

RE: J0923-5112

Weaver/Lot 37 West Preserve/Harnett

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0923-5112

Lot/Block: Model:
Address: Subdivision:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPl2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-10 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	156272870	A1	1/23/2023	21	156272890	G2	1/23/2023
2	156272871	A1GE	1/23/2023	22	156272891	VB1	1/23/2023
3	156272872	A2	1/23/2023	23	156272892	VB2	1/23/2023
4	156272873	A3	1/23/2023	24	156272893	VC1	1/23/2023
5	156272874	A4	1/23/2023	25	156272894	VC2	1/23/2023
6	156272875	A5	1/23/2023	26	156272895	VC3	1/23/2023
7	156272876	A6	1/23/2023	27	156272896	VC4	1/23/2023
8	156272877	A7	1/23/2023	28	156272897	VC5	1/23/2023
9	156272878	A7GE	1/23/2023	29	156272898	VC6	1/23/2023
10	156272879	B1	1/23/2023				
11	156272880	B1GE	1/23/2023				
12	156272881	B2	1/23/2023				
13	156272882	B3	1/23/2023				
14	156272883	B4	1/23/2023				
15	156272884	C1	1/23/2023				
16	156272885	C1GE	1/23/2023				
17	156272886	C2	1/23/2023				

1/23/2023

1/23/2023

1/23/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

C3

G1

G1GE

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

156272887

156272888

156272889

18

19

20

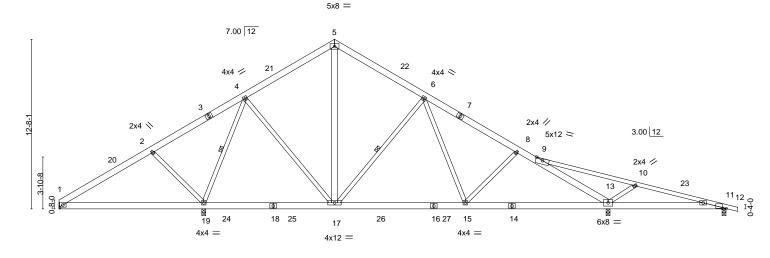
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

January 23, 2023

Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272870 J0923-5112 Α1 **ROOF SPECIAL** 6 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:17 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

ID:nGEYJn1QAngpJfECepmG8Mz?may-sfSgwUhpTQDp5ydj1o6F8XhBl53u8V018aJn9dzsWVu 34-2-0 27-3-2 43-0-4 49-10-0 50-8₇8 0-10-8 6-8-2 6-10-14 8-10-4 6-9-12

41-0-4


Structural wood sheathing directly applied or 6-0-0 oc purlins.

4-19, 6-17

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

Scale = 1:86.1

Plate Offse	ote (V V)	10-9-12 [11:0-3-4.0-0-3]	+	9-9-4	9-9-4	10-8-0	8-9-12
Flate Olise	;is (A, I)	[11.0-3-4,0-0-3]					
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.86	Vert(LL) -0.11	15-17 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.41	Vert(CT) -0.17	15-17 >999 240	
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.51	Horz(CT) 0.02	13 n/a n/a	
BCDL	10.0	Code IRC2015/TF	PI2014	Matrix-S	Wind(LL) 0.03	15-17 >999 240	Weight: 354 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

9-12: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1

10-9-12

7-0-0 7-0-0

6-10-14

6-8-2

WEBS 2x4 SP No.2 *Except* 5-17: 2x6 SP No.1

REACTIONS. All bearings 0-3-8 except (jt=length) 1=Mechanical.

Max Horz 1=-297(LC 6) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 11 except 13=-189(LC 11), 19=-186(LC 10)

20-7-0

All reactions 250 lb or less at joint(s) except 13=1672(LC 1), 1=329(LC 21), 19=2060(LC 17), 11=279(LC Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-53/432, 4-5=-879/341, 5-6=-851/342, 6-8=-1514/361, 8-9=-1585/359,

9-13=-2019/488, 9-10=-136/537

BOT CHORD 17-19=0/367, 15-17=-27/1101, 13-15=-157/1388

WEBS 2-19=-484/260, 4-19=-1463/351, 4-17=0/659, 5-17=-133/470, 6-17=-753/272,

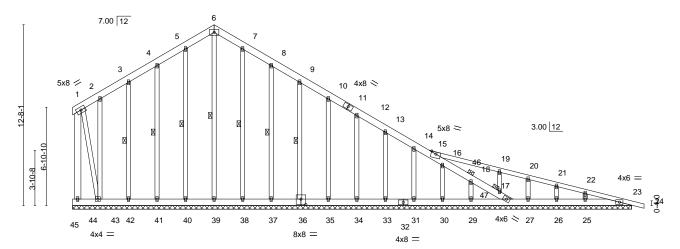
10-13=-608/280, 6-15=-23/481

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf, BCDL=5.0psf, h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 16-2-3, Exterior(2) 16-2-3 to 24-11-13, Interior(1) 24-11-13 to 46-3-11, Exterior(2) 46-3-11 to 50-8-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (it=lb) 13=189, 19=186,
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

49-10-0

January 23,2023



Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272871 J0923-5112 A1GE ROOF SPECIAL SUPPORT

Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:20 2023 Page 1

ID:nGEYJn1QAngpJfECepmG8Mz?may-HE7pZWkhmLcNyQLliwfymAJsLJ8ULwQUqYXRmyzsWVr 40-0-8 0-10-8 39-2-0 9-11-0 15-1-0 14-2-0

Scale = 1:80.7

39-2-0

Plate Off	sets (X,Y)	[36:0-4-0,0-4-8]							
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) 0.0	0 23	n/r 1	120	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) 0.0	0 24	n/r 1	120		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.14	Horz(CT) 0.0	1 23	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 379 lb	FT = 20%

LUMBER-BRACING-

5x8 =

2x6 SP No.1 *Except* TOP CHORD 15-24: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1

2x6 SP No.1 *Except* **WEBS** 1-43: 2x4 SP No.2 **OTHERS**

2x4 SP No.2

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 44-45,28-29,27-28,26-27,25-26,23-25. 6-39, 5-40, 4-41, 3-42, 7-38, 8-37, 9-36

WEBS JOINTS 1 Brace at Jt(s): 18, 17

REACTIONS. All bearings 39-2-0.

(lb) -Max Horz 44=-433(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 40, 41, 42, 38, 37, 36, 35, 34, 33, 30, 29, 26, 25 except 44=-184(LC 6), 43=-162(LC 7), 31=-109(LC 11),

23=-117(LC 7)

Max Grav All reactions 250 lb or less at joint(s) 44, 39, 40, 41, 42, 38, 37, 36 35, 34, 33, 31, 30, 29, 26, 28, 23 except 43=337(LC 17), 27=405(LC 3), 25=277(LC 1)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

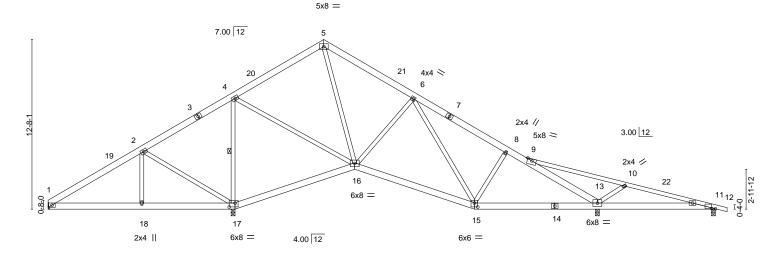
TOP CHORD 5-6=-206/258, 6-7=-206/258, 14-15=-275/199, 15-16=-258/189, 16-18=-304/242, 17-18=-301/313, 17-28=-230/260, 15-19=-253/262, 21-22=-253/173, 22-23=-264/141

BOT CHORD 43-44=-174/430, 42-43=-179/400, 41-42=-179/400, 40-41=-179/400, 39-40=-179/400, 38-39=-179/400, 37-38=-179/400, 36-37=-179/400, 35-36=-180/401, 34-35=-180/401,

