
Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A1	Piggyback Base	8	1	Job Reference (optional)	159229466

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:52 ID:mYsmblxyYcArRj?LeVX2KyzRQmV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:93.4

Plate Offsets (2	X, Y): [2:0-2-12,0-2-0), [3:0-5-0,0-4-8], [10	Edge,0-1	-3], [18:0-3-8,0)-2-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.96 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.51 0.12	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 424 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	Right: 2x4 SP No.3 Structural wood she	No.2 ot* 18-2:2x4 SP No.2 athing directly applie except end verticals,	d or	Vasd=103m Cat. II; Exp E zone and C- 4-5-5 to 10-1 Interior (1) 3 53-2-0 zone; vertical left a forces & MW	7-16; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) -0-1 -12, Exterior(2R) ^ 8-11-4 to 47-10-3, cantilever left and nd right exposed; (FRS for reactions late grip DOL=1.60	BCDL=6 RS (env 10-8 to 4 10-1-12 Exterior I right ex C-C for n shown;	.0psf; h=25ft; elope) exterio -5-5, Interior to 38-11-4, (2E) 47-10-3 posed ; end nembers and	or (1) to	or th	he orient	tation o d.	of the purlin along	s not depict the size the top and/or
BOT CHORD		applied or 10-0-0 oc	3)	Plate DOL=1 DOL=1.15);	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (Is=1.0; Rough Cat	Lum DC	L=1.15 Plate	9					
WEBS	1 Row at midpt	3-16, 4-15, 5-15, 6-1 7-13	15, 4)		=1.10 snow loads have b	been cor	sidered for th	his					
		nanical, 19=0-5-8 (LC 12) (LC 15), 19=-217 (LC	: 14)	load of 12.0 overhangs n	as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p	at roof lo	bad of 20.0 p ve loads.	sf on					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	-,	This truss ha	as been designed f	or a 10.0) psf bottom	•					
TOP CHORD	1-2=0/27, 2-4=-3171 5-6=-2881/480, 6-7= 7-9=-4196/464, 9-10 2-19=-2347/333	=-3302/475,), 8)	* This truss h on the bottor 3-06-00 tall b	nas been designed n chord in all area by 2-00-00 wide wi	l for a liv s where Il fit betv	e load of 20.0 a rectangle veen the botto	0psf om			and and	OR FESS	ROLIN
BOT CHORD	18-19=-120/225, 16- 15-16=-106/2571, 13 11-13=-240/3447, 10	3-15=-113/2822, 0-11=-334/3872		Refer to gird) Provide mec bearing plate	ny other members, er(s) for truss to tru- hanical connection e capable of withsta	uss conr n (by oth	ections. ers) of truss t	to		North Internet	1		
WEBS NOTES	3-18=-476/182, 3-16 4-16=-24/548, 4-15= 5-15=-688/195, 6-15 6-13=-87/1129, 7-13 7-11=-20/642, 9-11= 2-18=-223/2763	=-152/710, 5=-218/345, 3=-977/259,		recommende UPLIFT at jt(does not cor 2) This truss is	Simpson Strong-Tie ed to connect truss (s) 19. This connect sider lateral forces designed in accord Residential Code	to bear ction is fo s. dance w	ng walls due or uplift only a ith the 2018	and		THURSE.		SEA 0363	• •

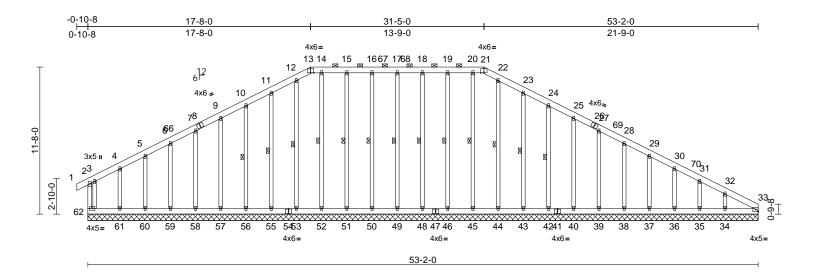
R802.10.2 and referenced standard ANSI/TPI 1.

NOTES

1) Unbalanced roof live loads have been considered for this design.

A. GILBE June 29,2023

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	159229467

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:55 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:91.4

Scale = 1:91.4														
Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.12 0.05 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL		0.0* 10.0	Code	IRC2018/TPI2014	Matrix-M							Weight: 545 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. 1 Row at	0.2 0.2 0.3 0.3 wood she purlins, ex- purlins, ex- purlins, ex- purlins, fe-Co- ng directly midpt 33=53-2-1 39=53-2-1 43=53-2-1 50=53-2-1 50=53-2-1	athing directly applie cept end verticals, ar -0 max.): 13-21. applied or 10-0-0 oc 17-49, 18-48, 19-46 20-45, 22-44, 23-43 24-42, 16-50, 15-51 14-52, 12-53, 11-55 10-56 0, 34=53-2-0, 35=53 0, 34=53-2-0, 42=53 0, 44=53-2-0, 42=53 0, 44=53-2-0, 42=53 0, 44=53-2-0, 42=53 0, 51=53-2-0, 42=53 0, 51=53-2-0, 52=53 0, 51=53-2-0, 52=53	nd , , , , , , , , , , , , , , , , , , ,	(lb) - Maxin Tension 2-62=-136/ 3-4=-72/64 6-7=-97/19 10-11=-145 12-13=-160 14-15=-151	33=134 (LC 27), 35=143 (LC 1), ; 37=159 (LC 1), ; 39=221 (LC 43), 44=209 (LC 43), 44=209 (LC 38), 51=220 (LC 38), 51=220 (LC 38), 53=212 (LC 41), 56=233 (LC 41), 56=232 (LC 41), 56=232 (LC 41), 56=232 (LC 41), 56=233 (LC 41), 57=2177 (LC 1), 6, 7=9=-113/241 5/333, 11-12=-11 3/360, 13-14=-11 1/376, 15-16=-11	36=164 (LC 4 38=172 (LC 4 40=230 (LC 43=232 (LC 45=192 (LC 50=218 (LC 50=218 (LC 55=237 (LC 57=233 (LC 57=233 (LC 57=233 (LC 57=134 (LC 2 57=134 (LC 2 53=134 (LC 2 53=134 (LC 2 53=134 (LC 2 51-179 (LC 4 53=134 (LC 2 51-179 (LC 4 53=134 (LC 2 51-179 (LC 4 53=134 (LC 2 51-179 (LC 4 53=134 (LC 2 51-179 (LC 4 51-179	 43), 43), 43), 43), 38), 38), 38), 38), 41), 41), 41), 47), 27) 	BOT CH	HORD	59-60 57-58 55-56 52-53 50-51 48-49 45-46 43-44 40-42 38-39 36-37	Weight: 545 lb =-87/181, 60-61= =-87/181, 58-59= =-87/181, 56-57= =-87/181, 51-52= =-87/181, 49-50= =-87/181, 49-50= =-87/181, 42-43= =-87/181, 39-40= =-87/181, 39-40= =-87/181, 37-38= =-87/181, 37-38= =-87/181, 33-34=	87/181, 87/181, 87/181, 87/181, 87/181, 87/181, 87/181, 87/181, 87/181, 87/181, 87/181,	
	Max Horiz Max Uplift	$\begin{array}{l} 57{=}53{-}2{-}1\\ 60{=}53{-}2{-}1\\ 63{=}53{-}2{-}1\\ 62{=}-186 (\\ 33{=}-36 (\\ 1\\ 35{=}{-}28 (\\ 1\\ 35{=}{-}28 (\\ 1\\ 42{=}{-}46 (\\ 1\\ 42{=}{-}46 (\\ 1\\ 42{=}{-}46 (\\ 1\\ 42{=}{-}29 (\\ 1\\ 42{=}{-}22 (\\ 1\\ 51{=}{-}22 (\\ 1\\ 55{=}{-}46 (\\ 1\\ 60{=}{-}27 (\\ 1\\ 60{=}{-}27 (\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$		2-0, -2-0, 5), 5), 5), 5), 5), 1), 1), 4), 4), 4), 4),	18-19=-151 20-21=-151 22-23=-162 24-25=-128 27-28=-97/ 29-30=-106	1/376, 19-2011 1/376, 21-2211 2/382, 23-24=-1- 3/286, 25-271- 199, 28-29-29-3 3/153, 30-3-11 1/107, 32-33=-11	51/376, 60/380, 45/333, 13/241, 176, 19/129,			A CHINE		SEA 0363	L 22 EER ILBER 29,2023	and a second second

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	159229467

17-49=-176/57, 18-48=-178/62, 19-46=-180/59, 20-45=-152/14, 22-44=-169/9, 23-43=-192/88, 24-42=-189/81, 25-40=-190/77, 27-39=-181/77, 28-38=-132/77, 29-37=-120/77, 30-36=-121/80, 31-35=-113/103, 32-34=-149/155, 16-50=-178/62, 15-51=-180/59, 14-52=-152/8, 12-53=-172/0, 11-55=-197/88, 10-56=-193/81, 9-57=-193/77, 7-58=-192/77, 6-59=-148/77, 5-60=-122/90, 4-61=-118/162, 3-62=-180/99

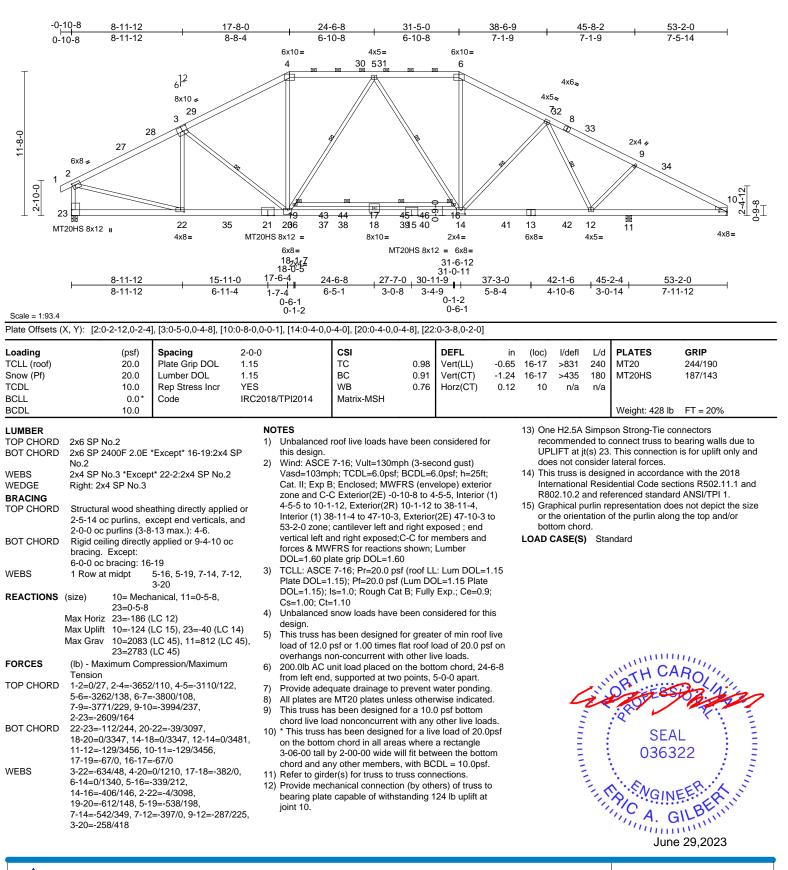
NOTES

WEBS

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-6-8, Exterior(2N) 4-6-8 to 12-4-3, Corner(3R) 12-4-3 to 22-11-13, Exterior (2N) 22-11-13 to 26-1-3, Corner(3R) 26-1-3 to 36-6-8, Exterior(2N) 36-6-8 to 47-10-3, Corner(3E) 47-10-3 to 53-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One MECHANICAL connector (BY OTHERS) recommended to connect truss to bearing walls due to UPLIFT at it(s) 62, 49, 48, 46, 43, 42, 40, 39, 38, 37, 36, 35, 34, 50, 51, 55, 56, 57, 58, 59, 60, 61, and 33. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Page: 2

