

FIRST FLOOR OPENING SCHEDULE									
COUNT	REVERSED	HINGE	SIZE	PRODUCT CODE					
1	NO	R	3'-0"	36X80 COLONIAL A 1					
1	NO	RN	6'-0"	72X80 FRENCH A 2					
1	NO	U	16'-0"	192X84 - GARAGE DR					
1	NO	R	2'-0"	2-0 Door Unit					
2	NO	L	2'-4"	2-4 Door Unit					
1	NO	R	2'-8"	2-8 Door Unit					
1	NA	N	2'-4" x 3'-2"	24X32 Single					
1	NA	N	2'-4" x 4'-6"	24x46single					
2	NA	NN	5'-4" x 5'-2"	28x52 twin					

Areas

First Floor	929
Second Floor	1209
	======
Total Heated	2138
Garage	470
Front Porch	100

Welleo Contractors

SECOND FLOOR OPENING SCHEDULE									
PRODUCT CODE	SIZE	HINGE	REVERSED	COUNT					
1-6 Door Unit	1'-6"	R	NO	1					
2-0 Door Unit	2'-0"	R	NO	1					
2-0 Door Unit	2'-0"	L	NO	1					
2-4 Door Unit	2'-4"	L	NO	2					
2-6 Door Unit	2'-6"	R	NO	1					
2-6 Door Unit	2'-6"	L	NO	2					
2-8 Door Unit	2'-8"	L	NO	1					
2-8 Door Unit	2'-8"	R	NO	1					
3-0 Doublehung Door Unit	3'-0"	LR	NO	2					
20x32 single	2'-0" x 3'-2"	N	NA	1					
24x46single	2'-4" x 4'-6"	N	NA	3					
28x52 single	2'-8" x 5'-2"	N	NA	3					
28x52 twin	5'-4" x 5'-2"	NN	NA	1					
4X8 GLASS BLOCK	4'-0" x 4'-0"	N	NA	1					

1) <u>D</u> <u>a</u>

STEM WALL FOOTING DETAIL

LUG FOOTING DETAIL

Roof Plan

	L TI R	ROO RUS reilly F Fayet Phon Fax	OF & SES Road Ir teville e: (910)	TC & F & B ndustr 2, N.C. 3) 864 864-4	OOF EAN 28309 -8787 444	1 λ λ S
	Bearing deemed requiren attachec requiren size and reaction 15000# retained reaction Tables retained reaction	reactions to compl nents. The Tables (nents) to number s greater A register to design that exce A register to design s that exce	s less that y with the e contrac derived 1 determin of wood 1 than 300 red design n the sup seeds thos red design n the sup ceed 1500	n or equa e prescrip tor shall r rrom the p te the min studs req 0# but no n profess port syste e specifie n profess port syste 0#.	I to 3000# efer to th prescriptivi imum fou uirred to s t greater t cional sha em for an ad in the a ional sha em for all to all the all to all the all the all to all the all the all the all the the all the all the all the all the the all the all the all the the all the all the all the all the the all the all the all the all the the all the all the all the all the all the all the the all the all the all the all the all the all the all the the all the all the all the all the all the all the all the the all the	e ve Code indation upport than II be y attached II be
	Jighatu	J	onat	han L	.andr	y
All Walls Shown Are Considered Load Bearing		AD CHA	ART FO	OR JAC	CK STU 1) & (b)) 0 @ EA END	DS OF
Roof Area= 2147.16 sq.ft.Ridge Line= 71.84 ft.Hip Line= 0 ft.Horiz. OH= 110.23 ft.Raked OH= 151.18 ft.Decking= 74 sheets	NO LLY Y H H H H H H H H H H H H H H H H H	6 8 2 9 2 9 2 1 8 6 0 5 1 1 8 6 0 5 1 0 5 FOR (2) PLY HEADER	اللي اللي اللي اللي اللي اللي اللي اللي	1002 100 100	340 680 1020 1360	ND ND<
All exterior wall to wall dimensions are to ace of sheathing unless noted otherwise . All interior wall dimensions are to face of rame wall unless noted otherwise . All exterior wall to truss dimensions are to ace of frame wall unless noted otherwise Hatch Legend Second Floor Walls Box Storage Drop Beam	Harnett Co. / Harnett	1	Roof	04/24/23	Jonathan Landry	Lenny Norris
Inector InformationManufQtySupported MemberHeaderTrussUSP5NA16d/3-1/2"16d/3-1/2"	CITY / CO .	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
Products Product Plies Net Qty 1-3/4"x 9-1/4" LVL Kerto-S 2 2 1-3/4"x 11-7/8" LVL Kerto-S 2 2 Fruss Placement Plan Scale: 1/4"=1'	Wellco Contractors	Lot 3 Overhills Creek	Plan 5	N/A		J0423-1891
	BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #
The second state is a second state of the second state is a second state of the sec	THIS IS These t comport design See ind identifie designe perman for the support and col designe consult truss d	A TRUS: russes an nents to l at the sp lividual d ed on the er is resp ent braci overall sit t structur lumns is er. For ge BCSI-B1 elivery pa	s PLACE I re designo ecification esign she placeme placeme onsible fr ng of the tructure. e includir the responeral gui and BCS ackage or	MENT DIA ed as ind orated int n of the b tets for ea nt drawin or tempor roof and The desig ng header nsibility of dance reg dance reg online @	GRAM ON ividual built outiding du ach truss g. The built ary and floor sys n of the the s, beams of the built parding br rided with sbcindus	ILY. iilding ding ssigner. design ilding tem and russ , walls, lding acing, the stry.com

Second Floor Wall
Box Storage
Drop Beam

	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS26	USP	5	NA	16d/3-1/2"	16d/3-1/2"

Products							
PlotID	Length	Product	Plies	Net Qty			
BM1	8' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2			
GDH	22' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2			

RE: J0423-1891 Lot 3 Overhills Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Wellco ContractorsProject Name: J0423-1891Lot/Block: 3Model: Plan 5Address:Subdivision: Overhills CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 150 mph Floor Load: N/A psf

This package includes 21 individual, dated Truss Design Drawings and 0 Additional Drawings.