33-34=-180/401, 31-33=-180/401, 30-31=-180/401, 29-30=-180/401, 28-29=-401/180

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-4-4 to 4-9-1, Exterior(2) 4-9-1 to 5-6-3, Corner(3) 5-6-3 to 14-3-13, Exterior(2) 14-3-13 to 35-7-11, Corner(3) 35-7-11 to 40-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 40, 41, 42, 38, 37, 36, 35, 34, 33, 30, 29, 26, 25 except (jt=lb) 44=184, 43=162, 31=109, 23=117.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


January 23,2023

Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272872 J0923-5112 A2 **ROOF SPECIAL** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:22 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

ID:nGEYJn1QAngpJfECepmG8Mz?may-DdFZ_Clylys5BkVhpLhQrbO7C6onphpnHs0YrqzsWVp 34-2-0 49-10-0 50-8₁8 6-11-8 6-7-8 6-8-2 6-10-14 8-10-4 6-9-12 0-10-8

Scale = 1:86.0

	7-	-0-0	6-9-12	0-1 [!] 12	8-11-4	4	8-11-4			9-2	4	8-9-12	2	
Plate Off	sets (X,Y)	[11:0-3-4,0-0-3], [15	0-3-0,0-3-	-8], [17:0-	5-4,0-3-8]									
LOADING	G (nsf)	SPACING-	2-0)-0	CSI.		DEFL.	in (loc) I/	defl L	'd	PLATES	GRIP	
TCLL	20.0	Plate Grip DC		15	TC	0.56	Vert(LL)	-0.06 15	,	999 36	-	MT20	244/190	
TCDL	10.0	Lumber DOL	1.	15	BC	0.30	Vert(CT)	-0.13 15	5-16 >	999 24	0			
BCLL	0.0 *	Rep Stress In	cr YE	ES	WB	0.73	Horz(CT)	0.03	11	n/a n/	a			
BCDL	10.0	Code IRC20	5/TPI201	4	Matrix	(-S	Wind(LL)	0.07 11	-13 >	999 24	0	Weight: 345 lb	FT = 20%	

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

9-12: 2x4 SP No.1 2x6 SP No.1

BOT CHORD WEBS 2x4 SP No.2 BRACING-TOP CHORD

WEBS

BOT CHORD

31-10-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

4-17 1 Row at midpt

REACTIONS. All bearings 0-3-8 except (jt=length) 1=Mechanical.

Max Horz 1=-297(LC 6) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1 except 17=-170(LC 10), 13=-187(LC 11), 11=-150(LC 7) Max Grav All reactions 250 lb or less at joint(s) except 1=384(LC 21), 17=1990(LC 1), 13=1457(LC 1), 11=289(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 1-2=-376/150, 2-4=-27/568, 4-5=-607/240, 5-6=-662/253, 6-8=-1036/309,

8-9=-1075/267, 9-13=-1609/356, 9-10=-106/496

BOT CHORD 1-18=-120/281, 17-18=-120/281, 16-17=-581/279, 15-16=0/828, 13-15=-74/924 WEBS 2-18=0/308, 2-17=-671/225, 4-17=-1385/294, 4-16=-19/969, 5-16=-43/264,

6-16=-575/295, 8-15=-253/166, 10-13=-608/304

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 5-0-9, Interior(1) 5-0-9 to 15-7-3, Exterior(2) 15-7-3 to 25-6-13, Interior(1) 25-6-13 to 45-8-11, Exterior(2) 45-8-11 to 50-8-8 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 17=170, 13=187, 11=150,
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272873 J0923-5112 **A3 ROOF SPECIAL** 3 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:23 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:nGEYJn1QAngpJfECepmG8Mz?may-hppxBXma3G_ypt4tN3DfNoxNbW8tYDnwWWm5NGzsWVo 20-7-0 27-3-2 7-0-0 6-11-8 6-7-8 6-8-2 6-6-14 Scale = 1:72.5 5x5 = 5 7.00 12 16 3x10 / 3x4 <> 6 4x6 / 4x6 < 2x4 📏 2 4-11-5 6x8 = 0-8-0 Ø 13 10 8 3x6 = $\frac{1}{126x6} =$ ā 3x4 = 4.00 12 2x4 || 6x6 =10-9-12 13-11-8 22-10-12 31-10-0 33-10-0 Plate Offsets (X,Y)--[10:0-3-0,0-3-8], [12:0-3-0,0-3-8] DEFL. **PLATES GRIP** LOADING (psf) SPACING-CSI. in (loc) I/defl L/d 244/190 TCLL 20.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) -0.09 1-13 >999 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.31 Vert(CT) -0.19 1-13 >874 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.43 Horz(CT) 0.02 9 n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Wind(LL) 0.02 >999 240 Weight: 271 lb Matrix-S 1-13 **BRACING-**TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD

WEBS

except end verticals.

1 Row at midpt

Rigid ceiling directly applied or 6-0-0 oc bracing.

4-12, 6-10

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 12=0-3-8, 9=0-3-8 Max Horz 1=287(LC 7)

Max Uplift 1=-1(LC 10), 12=-194(LC 10), 9=-56(LC 11) Max Grav 1=486(LC 21), 12=1510(LC 1), 9=719(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-508/64, 4-5=-535/235, 5-6=-577/248, 6-7=-272/114, 7-9=-724/147

BOT CHORD 1-13=-169/434, 10-11=-104/505

WFBS 4-12=-1369/397, 4-11=-49/580, 6-10=-551/147, 7-10=-23/496, 4-13=-95/551,

2-13=-464/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 16-2-3, Exterior(2) 16-2-3 to 24-11-13, Interior(1) 24-11-13 to 29-1-15, Exterior(2) 29-1-15 to 33-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9 except (jt=lb) 12=194.

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272874 J0923-5112 A4 **ROOF SPECIAL** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:25 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:nGEYJn1QAngpJfECepmG8Mz?may-dCwicDoqbtEg2BEGVTF7TD0iiKqM08NDzqFCR9zsWVm 20-7-0 33-10-0 7-0-0 6-11-8 6-7-8 6-8-2 6-6-14 Scale = 1:72.5 5x5 = 7.00 12 16 3x10 / 3x4 <> 6 4x6 / 4x6 > 2x4 📏 2 4-11-5 6x8 = 0-8-0 Ø × 10 8 3x4 = 13 ā 12 3x4 = 4.00 12 2x4 || 6x6 =6x6 =13-11-8 22-10-12 31-10-0 33-10-0 3-1-12 Plate Offsets (X,Y)--[1:0-1-4,0-0-3], [10:0-3-0,0-3-8], [12:0-3-0,0-3-8] DEFL. **PLATES GRIP** LOADING (psf) SPACING-CSI. in (loc) I/def L/d 244/190 TCLL 20.0 Plate Grip DOL 1.15 TC 0.23 Vert(LL) -0.08 1-13 >999 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.31 Vert(CT) -0.16 1-13 >791 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.36 Horz(CT) 0.02 9 n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Wind(LL) >999 240 Weight: 271 lb Matrix-S 0.01 11 **BRACING-**2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

LUMBER-

TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-10, 4-13

BOT CHORD

6-0-0 oc bracing: 1-13. **WEBS** 1 Row at midpt

REACTIONS.

(size) 1=Mechanical, 9=0-3-8, 13=0-3-8

Max Horz 1=287(LC 7)

Max Uplift 9=-65(LC 11), 13=-200(LC 10)

Max Grav 1=350(LC 21), 9=863(LC 1), 13=1503(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1\hbox{-}2\hbox{--}264/89,\ 2\hbox{-}4\hbox{--}98/322,\ 4\hbox{-}5\hbox{--}705/280,\ 5\hbox{-}6\hbox{--}803/308,\ 6\hbox{-}7\hbox{--}323/128,\ 7\hbox{-}9\hbox{--}865/185$ TOP CHORD

BOT CHORD 11-12=-81/292 10-11=-141/646

WEBS 4-11=0/363, 5-11=-88/383, 6-10=-737/196, 7-10=-55/617, 4-13=-1043/305,

2-13=-477/258

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 16-2-3, Exterior(2) 16-2-3 to 24-11-13, Interior(1) 24-11-13 to 29-1-15, Exterior(2) 29-1-15 to 33-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 13=200.