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:55 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A2	Piggyback Base	3	1	Job Reference (optional)	159229468

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:56 ID:DGN6a6f8caCKWpHw1ciz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

22409129-01 22 CR [1 24 24] 24 [2 Criter 1 24] 24 [2 Criter 24]	Job		Truss		Truss Type		Qty	Ply	17 Sereni	ty-Roof-B326	В	
Description Description Page 1 0 Page 1	23060129-0)1	A2GR		Attic Girder		1	4	Joh Refer	ence (ontion	al)	159229469
Description of the second sec	Carter Compone	ents (Sanford), S	Sanford, NO	C - 27332,		Run: 8.63 S Apr 62	 2023 Print: 8.6					Page: 1
 - frig 0 7.4-12 1.4.4 0.4.4 <li0.4.4< li=""> <li0.4.4< li=""> 0.4.4 <li0.4.4< td=""><td></td><td>40.0</td><td></td><td></td><td>17-8-0 04</td><td>ID:VIY0a5aMUawQ2</td><td>ZRyxiBXYItzR</td><td>A_f-RfC?PsE</td><td>370Hq3NSgP</td><td>qnL8w3ulTXbG</td><td>KWrCDoi7J4zJC?f</td><td>-</td></li0.4.4<></li0.4.4<></li0.4.4<>		40.0			17-8-0 04	ID:VIY0a5aMUawQ2	ZRyxiBXYItzR	A_f-RfC?PsE	370Hq3NSgP	qnL8w3ulTXbG	KWrCDoi7J4zJC?f	-
 and the second state of the secon					<u> </u>							
Skalphonul in Gerwith Y LONDING APPLIED TO ILE (1995). If the RECOMPLICITY OF ILE MODEL Skalphonul in Gerwith Y LONDING APPLIED TO ILE (1995). If the RECOMPLICITY OF ILE MODEL TO THE PORTULATION OF ILESS TO ILE CONTINUE APPLIED TO ILE CONTINUE		10 0			101					NDING 4368 I	BS UPLIET	
CONTROL PORTING AND				REACTION	I DUE TO GRAVITY LO	DADING APPLIED TO THE	TRUSS. IT IS	5 THE RESP	PONSIBILITY	OF THE PRO	JECT	
Model of the set of t				CONNECT	ION SYSTEM FOR A C	ONTINUOUS LOAD PATH	FROM THE	TRUSS TO	THE FOUND	ATION, AND D		
0 0 - 7 52 8.3 9 24 10 ⁻¹⁰ 44 40 ⁻¹⁰ 44 40 ⁻¹⁰ 44 40 ⁻¹⁰ 41 ⁻¹⁰				FOOTING/					D THIS CON	STRUCTION.		
Open Control Open Control<							9 ^{2x#}	10 ^{10x12}				
and performed performance of the second performace of the second performance of the second performa	Т			10	5		1-0-0		4x8 ≈			
Open of the construction of the construline of the construction of the construction of the construction				61 2	45	46 4424	47	43	\sim	4.0		
9 0					3х6 ш	6x10= 12x16 II				4x6 12.		
a a a b			ŗ	34						5	4	
1 1 1 1 1 1 1 1 1 1 1 1 0	-8-1								//		\sim	
Image: state is a state state is a state is	÷	5x8 ≠	//			5					14	
MTHRIS 3.100 40 39	 1	2										\sim
MTHRIS 3.100 40 39	0-0							. //	//			15
MT18HS 3x10 * B01 30	-2-1	11									9	
USE 365 266 246 366 0000 0000 0000 0000								20 2119				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									4x6		2x4 I	5x8=
Tr4-15 21-4 24-4 30-60				6x8=						0x8=		
State = 131.8 State = 121.8 State =			0.4.0	10-1-8 40	17-6-15	21-2-4 24-0-8 27-4	-4 30-0-3	32-5-8	3	9-4-4	0.0.45	50.0.0
Base = 101.8 1-27 2-7 1-6.11 1-27 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28						- 	+ $+$ $+$		4 0 4 0			
coading CLL (cool) (psf) 20.0 (LL (cool) Spacing Plate Grip DOL Linther DOL Code 2-0-0 IT CSI TC 0.77 TC DEFL Vert(LT) in (0c) (loc) Id MT25 244/190 CDL 0.00* 0.00 Code IRC2018/TPI2014 DEFL in (0c) 0.41 38-40 >624 MT18HS 244/190 CDL 0.00* Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH MT18HS 444/190 MMER Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH MT18HS MT18HS MT18HS MT18HS MT18HS MT18HS MT18HS MT18HS 244/190 Mt18HS Mt18HS<	Scale = 1:91.8				1-2-7 1-2-7	1-2-7 1-0-11 1-2-7 0-9-2	1-3-8 1-2-	11 0-2-12		-		
CLL (rod) 20.0 Pise Gip DOL 1.15 TC 0.77 Ver(ICT) -0.64 38-40 987 240 MT20 24/4/90 CDL 10.0 Res Stress Inc NO NO WB 0.38 Horz(CT) 0.01 1.5 Matrix-MSH Mile MT20 24/4/90 VED 10.0 Res Stress Inc NO NO Stress Inc NO NO WB 0.38 Horz(CT) 0.01 1.5 Matrix-MSH Weight: 2022 Ib FT = 20% UMBER 26.5 SP No.2 25.6 SP 2400F 2.0F *Except* 6-10:2x4 SP No.2 BOT CHORD 26.5 SP 7400F 2.0F *Except* 37.52:2x4 SP No.2 26.47 = 7927325, 21.428 = -9727325, 21.	Plate Offsets (2	X, Y): [2:0-2-	-11,0-2-8]	, [6:0-6-0,0-2-8], [10:	0-9-0,0-1-0], [17:0-3	0,0-2-12], [21:0-8-0,0-2-	·8], [38:0-2-4	,0-2-8], [40	0:0-5-4,0-4-	8], [42:Edge,	0-5-14]	
binow (Pf) 20.0 Lumber DOL 1.15 BC 0.90 Ver(CT) -0.63 38.40 >-52.41 MT18HS 244/190 KCL 0.01 Code IRC2018/TFI2014 Matrix-MSH Weight: 2022 Ib FT = 20% MMEER Soft CHORD 25.45 P.No.2 Soft CHORD 25.45 P.No.2 29.33-F201/300, 27-2899/3233, 3233, 328-547/65, 20-57.20, 234.5 P.No.2 29.33-F201/300, 27-2899/3233, 34.5 P.No.2 1) 4-phy truss to be connected together with 10d (0.131/37) nais as follows: 20.4 - 170 wait 0-90 oc. Matrix-MSH Matrix-MSH Matrix-MSH 11.15 Participae Partispae Partispae P	Loading		(psf)	Spacing	2-0-0	csi	DEFI	_	in (loc)	l/defl L/	d PLATES	GRIP
CDL 10.0 Rep Stress Ind* NO WB 0.38 Mor(C) 0.11 15 <i>ind ind Matrix</i> .MSH ICDL 10.0 Code IRC2018/TPI2014 Matrix.MSH Matrix.MSH <i>bor(C)</i> 0.11 15 <i>ind ind Matrix</i> .MSH VGDL 10.0 Code IRC2018/TPI2014 Matrix.MSH <i>bor(C)</i> 0.11 15 <i>ind ind Matrix</i> .MSH VBER 2x6 SP No.2 2x22.12X SP No.2 Sort CHORD 35-37-4121/326, 33-35-47/85, 53-37-374/1300, 72-39-893/323, 72-3794/500, 73-39-862 302 10 (J.111 / J.211 / J.222 / J.221	TCLL (roof)						· · ·	,				
LCDL 10.0 Weight: 2021 b: FT = 20% UMMER FOP CHORD 2x6 SP No.2 "Except" 6-10:2x4 SP No.2 2x6 SP 2400F 2.0E "Except" 37-32:2x4 SP No.2 30T CHORD BOT CHORD 35-37-142/326, 33:35-57-547/65, 29:32-47997/325, 24-28-972/325, 24-2	TCDL							,				
UMBER OP CHORD 2x6 SP No.2 "Except" 6-10:2x4 SP No.2 BOT CHORD 35-37=-142/1326, 33-35=-547/65, 29-33=-7907/335, 27:28-9303/233, 9:33=-947/165, 29-33=-7907/335, 21-22-7397/335, 21-22-7397/335, 22-24-9727/325, 21-22-7397/335, 21-22-7397/355, 22-24-9727/325, 21-22-7397/355, 21-22-7397/355, 22-24-9727/325, 21-22-7397/355, 21-22-7397/355, 22-24-9727/325, 21-22-7397/355, 21-22-7397/355, 31-34-3487(1607), 22-24-917/22, 23-25-09387, 22-24-930577, 19-20-615/268, 31-34-3487(1607), 28-31-611/4774, 22-35, 33, 29, 27, 46, 47 1 4-pty truss to be connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. 90-0 cpurins, except end verticals, and 0-5-0 oc purins, except end verticals, and 20-0 oc purins, except end verticals, and 20-0 oc purins, except end verticals, and 20-0 oc purins, except end verticals, and 22-0 oc purins, except end verticals, and 22-23-8305677, 19-21-6585/98, 31-34-847/8057, 19-21-6585/98, 31-34-9647/30, 12-17-138022, 71.61/7-4877, 19-21-6585/98, 31-34-9647/30, 12-17-158027, 10-21-226/61, 41-46-4947/24, 54-61-12010/261, 14-46-4947/24, 54-61-12010/261, 14-476-4047/24, 54-61-12010/261, 14-476-4047/24, 54-61-12010/261, 14-476-4047/24, 52-21-277100, 17-21-4047/24, 52-27-277100, 17-21-4047/24, 52-27-277100, 17-21-4047/24, 54-7-2167/28, 1-22-10/2876, 2-411-2027/2, 2-3-15326/1083, 3-3-47-2167/39, 3-33-1074/225, 2-3-1-160933, 2-22-77100, 17-21-4047/24, 54-6-1311/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1371/5071, 3-46-1401/24, 54-46-1311/5071, 3-46-1401/24, 54-46-1311/5071, 3-46-1401/24, 54-46-1311/5071, 3-46-1401/24, 54-46-1311/5071, 3-46-1401/24, 54-46-1311	BCLL		0.0*					. ,			0	
 228 SP No.2 "Except" 6-10:2x4 SP No.2 29:33 = 790/1300; 27:29 = 993/2233; 29:33 = 164/4/16559; 34:34 = 9-12/17633; 20:29 = 30:677, 19:20 = 616/038; 20:29 = 30:677, 19:20 = 616/038; 20:29 = 30:677, 19:20 = 616/038; 20:29 = 30:677, 19:20 = 616/268; 20:29 = 30:677, 19:20 = 615/068; 20:29 = 30:677, 19:20 = 615/068; 20:29 = 30:67, 19:20 = 616/268; 20:29 = 30:67, 19:20 = 616/268; 20:23 = 50:6708; 20:23 = 50:20014; 20:23 = 50:6708; 20:23 = 50:20014; 20:23 = 50:20014; 20:23 = 50:20014; 20:22 = 4130; 20:	BCDL		10.0								Weight: 2022	lb FT = 20%
 Soft CHORD 2x6 SP 2400F 2.01 "Except" 37-32:24 SP No.1 2x6 SP No.2, 342-41:24 SP No.3 "Except" Max Brach MG CP CHORD Structural wood sheathing directly applied or GO-Do c purlins, 6:-00 max); 6:-10. Structural wood sheathing directly applied or GO-Do c purlins, 6:-00 max); 6:-10. Structural wood sheathing directly applied or GO-Do c purlins, 6:-00 max); 6:-10. WEBS 2x3 5; 3x, 29, 27; 46, 47 KEACTIONS (size) 15:-05-8, 19=-03-8, 41=-05-8, Max Hord 2:-10:22, 23:-23:-01/22611, 43:-47:-21/22611, 4			0 * 5.4000		BOT CHORD			,				her with 10d
VEBS 224 32 PN 0.3 * Excepti 507 CHORD Structural wood sheathing directly applied or 6-0 oc purlins (6-0 on max): 6-10. 40-41=-122/280, 38-04=-011/1794, 94 36-38=-1464/16559, 34-36=-912/17650, 31-34=-388/16407, 32-325=-019387, 20-28-27.078, 31-34=-388/16407, 32-325=-019387, 20-28-27.078, 31-34=-388/16407, 32-325=-019387, 20-28-27.078, 31-34=-388/16407, 32-325=-019387, 20-23=-83/677, 19-28-67/14697, 20-20=-65/268, 11-19-2x6, 20-20 co. Botiom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. 2x6 - 2 rows staggered at 0-9-0 oc. 2x6 - 2 rows staggered at 0-40 oc. Exception member 11-19 2x6, 22-32-30/307, 20-20=-65/268, 11-22-20, 271-47-857/14697, 20-223=-83/677, 19-21=-658/1598, 11-2-28, 24-179, 273-62-20/2715, 23-33, 39-22/8715, 23-33, 39-22/8715, 23-33, 39-22/8715, 23-33, 39-22/8715, 23-33, 39-22/8715, 23-33, 39-22/8715, 23-33, 39-22/8716, 24-21-22/0814, 44-46=-12032/611, 43-47=-12032/611, 43-47=-12032/613, 44-46=-12032/617, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 44-46=-12032/611, 43-47=-12032/613, 43-47=-	BOT CHORD				P				Ťo	p chords con	nected as follows	
 5-38, 11-19, 42-11, 42-52-26 SP No.2, 40-2, 21+17/224 SP No.2 WEDGE Right: 2x4 SP No.3 WEDGE Structural wood sheathing directly applied or 6-0-0 oc purifis, except end verticals, and 2-0-0 oc purifis, except end verticals, and 2-0-3 oc bracing; 19-20. OINTS 1 Brace at 1(6): 44, 42, 37, 46, 47 REACTIONS (is) OIRTS 2, 53, 32, 92, 77, 46, 47 VERCES (b) - Maximum Compression/Maximum Tension OP CHORD 1: 2-10/27, 2-3-15926/1083, 3-6-187101/2146, 5-6-4813/431, 6-7-4430/589, 7-8-4430/589, 10-11-4-764/441, 11-1216840/1026, 2-41=-11588/842 NOTES NOTES NOTES Second Pitting, 4-1516640/1026, 2-41=-11588/842 NOTES 	WERS				No.1							