No	Seal#	Truss Name	Date	No	Seal#	Truss Name	Date
1	153182508		7/20/2022	21	153182528	\/3	7/20/2022
2	153182500		7/20/2022	21	100102020	vo	1/20/2022
2	153182510	AISC	7/20/2022				
3	153102510	A13G	7/20/2022				
4	100102011		7/20/2022				
5	103102012		7/20/2022				
6	153182513	BIGE	7/20/2022				
7	153182514	B2	7/20/2022				
8	153182515	C1	7/20/2022				
9	153182516	C1GE	7/20/2022				
10	153182517	C2	7/20/2022				
11	153182518	C3	7/20/2022				
12	153182519	C3-GR	7/20/2022				
13	153182520	D1-GR	7/20/2022				
14	153182521	D1GE	7/20/2022				
15	153182522	M1	7/20/2022				
16	153182523	M1GE	7/20/2022				
17	153182524	M2	7/20/2022				
18	153182525	M2-GR	7/20/2022				
19	153182526	V1	7/20/2022				
20	153182527	V2	7/20/2022				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=188, 7=210.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANS/ITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Comtech, Inc, Fayetteville, NC - 28314,

		5-0-4	11-1-8	5-0-4		
Plate Offsets (X,Y)	[2:Edge,0-4-6], [3:0-4-0,Edge], [6:0-4	I-0,Edge], [9:0-4-0,Edge], [1	0:Edge,0-4-6], [12:0-4-0,	0-3-4], [14:0-4-0,0-3	3-4]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl	L/d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.70	Vert(LL) -0.20) 12-14 >999	360 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.67	Vert(CT) -0.34	1 12-14 >726	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.13	Horz(CT) 0.01	l 10 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.10) 12-14 >999	240 Weight: 232	2 lb FT = 20%
LUMBER-	·		BRACING-			
TOP CHORD 2x8 S	P No.1 *Except*		TOP CHORD	Structural wood s	heathing directly applied or 4-9	9-13 oc purlins.
1-3,9	11: 2x6 SP No.1		BOT CHORD	Rigid ceiling direct	tly applied or 10-0-0 oc bracing	g.
BOT CHORD 2x10	SP No.1 *Except*					
12-14	: 2x6 SP No.1					
WEBS 2x6 S	P No.1					

WEDGE Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=359(LC 11)

Max Grav 2=1416(LC 20), 10=1416(LC 21)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-4=-1859/64, 4-5=-991/278, 5-6=-127/647, 6-7=-127/648, 7-8=-991/278, 8-10=-1859/64
- BOT CHORD 2-14=0/1050, 12-14=0/1050, 10-12=0/1050
- WEBS 8-12=0/904, 4-14=0/904, 5-7=-1886/542

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-6 to 3-7-7, Interior(1) 3-7-7 to 10-7-0, Exterior(2) 10-7-0 to 14-11-13, Interior(1) 14-11-13 to 21-11-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).8-12, 4-14
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Attic room checked for L/360 deflection.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Comtech, Inc, Fayetteville, NC - 28314,

		5-0-4	2x6	16-1-12	1	21-2-0	1	
	I	5-0-4	1	11-1-8	1	5-0-4	1	
Plate Offsets (X,Y)	[4:0-4-0,Edge], [7:0-4-0,Edge	e], [8:Edge,0-4-6],	[10:0-4-0,0-3-4], [*	12:0-4-0,0-3-4]				

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.69 BC 0.67 WB 0.12 Matrix-S	DEFL. in Vert(LL) -0.20 Vert(CT) -0.35 Horz(CT) 0.07 Wind(LL) 0.10	n (loc) l/defl L/d 0 10-12 >999 360 5 10-12 >715 240 1 8 n/a n/a 0 10-12 >999 240	PLATES GRIP MT20 244/190 Weight: 233 lb FT = 20%
LUMBER- TOP CHORD 2x8 SF 7-9: 2x BOT CHORD 2x10 S 10-12: WEBS 2x6 SF WEDGE Right: 2x4 SP No.2	P No.1 *Except* (6 SP No.1 P No.1 *Except* 2x6 SP No.1 P No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied o	rectly applied or 4-9-13 oc purlins. or 10-0-0 oc bracing.
REACTIONS. (siz Max H Max G FORCES. (lb) - Max. TOP CHORD 1-2=	e) 1=0-3-8, 8=0-3-8 forz 1=-357(LC 8) Grav 1=1375(LC 21), 8=1416(LC 21) Comp./Max. Ten All forces 250 (lb) of -1841/34, 2-3=-992/278, 3-4=-121/640, -	- less except when shown. 4-5=-122/650, 5-6=-991/279	, 6-8=-1855/61		

- BOT CHORD 1-12=0/1048, 10-12=0/1048, 8-10=0/1048
- WEBS 6-10=0/902, 2-12=0/886, 3-5=-1870/542

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 10-7-0, Exterior(2) 10-7-0 to 14-11-13, Interior(1) 14-11-13 to 21-11-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).6-10, 2-12
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 10-12
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Attic room checked for L/360 deflection.

July 20,2022

Scale = 1:76.0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Comtech, Inc.

		5-0-4	2x6 16-1-12	21-2-0	
		5-0-4	11-1-8	5-0-4	
Plate Offsets (X,Y)	[1:0-4-0,0-0-11], [5:0-4-0,Edge], [8:0-4-0,Edge], [9	9:Edge,0-4-2], [13:0-4-0,0-2-4]		

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.76 BC 0.68 WB 0.14 Matrix-S	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.20 11-13 >999 360 MT20 244/190 Vert(CT) -0.36 11-13 >700 240 MT20 244/190 Horz(CT) 0.01 9 n/a n/a Wind(LL) 0.11 11-13 >999 240 Weight: 236 lb FT = 20%
LUMBER- TOP CHORD 2x8 SP 8-10: 2x BOT CHORD 2x10 SF	No.1 *Except* K6 SP No.1 P No.1 *Except*		BRACING-TOP CHORDStructural wood sheathing directly applied or 3-11-6 oc purlins.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

11-13: 2x6 SP No.1 WEBS 2x6 SP No.1 WEDGE Right: 2x4 SP No.3 SLIDER Left 2x4 SP No.2 3-1-11

REACTIONS. (size) 14=0-3-8. 9=0-3-8 Max Horz 14=-360(LC 10) Max Grav 14=1396(LC 21), 9=1401(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-3=-1959/62, 3-4=-1007/279, 4-5=-126/683, 5-6=-120/668, 6-7=-1028/284, 7-9=-1776/66
- BOT CHORD 1-14=-352/360, 1-13=0/1087, 11-13=0/1087, 9-11=0/1081
- WEBS 7-11=0/783, 3-13=0/997, 4-6=-1935/548

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-8 to 4-8-5, Interior(1) 4-8-5 to 10-7-0, Exterior(2) 10-7-0 to 14-11-13, Interior(1) 14-11-13 to 21-11-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).7-11, 3-13
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Attic room checked for L/360 deflection.

annun . ORT Mannan MASSIN WWWWWWWWW SEAL 16673 MAR

July 20,2022

Scale = 1:76.0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek
J0423-1891	C3-GR	ATTIC	1	2	Job Reference (optional)
Lezzer Truss Curwensville Pa	16833				8 530 s Jan 6 2022 MiTek Industries Inc. Wed Jul 20 11:48:25 2022 Page 2