January 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272875 J0923-5112 A5 **ROOF SPECIAL** 3 Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:26 2023 Page 1 Comtech, Inc.

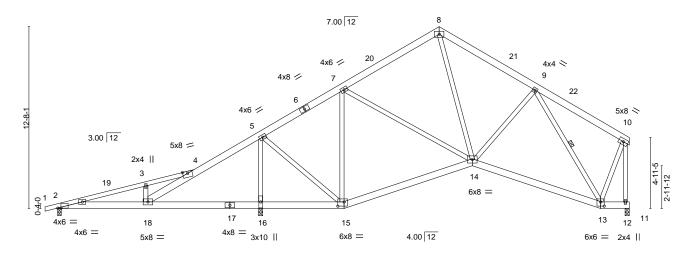
6-7-8

ID:nGEYJn1QAngpJfECepmG8Mz?may-5OU4pZoSLBMXgLpS2BmM?RZrHkAilS2MCU_I_bzsWVI 37-10-0 -0₋10₋8 0-10-8 26-7-0 39-10-0

5-9-12

4-7-12

4-6-14 5x8 = Scale = 1:80.3


2-0-0

39-10-0

Weight: 299 lb

FT = 20%

6-8-2

6-1-12 3-4-4 4-7-12 Plate Offsets (X,Y)--[2:0-2-12,0-0-1], [13:0-3-0,0-3-8], [15:0-5-4,0-3-8] **GRIP** LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.06 14-15 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.24 Vert(CT) -0.13 14-15 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.90 Horz(CT) 0.02 12 n/a n/a

19-11-8

LUMBER-

BCDL

2x6 SP No.1 *Except* TOP CHORD

1-4: 2x4 SP No.1 2x6 SP No.1

BOT CHORD WEBS 2x4 SP No.2

10.0

BRACING-TOP CHORD

Wind(LL)

28-10-12

0.07 16-18

Structural wood sheathing directly applied or 6-0-0 oc purlins,

240

37-10-0

except end verticals.

>999

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **WEBS** 1 Row at midpt 9-13

REACTIONS. 12=0-3-8, 16=0-3-8, 2=0-3-0 (size)

6-1-12

6-1-12

Max Horz 2=292(LC 7)

Max Uplift 12=-67(LC 11), 16=-265(LC 10), 2=-143(LC 6) Max Grav 12=817(LC 18), 16=2153(LC 1), 2=255(LC 21)

Code IRC2015/TPI2014

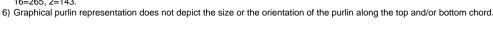
9-6-0

14-1-12

Matrix-S

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 4-18=-836/1008, 4-5=-860/1235, 5-7=-361/98, 7-8=-712/162, 8-9=-831/152,

9-10=-330/92. 10-12=-836/86


BOT CHORD 16-18=-951/676, 15-16=-952/676, 14-15=-33/454, 13-14=-48/609

WEBS 5-15=-567/1368, 7-15=-794/393, 7-14=-162/450, 8-14=-48/397, 9-13=-690/75,

10-13=0/590, 3-18=-345/177, 5-16=-1958/909

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 22-2-3, Exterior(2) 22-2-3 to 30-11-13, Interior(1) 30-11-13 to 35-1-15, Exterior(2) 35-1-15 to 39-6-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 16=265, 2=143.

Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272876 SPECIAL TRUSS J0923-5112 A6 Job Reference (optional)

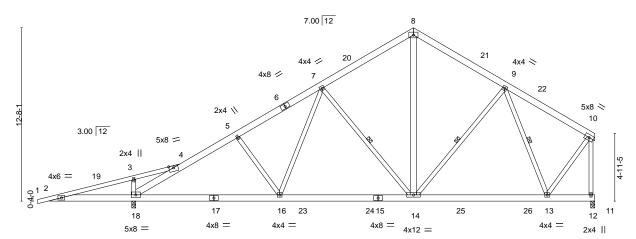
Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:28 2023 Page 1

Structural wood sheathing directly applied or 5-3-4 oc purlins,

7-14, 9-14, 9-13

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:


except end verticals.

6-0-0 oc bracing: 2-18.

1 Row at midpt

ID:nGEYJn1QAngpJfECepmG8Mz?may-2ncqEFqjtocFvfzrAcoq4se7oXocDVqffoTs2UzsWVj 33-3-2 39-10-0 -0₋10₋8 0-10-8 19-10-14 26-7-0 6-1-12 4-3-0 6-1-14 6-8-2 6-8-2 6-6-14

> 5x8 = Scale = 1:84.2

	6-1-12 6-1-12	16-9-12 10-8-0	19-10-14 26-7-0 3-1-2 6-8-2	33-3-2 6-8-2	+ 36-4-4 3-1-2 + 39-10-0 3-5-12
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	TC 0.62 BC 0.47 WB 0.37	DEFL. in (loc) Vert(LL) -0.13 14-16 Vert(CT) -0.20 14-16 Horz(CT) 0.03 12 Wind(LL) -0.05 16-18	>999 240 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 307 lb FT = 20%

BOT CHORD

WEBS

LUMBER-BRACING-TOP CHORD

2x6 SP No.1 *Except* TOP CHORD 1-4: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.2 *Except*

8-14: 2x6 SP No.1

(size) 12=0-3-8, 18=0-3-8 Max Horz 18=292(LC 7)

Max Uplift 12=-84(LC 11), 18=-199(LC 10) Max Grav 12=1444(LC 17), 18=1936(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2\hbox{-}3\hbox{-}-982/991,\ 3\hbox{-}4\hbox{-}-924/958,\ 4\hbox{-}18\hbox{-}-2613/1034,\ 4\hbox{-}5\hbox{-}-2011/179,\ 5\hbox{-}7\hbox{-}-1879/219,$ TOP CHORD

7-8=-1233/368. 8-9=-1263/366. 9-10=-837/187. 10-12=-1490/264 2-18=-920/1004, 16-18=-261/1814, 14-16=-174/1529, 13-14=-150/935

BOT CHORD WEBS 7-14=-755/209, 8-14=-169/852, 10-13=-124/1195, 7-16=-16/504, 9-13=-698/207,

3-18=-344/175

NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 22-2-3, Exterior(2) 22-2-3 to 30-11-13, Interior(1) 30-11-13 to 35-1-15, Exterior(2) 35-1-15 to 39-6-12 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb)
- 6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272877 SPECIAL TRUSS J0923-5112 A7 5 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

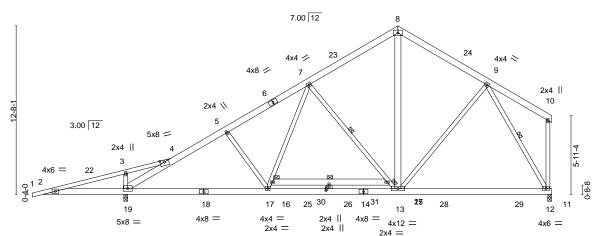
8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:30 2023 Page 1

Structural wood sheathing directly applied or 5-0-4 oc purlins,

7-15, 9-12

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.


6-0-0 oc bracing: 2-19.

