### **NOTE: MONO SLAB - STONE TO RUN TO THE BOTTOM OF WINDOW**

### **STEM WALL - STONE TO FOUNDATION HEIGHT**

# **ONLY**



### PLANS DESIGNED TO THE **2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE**

| MEAN ROOF HEIGHT: 25'-6    | HEIGHT TO P | RIDGE: 29'-9" |            |
|----------------------------|-------------|---------------|------------|
| CLIMATE ZONE               | ZONE 3A     | ZONE 4A       | ZONE 5A    |
| FENESTRATION U-FACTOR      | 0.35        | 0.35          | 0.35       |
| SKYLIGHT U-FACTOR          | 0.55        | 0.55          | 0.55       |
| GLAZED FENESTRATION SHGC   | 0.30        | 0.30          | 0.30       |
| CEILING R-VALUE            | 38 or 30ci  | 38 or 30ci    | 38 or 30ci |
| WALL R-VALUE               | 15          | 15            | 19         |
| FLOOR R-VALUE              | 19          | 19            | 30         |
| * BASEMENT WALL R-VALUE    | 5/13        | 10/15         | 10/15      |
| ** SLAB R-VALUE            | 0           | 10            | 10         |
| * CRAWL SPACE WALL R-VALUE | 5/13        | 10/15         | 10/19      |
|                            |             |               |            |

\* "10/13" MEANS R-10 SHEATHING INSULATION OR R-13 CAVITY INSULATION

\*\* INSULATION DEPTH WITH MONOLITHIC SLAB 24" OR FROM INSPECTION GAP TO BOTTOM OF FOOTING; INSULATION DEPTH WITH STEM WALL SLAB 24" OR TO BOTTOM OF FOUNDATION WALL DESTIGNED FOR WIND SPEED OF 120 MPH 3 SECOND CLIST (03 EASTEST MILE) EXPOSURE "R"

| BEDIGHEB FOR HIN                                                                   |                                                          | ••••••                                                          |                                                              | 0.15 000.                                                       | (100.1.101                                                   |                                                                  |                                                             |                                                               |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--|
| COMPONENT                                                                          | & CLA                                                    | DDING                                                           | DESIG                                                        | NED FC                                                          | DR THE                                                       | FOLLO                                                            | WING                                                        | LOADS                                                         |  |
| MEAN ROOF                                                                          | UP T                                                     | O 30'                                                           | 30'-1"                                                       | TO 35'                                                          | 35'-1"                                                       | TO 40'                                                           | 40'-1"                                                      | TO 45'                                                        |  |
| ZONE 1                                                                             | 14.2                                                     | -15.0                                                           | 14.9                                                         | -15.8                                                           | 15.5                                                         | -16.4                                                            | 15.9                                                        | -16.8                                                         |  |
| ZONE 2                                                                             | 14.2                                                     | -18.0                                                           | 14.9                                                         | -18.9                                                           | 15.5                                                         | -19.6                                                            | 15.9                                                        | -20.2                                                         |  |
| ZONE 3                                                                             | 14.2                                                     | -18.0                                                           | 14.9                                                         | -18.9                                                           | 15.5                                                         | -19.6                                                            | 15.9                                                        | -20.2                                                         |  |
| ZONE 4                                                                             | 15.5                                                     | -16.0                                                           | 16.3                                                         | -16.8                                                           | 16.9                                                         | -17.4                                                            | 17.4                                                        | -17.9                                                         |  |
| ZONE 5                                                                             | 15.5                                                     | -20.0                                                           | 16.3                                                         | -21.0                                                           | 16.9                                                         | -21.8                                                            | 17.4                                                        | -22.4                                                         |  |
| DESIGNED FOR WIND SPEED OF 130 MPH, 3 SECOND GUST (101 FASTEST MILE) EXPOSURE "B"  |                                                          |                                                                 |                                                              |                                                                 |                                                              |                                                                  |                                                             |                                                               |  |
| DESIGNED FOR WIN                                                                   | D SPEED                                                  | OF 130 MF                                                       | 2H, 3 SECC                                                   | OND GUST                                                        | (101 FAS                                                     | TEST MILE                                                        | E) EXPOSU                                                   | IRE "B"                                                       |  |
| DESIGNED FOR WIN                                                                   | D SPEED<br>& CLA                                         | OF 130 MF<br>DDING                                              | PH, 3 SECC                                                   | ond Gust<br>Ned FC                                              | (101 FAS<br>OR THE                                           | TEST MILE<br>FOLLO                                               | ) EXPOSU<br>WING                                            | IRE "B"<br>LOADS                                              |  |
| DESIGNED FOR WIN<br>COMPONENT<br>MEAN ROOF                                         | D SPEED<br>& CLA<br>UP T                                 | of 130 MF<br>DDING<br>O 30'                                     | भ, 3 SEC(<br>DESIG<br>30'-1"                                 | ond Gust<br><u>NED FC</u><br>TO 35'                             | (101 FAS<br>DR THE<br>35'-1"                                 | Test Mile<br>Follo<br>To 40'                                     | :) EXPOSU<br>WING  <br>40'-1"                               | re "b"<br>Loads<br>To 45'                                     |  |
| DESIGNED FOR WIN<br>COMPONENT<br>MEAN ROOF<br>ZONE 1                               | D SPEED<br>& CLA<br>UP T<br>16.7                         | OF 130 MF<br>DDING<br>O 30'<br>-18.0                            | 2H, 3 SEC<br>DESIG<br>30'-1"<br>17.5                         | ND GUST<br>NED FC<br>TO 35'<br>-18.9                            | (101 FAS<br>DR THE<br>35'-1"<br>18.2                         | TEST MILE<br>FOLLO<br>TO 40'<br>-19.6                            | E) EXPOSU<br>WING<br>40'-1"<br>18.7                         | RE "B"<br>LOADS<br>TO 45'<br>-20.2                            |  |
| DESIGNED FOR WIN<br>COMPONENT<br>MEAN ROOF<br>ZONE 1<br>ZONE 2                     | D SPEED<br>& CLA<br>UP T<br>16.7<br>16.7                 | OF 130 MF<br>DDING<br>O 30'<br>-18.0<br>-21.0                   | 2H, 3 SEC(<br>DESIG<br>30'-1"<br>17.5<br>17.5                | DND GUST<br>NED FC<br>TO 35'<br>-18.9<br>-22.1                  | (101 FAS<br>DR THE<br>35'-1"<br>18.2<br>18.2                 | TEST MILE<br>FOLLO<br>TO 40'<br>-19.6<br>-22.9                   | E) EXPOSU<br>WING<br>40'-1"<br>18.7<br>18.7                 | RE "B"<br>LOADS<br>TO 45'<br>-20.2<br>-23.5                   |  |
| DESIGNED FOR WIN<br>COMPONENT<br>MEAN ROOF<br>ZONE 1<br>ZONE 2<br>ZONE 3           | D SPEED<br>& CLA<br>UP T<br>16.7<br>16.7<br>16.7         | OF 130 MF<br>DDING<br>O 30'<br>-18.0<br>-21.0<br>-21.0          | H, 3 SECC<br>DESIG<br>30'-1"<br>17.5<br>17.5<br>17.5         | DND GUST<br>NED FC<br>TO 35'<br>-18.9<br>-22.1<br>-22.1         | (101 FAS<br>DR THE<br>35'-1"<br>18.2<br>18.2<br>18.2         | TEST MILE<br>FOLLO<br>TO 40'<br>-19.6<br>-22.9<br>-22.9          | E) EXPOSU<br>WING<br>40'-1"<br>18.7<br>18.7<br>18.7         | RE "B"<br>LOADS<br>TO 45'<br>-20.2<br>-23.5<br>-23.5          |  |
| DESIGNED FOR WIN<br>COMPONENT<br>MEAN ROOF<br>ZONE 1<br>ZONE 2<br>ZONE 3<br>ZONE 4 | D SPEED<br>& CLA<br>UP T<br>16.7<br>16.7<br>16.7<br>18.2 | OF 130 MF<br>DDING<br>O 30'<br>-18.0<br>-21.0<br>-21.0<br>-19.0 | н, 3 SECC<br>DESIG<br>30'-1"<br>17.5<br>17.5<br>17.5<br>19.1 | ND GUST<br>NED FC<br>TO 35'<br>-18.9<br>-22.1<br>-22.1<br>-20.0 | (101 FAS<br>DR THE<br>35'-1"<br>18.2<br>18.2<br>18.2<br>19.8 | TEST MILE<br>FOLLO<br>TO 40'<br>-19.6<br>-22.9<br>-22.9<br>-20.7 | E) EXPOSU<br>WING<br>40'-1"<br>18.7<br>18.7<br>18.7<br>20.4 | RE "B"<br>LOADS<br>TO 45'<br>-20.2<br>-23.5<br>-23.5<br>-21.3 |  |

# **ROOF VENTILATION**

### SECTION R806

SQUARE FOOTAGE OF ROOF TO BE VENTED = 1,344 SQ.FT. NET FREE CROSS VENTILATION NEEDED: WITHOUT 50% TO 80% OF VENTING 3'-0" ABOVE EAVE = 8.96 SQ.FT. WITH 50% TO 80% OF VENTING 3'-0" ABOVE EAVE; OR WITH CLASS I OR II VAPOR RETARDER ON WARM-IN-WINTER SIDE OF CEILING = 4.48 SQ.FT.

# **AIR LEAKAGE**

### Section N1102.4

N1102.4.1 Building thermal envelope. The building thermal envelope shall be durably sealed with an air barrier system to limit infiltration. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. For all homes, where present, the following shall be caulked, gasketed, weather stripped or otherwise sealed with an air barrier material or solid material consistent with Appendix E-2.4 of this code:

- 1. Blocking and sealing floor/ceiling systems and under knee walls
- open to unconditioned or exterior space. 2. Capping and sealing shafts or chases, including flue shafts.
- 3. Capping and sealing soffit or dropped ceiling areas.

# **GUARD RAIL NOTES**

### SECTION R312

R312.1 Where required. Guards shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or grade below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a guard.

R312.2 Height. Required guards at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads. Exceptions:

1. *Guards* on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads.

2. Where the top of the *guard* also serves as a handrail on the open sides of stairs, the top of the *quard* shall not be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

R312.3 Opening limitations. Required guards shall not have openings from the walking surface to the required *guard* height which allow passage of a sphere 4 inches (102 mm)in diameter. Exceptions:

1. The triangular openings at the open side of a stair, formed by the riser, tread and bottom rail of a *guard*, shall not allow passage of a sphere 6 inches (153 mm) in diameter.

2. *Guards* on the open sides of stairs shall not have openings which allow passage of a sphere 4 3/8 inches (111 mm) in diameter.











# **FOUNDATION STRUCTURAL**

115 to 130 mph wind zone (1 1/2 to 2 1/2 story)

**CONTINUOUS FOOTING:** 16" wide and 8" thick minimum. 20" wide minimum at brick veneer. Must extended 2" to either side of supported wall. **GIRDERS:** (3) 2 X 10 girder unless noted otherwise.

**PIERS:** 16" X 16" piers with 8" solid masonry cap on 30" X 30" X 10" concrete footing with maximum pier height of 64" with hollow masonry and 160" with solid masonry.

POINT LOADS: designates significant point load and should have solid blocking to pier, girder or foundation wall.
115 and 120 MPH ANCHORS BOLTS: 1/2" diameter anchor bolts embedded

**115 and 120 MPH ANCHORS BOLTS:** 1/2" diameter anchor bolts embedded minimum 7", maximum 6'-0" on center, within 12" of plate ends, and minimum two anchor bolts per plate.

**130 MPH ANCHORS BOLTS:** 1/2" diameter anchor bolts embedded minimum 15", maximum 4'-0" on center, within 12" of plate ends, and minimum two anchor bolts per plate.

**CONCRETE:** Concrete shall have a minimum 28 day strength of 3000 psi and a maximum 5" slump. Air entrained per table 402.2. All concrete shall be in accordance with ACI standards. All samples for pumping shall be taken from the exit end of the pump.

**SOILS:** Allowable soil bearing pressure assumed to be 2000 PSF. The contractor must contact a geotechnical engineer and a structural engineer if unsatisfactory subsurface conditions are encountered. The surface area adjacent to the foundation wall shall be provided with adequate drainage, and shall be graded so as to drain surface water away from foundation walls.



# WALL THICKNESSES

Exterior walls and walls adjacent to a garage area are drawn as 4" or as noted 2 X 6 are drawn as 6" to include 1/2" sheathing or gypsum. Subtract 1/2" for stud face. Interior walls are drawn as 3 1/2" or as noted 2 X 6

are drawn as 5 1/2", and do not include gypsum.

### **DWELLING / GARAGE SEPARATION**

REFER TO SECTIONS R302.5, R302.6, AND R302.7

**WALLS.** A minimum 1/2" gypsum board must be installed on all walls supporting floor/ceiling assemblies used for separation required by this section. **STAIRS.** A minimum of 1/2" gypsum board must be installed on the underside and exposed sides of all stairways.

**CEILINGS.** A minimum of 1/2" gypsum must be installed on the garage ceiling if there are no habitable room above the garage. If there are habitable room above the garage a minimum of 5/8" type X gypsum board must be installed on the garage ceiling. **OPENING PENETRATIONS.** Openings between the garage and residence shall be equipped with solid wood doors not less than 1 3/8 inches (35 mm) in thickness, solid or honeycomb core steel doors not less than 1 3/8 inches (35 mm) thick, or 20-minute fire-rated doors.

**DUCT PENETRATIONS.** Ducts in the garage and ducts penetrating the walls or ceilings separating the *dwelling* from the garage shall be constructed of a minimum No. 26 gage (0.48 mm) sheet steel or other *approved* material and shall have no openings into the garage.

**OTHER PENETRATIONS.** Penetrations through the separation required in Section R302.6 shall be protected as required by Section R302.11, Item 4.

# SQUARE FOOTAGE

| FRST FLOOR   | 798 SQ.FT.  |
|--------------|-------------|
| SECOND FLOOR | 743 SQ.FT.  |
| PLAYROOM     | 194 SQ.FT.  |
| TOTAL        | 1735 SQ.FT. |
| UNHEATED     | -           |
| GARAGE       | 400 SQ.FT.  |
| FRONT PORCH  | 86 SQ.FT.   |
| DECK/PORCH   | 120 SQ.FT.  |
| TOTAL        | 606 SQ.FT.  |
| UNHEATED O   | PTIONAL     |
| THIRD GARAGE | 270 SQ.FT.  |
| GARAGE       | 270 SQ.FT.  |
|              |             |



# **STRUCTURAL NOTES**

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code. JOB SITE PRACTICES AND SAFETY: Haynes Home Plans, Inc. assumes no

liability for contractors practices and procedures or safety program. Haynes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract documents. All members shall be framed, anchored, and braced in accordance with good construction practice and the building code.

| DESIGN LOADS                 | LIVE LOAD | DEAD LOAD | DEFLECTION |
|------------------------------|-----------|-----------|------------|
| USE                          | (PSF)     | (PSF)     | (LL)       |
| Attics without storage       | 10        |           | L/240      |
| Attics with limited storage  | 20        | 10        | L/360      |
| Attics with fixed stairs     | 40        | 10        | L/360      |
| Balconies and decks          | 40        | 10        | L/360      |
| Fire escapes                 | 40        | 10        | L/360      |
| Guardrails and handrails     | 200       |           |            |
| Guardrail in-fill components | 50        |           |            |
| Passenger vehicle garages    | 50        | 10        | L/360      |
| Rooms other than sleeping    | 40        | 10        | L/360      |
| Sleeping rooms               | 30        | 10        | L/360      |
| Stairs                       | 40        |           | L/360      |
| Snow                         | 20        |           |            |

FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise.

### **ENGINEERED WOOD BEAMS**:

Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x10<sup>6</sup> PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x106 PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x106 PSI Install all connections per manufacturers instructions.

TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. **LINTELS:** Brick lintels shall be 3 1/2" x 3 1/2" x 1/4" steel angle for up to 6'-0" span. 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 1/2" x 3 1/2" x 1/4" steel angle with 1/2" bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise. FLOOR SHEATHING: OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing. ROOF SHEATHING: OSB or CDX roof sheathing minimum 3/8" thick for 16" on center rafters and 7/16" for 24" on center rafters.

**CONCRETE AND SOILS:** See foundation notes.

### **BRACE WALL PANEL NOTES**

**EXTERIOR WALLS:** All exterior walls to be sheathed with CS-WSP or CS-SFB in accordance with section R602.10.3 unless noted otherwise.

**GYPSUM:** All interior sides of exterior walls and both sides interior walls to have 1/2" gypsum installed. When not using method GB gypsum to be fastened per table R702.3.5. Method GB to be fastened per table R602.10.1.

**REQUIRED LENGTH OF BRACING:** Required brace wall length for each side of the circumscribed rectangle are interpolated per table R602.10.3. Methods CS-WSP and CS-SFB contribute their actual length. Method GB contributes 0.5 it's actual length. Method PF contributes 1.5 times its actual length. HD: 800 lbs hold down hold down device fastened to the edge of the brace wall panel closets to the corner.

Methods Per Table R602.10.1

**CS-WSP:** Shall be minimum 3/8" OSB or CDX nailed at 6" on center at edges and 12" on center at intermediate supports with 6d common nails or  $8d(2 1/2" \log x 0.113" diameter)$ . CS-SFB: Shall be minimum 1/2" structural fiber board nailed at 3" on center at edges and 3" on center at intermediate supports with  $1 \frac{1}{2}$  long x 0.12" diameter galvanized roofing nails

**GB:** Interior walls show as GB are to have minimum 1/2" gypsum board on both sides of the wall fastened at 7" on center at edges and 7" on center at intermediate supports with minimum 5d cooler nails or #6 screws. **PF**: Portal fame per figure R602.10.1







# **STRUCTURAL NOTES**

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code.

JOB SITE PRACTICES AND SAFETY: Haynes Home Plans, Inc. assumes no liability for contractors practices and procedures or safety program. Havnes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract documents. All members shall be framed, anchored, and braced in accordance with good construction practice and the building code.

| DESIGN LOADS                 | LIVE LOAD | DEAD LOAD | DEFLECTION |
|------------------------------|-----------|-----------|------------|
| USE                          | (PSF)     | (PSF)     | (LL)       |
| Attics without storage       | 10        |           | L/240      |
| Attics with limited storage  | 20        | 10        | L/360      |
| Attics with fixed stairs     | 40        | 10        | L/360      |
| Balconies and decks          | 40        | 10        | L/360      |
| Fire escapes                 | 40        | 10        | L/360      |
| Guardrails and handrails     | 200       |           |            |
| Guardrail in-fill components | 50        |           |            |
| Passenger vehicle garages    | 50        | 10        | L/360      |
| Rooms other than sleeping    | 40        | 10        | L/360      |
| Sleeping rooms               | 30        | 10        | L/360      |
| Stairs                       | 40        |           | L/360      |
| Snow                         | 20        |           |            |

FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise.

