Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A1G	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:01:59 Page: 1 ID:Uf6IWnZy_MGvzX2zGxahqTyc1iq-_?DrX_ArcW66rvo?GTiR_OnLzd7r_G2AHMPorJyIJa8

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL	
72331508	A2	Truss	7	1	Job Reference (optional)	
JFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, r thomas	Run: 8.62 S Ser	22 2022 Pri	nt: 8.620 S S	Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:00	Page: 1

 $\label{eq:linear} ID: yunzOhokJo9bFD5IpGWr?tyc1qH-Oav_A0DkuRUhiMXaxbG8c0PdhqwiBQeczKdTSeyIJa5$

-0.10.8											64-10-8
0-10-8	6-10-15 6-10-15	<u>14-0-3</u> 7-1-3	<u>21-0-0</u> 6-11-13	<u>31-1-12</u> 10-1-12	<u>37-4-4</u> 6-2-8	<u>43-</u> 5-7	<u>0-0 4</u> -12 (<u>9-11-14</u> 6-11-14	+ 57-1-1 7-1-3	<u>64-0-0</u> 6-10-15	0-10-8
о	7x8 = 4 x5 = 10-4-2 10-4-2	$5x5 = 6^{12} 5^{-5}$ $6^{12} 5^{-5}$ 72 81 $28 39$ $5x5 = -16-00$ $5-7-14$	7.88 = 6 72 72 740 27 40 5x8 = 5x5 = 21-1-12 3-0	38 T3 5 6 8 8 1 25 41 5 5 5 8 1 -0 7-8-8	7.8= 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5x5= 8 74 74 74 74 74 74 74 74 74 74 74 74 74	5x8= 9 9 40 BH9 44 457 = 2x5= 5x8= 42-10-4 42-4-12 2-3-14 11-10 0-0-14 0-5-8	55 40 46 16 5x8= -0-0 -1-12 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	x5 10 7 47 15 5x5= 3-7-14 5-7-14	⁸⁸ 11 5x5 1 1 1 1 1 1 1 1 1 1 1	5x6=
Plate Offsets (X, Y	′): [2:0-3-2,0-0	-8], [4:0-4-0,0-4-8], [6:0-3-4,0-3-8], [7:0-3-12	2,0-5-0], [11:0-4-0,0	-4-8], [13:Edge,0-2	-10], [24:0-4-0,0)-4-8]				
Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2015/T	2-0-0 CSI 1.15 TC 1.15 BC NO WB Pl2014 Matrix-MS	0.92 1.00 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in (lo -0.27 20-2 -0.47 20-2 0.06 1	c) l/defl 21 >999 21 >999 13 n/a	L/d PLATES 240 MT20 180 n/a Weight: 534 lb	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SP No.2 *Except 2x6 SP No.3 *Except 2x4 SP No.3 *Except Left 2x4 SP No.3 - 1 (lb/size) 2 (lb/size) 2 (lb/size) 2 (lb/size) 2 (lb) Max Horiz 2 Max Uplift 2 Max Grav 2 (lb) - Ma 2-3=637 11-12=- 2-28=-41 18-22=0	* T3:2x6 SP SS * B2:2x4 SP No.3 * W6:2x6 SP No.2 -11-0, Right 2x4 SP =1070/0-5-4, (min. C req. 0-5-0) =-191 (LC 11) =-262 (LC 10), 13=- =1161 (LC 21), 13=- x. Comp./Max. Ten. 7/12, 3-37=-1465/43 2359/509, 12-13=-28 39/1289, 28-39=-288	No.3 1-11-0)-1-8), 13=1413/0-3-8, (204 (LC 11), 25=-280 (l 1460 (LC 22), 25=4239 - All forces 250 (lb) or I 9, 4-37=-1129/365, 4-5: 6/49 1/228, 27-39=-288/228, 1/4-5=-0/800, 17-45=-0/8	min. 0-1-12), 25=4(_C 7) (LC 2) ess except when sh =-832/290, 5-6=-2/5 27-40=-288/228, 2(00, 17-46=-123/17	BRACING TOP CHC BOT CHC 048/0-3-8,WEBS WEBS 100wn. 138, 6-38=-33/1267 5-40=-288/228, 25:-	3 RD 7-38=-33/1267 726=-745/405, 22 1 45-47=-123/	Structural woo 2-0-0 oc purlin Rigid ceiling di 6-0-0 oc bracir 10-0-0 oc braci 1 Row at midp 2 Rows at 1/3 7, 7-8=-424/205 5-41=-11/301, 4	d sheathing dir s (6-0-0 max): rectly applied c ng: 26-28,25-26 ing: 19-23 t pts , 8-9=-1265/37 1-42=-11/301, 23/1711 13-15	rectly applied or 4-0-1 6-9. or 10-0-0 oc bracing, 5-26, 8-23, 10 6-25, 7-25 70, 9-10=-1500/355, 10 24-42=-11/301, 24-43 5-232/031	oc purlins, except Except: -17 -11=-2168/481, =0/800, 22-43=0/6	300,
WEBS NOTES 1) Unbalanced 2) Wind: ASC exterior zor for reaction 3) WARNING: guidance, s and TPI. Tr of the temp manufactur 4) Provide add 5) All plates al 6) This truss the bottom 8) WARNING 9) Provide me uplift at join 10) This truss i TPI 1. 11) Magnitude 12) Graphical p 13) Hanger(s) d down and 5 LOAD CASE(S) 1) Dead + Rt Uniform Li	4-28=-90 6-25=-15 d roof live loads have b E 7-10; Vult=130mph (: he and C-C Exterior (2) is shown; Lumber DOL: 5 This long span truss : see Guide to Good Prace building owner or the orary installation restra- re, handling, erection, o equate drainage to prev re 5x5 MT20 unless of has been designed for chord and any other m is has been designed for chord and any other m is Required bearing size schanical connection (b t 25. s designed in accordan of user added load(s) o purlin representation do or other connection dev 20 lb up at 26-5-8 on to Standard of Live (balanced): Lur oads (lb/ft) Vert: 1-6=-60, 6-9	36/425, 5-28=-214/1 308/466, 7-25=-2735 een considered for t 3-second gust) Vasc zone; cantilever left =1.60 plate grip DOI requires extreme can catice for Handling, In e owner's authorized int/bracing and the p r bracing. vent water ponding. herwise indicated. a 10.0 psf bottom chh r a live load of 20.0p; embers, with BCDL a t joint(s) 25 greate y others) of truss to l icce with the 2015 Intu- on this truss have be es not depict the siz rice(s) shall be proving p chord. The design mber Increase=1.15, 1=-60, 9-14=-60, 29-1	 130, 5-26=-1007/420, 6/ /445, 10-17=-719/368, his design. I=103mph; TCDL=6.0p; and right exposed; emi- =1.60 e and experience for pi stalling & Bracing of Me agent shall contract wi bermanent individual true ord live load nonconcurs fon the bottom chord i = 10.0psf. r than input bearing siz bearing plate capable o ernational Residential C en applied uniformly ac e or the orientation of the ded sufficient to suppor r/selection of such conri Plate Increase=1.15 33=-20, 19-23=-20 	26=-172/922, 8-19 10-15=-72/434 af; BCDL=6.0psf; h- d vertical left and rig oper and safe hand tal Plate Connecte th a qualified regist ss member restrain rent with any other n all areas where a e. f withstanding 262 l code sections R502 ross all gravity load her purin along the t t concentrated load her for device(s) is	=-120/919, 17-19= =-35ft; Cat. II; Exp B ght exposed;C-C fo dling and erection. If d Wood Trusses ("fe rec design profess t/bracing. MiTek a live loads. rectangle 3-06-00 lb uplift at joint 2, 20 .11.1 and R802.10. cases with no adju op and/or bottom cl (s) 750 lb down and the responsibility o	Enclosed; MW members and for general han 3CSI"), jointly pr ional for the de ssumes no resp tall by 2-00-00 n 4 lb uplift at joi 2 and reference stments. nord. 1 93 lb up at 5 others.	/FRS (envelope forces & MWFF dling and erecti roduced by SBC sign and inspec yonsibility for tru wide will fit betw nt 13 and 280 lt ad standard AN: -4-12, and 350	287/251, 23-24 RS on CA tion reen SI/ Ib	4=-1097/225, 8-23=-10 1097/225, 8-23=-10 0549 0549 8/22/2 NGIN ER	AROL 19 2023	1596,
This design is bas component is resp governing codes a truss is fabricated (BCSI) for genera	sed upon parameters sl ponsibility of the Buildir and ordinances. Buildir I by a UFPI plant. Brac al guidance regarding st	hown, and is for an i ng Designer. Buildin ng Designer accepts ing shown is for late torage, erection and	ndividual building comp g Designer shall verify a responsibility for the co ral support of truss mer bracing available from	onent to be installe all design information prrectness or accura nbers only and doe SBCA and Truss Pl	d and loaded vertic on on this sheet for acy of the design in s not replace erecti ate Institute.	ally. Applicabili conformance w formation as it r on and perman	ity of design par ith conditions a may relate to a ent bracing. Re	ameters and p nd requirement specific building fer to Building	proper incorporation of ts of the specific buildi g. Certification is valid Component Safety Inf	in the second se	到