6-0-0 oc bracing: 15-16

1 Row at midpt

ID:nGEYJn1QAngpJfECepmG8Mz?may-_9kbfxrzPPsz9y6DH1rl9HjStLSvhMAy76yz7MzsWVh <u>38-1-8</u> -0₋10₋8 0-10-8 26-7-0 33-3-2 6-1-12 4-3-0 6-1-14 6-8-2 6-8-2 4-10-6

> 5x8 = Scale = 1:86.5

6-1-12	9-6-0	16-9-12	₁ 19-10-14 21-5-0	26-7-0	33-3-2	36-4-4 38-1-8 ₁	
6-1-12	3-4-4	7-3-12	3-1-2 1-6-2	5-2-0	6-8-2	3-1-2 1-9-4	
0.0-2-0 0-0-41							

BRACING-

TOP CHORD

BOT CHORD

WEBS

T late Ons	CIS (X, I)	[20.0-2-0,0-0-4]			
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.65	Vert(LL) -0.25 12-13 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.61	Vert(CT) -0.37 12-13 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.58	Horz(CT) 0.04 12 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) -0.05 17-19 >999 240	Weight: 314 lb FT = 20%

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

1-4: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 *Except* **WEBS**

8-13,20-21: 2x6 SP No.1

Plate Offsets (X V)-- [20:

(size) 12=0-3-8, 19=0-3-8

Max Horz 19=291(LC 7)

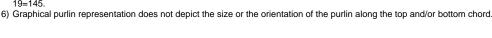
Max Uplift 12=-40(LC 10), 19=-145(LC 10) Max Grav 12=1591(LC 17), 19=1965(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-3=-989/988, 3-4=-931/955, 4-19=-2783/922, 4-5=-2188/61, 5-7=-2056/100,

7-8=-1270/284, 8-9=-1297/280

BOT CHORD 2-19=-916/1010, 17-19=-196/1959, 13-17=-97/1754, 12-13=-109/739

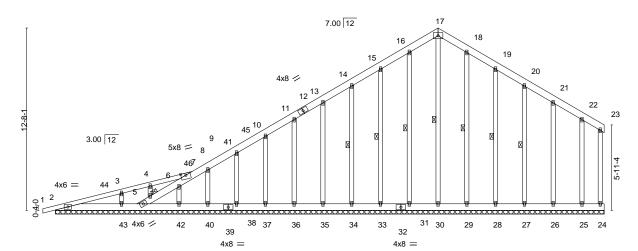

WEBS 7-15=-848/184, 13-15=-1063/135, 8-13=-78/880, 9-13=-9/545, 16-17=-26/430,

7-16=0/661, 9-12=-1462/232, 3-19=-343/175

NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 22-2-3, Exterior(2) 22-2-3 to 30-11-13, Interior(1) 30-11-13 to 33-3-2, Exterior(2) 33-3-2 to 37-10-4 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 19=145.



Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272878 J0923-5112 A7GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:32 2023 Page 1 ID:nGEYJn1QAngpJfECepmG8Mz?may-wYsL4ctDx16gOGGcPStmFipwG8F79MUFaQR4BFzsWVf

19-10-14

-0-10₋8 0-10-8 6-1-12 4-3-0 6-1-14 6-8-2 6-8-2 4-10-6 Scale = 1:80.0 5x8 =

26-7-0

	6-1-12	10-8-0	3-1-2	13-4-4	3-1-2 1-9-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.11 WB 0.14 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00	(loc) I/defl L/d 1 n/r 120 1 n/r 120 24 n/a n/a	PLATES GRIP MT20 244/190 Weight: 362 lb FT = 20%

WEBS

10-10-14

LUMBER-BRACING-

2x6 SP No.1 *Except* TOP CHORD 1-7: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.2

OTHERS 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

10-0-0 oc bracing: 2-43,41-43.

17-30, 16-31, 15-33, 14-34, 18-29, 19-28, 1 Row at midpt 20-27

JOINTS 1 Brace at Jt(s): 5

REACTIONS. All bearings 38-1-8.

Max Horz 2=406(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 24, 30, 31, 33, 34, 35, 36, 37, 38, 40, 43, 29, 28, 27, 26, 25

16-0-12

except 2=-137(LC 6), 42=-113(LC 6)

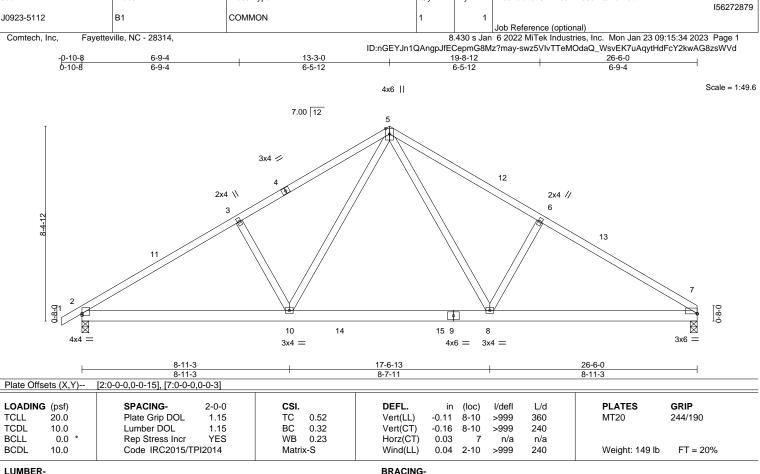
All reactions 250 lb or less at joint(s) 2, 24, 41, 30, 31, 33, 34, 35, 36, 37, 38, 40, 42, 29, 28, Max Grav 27, 26, 25 except 43=398(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-257/190, 7-8=-327/280, 8-9=-301/283, 9-10=-264/256, 14-15=-182/272, 15-16=-221/313, 16-17=-250/325, 17-18=-250/312, 18-19=-221/274

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 22-2-3, Corner(3) 22-2-3 to 30-11-13, Exterior(2) 30-11-13 to 33-5-7, Corner(3) 33-5-7 to 37-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 30, 31, 33, 34, 35, 36, 37, 38, 40, 43, 29, 28, 27, 26, 25 except (jt=lb) 2=137, 42=113.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

38-1-8


33-3-2

January 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

Qty

Ply

Weaver/Lot 37 West Preserve/Harnett

Structural wood sheathing directly applied or 4-4-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 7=0-3-8, 2=0-3-8 Max Horz 2=196(LC 7)

Max Uplift 7=-85(LC 11), 2=-99(LC 10) Max Grav 7=1077(LC 18), 2=1136(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1667/409, 3-5=-1510/462, 5-6=-1514/469, 6-7=-1670/415 TOP CHORD

BOT CHORD 2-10=-238/1462, 8-10=-55/963, 7-8=-250/1326

WFBS 5-8=-158/711, 6-8=-392/256, 5-10=-147/706, 3-10=-383/240

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 8-10-3, Exterior(2) 8-10-3 to 17-7-13, Interior(1) 17-7-13 to 21-11-7, Exterior(2) 21-11-7 to 26-4-4 zone: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4x4 =

ID:nGEYJn1QAngpJfECepmG8Mz?may-pJ5sw_wk?Fd6ttaNeHxiPYzeqmeY5AlqV2PHK0zsWVb 26-6-0 13-3-0 13-3-0

7.00 12 10 11 3x4 🖊 12 8 7 13 14 15 16 17 [80 3x4 =30 28 27 26 24 23 22 19 18 29 25 21 20 4x6 =

			26-6-0	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.04	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 1 n/r 120	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.02 WB 0.15 Matrix-S	Vert(CT) -0.00 1 n/r 120 Horz(CT) 0.00 17 n/a n/a	Weight: 185 lb FT = 20%

LUMBER-BRACING-

TOP CHORD TOP CHORD 2x4 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 26-6-0.

Max Horz 2=244(LC 7) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 17, 2, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19 except

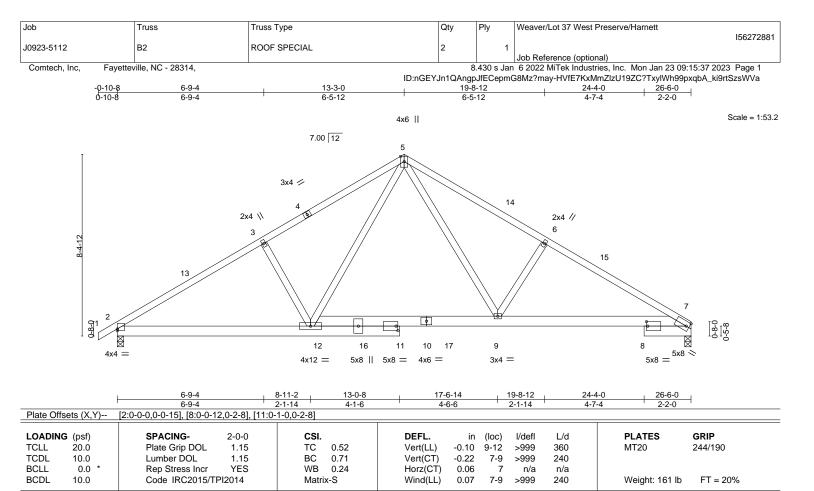
31=-108(LC 10), 18=-113(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 17, 2, 25, 26, 27, 28, 29, 30, 31, 24, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-263/188

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-3-0, Exterior(2) 3-3-0 to 8-10-3, Corner(3) 8-10-3 to 17-7-13, Exterior(2) 17-7-13 to 22-1-3, Corner(3) 22-1-3 to 26-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 2, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19 except (jt=lb) 31=108, 18=113.