#### **ENGINEERED WOOD BEAMS:**

Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x106 PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x106 PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x106 PSI Install all connections per manufacturers instructions. TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. **LINTELS:** Brick lintels shall be 3 1/2" x 3 1/2" x 1/4" steel angle for up to 6'-0" span. 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 1/2" x 3 1/2" x 1/4" steel angle with 1/2" bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise. FLOOR SHEATHING: OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing. **ROOF SHEATHING:** OSB or CDX roof sheathing minimum 3/8" thick for 16" on center rafters and 7/16" for 24" on center rafters. **CONCRETE AND SOILS:** See foundation notes.

# **ATTIC ACCESS**

### SECTION R807

**R807.1 Attic access.** An attic access opening shall be provided to attic areas that exceed 400 square feet (37.16 m2) and have a vertical height of 60 inches (1524 mm) or greater. The net clear opening shall not be less than 20 inches by 30 inches (508 mm by 762 mm) and shall be located in a hallway or other readily accessible location. A 30-inch (762 mm) minimum unobstructed headroom in the attic space shall be provided at some point above the access opening. See Section M1305.1.3 for access requirements where mechanical equipment is located in attics.

### Exceptions:

1. Concealed areas not located over the main structure including porches, areas behind knee walls, dormers, bay windows, etc. are not required to have access.

2. Pull down stair treads, stringers, handrails, and hardware may protrude into the net clear opening.

with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. **ANCHORAGE.** All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics. BEARING. All trusses shall be designed for bearing on SPF #2 plates or



### **ROOF TRUSS REQUIREMENTS**

**TRUSS DESIGN.** Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. **KNEE WALL AND CEILING HEIGHTS.** All finished knee wall heights and ceiling heights are shown furred down 10" from roof decking for insulation. If for any reason the truss manufacturer fails to meet or exceed designated heel heights, finished knee wall heights, or finished ceiling heights shown on these drawings the finished square footage may vary. Any discrepancy must be brought to Haynes Home Plans, Inc. attention, so a suitable solution can be reached before construction begins. Any variation due to these conditions not being met is the reasonability of the truss manufacturer.

**ANCHORAGE.** All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics. **BEARING.** All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

**Plate Heights & Floor Systems.** See elevation page(s) for plate heights and floor system thicknesses.



HEEL HEIGHT ABOVE SECOND FLOOR PLATE







R315.1 Carbon monoxide alarms. In new construction, dwelling units shall be provided with an approved carbon monoxide alarm installed outside of each separate sleeping area in the immediate vicinity of the bedroom(s) as directed

interior alterations, repairs, fuel-fired appliance replacements, or additions requiring a permit occurs, or where one or more sleeping rooms are added or created, carbon monoxide alarms shall be provided in accordance with Section

audible in all bedrooms over background noise levels with all intervening doors closed. Single station carbon monoxide alarms shall be listed as complying with

shall not be less than 6 feet 8 inches (2032 mm) measured vertically from the sloped line adjoining the tread nosing or from the floor surface of the

requirements of this section. For the purposes of this section all dimensions and dimensioned surfaces shall be exclusive of carpets, rugs or runners. R311.7.4.1 Riser height. The maximum riser height shall be 8 1/4 inches

R311.7.4.2 Tread depth. The minimum tread depth shall be 9 inches (229

mm). The tread depth shall be measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. Winder treads shall have a minimum tread depth of 9 inches (229 mm) measured as above at a point 12 inches (305 mm) from the side where the treads are narrower. Winder treads shall have a

R311.7.4.3 Profile. The radius of curvature at the nosing shall be no greater than 9/16 inch (14 mm). A nosing not less than 3/4 inch (19 mm) but not more than 1 1/4 inches (32 mm) shall be provided on stairways with solid

**R311.7.7 Handrails.** Handrails shall be provided on at least one side of each

plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm)and not more than 38 inches (965 mm).

transition between flights, the transition from handrail to guardrail, or used at the start of a flight, the handrail height at the fittings or bendings shall

full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails

termination of the rails occurs within 6 inches (152 mm) of each other. If transitioning between a wall-mounted handrail and a guardrail/handrail, the





|        |                                                                                                                                                                                                                                                                                                                          | TI<br>R                                                                                                                               | ROC<br>RUS<br>Eeilly R<br>Fayet<br>Phon<br>Eave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF 8<br>SES<br>oad In<br>teville<br>e: (910)                                                                                                                                        | <b>TC</b><br><b>&amp; FL</b><br><b>&amp; B</b><br>adustr<br>, N.C.:<br>)) 864-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OOF<br>EAN<br>ial Par<br>28309<br>-8787                                                                                                                                       | <b>↓</b><br>∧S<br>k                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 10.0"  | All Truss Reactions are Less<br>than 3,000 lbs. Unless Noted Otherwise.<br>Denotes Reaction Greater than 3,000 lbs.<br>Reaction / # of Studs                                                                                                                                                                             | Bearing<br>deemed<br>requiren<br>attachec<br>requiren<br>size and<br>reaction<br>15000#.<br>retained<br>reaction<br>Signatur          | reactions<br>to comply<br>vents. The<br>I Tables (<br>vents) to<br>number of<br>s greater<br>to design<br>that exce<br>A register<br>to design<br>s that exce<br>a greater<br>to design<br>that exce<br>to design<br>s that exce<br>Jon<br>J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | less thar<br>y with the<br>ocntract<br>derived fi<br>determin<br>of wood s<br>than 3000<br>ed design<br>the supp<br>edd those<br>edd design<br>the supp<br>eed 1500<br>MATH<br>ONAT | a or equal<br>prescriptor<br>or shall r<br>room the p<br>e the min<br>tuds requires the<br>man profession<br>or t syste<br>e specifie<br>profession<br>or t syste<br>our t syste<br>syste<br>our t syste<br>our t syste<br>syste<br>syste<br>syste<br>syste<br>syste<br>syste | to 3000#<br>tive Code<br>efer to th<br>rescriptivi<br>imum foou<br>uired to s<br>to greater f<br>ional sha<br>ional shal<br>m for any<br>d in the a<br>onal shal<br>m for all | e Code<br>ndation<br>upport<br>han<br>li be<br>/<br>titached<br>l be                                            |
| 10' 8" | All Walls Shown Are<br>Considered Load Bearing<br>Roof Area = 2609.4 sq.ft.<br>Ridge Line = 101 ft.<br>Hip Line = 0 ft.<br>Horiz. OH = 178.48 ft.<br>Raked OH = 196.29 ft.<br>Decking = 90 sheets                                                                                                                        | NUM<br>NOLLOY 24 00<br>NOLLOY 24 00<br>NG<br>1700<br>3400<br>5100<br>6800<br>8500<br>10200<br>11900<br>13600<br>15300                 | (BASED<br>BER OF JA<br>BER OF JA<br>BOJ SQ12 SL<br>SQ2<br>BER OF JA<br>BER | ON TABLE<br>CK STUDS<br>HEADER<br>2550<br>5100<br>7650<br>10200<br>12750                                                                                                            | s s502.5(1<br>REQUIRED<br>GIRDER<br>VG SQNLS Q VGH<br>A                                                                               | ) & (b))<br>@ EA END                                                                                                                                                          | OF 803 SQU2 SQU2 SQU2 SQU2 SQU2 SQU2 SQU2 SQU2                                                                  |
| 12' 8" | 1. All exterior wall to wall dimensions are to<br>face of sheathing unless noted otherwise<br>2. All interior wall to truss dimensions are to<br>face of stud unless noted otherwise<br>3. All exterior wall to truss dimensions are to<br>face of stud unless noted otherwise<br>Box Storage<br>Drop Beam<br>Flush Beam | Sanford / Harnett                                                                                                                     | 53 Hillwood Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Roof                                                                                                                                                                                | 11/09/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jonathan Landry                                                                                                                                                               | Lenny Norris                                                                                                    |
| .0.9   | Connector InformationSymProductManufQtySupported<br>MemberHeaderTrussHUS26USP3NA16d/3-1/2"16d/3-1/2"                                                                                                                                                                                                                     | CITY / CO.                                                                                                                            | ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODEL                                                                                                                                                                               | DATE REV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRAWN BY                                                                                                                                                                      | SALES REP.                                                                                                      |
| 14' 4" | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                 | Weaver Homes                                                                                                                          | Lot 2 West Pointe III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nicholson / 2GLF, CP                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                               | J0623-2991                                                                                                      |
|        |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       | JOB NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>PLAN</b>                                                                                                                                                                         | SEAL DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               | JOB #                                                                                                           |
|        | ▲= Denotes Left End of Truss<br>(Reference Engineered Truss Drawing)                                                                                                                                                                                                                                                     | These to<br>comport<br>design<br>See ind<br>identified<br>designed<br>for the<br>support<br>and col<br>designed<br>consult<br>truss d | russes ar<br>nents to b<br>at the spe<br>ividual de<br>ad on the<br>ar is respo<br>ent bracii<br>overall st<br>t structurd<br>lumns is t<br>ar. For ge<br>BCSI-B1<br>elivery pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e designe<br>e incorpo<br>acification<br>esign she<br>placemen<br>onsible fo<br>ng of the<br>e includin<br>he respon<br>neral guid<br>and BCS<br>ckage or                           | ed as indi<br>orated into<br>n of the b<br>ets for ea<br>nt drawing<br>r tempora<br>roof and<br>he desig<br>g header:<br>nsibility of<br>lance reg<br>I-B3 prov<br>online @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vidual bu<br>o the buil<br>uilding de<br>ch truss<br>g. The bu<br>ary and<br>floor syst<br>n of the tu<br>s, beams,<br>of the buil<br>arding br<br>ided with<br>sbcindus      | ilding<br>ding<br>signer.<br>design<br>ilding<br>em and<br>uss<br>, walls,<br>ding<br>acing,<br>the<br>stry.com |



|                                                                                                                                                                                                                                                                                                | T<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROO<br>ROO<br>RUS<br>Reilly F<br>Fayet<br>Phon<br>Fax                                                                                                                                                                                               | OF &<br>SES<br>Road Ir<br>teville<br>e: (910)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Te</b><br>& FL<br>& B<br>ndustr<br>2, N.C.<br>0) 864-4                                                                         | OOF<br>EAN<br>ial Pai<br>28309<br>-8787                                                                                                           | ا<br>۲<br>۸S<br>۲k                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| All Truss Reactions are Less<br>than 3,000 lbs. Unless Noted Otherwise.<br>Denotes Reaction Greater than 3,000 lbs.<br>Deastion (# of Stude                                                                                                                                                    | Bearing<br>deemed<br>requiren<br>attached<br>requiren<br>size and<br>reaction<br>15000#.<br>retained<br>reaction<br>Tables.<br>retained<br>reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reactions<br>to compl<br>nents. Th<br>d Tables (<br>nents) to<br>i number<br>s greater<br>A registe<br>that excr<br>A registe<br>that excr<br>A registe<br>to desig<br>s that excr<br>a regular<br>to desig<br>s that excr<br>a registe<br>to desig | s less that<br>y with the<br>e contrac<br>derived 1<br>determin<br>of wood s<br>than 300<br>red design<br>than 300<br>red design<br>of wood s<br>than 300<br>red design<br>of wood s<br>that so<br>that so | n or equa<br>e prescription<br>tor shall n<br>rom the p<br>e the min<br>studs req<br>0# but no<br>n profess<br>port syste<br>00#. | I to 3000¢<br>tive Code<br>efer to th<br>orescripti<br>imum for<br>uired to s<br>t greater<br>ional sha<br>em for all<br>to all sha<br>em for all | f are<br>e<br>we Code<br>indation<br>upport<br>than<br>II be<br>y<br>attached<br>II be |
|                                                                                                                                                                                                                                                                                                | LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J<br>AD CH                                                                                                                                                                                                                                          | onat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | han L<br>DR JAG                                                                                                                   | andr.<br>CK STU                                                                                                                                   | <b>y</b><br>IDS                                                                        |
| All Walls Shown Are<br>Considered Load Bearing                                                                                                                                                                                                                                                 | NUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (BASEI<br>MBER OF J/                                                                                                                                                                                                                                | OON TABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REQUIRED<br>/GIRDER                                                                                                               | (b))<br>@ EA END                                                                                                                                  | P OF                                                                                   |
| Roof Area = $2609.4$ sq.ft.<br>Ridge Line = $101$ ft.<br>Hip Line = $0$ ft.<br>Horiz. OH = $178.48$ ft.<br>Raked OH = $196.29$ ft.<br>Decking = $90$ sheets                                                                                                                                    | Every and a second seco | 2 2 4 2 6 7 2 TUDS<br>2 4 2 9 2 1 (2) PLY HEA                                                                                                                                                                                                       | 日本<br>日本<br>日本<br>日本<br>日本<br>日本<br>日本<br>日本<br>日本<br>日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARY (E) 1 2 3 4 5 0 0 6 0 0 6                                                                                                    | 340<br>680<br>102<br>136<br>170                                                                                                                   | (01-40)<br>00 1 2 3<br>00 0 4<br>00 5                                                  |
| Dimension Notes         1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise         2. All interior wall dimensions are to face of stud unless noted otherwise         3. All exterior wall to truss dimensions are to face of stud unless noted otherwise |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                   |                                                                                        |
| Hatch Legend<br>Second Floor Walls<br>Box Storage<br>Drop Beam<br>Flush Beam                                                                                                                                                                                                                   | Sanford / Harnett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53 Hillwood Drive                                                                                                                                                                                                                                   | Roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/09/23                                                                                                                          | Jonathan Landry                                                                                                                                   | Lenny Norris                                                                           |
| Connector Information         Sym       Product       Manuf       Qty       Supported<br>Member       Header       Truss         HUS26       USP       3       NA       16d/3-1/2"       16d/3-1/2"                                                                                            | <b>CITY / CO</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ADDRESS                                                                                                                                                                                                                                             | MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE REV.                                                                                                                         | DRAWN BY                                                                                                                                          | SALES REP.                                                                             |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                       | Weaver Homes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lot 2 West Pointe III                                                                                                                                                                                                                               | Nicholson / 2GLF, CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E N/A                                                                                                                             |                                                                                                                                                   | J0623-2991                                                                             |
|                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JOB NAME                                                                                                                                                                                                                                            | <b>PLACE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SEAL DATE                                                                                                                         |                                                                                                                                                   | JOB #                                                                                  |
| ▲= Denotes Left End of Truss                                                                                                                                                                                                                                                                   | These to<br>compo<br>design<br>See indidentifie<br>design<br>permar<br>for the<br>suppor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trusses a<br>nents to l<br>at the sp<br>lividual d<br>ed on the<br>er is resp<br>nent braci<br>overall si<br>t structur                                                                                                                             | re design<br>be incorp<br>ecification<br>esign she<br>placeme<br>onsible for<br>ng of the<br>tructure.<br>e includir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed as ind<br>orated int<br>n of the b<br>ets for ea<br>nt drawin<br>or tempor<br>roof and<br>The design<br>ng header              | ividual bu<br>o the building du<br>uilding du<br>ich truss<br>g. The bu<br>ary and<br>floor sys<br>n of the t<br>s, beams                         | uilding<br>ding<br>esigner.<br>design<br>ilding<br>tem anc<br>russ<br>, walls,         |

4 20.

1

0

ò

4

23'

(Reference Engineered Truss Drawing)



RE: J0623-2991 Lot 2 West Pointe III Trenco 818 Soundside Rd Edenton, NC 27932

### Site Information:

| Customer: Weaver Development | Project Name: J0623-2991     |
|------------------------------|------------------------------|
| Lot/Block: 2                 | Model: Nicholson             |
| Address: 53 Hillwood Court   | Subdivision: West Pointe III |
| City: Sanford                | State: NC                    |

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 150 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|-----|-----------|------------|-----------|
| 1   | 157942376 | A1         | 4/25/2023 | 21  | 157942396 | VD1        | 4/25/2023 |
| 2   | 157942377 | A1GE       | 4/25/2023 | 22  | 157942397 | VD2        | 4/25/2023 |
| 3   | 157942378 | A2         | 4/25/2023 |     |           |            |           |
| 4   | 157942379 | B1         | 4/25/2023 |     |           |            |           |
| 5   | 157942380 | B1SG       | 4/25/2023 |     |           |            |           |
| 6   | 157942381 | C1         | 4/25/2023 |     |           |            |           |
| 7   | 157942382 | C1GE       | 4/25/2023 |     |           |            |           |
| 8   | 157942383 | D1         | 4/25/2023 |     |           |            |           |
| 9   | 157942384 | D1-GR      | 4/25/2023 |     |           |            |           |
| 10  | 157942385 | D1GE       | 4/25/2023 |     |           |            |           |
| 11  | 157942386 | G1         | 4/25/2023 |     |           |            |           |
| 12  | 157942387 | G1GE       | 4/25/2023 |     |           |            |           |
| 13  | 157942388 | H1GE       | 4/25/2023 |     |           |            |           |
| 14  | 157942389 | M1         | 4/25/2023 |     |           |            |           |
| 15  | 157942390 | M1GE       | 4/25/2023 |     |           |            |           |
| 16  | 157942391 | M2-GR      | 4/25/2023 |     |           |            |           |
| 17  | 157942392 | PB         | 4/25/2023 |     |           |            |           |
| 18  | 157942393 | VB1        | 4/25/2023 |     |           |            |           |
| 19  | 157942394 | VB2        | 4/25/2023 |     |           |            |           |
| 20  | 157942395 | VB3        | 4/25/2023 |     |           |            |           |
|     |           |            |           |     |           |            |           |

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric



4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 176 lb uplift at joint 2 and 176 lb uplift at joint 8.