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A2	Truss	7	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:00 Page: 2 $ID: yunzOhokJo9bFD5lpGWr?tyc1qH-Oav_A0DkuRUhiMXaxbG8c0PdhqwiBQeczKdTSeyIJa5$

Concentrated Loads (lb)

Vert: 37=-750, 38=-350

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation by B/22/2023. We will be supported by the support of the support of the support of the support of the design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility of the design information as it may relate to a specific building. Certification is value of the specific building certific building. Certification is value of the specific building. Certification is value of the specific building certific building. Certification is value of the specific building certific building certification is value of the specific building certific building certification is value of the specific building certific building certification is value of the specific building certification is value of the specific building

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A3	Truss	2	1	Job Reference (optional)

Γ

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:01

Page: 1 ID:n?1x_BfLLW8wJc5KAvCLdxyc1ij-smTMNMEMflcYJW6nVInN8EynpELAwtrlC_N0_4yIJa4

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	-0-10-8 -	6-10-15 6-10-15	<u>14-0-3</u> 7-1-3	21-0-0 6-11-13 7x8=	<u>28-9-0</u> 7-9-0	<u>36-0-12</u> 7-3-12 5x5= 5x8=	38-9-4, 4 2-8-8 5x5= 3x4	<u>43-0-0</u> 4-2-12 ı 5x8a	<u>49-11-</u> 6-11- ⁻	- <u>14</u> 14	57- 7-	- <u>1-1</u> 1-3	<u>64-0-0</u> 6-10-15	64-10-8 ++ 0-10-8
Product Office (X, Y): [20-94.0-08], (40-4.00-48], [80-94.0-3-12], (11.0-11.2,02-4], (13.0-4.0,0-40], [15.854g, 0.2-10], [20.0-54.0-14], [20.9-4.0-142	0 0 0 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 3x6 ∎ 3x6 ∎	7x8 = 4 5= 10 10-4-2 10-4-2	$5x5_{0}$ 6^{12} 772 77	6 H2 H2 H3 H4 H3 H4 H3 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4	40 T3 T3 VV5 8 27 5x8=	7 8 W6 B 26 43 7x8= -0 36-2-8 0 7-5-8	9 10 74 74 74 74 74 74 74 74 74 74	11 11 11 10 10 19 5x8: 1 2-10-4 4-2-12	B2 44 = 48-0-0 5-1-12	55 12 12 18 5x8= + 55 5	45 12 12 12 12 12 12 12 12 12 12 12 12 12 1	7x 011 17 x5=	8. 13 5 B1 <u>64-0-0</u> 10-4-2	x5 14 15 16 5x6=
Leading (ps) Spacing 2-0.0 CBI OBS DEFL in (bc) Vel(L1) 0.0	Plate Offsets (X, Y):	[2:0-3-6,0-0	-8], [4:0-4-0,0-4-8],	[6:0-3-8,0-3-12], [11:0-1	-12,0-2-4], [13:0)-4-0,0-4-8], [15:Edg	je,0-2-10], [20:0-{	5-6,0-0-4], [2	22:0-2-8,0-4	4-4], [23:(0-5-8,0-1-1	2], [28:0-3-8	3,0-2-4]	
LUMBER TOP CHORD Zds SP No.2 Structural wood sheathing directly applied or 4-7-11 oc purlins, except 24-40 oc purlins (5-70 max), 6-11. BOT CHORD Zds SP No.2* Except 14-224 SP No.3 TOP CHORD Structural wood sheathing directly applied or 4-7-11 oc purlins, except 24-40 oc purlins (5-70 max), 6-11. WEBS Zds SP No.2* Except 14-224 SP No.3 - 11-10. BOT CHORD Structural wood sheathing directly applied or 4-7-11 oc purlins, except 24-00 oc purlins (5-70 max), 6-11. REACTIONS (bitary) 2-2980 oc 4, (min. 0-1-8), 15-13010-3-8, (min. 0-1-9), 28-4780 0-54. WEBS 2 Row at mdpt S223 REACTIONS (bitary) 2-2980 (C 1), 15-5-7301(C 2), 28-4780 (C 1) WEBS 2 Row at mdpt S223 COP CHORD 2-3-2650268, 33-3070708, 4-38-117/1058, 14-148-788103 UNITS 1 Brace at J1(5): 22, 23 DOT CHORD 2-3-2650268, 33-3070708, 4-38-117/1058, 14-28-118/288, 24-21-145/288, 27-22-204408, 25-27-2054408, 9-221047/282, 22-23-	Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2015/T	2-0-0 CSI 1.15 TC 1.15 BC NO WB PI2014 Matrix	0. 0. 0.	96 Vert(LL) 66 Vert(CT) 99 Horz(CT)	in -0.24 -0.45 0.21	(loc) 17-19 17-19 15	l/defl >999 >999 n/a	L/d PLA 240 MT2 180 n/a Wei	ATES 20 ight: 554 lb	GRIP 244/190 FT = 20%	
11-12a-1028/b17, 12-13a-1736/b19, 13-14a-2019/e5, 14-15a-788/103 BOT CHORD 2:30-639/410, 00-14n-1645/268, 2:94-1-1645/2588, 2:94-2-1645/268, 2:728-2054/498, 9-23-1047/282, 2:2:3a-14/1129, 19-44a-258/1333, 18-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/1333, 17-45a-258/133, 12-12a-258/133, 12-12a-258/1428, 2:22-31/1633, 11-22a-36/1150, 11-19a-688/50, 12-19a-749/354, 12-17a-47/536, 13-17a-296/244, 6-26a-526/2694, 6-28a-3800/707 NOTES (10 10 Unbalanced roof live loads have been considered for this design. 21 Wind: ASCE 7-10, Vuli=130mph (3-second gust) Vadd=103mph; TCDL=6.0psf; BCDL=6.0psf; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; canniblew rel at and right exposed; C-C for members and forces 8 MWFRS 31 WMRNING: This long span truss requires extermed care and experiance for proper and safe handling and rection. For general handling and rection restraint/bracing and the permanetin individual truss member restraint/bracing. MTek assumes no responsibility for truss manufacture, handling, enceding and the permanetin individual truss member restraint/bracing. MTek assumes no responsibility for truss member and grave finde and right exposed. 32 WARNING: This is designed for a 10.0 pd bottom chord live load noconcurrent with any other live loads. 34 Hoates are 5x5 MT20 unless otherwise indicated. 35 Hoates are as been designed for a 10 up dead of 20 opf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom exertain	LUMBER TOP CHORD BOT CHORD WEBS SLIDER REACTIONS	2x6 SP No.2 2x6 SP No.2 *Except 2x4 SP No.3 *Except Left 2x4 SP No.3 - 1 (lb/size) 2 (in Max Horiz 2 Max Uplift 2 Max Grav 2 (lb) - Ma 2-3=-26	* B4:2x4 SP No.3 * W5:2x4 SP No.2, -11-0, Right 2x4 SP =298/0-5-4, (min. 0 req. 0-5-10) :=-191 (LC 15) :=-304 (LC 10), 15= :=495 (LC 21), 15=1 x. Comp./Max. Ten 7/266, 3-39=-309/7	W4:2x6 SP No.2 No.3 1-11-0 -1-8), 15=1301/0-3-8, (n -278 (LC 11), 28=-381 (316 (LC 22), 28=4780 (All forces 250 (lb) or I 8 -4-39=-117/1056 4-5	nin. 0-1-9), 28=4 LC 7) LC 1) ess except wher =-96/1347 5-6=	BRAC TOP C BOT C 1780/0-3-8, WEBS WEBS JOINT n shown. -116/2488 6-40=0/	ING CHORD CHORD SHORD S S	Structural 2-0-0 oc p Rigid ceili 6-0-0 oc t 10-0-0 oc 1 Row at 2 Rows a 1 Brace a	I wood shea burlins (5-7- ing directly bracing: 20- bracing: 22 midpt t 1/3 pts tt J1(s): 22, 1 330, 8-9=-1	athing dir -0 max.): applied c -22 3-25 23	ectly applia 6-11. or 4-10-11 o 5-2 6-2 9-10=-165	ed or 4-7-11 oc bracing. 28, 7-26, 23- 28 59/429, 10-1	oc purlins, exce Except: -26, 11-19, 12-1:	ept 9, 6-26