 VEDGE Right: 2x4 SP No.3 RACIMOS O'D' CHORD Structural wood sheathing directly applied or 6-0-0 oc purline, except net verticals, and 2-0-0 oc purline, (6+0-0 max): 6+10. VEDS VEDC CHORD CHORD Rigid certify applied or 10-0-0 oc bracing: 19-20. OOT CHORD 1: Brace at J(ts): 44, 42, 45-45-4250/1933, 11-21-658/5998, 12-23, 5, 33, 9, 27, 46, 47 REACTIONS (size) 1: 50-5-8, 19=0-3-8, 41=0-5-8 Max Hoir 2, 41=187 (LC 10) Max Upit1: 15-847 (LC 10) Max Grav 1: 5=8420 (LC 46), 19=730 (LC 12), 41=11643 (LC 48), 19=730 (LC 12), 41=1643 (LC 48), 19=7240 (12), 22=22=210100, 19=728, 10=10=160 (12), 22, 22=21=	WEDS					36-38=-1464/16559,	34-36=-912/	17653,	0-5	5-0 oc, 2x6 - 2	2 rows staggered	at 0-9-0 oc.
BRAING 20-23=#38/36/71, 19:20=-615/288, 17:49==513/2597, 16:17=857/14697, 2-0:00 cp µrlins, except end verticals, and 2-0:00 cp µrlins, except end verticals, and 2-2:3, 33, 29, 27, 46, 47 Vertical verti	WEDGE			lo.2				734,				
OF CHORD Stitutian word shadming unlexing public of pracing is a constrained in guide constrained in the constraint is a constraint in the constraint in the constraint is a constraint in the constraint in the constraint is a constraint in the constraint in the constraint is a constraint in the constraint in the constraint is a constraint in the constraint in the constraint in the constraint is a constraint in the c	BRACING	Night. 274 C	5F NU.5			20-23=-83/5677, 19-2	20=-615/268	,	- 2	rows stagge	red at 0-9-0 oc.	
 WEBS 3-40-351(4290, 37-38-622/8715, 5-37-447/8037, 19-21-658/5998, 8-3-40-351(4290, 37-38-622/8715, 5-37-447/8037, 19-21-658/5998, 8-3-40-351(4290, 37-38-622/8715, 5-37-447/8037, 19-21-658/5998, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1564/7508, 12-17=1855/161, 12-1562/7, 12-200,	TOP CHORD						-17=-857/14	697,				
 Nor Circle Nove Figure United by applied on 10-05-0 cc braining: 19-20. OINTS 1 Brace at 14(s): 44, 22, 35, 33, 29, 27, 46, 47 REACTIONS (size) 15=0-5-8, 19=0-3-8, 41=0-5-8 Max Horiz 41=-187 (LC 10) Max Grav 15=8420 (LC 46), 19=730 (LC 12), 41=11643 (LC 46) YOR CES (lb) - Maximum Compression/Maximum Tension YOP CHORD 1-2=0/27, 2-3=15926/1083, 3-5=4130/381, 6-7=-4430/589, 7-8=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 10-11=-4764/441, 11-12=-1861/1/271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 NOTES 					WEBS	3-40=-3516/290, 37-3		,	2) All	loads are co	nsidered equally a	applied to all plies,
6-0-0 oc bracing: 19-20. 14-16-484/124, 5-45=-12501/83, provided to distribute only loads noted as (F) or (B), 0INTS 1 Brace at J(g): 44, 45-46-1223/611, 43-47=-12905/896, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-138/84/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/714649, 11-43-13864/943, 2-40=-380/71861, 11-41-17-138/822, 6-45=-108/1500, 22-4-1113/0, 22-23-01/309, 36-37-01/9141, 15-64-1322/0/210, 22-23-01/309, 36-37-01/9141, 15-64-2102/210, 25-27=-27100, 11-41-17-138/822, 6-45=-13071/226, 29-31=166/933, 28-29=-1473/111, 27-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-4-04/129, 25-27=-27100, 17-21-40/219, 25-27=-27170, 036322 036322 036322 036322 036322 036322 036322 036322	BOT CHORD			applied or 10-0-0 oc								
 Convision 1 Dialed at 0.(6), 944, 44-78-12032/611, 43-47=-12905/896, 46, 47 Carlon S, (size) 15=0-5-8, 19=0-3-8, 41=0-5-8 Max Horiz 41=-187 (LC 10) Max Uplit 15=-487 (LC 12), 19=-4368 (LC 45), 11=-4369 (LC 12), 41=-161643 (LC 46), 19=730 (LC 12), 41=1643 (LC 46), 19=730 (LC 12), 41=16643 (LC 46), 12=20-1473 (LT 12), 25=27=2710/0, 17=21=404/12845, 12=21=-157/1781, 7=4=20/104, 6=7=430/589, 7=8=4430/589, 8=9=4430/589, 7=8=4430/589, 8=9=4430/589, 7=8=4430/589, 7=2=160/2120, 25=27=2710/0, 17=21=404/12845, 12=21=-157/1781, 7=4=-200/104, 6=7=-311/501, 8=46=-1878/224, 9=47=-220/104, 10=47=-937/793, 8=47=-2150/252, 37=40=-3527/553, 3=37=-170/3015 Correst (L) - Atten Atten		6-0-0 oc bra	acing: 19	-20.		14-16=-484/124, 5-45	5=-12501/83	3,				noted as (F) or (B),
46, 47 11-43=13834943, 2:40=-896/14649, 11-43=-13834943, 2:40896/14649, 10-43=-202/2961, 14-13 this design. 8EACTIONS (size) 15=0-5-8, 19=0-3-8, 41=0-5-8 Max Horiz 41=-187 (LC 10) Max Uplit 15=-487 (LC 12), 19=-4368 (LC 45), 12-1787 (LC 12), 45, 41=-801 (LC 12), 41=11643 (LC 46) 12-23=0-4309, 36-37=0/1941, 35-36=-450/576, 34-35=-898/348, 33-34=-281/593, 31-33=-107/4225, 41=1166/33, 22-23=0-4309, 86-37=0/1941, 35-36=-450/576, 34-35=-898/348, 33-34=-281/593, 31-33=-107/4225, 41=1166/33, 22-23=0-4309, 86-37=0/1941, 35-36=-450/576, 34-35=-898/348, 33-34=-281/593, 31-33=-107/4225, 41=1166/33, 22-23=0-4309, 86-37=0/1941, 35-36=-450/576, 54-35=-898/348, 33-34=-281/593, 31-33=-107/4225, 42-21=157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-404/12845, 12-21=-157/1781, 7-21=-907/793, 8-47=-2150/252, 37-40=-3527/553, 3-37=-170/3015 SEAL O36322 10-41=-4760/4441, 11-12=-18311/1271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 NOTES	JOINTS											been considered for
(Si2e) 15=0-5-8, 19=0-3-8, 41=0-5-8 Max Horiz 41=187 (LC 10) Max Horiz 41=187 (LC 10) Max Upilit 15=447 (LC 12) Max Grav 15=8420 (LC 46), 19=730 (LC 12), 41=11643 (LC 46) PORCES (lb) - Maximum Compression/Maximum Tension Torsion 17-21=404/12845, 12-21=-157/1781, 7-46=200/140, 6-46=-1311/501, 8-56=-4813/431, 6-7=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 9-10=-4126/579, 9-10=-4126/579, 9-10=-4126/579, 9-10=-4126/579, 9-10=-4126/579, 10-11=-4764/441, 11-12=-18311/1271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 Notes		46, 47						649,	this	s design.		
Max Uplift 15=-487 (LC 12), 19=-4368 (LC 45), 41=-801 (LC 12) Max Grav 15=8420 (LC 46), 19=730 (LC 12), 41=11643 (LC 46) OP CHORD 1-2=0/27, 2-3=-15926/1083, 3-5=-15710/1246, 5-6=-4813/431, 6-7=-4430/589, 7-8=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 10-11=-4764/441, 11-12=-18311/1271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 Max Uplift 15=-487 (LC 12), 19=-4368 (LC 20-22=-4113/127, 25-20=0/229, 36-37=0/1941, 35-36=-450/575, 34-35=-898/348, 33-3=-281/593, 31-33=-1074/225, 29-31=-166/933, 28-29=-1473/111, 27-28=-40/2129, 25-27=-2710/0, 17-21=-404/12845, 12-21=-157/1781, 7-46=-200/140, 6-46=-1311/501, 8-46=-1878/224, 9-47=-220/104, 6-7=-4430/589, 7-8=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 10-11=-4764/441, 11-12=-18311/1271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 NOTES	REACTIONS	()	,	,		14-17=-138/822, 6-45	5=-108/1500					A.D. 111
45, 41=-801 (LC 12) Max Grav 15=8420 (LC 46), 19=730 (LC 12), 41=11643 (LC 46) SORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/27, 2-3=-15926/1083, 3-5=-18710/1246, 5-6=-4813/431, 6-7=-4430/589, 7-8=-4430/589, 7-8=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 10-412-6/579, 10-412=-157/1781, 7-46=-200/140, 6-46=-1311/501, 8-46=-1878/224, 9-47=-220/104, 10-47=-907/793, 8-47=-2150/252, 37-40=-3527/553, 3-37=-170/3015 NOTES 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842		Max Uplift 1	5=-487 (LC 12), 19=-4368 (LC							"ATH U	THO MA
41=11643 (LC 46) 29-31-26 (1933, 28-29-1473/111, 27-28=-40/2129, 25-27=-2710/0, 17-21=-404/12845, 12-21=-157/1781, 7-46=-200/140, 6-46=-1311/501, 8-46=-1311/501, 6-7=-4430/589, 7-8=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 10-11=-4764/441, 11-12=-18311/1271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 30-34-20 (1933, 28-29-1473/111, 27-28=-40/2129, 25-27=-2710/0, 17-21=-404/12845, 12-21=-157/1781, 7-46=-200/140, 6-46=-1311/501, 8-46=-1311/501, 8-46=-13710/2015 COP CHORD 1-2=0/27, 2-3=-15926/1083, 3-5=-1870/1246, 5-6=-4813/431, 6-7=-4430/589, 7-8=-4430/589, 8-46=-1878/224, 9-47=-220/104, 10-47=-907/793, 8-47=-220/104, 10-47=-907/793, 8-47=-220/104, 10-47=-907/793, 8-47=-2150/252, 37-40=-3527/553, 3-37=-170/3015 SEAL 036322 7-46=-200/140, 6-46=-1311/501, 8-46=-13710/3015 8-46=-1878/224, 9-47=-220/104, 10-47=-907/793, 8-47=-220/104, 10-47=-907/793, 8-47=-2150/252, 37-40=-3527/553, 3-37=-170/3015 036322 June 29,2023 June 29,2023 June 29,2023 June 29,2023					12).	35-36=-450/575, 34-3	35=-898/348	,		1	Alles	This
CORCES (lb) - Maximum Compression/Maximum Tension 27-28=-40/2129, 25-27=-2710/0, 17-21=-404/12845, 12-21=-157/1781, 7-46=-200/140, 6-46=-1311/501, 8-66=-1311/501, 8-66=-1311/501, 8-66=-1311/501, 8-66=-1311/501, 8-66=-1311/501, 8-66=-200/140, 6-46=-1311/501, 8-46=-200/140, 6-46=-1		4	1=11643	(LC 46)	<i>//</i>					ų	10 -	mary 1
OP CHORD 1-2=0/27, 2-3=-15926/1083, 3-5=-18710/1246, 5-6=-4813/431, 6-7=-4430/589, 7-8=-4430/589, 8-9=-4126/579, 9-10=-4126/579, 10-11=-4764/441, 11-12=-18311/1271, 12-14=-17079/1149, 14-15=-16640/1026, 2-41=-11588/842 7-46=-200/140, 6-46=-1311/501, 8-46=-1878/224, 9-47=-220/104, 10-47=-907/793, 8-47=-2150/252, 37-40=-3527/553, 3-37=-170/3015 036322 Image: Comparison of the state of the	FORCES	. ,	num Com	pression/Maximum		27-28=-40/2129, 25-2	27=-2710/0,			E.	CF.	ΔΙ Ξ
June 29,2023	TOP CHORD	1-2=0/27, 2						/01,		Ξ		• •
June 29,2023						8-46=-1878/224, 9-47	7=-220/104,			E	030.	522 : 5
June 29,2023										E	N. A	A 1. 3
June 29,2023					NOTES	····, •				11	NGIN SALES	VEED
June 29,2023											CA	CILBE
June 29,2023											Think.	UIIIIIIIIII
											Jur	ne 29,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A2GR	Attic Girder	1	4	Job Reference (optional)	159229469