8.530 s Jan 6 2022 Mi Lek Industries, Inc. Wed Jul 20 11:48:25 2022 Page 2 ID:9TsBS1yzEQOf2XeoOILTI2yyUuf-MBXwXTMLIwTo7zO8oqCmhNzFdFzUQgOA7d5iUXywLXa

NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 320 lb down at 1-1-12, 320 lb down at 5-1-12, 320 lb down at 7-1-12, 320 lb down at 9-1-12, 139 lb down and 99 lb up at 13-1-12, 139 lb down and 99 lb up at 13-1-12, 139 lb down and 99 lb up at 13-1-12, and 139 lb down and 99 lb up at 13-1-12, and 132 lb down and 18 lb up at 3-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-80, 3-4=-60, 4-5=-60, 5-6=-80, 6-9=-60, 1-12=-20, 10-12=-40, 8-10=-20, 3-5=-20

Drag: 6-10=-10, 2-12=-10 Concentrated Loads (lb)

Vert: 12=-73(B) 13=-73(B) 14=-73(B) 15=-73(B) 16=-73(B) 17=-3(B) 18=-3(B) 19=-3(B) 20=-3(B) 21=-3(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=590, 3=528.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1104 lb down and 203 lb up at 0-7-12, 1099 lb down and 208 lb up at 2-7-12, 1099 lb down and 208 lb up at 4-7-12, and 1099 lb down and 208 lb up at 6-7-12, and 1099 lb down and 208 lb up at 8-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

SEAL 16673

July 20,2022

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek	
						153182520
J0423-1891	D1-GR	Common Girder	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayett	eville, NC - 28314,			3.430 s Au	g 16 2021 MiTek Industries, Inc. Tue Jul 19 11:34:42 2022	2 Page 2
		ID:9Ts	BS1yzEQ	Of2XeoOIL	TI2yyUuf-65qVTGzvoGb1jC1PvIYsQZA6oJyhFO1N20Yirc	gywWHR

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

Concentrated Loads (lb) Vert: 5=-1104(B) 6=-1099(B) 7=-1099(B) 8=-1099(B) 9=-1099(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 2=109, 13=201, 14=243, 11=197, 10=236.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-3-8							
LOADING (psf TCLL 20.0 TCDL 10.0	sf) SPACING- 2-0-0 .0 Plate Grip DOL 1.15 .0 Lumber DOL 1.15 .0 L	CSI. TC 0.21 BC 0.24	DEFL. ir Vert(LL) 0.06 Vert(CT) -0.04	(loc) 2-6 2-6	l/defl >999 >999	L/d 240 240	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	.0 * Rep Stress Incr YES .0 Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00		n/a	n/a	Weight: 36 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-0, 5=0-3-8

Max Horz 2=119(LC 12) Max Uplift 2=-129(LC 8), 5=-124(LC 8)

Max Grav 2=293(LC 1), 5=219(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-179/291

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 6-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=129, 5=124.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

July 20,2022

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.02 BC 0.01 WB 0.04 Matrix-P	DEFL. i Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	n (loc) l/) 5) 5)	/defl L/d n/r 120 n/r 120 n/a n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF	2 No.1 2 No.1 2 No.2		BRACING- TOP CHORD	Structural except en	l wood sheathing dir nd verticals.	ectly applied or 6-0-0	oc purlins,

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. All bearings 6-0-0.

(lb) -Max Horz 2=172(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 9 except 10=-120(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 9 except (jt=lb) 10=120.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.02	2 2-8 >999 240	Weight: 38 lb	FT = 20%
LUMBER				BRACING-			
TOP CHO	RD 2x6 SF	P No.1 *Except*		TOP CHORD	Structural wood sheathing di	rectly applied or 5-0-0 oc	purlins,
	5-6: 2×	(4 SP No.1			except end verticals, and 2-0	-0 oc purlins: 5-8, 5-6. E	xcept:
BOT CHO	RD 2x6 SF	P No.1			6-0-0 oc bracing: 3-5		
WEBS	2x6 SF	P No.1		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.	

REACTIONS. (size) 2=0-3-0, 7=0-3-8 Max Horz 2=101(LC 12) Max Uplift 2=-75(LC 8) Max Grav 2=349(LC 1), 7=627(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-377/187, 5-8=-460/11

BOT CHORD 2-8=-284/316

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) C-C wind load user defined.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-7=-20, 5-10=-20, 6-10=-60 Concentrated Loads (lb) Vert: 10=-345(F)

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 20,2022

Job	· · ·	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek	
							153182524
J0423-1891		M2	ROOF SPECIAL	4	1		
						Job Reference (optional)	
Comtech, Inc,	Fayettevi	lle, NC - 28314,		8	3.430 s Aug	g 16 2021 MiTek Industries, Inc. Tue Jul 19 11:34:44 2022	Page 2

ID:9TsBS1yzEQOf2XeoOILTI2yyUuf-2UxFuy?AJtrlyWBo1AaKV_FTY7irjNcgWK1pwYywWHP

LOAD CASE(S) 2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 2-7=-20, 5-10=-20, 6-10=-50 Concentrated Loads (lb) Vert: 10=-503(F) 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 2-7=-40, 5-6=-20 Concentrated Loads (lb) Vert: 10=-345(F) 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=98, 2-9=82, 3-9=42, 3-4=207, 2-7=73, 5-6=47 Horz: 1-2=-110, 2-9=-94, 3-9=-54, 3-4=-219 Concentrated Loads (lb) Vert: 10=-345(F) 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=73, 2-3=82, 3-4=73, 2-7=73, 5-6=87 Horz: 1-2=-85, 2-3=-94, 3-4=-85 Concentrated Loads (lb) Vert: 10=-345(F) 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=-54, 3-4=30, 2-7=-5, 5-6=-44 Horz: 1-2=-25, 2-3=34, 3-4=-50 Concentrated Loads (lb) Vert: 10=-345(F) 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-45, 2-3=-54, 3-4=-45, 2-7=-5, 5-6=-44 Horz: 1-2=25, 2-3=34, 3-4=25 Concentrated Loads (lb) Vert: 10=-345(F) 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=40, 2-3=20, 3-4=11, 2-7=18, 5-6=15 Horz: 1-2=-52, 2-3=-32, 3-4=-23 Concentrated Loads (lb) Vert: 10=-345(F) 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 2-7=-12, 5-6=31 Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb) Vert: 10=-345(F) 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 2-7=10, 5-6=-11 Horz: 1-2=-23. 2-3=-14. 3-4=-23 Concentrated Loads (lb) Vert: 10=-345(F 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 2-7=-20, 5-6=5 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 10=-345(F) 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 2-7=-12, 5-6=15 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 10=-345(F) 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 2-7=-12, 5-6=31 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 10=-345(F 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 2-7=-12, 5-6=15 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 10=-345(F)