 NOTES (14) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vulle130mph (3-second gust) Vasae 103mph; TCDL=6.0psf; BCDL=6.0psf; h=35f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions show; Lumber DOL=16 (0) plate grip DOL=160 WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice of Handling; Installing & Bracing of Metal Plate Connected Wood Trusses (TBCST); jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation estraintbracing of Metal Plate Connected Wood Trusses (TBCST); jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation estraintbracing of Metal Plate Connected Wood Trusses (TBCST); jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation estraintbracing of the table connecture with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. WRANINC: Required beaing Size a tipol(s) 28 greater than input bearing size. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 304 lb uplift at joint 2, 381 lb uplift at joint 28 and 278 lb uplift at joint 2. This truss is designed in accordance with the 2015 International Resid	BOT CHORD WEBS	11-12=- 2-30=-63 18-44=-2 4-30=-10 12-19=-7	1026/517, 12-13=-1 39/410, 30-41=-164 258/1333, 18-45=-2 084/429, 5-30=-219 749/354 12-17=-47	5/268, 29-41=-1645/268 5/268, 29-41=-1645/268 58/1333, 17-45=-258/13 /1203, 5-28=-1057/429, /536, 13-17=-296/244, 6	45, 14-15=-788/ 29-42=-1645/2 33, 15-17=-442/ 7-26=-1597/330 3-26=-526/2694	/103 268, 28-42=-1645/20 /1728), 23-26=-723/277, ⁻ 6-28=-3800/707	58, 27-28=-2054/ 7-23=-41/1753, 9	498, 26-27= -22=-172/94	-2054/498, 8, 19-22=-3	9-23=-10 31/1633,	047/292, 2: 11-22=-36	2-23=-14/11 5/1150, 11-1	29, 19-44=-258, 9=-688/50,	/1333,
T_{III} and T_{III}	 NOTES (14) Unbalanced Wind: ASCE exterior zone for reactions WARNING: guidance, se and TPI. The of the tempo manufacture Provide ader All plates are This truss ha This truss ha * This truss ha * This truss ha * This truss ha This truss ha THI 1. This truss ha TPI 1. Magnitude o Graphical put Hanger(s) or down and 90 Bottom chore LOAD CASE(S) Dead + Roc Uniform Loz 	12-19=-/ roof live loads have b 7-10; Vult=130mph (; a and C-C Exterior (2) shown; Lumber DOL: This long span truss i the Guide to Good Prace building owner or the rary installation restra , handling, erection, o uate drainage to preve a 5x5 MT20 unless off as been designed for a hancal connection (b 15. designed in accordan f user added load(s) of ruln representation dev other connection dev of the connection dev of the cut out by of Standard of Live (balanced): Lur ads (lb/ft)	res/334, 12-17=47 een considered for 3-second gust) Vas zone; cantilever lef =1.60 plate grip DO requires extreme ca ctice for Handling, li e owner's authorize int/bracing and the r bracing. vent water ponding, nerwise indicated. a 10.0 psf bottom cf a live load of 20.0p embers, with BCDL e at joint(s) 28 great y others) of truss to ce with the 2015 In on this truss have be es not depict the si: cice(s) shall be prov op chord. The desig thers between Joint mber Increase=1.15	this design. d=103mph; TCDL=6.0p; t and right exposed ; en L=1.60 re and experience for pi stalling & Bracing of Me d agent shall contract wi permanent individual tru- mord live load nonconcur be load nonconcur the load nonconcur the load nonconcur so on the bottom chord = 10.0psf. er than input bearing siz bearing plate capable of ternational Residential C even applied uniformly ac ze or the orientation of the ided sufficient to suppor n/selection of such conno- 20 and Joint 25 after tru i, Plate Increase=1.15	F-20=-326/2694, sf; BCDL=6.0psf d vertical left and roper and safe h etal Plate Conne th a qualified req iss member rest rent with any oth in all areas wher e. if withstanding 3 Code sections R ross all gravity k he purlin along th t concentrated k nection device(s uss has been ins	6-26=-3000/10/ i; h=35ft; Cat. II; Ex, d right exposed;C-C handling and erection icted Wood Trusses gistered design prof raint/bracing. MiTe her live loads. re a rectangle 3-06- 04 lb uplift at joint 2 502.11.1 and R802. oad cases with no a he top and/or bottor bad(s) 750 lb down) is the responsibilit stalled and braced.	 b B; Enclosed; MI c for members an n. For general has ("BCSI"), jointly essional for the c k assumes no rest 00 tall by 2-00-00 , 381 lb uplift at jointly 10.2 and reference udjustments. n chord. and 193 lb up at y of others. 	WFRS (enve d forces & M indling and e produced by lesign and ir sponsibility f 0 wide will fit oint 28 and 2 ced standard 5-4-12, and	elope) /WFRS erection y SBCA rspection for truss between 278 lb d ANSI/ I 350 lb	L	North Contraction of the second secon	0549 0549 8/22/2 NGIN	AROUT	and annumers