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:57

ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 4x5 MT20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.13) Ceiling dead load (5.0 psf) on member(s). 5-45, 45-46,
- 44-46, 44-47, 43-47, 11-43; Wall dead load (5.0psf) on member(s).5-37, 11-21
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 35-37, 33-35, 29-33, 27-29, 26-27, 24-26, 22-24, 21-22
- 15) Bearings are assumed to be: , Joint 15 SP 2400F 2.0E crushing capacity of 805 psi.
- 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4368 lb uplift at joint 19.
- 17) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 41. This connection is for uplift only and does not consider lateral forces.
- 18) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15. This connection is for uplift only and does not consider lateral forces.
- 19) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 20) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 21) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 22) LGT4 Hurricane ties must have four studs in line below the truss.
- 23) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-7-12, and 10004 lb down and 851 lb up at 16-0-3 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

24) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-2=-60, 2-6=-60, 6-10=-60, 10-15=-60, 21-37=-30, 41-48=-20, 5-45=-10, 45-46=-10,
- 42-46=-10, 42-44=-10, 44-47=-10, 43-47=-10,
- 11-43=-10
- Drag: 5-37=-10, 11-21=-10
- Concentrated Loads (lb)
- Vert: 38=-5366 (F), 24=-326 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A3	Attic	6	1	Job Reference (ontional)	159229470

