Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

Sheet: Property ID: Lot #: File #: Code:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

IN ON-SITE WASTEWATER STOTEM							
Owner: Wlove Applicant: Address: 25 Hillwood Dr Date Evaluated: /0-U-23 Proposed Facility: 5 FD Design Flow (.1949): 360 GD Property Size: Location of Site: Property Recorded: Water Supply: Public Individual Well Spring Other Evaluation Method: Auger Boring Pit Cut Type of Wastewater: Sewage Industrial Process Mixed							
P							
R							
0							

P R O F	.1940 Landscape Position/ Slope %			DRPHOLOGY 1941		OTHER PROFILE FACTORS			
L E #		Landscape Position/	Horizon Depth (In.)	.1941 Structure/ Texture	.1941 Consistence Mineralogy	.1942 Soil Wetness/ Color	.1943 Soil Depth (IN.)	.1956 Sapro Class	.1944 Restr Horiz
1,2	2	0-48	LS	Hof NIJ lAXA	248"	>48"	_	_	5.8 Group
	L 5.7%			, ,					T

Description	Initial System	Repair System	Other Factors (.1946): Site Classification (.1948):
Available Space (.1945)			Evaluated By: MAREHS
System Type(s)			Others Present:
Site LTAR	- 8	. 8	A. 1.

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	TEXTURES	. <u>1955 LTAR</u>	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	I	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	П	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	III	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC

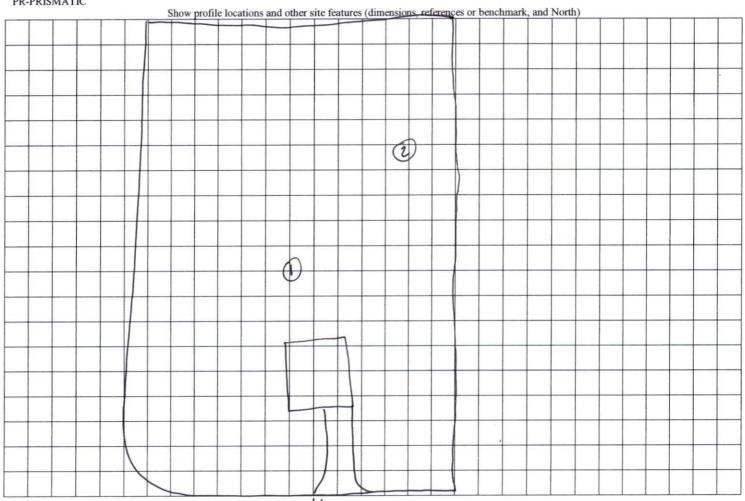
SIC-SILTY CLAY 0.4 - 0.1 IV C-CLAY

SC-SANDY CLAY

M- MASSIVE CR-CRUMB **GR-GRANULAR**

STRUCTURE SG-SINGLE GRAIN

SBK-SUBANGULAR BLOCKY


ABK-ANGULAR BLOCKY

PL-PLATY

PR-PRISMATIC

MINERALOGY SLIGHTLY EXPANSIVE

EXPANSIVE