April 25,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

April 25,2023





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932



| LUADING (psi)     | SPACING- 2-0-0                            | CSI.                    |                | i (ioc) i/deli L/d                | PLATES GRIP                        |
|-------------------|-------------------------------------------|-------------------------|----------------|-----------------------------------|------------------------------------|
| TCLL 20.0         | Plate Grip DOL 1.15                       | TC 0.30                 | Vert(LL) -0.07 | 14 >999 360                       | MT20 244/190                       |
| TCDL 10.0         | Lumber DOL 1.15                           | BC 0.49                 | Vert(CT) -0.15 | 14 >999 240                       |                                    |
| BCLL 0.0 *        | Rep Stress Incr YES                       | WB 0.86                 | Horz(CT) 0.02  | 9 n/a n/a                         |                                    |
| BCDL 10.0         | Code IRC2015/TPI2014                      | Matrix-S                | Wind(LL) 0.08  | 10-13 >999 240                    | Weight: 291 lb FT = 20%            |
| LUMBER-           |                                           |                         | BRACING-       |                                   |                                    |
| TOP CHORD 2x6     | SP No.1 *Except*                          |                         | TOP CHORD      | Structural wood sheathing dir     | ectly applied or 6-0-0 oc purlins, |
| 4-7:              | 2x10 SP No.1                              |                         |                | except end verticals, and 2-0-    | -0 oc purlins (6-0-0 max.): 3-4.   |
| BOT CHORD 2x6     | SP No.1 *Except*                          |                         | BOT CHORD      | Rigid ceiling directly applied of | or 10-0-0 oc bracing. Except:      |
| 11-2              | 20: 2x4 SP No.1                           |                         |                | 4-10-0 oc bracing: 12-18          |                                    |
| WEBS 2x4          | SP No.2 *Except*                          |                         |                | 6-0-0 oc bracing: 11-12           |                                    |
| 3-19              | 9,6-10,5-24,1-22,7-9: 2x6 SP No.1         |                         |                | 10-0-0 oc bracing: 18-20          |                                    |
|                   |                                           |                         | JOINTS         | 1 Brace at Jt(s): 24, 18, 12      |                                    |
| REACTIONS. (s     | size) 22=Mechanical, 9=Mechanical, 21=    | 0-3-8                   |                |                                   |                                    |
| Max               | x Horz 22=-304(LC 8)                      |                         |                |                                   |                                    |
| Max               | x Uplift 21=-95(LC 9)                     |                         |                |                                   |                                    |
| Max               | x Grav 22=1398(LC 2), 9=1667(LC 2), 21=   | 153(LC 3)               |                |                                   |                                    |
|                   |                                           |                         |                |                                   |                                    |
| FORCES. (Ib) - Ma | ax. Comp./Max. Ten All forces 250 (lb) or | less except when shown. |                |                                   |                                    |
|                   |                                           |                         |                |                                   |                                    |

 
 TOP CHORD
 2-3=-1374/339, 3-4=-982/312, 4-5=-565/308, 5-6=-1165/322, 6-7=-1546/100, 7-9=-1595/126

 BOT CHORD
 21-22=-166/931, 19-21=-166/931, 16-19=0/1805, 13-16=0/2388, 10-13=0/1984, 18-20=-171/637, 15-18=-1569/0, 14-15=-1569/0, 12-14=-1569/0, 11-12=-323/258

 WEBS
 2-19=-132/358, 19-20=-80/596, 20-24=-57/801, 3-24=0/629, 10-11=-50/275,

6-11=-10/445, 5-24=-689/123, 2-22=-1367/197, 7-10=0/997, 4-24=-46/776, 15-16=-284/0, 18-19=-1430/0, 16-18=-1/795, 12-13=-11/452, 10-12=-1225/0

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 9-7-4, Exterior(2) 9-7-4 to 21-9-15, Interior(1) 21-9-15 to 24-10-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Ceiling dead load (10.0 psf) on member(s). 5-6, 5-24; Wall dead load (5.0psf) on member(s).20-24, 6-11
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20, 15-18, 14-15, 12-14, 11-12
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Attic room checked for L/360 deflection.

SEAL 036322 April 25,2023

> TRENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



-

818 Soundside Road Edenton, NC 27932

Scale = 1:78.5



<u>11-11-2</u> <u>13-11-0</u> <u>15-11-0</u> <u>17-10-14</u> <u>19-11-12</u> <u>2-1-2</u> <u>1-11-14</u> <u>2-0-0</u> <u>1-11-14</u> <u>2-0-14</u> 4-9-4 9-10-0 5-0-12 25-2-8 5-2-12 4-9-4

|                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0012 21                                                                                                                                                                   | 2 11111 200 1111                                                                                                                                                         | 1 2011 0212                                                                                                                                                                                             |                                                                                                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                            | [3:0-3-8,0-3-0], [4:0-5-8,0-3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                 |  |  |  |  |  |
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0                                                                                                                                                                                                                                           | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>CSI.</b><br>TC 0.30<br>BC 0.50<br>WB 0.73<br>Matrix-S                                                                                                                  | DEFL.         ir           Vert(LL)         -0.07           Vert(CT)         -0.14           Horz(CT)         0.03           Wind(LL)         0.10                       | l (loc) l/defl L/d<br>14 >999 360<br>14 >999 240<br>9 n/a n/a<br>10-13 >999 240                                                                                                                         | PLATES         GRIP           MT20         244/190           Weight: 339 lb         FT = 20%                                    |  |  |  |  |  |
| LUMBER-<br>TOP CHORD 2x6 SI<br>4-7: 2x<br>BOT CHORD 2x6 SI<br>11-20:<br>WEBS 2x4 SI<br>3-19,6<br>OTHERS 2x4 SI                                                                                                                                                                                                                                                                 | P No.1 *Except*<br>(10 SP No.1<br>P No.1 *Except*<br>2x4 SP No.1<br>P No.2 *Except*<br>-10,5-25,1-23,7-9,36-37,22-36: 2x6 SP f<br>P No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.1                                                                                                                                                                      | BRACING-<br>TOP CHORD<br>BOT CHORD<br>JOINTS                                                                                                                             | Structural wood sheathing<br>except end verticals, and<br>Rigid ceiling directly appli<br>4-9-0 oc bracing: 12-18<br>6-0-0 oc bracing: 11-12<br>10-0-0 oc bracing: 18-20<br>1 Brace at Jt(s): 25, 18, 1 | g directly applied or 6-0-0 oc purlins,<br>2-0-0 oc purlins (6-0-0 max.): 3-4.<br>ed or 10-0-0 oc bracing. Except:<br>2, 36, 37 |  |  |  |  |  |
| REACTIONS. (siz<br>Max H<br>Max L<br>Max C                                                                                                                                                                                                                                                                                                                                     | e) 23=Mechanical, 9=Mechanical, 21=<br>lorz 23=380(LC 11)<br>Jplift 23=-78(LC 12), 21=-15(LC 8)<br>Grav 23=1292(LC 2), 9=1643(LC 2), 21=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0-3-8<br>237(LC 3)                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                 |  |  |  |  |  |
| FORCES.         (lb) - Max           TOP CHORD         2-3=           7-9=         7-9=           BOT CHORD         22-2           10-1         11-1           WEBS         2-36           3-25         4-22           10-1         10-1                                                                                                                                       | FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.<br>TOP CHORD 2-3=-1174/271, 3-4=-764/261, 4-5=-465/268, 5-6=-1128/334, 6-7=-1529/110,<br>7-9=-1580/137<br>BOT CHORD 22-23=-353/905, 21-22=-268/994, 19-21=-268/994, 16-19=0/1912, 13-16=0/2447,<br>10-13=0/1983, 18-20=-141/360, 15-18=-1629/0, 12-14=-1629/0,<br>11-12=-319/359<br>WEBS 2-36=-222/455, 19-36=-205/455, 19-20=-90/582, 20-37=-68/761, 25-37=0/652,<br>3-25=0/503, 10-11=-19/304, 6-11=0/474, 5-25=-82/2172, 2-23=-1188/122, 7-10=-24/992,<br>4-25=-164/731, 15-16=-267/12, 18-19=-1371/0, 15=-24/699, 12-13=0/540,<br>10-12=-1275/0, 36-37=-408/251, 22-36=-404/241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                 |  |  |  |  |  |
| NOTES-<br>1) Unbalanced roof liv<br>2) Wind: ASCE 7-10; '<br>gable end zone and<br>DOL=1.60 plate grin<br>3) Truss designed for<br>Gable End Details a<br>4) Provide adequate d<br>5) All plates are 2x4 M<br>6) Gable studs spaced<br>7) This truss has been<br>8) * This truss has been<br>between the bottom<br>9) Ceiling dead load ('<br>10) Bottom chord live<br>, 11-12 | <ul> <li>4-25=-164/731, 15-16=-20772, 18-19=-13710, 18-18=-24/899, 12-13=0/540, 10-12=-1275/0, 36-37=-408/251, 22-36=-404/241</li> <li>NOTES- <ol> <li>Uhabalanced roof live loads have been considered for this design.</li> <li>Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1.</li> <li>Provide adequate drainage to prevent water ponding.</li> <li>All plates are 2x4 MT20 unless otherwise indicated.</li> <li>Gable studs spaced at 2-0-0 oc.</li> <li>This truss has been designed for a 10.0 psf bottom chord ine load nonconcurrent with any other live loads.</li> <li>* This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.</li> <li>Ceiling dead load (10.0 psf) on member(s). 5-6, 5-25; Wall dead load (5.0psf) on member(s).20-37, 25-37, 6-11</li> <li>Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20, 15-18, 14-15, 12-14</li> </ol></li></ul> April 25,2023 |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                 |  |  |  |  |  |
| WARNING - Verify d<br>Design valid for use or<br>a truss system. Before<br>building design. Braci<br>is always required for                                                                                                                                                                                                                                                    | er nors to truss connections.<br>ssign parameters and READ NOTES ON THIS AND i<br>ly with MiTek® connectors. This design is based or<br>use, the building designer must verify the applicable<br>indicated is to prevent buckling of individual trus.<br>stability and to prevent buckling of individual trus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCLUDED MITEK REFERENCE P<br>Ily upon parameters shown, and is<br>lity of design parameters and prop<br>s web and/or chord members only<br>ad injury and property damage. | AGE MII-7473 rev. 1/2/2023 B<br>s for an individual building cor<br>perly incorporate this design in<br>. Additional temporary and pe-<br>cor general guidance regarding | EFORE USE.<br>nponent, not<br>ito the overall<br>rrmanent bracing<br>o the                                                                                                                              |                                                                                                                                 |  |  |  |  |  |

is always required for stability and to prevent collaring of introductances were and/or of memory damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

|               |         | _                 |            | -        |            | I                                                      |           |
|---------------|---------|-------------------|------------|----------|------------|--------------------------------------------------------|-----------|
| Job           |         | Truss             | Truss Type | Qtv      | Plv        | Lot 2 West Pointe III                                  |           |
|               |         |                   |            |          | , í        |                                                        | 157040000 |
|               |         |                   |            |          |            |                                                        | 157942380 |
| 10622 2001    |         | P190              | CARLE      | 1        | 1          |                                                        |           |
| J0623-2991    |         | DISG              | GADLE      | 11       |            |                                                        |           |
|               |         |                   |            |          |            | lob Reference (optional)                               |           |
|               |         |                   |            |          |            |                                                        |           |
| Comtech. Inc. | avettev | ille. NC - 28314. |            | 8        | .430 s Jar | 6 2022 MiTek Industries, Inc. Mon Apr 24 12:27:42 2023 | Page 2    |
|               |         |                   |            |          |            |                                                        |           |
|               |         |                   | ID:uB1kl   | JvbQLa2U | VI5FAk1M   | 8Mvf?Wk-L2Gws2aQBQkerUWgoKUADUU 1x45Pl9sx8rG4u         | MZNVII    |
|               |         |                   | 1BidBill   | , salaro |            |                                                        |           |

#### NOTES-

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 21.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
   Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)







|                     |                |        |                     |                | 4x4 =          |        |   | <br>- |
|---------------------|----------------|--------|---------------------|----------------|----------------|--------|---|-------|
| Plate Offsets (X,Y) | [6:0-4-0,Edge] |        |                     |                |                |        |   |       |
|                     |                | 5-2-12 | 2-0-14              | ነ-11-14' 2-0-0 | 1-11-14 2-0-14 | 5-2-12 | 1 |       |
|                     |                | 5-2-12 | <sub>1</sub> 7-3-10 | 9-3-8 11-3-8   | 13-3-6 15-4-4  | 20-7-0 | L |       |
|                     |                |        |                     |                | /              |        |   |       |

246 -

| LOADING         (ps           TCLL         20.           TCDL         10.           BCLL         0.           BCDL         10. | SPACING-         2-0-0           0         Plate Grip DOL         1.15           0         Lumber DOL         1.15           0 *         Rep Stress Incr         YES           0         Code IRC2015/TPI2014 | <b>CSI.</b><br>TC 0.29<br>BC 0.47<br>WB 0.20<br>Matrix-S | DEFL.         in           Vert(LL)         -0.07           Vert(CT)         -0.13           Horz(CT)         0.02           Wind(LL)         0.06 | (loc) l/defl L/d<br>18-19 >999 360<br>18-19 >999 240<br>12 n/a n/a<br>22 >999 240                                                                                                    | PLATES         GRIP           MT20         244/190           Weight: 251 lb         FT = 20% |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                      | 2x10 SP No.1 *Except*<br>1-3,9-10: 2x8 SP No.1<br>2x6 SP No.1 *Except*<br>15-23: 2x4 SP No.1<br>2x4 SP No.2 *Except*<br>8-13,4-22,5-7,2-24,10-12: 2x6 SP No.1                                                 |                                                          | BRACING-<br>TOP CHORD<br>BOT CHORD<br>JOINTS                                                                                                       | Structural wood sheathing dir<br>except end verticals.<br>Rigid ceiling directly applied of<br>4-10-0 oc bracing: 16-21<br>6-0-0 oc bracing: 21-23, 15-1<br>1 Brace at Jt(s): 16, 21 | ectly applied or 6-0-0 oc purlins,<br>or 10-0-0 oc bracing. Except:<br>6                     |
| REACTIONS.                                                                                                                     | (size) 24=0-3-8, 12=Mechanical<br>Max Horz 24=337(LC 9)<br>Max Gray 24=1447(LC 21), 12=1431(LC 20)                                                                                                            |                                                          |                                                                                                                                                    |                                                                                                                                                                                      |                                                                                              |

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1379/86, 4-5=-909/258, 5-6=-58/267, 6-7=-58/260, 7-8=-918/263, 8-10=-1363/72, 2-24=-1436/148, 10-12=-1420/87
- BOT CHORD 22-24=-371/438, 20-22=0/1931, 17-20=0/2302, 13-17=0/1768, 21-23=-177/298, 19-21=-1591/0, 18-19=-1591/0, 16-18=-1591/0, 15-16=-189/334
- WEBS 13-15=0/389, 8-15=0/560, 22-23=0/415, 4-23=0/586, 5-7=-1308/380, 2-22=0/900,
  - 10-13=0/926, 16-17=0/619, 13-16=-1321/0, 21-22=-1311/0, 20-21=0/607

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-2 to 3-8-11, Interior(1) 3-8-11 to 10-3-8, Exterior(2) 10-3-8 to 14-8-5, Interior(1) 14-8-5 to 20-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).8-15, 4-23
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 21-23, 19-21, 18-19, 16-18, 15-16
- 7) Refer to girder(s) for truss to truss connections.

8) Attic room checked for L/360 deflection.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)







Scale = 1:86.5



|        | 4x4 =                               |        |
|--------|-------------------------------------|--------|
| 5-2-12 | 7-3-10 9-3-8 11-3-8 13-3-6 15-4-4   | 20-7-0 |
| 5-2-12 | 2-0-14 1-11-14 2-0-0 1-11-14 2-0-14 | 5-2-12 |
|        |                                     |        |

H

| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [8:0-4-0,0-2-12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0212 20111                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                 |                                                                                   |                                                                   |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|
| LOADING (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0 *           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSI.<br>TC 0.26<br>BC 0.47<br>WB 0.30<br>Matrix-S                                                                                                                                             | DEFL. in<br>Vert(LL) -0.07<br>Vert(CT) -0.13<br>Horz(CT) 0.02<br>Wind(LL) 0.07                                                                                                | (loc) l/defl<br>22-25 >999<br>22-25 >999<br>16 n/a<br>27 >999                                                                   | L/d<br>360<br>240<br>n/a<br>240                                                   | PLATES<br>MT20<br>Weight: 282 lb                                  | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER-<br>TOP CHORD 2x10 S<br>1-4,12-<br>BOT CHORD 2x6 SP<br>20-28:<br>WEBS 2x4 SP<br>10-18,6<br>OTHERS 2x4 SP<br>REACTIONS. (size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P No.1 *Except*<br>15: 2x8 SP No.1<br>No.1 *Except*<br>2x4 SP No.1<br>No.2 *Except*<br>3-27,7-9,2-30,14-16: 2x6 SP No.1<br>No.2<br>) 30=0-3-8, 16=0-3-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                               | BRACING-<br>TOP CHORD<br>BOT CHORD<br>JOINTS                                                                                                                                  | Structural wood s<br>except end vertica<br>Rigid ceiling direc<br>5-0-0 oc bracing:<br>6-0-0 oc bracing:<br>1 Brace at Jt(s): 2 | heathing dira<br>als.<br>xtly applied o<br>21-26<br>26-28, 20-2<br>21, 26, 31, 33 | ectly applied or 6-0-0 (<br>or 10-0-0 oc bracing. E<br>1<br>3, 35 | oc purlins,<br>Except:             |
| FORCES. (lb) - Max. H<br>Max H<br>Max U<br>Max G<br>FORCES. (lb) - Max.<br>TOP CHORD 2-3=-<br>10-11<br>BOT CHORD 29-33<br>26-22<br>WEBS 18-20<br>2-33=<br>21-22<br>21-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>a) 10-05-05</li> <li>b) 10-05-05</li> <li>c) 10-05-05</li> <lic) 10-05-05<="" li=""> <lic) 10-05-05<="" li=""> <lic) 10-05-05<="" td=""><td>less except when shown<br/>2, 6-7=-934/302, 9-10=-93<br/>1331/54, 2-30=-1345/123<br/>941, 22-25=0/2226, 18-22<br/>8=0/644, 7-31=-1229/46<br/>3-34=-25/974, 34-35=-7/93<br/>/0, 25-26=-27/581, 3-33=</td><td>36/302,<br/>3, 14-16=-1345/123<br/>2=0/1737,<br/>1=-241/361<br/>1, 9-31=-1229/461,<br/>38, 14-35=-6/952,<br/>-264/115,</td><td></td><td></td><td></td><th></th></lic)></lic)></lic)></ul> | less except when shown<br>2, 6-7=-934/302, 9-10=-93<br>1331/54, 2-30=-1345/123<br>941, 22-25=0/2226, 18-22<br>8=0/644, 7-31=-1229/46<br>3-34=-25/974, 34-35=-7/93<br>/0, 25-26=-27/581, 3-33= | 36/302,<br>3, 14-16=-1345/123<br>2=0/1737,<br>1=-241/361<br>1, 9-31=-1229/461,<br>38, 14-35=-6/952,<br>-264/115,                                                              |                                                                                                                                 |                                                                                   |                                                                   |                                    |
| <ul> <li>13-35=-263/114</li> <li>NOTES- <ol> <li>Uhbalanced roof live loads have been considered for this design.</li> <li>Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>All plates are 2x6 MT20 unless otherwise indicated.</li> <li>Gable studs spaced at 2-0-0 oc.</li> <li>This truss has been designed for a 1.00 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>Celling dead load (10.0 psf) on member(s). 6-7, 9-10, 7-31, 9-31; Wall dead load (5.0psf) on member(s).10-20, 6-28</li> <li>Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 26-28, 24-26, 23-24, 21-23, 20-21</li> <li>Dorvide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 30, 16.</li> </ol></li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                               |                                                                                                                                 |                                                                                   |                                                                   |                                    |
| WARNING - Verify de<br>Design valid for use onl<br>a truss system. Before<br>building design. Bracin<br>is always required for st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sign parameters and READ NOTES ON THIS AND I<br>by with MiTek® connectors. This design is based or<br>use, the building designer must verify the applicab<br>g indicated is to prevent buckling of individual trus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NCLUDED MITEK REFERENCE<br>hly upon parameters shown, and<br>lity of design parameters and pro<br>s web and/or chord members on<br>pail injury, and property damage                           | PAGE MII-7473 rev. 1/2/2023 BI<br>is for an individual building con<br>operly incorporate this design in<br>ly. Additional temporary and pe<br>For general guidance regarding | EFORE USE.<br>nponent, not<br>to the overall<br>ermanent bracing<br>o the                                                       |                                                                                   |                                                                   |                                    |

is always required up stability and to prevent collappe without possible persons and up and possible persons and practing of thruse participations experiments and possible persons and practing of thruse persons and the persons and practing of thruse persons and the persons and practing of thruse persons and the person an and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=165, 6=166.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 25,2023



