO WB 0.30	Horz(CT)	0.02 9	n/a n/a	Weight: 726 lb ET = 20%
		International In		.07 10-12	>333 240	
TOP CHORD 2x10	SP 2400F 2.0E		BRACING- TOP CHORD	Structu	ral wood sheathing direc	ctly applied or 6-0-0 oc purlins.
BOT CHORD 2x103 WEBS 2x6 S	SP 2400F 2.0E P No 1		BOT CHORD	Rigid c	eiling directly applied or	10-0-0 oc bracing.
	(0) 1-054 0-038					
Max I	Horz 1=-272(LC 24)					
Max	Grav 1=8992(LC 2), 9=10503	(LC 2)				
FORCES. (lb) - Max TOP CHORD 1-3=	. Comp./Max. Ten All force	250 (lb) or less except when show 2916 5-6=0/2922 6-7=-3877/0 7-	wn. -9=-9271/0			
BOT CHORD 1-12	=0/4981, 10-12=0/5045, 9-10	=0/4982	0 021 110			
WEBS 7-10	=0/7351, 3-12=0/7458, 4-6=-	9134/0				
NOTES- 1) 3-ply truss to be co	nnected together with 10d (0.	131"x3") nails as follows:				
Top chords connect	ted as follows: 2x10 - 2 rows	staggered at 0-9-0 oc.				
Webs connected as	s follows: 2x6 - 2 rows stagge	red at 0-9-0 oc.				
2) All loads are considered by connections have	lered equally applied to all pill ve been provided to distribute	only loads noted as (F) or (B), unle	ess otherwise indicated	D CASE(S) :	section. Ply to	
 Unbalanced roof liv Wind: ASCE 7-10; 	e loads have been considere Vult=130mph Vasd=103mph;	d for this design. TCDL=6.0psf; BCDL=6.0psf; h=15	5ft; Cat. II; Exp C; Enclo	sed; MWFR	S (envelope);	
Lumber DOL=1.60	plate grip DOL=1.60	m chord live load nonconcurrent w	with any other live loads			
6) * This truss has been all the second sec	en designed for a live load of	30.0psf on the bottom chord in all a	areas where a rectangle	9 3-6-0 tall by	y 2-0-0 wide	TH CARO
7) Ceiling dead load (10.0 psf) on member(s). 3-4,	6-7, 4-6; Wall dead load (5.0psf) o	on member(s).7-10, 3-1	2		EESS CAL
 8) Bottom chord live lo 9) Hanger(s) or other 	bad (40.0 psf) and additional connection device(s) shall be	oottom chord dead load (0.0 psf) ap provided sufficient to support conc	pplied only to room. 10- centrated load(s) 1289	12 b down at 2	-0-12, 1289 lb	and a dece
down at 4-0-12, 50	91 lb down and 195 lb up at	4-8-2, 5091 lb down and 195 lb up	at 17-2-0, 1289 lb dov	n at 18-0-1	2, and 1289 lb	SEAL
the responsibility of	others.			enteene		036322 : E
10) Attic room checke	a for L/360 deflection.				1	
LOAD CASE(S) Star 1) Dead + Roof Live (ndard palanced): Lumber Increase=	1.15. Plate Increase=1 15				1 B MGINEEP A
,		.,				CA GILBE
						January 10,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

ENGINEERING BY

CO

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
						162933660
J1123-6628	C1GR	ATTIC	1	3		
				•	JOD Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:49 2024	Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:49 2024 Page 2 ID:lfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-80, 4-5=-60, 5-6=-60, 6-7=-80, 7-9=-60, 1-9=-20, 4-6=-20 Drag: 7-10=-10, 3-12=-10

Concentrated Loads (lb)

Vert: 10=-4124(B) 12=-4124(B) 9=-1273(B) 13=-984(B) 14=-984(B) 15=-984(B) 16=-984(B)

Job	Truss	Truss Type	Qtv	Plv	BROADWAY NC RC	OF	
11123-6628	C2	Attic	4	1			162933661
51125-0020	02		4	·	Job Reference (option	al)	
Context, ne, rayette	-Q <u>-1</u> 0-11	9 78 4-11-8 7-10-15 9 -8 4-11-8 2-11-7 4	ID:IfeBPRgFRvB 14-1-1 <u>-0-5, 11-0-0, 12-11-11, 14-1-1</u> 1-5 1-11-11 1-1-11 1-1-5 6x8 =	4G2qc3Vx <u>17-0-8</u> 2-11-7	Gnsy6k1y-RfC?PsB70F	lq3NSgPqnL8w3ulTXbi	GKWrCDoi7J4zJC?f
	040 1-3-1 1-3-1 1	$2x6 =$ $12.00 12$ $2x6 =$ 16 $2x6 $ $6x8 \neq 4$ 3 15 0 0 0 0 0 0 0 0 0 0	7 7 8 12-1-0 1 1 6xi	2x6 = 7 17 3 8 =	$7 \\ 18 \\ 2x6 \\ 8 \\ 6x8 \\ 9 \\ 12 \\ 12 \\ 112 \\ 10x10 = 4x6 \\ 10$	2	
		4-11-8 11-0 4-11-8 6-0-	-0 17-0 8 6-0)-8 -8	20-7-8		
Plate Offsets (X,Y) [2:0)-4-6,0-2-8], [6:0-4-0,Edge], [12:0-5-0,0-7-4]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.52 BC 0.57 WB 0.23 Matrix-S	DEFL. in Vert(LL) -0.17 Vert(CT) -0.23 Horz(CT) 0.01 Wind(LL) 0.05	n (loc) 7 12-14 3 12-14 1 11 5 12-14	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x10 SP N BOT CHORD 2x10 SP N WEBS 2x6 SP Nc 9-12: 2x4 S	lo.1 lo.1 SP No.2		BRACING- TOP CHORD BOT CHORD	Structur except e Rigid ce	ral wood sheathing dir end verticals. eiling directly applied c	ectly applied or 6-0-0	oc purlins,
REACTIONS. (size) Max Horz Max Grav	2=0-3-8, 11=Mechanical 2=272(LC 9) 2=1265(LC 20), 11=1347(L0	\$ 20)					
FORCES. (lb) - Max. Cor TOP CHORD 2-4=-16C 9-11=-17 BOT CHORD 2-14=0/8 WEBS 4-14=0/8	mp./Max. Ten All forces 25)9/0, 4-5=-909/185, 5-6=-38/3 '51/21 }73, 12-14=0/878 !57, 8-12=-52/723, 5-7=-1187) (lb) or less except when shown. 39, 6-7=-41/290, 7-8=-961/188, 8 /293, 9-12=0/1044	3-9=-1449/28,				
 NOTES- Unbalanced roof live loa Wind: ASCE 7-10; Vultand C-C Exterior(2) -0-5 zone; C-C for members i This truss has been des will fit between the bottom Ceiling dead load (10.0 Bottom chord live load (Refer to girder(s) for tru Attic room checked for L 	ads have been considered for 130mph Vasd=103mph; TCI 5-15 to 3-10-13, Interior(1) 3- and forces & MWFRS for rea- signed for a 10.0 psf bottom c esigned for a live load of 30.0 om chord and any other mem psf) on member(s). 4-5, 7-8, 40.0 psf) and additional botto ss to truss connections. //360 deflection.	this design. DL=6.0psf; BCDL=6.0psf; h=15ft; I0-13 to 11-0-0, Exterior(2) 11-0-0 ctions shown; Lumber DOL=1.60 hord live load nonconcurrent with psf on the bottom chord in all are: pers. 5-7; Wall dead load (5.0psf) on n m chord dead load (0.0 psf) appli	Cat. II; Exp C; Enclosed to 15-4-13, Interior(1) plate grip DOL=1.60 any other live loads. as where a rectangle 3- nember(s).4-14, 8-12 ed only to room. 12-14	d; MWFR\$ 15-4-13 to -6-0 tall by	S (envelope) o 20-3-12 v 2-0-0 wide	OR FES	AROLINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO A MITEK ATIIIat