Continued on page 2

governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A3	Truss	2	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:01 Page: 2

 $ID:n?1x_BfLLW8wJc5KAvCLdxyc1ij-smTMNMEMflcYJW6nVInN8EynpELAwtrlC_N0_4yIJa4$

Vert: 1-6=-60, 6-11=-60, 11-16=-60, 25-31=-20, 24-25=-20, 22-23=-20, 20-21=-20, 20-35=-20

Concentrated Loads (lb) Vert: 39=-750, 40=-350

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation by SI/22/2023, SI/22/20

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL	
72331508	A4	Truss	1	1	Job Reference (optional)	
UFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, r thomas	Run: 8.62 S Sep	22 2022 Pri	nt: 8.620 S S	Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:02	Page: 1

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:02

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A4	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:02 Page: 2

 $ID:n?1x_BfLLW8wJc5KAvCLdxyc1ij-smTMNMEMflcYJW6nVInN8EyspELIwtllC_N0_4yIJa4$

Vert: 1-5=-60, 5-10=-60, 10-15=-60, 24-30=-20, 23-24=-20, 21-22=-20, 19-20=-20, 19-34=-20

Concentrated Loads (lb) Vert: 38=-750

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation by B/22/2023. We will be supported by the support of the support of the support of the support of the design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility of the design information as it may relate to a specific building. Certification is value of the specific building certific building. Certification is value of the specific building. Certification is value of the specific building certific building. Certification is value of the specific building certific building certification is value of the specific building certific building certification is value of the specific building certific building certification is value of the specific building certification is value of the specific building