Edenton, NC 27932

| Job                   | Truss               | Truss Type    | Qty      | Ply         | Lot 2 West Pointe III                                  | -         |
|-----------------------|---------------------|---------------|----------|-------------|--------------------------------------------------------|-----------|
|                       |                     |               |          |             |                                                        | 157942384 |
| J0623-2991            | D1-GR               | COMMON GIRDER | 1        | 2           |                                                        |           |
|                       |                     |               |          | <b>_</b>    | Job Reference (optional)                               |           |
| Comtech, Inc, Fayette | eville, NC - 28314, |               |          | 3.430 s Jar | 6 2022 MiTek Industries, Inc. Mon Apr 24 12:27:53 2023 | Page 2    |
|                       |                     | ID:uB1        | kUybQLa2 | UVI5EAk1    | M8Myf?Wk-W9R49ojKbo64fBsyy8Al9oIVoWozq9aYg3R9nD        | zNVla     |

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 9=-1150(B) 10=-1150(B) 8=-1400(B) 11=-1150(B) 12=-1206(B) 13=-1150(B) 14=-1150(B) 15=-1150(B) 16=-1377(B) 17=-1400(B) 18=-1400(B) 18

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





|                                                                    |                                                                                                         |                                                   | 22-0-0                                                  |                                     |                             |                          | 1                                |                                    |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------|-----------------------------|--------------------------|----------------------------------|------------------------------------|
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.04<br>BC 0.02<br>WB 0.17<br>Matrix-S | DEFL.<br>Vert(LL) -0./<br>Vert(CT) -0./<br>Horz(CT) 0./ | in (loc)<br>00 14<br>00 14<br>00 14 | l/defl<br>n/r<br>n/r<br>n/a | L/d<br>120<br>120<br>n/a | PLATES<br>MT20<br>Weight: 181 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER-                                                            |                                                                                                         |                                                   | BRACING-                                                |                                     |                             |                          |                                  |                                    |

TOP CHORD

BOT CHORD

#### LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

#### REACTIONS. All bearings 22-0-0.

(lb) - Max Horz 2=-313(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 14, 20 except 2=-148(LC 8), 23=-108(LC 12), 24=-144(LC 12), 25=-129(LC 12), 26=-142(LC 12), 27=-207(LC 12), 19=-147(LC 13), 18=-130(LC 13), 17=-140(LC 13), 16=-186(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16 except 22=258(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-373/270, 7-8=-246/270, 8-9=-246/270, 13-14=-294/189

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 20 except (jt=lb) 2=148, 23=108, 24=144, 25=129, 26=142, 27=207, 19=147, 18=130, 17=140, 16=186.

TH CAN ORTH Mannannin MUTURI SEAL 036322 G mmm April 25,2023

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| L                                                                                                                                                          | 5-11-8                                                                              |                                                   |                                                               | 11-11-0                                                           |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| late Offsets (X,Y)                                                                                                                                         | <u>5-11-8</u><br>[2:0-0-0,0-1-15], [4:0-0-0,0-1-15]                                 |                                                   |                                                               | 5-11-8                                                            | · · · · · · · · · · · · · · · · · · ·                                                       |
| OADING         (psf)           CLL         20.0           CDL         10.0           CLL         0.0           CLL         10.0           CLL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | CSI.<br>TC 0.38<br>BC 0.18<br>WB 0.07<br>Matrix-S | DEFL. ir<br>Vert(LL) 0.05<br>Vert(CT) -0.03<br>Horz(CT) -0.01 | n (loc) l/defl L/d<br>2-6 >999 240<br>2-6 >999 240<br>4 n/a n/a   | PLATES         GRIP           MT20         244/190           Weight: 52 lb         FT = 20% |
| JMBER-<br>DP CHORD 2x4 SF<br>DT CHORD 2x6 SF<br>EBS 2x4 SF                                                                                                 | P No.1<br>P No.1<br>P No.2                                                          |                                                   | BRACING-<br>TOP CHORD<br>BOT CHORD                            | Structural wood sheathing dir<br>Rigid ceiling directly applied o | ectly applied or 6-0-0 oc purlins.<br>or 7-3-12 oc bracing.                                 |
| EACTIONS. (siz<br>Max H<br>Max U                                                                                                                           | e) 2=0-3-0, 4=0-3-0<br>lorz 2=37(LC 12)<br> plift 2=-324(LC 8), 4=-324(LC 9)        |                                                   |                                                               |                                                                   |                                                                                             |

Max Grav 2=529(LC 1), 4=529(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-805/1227, 3-4=-805/1227

BOT CHORD 2-6=-1046/693, 4-6=-1046/693

WEBS 3-6=-536/290

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-10-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=324, 4=324.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932





|                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>5-11-8</u><br>5-11-8                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                               | <u> </u>                                                                                                            |                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                   | [2:0-0-0,0-1-15], [8:0-0-0,0-1-15]                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                     |                                                                                             |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0                                                                                                                                                                                                                                                                                                                                                    | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                       | CSI.<br>TC 0.21<br>BC 0.19<br>WB 0.07<br>Matrix-S                                                                                                                                                                  | DEFL. i<br>Vert(LL) 0.0-<br>Vert(CT) -0.0:<br>Horz(CT) -0.0                                                                                                                   | n (loc) l/defl L/d<br>4 11 >999 240<br>3 13-14 >999 240<br>1 8 n/a n/a                                              | PLATES         GRIP           MT20         244/190           Weight: 57 lb         FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 SF<br>BOT CHORD 2x6 SF<br>WEBS 2x4 SF<br>OTHERS 2x4 SF                                                                                                                                                                                                                                                                                                                                       | P No.1<br>P No.1<br>P No.2<br>P No.2                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    | BRACING-<br>TOP CHORD<br>BOT CHORD                                                                                                                                            | Structural wood sheathing<br>Rigid ceiling directly applier                                                         | directly applied or 6-0-0 oc purlins.<br>d or 7-2-11 oc bracing.                            |
| REACTIONS. (size<br>Max H<br>Max U<br>Max G                                                                                                                                                                                                                                                                                                                                                                           | e) 2=0-3-0, 8=0-3-0<br>lorz 2=62(LC 12)<br> plift 2=-440(LC 8), 8=-440(LC 9)<br> rav 2=529(LC 1), 8=529(LC 1)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                     |                                                                                             |
| FORCES.         (lb) - Max.           TOP CHORD         2-3=-           7-8=-         7-8=-           BOT CHORD         2-14=           8-10         8-10           WEBS         5-12=                                                                                                                                                                                                                                | Comp./Max. Ten All forces 250 (lb) or<br>.792/1272, 3-4=-745/1266, 4-5=-738/130<br>.792/1272<br>=-1099/692, 13-14=-1099/692, 12-13=-1<br>I=-1099/692<br>=-621/301                                                                                                                                                                                                                                                                                                         | less except when shown<br>08, 5-6=-738/1308, 6-7=-7<br>099/692, 11-12=-1099/69                                                                                                                                     | n.<br>745/1266,<br>92, 10-11=-1099/692,                                                                                                                                       |                                                                                                                     |                                                                                             |
| <ul> <li>NOTES-</li> <li>1) Unbalanced roof live</li> <li>2) Wind: ASCE 7-10; V<br/>gable end zone and<br/>Lumber DOL=1.60 p</li> <li>3) Truss designed for v<br/>Gable End Details a</li> <li>4) All plates are 2x4 M</li> <li>5) Gable studs spaced</li> <li>6) This truss has been</li> <li>7) * This truss has been</li> <li>7) * This truss has been</li> <li>8) Provide mechanical<br/>2=440, 8=440.</li> </ul> | e loads have been considered for this de<br>/ult=150mph Vasd=119mph; TCDL=6.0p<br>C-C Exterior(2) zone; porch left and rigf<br>olate grip DOL=1.60<br>wind loads in the plane of the truss only.<br>s applicable, or consult qualified building<br>T20 unless otherwise indicated.<br>at 2-0-0 oc.<br>designed for a 10.0 psf bottom chord liv<br>n designed for a live load of 20.0psf on t<br>chord and any other members.<br>connection (by others) of truss to bearin | ssign.<br>bsf; BCDL=6.0psf; h=15ft;<br>nt exposed;C-C for memb<br>For studs exposed to wir<br>g designer as per ANSI/TI<br>e load nonconcurrent with<br>the bottom chord in all are<br>ng plate capable of withsta | ; Cat. II; Exp C; Enclose<br>ers and forces & MWFF<br>nd (normal to the face),<br>PI 1.<br>h any other live loads.<br>eas with a clearance gre<br>anding 100 lb uplift at joi | d; MWFRS (envelope)<br>S for reactions shown;<br>see Standard Industry<br>eater than 6-0-0<br>int(s) except (jt=lb) | SEAL<br>036322                                                                              |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GILB A. GILUN

April 25,2023



REACTIONS. All bearings 10-7-0.

(lb) - Max Horz 2=160(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8 except 12=-134(LC 12), 13=-154(LC 12), 10=-129(LC 13), 9=-159(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 11, 12, 13, 10, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8 except (jt=lb) 12=134, 13=154, 10=129, 9=159.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



|                                                 |                                               |                                   | 0-3-8                                              |                                                     |                                                    |
|-------------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
|                                                 | [0:0 0 0 1 0]                                 |                                   | 6-3-8                                              |                                                     | · · · · ·                                          |
| Plate Olisets (X, Y)                            | [6:0-2-0,0-1-8]                               |                                   |                                                    |                                                     |                                                    |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0         | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15 | <b>CSI.</b><br>TC 0.43<br>BC 0.45 | <b>DEFL.</b> in<br>Vert(LL) 0.17<br>Vert(CT) -0.12 | n (loc) l/defl L/d<br>2-5 >399 240<br>2-5 >589 240  | PLATES         GRIP           MT20         244/190 |
| BCLL 0.0 *<br>BCDL 10.0                         | Rep Stress Incr YES<br>Code IRC2015/TPI2014   | WB 0.00<br>Matrix-P               | Horz(CT) -0.00                                     | 5 n/a n/a                                           | Weight: 24 lb FT = 20%                             |
| LUMBER-<br>TOP CHORD 2x4 SF<br>BOT CHORD 2x4 SF | P No.1<br>P No.1                              |                                   | BRACING-<br>TOP CHORD                              | Structural wood sheathing dir except end verticals. | ectly applied or 6-0-0 oc purlins,                 |
| WEBS 2x4 SP<br>OTHERS 2x6 SP                    | P No.2<br>P No.1                              |                                   | BOT CHORD                                          | Rigid ceiling directly applied o                    | or 10-0-0 oc bracing.                              |
| REACTIONS. (siz                                 | e) 2=0-3-0, 5=0-3-8<br>Horz 2=75(LC 8)        |                                   |                                                    |                                                     |                                                    |

Max Holz 2=/3(LC 8) Max Uplift 2=-190(LC 8), 5=-148(LC 8) Max Grav 2=300(LC 1), 5=231(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 6-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=190, 5=148.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932



BRACING-

TOP CHORD

BOT CHORD

| FORCES | (Ib) - Max Comp (Max Ten - All forces 250 (Ib) or less except when shown |  |
|--------|--------------------------------------------------------------------------|--|

TOP CHORD 2-3=-205/251, 3-4=-164/268, 4-5=-137/260, 5-7=-163/320

BOT CHORD 2-9=-326/158, 8-9=-326/158, 7-8=-326/158

(size) 2=0-3-0, 7=0-3-8 Max Horz 2=108(LC 8)

Max Uplift 2=-262(LC 8), 7=-207(LC 8) Max Grav 2=300(LC 1), 7=231(LC 1)

#### NOTES-

LUMBER-

WFBS

OTHERS

TOP CHORD

BOT CHORD

REACTIONS.

2x4 SP No.1

2x4 SP No.1

2x4 SP No.2

2x4 SP No.2 \*Except\* 7-10: 2x6 SP No.1

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=262, 7=207.

# SEAL 036322 April 25,2023

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 9-9-4 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road

Edenton, NC 27932



 BOT CHORD
 2x6 SP 2400F 2.0E

 WEBS
 2x6 SP No.1 \*Except\*

 2-5: 2x4 SP No.2
 2x6 SP No.1

REACTIONS. (size) 5=0-3-0, 4=0-3-8 Max Grav 5=1738(LC 2), 4=2842(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1392 lb down at 1-8-12, and 1392 lb down at 3-8-12, and 1396 lb down at 5-10-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 4-5=-20 Concentrated Loads (lb) Vert: 4=-1247(F) 7=-1243(F) 8=-1243(F)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Max Uplift 2=-75(LC 13), 4=-84(LC 13), 6=-6(LC 12) Max Grav 2=142(LC 1), 4=142(LC 1), 6=151(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Edenton, NC 27932



BRACING-

TOP CHORD

BOT CHORD

|            |     |    | _   |
|------------|-----|----|-----|
| LL         | JMI | BE | R-  |
| <b>_</b> ` |     |    | · · |

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

**REACTIONS.** (size) 1=8-0-5, 3=8-0-5, 4=8-0-5

Max Horz 1=117(LC 9)

Max Uplift 1=-58(LC 13), 3=-58(LC 13)

Max Grav 1=178(LC 1), 3=178(LC 1), 4=229(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



**REACTIONS.** (size) 1=2-8-5, 3=2-8-5, 4=2-8-5

Max Horz 1=-32(LC 8)

Max Uplift 1=-16(LC 13), 3=-16(LC 13)

Max Grav 1=48(LC 1), 3=48(LC 1), 4=62(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 6-6-9, Exterior(2) 6-6-9 to 10-11-6, Interior(1) 10-11-6 to 12-7-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=153, 6=153.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



818 Soundside Road

Edenton, NC 27932



Max Grav 1=133(LC 1), 3=135(LC 20), 4=223(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



|        | <b>\</b>   |                  | 37' 0"           | " <b>O</b> "         |                         |           |              |            |
|--------|------------|------------------|------------------|----------------------|-------------------------|-----------|--------------|------------|
|        |            | 17' 11"          |                  | ,                    | •                       | 7' 1"     | •            | 12' 0"     |
| 1      |            |                  |                  |                      |                         |           |              | BBO        |
| 10. 0" |            |                  |                  |                      |                         |           |              |            |
|        |            | r<br>            |                  |                      |                         | ET4       |              |            |
|        | ×          |                  | 0                | <br>/                |                         | F6        | 5. 0.        | 2          |
|        |            |                  |                  |                      |                         | F6        | 2. O.        | > <b>○</b> |
|        |            | t.               | <br>             | N<br>N<br>N          |                         | F6        | 2. 0.        | BM3        |
| ÷.     |            |                  |                  |                      |                         | F6        | 2' 0"        |            |
|        |            |                  |                  |                      | $\overline{\mathbf{X}}$ | F6        | 2. 0.        |            |
| 23' 4  |            | 2. 0.            | <u>3(</u><br>3 : | <u>970#</u><br>Studs | Х́Ц                     | F5        | <b>5</b> .0. |            |
|        | F4         | 2. 0.            |                  |                      |                         | F2        | 2. 0.        |            |
|        | F4         | 2.0.             | 13<br>14         |                      | BM2                     | F2        | 2. 0.        |            |
|        | F4 9'8"    | <b>5</b>         | 8' 3"            |                      | 2' 6"                   | F2        | 2. 0         |            |
|        | <b>F4A</b> | 2: 0"            |                  | 4                    | 5647#<br>4 Studs 8      | F2A       | 2. 0         |            |
|        | F3<br>ET3  | .0               | ET2              | 0                    |                         | F1<br>ET1 | й<br>.0      |            |
|        |            |                  |                  |                      | 15                      |           |              |            |
| 20' 4" |            |                  |                  |                      |                         |           | BBO          |            |
|        |            | =========<br>GDH | =====            |                      | ===                     |           |              |            |
|        |            | 501              |                  |                      |                         |           |              |            |
|        | <u> </u>   | 20' 8"           |                  |                      |                         |           | 14' 4"       |            |