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses sand truss system. See
MSUFTPI Quality Criteria, DSB-89 and BCSI Building Component
Safety Information
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			-	1	
Job	Truss	Truss Type	Qtv	Plv	Lot 3 Overhills Creek
				,	
					153182524
10400 4004	MO		4	1	
JU423-1691	IVIZ	ROOF SPECIAL	4		
					Job Reference (optional)
O a sector a la la construction of				100 - 4	
Comtecn, Inc, F	-ayetteville, NC - 28314,		6	3.430 S Au	g 16 2021 MITEK Industries, Inc. The Jul 19 11:34:44 2022 Page 3

ID:9TsBS1yzEQOf2XeoOILTI2yyUuf-2UxFuy?AJtrlyWBo1AaKV_FTY7irjNcgWK1pwYywWHP

LOAD CASE(S) 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 2-7=-12, 5-6=31 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 10=-345(F) 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 2-7=-20, 5-6=-11 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 10=-345(F) 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 2-7=-20, 5-6=5 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 10=-345(F) 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 2-7=-20, 5-6=-20 Concentrated Loads (lb) Vert: 10=-450(F) 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-40, 3-4=-33, 2-7=2, 5-10=-13, 6-10=-43 Horz: 1-2=-17, 2-3=-10, 3-4=-17 Concentrated Loads (lb) Vert: 10=-503(F) 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-39, 3-4=-33, 2-7=-20, 5-10=-1, 6-10=-31 Horz: 1-2=-17, 2-3=-11, 3-4=-17 Concentrated Loads (lb) Vert: 10=-503(F) 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 2-7=-20, 5-10=-13, 6-10=-43 Horz: 1-2=-26, 2-3=-19, 3-4=-26 Concentrated Loads (lb) Vert: 10=-503(F) 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 2-7=-20, 5-10=-1, 6-10=-31 Horz: 1-2=-14, 2-3=-7, 3-4=-14 Concentrated Loads (lb) Vert: 10=-503(F) 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-7=-20, 5-6=-20 Concentrated Loads (lb) Vert: 10=-345(F) 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 2-7=-20, 5-10=-20, 6-10=-60 Concentrated Loads (lb) Vert: 10=-345(F) 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 2-7=-20, 5-6=-20 Concentrated Loads (lb) Vert: 10=-503(F) 26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 2-7=-20, 5-10=-20, 6-10=-50 Concentrated Loads (lb) Vert: 10=-503(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 2=03-0, 7=0-3-8 Max Horz 2=101(LC 12) Max Uplift 2=-38(LC 12)

Max Grav 2=312(LC 1), 7=1947(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-287/64

WEBS 6-7=-1776/0

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
- Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc, 2x4 2 rows staggered at 0-2-0 oc.
- Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 6-0-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard Except:

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information**available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 20,2022

Job	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek	
J0423-1891	M2-GR	ROOF SPECIAL	2	2		153182525
Comtech, Inc, Fayette	/ ville, NC - 28314,			8.430 s Au	Job Reference (optional) g 16 2021 MiTek Industries, Inc. Tue J	Jul 19 11:34:45 2022 Page 2
· · · •		ID	:9TsBS1yzEQO	2XeoOILT	2yyUuf-WgVe5l0o4B_cagm_au5Z2Bnl	hyX7kSprpk_mMS_ywWHO
LOAD CASE(S) Standard 1) Dead + Roof Live (balar Uniform Loads (plf) Vert: 1-3=-60, 3 2) Dead + 0.75 Roof Live (Uniform Loads (plf) Vert: 1-3=-50, 3 Concentrated Loads (lb) Vert: 6=-1256(F 3) Dead + Uninhabitable A Uniform Loads (plf) Vert: 1-3=-20, 3 4) Dead + 0.6 C-C Wind (F	I Except: nced): Lumber Increase=1.15, 3-4=-60, 2-7=-20, 5-10=-140(f balanced): Lumber Increase= 3-4=-50, 2-7=-20, 5-10=-140(f -;) ttic Without Storage: Lumber 3-4=-20, 2-7=-40, 5-6=-140(F bos. Internal) Case 1: Lumber	Plate Increase=1.15 =-120), 6-10=-180(F=-120) =1.15, Plate Increase=1.15 =-120), 6-10=-170(F=-120) Increase=1.25, Plate Increase=1.25 =-120) Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf) Vert: 1-2=98, 2 Horz: 1-2=-110 5) Dead + 0.6 C-C Wind (F	-9=82, 3-9=42, 3-4=207, 2-7= , 2-9=-94, 3-9=-54, 3-4=-219 Pos. Internal) Case 2: Lumber	-12, 5-6=-73(F=-120) Increase=1.60. Plate Increase=1.60				
Uniform Loads (plf) Vert: 1-2=73, 2 Horz: 1-2=-85.	-3=82, 3-4=73, 2-7=-12, 5-6= 2-3=-94, 3-4=-85	-33(F=-120)				
6) Dead + 0.6 C-C Wind (N Uniform Loads (plf) Vert: 1-2=5, 2-3 Horz: 1-2=-25	Jeg. Internal) Case 1: Lumber 3=-54, 3-4=30, 2-7=-20, 5-6=- 2-3=34, 3-4=-50	Increase=1.60, Plate Increase=1.60				
7) Dead + 0.6 C-C Wind (N Uniform Loads (plf) Vert: 1-2=-45, 2 Horz: 1-2=-25, 2	leg. Internal) Case 2: Lumber 2-3=-54, 3-4=-45, 2-7=-20, 5-6	Increase=1.60, Plate Increase=1.60 S=-164(F=-120)				
8) Dead + 0.6 MWFRS Wi Uniform Loads (plf) Vert: 1-2=40, 2	-3=34, 3-4=23 nd (Pos. Internal) Left: Lumbe -3=20, 3-4=11, 2-7=-12, 5-6≕	er Increase=1.60, Plate Increase=1.60 -105(F=-120)				
Horz: 1-2=-52, 9) Dead + 0.6 MWFRS Win Uniform Loads (plf) Vert: 1-2=11, 2	2-3=-32, 3-4=-23 nd (Pos. Internal) Right: Lumb -3=20, 3-4=41, 2-7=-12, 5-6=:	per Increase=1.60, Plate Increase=1.60 -89(F=-120)				
Horz: 1-2=-23, 10) Dead + 0.6 MWFRS W Uniform Loads (plf)	2-3=-32, 3-4=-53 /ind (Neg. Internal) Left: Lum	per Increase=1.60, Plate Increase=1.60				
Vert: 1-2=3, 2 Horz: 1-2=-23 11) Dead + 0.6 MWFRS W Uniform Loads (plf)	-3=-6, 3-4=3, 2-7=-20, 5-6=-1 , 2-3=-14, 3-4=-23 /ind (Neg. Internal) Right: Lur	31(F=-120) nber Increase=1.60, Plate Increase=1.60	1			
Vert: 1-2=3, 2 Horz: 1-2=-23 12) Dead + 0.6 MWFRS W	-3=-6, 3-4=3, 2-7=-20, 5-6=-1 , 2-3=-14, 3-4=-23 /ind (Pos. Internal) 1st Paralle	15(F=-120) sl: Lumber Increase=1.60, Plate Increase	=1.60			
Uniform Loads (plf) Vert: 1-2=22, Horz: 1-2=-34	2-3=31, 3-4=22, 2-7=-12, 5-6 , 2-3=-43, 3-4=-34	=-105(F=-120)				
13) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-2=6, 2	/ind (Pos. Internal) 2nd Parall	el: Lumber Increase=1.60, Plate Increase 39(F=-120)	e=1.60			
14) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-2=22	, 2-3=-27, 3-4=-18 /ind (Pos. Internal) 3rd Paralle 2-3=31, 3-4=22, 2-7=-12, 5-6	el: Lumber Increase=1.60, Plate Increase =-105/(F=-120)	e=1.60			
Horz: 1-2=-34 15) Dead + 0.6 MWFRS W Uniform Loads (plf)	, 2-3=-43, 3-4=-34 /ind (Pos. Internal) 4th Paralle	el: Lumber Increase=1.60, Plate Increase	=1.60			
Vert: 1-2=6, 2 Horz: 1-2=-18 16) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-2=14, Horz: 1-2=-34	-3=15, 3-4=6, 2-7=-12, 5-6=-8 , 2-3=-27, 3-4=-18 (ind (Neg. Internal) 1st Paralle 2-3=5, 3-4=14, 2-7=-20, 5-6= 2-3=-25, 3-4=-34	89(F=-120) el: Lumber Increase=1.60, Plate Increase -131(F=-120)	e=1.60			
17) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-2=-2,2 Horz: 1-2=-18	2-3=-11, 3-4=-2, 2-7=-20, 5-6=	el: Lumber Increase=1.60, Plate Increase =-115(F=-120)	e=1.60			
18) Dead: Lumber Increas Uniform Loads (plf) Vert: 1-3=-20, Concentrated Loads (II	e=0.90, Plate Increase=0.90 3-4=-20, 2-7=-20, 5-6=-140(l	Plt. metal=0.90 =-120)				