Job	Truss	Truss Type	Q	ty	Ply	BROADWAY, NC RC	DOF	10000000	
J1123-6628	C2-2P	ATTIC	2		2			162933662	
Comtech, Inc, Fayet	tteville, NC - 28314,				▲ 8.430 s Ja	Job Reference (option n 6 2022 MiTek Indus	nal) tries, Inc. Tue Jan 909	:26:51 2024 Page 1	
•	-0-11 0-10	0 78 4-11-8 7-10-15)∻8 4-11-8 2-11-7	ID:IfeBPR 9-2-2 11-0-0 12-9-14 1-3-3 1-9-14 1-9-14	gFRvB4 4 14-1-1 1-3-3	G2qc3Vx0 17-0-8 2-11-7	Gnsy6k1y-RfC?PsB70 <u>20-7-8</u> 3-7-0	Hq3NSgPqnL8w3uITXb0	GKWrCDoi7J4zJC?f	
			6x8 =					Scale = 1:74.1	
	I	4x6 =							
		12.00 12		€ ⁴ ×	6 =				
		5		₹ ₹					
		\$₹			×				
	1	4x12 4				4x6			
	12-0		4-			NT eve v			
		4-4-4	12-1-0						
	1 , ⊣2		12 1 0				₽ 		
				Þ			N		
		5×8 = 14		13 6x8	= .	12 11 ¹⁰			
		3x10		47.0	1	0x10 = 6x6			
		4-11-8 4-11-8 11- 4-11-8 6-0	0-0)-8 7-0 0 0 0 0 0 1 10-0	-0-17-0- 6-0-8	8	<u>20-7-8</u> <u>3-7-0</u>		01	
	2:0-4-6,0-3-0], [4:0-9-12,0-1-4],	[5:0-3-0,0-0-0], [6:0-4-0,Eage], [/:0-3-0,0-0-0], [8:0	<u>J-3-0,0-</u>	<u>0-0], [9:0-</u>	<u>1-12,0-3-0], [12:0-5-0]</u>	<u>,0-8-0], [14:0-6-12,0-1</u>	-8]	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.53	DEFL. Vert(LL)	וח 0.24-	(loc) 12-14	l/defl L/d >999 360	PLATES MT20	GRIP 244/190	
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NC	BC 0.52 WB 0.61	Vert(CT) Horz(CT)	-0.36 0.02	12-14 11	>676 240 n/a n/a			
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.17	12-14	>999 240	Weight: 499 lb	FT = 20%	
	24005 2.05			- חכ	200000	purling (6.0.0 may)	avaant and varticals		
BOT CHORD 2x10 SP	2400F 2.0E				(Switche	d from sheeted: Spa	cing > $2-8-0$).		
WEBS 2x6 SP 1 5-7: 2x10	No.1 ^Except^ 0 SP No.1, 9-12: 2x4 SP No.2		BOT CHOP	RD	Rigid cei 6-0-0 oc	bracing: 11-12.	or 10-0-0 oc bracing, I	Except:	
REACTIONS. (size)	2=0-3-8, 11=Mechanical								
Max Ho Max Up	rz 2=952(LC 5) lift 2=-870(LC 8), 11=-143(LC 8	3)							
Max Gra	av 2=6746(LC 34), 11=6410(LC	ý 34)							
FORCES. (lb) - Max. C	Comp./Max. Ten All forces 250) (lb) or less except when shown	530//871						
8-9=-6	952/558, 9-11=-8295/582	1020/1221, 0-7 2134/1131, 7-0							
WEBS 4-14=-	826/3431, 8-12=-491/2330, 5-7	=-4721/1045, 9-12=-487/5372							
NOTES-									
 2-ply truss to be conn Top chords connected 	ected together with 10d (0.131' d as follows: 2x10 - 2 rows stag	'x3") nails as follows: gered at 0-3-0 oc, 2x6 - 2 rows s	taggered at 0-9-0	OC.					
Bottom chords connected as for	cted as follows: 2x10 - 2 rows s plows: 2x6 - 2 rows staggered :	taggered at 0-6-0 oc. at 0-9-0 oc. 2x10 - 2 rows stagge	red at 0-9-0 oc. 2	x4 - 1 ro	ow at 0-9-	0 oc.			
2) All loads are consider	ed equally applied to all plies, e	except if noted as front (F) or bac	k (B) face in the L	OAD C	ASE(S) se	ection. Ply to			
3) Unbalanced roof live I	loads have been considered for	this design.					TH C	ARO	
Lumber DOL=1.60 pla	ate grip DOL=1.60	DL=6.0psi; BCDL=6.0psi; n=15it;	Cat. II; Exp C; Er		, WIVFRS	(envelope);	OREES	11/1/1	
6) * This truss has been d	designed for a 10.0 psf bottom c designed for a live load of 30.0	nord live load nonconcurrent with psf on the bottom chord in all are	any other live loa	ads. ngle 3-6	6-0 tall by	2-0-0 wide		drift_	
will fit between the bo7) Ceiling dead load (10.	will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12								
8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections.									
10) Provide mechanical 2=870 11=143	10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=870, 11=143.								
11) Graphical purlin repr	resentation does not depict the	size or the orientation of the purl	in along the top a	nd/or bo	ottom cho	rd. 515 lb up ot	THE SNGIN	EER. AN	
11-0-0 on top chord, and 1648 lb down and 1335 lb up at 4-10-0 on bottom chord. The design/selection of such connection									
aevice(s) is the resp 13) Attic room checked f	for L/360 deflection.						in in in		
COAR GASE (S) Standa	ard						Janua	ry 10,2024	
WARNING - Verify de Design valid for use on	esign parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENC is based only upon parameters shown. a	E PAGE MII-7473 rev.	1/2/2023	BEFORE US	E. ot	ENGINE		
a truss system. Before building design. Bracin	use, the building designer must verify the	e applicability of design parameters and	properly incorporate th	is design	into the over	all racing		INLU	

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria **and DSP-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
						162933662
J1123-6628	C2-2P	ATTIC	2	2		
					Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:51 2024	Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:51 2024 Page 2 ID:IfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-210, 4-5=-280, 5-6=-210, 6-7=-210, 7-8=-280, 8-9=-210, 2-10=-70, 5-7=-70 Drag: 4-14=-35, 8-12=-35

Concentrated Loads (lb)

Vert: 6=-3080(B) 14=-1648(B)