|                                         | /                                                                              | Client:                                                      | Weaver Develop                      | oment             |                 | Dat         | e:       | 11/9/202              | 23         |             |                 |                        | Page 1 of 8 |
|-----------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|-------------------|-----------------|-------------|----------|-----------------------|------------|-------------|-----------------|------------------------|-------------|
|                                         |                                                                                | Project:                                                     | Nicholson                           |                   |                 | Inpu        | ut by:   | Jonatha               | n Landry   |             |                 |                        |             |
| Li                                      | sDesign                                                                        | Address:                                                     | 53 Hillwood C                       | ourt              |                 | Job         | Name:    | Lot 2 W               | est Pointe | 111         |                 |                        |             |
|                                         | <u> </u>                                                                       | 2 000" V                                                     |                                     | <b>9 DI</b> V     | DAC             |             | ject #:  | J0623-2<br>evel: Leve | 993<br>I   |             |                 |                        |             |
| DIVI                                    | <b>Э-Р-г</b> #1                                                                | 2.000 X                                                      | 10.000                              | 2-Piy -           | PAS             | SED         |          |                       |            |             |                 |                        |             |
| •<br>•<br>1 SP                          | •<br>•<br>F 0-3-8                                                              |                                                              | 2 SPF 0-3-8                         |                   |                 |             |          |                       |            |             |                 |                        | 9 1/4       |
| /                                       |                                                                                | 4'                                                           |                                     | $\neg$            |                 |             |          |                       |            |             |                 | <i>~</i>               | 3"          |
| ł                                       |                                                                                | 4'                                                           |                                     | $\dashv$          |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
| Member I                                | nformation                                                                     |                                                              |                                     |                   | Rea             | octions     | UNP      | ATTERI                | NED Ib (   | Uplift)     |                 |                        |             |
| Туре:                                   | Girder                                                                         | Applica                                                      | ation: Floo                         | r                 | Brg             | Direc       | tion     | Live                  | e D        | ead         | Snow            | Wind                   | Cons        |
| Plies:<br>Moisture Co                   | 2<br>andition: Drv                                                             | Design                                                       | n Method: ASD                       | IRC 2015          |                 | Vertic      | al       | 262                   | 2          | 87          | 0               | 0                      | (           |
| Deflection L                            | L: 480                                                                         | Load S                                                       | Sharing: No                         | 1110 2013         | 2               | Vertic      | al       | 317                   |            | 106         | 0               | 0                      | C           |
| Deflection T                            | L: 360                                                                         | Deck:                                                        | Not                                 | Checked           |                 |             |          |                       |            |             |                 |                        |             |
| Importance:                             | Normal - II                                                                    |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
| Temperature                             | e: Temp <= 100°                                                                | F                                                            |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   | Bea             | arings      |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   | Be              | earing L    | ength    | Dir.                  | Cap. R     | eact D/L lb | o Total         | Ld. Case               | Ld. Comb.   |
|                                         |                                                                                |                                                              |                                     |                   | 1.              | SPF 3       | 3.500"   | Vert                  | 8%         | 87 / 262    | 350             | L                      | D+L         |
| Analycic P                              | oculto                                                                         |                                                              |                                     |                   | 2               | SPF 3       | 3.500"   | Vert                  | 9%         | 106 / 317   | 422             | L                      | D+L         |
| Analysis                                | Actual                                                                         | Location Allowed                                             | Capacity (                          | Comb Cas          | e               |             |          |                       |            |             |                 |                        |             |
| Moment                                  | 677 ft-lb                                                                      | 2'2" 3431 ft-lb                                              | 0.197 (20%) E                       | )+L L             | -               |             |          |                       |            |             |                 |                        |             |
| Unbraced                                | 677 ft-lb                                                                      | 2'2" 3324 ft-lb                                              | 0.204 (20%) E                       | D+L L             |                 |             |          |                       |            |             |                 |                        |             |
| Shear                                   | 422 lb                                                                         | 2'11 1/4" 2498 lb                                            | 0.169 (17%) E                       | D+L L             |                 |             |          |                       |            |             |                 |                        |             |
| LL Defl inc                             | h 0.003                                                                        | 2' 5/8" 0.089 (L/48                                          | 80) 0.037 (4%) L                    | . L               |                 |             |          |                       |            |             |                 |                        |             |
| TL Doff inc                             | (L/12864)                                                                      | 2' 5/8" 0 118 (1/36                                          | 0) 0.037 (4%) F                     | )+I I             |                 |             |          |                       |            |             |                 |                        |             |
|                                         | n 0.004 (L/9048)                                                               | 2 5/6 0.118 (L/30                                            | 0) 0.037 (4%) L                     |                   |                 |             |          |                       |            |             |                 |                        |             |
| 1 Provide s                             | DTES                                                                           | al movement and rotati                                       | on at the end bear                  | ings Lateral supr | ort             |             |          |                       |            |             |                 |                        |             |
| 2 Fasten al<br>to exceed                | be required at the inter<br>I plies using 2 rows of 1<br>d 6".                 | rior bearings by the bui<br>10d Box nails (.128x3")          | liding code.<br>) at 12" o.c. Maxim | um end distance   | not             |             |          |                       |            |             |                 |                        |             |
| 4 Concentr<br>present.                  | ated load fastener spec                                                        | cification is in addition                                    | to hanger fasteners                 | s if a hanger is  |                 |             |          |                       |            |             |                 |                        |             |
| 5 Girders a<br>6 Top must<br>7 Bottom m | re designed to be supp<br>be laterally braced at e<br>nust be laterally braced | oorted on the bottom ec<br>end bearings.<br>at end bearings. | lge only.                           |                   |                 |             |          |                       |            |             |                 |                        |             |
| 8 Lateral sl                            | enderness ratio based                                                          | on single ply width.                                         |                                     | ida De l          |                 | 1 1 1 1 1 1 | <b>S</b> | . 1 45                | 10/1       | Const       | 1.05 0          | mment-                 |             |
| ID                                      | Load Type                                                                      | Location                                                     | Trib Width Si                       | ide Dead          | 0.9             | Live 1      | Snov     | v 1.15                | Wind 1.6   | Const.      | 1.25 Co         | mments                 |             |
| 1                                       | Point                                                                          | 2-2-0                                                        | Ne                                  | ear Face 19       | 93 lb           | 579 lb      |          | 0 lb                  | 0 15       | )           | 0 lb F1         |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             | 1        | Manufactu             | rer Info   |             | Comtect         | h, Inc.<br>Bailly Baad |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             | Fayette         | ville                  |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             | Cumber<br>28314 | land                   |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     |                   |                 |             |          |                       |            |             |                 |                        |             |
|                                         |                                                                                |                                                              |                                     | This design is    | s valid until 6 | /28/2026    |          |                       |            |             |                 |                        |             |
| lorsion 22 40 70                        |                                                                                | atacot: 22001201 1447                                        |                                     | č                 |                 |             | L        |                       |            |             |                 |                        |             |



### Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. except for regions covered by concentrated load fastening. Maximum end distance not to exceed 6".

| Capacity                 | 0.0 %     |
|--------------------------|-----------|
| Load                     | 0.0 PLF   |
| Yield Limit per Foot     | 157.4 PLF |
| Yield Limit per Fastener | 78.7 lb.  |
| См                       | 1         |
| Yield Mode               | IV        |
| Edge Distance            | 1 1/2"    |
| Min. End Distance        | 3"        |
| Load Combination         |           |
| Duration Factor          | 1.00      |
|                          |           |

### **Concentrated Load**

Fasten at concentrated side load at 2-2-0 with a minimum of (6) – 10d Box nails (.128x3") in the

pattern shown.

| •                        |           |  |
|--------------------------|-----------|--|
| Capacity                 | 81.7 %    |  |
| Load                     | 386.0lb.  |  |
| Total Yield Limit        | 472.2 lb. |  |
| Cg                       | 1.0000    |  |
| См                       | 1         |  |
| Yield Limit per Fastener | 78.7 lb.  |  |
| Yield Mode               | IV        |  |
| Load Combination         | D+L       |  |
| Duration Factor          | 1.00      |  |
|                          |           |  |

#### Min/Max fastener distances for Concentrated Side Loads

This design is valid until 6/28/2026



|                                                                     |                                                                   | CI                                                | ient:                         | Weaver Dev                            | elopment                   |                     |                | Date:      | 11/9/202                 | 23                |              |                      |                    | Page 3 of 8   |
|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------|----------------------------|---------------------|----------------|------------|--------------------------|-------------------|--------------|----------------------|--------------------|---------------|
|                                                                     |                                                                   | Pr                                                | roject:                       | Nicholson                             |                            |                     |                | Input by:  | Jonatha                  | n Landry          |              |                      |                    |               |
| is                                                                  | Design                                                            | Ac                                                | ddress:                       | 53 Hillwoo                            | d Court                    |                     |                | Job Name   | : Lot 2 W                | est Pointe        | III          |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               | Sanford, N                            | IC 27332                   |                     |                | Project #: | J0623-2                  | 993               |              |                      |                    |               |
| DM2 I                                                               | Karta S IV                                                        | // 17                                             | 750"                          | V 4 4 00                              | 0" 2                       |                     |                |            | Level: Leve              |                   |              |                      |                    |               |
|                                                                     | Vento-3 LV                                                        | Ľ I./                                             | 50 4                          | <b>14.00</b>                          | 2.                         |                     | ASSE           | U          |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| 3                                                                   | 1                                                                 |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
|                                                                     | 4                                                                 |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               | ,                                     |                            |                     |                |            |                          |                   |              |                      |                    |               |
| V                                                                   |                                                                   |                                                   |                               | Non-second and and and and            |                            |                     |                |            |                          |                   |              |                      |                    | 1             |
|                                                                     | A STATISTICS OF LONG                                              |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      | MM                 |               |
|                                                                     | •                                                                 | •                                                 | •                             | •                                     |                            | •                   | •              |            |                          |                   |              |                      | IXIXI              | 1'2"          |
|                                                                     | a ritte                                                           |                                                   | 100                           |                                       | alt in Star                | aligner a           |                |            |                          |                   |              |                      | IAN I              | 12            |
| CONTRACTOR OF STREET, ST.                                           | •                                                                 |                                                   |                               | •                                     | and the state of the local | Street, March 199   |                |            |                          |                   |              |                      |                    | $\rightarrow$ |
| 1 SPF 0                                                             | -3-13                                                             |                                                   |                               |                                       |                            | 2 SPF               | 0-3-8          |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   | 0101                          |                                       |                            |                     |                |            |                          |                   |              |                      |                    | 4 /01         |
|                                                                     |                                                                   |                                                   | 8'2"                          |                                       |                            |                     |                |            |                          |                   |              |                      | 3                  | 3 1/2"        |
| 1                                                                   |                                                                   |                                                   | 8'2"                          |                                       |                            |                     | 1              |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
|                                                                     | e                                                                 |                                                   |                               |                                       |                            |                     | <b>_</b>       |            |                          |                   |              |                      |                    |               |
| Member In                                                           | formation                                                         |                                                   |                               |                                       |                            |                     | Reactio        | ons UN     | PATTERI                  | NED ID (          | Uplift)      |                      |                    |               |
| Туре:                                                               | Girder                                                            |                                                   | Applica                       | tion:                                 | Floor                      |                     | Brg Di         | rection    | Live                     | e D               | ead :        | Snow                 | Wind               | Const         |
| Plies:                                                              | 2                                                                 |                                                   | Design                        | Method:                               | ASD                        |                     | 1 Ve           | ertical    | 4199                     | 9                 | 1448         | 0                    | 0                  | 0             |
| Moisture Con                                                        | dition: Dry                                                       |                                                   | Building                      | g Code:                               | IBC/IRC 2015               | 5                   | 2 Ve           | ertical    | 2941                     |                   | 1029         | 0                    | 0                  | 0             |
| Deflection LL:                                                      | 480                                                               |                                                   | Load S                        | haring:                               | No                         |                     |                |            |                          |                   |              |                      |                    |               |
| Deflection TL:                                                      | 360                                                               |                                                   | Deck:                         |                                       | Not Checked                |                     |                |            |                          |                   |              |                      |                    |               |
| Importance:                                                         | Normal - II                                                       |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| Temperature:                                                        | Temp <= 100                                                       | °F                                                |                               |                                       |                            |                     | <u> </u>       |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     | Bearing        | gs         |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     | Bearing        | g Length   | n Dir.                   | Cap. R            | eact D/L lb  | Total                | Ld. Case           | Ld. Comb.     |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     | 1 - SPF        | 3.813"     | Vert                     | 100%              | 1448 / 4199  | 5647                 | L                  | D+L           |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     | 2 - SPF        | 3.500"     | Vert                     | 76%               | 1029 / 2941  | 3970                 | L                  | D+L           |
| Analysis Re                                                         | sults                                                             |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| Analysis                                                            | Actual                                                            | Location Al                                       | llowed                        | Capacity                              | Comb.                      | Case                |                |            |                          |                   |              |                      |                    |               |
| Moment                                                              | 7394 ft-lb 3                                                      | 3'11 15/16" 26                                    | 6999 ft-lb                    | 0.274 (27                             | %) D+L                     | L                   |                |            |                          |                   |              |                      |                    |               |
| Unbraced                                                            | 7394 ft-lb 3                                                      | 3'11 15/16" 13                                    | 3291 ft-lb                    | 0.556 (56                             | %) D+L                     | L                   |                |            |                          |                   |              |                      |                    |               |
| Shear                                                               | 5893 lb                                                           | 1'5 13/16" 10                                     | )453 lb                       | 0.564 (56                             | %) D+L                     | L                   |                |            |                          |                   |              |                      |                    |               |
| LL Defl inch                                                        | 0.050 (L/1859)                                                    | 4' 5/8" 0. <sup>-</sup>                           | 192 (L/48                     | ) 0.258 (26 <sup>°</sup>              | %) L                       | L                   |                |            |                          |                   |              |                      |                    |               |
| TL Defl inch                                                        | 0.067 (L/1378)                                                    | 4' 5/8" 0.2                                       | ,<br>256 (L/36                | )<br>0.261 (26 <sup>4</sup>           | ,<br>%) D+L                | L                   |                |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               | -, (                                  |                            |                     | 1              |            |                          |                   |              |                      |                    |               |
| Design Not                                                          | es                                                                |                                                   |                               |                                       |                            |                     | 4              |            |                          |                   |              |                      |                    |               |
| 1 Provide su<br>may also b                                          | pport to prevent later<br>e required at the inte                  | ral movement a<br>prior bearings h                | and rotations the built       | on at the end l                       | bearings. Late             | eral support        |                |            |                          |                   |              |                      |                    |               |
| 2 Fasten all p                                                      | plies using 3 rows of                                             | 10d Box nails                                     | (.128x3")                     | at 12" o.c. Ma                        | aximum end c               | listance not        |                |            |                          |                   |              |                      |                    |               |
| to exceed 6                                                         | 6".                                                               |                                                   | ,                             |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| 3 Refer to las                                                      | st page of calculation                                            | ns for fasteners                                  | s required                    | for specified                         | oads.                      |                     |                |            |                          |                   |              |                      |                    |               |
| 4 Concentrat                                                        | ed load fastener spe                                              | ecification is in                                 | addition to                   | o hanger faste                        | eners if a han             | ger is              |                |            |                          |                   |              |                      |                    |               |
| 5 Girders are                                                       | designed to be sup                                                | ported on the b                                   | oottom ed                     | ge only.                              |                            |                     |                |            |                          |                   |              |                      |                    |               |
| 6 Top must b                                                        | e laterally braced at                                             | end bearings.                                     |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| 7 Bottom mu                                                         | st be laterally braced                                            | d at end bearin                                   | gs.                           |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| 8 Lateral sler                                                      | nderness ratio based                                              | d on single ply                                   | width.                        |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| ID                                                                  | Load Type                                                         | Lo                                                | ocation                       | Trib Width                            | Side                       | Dead 0.9            | Live           | e 1 Sno    | w 1.15                   | Wind 1.6          | 6 Const. 1.2 | 25 Corr              | nments             |               |
| 1                                                                   | Point                                                             |                                                   | 0-7-0                         |                                       | Far Face                   | 321 lb              | 963            | lb         | 0 lb                     | O It              | 0 0          | lb F2A               |                    |               |
| 2                                                                   | Part. Uniform                                                     | 0-7-0 t                                           | o 8-2-0                       |                                       | Far Face                   | 116 PLF             | 347 P          | LF         | 0 PLF                    | 0 PLF             | = 0 PI       | LF F2                |                    |               |
| 2                                                                   | Point                                                             |                                                   | 070                           |                                       | Near Eaco                  | 277 lb              | 921            | lh         | 0.16                     | 0.14              | <b>`</b>     |                      |                    |               |
|                                                                     | E                                                                 | <b>a</b> = -                                      | 0-1-0                         |                                       |                            | 21110               | 001            |            | 0.0                      |                   | , U          |                      |                    |               |
| 4                                                                   | Part. Uniform                                                     | 0-7-0 t                                           | o 8-2-0                       |                                       | Near Face                  | 120 PLF             | 358 P          | LF         | 0 PLF                    | 0 PLF             | - 0 P        | LF F4                |                    |               |
|                                                                     | Self Weight                                                       |                                                   |                               |                                       |                            | 11 PLF              |                |            |                          |                   |              |                      |                    |               |
|                                                                     |                                                                   |                                                   |                               |                                       |                            |                     |                |            |                          |                   |              |                      |                    |               |
| Notes                                                               |                                                                   | chemicals                                         |                               |                                       | 6. For f                   | lat roofs provide p | roper drainage | to prevent | Manufactu                | rer Info          |              | Comtech,<br>1001 S R | Inc.<br>eilly Road |               |
| Calculated Structured<br>structural adequacy                        | Designs is responsible only o<br>of this component based on       | of the Handling &                                 | & Installati                  | on<br>ut or drilled                   | pondi                      | шy                  |                |            | Metsä Woo<br>301 Merritt | d<br>7 Building ( | and Floor    | Fayettevil           | le                 |               |
| design criteria and<br>responsibility of the                        | l loadings shown. It is customer and/or the contract              | the 2. Refer to<br>or to recording                | manufactur                    | er's product info<br>requirements     | ormation<br>multi-ply      |                     |                |            | Norwalk, C               | F 06851           |              | 28314                | nu                 |               |
| ensure the compor<br>application, and to ver                        | nent suitability of the inter<br>ify the dimensions and loads.    | nded fastening approvals                          | details, beam                 | strength values, a                    | nd code                    |                     |                |            | (800) 622-5<br>www.metsa | 850<br>wood.com/i | IS           |                      |                    |               |
| Lumber                                                              | lana unlanz - t- t- t- t- t                                       | <ol> <li>Damaged I</li> <li>Design ass</li> </ol> | Beams must n<br>sumes top eda | ot be used<br>e is laterally restrain | ed                         |                     |                |            |                          |                   |              |                      |                    |               |
| <ol> <li>Dry service condit</li> <li>LVL not to be treat</li> </ol> | ions, unless noted otherwise<br>ated with fire retardant or corro | osive 5. Provide la<br>lateral disp               | ateral support                | at bearing points to<br>rotation      | o avoid                    | design is valid     | until 6/28/20  | 126        |                          |                   |              |                      |                    |               |
| 1                                                                   |                                                                   |                                                   |                               |                                       | 1115                       | , acorgin io vallu  | unui 0/20/20   | ~          |                          |                   |              | 1                    |                    |               |



### Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. except for regions covered by concentrated load fastening. Maximum end distance not to exceed 6".

| Capacity                 | 97.3 %    |  |  |  |  |  |  |
|--------------------------|-----------|--|--|--|--|--|--|
| Load                     | 239.0 PLF |  |  |  |  |  |  |
| Yield Limit per Foot     | 245.6 PLF |  |  |  |  |  |  |
| Yield Limit per Fastener | 81.9 lb.  |  |  |  |  |  |  |
| См                       | 1         |  |  |  |  |  |  |
| Yield Mode               | IV        |  |  |  |  |  |  |
| Edge Distance            | 1 1/2"    |  |  |  |  |  |  |
| Min. End Distance        | 3"        |  |  |  |  |  |  |
| Load Combination         | D+L       |  |  |  |  |  |  |
| Duration Factor          | 1.00      |  |  |  |  |  |  |