Job	Truss		Truss Type		Qty	Ply	Pro	Bldrs / (Clayton	Crafts	man - GL		
72331508	A5L		Truss		1	1	Job	Referer	nce (opti	onal)			
UFP Mid Atlantic	LLC, 5631 S. NC 62, B	urlington, NC, r thoma	s	Run: 8.62 \$	S Sep 22 202	22 Print: 8.62	20 S Sep 22	2022 M	Tek Indu	stries, I	nc. Tue Aug 22 12	2:02:02	Page: 1
					10	D:9g8eMsp_	KUJI_DUY_	7S1Rfyc	18M-Ky1	kbhE_C	2kPxghz30lchRl	U02ebHfLyvRe6	ZWWylJa3
 T	6-10-15 6-10-15	14-0-2 7-1-3	21-0-0 28-4-0 6-11-14 7-4-0 5x8≠ 5	35- 7- 5x5= 5x8= 6 7 13	-8-0 + 4-0 + 8	43-0- 7-4- 5=	0 0 5x8 9	<u>49-1</u> 6-1 ⁻ =	<u>1-13</u> 1-13	+ 5x5 _{\$}	57-1-1 7-1-4	<u>64-0-0</u> 6-10-15	64-10-8 ++ 0-10-8
0 9 9 1 2 1 2 1 2 3x6 ⊪	7x8 = 3 5 = 11 001 102 1 22 22	6 ¹² 4 12 e ^{W/3} B1 21 31 2 555= 555	W5 W 0 32 19 33 B 8= 5x8=	6 W7	8 35 x8=	We	W5 B1 36 17 5x8:	= M1	37 16 84HS 5x	10 ₩ ₩ 38	3 7x 3 9 15 5x5=	8 ≈ 11 15 B1	5×6 × 12 13,14
. 4	-6-04-7-11 10-4-2	21-1	-12 . 3'	2-0-0		42-10-4			53-7-1	HUS2	6-2	64-0-0	
4	-6-0 ₀₋₁₋₁₁ 5-8-7	10-9	-10 10)-10-4	ł	10-10-4			10-9-10	0	+	10-4-2	ł
Plate Offsets (X,	Y): [1:0-2-12,0	-0-8], [3:0-4-0,0-4-8],	[11:0-4-0,0-4-8], [18:0-4-0,0-4-	8]									
Loading	(psf)	Spacing	2-0-0	CSI	0.74	DEFL	in 0.26	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL	20.0	Lumber DOL	1.15	BC	0.74	Vert(LL)	-0.36	15-17 15-17	>999	∠40 180	M18AHS	244/190 186/179	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.93	Horz(CT)	0.19	13	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MSH		(-)					Weight: 496 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 *Excep 2x6 SP No.1 2x4 SP No.3	t* T5:2x6 SP SS			BRACING TOP CHOI BOT CHOI	RD	Structura 2-0-0 oc Rigid cei 6-0-0 oc	al wood s purlins (3 ling direc	heathing 3-9-8 max tly applie 1-22	directly :.): 5-9. d or 10-	applied or 2-9-12 0-0 oc bracing,	2 oc purlins, exc Except:	ept
SLIDER	Left 2x4 SP No.3 1	1-11-0, Right 2x4 SP I	No.3 1-11-0		WEBS		1 Row at	midpt			6-19, 8-18, 10-	-17, 8-17, 3-22,	4-21

Max Grav 13=2596 (LC 1), 22=2832 (LC 2) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-185/377, 2-3=-25/372, 3-4=-2619/275, 4-5=-3220/383, 5-6=-2817/367, 6-7=-3511/443, 7-8=-3511/443, 8-9=-3292/443, 9-10=-3756/468, 10-11=-4472/582, 11-12=-4619/599, 12-13=-1623/88

BOT CHORD 21-22=-242/1340, 21-31=-263/2654, 20-31=-263/2654, 20-32=-263/2654, 19-32=-263/2654, 19-33=-312/3360, 33-34=-312/3360, 18-34=-312/3360, 18-35=-295/3520, 18-35=-295/360, 18-35-35-36=-295/3520, 17-36=-295/3520, 17-37=-272/3768, 16-37=-272/3768, 16-38=-272/3768, 38-39=-272/3768, 15-39=-272/3768, 13-15=-422/3993

WEBS

REACTIONS

5-19=-40/1073, 6-19=-1079/277, 6-18=-32/546, 9-17=-69/1329, 10-17=-793/357, 10-15=-106/504, 8-17=-560/257, 3-22=-3067/328, 3-21=-30/1387, 4-21=-904/154, 4-19=-84/351

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) 2)

13=2596/0-3-8, (min. 0-3-1), 22=2801/0-3-8, (min. 0-3-5)

exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3)

WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss

(lb/size)

Max Uplift

Max Horiz 22=-199 (LC 13)

5) All plates are MT20 plates unless otherwise indicated.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

13=-337 (LC 9), 22=-293 (LC 8)

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between

the bottom chord and any other members, with BCDL = 10.0psf.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 337 lb uplift at joint 13 and 293 lb uplift at joint 22. 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/ 9)
- TPI 1 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- Use MiTek HUS26-2 (With 4-16d nails into Girder & 4-16d nails into Truss) or equivalent at 51-2-8 from the left end to connect truss(es) to front face of 11) bottom chord.

12 Fill all nail holes where hanger is in contact with lumber.

- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). Standard
- LOAD CASE(S)
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-5=-60, 5-9=-60, 9-14=-60, 23-27=-20 Concentrated Loads (lb)

Vert: 38=-225 (F)

manufacture, handling, erection, or bracing. 4) Provide adequate drainage to prevent water ponding.

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A6	Truss	1	1	Job Reference (optional)

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, r thomas Run: 8.62 S Sep 22 20

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:03 Page: 1 ID:9g8eMsp_KUJI_DUY_7S1Rfyc18M-p9b6o1FcBMtGZqG9djprEf1FI1_qOox2fls72yyIJa2

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A7	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:03 Page: 1
ID:DZYJW??Oo5CdHW7RNmDYXqyc187-p9b6o1FcBMtGZqG9djprEf1BP1_tOox2fls72yylJa2