$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$	Job	Truss	Truss Type	Qty	/ P	ly	BROADWAY, NC ROO	OF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J1123-6628	C2A-2P	ATTIC	1		2		102933003	
Discription and provide the pr	Comtech, Inc, Fayet	teville, NC - 28314,			8.4	430 s Ja	Job Reference (optiona n 6 2022 MiTek Industr	al) ries, Inc. Tue Jan 9 09:26:52 2024 Page 1	
<figure><pre> dig dig dig dig dig dig dig dig dig</pre></figure>				ID:IfeBPRgF	FRvB4G 14-1-1	2qc3VxQ	Gnsy6k1y-RfC?PsB70H	q3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	
μ μ </td <td></td> <td>-<u>0-10</u> 0-10</td> <td>0-8 4-11-8 7-10-15 9 -8 4-11-8 2-11-7 1</td> <td><u>-0-4 11-0-0 12-11-12</u> -1-5 1-11-12 1-11-12</td> <td>1-1-5</td> <td>17-0-8 2-11-7</td> <td>20-7-8 3-7-0</td> <td></td>		- <u>0-10</u> 0-10	0-8 4-11-8 7-10-15 9 -8 4-11-8 2-11-7 1	<u>-0-4 11-0-0 12-11-12</u> -1-5 1-11-12 1-11-12	1-1-5	17-0-8 2-11-7	20-7-8 3-7-0		
<figure> with the second sec</figure>				6x8 =				Scale = 1:74.1	
<figure> with the second sec</figure>									
<pre>transform the second term of the second term o</pre>		I		6					
<pre>v control of the control of the</pre>			2x6 =		2x6	6 =			
<pre>temp of the second second</pre>			5	//	7				
<pre> function of the second seco</pre>					₹ /	<			
<pre> for the second secon</pre>			2×6			\mathbf{X}			
<pre>provide the second second</pre>		1	6x8 1/1 4				2x6 8		
<pre>provide management of the second manageme</pre>		5		2-4			6x8 \\		
<complex-block> Image: Construction of the constru</complex-block>				ά			9		
<pre>provide states and states an</pre>			4-4-4	12-1-0					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		1		12 1 0			6-2		
$ \begin{array}{c} & 1 \\ 2di \end{bmatrix} \\ \hline \\ 1 \\ 2di \end{bmatrix} \\ \hline \\ 0 \\ 0 \\ 2di \end{bmatrix} \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		04-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-							
$2d = \frac{110}{100} = \frac{1100}{100} = \frac{110}{100} = \frac{1100}{100} = \frac$		0	⊠ 5x8 = 14		13		12 11 ¹⁰		
Line 17-02 17-03 20-74 Plate Offsets (X,Y)- 12-0-4.02-8], [50-0-1020, [12-0-4.02-12]. 0			2x6		6x8 =	=	8x8 = 4x6		
Prime Offsets (X.Y): 12:0:4:0:0:4:0:Edge] [12:0:4:0:0:4:12] 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:			4-11-8 11-0	-0	17-0-8		20-7-8		
LONDING (pd) TCOL PSPACING- 200 Co.0 (pd) TCOL CSL (pd) (pd) TCOL Def L In (bc) T2/4 (pd) (pd) TCOL Def L In (bc) (pd) TCOL PLATES (pd) (pd) TCOL CAL LUMBER- TCOC (pd) COL 10.0 Rep Stress incr No No <td>Plate Offsets (X,Y) [2</td> <td>2:0-4-6,0-2-8], [6:0-4-0,Edge], [</td> <td>12:0-4-0,0-4-12]</td> <td>-0</td> <td>0-0-0</td> <td></td> <td>3-7-0</td> <td></td>	Plate Offsets (X,Y) [2	2:0-4-6,0-2-8], [6:0-4-0,Edge], [12:0-4-0,0-4-12]	-0	0-0-0		3-7-0		
TCLL 200 Plate Grip DOL 1.15 TC 0.29 Vert(TL) -0.08 1.214 -999 360 MT20 244/190 BCLL 0.0 Code IRC2015/TPL2014 Matrix-S Wen(C) 1.02 1.21 3.99 360 MT20 244/190 BCLL 0.0 Code IRC2015/TPL2014 Matrix-S Wen(C) 1.02 1.21 3.99 360 MT20 244/190 LUMEER- TOP CHORD 2x10 SP No.1 Structural vood sheathing directly applied or 60-0 oc purlins, except: 9-12: 2x4 SP No.2 BOT CHORD Structural vood sheathing directly applied or 60-0 oc bracing, Except: 6-0-0 oc bracing: 11-12 FOR CHORD Structural vood sheathing directly applied or 60-0 oc bracing, Except: 9-12: 2x4 SP No.2 BOT CHORD Structural vood sheathing directly applied or 60-0 oc bracing, Except: 6-0-0 oc bracing: 11-12 FOR CHORD Structural vood sheathing directly applied or 60-0 oc bracing. Except: FOR CHORD 2x10 SP No.1 Structural vood sheathing directly applied or 60-0 oc bracing: 11-12 FOR CHORD Structural vood sheathing directly applied or 60-0 oc bracing: 11-12 FOR CHORD Structural vood sheathing directly	LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl L/d	PLATES GRIP	
BCDL 0.0 Rep Strass Inc NO WB 0.14 Hor2(CT) 0.00 111 Na Na BCDL 10.0 Code IRC2015P12014 Matrix-S Wind(LL) 0.02 12-14 999 240 Weight: 485 lb FT = 20% LUMBER- TOP CHORD Zrt1 SP No.1 Structural wood sheathing directly applied or 60-00 oc purlins, except and writerials. BRACING WEBS 2.12: 244 SP No.1 FX.sept* BOT CHORD Zrt2: 445 PN o.2 BOT CHORD Zrt2: 445 PN o.2 REACTIONS. (size) 2-0-3.8, 11=Mechanical Max Horz 2-272(LC 5) Ma BOT CHORD Zrt2: 445 PN o.2 BOT CHORD Zrt2: 445 PN o.2 FOP CHORD Structural wood sheathing directly applied or 10-00 oc bracing. Except: 9-0-0 oc bracing: 11-12. PCHORD Zrt2: 24:45 PN o.2 PCHORD Zrt2: 24:45 PN or 22000 price	TCLL 20.0	Plate Grip DOL 1.15	TC 0.29 BC 0.32	Vert(LL)	-0.08 1	2-14 2-14	>999 360	MT20 244/190	
BLUE 10.0 Code inCuD19 (F12)(14 Watth>S Wind(L) 0.02 (F13 > 5498 2.40 Weight 465 16 F1 = 2.0% TOP CHORD 2210 SP No.1 Score 14 Second 14 Secon	BCLL 0.0 *	Rep Stress Incr NC	WB 0.14	Horz(CT)	0.00	11	n/a n/a		
LUMBER- TOP CHORD 2x10 SP No.1 SOT CHORD 2x10 SP No.1 WEBS 2x10 SP No.1 Soft CHORD 2x0-38, 11=Mechanical Max Horz 2x27L(C 5) Max Upilit 2x-23(LC 8), 11=-29(LC 8) Max Grav 2x143(LC 2), 11=150(LC 2) Max Upilit 2x-23(LC 8), 11=-29(LC 8) Max Grav 2x143(LC 2), 11=150(LC 2) FORCES. (b) - Max Comp.Max. Ten - All forces 250 (b) reless except when shown. TOP CHORD 2x14=-048(H, 812=-164078, 57=-1216/61, 9:12=-74/1142 Soft CHORD 2x14=-048(H, 812=-164078, 57=-1216/61, 9:12=-74/1142 Soft CHORD 2x14=-048(H, 812=-164078, 57=-1216/61, 9:12=-74/1142 NOTES 1) 2ph russ to be connected together with 10d (0,131'x3') nails as follows: Top chords connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x40 - 2 rows staggered at 0-9-0 oc. Soft at the other other other other other other other othe	BCDL 10.0	Code IRC2015/1912014	Matrix-S	vvind(LL)	0.02 1	2-14	>999 240	Weight: 485 lb F I = 20%	
BOT CHORD 2x10 SP No.1 * Except * Set Set SP No.1 * Except * Set Set SP No.1 * Except * Set	LUMBER- TOP CHORD 2x10 SP	No.1		BRACING- TOP CHORI	D S	Structura	al wood sheathing dire	ectly applied or 6-0-0 oc purlins,	
 Held of bit is being provided to a bold of the being place control of the being place of the being	BOT CHORD 2x10 SP	No.1			e D F	except e	nd verticals.	10-0-0 oc bracing Except	
REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Uptil 2=272(LC 5) Max Grav 2=145(LC 2), 11=1550(LC 2) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) of less except when shown. TOP CHORD. 244=-175577, 4-5=-1124/235, 5-6=-391/474, 6-7=-433/420, 7-8=-1185/237,	9-12: 2x4	4 SP No.2		Derenera	6	6-0-0 oc	bracing: 11-12.		
Max Horz 2-272(LC 5) Max Digit 2-23(LC 8), 11=-29(LC 8) Max Corp 2-4451(LC 2), 11=-29(LC 8) Max Corp 2-4451(LC 2), 11=1550(LC 2) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-44=-1755/7, 45=-11242(55, 5-6=-39)/474, 6-7=-433/420, 7-8=-1185/237, 8-9=-1580/77, 9-11=-1989/862 WEBS 4-14=0/844, 8-12=-164/678, 5-7=-1216/61, 9-12=-74/1142 NOTES 1) 2-ply truss to be connected together with 10d (0.131*X3*) nails as follows: Top chords connected as follows: 2x10 - 2 rows staggered at 0-7-0 oc; 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) (B), unless otherwise indicated. 3) Unbalanced rool live loads have been considered for this design. 4) Wind: ASCE -10; Vul=130mph. ToDL=6.0pt; HoTL=6.0pt; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0pt obtom chord live load nonconcurrent with any other live loads. 6) *This truss has been designed for a 10.0pt dottom chord dive load (0.0pt) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections. 1) Ceiling dead load (10.0 psf) on member(s). 4-15, 7-5, 8-57; Wall dead load (5.0ptf) on member(s).4-14, 8-12 9) Refer to girder(s) for truss to truss connections. 1) Origing deaction (by bott mer to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection (by wice(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-00 on the design/Selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2	REACTIONS. (size)	2=0-3-8, 11=Mechanical							
Max Grav 2=1461(LC 2), 11=150(LC 2) FORCES. (b) - Max. Comp.Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2.44=1755/77, 45=-1124/235, 5-6=-391/474, 6-7=433/420, 7-8=-1185/237, 8-8=-1580/77, 9-11=-1598/62 BOT CHORD 2.14=-44/963, 12-14=-42/968 WEBS 4-14=0/9644, 8-12=-164/678, 5-78-1216/61, 9-12=-74/1142 NOTES 1) 2-pl truss to be connected together with 10d (0.131*x3 ⁻) nails as follows: Top chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. 2) All leads are considered qually applied to all piles, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalance of or live load have been considered of the leads. 6) "This truss has been designed for a 10.0 pst bottom chord in all areas where a rectangle 3-6-0 tail by 2-0-0 wide will fit between the bottom chord and any other members. 7) Ceiling deal load (10.0 pst) on member(s). 7) All ceases where a rectangle 3-6-0 tail by 2-0-0 wide will the bottom chord in all	Max Hor Max Upl	z 2=272(LC 5) ift 2=-23(LC 8), 11=-29(LC 8)							
FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD 2-4=1755/77, 4-5=-1124/235, 5-6=391/474, 6-7=-433/420, 7-8=-1185/237, 8-9=-158/727, 9-11=-1998/62 BOT CHORD 2-14=-44/963, 12-14=-42/968 WEBS 4-14=-0/844, 8-12=-164/678, 5-7=-1216/61, 9-12=-74/1142 NOTES 1) 2-pt truss to be connected together with 10d (0.131*x3 ⁻) nails as follows: Top chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0.9-0 oc. Velos connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0.9-0 oc. 2) All loads are considered quilty applied to all plies, except if noted as from (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalance for oli live loads have been considered for this design. 4) Wind: ASCE 7-10; Vull=130mph Vasd–133mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=160 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord ine load on oncourcent with any other live loads. 6) This truss has been designed for a 10.0 psf bottom chord ideal load (5.0psf) on member(s). 4-14, 8-12 8) Bottom chord live load (40.0, psf) and mebry other with standing 100 lb uplift at joint(s) 2, 11. 1) Haper(s) or other connection (by others) of truss to be aring plate capable of withstanding 100 lb upulift at joint(s) 2, 11.<	Max Gra	av 2=1451(LC 2), 11=1550(LC	2)						
 IOP CHORD 2:44=-1755/T, 4:54=-1124/236, 56=-391/4/4, 6:7=-433/420, 7:8=-1185/237, 6:8=-1785/237, 9:11=-1989/62 BOT CHORD 2:14=-44/963, 12:14=-42/968 WEBS 4:14=0/844, 8:12=-164/678, 5:7=-1216/61, 9:12=-74/1142 NOTES- I) 2:ply truss to be connected together with 10d (0:131*X3⁻) nails as follows: Top chords connected as follows: 2x10 - 2 rows staggered at 0:-90 oc. Webs connected as follows: 2x10 - 2 rows staggered at 0:-90 oc. Webs connected as follows: 2x10 - 2 rows staggered at 0:-90 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0:-90 oc. Webs connection shave been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 2) All loads are considered equally applied to all plies, except if noted as fort (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been considered for this design. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASC 7-10; Vull=130mph 'X32=103mph', TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection. 10) Provide mechanical connection. 10) Provide mechanical connection. 11:-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2	FORCES. (lb) - Max. C	omp./Max. Ten All forces 25) (lb) or less except when shown						
BOT CHORD 2-14=-44/963, 12-14=-42/968 WEBS 4:14=0/844, 8:12=-164/678, 5-7=1216/61, 9:12=-74/1142 NOTES- 1) 2-ply truss to be connected together with 10d (0.131*x3') nails as follows: Top chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 co. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 co. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 co. Webs connections have been provided to all piles, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been considered for this design. 9) Unchalanced roof live loads have been considered for this design. 9) Winch ASC 7-10; Vulle 1-30mph Vasch -103mph; TCDL=6.0psf; BCDL=6.0psf; h=15f; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plst grip DOL=1.60 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) This truss has been designed for a 10.0 psf bottom chord dead load (0.0 psf) on member(s).4-14, 8-12 8) Bottom chord in and and other members. 10) Ceiling dead load (10.0 psf) on truemetoris. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 bu plift at joint(s) 2, 11. 11 Hanger(s) or thur connection device(s) shall be provided sufficient to support concentrated load(5.4 bit down and 284 lbu p at 11-0-0 on top chord. The design/select	10P CHORD 2-4=-1 8-9=-1	755/77, 4-5=-1124/235, 5-6=-3 580/77, 9-11=-1898/62	91/474, 6-7=-433/420, 7-8=-1185	/237,					
NOTES- 1) 2-ply truss to be connected as follows: 2x10 - 2 rows staggered at 0-7-0 cc, 2x6 - 2 rows staggered at 0-9-0 cc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 cc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vull=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord live load load (6.0 psf) and member(s). 4-14, 8-12 8) Bottom chord live load additional botom chord dead load (6.0 psf) applied only to room. 12-14 9) Refer to grider(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on the choked for L/360 deflection. LOAD CASE(S) Standard	BOT CHORD 2-14=-4 WEBS 4-14=0	44/963, 12-14=-42/968 /844_8-12=-164/678_5-7=-121	6/61 9-12=-74/1142						
 NOTES- 1) 2-ply truss to be connected together with 10d (0.131*X3") nails as follows: Top chords connected as follows: 2x10 - 2 rows staggered at 0-7-0 oc. 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load ol 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s), 4-5, 7-8, 5-7; Wall dead load (6.0 psf) on member(s), 4-14, 8-12 8) Bottom chord live load of 30.0psf on thes do load (0.0 psf) applied only to room. 12-14 9) Refer to grider(s) for truss to truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 			0,01,012-11,1112						
Top chords connected as follows: 2x10 - 2 rows staggered at 0-7-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as f(r) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord lead load (5.0psf) on member(s).4-14, 8-12 8) Bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12 8) Bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(S) or thruss to truss to the store nchord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(S) or thruss to truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(S) or other connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2	1) 2-ply truss to be conne	ected together with 10d (0.131)	x3") nails as follows:						
 Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as fron (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (0.0 psf) applied only to room. 12-14 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss to truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 	Top chords connected Bottom chords connect	l as follows: 2x10 - 2 rows stag cted as follows: 2x10 - 2 rows s	gered at 0-7-0 oc, 2x6 - 2 rows si taggered at 0-9-0 oc.	taggered at 0-9-0 o)C.				
 2) An loads are considered equally applied to an plies, except in molecular flow of the influe to AB (S) section. Ply to be ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph Yasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load on conconcurrent with any other live loads. 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) * This truss has been designed for a 10.0 psf) on member(s). 4-14, 8-12 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 	Webs connected as for	ollows: 2x6 - 2 rows staggered	at 0-9-0 oc, 2x4 - 1 row at 0-9-0 c)C. (P) food in the LC			action Divita		
 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; B=CDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2 	ply connections have l	been provided to distribute only	loads noted as (F) or (B), unless	s otherwise indicate	ed.	SE(S) 50	ection. Fly to	MANITING	
Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2	 Unbalanced roof live log Wind: ASCE 7-10; Vul 	oads have been considered for It=130mph Vasd=103mph; TCI	this design. DL=6.0psf; BCDL=6.0psf; h=15ft;	Cat. II; Exp C; End	closed; N	WFRS	(envelope);	TH CARO	
 So this description of the four the bottom chord in the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12 Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2	Lumber DOL=1.60 pla	te grip DOL=1.60	hord live load nonconcurrent with	any other live load	he			OF EESSION I	
 will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-14, 8-12 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 	6) * This truss has been	designed for a live load of 30.0	psf on the bottom chord in all are	as where a rectang	gle 3-6-() tall by	2-0-0 wide	No Late	
 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2 	7) Ceiling dead load (10.	tom chord and any other mem 0 psf) on member(s). 4-5, 7-8,	pers. 5-7; Wall dead load (5.0psf) on r	nember(s).4-14, 8-	12			SEAL	
 (a) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11. (b) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 544 lb down and 284 lb up at 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. (c) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2 	 8) Bottom chord live load 9) Refer to girder(s) for tr 	I (40.0 psf) and additional botto russ to truss connections	m chord dead load (0.0 psf) appl	ied only to room. 1	2-14		Ξ	036322	
 11-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2 	10) Provide mechanical (connection (by others) of truss	to bearing plate capable of withs	tanding 100 lb uplif	t at joint	t(s) 2, 1 ⁻	1. 84 lb up at	N Z	
12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard Continued on page 2 A manuary 10,2024	11-0-0 on top chord.	The design/selection of such	connection device(s) is the respo	nsibility of others.	+ 10 000		64 ID UP AL	TA NOWEER A	
LOAD CASE(S) Standard Continued on page 2	12) Attic room checked f	or L/360 deflection.						CAREEN	
Continued on page 2 January 10,2024	LOAD CASE(S) Standa	ırd						A. GIL	
	Continued on page 2 January 10,2024								
	Continued on page 2	==.					-	10 ISS 1000 minutes for institution and 12	