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:59 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	<u>8-4-0</u> 8-4-0	<u>16-1-</u> 7-9-1			- <u>5-0³²⁻⁸⁻⁴</u> 6-4 1-3-4 ^{4x8} ≈	<u>39-4-4</u> 6-8-0	46-2-15 6-10-12	<u>53-5-0</u> 7-2-1	———————————————————————————————————————
11-8-0	50 5x8 = 40 MT20HS 8x12 II	6^{12} 4x6 = 4x5 = 52 51 39 6x10 = 58	4x8 = 5 4 44 44 44 38 37 35 59 33 4x6= 4x5= 4x 10x12= 3x5=		10x12 = 9 10 43 43 10 43 10 43 43 50 50 50 50 50 50 50 50 50 50	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	^{4x6} * ⁵ * ⁶ 112 66	4x5 13 57 15 2x4 II	144-2-00-1- 5x6=
Scale = 1:100.1		<u>13-11-0</u> 5-7-0	2-2-12 1-2-7 1- 0-2-12 1-2-7	13 24-9-10 28-7-12 -2-423-7-3 26-0-1 30- + + + + + + + -2-7 1-0-11 0-3-9 1-3-8 ' 1-4-4 1-2-7 1-4-3 1-4	1-2-11 ⁴ -7 1-2-11	87-6-0 39-4-4 H-9-12 1-10-4		53-5-0 7-2-1	
Plate Offsets (X, Y): [1:Edge,0-2-4]	, [5:0-8-8,0-1-4], [9:0-	3-12,0-1-0], [14:Edge	,0-2-8], [16:0-3-12,0-3-12],	[18:0-7-0,Édg	je], [22:0-3-8,0	-2-0], [39:0-3-8,0-	·3-0], [41:Edge,0-5	5-14]
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.8 BC 0.9 WB 0.8 Matrix-MSH	0 Vert(CT)	in (lc -0.39 29- -0.66 32- 0.12 -0.27 20-	32 >993 240 34 >594 180 14 n/a n/a	PLATES MT20 MT20HS Weight: 493 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	27-17,38-27:2x6 SP SP No.1 2x4 SP No.3 *Excep 4-37,10-18,41-10,41	ot* 36-31:2x4 SP No.2 2400F 2.0E, 31-20:2 ot* I-4:2x6 SP No.2, I-22,36-35,35-34,34-3	x4	39-40=-101/222, 37-39= 35-37=0/3330, 33-35=0/ 28-30=0/6494, 25-28=0/ 19-22=0/1720, 18-19=-1 16-18=-1696/0, 15-16=0 14-15=-8/3859, 34-36=- 32-34=-2689/0, 29-32=- 26-29=-3220/0, 24-26=- 23-24=-908/788, 21-23= 20-21=0/3709	5014, 30-33= 5351, 22-25= 996/0, /3859, 774/0, 3453/0, 908/788,	0/6223, 0/3841,	Vasd=103mph; T Cat. II; Exp B; En zone and C-C Ex 5-5-14 to 10-1-6, Interior (1) 38-11- 53-5-0 zone; cant vertical left and rig	terior(2E) 0-1-12 t Exterior(2R) 10-1 -10 to 48-0-14, Ex tilever left and righ ght exposed;C-C f for reactions show	L=6.0psf; h=25ft; envelope) exterior o 5-5-14, Interior (1) -6 to 38-11-10, terior(2E) 48-0-14 to it exposed ; end for members and
BRACING TOP CHORD	Structural wood she	eathing directly applied except end verticals, a 3-8 max.): 5-9.		2-39=-649/71, 2-37=-16 4-36=0/1173, 18-20=-93 10-20=-31/1171, 11-16= 13-16=-594/198, 13-15=	3/245, -237/110, 0/258, 4-44=-	0/436, 3) 2369/0,	TCLL: ASCE 7-16 Plate DOL=1.15); DOL=1.15); Is=1. Cs=1.00; Ct=1.10	6; Pr=20.0 psf (roc ; Pf=20.0 psf (Lum 0; Rough Cat B; F)	ully Exp.; Ce=0.9;
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 18 5-7-7 oc bracing: 16	y applied or 10-0-0 oc 3-19 3-18.		44-45=-2302/0, 42-45=- 42-46=-1884/1247, 43-4 10-43=-2544/23, 1-39=0 9-43=-13/678, 5-44=-14 24, 25=-0/435, 10, 20-0/1	6=-2393/20, /3415, 7-42=0 402, 22-23=-3)/227, 5) 395/0, 6)	design. Provide adequate All plates are MT2	e drainage to preve 20 plates unless o	considered for this ent water ponding. therwise indicated.
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 42, 21, 34, 32, 29, 26, 45, 46	2-37, 11-20		24-25=0/135, 19-20=0/1 21-22=0/2450, 35-36=0/ 34-35=-1447/0, 33-34=0 30-32=-102/188, 29-30= 28-29=-430/0, 26-28=0/3	1075, /844, 32-33=- -135/128,	8) 720/0,	This truss has be	MT20 unless other en designed for a proconcurrent with	10.0 psf bottom any other live loads.
	40=0-5-8 Max Horiz 40=-191 (Max Uplift 18=-74 (L Max Grav 14=2313	C 15), 40=-11 (LC 14	NOTES	16-20=0/4647, 11-20=-5 6-45=-279/91, 5-45=-31: 7-45=-950/129, 9-46=-3 8-46=-282/93, 7-46=-10	81/316, 2/1227, 18/1336, 07/137		12	ORTHCA	ROLINII Day
FORCES	(lb) - Maximum Corr Tension	· · ·	 Unbalance this design 	ed roof live loads have bee n.	n considered	for	E	SEA	• –
TOP CHORD		=-2583/406, -11=-3724/41,	Ū.				1111000 Martin	201111	EERER

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design the tartures system. Before use, the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A3	Attic	6	1	Job Reference (optional)	159229470

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-44, 44-45, 42-45, 42-46, 43-46, 10-43; Wall dead load (5.0psf) on member(s).4-36, 10-20
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-36, 32-34, 29-32, 26-29, 24-26, 23-24, 21-23, 20-21
- 12) Refer to girder(s) for truss to truss connections.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 40 and 18. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:34:59 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A3GE	Attic Supported Gable	1	1	Job Reference (optional)	159229471

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:02 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-4-0	16-1-12	17-8-0 21-2-4	24-6-8 27-10-1		39-4-4	46-3-12	53-5-0
	8-4-0	7-9-12	1-6-4 3-6-4 _{6x8=}	3-4-4 3-4-4	3-6-4 1-3-4 4x8 _≈	6-8-0	6-11-8	7-1-4
			4x8 ≠	4x8=	6x8=			
Т		6 ¹²	11 10 / 🗖 🖉	12 91 1392	14 15 1-0-0 16			
		4x6 ≠ 9	68	69 667	70 66	17 4x6		
		- TO -	1	6x10= 6x10 II	3x6 II	18 4x5 € 1930		
0		56 90		-+			¹ 2 ₉₄ 23	
11-8-0	3 89		×	-1-12	×	76	24 4×0	
-	6x8= 2	82		6		3x8 u 74	25	^{.9} 26
٩		3x6 ii 81				⊠3x8 ⊪	79	20 27
2-10-0	85 84	3x6 II 8			x10 -	/12 39881	78 3x6 II	
	6 6 3 62 61 8	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	6 56 53 52 51	50 49 47 46 4 5 4	2 40 39 37 336	××××××××××××××××××××××××××××××××××××××	7 33 32 31	
	3x6 и	4x5= 4x6:	= 4x5= 4x5	= 3x6= 4x5= 4>	<pre>x5= 3x5= 5x10=</pre>	4x6=	3x6 II 4x5:	
	3х6 и	3>	(6∥ 3x5= 1 0⊽1-26=1 5	3x5= 3x5= 4x6= 22-64x85= 25-83x85=28	4x5= 4x5= 3-7-12 32-8-4	4x8=		
	8-4-0	13-11-0 16	16-4-8 19-11-13		4 31-2-13	37-6-0 39-4-4	46-4-11	53-5-0
	8-4-0	570	2-12 1-2-7 1-2	2-7 1-0-11 0-3-9 ²	 1-3-8 1-2-11	4-9-12 1-10-4	7-0-8	7-0-5
Scale = 1:92.2		l], [11:0-6-0,0-2-8], [15:0-0	1-2-7		0-2-12			
					-			
Loading TCLL (roof)	(psf) 20.0	Spacing2-0Plate Grip DOL1.7	0-0 15	CSI TC	0.42 Vert(LL)	in (loc) l/dei n/a - n/a		GRIP 244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL 1. ⁴ Rep Stress Incr YE		BC WB	0.13 Vert(TL) 0.61 Horiz(TL)	n/a - n/a 0.01 86 n/a		
BCLL	0.0*	1 '	C2018/TPI2014	Matrix-MSH		0.01 00 14		
BCDL	10.0						······	15 lb FT = 20%
LUMBER TOP CHORD	2x6 SP No.2 *Excep	ot* 11-15:2x4 SP No.2		Max Grav 28=159 (I 30=187 (I	LC 22), 29=247 (LC 4 LC 6), 31=247 (LC 22		63-64=-112/221, 61-62=-111/218,	
BOT CHORD		ot* 54-49:2x4 SP No.2, 2400F 2.0E, 49-38:2x4			LC 49), 33=206 (LC 2 LC 43), 36=884 (LC 4		59-60=-30/236, 5 56-58=-30/236, 5	
WEBS	SP No.1 2x4 SP No.3 *Except			37=175 (l	LC 37), 40=275 (LC 2 LC 20), 46=287 (LC 2	20),		-53=0/312, 48-51=0/271, 46=0/264, 40-43=-8/198,
	10-55,16-36,65-16,6			48=285 (l	LC 20), 51=321 (LC 2 LC 20), 55=895 (LC 3	20),	37-40=0/307, 36-	37=-7/421, 34-36=-14/230, -33=-1/150, 31-32=-1/150,
OTHERS BRACING	2x4 SP No.3			56=119 (l	LC 47), 58=217 (LC 4	41),	30-31=0/144, 29-	30=0/144, 28-29=0/144,
TOP CHORD	Structural wood she 6-0-0 oc purlins, exe	eathing directly applied or cept		61=289 (I	LC 41), 60=332 (LC 4 LC 41), 62=138 (LC 3	39),	44-47=0/127, 42-	2=0/126, 47-50=0/127, 44=0/110, 41-42=0/110,
BOT CHORD	2-0-0 oc purlins (3-7			63=99 (L0 86=159 (l	C 7), 64=141 (LC 21) LC 22)	,	39-41=0/110, 38-	39=-16/83
	bracing.		FORCES	(lb) - Maximum Com Tension	npression/Maximum			
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 67,	10-54, 16-38, 9-80	TOP CHORD	1-2=-196/61, 2-3=-1				
	39, 52, 50, 47, 44, 69, 70, 71, 72, 73,			8-9=-297/184, 9-10=	,	01,		
	74, 78, 80, 81, 82, 84, 85			10-11=-1127/219, 1 12-13=-2282/442, 1				
REACTIONS	(size) 28=53-5-	0, 29=53-5-0, 30=53-5-0,		14-15=-2247/441, 1 16-17=-262/179, 17				00000
	34=53-5-	0, 32=53-5-0, 33=53-5-0, 0, 36=53-5-0, 37=53-5-0,		18-19=-326/156, 19 20-22=-262/97, 22-2	-20=-337/142,		TH	CARO
	48=53-5-	0, 43=53-5-0, 46=53-5-0, 0, 51=53-5-0, 53=53-5-0,		23-24=-273/75, 24-2 25-26=-159/48, 26-2	25=-274/63,		A OF SEE	Sala
		0, 56=53-5-0, 58=53-5-0, 0, 60=53-5-0, 61=53-5-0,		27-28=-154/18	27=-136/29,	4	NDO/	Jan 4
		0, 63=53-5-0, 64=53-5-0,					E S	EAL
	Max Horiz 64=-224							6322
	32=-34 (L	C 15), 33=-24 (LC 15),						
	55=-49 (L	(LC 15), 37=-25 (LC 15), .C 14), 56=-130 (LC 38),					THE SA SNO	INFERIA
		.C 14), 59=-41 (LC 14), .C 14), 61=-60 (LC 14),					IT CA	CILBERT
	62=-60 (L	C 14), 64=-72 (LC 15)					(Inni)	GIL
								INEER HALL
Continued on		ers and READ NOTES ON THIS /			73 rev. 5/19/2020 REFOR	USE.		
Design v a truss s	alid for use only with MiTek® ystem. Before use, the buildi	connectors. This design is base ng designer must verify the appl	ed only upon parameter icability of design param	s shown, and is for an indiv neters and properly incorpo	ridual building component, rate this design into the ov	not erall		FNCO
is always	required for stability and to	to prevent buckling of individual prevent collapse with possible p and bracing of trusses and trus	ersonal injury and prope	erty damage. For general g		-		A MiTek Affiliate
Safety In	nformation available from T	russ Plate Institute, 2670 Crain	Highway, Suite 203 Wal	dorf, MD 20601	ia, Dob-os ana Dooi Bul	ang component	818 Sound Edenton, I	dside Road NC 27932

Job	Truss	Truss Type	Qty	Ply 17 Serenity-Roof-B326 B		
23060129-01	A3GE	Attic Supported Gable	1	1	Job Reference (optional)	159229471

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries. Inc. Wed Jun 28 09:35:02

ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

WEBS

5-60=-288/32.54-55=-957/41. 10-54=-979/140, 36-38=-730/36, 16-38=-868/151, 20-34=-521/113. 25-31=-205/11, 10-68=-47/585, 68-69=-51/616, 67-69=-458/2719, 67-70=-458/2719.66-70=-53/572. 16-66=-48/538, 1-85=-41/181, 84-85=-39/176, 83-84=-40/178, 60-83=-40/180, 15-66=-49/162, 13-67=-8/120. 34-77=-17/142. 77-78=-14/140, 78-79=-14/134, 25-79=-14/139, 5-82=-17/143, 81-82=-17/142, 80-81=-16/141, 55-80=-17/144, 11-68=-26/185, 40-41=-62/0, 42-43=-74/0, 37-38=-250/52, 37-39=-129/0, 39-40=-145/0, 53-54=-96/0, 52-53=-148/0, 51-52=-169/0, 50-51=-131/0, 48-50=-123/0, 47-48=-139/0, 46-47=-128/0, 44-46=-118/0, 43-44=-97/0, 38-71=-92/80, 71-73=-91/79, 73-75=-92/80, 34-75=-103/85, 38-72=0/76, 72-74=0/80, 74-76=0/102, 20-76=0/87, 12-69=-302/89, 11-69=-275/1451, 13-69=-765/149, 14-70=-299/89, 15-70=-274/1462, 13-70=-783/166, 1-64=-155/63, 17-72=-24/35, 71-72=-14/28, 18-74=-67/28, 73-74=-33/16, 19-76=-25/7, 75-76=-31/18, 22-77=-15/16, 23-78=-144/60. 33-78=-179/40, 24-79=-105/55, 32-79=-101/61, 26-30=-147/38, 27-29=-154/85, 9-80=-82/172, 56-80=-82/167, 8-81=-177/70, 58-81=-175/70, 7-82=-193/59, 59-82=-194/61. 4-83=-23/18. 3-84=-194/92. 61-84=-223/100, 2-85=-127/73. 62-85=-108/78, 1-63=-41/16

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-1 to 5-7-2, Interior (1) 5-7-2 to 10-1-6, Exterior(2R) 10-1-6 to 38-11-10, Interior (1) 38-11-10 to 48-0-14, Exterior(2E) 48-0-14 to 53-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 10-68, 68-69, 67-69, 67-70, 66-70, 16-66; Wall dead load (5.0psf) on member(s).10-54, 16-38, 33-78, 26-30

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 64, 17 lb uplift at joint 60, 49 lb uplift at joint 55, 134 lb uplift at joint 34, 25 lb uplift at joint 37, 24 lb uplift at joint 33, 34 lb uplift at joint 32, 8 lb uplift at joint 30, 75 lb uplift at joint 29, 130 lb uplift at joint 56, 45 lb uplift at joint 58, 41 lb uplift at joint 59, 60 lb uplift at joint 61 and 60 lb uplift at joint 62.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A4	Attic		1	1	Job Reference (optional)	159229472
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.63 S	Apr 6 20)23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jun 28 09:35:05	Page: 1

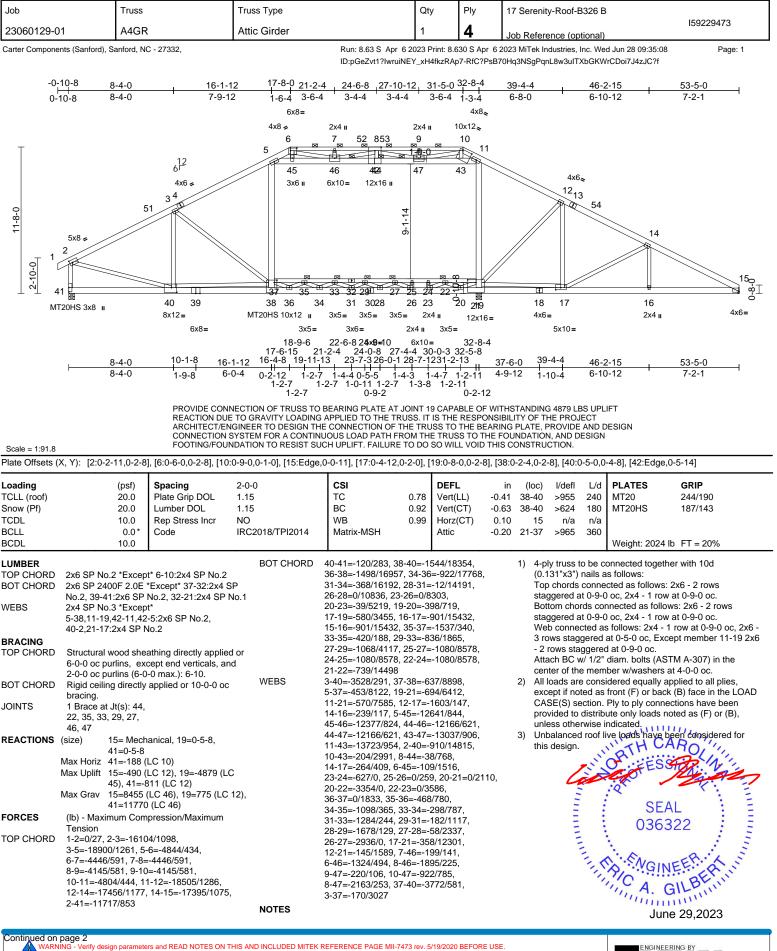
ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