	∤	6-10-15		14-0-3 7-1-4	21-0- 1 6-11-	0 13	28-4	1-0 -0	35-	-8-0 4-0	<u>} 43</u> 7	<u>3-0-0</u> '-4-0		51-4-0 8-4-0	ł
		0 10 10			0.11		5x8=	5>	5= 5x8=	5	x5=		5x8 ≈	0.10	
1-0-0	5x: 2 1 3x6 II 4 4	5= 19 3x4 1-6-0 4-7-1: 1-6-0 0-1-1:	7x8 3 101 2 100 2 5-1	6 ¹² 8 = 0 8	5x5 = 4 4 12 3 17 25 5x8= 21-1-12 10-9-10		5 W5 B2 16 26 5x8=	15 5x8= 32-0-0 10-10-4	ит 9 27 1 5	4 28 13 x5= 5x	5 T4 V4 V4 8 8 8 42-10-4 10-10-4	29	9 W5 B1 12 5x8=	30 51-4-0 3-5-12	5x5¢ 10 0 4 11 3x5 II
Plate Offsets	s (X, Y):	[3:0-4	4-0,0-4-8	8], [11:0-2-12,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL		(2 1 1	psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2015/1	2-0-0 1.15 1.15 YES FPI2014	CSI TC BC WB Matrix-MSH	0.76 0.78 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 1 -0.29 1 0.07	(loc) l/de 2-14 >99 2-14 >99 11 n	efl L/d 99 240 99 180 /a n/a	PLATES MT20 Weight: 420 lb	GRIP 244/190 FT = 20%	
TOP CHOF BOT CHOF WEBS SLIDER REACTION	RD 2 RD 2 2 L	tx6 SP No.2 tx6 SP No.2 tx4 SP No.3 tx4 SP No.3 (Ib/size) Max Ho Max Up Max Gra	0.3 1-1 11 riz 19 lift 11 av 11	11-0 =1850/0-3-8, (min. 0- =331 (LC 10) =-177 (LC 6), 19=-25 =1998 (LC 2), 19=-22 Comp (May Ten	-2-6), 19=2245/0-3-8 55 (LC 10) 54 (LC 2) All forces 250 (lb) or	3, (min. 0-	2-11)	TOP CHC BOT CHC WEBS WEBS	RD RD	Structural v verticals, ar Rigid ceilin 6-0-0 oc br 1 Row at m 2 Rows at 1	vood sheathi nd 2-0-0 oc p g directly ap acing: 1-19. idpt I/3 pts	ng directly purlins (4-1 blied or 10-	applied or 4-8-11 1-13 max.): 5-9. -0-0 oc bracing, E 6-16, 6-14, 10- 8-12	oc purlins, ex Except: 11, 4-18, 4-16	cept end
TOP CHOF BOT CHOF WEBS NOTES 1) Unba 2) Wind exter react 3) Provi	RD RD Ilanced ro : ASCE 7 ior zone ions show de adequ	5- 1- 12 5- 5- 5- 5- 7-10; Vult=130 and C-C Exte wn; Lumber D uate drainage	-6=-1941 -19=-259 4-28=-39 -16=-62/ have be Omph (3- rior (2) z OL=1.60 to preve	(1/596, 6.7–2.2076/588 9/234, 18-19=-389/99 95/1884, 13-28–-395/ 639, 6-16=-435/199, en considered for this esecond gust) Vasd=' cone; cantilever left an 0 plate grip DOL=1.6i ant water ponding.	 A roles 2.50 (19) of a role of a	9=-1267/4 , 17-24=- 884, 12-2 =-1171/28 psf; BCDL	25, 9-10=-1482/3 529/1923, 17-25: 29=-395/1884 32, 9-12=0/337, 1 =6.0psf; h=35ft; I left exposed;C-0	391, 10-11=-1 529/1923, 1 0-12=-306/16 Cat. II; Exp B; C for member	865/485, 1-2= 6-25=-529/19 26, 3-19=-24 Enclosed; M s and forces &	=-219/342, 2-3 23, 16-26=-45 19/665, 3-18= WFRS (envel & MWFRS for	8=-188/389, ; 66/2114, 15-2 -71/1020, 4- -ppe)	3-4=-1957/ 26=-456/21 18=-598/2 ⁻	/448, 4-5=-2247/6(114, 15-27=-456/2 11	04 114, 14-27=-4	56/2114,
 4) All pla 5) This t 6) * This the b 7) Provi 8) This t TPI 1 9) Grap 	ates are truss has s truss ha ottom ch de mech truss is d hical purl	5x8 MT20 unl been design as been design ord and any o anical connec lesigned in ac lin representa	ess othe ed for a ned for a ther men tion (by cordanc tion doe	erwise indicated. 10.0 psf bottom chord a live load of 20.0psf mbers, with BCDL = others) of truss to be e with the 2015 Interr s not depict the size of	d live load nonconcu on the bottom chord 10.0psf. aring plate capable national Residential or the orientation of	irrent with l in all are of withsta Code sec the purlin	a any other live lo as where a recta anding 177 lb upli tions R502.11.1 along the top an	ads. ngle 3-06-00 f ft at joint 11 a and R802.10. d/or bottom cf	all by 2-00-00 nd 255 lb upli 2 and referen nord.	0 wide will fit b ft at joint 19. ced standard .	etween ANSI/				
											þ	The American	NGIN	ARO(1) 19 2023 EEF. 69 3. D. 10	and the second

Job	Truss	Truss Type (Ply	Pro Bldrs / Clayton Craftsman - GL	
72331508	A8	Truss	6	1	Job Reference (optional)	
UFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, r thomas	Run: 8.62 S Sep	22 2022 Pri	nt: 8.620 S S	Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:03	Page: 1

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:03 ID:stGr158wznjwjM2k4IRM1Myc17x-p9b6o1FcBMtGZqG9djprEf19R1yROoU2fls72yyIJa2