w.tpinst.org) 818 Soundside Road Edenton, NC 27932

	Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
							162933663
	J1123-6628	C2A-2P	ATTIC	1	2		
						Job Reference (optional)	
ĺ	Comtech, Inc, Fayettev	rille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:52 2024	Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jan 9 09:26:52 2024 Page 2 ID:IfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-80, 5-6=-60, 6-7=-60, 7-8=-80, 8-9=-60, 2-10=-20, 5-7=-20

Drag: 4-14=-10, 8-12=-10

Concentrated Loads (lb)

Vert: 6=-521(B)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROO	F		
J1123-6628	C2GE	GABLE	1	1		102933004		
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Ja	Job Reference (optional an 6 2022 MiTek Industrie) əs, Inc. Tue Jan 9 09:26:54 2024 Page 1		
		ID:lfe	BPRgFRvB4	G2qc3Vx	Gnsy6k1y-RfC?PsB70Hq	3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f		
	- <u>0-10</u> 0-10	2-8 4-11-8 7-10-15 9-0-5, 11-0-0 1 -8 4-11-8 2-11-7 1-1-5 1-11-11 8×8	<u>2-11-11</u> -11-11 1-1-5 =	<u>17-0-8</u> 2-11-7	20-7-8 3-7-0	Scale = 1:74.1		
	12:3-1	6x8 / 4 3 6x8 / 4 5 7 7 8 8		7	8 6×8 \\ 9			
			0		6-L-7			
	- 9	⊠ 6x12 /⁄ 14 3x10	13 6x8	=	$ \begin{array}{cccc} & & & & \\ 12 & & & 11 & \\ 10x10 & = & 4x6 & \\ \end{array} $			
Plate Offsets (X,Y) [2:0)-3-14,0-2-14], [6:0-4-0,0-2-12	4-11-8 11-0-0 4-11-8 6-0-8 2], [12:0-5-0,0-7-4]	17-0 6-0-	-8 8	20-7-8			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. DEFL TC 0.52 Vert(L BC 0.57 Vert(C WB 0.23 Horz(Matrix-S Wind(. in L) -0.17 T) -0.23 CT) 0.01 LL) 0.05	(loc) 12-14 12-14 11 12-14	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 253 lb FT = 20%		
LUMBER- TOP CHORD 2x10 SP N BOT CHORD 2x10 SP N WEBS 2x6 SP No 9-12: 2x4 SP No OTHERS 2x4 SP No	lo.1 lo.1 .1 *Except* SP No.2 .2	BRAC TOP C BOT C	ING- CHORD	Structur except e Rigid ce	al wood sheathing directed of the second sheathing directly applied or	tly applied or 6-0-0 oc purlins, 10-0-0 oc bracing.		
REACTIONS. (size) Max Horz Max Grav	2=0-3-8, 11=Mechanical 2=272(LC 9) 2=1265(LC 20), 11=1347(LC	\$ 20)						
FORCES. (lb) - Max. Cor TOP CHORD 2-4=-160 9-11=-17 BOT CHORD 2-14=0/8 WEBS 4-14=0/8	mp./Max. Ten All forces 25()9/13, 4-5=-909/211, 5-6=-38/ 51/52 /73, 12-14=0/878 /57, 8-12=-52/723, 5-7=-1187) (lb) or less except when shown. '339, 6-7=-41/290, 7-8=-961/215, 8-9=-1449/5 /359, 9-12=0/1044	5 4,					
 WEBS 4-14=0/857, 8-12=52/723, 5-7=-1187/359, 9-12=0/1044 NOTES- Uhadanced rool live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; bc154:13, Exterior(2) 15-4-13, to 20-3-12 zone; C- C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for vind loads in the usus only. For studs exposed to wind (normal to the face), see Standard Industry. Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x6 MT20 unless otherwise indicated. Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Cable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord dead load (6.0 psf) on member(s).4-14, 8-12 Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 Refer to girder(s) for truss to truss connections. Attic room checked for L/360 deflection. 								