Scale = 1:53.6

January 23,2023

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 7=0-3-8, 2=0-3-8 Max Horz 2=196(LC 7)

Max Uplift 7=-85(LC 11), 2=-99(LC 10) Max Grav 7=1068(LC 18), 2=1126(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1709/420, 3-5=-1526/454, 5-6=-1647/490, 6-7=-1821/449 TOP CHORD

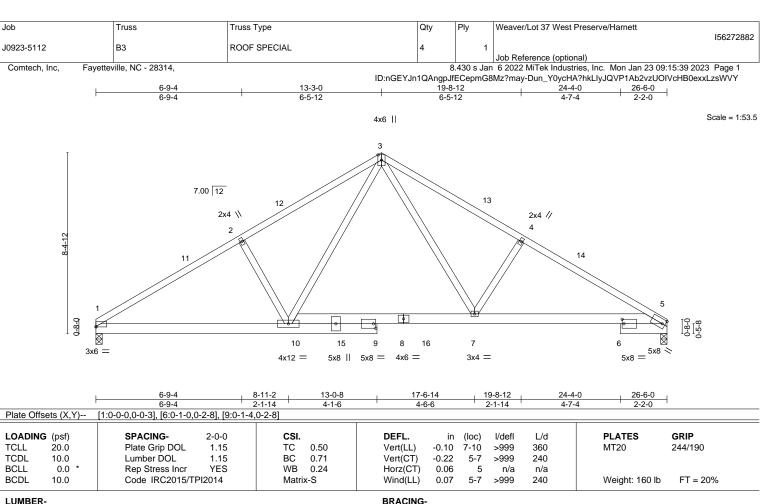
BOT CHORD 2-12=-248/1502, 9-12=-60/1006, 7-9=-284/1455 WFBS

5-12=-131/665, 3-12=-381/240, 5-9=-182/838, 6-9=-387/253

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 8-10-3, Exterior(2) 8-10-3 to 17-7-13, Interior(1) 17-7-13 to 21-11-7, Exterior(2) 21-11-7 to 26-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

Structural wood sheathing directly applied or 4-1-9 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=192(LC 7)

Max Uplift 1=-85(LC 10), 5=-85(LC 11) Max Grav 1=1068(LC 17), 5=1069(LC 18)

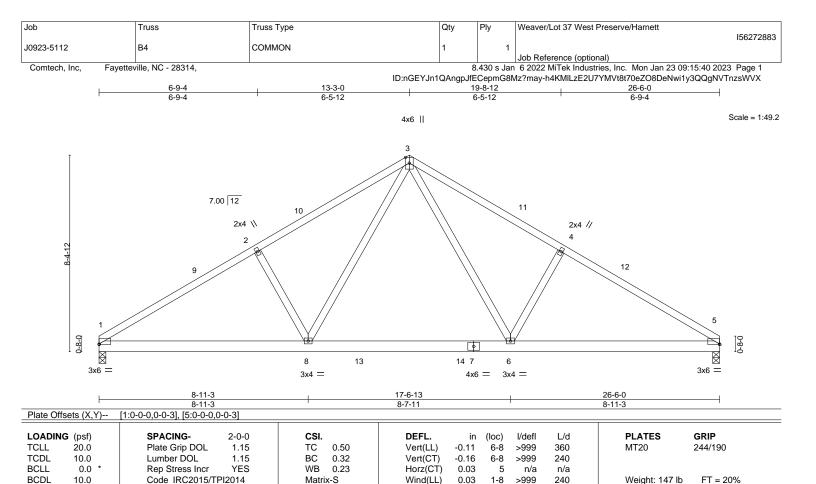
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1714/432, 2-3=-1531/466, 3-4=-1649/496, 4-5=-1823/455

BOT CHORD 1-10=-266/1511, 7-10=-64/1007, 5-7=-289/1456

WFBS 3-10=-142/670, 2-10=-390/256, 3-7=-184/839, 4-7=-387/254

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 8-10-3, Exterior(2) 8-10-3 to 17-7-13, Interior(1) 17-7-13 to 21-11-7, Exterior(2) 21-11-7 to 26-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Structural wood sheathing directly applied or 4-1-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=192(LC 7)

Max Uplift 1=-85(LC 10), 5=-85(LC 11) Max Grav 1=1077(LC 17), 5=1077(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1672/420, 2-3=-1516/474, 3-4=-1516/474, 4-5=-1672/420

BOT CHORD 1-8=-254/1471, 6-8=-58/964, 5-6=-254/1327

WFBS 3-6=-159/712, 4-6=-393/256, 3-8=-159/712, 2-8=-393/256

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 8-10-3, Exterior(2) 8-10-3 to 17-7-13, Interior(1) 17-7-13 to 21-11-7, Exterior(2) 21-11-7 to 26-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Structural wood sheathing directly applied or 4-4-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272884 COMMON J0923-5112 C₁ Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:42 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:nGEYJn1QAngpJfECepmG8Mz?may-dTS7A1?Va5NGbo1X_Y26fpDdxAb6VryjtzscYgzsWVV 22-6-8 0-10-8 10-10-0 16-1-4 21-8-0 5-6-12 5-3-4 5-3-4 5-6-12 Scale = 1:46.7 5x5 = 3 8.00 12 10 2x4 💸 2x4 // 11 0-6-0 7 3x6 = 3x6 = 8x8 10-10-0 21-8-0 10-10-0 Plate Offsets (X,Y)--[1:0-3-10,0-1-8], [5:0-6-0,0-0-5], [7:0-4-0,0-4-8] **GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.15 TC 0.13 Vert(LL) -0.07 1-7 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.39 Vert(CT) -0.15 1-7 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.27 Horz(CT) 0.02 5 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) 240 Weight: 144 lb FT = 20%Matrix-S 0.02 1-7 >999

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS.

(size) 1=Mechanical, 5=0-3-8

Max Horz 1=-183(LC 8)

Max Uplift 1=-66(LC 10), 5=-78(LC 11) Max Grav 1=856(LC 1), 5=910(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1157/351, 2-3=-892/301, 3-4=-892/300, 4-5=-1153/344 TOP CHORD

BOT CHORD 1-7=-182/930, 5-7=-169/888

WFBS 3-7=-156/676, 4-7=-363/232, 2-7=-367/248

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-4 to 4-6-1, Interior(1) 4-6-1 to 6-5-3, Exterior(2) 6-5-3 to 15-2-13, Interior(1) 15-2-13 to 17-11-15, Exterior(2) 17-11-15 to 22-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272885 J0923-5112 C1GE **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:44 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

5x5 =

ID:nGEYJn1QAngpJfECepmG8Mz?may-asatbj0l6jdzq6Bv6z5akDI?x_NIzoo0LHLicYzsWVT 10-10-0 10-10-0

8 8.00 12 9 5 10 3x4 3x4 22 21 20 19 18 17 16 15 14 8x8 =

Plate Off	sets (X,Y)	[18:0-4-0,0-4-8]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	0.00	12	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	12	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matri	x-S						Weight: 172 lb	FT = 20%

21-8-0

LUMBER-BRACING-

2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD 2x6 SP No.1 **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 21-8-0.

(lb) -Max Horz 2=231(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 21, 17, 15 except 20=-101(LC 10), 22=-146(LC 10),

16=-103(LC 11), 14=-143(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 2, 12, 18, 19, 20, 21, 17, 16, 15 except 22=255(LC 17),

14=251(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-12 to 3-8-1, Exterior(2) 3-8-1 to 6-5-3, Corner(3) 6-5-3 to 15-2-13, Exterior(2) 15-2-13 to 17-11-15, Corner(3) 17-11-15 to 22-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 21, 17, 15 except (it=lb) 20=101, 22=146, 16=103, 14=143.