<u>k</u>	6-10-15	14-0-3	21-0-0	28-4	-0 +	35-8	3-0	43-0-0		51-4-0	
	7) 3 5x5 = 1 10-4-2 10-4-2	6 ¹² 8 = 8 =	5x5 = 4 4 12 12 17 24 M18AHS 5x10 = 21-1-12 40 0 40	5x8= 5 W4 B2 16 25 5x8=	5x 6 T3 T3 T3 5 5x8= 32-0-0 40-0-1	5= 5x8= 7 7 8 8 8 3 26 14 5x	5x5= 8 76 76 76 76 76 76 76 76 76 76 76 76 76	T4 W5 28	5x8z 9 W4 B1 12 5x8=	29 51-4-0	5x5 10 0-7-2 11 3x6 II
	10-4-2		10-9-10		10-10-4		10-	10-4		8-5-12	
Plate Offsets (X, Y _oading FCLL (roof) FCDL 3CLL BCDL	(): (3:0-4-0,0-4 (psf) 20.0 10.0 0.0 * 10.0	-8], [11:Edge,0-3-8] Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.93 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.27 16-18 -0.49 16-18 0.12 11	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 M18AHS Weight: 413 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 (lb/size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1	-11-0 =2048/0-3-8, (min. 0-2-7 =331 (LC 10) =-233 (LC 10), 11=-175 =2055 (LC 2), 11=2196 (), 11=2048/0-3-8, (min. 0-2 (LC 6) LC 2)	-9)	BRACING TOP CHC BOT CHC WEBS WEBS	RD RD	Structural wood s verticals, and 2-0 Rigid ceiling direc 1 Row at midpt 2 Rows at 1/3 pts	heathing directt 0 oc purlins (4- tly applied or 2-	y applied or 2-2-0 5-5 max.): 5-9. -2-0 oc bracing. 4-16, 6-16, 6- ⁻ 8-12	oc purlins, exce	pt end
FORCES TOP CHORD BOT CHORD WEBS NOTES U Unbalanced Wind: ASC exterior zor reactions si	(lb) - Ma 1-2=-14 1-18=-9(13-27=- 4-18=-4(d roof live loads have b E 7-10; Vult=130mph (ne and C-C Exterior (2) hown - Lumer DOL = 1	x. Comp./Max. Ten All 46/183, 2-3=-3629/882, 3 65/3135, 18-23=-797/290 471/2162, 13-28=-471/21 0/429, 4-16=-684/348, 5- eeen considered for this d 3-second gust) Vasd=100 zone; cantilever left and 60 loter orin DOI = 1 60	forces 250 (lb) or less exce +4=-3461/859, 4-5=-2854/7 46, 17-23=-797/2906, 17-24 62, 12-28=-471/2162 16=-140/923, 6-16=-275/20 esign. 3mph; TCDL=6.0psf; BCDL right exposed ; end vertica	ept when shown. 770, 5-6=-2482/74 =-797/2906, 16-2 10, 6-14=-455/223 =6.0psf; h=35ft; (1 left exposed;C-C	13, 6-7=-2419 14=-797/2906 3, 8-14=-84/83 Cat. II; Exp B; C for members	/681, 7-8=-24 , 16-25=-568/2 32, 8-12=-1404 Enclosed; MV s and forces &	19/681, 8-9=-1417/4 /524, 15-25=-568/2 //346, 9-12=0/411, /VFRS (envelope) MWFRS for	466, 9-10=-164 524, 15-26=-56 10-12=-359/18	9/436, 10-11=-206 8/2524, 14-26=-56 19	3/539 8/2524, 14-27=-	471/2162,
 B) Provide add All plates a 5) This truss f 5) * This truss f the bottom Provide me 6) This truss is TPI 1. 6) Graphical p 	equate drainage to pre- ire MT20 plates unless has been designed for a s has been designed for chord and any other m cchanical connection (b s designed in accordan	vent water ponding. otherwise indicated. a 10.0 psf bottom chord li r a live load of 20.0psf on embers, with BCDL = 10 y others) of truss to bear ace with the 2015 Internat	ve load nonconcurrent with the bottom chord in all are .0psf, ing plate capable of withsta tional Residential Code sec the orientation of the purlin	any other live loa as where a rectar nding 233 lb uplif tions R502.11.1 a along the top and	ads. ngle 3-06-00 t t at joint 1 an and R802.10.3 d/or bottom ch	all by 2-00-00 d 175 lb uplift a 2 and referenc nord.	wide will fit betwee at joint 11. ed standard ANSI/	n			
								Hermin	100 TH C 100 TH	AROUNT 2023	"Communited

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	A9G	Truss	1	1	Job Reference (optional)

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:04 Page: 1 ID:dPltiqEx4EknhbfHYzaEL2yc17p-HL8V?NGEyg?7AzqMARK4msaXNRWY7RIBuybgbPyIJa1

Job	Truss	Truss Type	Qty	Ply	Pro Bldrs / Clayton Craftsman - GL
72331508	PB1	Truss	2	1	Job Reference (optional)

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, r thomas Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Tue Aug 22 12:02:06 Page: 1 ID:NLoSQ_IAdGEk74pUjOgBonymz60-DjGFQ3HVUHFqQH_kIsMYrHfsGFBVbMxULG4nfHyIJa?)-10-13 21-11-0 7-7-8 14-3-8 21-0-3 6-8-11 6-8-0 6-8-11 5x6 = 5x6= 56 7 8 9 10 _12 6 □ П 4 11 st s sta S 3-8-8 3 12 3-10-0 3-8-8 sta st₂ Ð S S 13 14 4<u>7</u> œ ç B2 2 23 22 21 20 19 18 17 16 15 3x4= 3x4= 3x6 =20-1-6 Plate Offsets (X, Y): [5:0-2-3,Edge], [10:0-2-3,Edge] 2-0-0 CS DEFL PLATES GRIP Loading (psf) Spacing in (loc) l/defl L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.08 Vert(LL) n/a n/a 999 MT20 244/190 TCDL вс 10.0 Lumber DOL 1.15 0.08 Vert(CT) n/a n/a 999 BCLL YES WB Rep Stress Incr Horz(CT) 13 0.0 0.04 0.00 n/a n/a BCDI 10.0 Code IRC2015/TPI2014 Matrix-MSH Weight: 95 lb FT = 20%LUMBER BRACING TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except TOP CHORD 2-0-0 oc purlins (6-0-0 max.): 5-10 2x4 SP No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 OTHERS REACTIONS All bearings 20-1-6. 2=64 (LC 10), 24=64 (LC 10) (lb) - Max Horiz All uplift 100 (lb) or less at joint(s) 2, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, Max Unlift Max Grav All reactions 250 (lb) or less at joint(s) 2, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27 FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) 2) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. Provide adequate drainage to prevent water ponding 4) 5) All plates are 1.5x3 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between 9) the bottom chord and any other members 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13, 20, 19, 21, 22, 23, 18, 17, 15, 2, 13 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/ TPI 1 12) See standard piggyback truss connection detail for connection to base truss. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This design is based upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation by component is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