January 10,2024

inst.org) 818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-10 to 3-8-3, Exterior(2) 3-8-3 to 6-0-0, Corner(3) 6-0-0 to 10-4-13, Exterior(2) 10-4-13 to 12-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
					16	62933670
J1123-6628	E1GR	ATTIC	1	2		
				-	Job Reference (optional)	
Comtech, Inc. Favettev	rille, NC - 28314.			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:02 2024 P	Page 2

ID:IfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-80, 5-6=-60, 6-8=-60, 8-10=-60, 10-13=-60, 2-15=-20, 5-7=-20, 11-14=-20

Drag: 4-18=-10 Concentrated Loads (Ib)

Vert: 6=-421(B) 18=-440(B)

Max Horz 2=217(LC 11) Max Uplift 2=-29(LC 12), 8=-29(LC 13) Max Grav 2=705(LC 1), 8=705(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-1374/170, 4-5=-1106/17, 5-6=-1147/36, 6-8=-1338/172 TOP CHORD

BOT CHORD

2-12=-209/1142, 11-12=-208/1169, 10-11=-12/967, 8-10=-11/940

WFBS 5-11=-3/1256. 6-11=-307/299. 4-11=-308/302

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-4-0, Exterior(2) 8-4-0 to 12-8-13, Interior(1) 12-8-13 to 17-4-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2
SLIDER	Left 2x4 SP No.2 3-1-8, Right 2x4 SP No.2 3-1-8

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-271(LC 10) Max Uplift 2=-121(LC 12), 8=-121(LC 13) Max Grav 2=705(LC 1), 8=705(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-1411/321, 4-5=-1138/146, 5-6=-1199/192, 6-8=-1338/210
- BOT CHORD 2-12=-320/1214, 11-12=-324/1241, 10-11=-79/969, 8-10=-76/943
- WEBS 5-11=-122/1310, 6-11=-307/412, 4-11=-308/320

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-4-0, Exterior(2) 8-4-0 to 12-8-13, Interior(1) 12-8-13 to 17-4-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.

7) Bearing at joint(s) 2, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=121.8=121.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L	U	м	в	E	R-
-	•••		-	-	••

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
SLIDER	Left 2x4 SP No.2 3-1-8, Right 2x4 SP No.2 3-1-8

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=217(LC 11) Max Uplift 2=-29(LC 12), 8=-26(LC 12) Max Grav 2=706(LC 1), 8=645(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1376/173, 4-5=-1108/21, 5-6=-1151/38, 6-8=-1354/194
- BOT CHORD 2-11=-210/1143, 10-11=-210/1170, 9-10=-19/979, 8-9=-18/953

WEBS 5-10=-5/1258, 6-10=-306/303, 4-10=-307/301

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-4-0, Exterior(2) 8-4-0 to 12-8-13, Interior(1) 12-8-13 to 16-4-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

CTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=216(LC 9) Max Uplift 1=-27(LC 13), 7=-27(LC 12) Max Grav 1=646(LC 1), 7=646(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-3=-1390/204, 3-4=-1114/39, 4-5=-1155/38, 5-7=-1358/193
- BOT CHORD 1-10=-211/1155, 9-10=-211/1181, 8-9=-29/982, 7-8=-28/956

WEBS 4-9=-6/1265, 5-9=-305/303, 3-9=-305/300

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-1 to 4-7-14, Interior(1) 4-7-14 to 8-4-0, Exterior(2) 8-4-0 to 12-8-13, Interior(1) 12-8-13 to 16-4-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 1, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MIT-4/3 fev. 1/2/2/2/3 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
						162933675
J1123-6628	F4GR	GABLE	1	2		
				-	Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:08 2024	Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:08 2024 Page 2 ID:lfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 1-7=-20

Concentrated Loads (lb)

Vert: 9=-1243(B) 10=-1243(B) 8=-1243(B) 11=-1243(B) 18=-1243(B) 19=-1243(B) 20=-1243(B) 21=-1248(B)

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

- 2-4=-710/212, 4-6=-671/211
- BOT CHORD 2-8=-33/418, 6-8=-33/418
- WEBS 4-8=0/399

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-6-0, Exterior(2) 8-6-0 to 12-10-13, Interior(1) 12-10-13 to 17-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=115. 2=121.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 10,2024

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Continued on page 2
Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
						162933678
J1123-6628	G2GR	Common Girder	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:12 2024	Page 2
		ID:IfeBI	PRgFRvB4	G2qc3Vx0	Gnsy6k1y-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7	J4zJC?f

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb) Vert: 6=-1236(F) 8=-1236(F) 9=-1236(F) 10=-1236(F) 11=-1236(F) 12=-1236(F) 13=-1236(F) 14=-1236(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Concentrated Loads (lb) Vert: 6=-214 7=-202 21=-202 22=-202 23=-202 24=-202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

mmm

January 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
14.400.0000	1405					162933680
J1123-6628	JIGR		1	2	Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:15 2024	Page 2

ID:lfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 7=-852(B) 9=-852(B) 10=-852(B) 11=-852(B) 12=-852(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Grav 2=562(LC 19), 6=562(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-405/174, 4-6=-405/174 TOP CHORD BOT CHORD 2-6=-47/270

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-10 to 3-8-3, Exterior(2) 3-8-3 to 5-10-0, Corner(3) 5-10-0 to 10-2-13, Exterior(2) 10-2-13 to 12-4-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 All plates are 2x4 MT20 unless otherwise indicated. 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-) No 1 *Evcont*		BRACING-	Structural wood	abaathing dira	othy applied or 6.0.0	
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.13 WB 0.03 Matrix-S	Vert(CT) -0.10 Horz(CT) -0.00 Wind(LL) 0.04	6 >999 6 >999 11 n/a 6 >999	240 n/a 240	Weight: 71 lb	FT = 20%
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP

TOP CHORD	2x4 SP No.1 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
	6-9: 2x10 SP No.1		except end verticals.
BOT CHORD	2x4 SP No.1 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
	2-6: 2x6 SP No.1		
WEBS	2x4 SP No.2		
SLIDER	Left 2x4 SP No.2 2-2-10		

REACTIONS. (size) 11=Mechanical, 2=0-3-8 Max Horz 2=303(LC 12) Max Uplift 11=-195(LC 12), 2=-66(LC 8) Max Grav 11=550(LC 1), 2=590(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1018/136, 4-5=-932/171, 5-6=-414/877, 5-7=-261/290, 7-8=-229/331, 8-11=-497/294
- BOT CHORD 2-6=-466/890