Scale = 1:50.7

January 23,2023

Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272886 COMMON J0923-5112 C2 3 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:46 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:nGEYJn1QAngpJfECepmG8Mz?may-WEie0P2?eKth4QLIDO72peOJxoy_RfxJobqphRzsWVR 21-8-0 10-10-0 5-6-12 5-3-4 5-3-4 5-6-12 Scale = 1:46.3 5x5 = 8.00 12 9 2x4 💸 2x4 / 10 5 0-6-0 \aleph 6 3x6 = 3x6 = 8x8 = 21-8-0 10-10-0 Plate Offsets (X,Y)--[1:0-3-10,0-1-8], [5:0-3-10,0-1-8], [6:0-4-0,0-4-8] **GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.15 TC 0.13 Vert(LL) -0.07 1-6 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.39 Vert(CT) -0.15 1-6 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.27 Horz(CT) 0.02 5 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) 0.02 6 >999 240 Weight: 142 lb FT = 20%Matrix-S LUMBER-BRACING-TOP CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD**

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 5=0-3-8

Max Horz 1=-179(LC 8)

Max Uplift 1=-66(LC 10), 5=-66(LC 11) Max Grav 1=857(LC 1), 5=857(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1160/356, 2-3=-893/306, 3-4=-893/306, 4-5=-1156/355

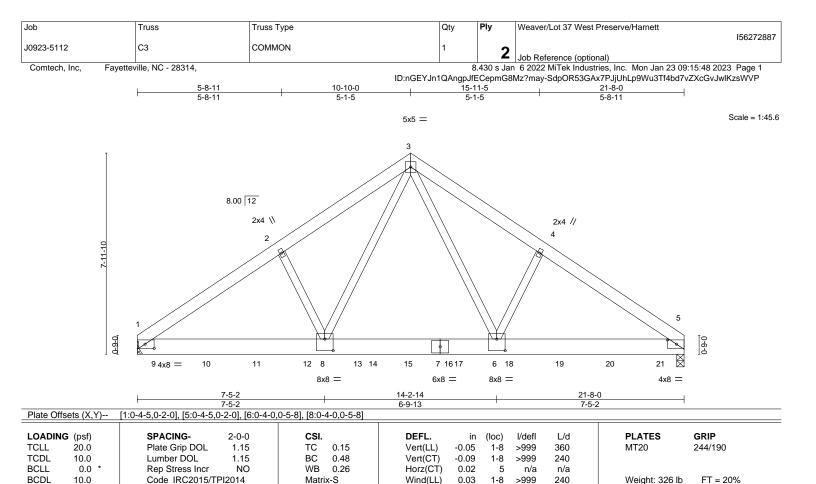
BOT CHORD 1-6=-197/928, 5-6=-196/892

WFBS 3-6=-164/675, 4-6=-362/247, 2-6=-367/249

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-4 to 4-6-1, Interior(1) 4-6-1 to 6-5-3, Exterior(2) 6-5-3 to 15-2-13, Interior(1) 15-2-13 to 17-1-7, Exterior(2) 17-1-7 to 21-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Rigid ceiling directly applied or 10-0-0 oc bracing.


January 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.03

1-8

>999

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Weight: 326 lb

FT = 20%

LUMBER-

REACTIONS.

BCDL

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x8 SP No.1

10.0

2x4 SP No.2 **WEBS**

> (size) 1=Mechanical, 5=0-3-8 Max Horz 1=-177(LC 23) Max Uplift 1=-57(LC 8), 5=-142(LC 9) Max Grav 1=2996(LC 1), 5=2671(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-3685/200, 2-3=-3548/265, 3-4=-3291/270, 4-5=-3429/205

BOT CHORD 1-8=-177/2965, 6-8=-41/1989, 5-6=-103/2745

WFBS 2-8=-302/204, 3-8=-151/2133, 3-6=-161/1623, 4-6=-295/209

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Matrix-S

- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=142.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 334 lb down at 0-8-12, 466 lb down and 21 lb up at 2-8-12, 466 lb down and 21 lb up at 4-8-12, 466 lb down and 21 lb up at 6-8-12, 364 lb down and 41 lb up at 8-8-12, 309 lb down and 24 lb up at 10-8-12, 309 lb down and 24 lb up at 12-8-12, 309 lb down and 24 lb up at 14-8-12, 309 lb down and 24 lb up at 16-8-12, and 309 lb down and 24 lb up at 18-8-12, and 311 lb down and 22 lb up at 20-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

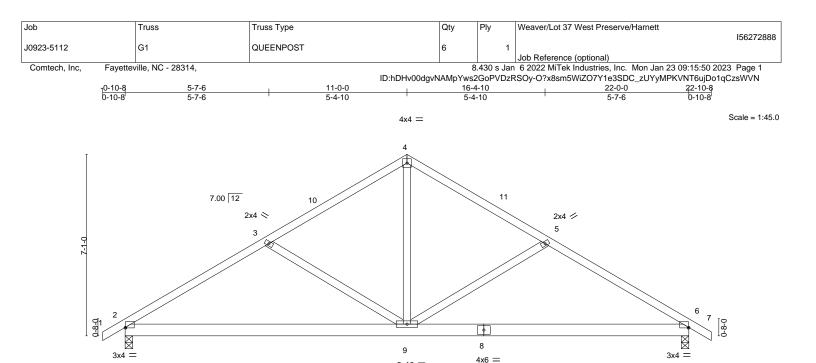
January 23,2023

Continued on page 2

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272887 C3 J0923-5112 COMMON

Comtech, Inc, Fayetteville, NC - 28314,


| **Z** | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:48 2023 Page 2 ID:nGEYJn1QAngpJfECepmG8Mz?may-SdpOR53GAx7PJjUhLp9Wu3Tf4bd7vZXcGvJwlKzsWVP

LOAD CASE(S) Standard

Vert: 9=-334(F) 10=-466(F) 11=-466(F) 12=-466(F) 13=-364(F) 15=-309(F) 17=-309(F) 18=-309(F) 19=-309(F) 20=-309(F) 21=-311(F)

818 Soundside Road Edenton, NC 27932

11-0-0 22-0-0 11-0-0 Plate Offsets (X,Y)--[2:0-0-4,0-0-3], [6:0-0-4,0-0-3]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.36 BC 0.42	DEFL. Vert(LL) Vert(CT)	in -0.08 -0.17	(loc) 6-9 6-9	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 *	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.26 Matrix-S	Horz(CT) Wind(LL)	0.02 0.02	6 2-9	n/a >999	n/a 240	Weight: 121 lb	FT = 20%
BCDI 10.0	0000 IN02015/11 12014	WIGHTA O	/ Willia(LL)	0.02	2 3	/555	240	Weight. 121 lb	11 = 2070

BRACING-

TOP CHORD

BOT CHORD

3x10 =

LUMBER-

WEBS

2x4 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1

2x4 SP No.2 REACTIONS. (size) 6=0-3-8, 2=0-3-8

Max Horz 2=-166(LC 12) Max Uplift 6=-85(LC 15), 2=-85(LC 14) Max Grav 6=948(LC 1), 2=948(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1297/402, 3-4=-984/323, 4-5=-984/323, 5-6=-1297/402

BOT CHORD 2-9=-233/1038, 6-9=-233/1024

WFBS 3-9=-360/253, 4-9=-150/663, 5-9=-360/253

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=13ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 4-2-11, Exterior(2) 4-2-11 to 5-10-13, Corner(3) 5-10-13 to 16-1-3, Exterior(2) 16-1-3 to 17-9-5, Corner(3) 17-9-5 to 22-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=20.8 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp C; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

Structural wood sheathing directly applied or 5-3-1 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272889 J0923-5112 G1GE COMMON SUPPORTED GAB | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:52 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:nGEYJn1QAngpJfECepmG8Mz?may-LO3vHS6mEAeroLoSaeES3veNrC5HrQ8BBXH7u5zsWVL 22-10-8 0-10-8 -0-10-8 0-10-8 11-0-0 11-0-0

4x4 =

8 7.00 12 10 6 11 5 12 13 ¹⁴15 3x4 =27 26 25 24 23 22 21 20 19 18 17 16 4x6 =

	22-0-0 22-0-0								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.09 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 14 n/r 120 Vert(CT) -0.00 15 n/r 120 Horz(CT) 0.00 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 145 lb FT = 20%					

LUMBER-BRACING-

TOP CHORD TOP CHORD 2x4 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 22-0-0.