#### Concentrated Load

Fasten at concentrated side load at 0-7-0 with a minimum of (9) – 10d Box nails (.128x3") in the

pattern shown.

| Capacity                 | 87.2 %    |  |
|--------------------------|-----------|--|
| Load                     | 642.0lb.  |  |
| Total Yield Limit        | 736.5 lb. |  |
| Cg                       | 0.9998    |  |
| См                       | 1         |  |
| Yield Limit per Fastener | 81.9 lb.  |  |
| Yield Mode               | IV        |  |
| Load Combination         | D+L       |  |
| Duration Factor          | 1.00      |  |
|                          |           |  |

#### Min/Max fastener distances for Concentrated Side Loads



| Notes                                                                                                                                                                                                                                                                              | chemicals                                                                                                                                                                                                                                               | 6. For flat roofs provide proper drainage to prevent | Manufacturer Info                                                                      | Comtech, Inc.                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|
| Calculated Structured Designs is responsible only of the<br>structural adequacy of this component based on the<br>design criteria and loadings shown. It is the<br>responsibility of the customer and/or the contractor to<br>contract the<br>component withbility of the interded | Handling & Installation<br>1. LVL beams must not be cut or drilled<br>2. Refer to manufacturer's product information<br>regarding installation requirements, multi-ply                                                                                  | ponding                                              | Metsä Wood<br>301 Merritt 7 Building, 2nd Floor<br>Norwalk, CT 06851<br>(800) 622 5850 | Fayetteville<br>Cumberland<br>28314 |
| application, and to verify the dimensions and loads.<br>Lumber<br>1. Dry service conditions, unless noted otherwise<br>2. LVL not to be treated with fire retardant or corrosive                                                                                                   | tastening details, beam strength values, and code<br>approvals<br>3. Damaged Beams must not be used<br>4. Design assumes top edge is laterally restrained<br>5. Provide lateral support at bearing points to avoid<br>lateral displacement and rotation | This design is valid until 6/28/2026                 | www.metsawood.com/us                                                                   |                                     |



| isDesign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client: Weaver Developme<br>Project: Nicholson<br>Address: 53 Hillwood Cou<br>Sanford NC 273                                                                                                                                                                                                                                                                                                                      | ent Date<br>Inpu<br>Irt Job                                                   | : 11/9/2023<br>t by: Jonathan Landry<br>Name: Lot 2 West Pointe III                                                                                                    | Page 6 of 8                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| BM3 Kerto-S LVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.750" X 14.000"                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Ply - PASSED                                                                | Level: Level                                                                                                                                                           |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                                                                                                        |                                                                            |
| 1 SPF 0-3-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                           | · · · ·                                                                       | 2 SPF 0-3-8                                                                                                                                                            | 1'2"                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10'7"<br>10'7"                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                                                                                        | <u>{</u><br><u>3</u> 1/2"                                                  |
| Multi-Ply Analysis         Fasten all plies using 3 rows of 10c         Capacity       81.9 %         Load       201.0 Pl         Yield Limit per Foot       245.6 Pl         Yield Limit per Fastener       81.9 lb.         Common Table       IV         Edge Distance       1 1/2"         Min. End Distance       3"         Load Combination       D+L         Duration Factor       1.00                                                                                                                                                                                                               | d Box nails (.128x3") at 12"<br>LF<br>LF                                                                                                                                                                                                                                                                                                                                                                          | o.c Maximum end distanc                                                       | e not to exceed 6".                                                                                                                                                    | Contect. Inc                                                               |
| Notes         che           Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the application, and to verify the dimensions and loads.         1. LVL           Lumber         3. Date         3. Date           1. Dry service conditions, unless noted otherwise         4. Dec         5. Pro-<br>to the source of the contractor to the source of the contractor to the source of the the source of the contractor to the source of the the the the source of the | amicals<br><b>31ing &amp; Installation</b><br>L beams must not be cut or drilled<br>fer to manufacturer's product information<br>grafing installation requirements, multi-ply<br>tening details, beam strength values, and code<br>provals<br>maged Beams must not be used<br>sign assumes top edge is laterally restrained<br>vide lateral support at bearing points to avoid<br>ard leindergement part drivting | <ol> <li>For flat roofs provide proper drainage to pre<br/>ponding</li> </ol> | Manufacturer Info           Metsä Wood           301 Merritt 7 Building, 2nd Floor           Norwalk, CT 06851           (800) 622-5850           www.metsawood.com/us | Comtech, Inc.<br>1001 S Reilly Road<br>Fayetteville<br>Cumberland<br>28314 |



| ł                                    | ie Dooi                                                     |                                  | Client:<br>Project:                                                        | Weaver Developme<br>Nicholson                            | ent                    | Date:<br>Input b               | 11<br>by: Jo      | /9/2023<br>nathan Landry                 |                                  | Page 8 of |
|--------------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------|-------------------|------------------------------------------|----------------------------------|-----------|
| _ <b> </b>                           | isDesign                                                    |                                  | Address:                                                                   | 53 Hillwood Cou<br>Sanford, NC 273                       | ırt<br>332             | Job Na<br>Project              | ame: Lo<br>t#: JO | ot 2 West Pointe III<br>623-2993         |                                  |           |
| GDH                                  | Kerto-S                                                     | LVL                              | 1.750"                                                                     | X 16.000"                                                | 2-Ply                  | - PASSED                       | Level             | : Level                                  |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  | ,         |
| •                                    | • • •                                                       | • •                              | • •                                                                        |                                                          | •••                    | • • •                          | •                 | • • •                                    | 1/2"                             | M 1       |
| •                                    |                                                             | •                                |                                                                            | • •                                                      | • •                    |                                | •                 | • • •                                    | <u></u>                          | 1'4"      |
| 1 SPF                                | End Grain 0-3-8                                             |                                  |                                                                            |                                                          |                        |                                |                   | 2 SPF End Grain                          | <sub>0-3-8</sub> ∟ ∧             | ,<br>     |
| <u> </u>                             |                                                             |                                  |                                                                            |                                                          | 18'10"                 |                                |                   |                                          |                                  | 3 1/2"    |
|                                      |                                                             |                                  |                                                                            |                                                          | 18'10"                 |                                |                   |                                          | 1                                |           |
| ulti_Dlv                             | , Analysis                                                  |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
| sten all                             | plies using 3 i                                             | ows of 1                         | 0d Box nails                                                               | (.128x3") at 12"                                         | o.c Maximi             | um end distance                | not to            | exceed 6".                               |                                  |           |
| pacity                               | <u>p</u>                                                    | 0.0 %                            | 6<br>6                                                                     | (                                                        |                        |                                |                   |                                          |                                  |           |
| ıa<br>Id Limit pe                    | er Foot                                                     | 0.0 P<br>245.6                   | 2LF<br>6 PLF                                                               |                                                          |                        |                                |                   |                                          |                                  |           |
| ld Limit pe                          | er Fastener                                                 | 81.9                             | lb.                                                                        |                                                          |                        |                                |                   |                                          |                                  |           |
| ld Mode                              |                                                             | 1<br>IV                          |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
| ge Distand                           | ce                                                          | 1 1/2                            | in .                                                                       |                                                          |                        |                                |                   |                                          |                                  |           |
| n. End Dist<br>ad Combin             | tance                                                       | 3"                               |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
| ration Fac                           | tor                                                         | 1.00                             |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
|                                      |                                                             |                                  |                                                                            |                                                          |                        |                                |                   |                                          |                                  |           |
| otes                                 |                                                             |                                  | chemicals                                                                  |                                                          | 6. For flat roofs prov | vide proper drainage to preven | Man               | ufacturer Info                           | Comtech, Inc.<br>1001 S Reillv F | Road      |
| alculated Struct<br>ructural adequa  | tured Designs is responsible<br>acy of this component ba    | e only of the H<br>sed on the 1. | andling & Installa                                                         | tion<br>cut or drilled                                   | ponding                |                                | Mets<br>301 I     | ä Wood<br>/lerritt 7 Building, 2nd Floor | Fayetteville                     |           |
| sign criteria<br>sponsibility of the | and loadings shown.<br>the customer and/or the c            | It is the 2.<br>ontractor to     | Refer to manufactu<br>regarding installation                               | rer's product information<br>requirements, multi-ply     |                        |                                | Norw<br>(800      | alk, CT 06851                            | 28314                            |           |
| plication, and to                    | to verify the dimensions and                                | loads.                           | approvals<br>Damaged Beams must                                            | strength values, and code not be used                    |                        |                                | www               | metsawood.com/us                         |                                  |           |
| . Dry service co                     | onditions, unless noted othe                                | rwise 5.                         | Design assumes top ed<br>Provide lateral support                           | ge is laterally restrained<br>at bearing points to avoid |                        |                                |                   |                                          |                                  |           |
| Dry service co<br>LVL not to be      | onditions, unless noted othe<br>treated with fire retardant | rwise 5.<br>or corrosive         | <ul> <li>Design assumes top ed</li> <li>Provide lateral support</li> </ul> | ge is laterally restrained<br>at bearing points to avoid |                        |                                |                   |                                          |                                  |           |

This design is valid until 6/28/2026



RE: J0623-2993 Lot 2 West Pointe III Trenco 818 Soundside Rd Edenton, NC 27932

#### Site Information:

Customer: Weaver Development Project Name: J0623-2993 Lot/Block: 2 Model: Nicholson Address: 53 Hillwood Court City: Sanford

Subdivision: West Pointe III State: NC

### General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|
| 1   | 157899244 | ET1        | 4/20/2023 |
| 2   | 157899245 | ET2        | 4/20/2023 |
| 3   | 157899246 | ET3        | 4/20/2023 |
| 4   | 157899247 | ET4        | 4/20/2023 |
| 5   | 157899248 | F1         | 4/20/2023 |
| 6   | 157899249 | F2         | 4/20/2023 |
| 7   | 157899250 | F2A        | 4/20/2023 |
| 8   | 157899251 | F3         | 4/20/2023 |
| 9   | 157899252 | F4         | 4/20/2023 |
| 10  | 157899253 | F4A        | 4/20/2023 |
| 11  | 157899254 | F5         | 4/20/2023 |
| 12  | 157899255 | F6         | 4/20/2023 |

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric



| LUMBER-   |                   | BRACING-  |                                                                        |
|-----------|-------------------|-----------|------------------------------------------------------------------------|
| TOP CHORD | 2x4 SP No.1(flat) | TOP CHORD | Structural wood sheathing directly applied or 4-7-0 oc purlins, except |
| BOT CHORD | 2x4 SP No.1(flat) |           | end verticals.                                                         |
| WEBS      | 2x4 SP No.3(flat) | BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc bracing.                   |
| OTHERS    | 2x4 SP No.3(flat) |           |                                                                        |

REACTIONS. All bearings 4-7-0.

Max Uplift All uplift 100 lb or less at joint(s) 6 (lb) -

Max Grav All reactions 250 lb or less at joint(s) 10, 6, 9, 8, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

#### 2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| lob                                                                                                                                 | Truss                                                                         | Truss Type                              |                                                          | Ot                                        |                          | Phy                   | Lot 2 West Poi                              | nte III                                              |                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------|-----------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------------|
| J0623-2993                                                                                                                          | ET2                                                                           | GABLE                                   |                                                          | 1                                         | , .                      | .,<br>1               |                                             |                                                      | 157899245                                    |
|                                                                                                                                     |                                                                               |                                         |                                                          |                                           |                          |                       | Job Reference                               | (optional)                                           |                                              |
| Comtech, Inc,                                                                                                                       | Fayetteville, NC - 28314,                                                     |                                         |                                                          | ID:uB1kUyb0                               | 8.4<br>La2UVI            | 430 s Ja<br>5EAk1M    | n 62022 MiTek<br>8Myf?Wk-RfC?F              | Industries, Inc. Thu Apr 20<br>PsB70Hq3NSgPqnL8w3uI1 | 0 14:52:27 2023 Page 1<br>XbGKWrCDoi7J4zJC?f |
|                                                                                                                                     |                                                                               |                                         |                                                          |                                           |                          |                       |                                             |                                                      | 0 <sub>[1]</sub> 8                           |
|                                                                                                                                     |                                                                               |                                         |                                                          |                                           |                          |                       |                                             |                                                      | Scale = 1:17.7                               |
| 3x4                                                                                                                                 |                                                                               |                                         |                                                          |                                           |                          |                       |                                             |                                                      | 3x4                                          |
| 1                                                                                                                                   | 2                                                                             | 3                                       | 4 <sup>3x4</sup> =                                       | 5                                         | 6                        |                       | 7                                           | 8                                                    | 9                                            |
|                                                                                                                                     | •                                                                             | •                                       |                                                          | •                                         | ¢                        | •                     | •                                           | •                                                    |                                              |
| 1-2-0                                                                                                                               |                                                                               |                                         |                                                          |                                           |                          |                       |                                             |                                                      | 2.0                                          |
|                                                                                                                                     |                                                                               |                                         |                                                          |                                           |                          | •                     | •<br>::::::::::::::::::::::::::::::::::::   |                                                      |                                              |
| 18                                                                                                                                  | 17                                                                            | 16                                      | 15                                                       | 14                                        | 13                       |                       | 12                                          | 11                                                   | 10                                           |
| 3x4                                                                                                                                 |                                                                               |                                         |                                                          | 3x4 =                                     |                          |                       |                                             |                                                      | 3x4 =                                        |
|                                                                                                                                     |                                                                               |                                         |                                                          |                                           |                          |                       |                                             |                                                      |                                              |
| 1-4-0                                                                                                                               | 2-8-0                                                                         | 4-0-0                                   | 5-4-0                                                    | 6-8-0                                     |                          | 1                     | 8-0-0                                       | 9-4-0                                                | 10-9-0                                       |
| 1-4-0                                                                                                                               | 1-4-0                                                                         | 1-4-0                                   | 1-4-0                                                    | 1-4-0                                     |                          | 1                     | 1-4-0                                       | 1-4-0                                                | 1-5-0                                        |
| Plate Offsets (X,Y)-                                                                                                                | - [1:Edge,0-1-8], [4:0-1-8                                                    | ,Edge], [14:0-1-8,Ec                    | lge], [18:Edge,0-1-8]                                    |                                           |                          |                       |                                             |                                                      |                                              |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code IRC2015/7 | 2-0-0<br>1.00<br>1.00<br>YES<br>IPI2014 | <b>CSI.</b><br>TC 0.07<br>BC 0.01<br>WB 0.03<br>Matrix-S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>14 | l/defl L/d<br>n/a 999<br>n/a 999<br>n/a n/a | PLATES<br>MT20<br>Weight: 49                         | <b>GRIP</b><br>244/190<br>b FT = 20%F, 11%E  |

| LUMBER-   |                   | BRACING-  |                                                                  |
|-----------|-------------------|-----------|------------------------------------------------------------------|
| TOP CHORD | 2x4 SP No.1(flat) | TOP CHORD | Structural wood sheathing directly applied or 10-0-0 oc purlins, |
| BOT CHORD | 2x4 SP No.1(flat) |           | except end verticals.                                            |
| WEBS      | 2x4 SP No.3(flat) | BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc bracing.             |
| OTHERS    | 2x4 SP No.3(flat) |           |                                                                  |

#### REACTIONS. All bearings 10-9-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

|               |             |                    | 1          |         |             |                         |                                    |                 |                                            |                             |
|---------------|-------------|--------------------|------------|---------|-------------|-------------------------|------------------------------------|-----------------|--------------------------------------------|-----------------------------|
| Job           |             | Truss              | Truss Type |         | Qty         | Ply                     | Lot 2 West Point                   | te III          |                                            | 157000040                   |
| 10622 2002    |             | ET2                | CARLE      |         | 1           | 1                       |                                    |                 |                                            | 157899246                   |
| 10023-2993    |             | E13                | GABLE      |         | 1           | 1                       | Job Reference (                    | optional)       |                                            |                             |
| Comtech, Inc, | Fayette     | /ille, NC - 28314, |            | ID:u    | uB1kUybQLa2 | 8.430 s Ja<br>UVI5EAk1M | n 6 2022 MiTek I<br>8Myf?Wk-RfC?Ps | ndustries, Inc. | Thu Apr 20 14:52:28 20<br>nL8w3uITXbGKWrCD | 023 Page 1<br>oi7J4zJC?f    |
|               |             |                    |            |         | ·           |                         | ·                                  |                 | C                                          | <sup>1</sup> 1 <sup>8</sup> |
|               |             |                    |            |         |             |                         |                                    |                 |                                            | Scale = 1:17.2              |
| 1-2-0         | 3x4   <br>1 | 2                  | 3          | 4 3x4 = | 5           |                         | 6                                  | 7               | 8                                          | 17<br>3x4 =                 |
| l             |             |                    |            |         |             | ******                  |                                    |                 |                                            |                             |
|               | 16          | 15                 | 14         | 13      | 12          |                         | 11                                 | 10              | 9                                          |                             |
|               | 3x4         |                    |            |         | 3x4 =       |                         |                                    |                 | 3x4                                        | =                           |
|               |             |                    |            |         |             |                         |                                    |                 |                                            |                             |
|               |             |                    |            |         |             |                         |                                    |                 |                                            |                             |

|                                                      | L                                    | 1-4-0                                                      | 2-8-0                                                                   | 4-0-0                                             | 5-4-0                                     |                          | 6-8-0                                               | 8-0-0                                                 | 9-4-8                                     | 8                                         |
|------------------------------------------------------|--------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                                      | I                                    | 1-4-0                                                      | 1-4-0                                                                   | 1-4-0                                             | 1-4-0                                     |                          | 1-4-0                                               | 1-4-0                                                 | 1-4-8                                     | 8                                         |
| Plate Offsets                                        | (X,Y)                                | [1:Edge,0-1-8], [                                          | [4:0-1-8,Edge], [12:0-1                                                 | -8,Edge], [16:Edge,0-1                            | -8], [17:0-1-8,0-1-8]                     |                          |                                                     |                                                       |                                           |                                           |
| LOADING (P<br>TCLL 40<br>TCDL 10<br>BCLL 0<br>BCDL 9 | osf)<br>0.0<br>0.0<br>0.0<br>5.0     | SPACINO<br>Plate Grip<br>Lumber D<br>Rep Stres<br>Code IRC | <b>G-</b> 2-0-0<br>DOL 1.00<br>DOL 1.00<br>ss Incr YES<br>C2015/TPI2014 | CSI.<br>TC 0.06<br>BC 0.01<br>WB 0.03<br>Matrix-S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>n/a<br>n/a<br>0.00 | (loc) l/defl<br>- n/a<br>- n/a<br>9 n/a             | L/d<br>999<br>999<br>n/a                              | PLATES<br>MT20<br>Weight: 43 lb           | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS            | 2x4 SF<br>2x4 SF<br>2x4 SF<br>2x4 SF | P No.1(flat)<br>P No.1(flat)<br>P No.3(flat)               |                                                                         |                                                   | BRACING-<br>TOP CHOR<br>BOT CHOR          | RD S<br>RD I             | Structural woo<br>except end ve<br>Rigid ceiling di | d sheathing direct<br>rticals.<br>rectly applied or 1 | tly applied or 6-0-0<br>0-0-0 oc bracing. | ) oc purlins,                             |