Vert: 6=-1674(F)

19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek	
0.400.4004	10.05					153182525
0423-1891	M2-GR	ROOF SPECIAL	2	2	lob Reference (optional)	
Comtech. Inc.	Favetteville, NC - 28314.			8.430 s A	Aug 16 2021 MiTek Industries, Inc. Tue	Jul 19 11:34:45 2022 Page 3
,	· · · · · · · · · · · · · · · · · · ·		ID:9TsBS1yzEQ	Of2XeoOIL	TI2yyUuf-WgVe5I0o4B_cagm_au5Z2Br	nhyX7kSprpk_mMS_ywWHO
LOAD CASE(S) Si	tandard Except:					
Uniform Loads	(plf)					
Vert: 1-	-2=-33, 2-3=-40, 3-4=-33,	2-7=-20, 5-10=-133(F=-120), 6-10=-163(F=-1	20)			
Horz: 1	-2=-17, 2-3=-10, 3-4=-17					
Concentrated L	oads (lb)					
Vert: 6:	=-1256(F)			4.00		
20) Dead + 0.75 Rd	of Live (bal.) + 0.75(0.6 N	IWFRS Wind (Neg. Int) Right): Lumber Increa	ase=1.60, Plate Incre	ease=1.60)	
Uniform Loads	(pir)	2 7 20 E 10 121(E 120) 6 10 1E1(E 1	20)			
Vert: 1-	-2=-33, 2-3=-39, 3-4=-33, 2- 17 2 2- 11 2 4- 17	2-7=-20, 5-10=-121(F=-120), 6-10=-151(F=-	20)			
Concentrated L	-2=-17, 2-3=-11, 3-4=-17					
Vert: 6:	=-1256(F)					
21) Dead + 0.75 Ro	of Live (bal.) + 0.75(0.6 N	WFRS Wind (Neg. Int) 1st Parallel); Lumber	Increase=1.60. Plat	e Increase	e=1.60	
Uniform Loads	(plf)	······································				
Vert: 1-	-2=-24, 2-3=-31, 3-4=-24,	2-7=-20, 5-10=-133(F=-120), 6-10=-163(F=-1	20)			
Horz: 1	-2=-26, 2-3=-19, 3-4=-26		,			
Concentrated L	oads (lb)					
Vert: 6	=-1256(F)					
22) Dead + 0.75 Ro	of Live (bal.) + 0.75(0.6 N	IWFRS Wind (Neg. Int) 2nd Parallel): Lumber	Increase=1.60, Pla	te Increase	e=1.60	
Uniform Loads	(plf)					
Vert: 1	-2=-36, 2-3=-43, 3-4=-36,	2-7=-20, 5-10=-121(F=-120), 6-10=-151(F=-1	20)			
Horz: 1	-2=-14, 2-3=-7, 3-4=-14					
Concentrated L	oads (lb)					
Vert: 6:	=-1256(F)	an Increase 1.15 Dista Increase 1.15				
23) ISI Dead + Roo	i Live (unbalanced): Lumi	ber increase=1.15, Plate increase=1.15				
Vort: 1	(pii) 2 60 2 4 60 2 7 20	5 6- 140/E- 120)				
24) 2nd Dead + Ro	-5=-00, 5-4=-00, 2-7=-20, of Live (unbalanced): Lum	5-0=-140(F=-120) her Increase-1 15 Plate Increase-1 15				
Uniform Loads	(plf)	56 morease=1.10, riate morease=1.10				
Vert: 1-	-3=-20, 3-4=-20, 2-7=-20.	5-10=-140(F=-120), 6-10=-180(F=-120)				
25) 3rd Dead + 0.75	5 Roof Live (unbalanced):	Lumber Increase=1.15, Plate Increase=1.15				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Uniform Loads (plf)

Uniform Loads (plf)

Concentrated Loads (lb) Vert: 6=-1256(F)

Concentrated Loads (lb) Vert: 6=-1256(F)

Vert: 1-3=-50, 3-4=-50, 2-7=-20, 5-6=-140(F=-120)

26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-20, 3-4=-20, 2-7=-20, 5-10=-140(F=-120), 6-10=-170(F=-120)

Max Grav 1=192(LC 1), 3=193(LC 1), 4=294(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=6-5-9, 3=6-5-9, 4=6-5-9

Max Horz 1=-93(LC 8)

Max Uplift 1=-46(LC 13), 3=-46(LC 13)