$ \begin{array}{c} \begin{array}{c} -0.10 - 8 \\ 0.10 - 8 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 8 - 4 - 0 \\ 0.10 - 8 \\ 0.10 - 12 \\ 17 - 8 - 9 21 - 2 + 24 - 8 - 8 \\ 17 - 8 - 9 21 - 2 + 4 \\ 16 - 4 - 3 - 6 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4 \\ 3 - 4 \\ 4 - 4$.p.∃I 19-8-0 -
48 = 2x4 II 2x4 II 10x12 II 4x6 = 4x5 =	
$ \begin{array}{c} 6 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 6 \\ 10 \\ 1 \\ 1 \\ 1 \\ 10 \\ 10 \\ 1 \\ 10 \\ 1$	
$\begin{array}{c} 4x6 \\ 4x5 \\ 53 \\ 54 \\ 51 \\ 52 \\ 41 \\ 8 \\ 12 \\ 12 \\ 41 \\ 8 \\ 12 \\ 12 \\ 12 \\ 12 \\ 14 \\ 18 \\ 10x12 \\ 10x12 \\ 18 \\ 10x12 \\ 10x$	
$\begin{array}{c} 4x5 \\ 5x8 \\ 5x8 \\ 5x8 \\ 5x8 \\ 5x8 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\int_{-1}^{1} \int_{-1}^{2} \int_{-1}^{1} \int_{-1}^{1$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4x5= 2641 0= 12x16= MT201 29 8412 = 17-6-15 22-6-8 25-8-8 $4x82$ -2-13 16-4-8 19-11-13 22-8-4 26-7-12 32-8-4 26-7-12 32-8-4	
$MT201499 84142 = 17-6-15 22-6-8 25-8-8 4_{x82}1-2-13 16-4-8 19-11-13 22-9-10 28-7-12 32-8-4 16-4-8 19-11-13 22-8-4 10-28-7-12 32-8-7-12 32-7$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8-4-0 5-7-0 2-2-12 1-2-7 1-2-7 1-0-11 0-3-9 1-3-8 1-2-11 4-9-12 1-10-4 6-10-12 7-2-1 Scale = 1:100.1 0-2-12 1-2-7 1-4-4 1-2-7 1-4-3 1-4-7 1-2-11	
Deale - 1.100.1 Plate Offsets (X, Y): [2:0-2-12,0-2-0], [6:0-8-12,0-1-8], [10:0-8-12,0-1-0], [15:Edge,0-2-8], [17:0-3-12,0-3-12], [19:0-7-0,Edge], [23:0-3-8,0-2-0], [40:0-3-8,0-3-0], [42:Edge,0-5-14]	
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP	
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.96 Vert(LL) -0.39 30-33 >993 240 MT20 244/190	
Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.90 Vert(CT) -0.66 33-35 >594 180 MT18HS 244/190 TCDL 10.0 Rep Stress Incr YES WB 0.86 Horz(CT) 0.12 15 n/a MT20HS 187/143	
BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH Attic -0.27 21-37 >734 360	
BCDL 10.0 Weight: 495 lb FT = 20%	
LUMBER BOT CHORD 40-41=-112/225, 38-40=-16/3355, 2) Wind: ASCE 7-16; Vult=130mph (3-second gu TOP CHORD 2x6 SP No.2 *Except* 6-10:2x4 SP No.2 36-38=0/3329, 34-36=0/5013, 31-34=0/6223, Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.	
BOT CHORD 2x6 SP No.2 *Except* 37-32:2x4 SP No.2, 29-31=0/6493, 26-29=0/3551, 23-26=0/3841, Cat. II; Exp B; Enclosed; MWFRS (envelope) e	
SP No.1 17-19=-1696/0, 16-17=0/3858, 4-5-10 to 10-1-6, Exterior(2R) 10-1-6 to 38-11-	-10,
WEBS 2x4 SP No.3 *Except* 15-16=-8/3858, 35-37=-774/0, Interior (1) 38-11-10 to 48-0-14, Exterior(2E) 4	
	rs and
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 53-5-0 zone; cantilever left and right exposed; vertical left and right exposed; C-C for member	1
5-38,11-19,42-11,42-5:2x6 SP No.2, 33-35=-2689/0, 30-33=-3453/0, 53-5-0 zone; cantilever left and right exposed i 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 27-30=-3220/0, 25-27=-909/787, vertical left and right exposed;C-C for member 4-33,30-29,29-27,27-26:2x4 SP No.2, 24-25=-909/787, 22-24=-909/787, forces & MWFRS for reactions shown; Lumber 21-17:2x4 SP No.1 21-22=0/3708 DOL=1.60 plate grip DOL=1.60	
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 21-22=0/3708 53-5-0 zone; cantilever left and right exposed; C-C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 BRACING WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 40.041/04.41.214, 24.244.41.24 3)	
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 21-22=0/3708 53-5-0 zone; cantilever left and right exposed; C- C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 BRACING TOP CHORD WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 3-0-7 oc purlins, except end verticals, and 19-21=-941/244, 11-21=-34/1171, 12-17=-237/110, 14-16=0/258, 5-45=-2373/0, 454-06-0244 de 1405(14406) 53-5-0 zone; cantilever left and right exposed; C- C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	5 Plate
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 21-22=0/3708 53-5-0 zone; cantilever left and right exposed; C- C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 BRACING TOP CHORD WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 19-21=-941/244, 11-21=-34/1171, 19-21=-941/244, 11-21=-34/1171, 2-0-0 oc purlins (3-3-9 max.): 6-10. 30 TCLL: ASCE 7-16; PF=20.0 psf (roof LL: Lum ID Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15); DOL=1.15); Pf=20.0 psf (Lum DOL	5 Plate Ce=0.9;
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 21-22=0/3708 53-5-0 zone; cantilever left and right exposed; C- C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 BRACING TOP CHORD WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 19-21=-941/244, 11-21=-34/1171, 19-21=-941/244, 11-21=-34/1171, 12-17=-237/110, 14-16=0/258, 5-45=-2373/0, 45-46=-2305/0, 44-46=-1885/1246, 44-47=-1885/1246, 43-47=-2392/22, bracing, Except: 30-33=-3453/0, 23-0-0 cc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. 53-5-0 zone; cantilever left and right exposed; 53-5-0 zone; cantileve	5 Plate Ce=0.9; d for this
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 21-22=0/3708 53-50 zone; cantilever left and right exposed; C- C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 BRACING TOP CHORD WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. 19-21=-941/244, 11-21=-34/1171, 12-17=-237/110, 14-16=0/258, 5-45=-2373/0, 4-47=-1885/1246, 43-47=-2392/22, 11-43=-2543/25, 2-40=0/3399, 5-7-7 oc bracing: 19-20 5-7-7 oc bracing: 17-19. 53-50 zone; cantilever left and right exposed; C- C for member forces & MWFRS for reactions shown; Lumber DOL=1.60	5 Plate Ce=0.9; d for this in roof live 20.0 psf on
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 21-220/3708 53-50 zone; cantilever left and right exposed; C-C for member forces & MWFRS for reactions shown; Lumber torces & MWFRS for reactions shown; Lumber forces & MWFRS for reactions shown; Lumber DDL=1.60 pt 160 pt 16	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 21-22=0/3708 53-5-0 zone; cantilever left and right exposed; C-C for member forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 19-21=-941/244, 11-21=-34/1171, 19-21=-941/244, 11-21=-34/1171, 20-0 oc purlins (3-3-9 max.): 6-10. 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. 19-21=-941/244, 11-21=-34/1171, 12-17=-237/110, 14-16=0/258, 5-45=-2373/0, 44-47=-1885/1246, 43-47=-2392/22, 11-43=-2543/25, 2-40=0/3399, 5-7-7 oc bracing: 19-20 5-7-7 oc bracing: 19-20 5-7-7 oc bracing: 17-19. 3-38=-159/366, 6-45=-14/403, 23-24=-395/0, 3-38=-159/366, 6-45=-14/4/03, 23-24=-395/0, 5-2526=0/135, 20-21=0/1706, 20-22=-2722/0, 22-23=0/2450, 36-37=-0/1075, 22-23=0/2450, 36-37=-0/1075, 23-33, 30, 27 53-50-20132-2-2720/0, 23-33, 33-4=-721/0, 24-23=0/2450, 36-37=-0/1075, 25-26=0/135, 20-21=0/1706, 20-22=-2721/0, 22-23=0/2450, 36-37=-0/1075, 22-23=0/2450, 36-37=-0/1075, 22-23=0/2450, 36-37=-0/1075, 22-23=0/2450, 36-37=-0/1075, 22-23=0/2450, 36-37=-0/1075, 24-23=0/2450, 36-33=-44-70, 34-3	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 21-22=0/3708 53-5-0 zone; cantilever left and right exposed; vertical left and right exposed; DDL=1.60 BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-9 max.): 6-10. WEBS 3-40=-645/67, 37-38=0/434, 5-37=0/1171, 19-21=-941/244, 11-21=-34/1171, 19-21=-941/244, 3-21=-504/3399, 10-43=-136/516, 6-45=-11/403, 23-24=-395/0, 57-7 oc bracing: 19-20 5-7-7 oc bracing: 19-20	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.133-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-90/787, 22-24=-909/787, 24-25=-90/787, 22-24=-909/787, 25-26-0/172, 14-17=-16-2/28, 14-171, 15-16-12258, 16-1653-5-0 zone; cantilever left and right exposed in vertical left and right exposed in the prosed in the pro	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-23,37-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 20-0 oc purlins, (a-3-9 max), 16-10. 53-5-0 zone; cantilever left and right exposed i vertical left and right exposed i forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 BOT CHORD Structural wood sheathing directly applied or 3-0-7 oc bracing: 19-20 5-7-7 oc bracing: 19-20 5-7-7 oc bracing: 17-19. 19-21=-941/244, 11-21=-34/1171, 19-21=-941/244, 61-21=-580/319, 10-43=-13/678, 8-44=-0/227, 14-175=-594/198, 3-38=-159/366, 6-45=-14/403, 23-24=-395/0, 25-26=0/135, 20-21=-0/1706, 20-22=-2722/0, 3-38=-159/366, 6-45=-14/4/03, 23-24=-395/0, 25-26=0/135, 20-21=0/1706, 20-22=-2722/0, 46,47 50 This truss has been designed for greater of mi load of 12.0 psf or 1.00 times flat roof load of 2 overhangs non-concurrent with other live loads 22-230/2450, 36-37=-01/075, 30=-43/00, 27-29=0/960, 26-27=-1750/0, 17-21=0/4646, 12-21=-590/316, 7-46=-279/91, 6-46=-312/1228, 8-46=-951/130, 9-47=-282/93, 10-47=-317/1036, 8-47=-1006/137 All plates are 4x5 MT20 upless otherwise indic 300 F1.0 prevent water pi load of 12.0 psf or 1.00 times flat roof load of 2 overhangs non-concurrent with other live loads 10-47=-317/103, 9-47=-28	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22:23,37-36,36-35,35-34,3 4-33,0-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 25-45=-01/171, 19, 22-24=-390/246, 43-47=-329/22, 3-24-30/0, 27-29=-09/846, 23-34-30, 23-24=-39/148, 30-34=-71/9, 30-445=-71450, 32-44=-951/130, 9-47=-312/128, 3-41=-0.5-8, MX+10; 41=-188 (LC 12), Max Uplift 19=-74 (LC 15), 41=-30 (LC 14), Max Grav 15=-2313 (LC 46), 19=1760 (LC 3-04-45=-14/70, 34-45=-312/1228, 8-46=-951/130, 9-47=-282/93, 10-47=-317/1336, 8-47=-1006/137 53-5-0 zone; cantilever left and right exposed; C-C for member DCL=1.60 DL=1.16, DL=1.16, DOL=1.16, DI=1.16, DL=1.16, DOL=1.16, DI=1.16, DI=1.16, DOL=1.16, DI=1.16,	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,223,33,36,36-35,35-34,3 4-33,30-29,2927,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 21-17:2x4 SP No.1 53-5-0 zone; cantilever left and right exposed is vertical left and	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,223,33,36,36-35,35-34,3 4-33,30-29,2927,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 21-17:2x4 SP No.1 53-5-0 zone; cantilever left and right exposed is vertical left and	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22:3,37-36,36-35,35-34,3 4-33,00-29,29-27,2-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689(0, 30-33=-3453(0, 27-30=-3220(0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 37-38=0/434, 5-37=0/1171, 19-21=-941/244, 11-21=-341/171, 19-21=-941/244, 11-21=-341/171, 19-21=-941/244, 11-21=-341/171, 19-21=-941/244, 11-21=-341/171, 19-21=-941/244, 11-21=-341/171, 19-21=-2305(0, 44-46=-1885/1246, 44-47=-1885/1246, 43-47=-2392/22, 11-43=-2543/25, 2-40=-0/3399, 10-43=-13/678, 8-44=-0/227, 14-17=-594/198, 5-7-7 oc bracing: 19-20 5-7-7 oc bracing: 19-20 5-2-20/135, 20-21=0/1706, 20-22-2722/0, 22,235, 33, 30, 27, 46, 47 5-7-6 or actilever left and right exposed; C- C for member 19-21-16 00L=1.15 DOL=1.16 DOL=1.15 DOL=1.10 WEBS 1 Row at midpt 3-3-81/21/246, 43-47=-2392/22, 10-43=-430/0, 27-290/960, 20-22=-2722/0, 12-20-290/960, 20-22=-2722/0, 13-33=-102/188, 30-31=-136/127, 22-365-1437/0, 34-35=0/4845, 33-34=-721/0, 13-33=-102/188, 30-31=-136/127, 29-0960, 20-22-772/03, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-21=-590/316, 11-21=0/4646, 12-2	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38,11-19,42-11,42-5:2x6 SP No.2, 40-2,21-20,20-22,22-33,7-36,36-35,35-34,3 4-33,30-29,29-27,27-26:2x4 SP No.2, 21-17:2x4 SP No.1 33-35=-2689/0, 30-33=-3453/0, 27-30=-3220/0, 25-27=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 22-24=-909/787, 24-25=-909/787, 73-38=0/434, 5-37=0/1171, 19-21=-941/244, 11-21=-34/1171, 19-21=-941/244, 11-21=-34/1171, 19-21=-927/110, 14-16=0/258, 5-45=-2373/0, 19-41=-13/678, 8-44=0/227, 14-17=-59/1948, 5-7-7 oc bracing: 19-20 5-7-7 oc bracing: 19-20 5-2-20/2450, 36-37=0/1075, 10-43=-13/678, 8-44=0/227, 14-17=-59/1948, 30-34=-13/678, 8-44=0/227, 14-17=-59/1948, 30-34=-13/678, 8-44=0/227, 14-17=-59/1948, 30-34=-13/678, 8-44=0/227, 14-17=-59/1948, 30-34=-13/678, 8-44=0/227, 14-17=-59/1948, 30-45=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/91, 6-46=-31/21/228, 8-46=-927/91, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-927/919, 6-46=-31/21/228, 8-46=-9	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.
5-38, 11-19, 42-11, 42-5:2x6 SP No.2, 40-2, 21-20, 20:22, 22-23, 37-36, 36-35, 35-34, 3 4-33, 30-29, 29-27, 27-25:2x4 SP No.2, 21-17:2x4 SP No.1 33-35-2689(0, 30-33-3453(0, 27-30-3220(0), 25-27=-909/787, 21-22-20:3708 53-60 zone; cantilever left and right exposed; C-C for member vertical left and right exposed; C-C for member 12-122-30/708 BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-7 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals, and 2-0-0 oc bracing; 19-20 5-7-7 oc bracing; 17-19. WEBS 34-40-643,67, 37-38-0/434, 5-37-0/1174, 19-21=941/244, 11-21=-34/1471, 10-43=-13/678, 8-44=0/227, 14-17=-534/198, 5-7-7 oc bracing; 19-20 5-7-7 oc br	5 Plate Ce=0.9; d for this in roof live 20.0 psf on s. onding. dicated.