054910

Job	Truss	Truss Type		Qtv	Plv	Pro B	drs / Clavto	n Crafts	sman - GL			
72331508	RFG1	Truss		1	2	Joh D	oforonoo (o	ntional)				
UFP Mid Atlantic LLC, 5631 S. N	NC 62, Burlington, NC, r thomas		Run: 8.62 S	Sep 22 2022 P	rint: 8.620 \$	S Sep 22 2	022 MiTek In	dustries,	Inc. Tue Aug 22 1	2:02:06 Page: 1		
ID:M6N?BDjOjQg2hp0gqZ_7FWymyNa-DjGFQ3HVUHFqQH_kIsMYrHfqWFAgbMUULG4nfHyJJa?												
		0-2-1	4 2x5 II	2-4-8 T1 V2 B1 5	2x5 II 2 WI 3 5x4 =							
			J	US26								
			I	0.4.0	I							
				2-4-8								
Loading TCLL (roof) TCDL BCLL BCDL	(psf)Spacing20.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.20 Ve 0.13 Ve 0.00 Ho	rt(LL) rt(CT) rz(CT)	in 0.00 0.00 0.00	(loc) l/de 3-4 >99 3-4 >99 3 n/	fl L/d 9 240 9 180 a n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD 2x6 SP No BOT CHORD 2x6 SP No WERS 2x4 SP No.	2			BRACING TOP CHORD BOT CHORD		2-0-0 oc pu Rigid ceilin	urlins: 1-2, ex g directly app	cept end lied or 10	verticals.)-0-0 oc bracing.			
 WEBS 2x4 SP No. REACTIONS (Ib/si. Max Max FORCES TOP CHORD NOTES 1) 2-ply truss to be connect Top chords connected as follow 2) All loads are considered have been provided to d 3) Wind: ASCE 7-10; Vulte exterior zone; cantilever 4) Provide adequate draina 5) This truss has been des the bottom chord and an 7) Provide mechanical control 8) This truss is designed in TPI 1. 9) Graphical purlin represent 10) Use MiTek JUS26 (With bottom chord. 11) Fill all nail holes where he and the source of the context (Ib/sit) Vert: 1= 	KOL 10.0 Code IRC201STP12014 Mark-MP Weight 32 b FT = 20% LUMSER TOP CHORD 2/8 SP No.2 BRACING BRACING BRACING BRACING REACT (b) 2/8 SP No.3 3=74 (C) 4, 4=229 (L, 0) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (b) 2/4 SP No.3 3=74 (C) 4, 4=229 (L, 0) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. FORCES (b). Max. Comp.Alax. Ten - All forces 250 (b) or less except when shown. TOP CHORD 14-1996/186 NOTES (b). Max. Comp.Alax. Ten - All forces 250 (b) or less except when shown. Top chorts connected as follows: 2.40 - 1 row at 0-94 Oc. 10.1 Adv shows: 2.40 - 1 row at 0-94 Oc. Botto chorts connected as follows: 2.40 - 1 row at 0-94 Oc. Botto chorts connected as follows: 2.40 - 1 row at 0-94 Oc. 10.2 All leads are considered equality beginded tal illies, except induct as fort (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections faber designed for a live load of 20.0pt (b) rest or 2.10 row at 0-94 Oc. 10.3 All leads are remained as follows: 2.40 - 1 row at 0-94 Oc. Botto chorts adv adv adv are remained as follows: 2.40 - 1 row at 0-94 Oc. 10.4 All leads are remained as follows: 2.40 - 1 row at 0-94 Oc. Botto thorod adv adv adv are remained as to thorod a											

Job	Truss		Truss Type		Qty	Ply	Pro B	ldrs / Cla	ayton C	Craftsr	nan - GL		
72331508	V8		Truss		1	1	Job R	eference	e (optic	onal)			
UFP Mid Atlantic LLC	, 5631 S. NC 62, Bu	rlington, NC, r thomas		Run: 8.62 S Se	p 22 2022	Print: 8.620 \$	S Sep 22 2	2022 MiTe	k Indus	tries, Ir	c. Tue Aug 22	12:02:08	Page: 1
						ID:OhiTql7l	CTb36CT	YWaw7U8	Byc17y-9	960?rl.	ll0uVYfb87PGF	0xikBo2r83G_	npaaujAyIJZz
				<u>}</u>	<u>2-3-</u> { 2-3-{	<u>8</u> 8	<u>4-2-</u> 1-11	<u>14</u> 1-6 (4-7-0 -4-2				
		1-1-3	0-0-4	10 ¹²		3x4 2 1/	l= T1 B1		×_3				
					3x4 🍫	~~~~	~~~~	3x4	4 x				
				<u></u>		4-7-(0						
Plate Offsets (X, Y):	[2:0-2-0,Edg	ie]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.15 V 0.13 V 0.00 H	DEFL /ert(LL) /ert(TL) łoriz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	,
LUMBER TOP CHORD 2 BOT CHORD 2	x4 SP No.2 x4 SP No.2			BR TO BC	ACING P CHORE T CHORE) :	Structural Rigid ceilir	wood sheang directly	athing d applied	irectly or 10-	applied or 4-7-0 D-0 oc bracing.) oc purlins.	
REACTIONS FORCES NOTES 1) Unbalanced rr 2) Wind: ASCE 7 exterior zone ± for reactions s 3) Gable require: 4) This truss has 5) * This truss has 5) * This truss is d TPI 1.	(Ib/size) 1: Max Horiz 1: Max Uplift 1: (Ib) - Max cof live loads have be 7-10; Vult=130mph (3 and C-C Exterior (2) ihown; Lumber DOL- s continuous bottom been designed for a as been designed for ord and any other me anical connection (by esigned in accordance)	=183/4-7-0, (min. 0-1-8) =45 (LC 9) =-22 (LC 10), 3=-22 (LC x. Comp./Max. Ten All een considered for this of 3-second gust) Vasd=10 20ne; cantilever left and =1.60 plate grip DOL=1. chord bearing. a 10.0 psf bottom chord l a live load of 20.0psf or embers. y others) of truss to beal ce with the 2015 Interna	, 3=183/4-7-0, (min. 0-1-8) 11) forces 250 (lb) or less exce design. 3mph; TCDL=6.0psf; BCDL right exposed ; end vertical 60 ive load nonconcurrent with t the bottom chord in all are ing plate capable of withsta tional Residential Code sec	ppt when shown. =6.0psf; h=35ft; Cat. II; left and right exposed; any other live loads. as where a rectangle 3- nding 22 lb uplift at join tions R502.11.1 and R5	Exp B; Er C-C for m 06-00 tall t 1 and 22 302.10.2 a	nclosed; MWF embers and fo by 2-00-00 w Ib uplift at joi nd referenced	FRS (enve orces & M ide will fit I nt 3. d standard	lope) WFRS between ANSI/	W	and the second s	054 8/22. *5.VGI	AROU SIO 919 /2023	and
This design is based component is respon	l upon parameters sh nsibility of the Buildin	nown, and is for an indiv Ig Designer. Building De	idual building component to esigner shall verify all design	be installed and loaded n information on this sho	d vertically eet for con	. Applicability	/ of design	parametens and rec	ers and quireme	proper nts of tl	incorporation one specific build	ting and	承

component is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