Max Grav 1=142(LC 1), 3=142(LC 1), 4=182(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-9-9, 3=3-9-9, 4=3-9-9

Max Horz 1=-50(LC 8)

Max Uplift 1=-25(LC 13), 3=-25(LC 13)

Max Grav 1=77(LC 1), 3=77(LC 1), 4=99(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) N/A

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-5 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

July 20,2022

Products							
PlotID	Length	Product	Plies	Net Qty			
BM1	8' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2			
GDH	22' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2			

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

RE: J0423-1892 Lot 3 Overhills Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Wellco ContractorsProject Name: J0423-1892Lot/Block: 3Model: Plan 5Address:Subdivision: Overhills CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 6 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	153182529	ET1	7/20/2022
2	153182530	ET2	7/20/2022
3	153182531	F1	7/20/2022
4	153182532	F2	7/20/2022
5	153182533	F3	7/20/2022
6	153182534	F4	7/20/2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty Ply	Lot 3 Overhills Creek	153182529
J0423-1892	ET1	GABLE	1 1	Ich Reference (ontional)	100102020
Comtech, Inc, Fayettevil	lle, NC - 28314,		8.430 s Au	g 16 2021 MiTek Industries, Inc. Tue	Jul 19 11:34:59 2022 Page 1
			ID:9TsBS1yzEQOf2XeoOl	LTI2yyUuf-efm60igTp2gLPM1IG4dqxC	DN5ZAwfkA0ty995yBywWHA
0-1-8					0-1-8
					Scale: 1/4"=1'
	3x4 =		3x6 FP =	3x4 =	
1 2 3	4 5 6 7	8 9 10 11	12 13 14 15 16	17 18 19 20	21 22 23 24
	*****	*****	*****	*****	
48 47 46	45 44 43 4	2 41 40 39 38	7 36 35 34 33	32 31 30 29	28 27 2625
3x4 =	3x4	4 = 3x6 FP =		3x4 =	3x4 =

LOADING (ps TCLL 40. TCDL 10. BCLL 0. BCDL 5.	sf)).0).0).0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matrit	0.06 0.01 0.03 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 25	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat)				BRACING- TOP CHOF BOT CHOF	RD	Structu except Rigid ce	ral wood end verti eiling dire	sheathing di cals.	ectly applied or 6-0-0 o	oc purlins, xcept:
OTHERS	2x4 SP	No.3(flat)						10-0-0	oc bracir	g: 47-48,46-	17,45-46,44-45,43-44,4	2-43.

REACTIONS. All bearings 28-6-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 25

Max Grav All reactions 250 lb or less at joint(s) 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ All plates are 1.5x3 MT20 unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek
					153182530
J0423-1892	ET2	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayette	rille, NC - 28314,		6	3.430 s Aug	g 16 2021 MiTek Industries, Inc. Tue Jul 19 11:35:01 2022 Page 1

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Jul 19 11:35:01 2022 Page 1 ID:9TsBS1yzEQOf2XeoOILTI2yyUuf-a2utROijLfx3egBhNVfl0pSR2zb6C4VAQTeC03ywWH8

Scale = 1:43.3

LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	n (loc) l/defl L/d n - n/a 999 n - n/a 999 23 n/a n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER-				BRACING-			
TOP CHOR	RD 2x4 SP	No.1(flat)		TOP CHORD	Structural wood sheathing di	rectly applied or 10-0-0	oc purlins,
BOT CHOR	RD 2x4 SP	No.1(flat)			except end verticals.		
WEBS	2x4 SP	No.3(flat)		BOT CHORD	Rigid ceiling directly applied	or 6-0-0 oc bracing, E	xcept:
OTHERS	2x4 SP	No.3(flat)			10-0-0 oc bracing: 43-44,42-	43,41-42,40-41,39-40.	

REACTIONS. All bearings 25-11-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 23

Max Grav All reactions 250 lb or less at joint(s) 44, 43, 42, 41, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

^{0-&}lt;u>1</u>-8

Job	Truss	Truss Type	Qty	Ply	Lot 3 Overhills Creek	
						153182531
J0423-1892	F1	Floor	8	1		
					Job Reference (optional)	
Comtech, Inc, Fayette	/ille, NC - 28314,		8	.430 s Au	g 16 2021 MiTek Industries, Inc. Tue Jul 19 11:35:02 202	2 Page 1
		ID:9TsB	S1yzEQO	2XeoOILT	12yyUuf-2ESFfkjL6z3wGqmtxCAXZ1?SqNIYxPvKe7OmZ	VywWH7
0-1-8						
120	1 11 0				1 5 9	019
H⊢ <u></u>	1-11-0				1-5-6	Schlo: 1/4"-1
						Scale. 1/4 = 1

	12-6-8				28	3-6-0 -11-8		
Plate Offsets (X,Y)	[12:0-1-8,Edge], [22:0-1-8,Edge], [29:0-	1-8,Edge], [30:0-1-8,Edge]			13	-11-0		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.83 WB 0.53 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.18 21-22 -0.25 21-22 0.04 19	l/defl >999 >747 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)	11	BRACING- TOP CHOR BOT CHOR	D Structu except D Rigid c	ural wood end vert eiling dire	sheathing dire icals. ectly applied o	ectly applied or 6-0-0 o	oc purlins,
REACTIONS. (siz	ze) 32=0-3-8, 27=0-3-8, 19=0-3-8 Grav 32=594(LC 3), 27=1839(LC 1), 19=	=770(LC 4)						
FORCES. (lb) - Max TOP CHORD 2-3= 8-9 14-1 BOT CHORD 31-3 25-2 20-2 WEBS 2-32 6-28 11-2 16-2 16-2	 Comp./Max. Ten All forces 250 (lb) o -1126/0, 3-4=-1508/171, 4-5=-1508/171 =0/1922, 9-11=-597/322, 11-12=-1894/0 15=-2450/0, 15-16=-2450/0, 16-17=-1553 22=0/728, 30-31=0/1466, 29-30=-171/151 27=-692/0, 24-25=-76/1386, 23-24=0/248 21=0/2128, 19-20=0/954 2=-911/0, 2-31=0/518, 3-31=-442/70, 3-3 3=-877/0, 6-29=0/841, 5-29=-370/0, 9-27 24=0/720, 12-24=-873/0, 12-23=0/252, 13 21=0/412, 14-22=-428/127 	r less except when shown. , 5-6=-1508/171, 6-7=-537/78 12-13=-2482/0, 13-14=-2482/0 18, 28-29=-504/1104, 27-28= 12, 22-23=0/2482, 21-22=0/26 0=-311/54, 7-27=-1279/0, 7-2 =-1543/0, 9-25=0/1121, 11-26 7-19=-1195/0, 17-20=0/779, 1	3, 7-8=0/1922, 2/0, -1054/0, 310, 8=0/848, 5=-1076/0, 6-20=-748/0,					
NOTES- 1) Unbalanced floor lin 2) All plates are 3x4 M 3) Plates checked for	ve loads have been considered for this d /T20 unless otherwise indicated.	esign.					mm	u ₁₁₁ ,