Max Horz 2=-208(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 24, 25, 26, 21, 19, 18, 17, 16, 14 except 27=-101(LC 10)

Max Grav All reactions 250 lb or less at joint(s) 2, 22, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 6-7-3, Corner(3) 6-7-3 to 15-4-13, Exterior(2) 15-4-13 to 18-5-11, Corner(3) 18-5-11 to 22-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 24, 25, 26, 21, 19, 18, 17, 16, 14 except (jt=lb) 27=101.

Scale = 1:45.3

January 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Weaver/Lot 37 West Preserve/Harnett 156272890 J0923-5112 G2 COMMON GIRDER
 ▲
 Job Reference (optional)

 8.430 s Jan
 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:54 2023
 Page 1
 Comtech, Inc, Fayetteville, NC - 28314, ID:nGEYJn1QAngpJfECepmG8Mz?may-HnBfh880lnuZ1eyqh3Gw8Kjdl0aNJEAUermEzzzsWVJ 22-10-8 0-10-8 -0-10-8 0-10-8 22-0-0

5-4-10

5-4-10

4x6 || Scale = 1:45.0

Structural wood sheathing directly applied or 4-6-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

5-7-6

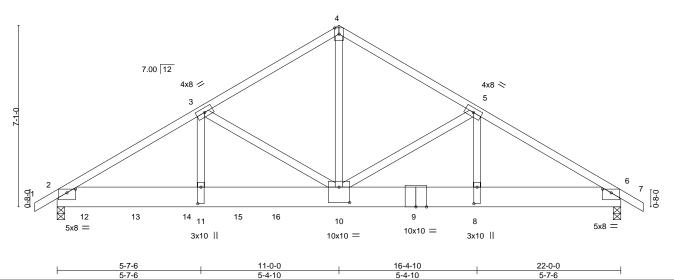


Plate Offsets (X,Y)--[2:0-4-0,0-1-11], [6:0-4-0,0-1-11], [8:0-7-12,0-1-8], [10:0-5-0,0-7-4], [11:0-7-12,0-1-8]**PLATES** LOADING (psf) SPACINGin (loc) I/defl L/d GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) -0.09 10-11 >999 360 MT20 244/190 -0.17 10-11 TCDL 10.0 Lumber DOL 1.15 ВС 0.87 Vert(CT) >999 240 **BCLL** 0.0 Rep Stress Incr NO WB 0.51 Horz(CT) 0.03 6 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) 0.06 10-11 >999 240 Weight: 326 lb FT = 20%Matrix-S

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x10 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-166(LC 25) Max Uplift 2=-437(LC 8), 6=-199(LC 9) Max Grav 2=5350(LC 1), 6=2561(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-7731/585, 3-4=-4315/361, 4-5=-4317/361, 5-6=-4212/315 TOP CHORD **BOT CHORD** 2-11=-502/6503, 10-11=-502/6503, 8-10=-189/3509, 6-8=-189/3509

WFBS 4-10=-270/3953, 5-10=-414/399, 5-8=-388/131, 3-10=-3385/369, 3-11=-211/3355

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=437, 6=199.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 891 lb down and 97 lb up at 1-0-12, 837 lb down and 86 lb up at 3-0-12, 837 lb down and 86 lb up at 3-0-12, and 837 lb down and 86 lb up at 7-0-12, and 2651 lb down and 162 lb up at 8-6-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

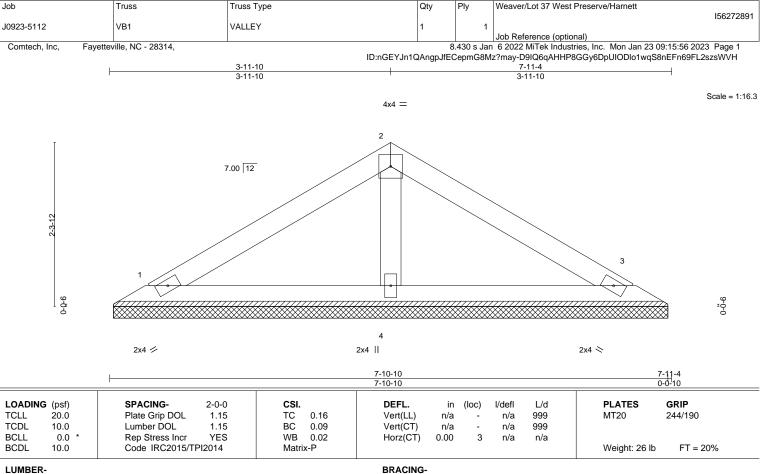
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 12=-891 13=-837(F) 14=-837(F) 15=-837(F) 16=-2651



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

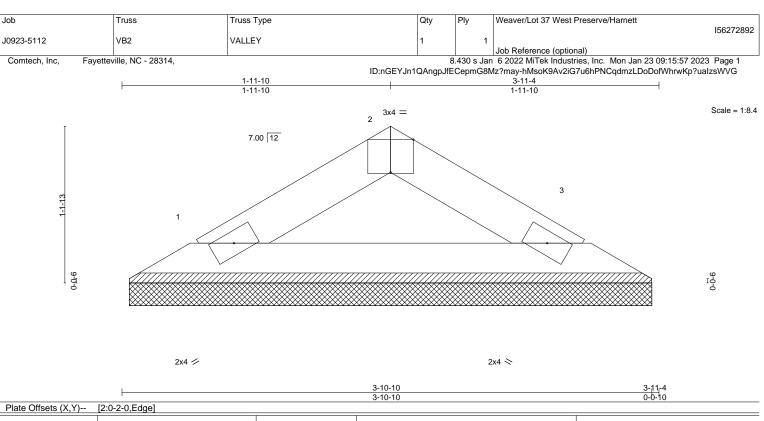
REACTIONS. 1=7-10-0, 3=7-10-0, 4=7-10-0 (size) Max Horz 1=-48(LC 6) Max Uplift 1=-25(LC 10), 3=-30(LC 11)

Max Grav 1=143(LC 1), 3=143(LC 1), 4=258(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SPACING-DEFL. **PLATES** GRIP LOADING (psf) 2-0-0 CSI. in (loc) I/defI L/d 244/190 TCLL 20.0 Plate Grip DOL 1.15 TC 0.02 Vert(LL) n/a 999 MT20 n/a TCDL 10.0 Lumber DOL 1.15 ВС 0.07 Vert(CT) n/a n/a 999 **BCLL** 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Matrix-P Weight: 11 lb

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-11-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=3-10-0, 3=3-10-0 (size)

Max Horz 1=-20(LC 8)

Max Uplift 1=-9(LC 10), 3=-9(LC 11) Max Grav 1=113(LC 1), 3=113(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272893 VALLEY J0923-5112 VC1 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:15:58 2023 Page 1 ID:nGEYJn1QAngpJfECepmG8Mz?may-9YQAXVBXp0O_WGFcwvLsIAuMUd62F6z4ZTkS6IzsWVF 10-7-4 10-7-4 4x4 = Scale = 1:44.8 8.00 12 15 16 9-0-0 3x4 / 3x4 × 13 12 11 10 9 3x4 =21-2-8 Plate Offsets (X,Y)--[5:0-0-0,0-0-0], [6:0-0-0,0-0-0] **PLATES** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.16 Vert(LL) 999 244/190 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.19 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.14 0.00 Horz(CT) n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Weight: 92 lb Matrix-S

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 21-1-6.