#### REACTIONS. All bearings 9-4-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job                 | Truss                 | Truss Type              | Qty Ply         | Lot 2 West Pointe III                         |                     |
|---------------------|-----------------------|-------------------------|-----------------|-----------------------------------------------|---------------------|
|                     |                       |                         |                 |                                               | 157899247           |
| J0623-2993          | ET4                   | GABLE                   | 1 1             |                                               |                     |
|                     |                       |                         |                 | Job Reference (optional)                      |                     |
| Comtech, Inc, Faye  | tteville, NC - 28314, |                         | 8.430 s Ja      | an 6 2022 MiTek Industries, Inc. Thu Apr 20 1 | 4:52:30 2023 Page 1 |
|                     |                       | ID:uB1kU                | ybQLa2UVI5EAk1N | //8Myf?Wk-RfC?PsB70Hq3NSgPqnL8w3uITXb         | GKWrCDoi7J4zJC?f    |
| 0- <del>1 </del> -8 |                       |                         |                 |                                               | 0-1-8               |
|                     |                       |                         |                 |                                               | Scale = 1:57.9      |
|                     |                       |                         |                 |                                               |                     |
|                     |                       |                         |                 |                                               |                     |
|                     |                       |                         |                 |                                               |                     |
|                     | 3x4 =                 | 346 FP ==               | 346             | 6 FP == 3x4 ==                                |                     |
|                     | 374 —                 | 3,0 11 =                |                 | 5 TT 5,47                                     |                     |
| 1 2 3               | 4 5 6 7 8             | 9 10 11 12 13 14 15 16  | 17 18 19        | 20 21 22 23 24 25 26                          | 27 28 29            |
|                     |                       |                         |                 |                                               |                     |
| KXXXXXXXXXXXXXXXXXX | *****                 | *****                   | *****           | ****                                          | *****               |
| 58 57 56            | 55 54 53 52 51        | 50 49 48 47 46 45 44 43 | 42 41 40 39     | 38 37 36 35 34 33                             | 32 31 30            |
| 3x4 =               | 3x4 =                 | 3x6 FP =                | 3x6 FP=         | 3x4 =                                         | 3x4 =               |

14-0 2-8-0 40-0 5-40 6-8-0 8-0 9-40 10-8-0 12-0-0 13-4-0 14-8-0 16-0-0 17-4-0 18-8-0 20-0-0 21-4-0 22-8-0 24-0-0 25-4-0 26-8-0 28-0-0 29-4-0 30-8-0 32-0-0 33-4-0 34-7-8 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0 1-4-0

| 1 1010 0110010 (71,17                                                                                                               | [0.0 1 0,Eugo], [2 1.0 1 0,Eugo], [00.0 1                                                               | 0,2090], [02.0 1 0,2090]                          |                                                         |                                                                                         |                                  |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.06<br>BC 0.01<br>WB 0.03<br>Matrix-S | DEFL. i<br>Vert(LL) n/<br>Vert(CT) n/<br>Horz(CT) -0.00 | n (loc) l/defl L/d<br>a - n/a 999<br>a - n/a 999<br>D 36 n/a n/a                        | PLATES<br>MT20<br>Weight: 146 lb | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 2x4 S<br>BOT CHORD 2x4 S<br>WEBS 2x4 S                                                                         | P No.1(flat)<br>P No.1(flat)<br>P No.3(flat)                                                            |                                                   | BRACING-<br>TOP CHORD<br>BOT CHORD                      | Structural wood sheathing di<br>except end verticals.<br>Rigid ceiling directly applied | rectly applied or 6-0-0 o        | oc purlins,                               |

REACTIONS. All bearings 34-7-8.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 58, 30, 57, 56, 55, 54, 53, 52, 51, 50, 48, 47, 46, 45, 44, 43, 42, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

> SEAL 036322 April 20,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932



|                                                                                                                                     |                                                                                                         |                                                   | <u>14-3-8</u><br>14-3-8                                              |                                                                                             |                                            |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                 | [5:0-1-8,Edge], [13:0-1-8,Edge]                                                                         |                                                   |                                                                      |                                                                                             |                                            |                                           |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.59<br>BC 0.86<br>WB 0.38<br>Matrix-S | <b>DEFL.</b> ir<br>Vert(LL) -0.18<br>Vert(CT) -0.24<br>Horz(CT) 0.04 | (loc) I/defi L/d<br>11-12 >925 480<br>11-12 >700 360<br>9 n/a n/a                           | PLATES<br>MT20<br>Weight: 71 lb            | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 2x4 SF<br>BOT CHORD 2x4 SF<br>WEBS 2x4 SF                                                                      | P No.1(flat)<br>P No.1(flat)<br>P No.3(flat)                                                            |                                                   | BRACING-<br>TOP CHORD<br>BOT CHORD                                   | Structural wood sheathing direct except end verticals.<br>Rigid ceiling directly applied or | tly applied or 6-0-0<br>10-0-0 oc bracing. | oc purlins,                               |

### **REACTIONS.** (size) 15=0-3-8, 9=Mechanical

Max Grav 15=766(LC 1), 9=772(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1532/0, 3-4=-2536/0, 4-5=-2536/0, 5-6=-2373/0, 6-7=-1553/0

BOT CHORD 14-15=0/951, 13-14=0/2110, 12-13=0/2536, 11-12=0/2536, 10-11=0/2135, 9-10=0/944

WEBS 2-15=-1190/0, 2-14=0/757, 3-14=-752/0, 3-13=0/731, 7-9=-1184/0, 7-10=0/793,

6-10=-757/0, 6-11=0/394, 5-11=-432/20, 4-13=-312/0

#### NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)





|                                                                                                                                     |                                                                        |                                                   |                                  |                           | 17-0-8                                    |                              |                               |                                      |                                        |                                                  |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|---------------------------|-------------------------------------------|------------------------------|-------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------------|------------------------------------------------------|
| Plate Offsets (X,                                                                                                                   | Y) [4:0-1-8,Edge], [15:0                                               | )-1-8,Edge]                                       |                                  |                           |                                           |                              |                               |                                      |                                        |                                                  |                                                      |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING-<br>Plate Grip DC<br>Lumber DOL<br>Rep Stress Ir<br>Code IRC20 | 2-0-0<br>DL 1.00<br>1.00<br>hor YES<br>15/TPI2014 | CSI.<br>TC<br>BC<br>WB<br>Matrix | 0.82<br>0.66<br>0.48<br>S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.28<br>-0.37<br>0.05 | (loc)<br>14-15<br>14-15<br>12 | l/defl<br>>728<br>>542<br>n/a        | L/d<br>480<br>360<br>n/a               | PLATES<br>MT20<br>M18AHS<br>Weight: 85 lb        | <b>GRIP</b><br>244/190<br>186/179<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 2<br>BOT CHORD 2<br>WEBS 2                                                                                     | 2x4 SP No.1(flat)<br>2x4 SP 2400F 2.0E(flat)<br>2x4 SP No.3(flat)      |                                                   |                                  |                           | BRACING-<br>TOP CHOF<br>BOT CHOF          | D<br>D                       | Structu<br>except<br>Rigid co | ral wood<br>end verti<br>eiling dire | sheathing di<br>cals.<br>ectly applied | rectly applied or 2-2-0<br>or 10-0-0 oc bracing. | oc purlins,                                          |
| REACTIONS.                                                                                                                          | (size) 20=0-3-8, 12=N<br>Max Grav 20=917(LC 1),                        | lechanical<br>I2=924(LC 1)                        |                                  |                           |                                           |                              |                               |                                      |                                        |                                                  |                                                      |

17-0-8

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1929/0, 3-4=-3122/0, 4-5=-3644/0, 5-7=-3644/0, 7-8=-3180/0, 8-9=-3180/0, 9-10=-1924/0

 BOT CHORD
 19-20=0/1150, 17-19=0/2667, 16-17=0/3644, 15-16=0/3644, 14-15=0/3518, 13-14=0/2673, 12-13=0/1149

 WEBS
 2-20=-1440/0, 2-19=0/1014, 3-19=-960/0, 3-17=0/636, 10-12=-1442/0, 10-13=0/1009, 9-13=-975/0, 9-14=0/648, 7-14=-431/0, 7-15=-144/537, 4-17=-845/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932





|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | 17-0-8                                                                             |                                                             |                                                |                                                  |                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                         | [4:0-1-8,Edge], [16:0-1-8,Edge]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | 11 0 0                                                                             |                                                             |                                                |                                                  |                                                      |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0                                                                                                                                                                                                                                                                                         | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CSI.</b><br>TC 0.72<br>BC 0.87<br>WB 0.53<br>Matrix-S                                                                                                                                     | DEFL.<br>Vert(LL) -0.3<br>Vert(CT) -0.4<br>Horz(CT) 0.0                            | in (loc) l/defl<br>1 15-16 >648<br>2 15-16 >480<br>6 13 n/a | L/d<br>480<br>360<br>n/a                       | PLATES<br>MT20<br>M18AHS<br>Weight: 89 lb        | <b>GRIP</b><br>244/190<br>186/179<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 2x4 SF<br>BOT CHORD 2x4 SF<br>WEBS 2x4 SF                                                                                                                                                                                                                                                                                                                                                              | 2 2400F 2.0E(flat)<br>2 2400F 2.0E(flat)<br>2 No.3(flat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              | BRACING-<br>TOP CHORD<br>BOT CHORD                                                 | Structural woo<br>except end ver<br>Rigid ceiling di        | d sheathing dir<br>ticals.<br>rectly applied o | rectly applied or 6-0-(<br>or 10-0-0 oc bracing. | ) oc purlins,                                        |
| REACTIONS. (size<br>Max G                                                                                                                                                                                                                                                                                                                                                                                                   | e) 21=0-3-8, 13=Mechanical<br>Grav 21=980(LC 1), 13=1283(LC 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                    |                                                             |                                                |                                                  |                                                      |
| FORCES.         (lb) - Max.           TOP CHORD         2-3=-<br>9-11.           BOT CHORD         20-2'           13-1         WEBS           2-21:<br>9-14:         9-14:                                                                                                                                                                                                                                                 | Comp./Max. Ten All forces 250 (lb) of<br>-2085/0, 3-4=-3437/0, 4-5=-4106/0, 5-7=<br>=-2689/0<br>1=0/1237, 18-20=0/2887, 17-18=0/4106<br>4=0/1802<br>=-1549/0, 2-20=0/1104, 3-20=-1044/0, 3<br>=-1041/0, 9-15=0/515, 7-15=-395/0, 7-11                                                                                                                                                                                                                                                                                                             | r less except when shown<br>4106/0, 7-8=-3878/0, 8-9<br>, 16-17=0/4106, 15-16=0/<br>18=0/767, 11-13=-2212//<br>6=-352/490, 4-18=-1025/0                                                      | 9=-3878/0,<br>4136, 14-15=0/3474,<br>0, 11-14=0/1108,<br>0, 4-17=-50/286           |                                                             |                                                |                                                  |                                                      |
| NOTES-<br>1) Unbalanced floor liv<br>2) All plates are MT20<br>3) All plates are 3x4 M<br>4) Plates checked for a<br>5) Refer to girder(s) for<br>6) Recommend 2x6 stt<br>Strongbacks to be a<br>7) CAUTION, Do not e<br>8) Hanger(s) or other c<br>chord. The design/s<br>9) In the LOAD CASE(<br>LOAD CASE(S) Stan<br>1) Dead + Floor Live (t<br>Uniform Loads (plf)<br>Vert: 13-21:<br>Concentrated Loads<br>Vert: 23=-4 | e loads have been considered for this de<br>plates unless otherwise indicated.<br>T20 unless otherwise indicated.<br>a plus or minus 1 degree rotation about i<br>r truss to truss connections.<br>rongbacks, on edge, spaced at 10-0-0 c<br>tttached to walls at their outer ends or re<br>rect truss backwards.<br>connection device(s) shall be provided si<br>selection of such connection device(s) is<br>S) section, loads applied to the face of t<br>dard<br>balanced): Lumber Increase=1.00, Plate<br>=-10, 1-12=-100<br>s (lb)<br>22(F) | esign.<br>ts center.<br>cc and fastened to each tr<br>istrained by other means.<br>ufficient to support concer<br>the responsibility of other<br>he truss are noted as from<br>Increase=1.00 | uss with 3-10d (0.131" .<br>ntrated load(s) 422 lb do<br>rs.<br>t (F) or back (B). | X 3") nails.<br>own at 14-5-0 on                            | top                                            | SI<br>O36<br>SI<br>O36<br>SI<br>O36              | ARO<br>ARO<br>ARO<br>NEER<br>GILBER                  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

April 20,2023



| L                                                                                                                                   |                                                                                                                                                                                 |                                                                   | 9-4-8                                     |                              |                              |                                     |                                               |                                                 |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|------------------------------|------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------------------|
| 1                                                                                                                                   |                                                                                                                                                                                 |                                                                   | 9-4-8                                     |                              |                              |                                     |                                               |                                                 | 1                                         |
| Plate Offsets (X,Y                                                                                                                  | ) [1:Edge,0-1-8], [3:0-1-8,Edge], [8:0-1-8,                                                                                                                                     | Edge], [12:0-1-8,0-1-8]                                           |                                           |                              |                              |                                     |                                               |                                                 |                                           |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014                                                                         | CSI.<br>TC 0.47<br>BC 0.53<br>WB 0.30<br>Matrix-S                 | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.09<br>-0.11<br>0.01 | (loc)<br>9<br>9<br>7         | l/defl<br>>999<br>>998<br>n/a       | L/d<br>480<br>360<br>n/a                      | <b>PLATES</b><br>MT20<br>Weight: 47 lb          | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 22<br>BOT CHORD 22<br>WEBS 22                                                                                  | 4 SP No.1(flat)<br>4 SP No.1(flat)<br>4 SP No.3(flat)                                                                                                                           |                                                                   | BRACING<br>TOP CHOP<br>BOT CHOP           | RD<br>RD                     | Structu<br>except<br>Rigid c | iral wood<br>end vert<br>eiling dir | l sheathing dire<br>icals.<br>ectly applied o | ectly applied or 6-0-0<br>or 10-0-0 oc bracing. | oc purlins,                               |
| REACTIONS.                                                                                                                          | (size) 11=Mechanical, 7=0-3-8<br>lax Grav 11=502(LC 1), 7=496(LC 1)                                                                                                             |                                                                   |                                           |                              |                              |                                     |                                               |                                                 |                                           |
| FORCES. (Ib) -<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                    | Max. Comp./Max. Ten All forces 250 (lb) or<br>2-3=-865/0, 3-4=-1039/0, 4-5=-1039/0<br>10-11=0/612, 9-10=0/1039, 8-9=0/1039, 7-8=<br>2-11=-768/0, 2-10=0/330, 5-7=-714/0, 5-8=0/ | less except when shown.<br>:0/573<br>623, 4-8=-289/0, 3-10=-294/0 | )                                         |                              |                              |                                     |                                               |                                                 |                                           |

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



|                                                                                                                                     |                                                                                                                            |                                                          | 17-7-0                                                               |                                                            |                                                  |                                                  |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                 | [1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1                                                                                   | -8,Edge]                                                 | 11-1-0                                                               |                                                            |                                                  |                                                  |                                                      |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014                                        | <b>CSI.</b><br>TC 0.44<br>BC 0.75<br>WB 0.50<br>Matrix-S | <b>DEFL.</b> ir<br>Vert(LL) -0.27<br>Vert(CT) -0.37<br>Horz(CT) 0.07 | n (loc) l/defl<br>7 17-18 >782<br>7 17-18 >569<br>7 14 n/a | L/d<br>480<br>360<br>n/a                         | <b>PLATES</b><br>MT20<br>M18AHS<br>Weight: 90 lb | <b>GRIP</b><br>244/190<br>186/179<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 2x4 SF<br>BOT CHORD 2x4 SF<br>WEBS 2x4 SF                                                                      | <sup>2</sup> No.1(flat)<br><sup>2</sup> No.1(flat)<br><sup>2</sup> No.3(flat)                                              |                                                          | BRACING-<br>TOP CHORD<br>BOT CHORD                                   | Structural wood<br>except end ver<br>Rigid ceiling di      | d sheathing dire<br>ticals.<br>rectly applied or | ectly applied or 6-0-0<br>r 10-0-0 oc bracing.   | oc purlins,                                          |
| REACTIONS. (siz<br>Max G                                                                                                            | e) 22=Mechanical, 14=0-3-8<br>Srav 22=953(LC 1), 14=947(LC 1)                                                              |                                                          |                                                                      |                                                            |                                                  |                                                  |                                                      |
| FORCES. (Ib) - Max.<br>TOP CHORD 2-3=<br>9-10:                                                                                      | Comp./Max. Ten All forces 250 (lb) or<br>-2001/0, 3-4=-3321/0, 4-5=-3321/0, 5-6=<br>=-3321/0, 10-11=-3321/0, 11-12=-2001/0 | less except when shown.<br>-3931/0, 6-7=-3931/0, 7-9=    | -3931/0,                                                             |                                                            |                                                  |                                                  |                                                      |
| BOT CHORD 21-2                                                                                                                      | 2=0/1190, 19-21=0/2779, 18-19=0/3710, 5-0/1189                                                                             | 17-18=0/3931, 16-17=0/37                                 | 710, 15-16=0/2779,                                                   |                                                            |                                                  |                                                  |                                                      |
| WEBS 2-22<br>11-1<br>6-18                                                                                                           | =-1493/0, 2-21=0/1056, 3-21=-1012/0, 3<br>5=-1013/0, 11-16=0/693, 5-19=-496/0, 9<br>=-265/0, 7-17=-265/0                   | -19=0/693, 12-14=-1489/0,<br>-16=-496/0, 9-17=-93/587, : | 12-15=0/1057,<br>5-18=-93/587,                                       |                                                            |                                                  |                                                  |                                                      |
| <b>NOTES-</b><br>1) Unbalanced floor liv                                                                                            | e loads have been considered for this de                                                                                   | esign.                                                   |                                                                      |                                                            |                                                  |                                                  |                                                      |