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L		16-1-4			
		16-1-4			1
Plate Offsets (X,Y) [4:0-1-8,Edge], [14:0-1-8,Edge]					
LOADING (psf) SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES	GRIP
TCLL 40.0 Plate Grip DOL 1.00	TC 0.44	Vert(LL) -0.20	13-14 >941 480	MT20	244/190
TCDL 10.0 Lumber DOL 1.00	BC 0.77	Vert(CT) -0.28	13-14 >678 360	M18AHS	186/179
BCLL 0.0 Rep Stress Incr YES	WB 0.45	Horz(CT) 0.05	11 n/a n/a		
BCDL 5.0 Code IRC2015/TPI2014	Matrix-S			Weight: 82 lb	FT = 20%F, 11%E
LUMBER-		BRACING-			
TOP CHORD 2x4 SP No 1(flat)		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0	oc purlins
BOT CHORD 2x4 SP No 1(flat)			except end verticals		ee parme,
WEBS 2x4 SP No.3(flat)		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.	
REACTIONS. (size) 19=0-3-8 11=0-3-8					
Max Grav 19=866(LC 1), 11=866(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1801/0, 3-4=-2865/0, 4-5=-3270/0, 5-6=-3270/0, 6-7=-2921/0, 7-8=-2921/0, -1706/0

	0-3=-1130/0
BOT CHORD	18-19=0/1079, 16-18=0/2486, 15-16=0/3270, 14-15=0/3270, 13-14=0/3206, 12-13=0/2480,
	11-12=0/1081
WEBS	2-19=-1351/0, 2-18=0/940, 3-18=-891/0, 3-16=0/537, 4-16=-651/0, 9-11=-1354/0,

9-12=0/930, 8-12=-890/0, 8-13=0/563, 6-13=-365/0, 6-14=-196/408

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F	4-3-8		9-11-8				25-11-0			
	4-3-8	1	5-8-0	I			15-11-8			I
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,	Edge], [3:0-1-	8,Edge], [7:0-1-8,Edge	e], [12:0-1-8,Edge], [22:0)-1-8,Edge], [2	9:0-1-8,E	dge]		
LOADI TCLL TCDL BCLL BCDL	ING (psf) 40.0 10.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.00 1.00 YES PI2014	CSI. TC 0.67 BC 0.80 WB 0.51 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.19 21-22 -0.26 21-22 0.03 19	l/defl >999 >736 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%F, 11%E
LUMB TOP C BOT C WEBS	ER- HORD 2x4 SF HORD 2x4 SF 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)			BRACING- TOP CHORI BOT CHORI	D Structu except D Rigid ce	ral wood end verti eiling dire	sheathing di cals. ectly applied	rectly applied or 6-0-0 o	oc purlins,
DEVC		oringo 0.2.8 overat (it-la	anath) 22 Ma	shaniaal						

REACTIONS. All bearings 0-3-8 except (jt=length) 33=Mechanical.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 33

Max Grav All reactions 250 lb or less at joint(s) 33 except 30=605(LC 3), 27=1395(LC 11), 19=785(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 3-4=0/605, 4-5=0/605, 5-6=-98/846, 6-7=-98/846, 7-8=0/1320, 8-9=0/1320, 9-11=-797/0, 11-12=-2048/0, 12-13=-2609/0, 13-14=-2609/0, 14-15=-2526/0,
- 15-16=-2526/0, 16-17=-1592/0
- BOT CHORD 29-30=-578/44, 28-29=-846/98, 27-28=-846/98, 24-25=0/1564, 23-24=0/2609, 22-23=0/2609, 21-22=0/2705, 20-21=0/2184, 19-20=0/975
- WEBS 2-33=-102/273, 3-30=-617/0, 5-30=-374/159, 7-27=-838/0, 5-29=-343/76, 9-27=-1510/0, 9-25=0/1069, 11-25=-1012/0, 11-24=0/644, 12-24=-766/0, 17-19=-1220/0, 17-20=0/803, 16-20=-771/0, 16-21=0/436, 14-22=-317/238

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 33.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			6-5-4			
			6-5-4			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,	Edge], [11:0-1-8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.12 WB 0.11 Matrix-S	DEFL. ir Vert(LL) -0.01 Vert(CT) -0.01 Horz(CT) 0.00	n (loc) I/defi L/d I 7-8 >999 480 I 7-8 >999 360 D 7 n/a n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size	e) 10=Mechanical, 7=0-3-8					

Max Grav 10=340(LC 1), 7=334(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-507/0, 3-4=-507/0, 4-5=-507/0 9-10=0/361, 8-9=0/507, 7-8=0/359 TOP CHORD