Max Horz 1=162(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 13, 8 except 12=-113(LC 10), 9=-113(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=446(LC 17), 12=461(LC 17), 13=277(LC 17),

9=461(LC 18), 8=277(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-12=-318/213, 5-9=-318/213

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 6-2-7, Exterior(2) 6-2-7 to 15-0-1, Interior(1) 15-0-1 to 16-3-12, Exterior(2) 16-3-12 to 20-8-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 13, 8 except (jt=lb) 12=113, 9=113.
- 7) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Weaver/Lot 37 West Preserve/Harnett 156272894 J0923-5112 VC2 VALLEY Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jan 23 09:16:00 2023 Page 1 ID:nGEYJn1QAngpJfECepmG8Mz?may-6xYwyBDnLdeilZP_2KNKNbziYRo1j1FN0nDZBdzsWVD 8-10-4 8-10-4 Scale = 1:39.6 4x4 = 3 8.00 12 2x4 || 2x4 || 5-10-13 3x4 > 3x4 / 11 7 9 8 6 3x4 =2x4 || 2x4 II 2x4 || Plate Offsets (X,Y)--[4:0-0-0,0-0-0] SPACING-**PLATES** GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d TCLL 20.0 Plate Grip DOL 1.15 TC 0.18 Vert(LL) 999 244/190 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.15 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.09 0.00 Horz(CT) n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Weight: 72 lb Matrix-S **BRACING-**TOP CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc bracing.

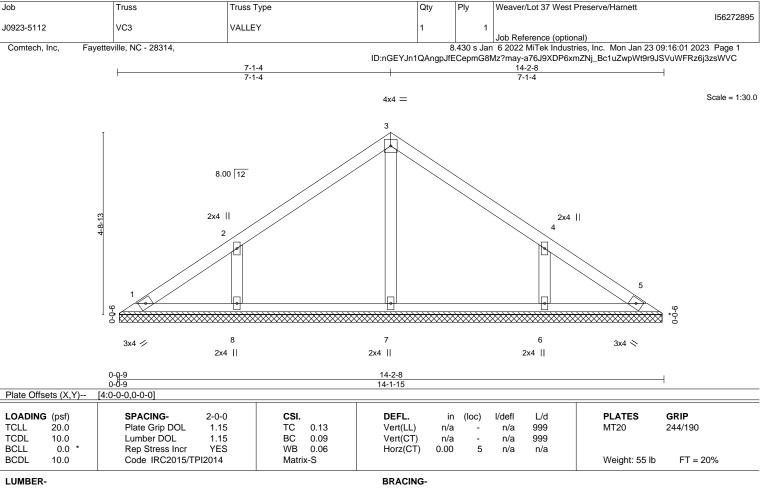
REACTIONS. All bearings 17-7-6.

(lb) -Max Horz 1=-134(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-130(LC 10), 6=-129(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=402(LC 17), 9=461(LC 17), 6=461(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


2-9=-356/249, 4-6=-357/249 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=130, 6=129.
- 6) N/A

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-1-6.

(lb) -Max Horz 1=-106(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-105(LC 10), 6=-104(LC 11)

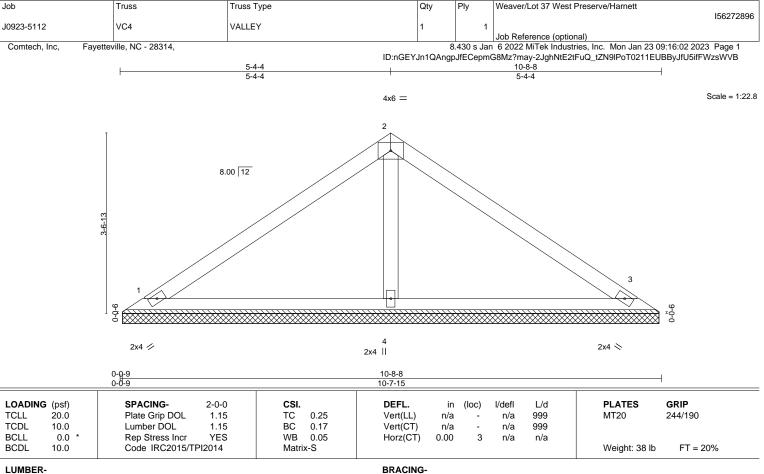
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=260(LC 1), 8=337(LC 17), 6=337(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-289/209, 4-6=-289/209

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=105, 6=104.
- 6) N/A



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS.

1=10-7-6, 3=10-7-6, 4=10-7-6 (size)

Max Horz 1=-78(LC 6)

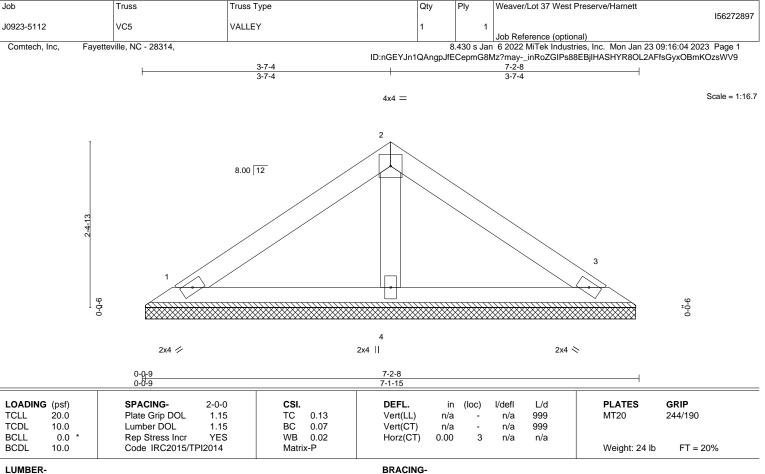
Max Uplift 1=-28(LC 10), 3=-35(LC 11), 4=-5(LC 10) Max Grav 1=193(LC 1), 3=193(LC 1), 4=392(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 6) N/A

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

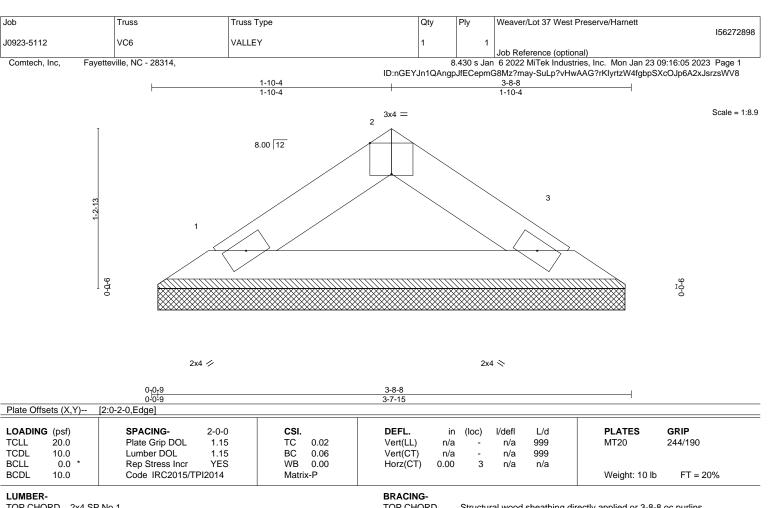
REACTIONS.

1=7-1-6, 3=7-1-6, 4=7-1-6 (size) Max Horz 1=-50(LC 8) Max Uplift 1=-24(LC 10), 3=-29(LC 11)

Max Grav 1=135(LC 1), 3=135(LC 1), 4=227(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) N/A

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

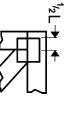
TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-8-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

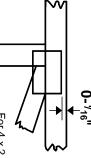
REACTIONS. (size) 1=3-7-6, 3=3-7-6

Max Horz 1=-22(LC 6) Max Uplift 1=-8(LC 10), 3=-8(LC 11) Max Grav 1=109(LC 1), 3=109(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) N/A



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

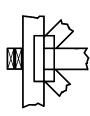
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.

Industry Standards: ANSI/TPI1: National Design Specification for Metal

DSB-22:

Plate Connected Wood Truss Construction.
Design Standard for Bracing.
Building Component Safety Information,
Guide to Good Practice for Handling,
Installing, Restraining & Bracing of Metal
Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MITOK

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.