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            | <u>17-7-0</u><br>17-7-0                                                      |                            |                                  |                                        |                                          |                                                 |                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                 | [1:Edge,0-1-8], [7:0-3-0,Edge], [8:0-3-0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Edge], [19:0-1-8,Edge], [2                                                                                                                                                                 | 20:0-1-8,Edge]                                                               |                            |                                  |                                        |                                          |                                                 |                                                      |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0                                                                                                                                                                                                                                                                 | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CSI.</b><br>TC 0.41<br>BC 0.60<br>WB 0.62<br>Matrix-S                                                                                                                                   | DEFL.<br>Vert(LL) -<br>Vert(CT) -<br>Horz(CT)                                | in<br>0.27<br>0.37<br>0.07 | (loc)<br>20<br>20<br>16          | l/defl<br>>768<br>>559<br>n/a          | L/d<br>480<br>360<br>n/a                 | PLATES<br>MT20<br>M18AHS<br>Weight: 98 lb       | <b>GRIP</b><br>244/190<br>186/179<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHORD 2x4 SP<br>BOT CHORD 2x4 SP<br>WEBS 2x4 SP                                                                                                                                                                                                                                                                                                                                      | P No.1(flat)<br>2 2400F 2.0E(flat)<br>P No.3(flat)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            | BRACING-<br>TOP CHORD<br>BOT CHORD                                           | ) S<br>e<br>) R            | Structur<br>except e<br>Rigid ce | al wood s<br>and vertic<br>ailing dire | sheathing dir<br>cals.<br>ctly applied c | ectly applied or 6-0-0<br>or 10-0-0 oc bracing. | oc purlins,                                          |
| FORCES.         (isize Max G           FORCES.         (ib) - Max.           TOP CHORD         2-3=-           10-12         23-24           BOT CHORD         23-24           16-11         WEBS           2-24=         13-17           7-20=         7-20=                                                                                                                                       | <ul> <li>24=Mechanical, 16=0-3-8</li> <li>irav 24=1107(LC 1), 16=1073(LC 1)</li> <li>Comp./Max. Ten All forces 250 (lb) or 2387/0, 3-4=-4067/0, 4-6=-4072/0, 6-7=</li> <li>2=-3931/0, 12-13=-3928/0, 13-14=-2319, 4=0/1390, 21-23=0/3354, 20-21=0/4881, 7=0/1354</li> <li>s-1744/0, 2-23=0/1298, 3-23=-1259/0, 3-7=-1209/0, 13-18=0/869, 6-21=-1016/0,442/0, 8-19=-542/0</li> </ul>                                                                                                                          | less except when shown<br>-5269/0, 7-8=-5269/0, 8-1<br>/0<br>19-20=0/5269, 18-19=0/<br>-21=0/911, 14-16=-1696//<br>10-18=-935/0, 10-19=0/10                                                | 10=-5269/0,<br>4677, 17-18=0/3248<br>0, 14-17=0/1256,<br>037, 6-20=0/782,    | 3,                         |                                  |                                        |                                          |                                                 |                                                      |
| NOTES-<br>1) Unbalanced floor live<br>2) All plates are MT20<br>3) Plates checked for a<br>4) Refer to girder(s) for<br>5) Recommend 2x6 str<br>Strongbacks to be a<br>6) CAUTION, Do not e<br>7) Hanger(s) or other c<br>chord. The design/s<br>8) In the LOAD CASE(<br>LOAD CASE(S) Stand<br>1) Dead + Floor Live (b<br>Uniform Loads (plf)<br>Vert: 16-24:<br>Concentrated Loads<br>Vert: 7=-280 | e loads have been considered for this de<br>plates unless otherwise indicated.<br>a plus or minus 1 degree rotation about it<br>truss to truss connections.<br>ongbacks, on edge, spaced at 10-0-0 o<br>ttached to walls at their outer ends or re-<br>rect truss backwards.<br>onnection device(s) shall be provided su-<br>selection of such connection device(s) is<br>S) section, loads applied to the face of th<br>dard<br>balanced): Lumber Increase=1.00, Plate<br>=-10, 1-15=-100<br>; (lb)<br>0(F) | esign.<br>is center.<br>c and fastened to each tr<br>strained by other means.<br>ifficient to support concer<br>the responsibility of other<br>he truss are noted as fron<br>Increase=1.00 | uss with 3-10d (0.13<br>htrated load(s) 280 lt<br>rs.<br>It (F) or back (B). | 11" X 3"                   | ') nails.<br>at 8-1              | -0 on top                              |                                          | SE<br>036                                       | ARO<br>SOLUTION<br>AL<br>322<br>NEERRATION           |



GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Truss           | Truss Type                                                                       | Qty                                                                                                                             | Ply                                                                                                                                                                                | Lot 2 West Pointe III                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                  |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                 | 157899254                                                                                                                                                                                                                                                                                                                                             |
| F5              | Floor                                                                            | 1                                                                                                                               | 1                                                                                                                                                                                  | Joh Reference (antional)                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| ille NC - 28314 |                                                                                  | 5                                                                                                                               | 3.430 s.Ja                                                                                                                                                                         | 500 Relefence (optional)<br>n 6 2022 MiTek Industries Inc. Thu Apr 20 14:52:39 2023                                                                                                                                                             | Page 1                                                                                                                                                                                                                                                                                                                                                |
| 10,110 20014,   | ID:uB1kU                                                                         | vbQLa2U                                                                                                                         | /I5EAk1M                                                                                                                                                                           | 8Myf?Wk-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4                                                                                                                                                                                                  | 4zJC?f                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                  |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                                                  |                                                                                                                                 |                                                                                                                                                                                    | 4.40.4                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                   |
| 1-0-0 1-6-12    |                                                                                  |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                 | -1-8<br>cale - 1.59 3                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                  |                                                                                                                                 |                                                                                                                                                                                    | 30                                                                                                                                                                                                                                              | cale = 1.39.3                                                                                                                                                                                                                                                                                                                                         |
|                 | Truss<br>F5<br>ille, NC - 28314,<br><u> <sup>1-0-0</sup>  <sup>1-6-12</sup> </u> | Truss         Truss Type           F5         Floor           ille, NC - 28314,         ID:uB1kU           1-0-0         1-6-12 | Truss         Truss Type         Qty           F5         Floor         1           ille, NC - 28314,         ID:uB1kUybQLa2UV           ID:uB1kUybQLa2UV         ID:uB1kUybQLa2UV | Truss         Truss Type         Qty         Ply           F5         Floor         1         1         1           ille, NC - 28314,         8.430 s Jai         ID:uB1kUybQLa2UVI5EAk1M           ID:uB1kUybQLa2UVI5EAk1M         1         1 | Truss     Truss Type     Qty     Ply     Lot 2 West Pointe III       F5     Floor     1     1     Job Reference (optional)       ille, NC - 28314,     8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Apr 20 14:52:39 2023       ID:uB1kUybQLa2UVI5EAk1M8Myf?Wk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J       1-0-0     1-10-4     0       S     5     5 |



| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17-2-4                                                                                                                                                                                                           | 34-11-0                                                                               |                                                                                                                                                                                                    |                                                      |                          |                |                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|----------------|------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17-2-4                                                                                                                                                                                                           | 17-8-12                                                                               |                                                                                                                                                                                                    |                                                      |                          |                |                        |  |  |
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [29:0-1-8,Edge], [30:0-1-8,Edge], [38:0-                                                                                                                                                                         | 1-8,Edgej, [39:0-1-8,Edge                                                             |                                                                                                                                                                                                    |                                                      |                          |                |                        |  |  |
| LOADING (psf)<br>TCLL 40.0<br>TCDL 10.0<br>BCLL 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES                                                                                                                                  | <b>CSI.</b><br>TC 0.83<br>BC 0.59<br>WB 0.66                                          | <b>DEFL.</b> ir<br>Vert(LL) -0.23<br>Vert(CT) -0.31<br>Horz(CT) 0.04                                                                                                                               | n (loc) l/defl<br>28-29 >932<br>28-29 >692<br>26 n/a | L/d<br>480<br>360<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |  |  |
| BCDL 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Code IRC2015/TPI2014                                                                                                                                                                                             | Matrix-S                                                                              | . ,                                                                                                                                                                                                |                                                      |                          | Weight: 177 lb | FT = 20%F, 11%E        |  |  |
| LUMBER-<br>TOP CHORD 2x4 SF<br>BOT CHORD 2x4 SF<br>WEBS 2x4 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 No.1(flat)<br>2 2400F 2.0E(flat)<br>2 No.3(flat)                                                                                                                                                               | BRACING-<br>TOP CHORD<br>BOT CHORD                                                    | BRACING-         TOP CHORD       Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.         BOT CHORD       Rigid ceiling directly applied or 6-0-0 oc bracing. |                                                      |                          |                |                        |  |  |
| REACTIONS. (siz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e) 42=0-3-8, 34=0-3-8, 26=0-3-8                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                    |                                                      |                          |                |                        |  |  |
| Max Grav 42=807(LC 3), 34=2305(LC 1), 26=834(LC 4)         FORCES.       (b) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-1647/0, 3-4=-2631/0, 4-5=-2631/0, 5-6=-2796/21, 6-7=-2796/21, 7-8=-2796/21, 8-9=-1816/613, 9-10=-1816/613, 10-12=-232/1275, 12-13=0/3262, 13-14=0/3262, 14-15=-211/1178, 15-16=-1870/522, 16-18=-1870/522, 18-19=-2974/0, 19-20=-2974/0, 20-21=-2974/0, 21-22=-2771/0, 22-23=-2771/0, 23-24=-1715/0         BOT CHORD       41-42=0/1003, 40-41=0/2263, 39-40=0/2832, 38-39=-21/2796, 37-38=-344/2354, 35-37=-927/1138, 34-35=-1856/0, 33-34=-1824/0, 31-33=-833/1153, 30-31=-254/2451, 29-30=0/2974, 28-29=0/3006, 27-28=0/2367, 26-27=0/1039         WEBS       2-42=-1256/0, 2-41=0/837, 3-41=-803/0, 3-40=-15/469, 12-34=-1765/0, 12-35=0/1342, 10-35=-1295/0, 10-37=0/986, 8-37=-816/0, 8-38=0/953, 5-40=-256/109, 5-39=-491/92, 7-38=-393/0, 24-26=-1300/0, 24-27=0/800, 23-27=-850/0, 23-28=0/515, 14-34=-1805/0, 14-33=0/1379, 15-33=-1328/0, 15-31=0/1023, 18-31=-858/0, 18-30=-01/043. |                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                    |                                                      |                          |                |                        |  |  |
| 21-26<br>NOTES-<br>1) Unbalanced floor liv<br>2) All plates are 3x6 M<br>3) Plates checked for a<br>4) Recommend 2x6 str<br>Strongbacks to be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e loads have been considered for this de<br>T20 unless otherwise indicated.<br>a plus or minus 1 degree rotation about i<br>rongbacks, on edge, spaced at 10-0-0 c<br>ttached to walls at their outer ends or re | /U<br>esign.<br>ts center.<br>ic and fastened to each tru<br>strained by other means. | uss with 3-10d (0.131" X                                                                                                                                                                           | 3") nails.                                           |                          | UNTH C         | AROLIN                 |  |  |

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITER A 818 Soundside Road Edenton, NC 27932

| Job                    | Truss              | Truss Type                     | Qty Ply         | Lot 2 West Pointe III                           |                    |
|------------------------|--------------------|--------------------------------|-----------------|-------------------------------------------------|--------------------|
|                        |                    |                                |                 |                                                 | 157899255          |
| J0623-2993             | F6                 | Floor                          | 5               | 1                                               |                    |
|                        | -                  |                                |                 | Job Reference (optional)                        |                    |
| Comtech, Inc. Favettey | ville, NC - 28314. |                                | 8.430 s         | Jan 6 2022 MiTek Industries, Inc. Thu Apr 20 14 | :52:41 2023 Page 1 |
|                        | ,                  | ID:uB1kL                       | JybQLa2UVI5EAk1 | M8Myf?Wk-RfC?PsB70Hq3NSgPqnL8w3uITXb0           | GKWrCDoi7J4zJC?f   |
| 1-3-0                  | 2-4-12             |                                |                 | 1-10-4                                          | 0-1-8              |
| 1-3-0                  | 2-4-12             |                                |                 |                                                 | 0-H-0              |
|                        |                    |                                |                 |                                                 | 0 1 1 50 5         |
|                        |                    |                                |                 |                                                 | Scale = 1:58.5     |
|                        |                    |                                |                 |                                                 |                    |
|                        |                    |                                |                 |                                                 |                    |
|                        |                    |                                |                 |                                                 |                    |
|                        |                    |                                |                 |                                                 |                    |
|                        |                    |                                |                 |                                                 |                    |
|                        |                    | 4x6 =                          | 31              | 3 FP = 1 5x3    1 5x3                           | 1 5x3              |
|                        |                    | 4x0 —                          | 5.0             |                                                 | 1.575 11           |
| 3x4    3x4 = 3x        | 4 = 3x4 = 1.5x3    | 1.5x3    3x6 FP = 3x4    4x6 = | 1.5x3           | 1.5x3 $  $ 3x4 = 3x4 =                          | 1.5x3 =            |
| 1 2 3                  | 4 5                | 6 7 8 9 10 11 12               | 13 14           | 15 16 17 18 19 20 21                            | 22 23              |
| d the second second    |                    |                                |                 |                                                 |                    |
| a III // 🔪 //          |                    |                                |                 |                                                 | // 📉 🛱 41 🖓        |

|   |    |       |       |       |              |        |          |               |    |       |    |    |    | - |
|---|----|-------|-------|-------|--------------|--------|----------|---------------|----|-------|----|----|----|---|
| 1 |    |       |       |       |              | Ř      | <u>_</u> |               |    | @     |    |    | Ř  | 1 |
|   | 40 | 39    | 38 37 | 36    | 35 34 33     | 32     | 31 30    | 29            | 28 | 27    | 26 | 25 | 24 |   |
|   |    | 3x4 = | 3x4 = | 3x4 = | 3x6 FP=      | 3x10 = | 4x6 =    | 3x10 =        |    | 3x4 = |    |    |    |   |
|   |    |       | 1.5x3 |       | 3x10 = 4x6 = |        | 3x6 FF   | <b>&gt;</b> = |    |       |    |    |    |   |

| ı                                                                                                                                                  | 16-10-12                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                    |                                                        | 34-7-8                                    |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------------------------|-------------------------------------------|--|
|                                                                                                                                                    | 16-10-12                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                    | 17-8-12                                                |                                           |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |
| Plate Offsets (X,Y) [1:Edge,0-1-8], [4:0-1-8,Edge], [27:0-1-8,Edge], [28:0-1-8,Edge], [36:0-1-8,Edge]                                              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                    |                                                        |                                           |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |
| LOADII<br>TCLL<br>TCDL<br>BCLL<br>BCDL                                                                                                             | NG (psf)<br>40.0<br>10.0<br>0.0<br>5.0                                                                    | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code IRC2015/TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-0-0<br>1.00<br>1.00<br>YES<br>I2014                               | <b>CSI.</b><br>TC 0.81<br>BC 0.66<br>WB 0.65<br>Matrix-S                           |                                                        | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.23<br>-0.31<br>0.04 | (loc)<br>26-27<br>26-27<br>24                                                                                                                   | l/defl<br>>924<br>>685<br>n/a | L/d<br>480<br>360<br>n/a | <b>PLATES</b><br>MT20<br>Weight: 173 lb | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |  |
| LUMBER-           TOP CHORD         2x4 SP No.1(flat)           BOT CHORD         2x4 SP 2400F 2.0E(flat)           WEBS         2x4 SP No.3(flat) |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                    |                                                        | BRACING-<br>TOP CHOR<br>BOT CHOR          | D<br>D                       | Structural wood sheathing directly applied or 6-0-0 oc purlins,<br>except end verticals.<br>Rigid ceiling directly applied or 6-0-0 oc bracing. |                               |                          |                                         |                                           |  |
| REACT                                                                                                                                              | REACTIONS. (size) 40=Mechanical, 32=0-3-8, 24=0-3-8<br>Max Grav 40=801(LC 3), 32=2265(LC 1), 24=844(LC 4) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                    |                                                        |                                           |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |
| FORCE<br>TOP CH                                                                                                                                    | <b>S.</b> (lb) - Max.<br>HORD 2-3=-<br>8-10=<br>14-16<br>20-21                                            | Comp./Max. Ten All ford<br>1625/0, 3-4=-2518/0, 4-5=<br>=-286/1136, 10-11=0/3044<br>5=-1990/447, 16-17=-3058<br>1=-2820/0, 21-22=-1740/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ces 250 (lb) or<br>2744/0, 5-6=-<br>, 11-12=0/304<br>8/0, 17-18=-30 | less except when s<br>2744/0, 6-7=-1822<br>4, 12-13=-355/108<br>58/0, 18-19=-3058/ | shown.<br>2/510, 7-8=-1<br>8, 13-14=-19<br>0, 19-20=-2 | 1822/510,<br>990/447,<br>820/0,           |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |
| BOT CH                                                                                                                                             | HORD 39-40<br>33-35                                                                                       | <ul> <li>20 21 - 2020(1, 21 22 - 11 10)</li> <li>21 22 - 11 100</li> <li>21 22 - 11 100</li> <li>23 - 40=0/983, 38-39=0/2236, 37-38=0/2744, 36-37=0/2744, 35-36=-248/2331,</li> <li>23 - 35=-806/1169, 32-33=-1802/0, 31-32=-1623/0, 29-31=-750/1286, 28-29=-187/2558,</li> <li>22 - 28 - 0/3058, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-27 - 0/3059, 26-2</li></ul> |                                                                     |                                                                                    |                                                        |                                           |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |
| WEBS                                                                                                                                               | 2-40=<br>8-33=<br>12-32<br>16-28<br>19-26                                                                 | 2-40=-1234/0, 2-39=0/835, 3-39=-796/0, 3-38=-54/367, 10-32=-1723/0, 10-33=0/1302,<br>8-33=-1252/0, 8-35=0/943, 6-35=-779/0, 6-36=0/956, 5-36=-384/0, 4-38=-288/219,<br>12-32=-1784/0, 12-31=0/1359, 13-31=-1309/0, 13-29=0/1002, 16-29=-836/0,<br>16-28=0/1019, 17-28=-425/0, 22-24=-1317/0, 22-25=0/896, 21-25=-865/0, 21-26=0/531,<br>19-26=-318/66, 19-27=-460/160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                                                    |                                                        |                                           |                              |                                                                                                                                                 |                               |                          |                                         |                                           |  |

#### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