BOT CHORD WEBS 5-7=-447/0, 2-10=-453/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		Client: Wellco C	ontractors		Date:	4/24/2023			Page 1 of 4
	-	Project: Plan 5			Input by:	Jonathan Landry	/		
j.	sDesign	Address:			Job Nam	e: Lot 3 Overhills C	reek		
					Project #	J0423-1892			
BM1	Kerto-S LVL	1.750" X 9.	250" 2-	Ply - PA	SSED	Level: Level			
				,					
		•							
•		• •	•						\overline{M} 1
	A Pitte and		alt in Sur	and a second second		- The law			9 1/4
-		•			a the subscript high				
	F End Grain				2 SPF	End Grain			
		CI1	0"						2 1/2"
<i>,</i>		0	0						3 1/2
1		6'1	0"			1			
Member lı	nformation			Rea	ctions UN	PATTERNED I	(Uplift)		
Туре:	Girder	Application:	Floor	Brg	Direction	Live	Dead	Snow	Wind Const
Plies:	2	Design Method:	ASD	1	Vertical	2358	810	0	0 0
Moisture Co	ndition: Dry	Building Code:	IBC/IRC 2015	2	Vertical	2358	810	0	0 0
Deflection Ll	L: 480	Load Sharing:	No						
Deflection TI	L: 360	Deck:	Not Checked						
Importance:	Normal - II	Ceiling:	Gypsum 1/2"						
Temperature	e: Temp <= 100°F			Bea	rinas				
				Be	aring Lengt	h Dir Cap	React D/L lb	b L letoT	Case Id Comb
				Be 1		Vert 31%	810 / 2358	3168 I	D+I
				En	d		01072000	0100 2	DIE
Analysis R	esults			Gra	ain				
Analysis	Actual Location	Allowed Capac	ity Comb.	Case 2 -	SPF 3.500"	Vert 31%	810 / 2358	3168 L	D+L
Moment	4710 ft-lb 3'5'	' 12542 ft-lb 0.376 (38%) D+L	L Gr	ain				
Unbraced	4710 ft-lb 3'5'	9747 ft-lb 0.483	48%) D+L	L					
Shear	2188 lb 5'9 1/4'	6907 lb 0.317	32%) D+L	L					
LL Defl inch	n 0.068 (L/1125) 3'5'	' 0.159 (L/480) 0.427 (43%) L	L					
TL Defl incl	h 0.091 (L/837) 3'5'	' 0.212 (L/360) 0.430 (43%) D+L	L					
Design No	otes								
1 Provide s	upport to prevent lateral movem	ent and rotation at the e	nd bearings. Latera	l support					
2 Fasten all	I plies using 2 rows of 10d Box r	nails (.128x3") at 12" o.c.	Maximum end dist	ance not					
to exceed	16".								
3 Refer to la 4 Girders a	ast page of calculations for faste	eners required for specifi the bottom edge only	ed loads.						
5 Top loads	must be supported equally by a	all plies.							
6 Top must	be laterally braced at end beari	ngs.							
7 Lateral sle	enderness ratio based on single	ply width.			1: 1 0	4.45 14/ 14		<u></u>	
U	Load Type	Location I rid Wid	n Side i		Live 1 Sho	ow 1.15 vvind *	Lo Const. 1.	25 Comme	nts
1	Uniform		Тор	230 PLF 6	90 PLF	UPLF UP	LF UP	LF F1	
	Self Weight			7 PLF					
Notes	che	micals	6. For flat	oofs provide proper dra	inage to prevent	Manufacturer Info		Comtech, Inc.	ad Suite #620
Calculated Structure	ed Designs is responsible only of the Hand	ling & Installation	ponding	, propor die	5 iz p. 510in	Metsä Wood		Fayetteville, NC	au, Suite #039
design criteria a responsibility of the	nd loadings shown. It is the 2. Ref	beams must not be cut or drilled er to manufacturer's product	information			301 Merritt 7 Building Norwalk, CT 06851	, 2nd Floor	28314 910-864-TRUS	
ensure the comp application, and to v	verify the dimensions and loads.	ening installation requirements ening details, beam strength value rovals	, mulu-ply s, and code			(800) 622-5850 www.metsawood.com	n/us		
Lumber	ditions unless noted otherwise 4. Des	naged Beams must not be used sign assumes top edge is laterally res	trained						
2. LVL not to be tr	eated with fire retardant or corrosive 5. Pro	vide lateral support at bearing por ral displacement and rotation	nts to avoid This de	sign is valid until 11	1/3/2024			CO	тесн
				-					

Version 21.80.417 Powered by iStruct[™] Dataset: 22111501.1

	Client: Wellco Contractors	Date:	4/24/2023	Page 2 of 4
	Project: Plan 5	Input by:	Jonathan Landry	-
isDesign	Address:	Job Nam	e: Lot 3 Overhills Creek	
		Proiect #	: J0423-1892	
DM4 Karta CLV/	4 760" X 0 260"		Level: Level	
BIVIT Kerto-S LVL	1.750 X 9.250	2-Ply - PASSED		
•	• •	• •	• • =	
			1/2	
			\overline{v}	/ / 9 1/
•	• •	• •	• • + +	
1 SPF End Grain		2 SPF	End Grain	
11	6'10"		1	3 1/2"
/	6140		ł	
	0 10		I	
Multi-Ply Analysis				
Fasten all plies using 2 rows of 10	d Box hails (.128x3") at 12"	o.c Maximum end distance n	ot to exceed 6".	
Capacity 0.0 %	_			
Load 0.0 PLI	F			
Vield Limit per Fool 103.7 f				
Yield Mode IV				
Edge Distance 1 1/2"				
Min. End Distance 3"				
Load Combination				
Duration Factor 1.00				
Nata	hemicale	6 For flat roofs provide proper drainage to assure	Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the Han	ndling & Installation	ponding	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based on the 1. L' design criteria and loadings shown. It is the 2. D	VL beams must not be cut or drilled		301 Merritt 7 Building, 2nd Floor	USA 28314
responsibility of the customer and/or the contractor to ensure the component suitability of the intended	egarding installation requirements, multi-ply astening details beam strength values and code		(800) 622-5850	910-864-TRUS
application, and to verify the dimensions and loads.	pprovals amaged Beams must not be used		www.metsawood.com/us	
1. Dry service conditions, unless noted otherwise	Design assumes top edge is laterally restrained			
2. LVL not to be treated with fire retardant or corrosive	ateral displacement and rotation	This design is valid until 11/3/2024		Connech

			Client:	Wellco Contractor	S	Date:	4/24/2023	Page 4 of 4
1	isDesign		Project: Address:	Plan 5		Input Job N	by: Jonathan Landry lame: Lot 3 Overhills Creek	
			4 7501	V 44 075		Proje	ct #: J0423-1892	
GDH	Kerto-S	LVL	1.750	X 11.8/5"	2-Piy	PASSED		
								_
	• •	•	• •	• •	• •	• •	• • • •	
	• •	•	• •	• •	• •	• •		····
1 SPF	End Grain						2 SPF En	d Grain //
					16'10"			3 1/2"
1					16'10"			1
Multi-Dh	v Analysis							
Fasten all	plies using 2	rows of 1	0d Box nails	(.128x3") at 12"	o.c Maxim	um end distance	e not to exceed 6".	
Capacity Load	<u> </u>	0.0 %) I F					
Yield Limit pe	er Foot	163.7	PLF					
Yield Limit pe Yield Mode	er Fastener	81.9 I IV	b.					
Edge Distand	ce	1 1/2'						
Load Combir	nation	3.						
Duration Fac	ctor	1.00						
Notes			chemicals		6. For flat roofs prov	vide proper drainage to prev	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struct structural adequi design criteria	ctured Designs is responsibl uacy of this component ba and loadings shown.	le only of the Ha ased on the <u>1.</u> It is the <u>2</u>	LVL beams must not be Refer to manufact	tion cut or drilled irer's product information	ponaing		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA 28314
responsibility of ensure the con application, and t	the customer and/or the opponent suitability of the to verify the dimensions and	contractor to he intended d loads.	regarding installation fastening details, bean approvals	requirements, multi-ply n strength values, and code			Norwaik, C1 06851 (800) 622-5850 www.metsawood.com/us	910-864-TRUS
Lumber 1. Dry service o	conditions, unless noted othe	3. 4. 5.	Damaged Beams must Design assumes top ed Provide lateral suppor	not be used ige is laterally restrained t at bearing points to avoid				Comtecul
2. LVL not to be	e treated with fire retardant	or corrosive	lateral displacement an	d rotation	This design is	valid until 11/3/2024		Connech