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 10-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 11=195.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A Mi lek A 818 Soundside Road Edenton, NC 27932

11

12

1 1410 0113013 (Λ, Ι)											
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC 0.14 BC 0.05 WB 0.04 Matrix-S	D V V H W	EFL. ert(LL) ert(CT) orz(CT) /ind(LL)	in -0.01 -0.01 0.02 0.01	(loc) 6 10 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD	2x10 S	P No.1 *Except*			BI T(RACING- OP CHOF	RD	Structu	Iral wood	sheathing dir	rectly applied or 4-8-8	oc purlins,
1-4: 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 *Except* 7 10: 2x4 SP No.2			B	BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.								
SLIDER	Left 2x	6 SP No.1 2-11-5										
REACTIONS.	(sizo Max H	e) 12=Mechanical, 2=0-3	3-8, 10=Mechanic	cal								

Max Uplift 12=-385(LC 12), 2=-53(LC 10), 10=-117(LC 12) Max Grav 12=562(LC 19), 2=352(LC 12), 10=239(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-693/578, 5-12=-751/610

WEBS 7-10=-260/214

Plate Offsets (X Y)-- [4:0-4-0 Edge]

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 11-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3x6 ||

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 12=385, 10=117.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932

C 81	DEEL	in	(loc)	l/dof

12

4-8-8

4-8-8

4x8 || 11

11-0-0

6-3-8

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.14 BC 0.05 WB 0.04 Matrix-S	DEFL. ir Vert(LL) -0.01 Vert(CT) -0.01 Horz(CT) 0.02 Wind(LL) 0.01	n (loc) l/d 6 >9 6 >9 10 1 6 >9	lefi L/d 199 360 199 240 n/a n/a 199 240	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x10 5 1-4: 2 BOT CHORD 2x6 S WEBS 2x6 S WEBS 2x6 S 7-10: 3 SUDER 16f 2	SP No.1 *Except* x6 SP No.1 P No.1 *Except* 2x4 SP No.2 x6 SP No.2		BRACING- TOP CHORD BOT CHORD	Structural v except end Rigid ceilin	vood sheathing dir verticals. g directly applied o	rectly applied or 4-8-8 o	oc purlins,
REACTIONS. (siz Max H Max L Max C FORCES. (lb) - Max TOP CHORD 2-5=	 xeo i 140.102 12 xeo i 12=Mechanical, 2=0-3-8, 10=Mecha Horz 2=372(LC 12) Jplift 12=-383(LC 12), 2=-52(LC 10), 10= Grav 12=561(LC 19), 2=351(LC 12), 10= Comp./Max. Ten All forces 250 (lb) or -696/580, 5-12=-751/610 	anical -118(LC 12) 239(LC 19) less except when shown.					

CHORD

WEBS 7-10=-261/215

Plate Offsets (X,Y)--

[4:0-4-0,Edge]

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 11-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

0-<u>4-</u>0 _____1-3-1____

3x6 ||

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 12=383, 10=118.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=275, 6=192, 7=368.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 480 lb down and 415 lb up at 0-7-4, and 474 lb down and 422 lb up at 2-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-60, 3-4=-20, 5-9=-20

Concentrated Loads (lb) Vert: 10=-427(F) 11=-421(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
					1629	33686
J1123-6628	N2	Flat Girder	1	2		
					Job Reference (optional)	
Comtech, Inc. Favettev	ille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:21 2024 Page	e 1

ID:IfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0 oc purlins: 1-4, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:18.2

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x8 SP No 1 BOT CHORD 2x8 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 7=Mechanical, 6=Mechanical Max Uplift 7=-277(LC 4), 6=-159(LC 5) Max Grav 7=822(LC 1), 6=502(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

- Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x8 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=277. 6=159.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 536 lb down and 208 lb up at 0-4-4, and 530 lb down and 215 lb up at 2-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-60, 3-4=-20, 5-8=-20

Concentrated Loads (lb) Vert: 7=-536(B) 9=-530(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. All bearings 4-10-1. (lb) - Max Horz 1=-53(LC

Max Horz 1=-53(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

REACTIONS. All bearings 4-10-1. (lb) - Max Horz 1=-66(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 2=-154(LC 12), 4=-127(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Bearing at joint(s) 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 2=154, 4=127.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-403/176, 4-6=-404/174

BOT CHORD 2-6=-47/268

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-10 to 3-8-3, Exterior(2) 3-8-3 to 5-9-12, Corner(3) 5-9-12 to 10-2-9, Exterior(2) 10-2-9 to 11-7-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

5) Gable studs spaced at 2-0-0 0C.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Vert: 1-3=-60, 3-4=-60, 2-4=-20

Continued on page 2

ᄊ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

January 10,2024

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
						162933692
J1123-6628	Q1GR	Common Girder	1	2		
				-	Job Reference (optional)	
Comtech, Inc, Fayettev	rille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:29 2024 F	Page 2

ID:lfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 5=-1007(F) 6=-1006(F) 8=-1006(F) 9=-1007(F) 10=-1007(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	BROADWAY, NC ROOF	
					16	62933694
J1123-6628	T2GR	Flat Girder	1	2	lab Deference (anti-nal)	
				_	Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Jan 9 09:27:32 2024 P	Page 2

ID:IfeBPRgFRvB4G2qc3VxGnsy6k1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 13=-420(B) 14=-420(B) 15=-420(B) 16=-420(B) 17=-420(B) 18=-420(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	1		7-11-14	0	-0-6
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.23 BC 0.10 WB 0.03	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 00 3 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 32 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

TOP CHORD

REACTIONS. 1=7-11-8, 3=7-11-8, 4=7-11-8 (size) Max Horz 1=-88(LC 8) Max Uplift 1=-32(LC 13), 3=-32(LC 13) Max Grav 1=178(LC 1), 3=178(LC 1), 4=229(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			3-11-14		0-0-	-6
LOADING (psf)SPACINTCLL 20.0Plate GTCDL 10.0LumberBCLL 0.0 *Rep StrBCDL 10.0Code II	NG- 2-0-0 rip DOL 1.15 DOL 1.15 ess Incr YES RC2015/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.01 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 15 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

TOP CHORD

REACTIONS. 1=3-11-8, 3=3-11-8, 4=3-11-8 (size) Max Horz 1=-40(LC 8) Max Uplift 1=-14(LC 13), 3=-14(LC 13)

Max Grav 1=81(LC 1), 3=81(LC 1), 4=104(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 4-0-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- WEBS 2-8=-362/291, 4-6=-362/291

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-8-6, Exterior(2) 6-8-6 to 11-1-3, Interior(1) 11-1-3 to 13-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=165, 6=165.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

				9-4-0			0-0-0		
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL)	n/a -	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.14	Vert(CT)	n/a -	n/a	999		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0	.00 3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 38 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. (size) 1=9-4-0, 3=9-4-0, 4=9-4-0 Max Horz 1=104(LC 11) Max Uplift 1=-26(LC 13), 3=-26(LC 13) Max Grav 1=197(LC 1), 3=197(LC 1), 4=301(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

				5-4-0				0-0-6		
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 21 lb	FT = 20%

```
LUMBER-
```

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-4-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=5-4-0, 3=5-4-0, 4=5-4-0 Max Horz 1=-56(LC 8) Max Uplift 1=-20(LC 13), 3=-20(LC 13) Max Grav 1=114(LC 1), 3=114(LC 1), 4=147(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MILIEK Affil 818 Soundside Road Edenton, NC 27932

DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Af 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) A MITCH Attiliate

REACTIONS. 1=9-5-15, 3=9-5-15, 4=9-5-15 (size) Max Horz 1=-106(LC 8) Max Uplift 1=-26(LC 13), 3=-26(LC 13) Max Grav 1=201(LC 1), 3=201(LC 1), 4=307(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	ED
LU	DER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-6-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=5-5-15, 3=5-5-15, 4=5-5-15 Max Horz 1=-58(LC 8) Max Uplift 1=-21(LC 13), 3=-21(LC 13) Max Grav 1=118(LC 1), 3=118(LC 1), 4=152(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. (size) 1=10-6-0, 3=10-6-0, 4=10-6-0 Max Horz 1=-118(LC 8) Max Uplift 1=-29(LC 13), 3=-29(LC 13) Max Grav 1=224(LC 1), 3=224(LC 1), 4=342(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-3-6, Exterior(2) 5-3-6 to 9-8-3, Interior(1) 9-8-3 to 10-2-8 zone;C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=6-6-0, 3=6-6-0, 4=6-6-0 Max Horz 1=70(LC 11) Max Uplift 1=-25(LC 13), 3=-25(LC 13) Max Grav 1=143(LC 1), 3=143(LC 1), 4=183(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		L			3-10-4			1		6	-3-8	
					3-10-4			I		2	-5-4	1
Plate Offse	ets (X,Y)	[2:0-3-4,Edge]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	-0.01	2-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.02	2-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-R	Wind(LL)	0.00	2-7	>999	240	Weight: 34 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 7=Mechanical, 2=0-3-8

Max Horz 2=52(LC 8)

Max Uplift 7=-25(LC 8), 2=-48(LC 8)

Max Grav 7=258(LC 1), 2=279(LC 23)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-3 to 3-9-10, Interior(1) 3-9-10 to 5-6-8, Exterior(2) 5-6-8 to 6-3-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		L		3-0	6-8					6-3-8	8	
<u></u>				3-6	6-8		1			2-9-0	0	1
Plate Offsets ()	X,Y)	[2:0-3-4,Edge]										
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) O O * O	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 NO TPI2014	CSI. TC BC WB Matri>	0.24 0.26 0.01 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.00 0.02	(loc) 2-8 2-8 7 2-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 *Except* 3-5: 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 *Except* 3-8: 2x4 SP No.2		BRACING- TOP CHOF BOT CHOF	D D	Structu except Rigid c	ral wood end vertie eiling dire	sheathing dii cals, and 2-0 ctly applied o	rectly applied or 6-0-0 -0 oc purlins (6-0-0 ma or 10-0-0 oc bracing.	oc purlins, ax.): 3-5.				
REACTIONS.	(size Max H Max U Max G	e) 7=Mechanical, 2=0 orz 2=38(LC 19) plift 7=-144(LC 5), 2=-1 rav 7=416(LC 1), 2=36)-3-8 114(LC 4) 59(LC 1)									
FORCES. (lb)) - Max.	Comp./Max. Ten All f	forces 250 (lb) or	less except	when showr	۱.						

TOP CHORD 2-3=-439/149, 3-4=-391/151

BOT CHORD 2-8=-155/398, 7-8=-152/391

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=144, 2=114.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 38 lb down and 49 lb up at 3-6-8, and 38 lb down and 49 lb up at 4-5-12 on top chord, and 166 lb down and 135 lb up at 3-6-8, and 27 lb down and 37 lb up at 4-5-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-60, 2-6=-20 Concentrated Loads (lb)

Vert: 3=-35(B) 8=-166(B) 9=-35(B) 10=-13(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	L		6-0-0				
			6-0-0				
Plate Offsets (X,Y)	[2:0-3-4,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.19 BC 0.12 WB 0.00	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.00	(loc) l/defl 2-4 >999 2-4 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.03	2-4 >999	240	Weight: 33 lb	FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S	P No.1 P No.1		BRACING- TOP CHORD	Structural woo except end ver	d sheathing di ticals.	irectly applied or 6-0-0	oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 2=54(LC 8) Max Uplift 2=-109(LC 8), 4=-91(LC 8) Max Grav 2=272(LC 1), 4=222(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-3 to 3-9-10, Interior(1) 3-9-10 to 5-9-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2 = 109

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)-	- [2:0-3-4,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Pep Stress Incr. NO	CSI. TC 0.11 BC 0.28 WB 0.00	DEFL. in (loc) I/defl L/d Vert(LL) 0.03 2-4 >999 240 Vert(CT) -0.04 2-4 >999 240 Horz(CT) 0.00 p/a p/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 65 lb FT = 20%
LUMBER- TOP CHORD 2x6	SP No.1		BRACING- TOP CHORD Structural wood sheat	ning directly applied or 6-0-0 oc purlins.

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 4=Mechanical, 4=Mechanical, 2=0-3-8

Max Horz 2=54(LC 4) Max Uplift 4=-193(LC 4), 2=-161(LC 4)

Max Grav 4=712(LC 1), 4=712(LC 1), 2=425(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) 2-ply truss to be connected together as follows:

Top chords connected with 10d (0.131"x3") nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected with 10d (0.131"x3") nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=193, 2=161.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 396 lb down and 164 lb up at 3-7-4, and 246 lb down and 37 lb up at 5-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 2-4=-20 Concentrated Loads (lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

6	-0	-(
0	0	

Plate Offsets (X,Y)	[1:0-3-4,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.19 BC 0.12 WB 0.00	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (loc) 01 1-3 03 1-3 00	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	BRACING-	03 1-3	>999	240	Weight: 31 lb	FT = 20%
TOP CHORD 2x6 SF	P No.1		TOP CHORD	Struct	ural wood s	sheathing dir	ectly applied or 6-0-0	oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 1=0-3-8, 3=0-1-8

Max Horz 1=48(LC 8) Max Uplift 1=-80(LC 8), 3=-93(LC 8)

Max Grav 1=225(LC 1), 3=225(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 5-9-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		1		3	3-6-8		
				3	3-6-8		
Plate Offsets (X,Y) [2:0-3-4.Edge]							
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) -	0.00 2-4	>999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -	0.00 2-4	>999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -	0.00 3	n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00 2-4	>999 240	Weight: 19 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-6-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=35(LC 8) Max Uplift 3=-37(LC 12), 2=-77(LC 8), 4=-17(LC 8)

Max Grav 3=95(LC 1), 2=183(LC 1), 4=67(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

	DED	_
	יחםכ	-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-0-0.

(lb) - Max Horz 2=119(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7, 8

Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-8=-175/282

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-7-13 to 3-9-0, Exterior(2) 3-9-0 to 6-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

				4-10-10 4-10-10				———————————————————————————————————————
Plate Offsets (X,Y)	[2:0-4-8,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.15 WB 0.00 Matrix-P	DEFL. Vert(LL) - Vert(CT) - Horz(CT) Wind(LL)	in (loc) -0.01 2-6 -0.01 2-6 0.00 0.02 2-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1			BRACING- TOP CHORD	D Structu	ral wood	sheathing dir	rectly applied or 4-10-	10 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 6=Mechanical, 2=0-4-9

Max Horz 2=35(LC 8) Max Uplift 6=-67(LC 8), 2=-108(LC 8)

Max Grav 6=181(LC 1), 2=248(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=108.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