June 29,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design into the overall fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute. 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A4	Attic	1	1	Job Reference (optional)	159229472


- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord or a bear with the more than a set of a constraint of a constraint of the set of the s
- chord and any other members, with BCDL = 10.0psf.
 11) Ceiling dead load (5.0 psf) on member(s). 5-45, 45-46, 44-46, 44-47, 43-47, 11-43; Wall dead load (5.0psf) on member(s).5-37, 11-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 35-37, 33-35, 30-33, 27-30, 25-27, 24-25, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 41 and 19. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:05 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	A4GR	Attic Girder	1	4	Job Reference (optional)	159229473

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 4x5 MT20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- 3-06-00 tail by 2-00-00 Wide Will fit between the bottom chord and any other members.
 Ceiling dead load (5.0 psf) on member(s). 5-45, 45-46, 44-46, 44-47, 43-47, 11-43; Wall dead load (5.0psf) on
- member(s).5-37, 11-21
 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 35-37,
- 33-35, 29-33, 27-29, 25-27, 24-25, 22-24, 21-22
- 15) Refer to girder(s) for truss to truss connections.
- 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 490 lb uplift at joint 15 and 4879 lb uplift at joint 19.
 17) LGT4-SDS3 Simpson Strong-Tie connectors
- 17) LG14-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 41. This connection is for uplift only and does not consider lateral forces.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 21) LGT4 Hurricane ties must have four studs in line below the truss.
- 22) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10250 lb down and 872 lb up at 16-0-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
- 23) Attic room checked for L/360 deflection.

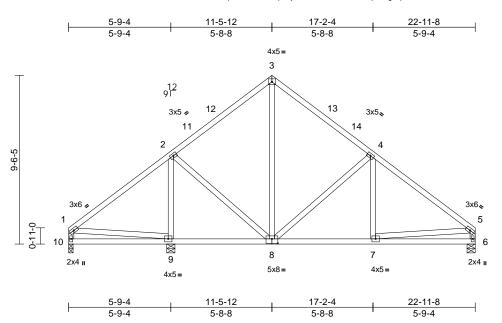
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-2=-60, 2-6=-60, 6-10=-60, 10-15=-60, 41-48=-20, 21-37=-30, 5-45=-10, 45-46=-10, 42-46=-10, 42-44=-10, 44-47=-10, 43-47=-10,
- 11-43=-10
- Drag: 5-37=-10, 11-21=-10
- Concentrated Loads (lb)
- Vert: 38=-5498 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:08 ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	B1	Common	1	1	Job Reference (optional)	159229474

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:10 ID:?iLepz40Qfn52c5hpdbjKXzBII7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.63	Vert(LL)	0.05	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.32	Vert(CT)	0.04	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/	TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 143 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-4-15 oc purlins, e Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 8-5 	xcept end verticals. applied or 10-0-0 oc 9.	4) ed or 5) 5 6)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced s design. This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	snow loads have b s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil	Lum DC B; Fully been cor or a 10. with any for a liv s where	DL=1.15 Plate Exp.; Ce=0.9 hisidered for th D psf bottom other live load e load of 20.0 a rectangle	; is ds. psf					
REACTIONS	 S (size) 6=0-5-8, 9 Max Horiz 10=224 (L Max Uplift 6=-60 (LC 10=-28 (L Max Grav 6=730 (LC 10=221 (L 	: 15), 9=-100 (LC 14 C 10) C 21), 9=956 (LC 20)), 7) (),	chord and an One H2.5A S recommende UPLIFT at jt(only and doe	y other members. Simpson Strong-Tie d to connect truss s) 10, 9, and 6. Th s not consider late designed in accord	e conne to bear is conne eral force	ctors ing walls due action is for up as.	to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,	International	Residential Code	sections	R502.11.1 a	nd					
TOP CHORE	D 1-2=-159/112, 2-3=- 4-5=-882/97, 1-10=-	,	^{48,} LOA	D CASE(S)			0/1111						
BOT CHORE		,											
WEBS	1-9=-137/154, 5-7=0											N'''LI CA	Dille
	2-8=0/427, 3-8=-66/2	208, 4-8=-437/188,									1	THUA	ROIL
	4-7=0/204									/	SI	04585	22 Juno
NOTES	ced roof live loads have	boon considered for								L	ZR		W//
this desi		Deen considered 101								-		:2	K . E
	SCE 7-16; Vult=130mph	(3-second gust)								-		SEA	r 1 E
Vasd=10)3mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;								=			• -
	xp B; Enclosed; MWFR									Ξ		0363	22 <u>:</u> E
	d C-C Exterior(2E) 0-1-1 0 8-5-12, Exterior(2R) 8-									-	0		1 2
	12 to 19-9-12, Exterior(2K) 8-									S	-	·	airs
	ntilever left and right exp										2.5	A SNGIN	EFICAN
and right	t exposed; porch left exp	osed;C-C for memb									11	10	BEIN
	es & MWFRS for reactio	ns shown; Lumber										11, A. G	ILLIN
DOL=1.6	60 plate grip DOL=1.60											A. G	

June 29,2023



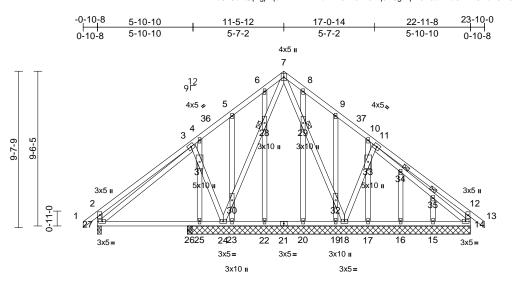
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	B1GR	Common Girder	1	2	Job Reference (optional)	159229475

Scale = 1:67.6

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:10 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [1:0-0-12,Edge	e], [5:0-1-4,0-2-0], [7:E	dge,0-3-2	2], [8:0-9-12,0-	6-0], [10:0-9-12,0	-6-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.38 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.17 0.01	. ,	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 491 lb	GRIP 244/190 FT = 20%	5
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord staggered	2x12 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 4-5-8 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1- 1 Row at midpt (size) 1=0-5-8, 7 bearing b Max Horiz 1=202 (LC Max Uplift 1=-66 (LC 12=-1043 Max Grav 1=896 (LC 12=13895 (lb) - Maximum Com Tension	eathing directly applied applied or 10-0-0 oc 12. 3-12 7=0-5-8, 12=(0-5-8 + lock), (req. 0-5-12) C 9) C 13), 7=-841 (LC 13), (LC 12) C 5), 7=9460 (LC 6), 9 (LC 5) npression/Maximum 91/439, 3-4=-5878/52 =-10933/1004, 12=-194/2462, 3=-692/8787 10=-4241/588, =-198/137, 2=-8258/639, ther with 10d s: 2x6 - 2 rows lows: 2x12 - 4 rows	i or 3) 4) 5) 6) 22, 7) 8) 9) 10	except if not CASE(S) see provided to C unless other 2x12 SP 24C attached to e nails spaced Bearing is as Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct- Unbalanced design. This truss ha chord live loa * This truss h on the bottor 3-06-00 tall chord and ar) One H2.5A S recommende UPLIFT at jtt does not cor) LGT2 Simps connect trus	snow loads have as been designed as been designe n chord in all area by 2-00-00 wide w ny other members Simpson Strong-T ed to connect trus (s) 1. This connec isider lateral forco on Strong-Tic con s to bearing walls connection is for	back (B) princetion ds noted block 12' rows of 1 asteners 2400F 2. ve been ph (3-see BCDL=6 FRS (envection exposed DL=1.60 sf (roof LI (Lum DC t B; Fully been col- for a 10. with any d for a liv as where vill fit betw 5. Tie conne s to bear tion is fo as. nectors due to L	face in the LC is have been as (F) or (B), ' long at jt. 12 0d (0.131"x3" per block. 0E. considered fo cond gust) 3.0psf; h=25ft; elope) exteric elope) exteric plate grip L: Lum DOL== DL=1.15 Plate Exp.; Ce=0.9 nsidered for th 0 psf bottom other live loa ve load of 20.0 a rectangle ween the botto ctors ing walls due r uplift only ar	r) or ; or left 1.15 e ; ids. Opsf om to nd d to ; 7	Inte R8(13) Use 14- spa enc bott 14) Fill 15) LG ² the LOAD (1) De In: Ur Co	ernationa 22.10.2 a e Simpse 10dx1 1, icced at 2 i to 20-1 tom choi all nail h T2 Hurrit truss. CASE(S ead + Sr crease= hiform Le Vert: 1= 23=-22: (B), 27= 30=-21!	Il Resi and ref 2 Trus -0-0 o -0-12 tr d. -0-12 tr d. -0-12 tr d. -0-12 tr d. -0-0 s -0-12 tr d. -0-0 s -0-12 tr d. -0-0 s -0-0 s -0-0 -0-0	alanced): Lumbe	tions R502. rd ANSI/TPI 26-100 Girdu rder) or equi to -10-12 fro as) to back fa n contact wito o studs in lir ar Increase= -20 3), 22=-221 =-2365 (B), 3), 29=-2152 	11.1 and 1. er, valent m the left ace of th lumber. he below 1.15, Plate (B), 26=-2365 2 (B),
web conn	ecteu as 10110ws. 284 -	- 1 10W at 0-9-0 0C.										Jun	e 29,202	3


818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	B1SE	Common Structural Gable	1	1	Job Reference (optional)	159229476

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:11 ID:oS1UdvQqwgjBqerIEXzXI2zBIaL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			5-8-4	7-9-0	15-2-8			22-1	11 0			
		F	5-8-4	2-0-12	7-5-8			7-9				
Scale = 1:70.9												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	0-0 15 15 ES 8C2018/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.25 0.20	· · /	in -0.02 -0.04 0.00	(loc) 26-27 26-27 14	7 >999 7 >999	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 244/190
BODE	10.0										Weight. 212 ib	11 = 2070
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 28, 29, 34, 35 (size) 14=17-5-(17=17-5-(20=17-5-(applied or 10-0-0 oc 0, 15=17-5-0, 16=17-5-0, 0, 18=17-5-0, 19=17-5-0, 0, 22=17-5-0, 23=17-5-0,		26-27=-109/223 24-25=-109/223 22-23=-98/192, 16-17=0/129, 15 7-29=-126/51, 2 18-32=-129/52, 11-33=-337/265 28-30=-91/46, 7 24-31=-386/291 11-34=-159/98, 14-35=-142/88, 22-28=-175/52, 20-29=-175/45, 23-30=-193/99, 25-31=-125/146	, 23-24=-9 20-22=-98 18-19=-98 5-16=0/129 9-32=-115 18-33=-38 , 24-30=-1 -28=-100/5 , 3-27=-19 34-35=-14 6-28=-177 8-29=-177 5-30=-193 4-31=-84/9	8/192, (192, 17-18= , 14-15=0/12 (46, 0/306, 0/306, 12/53, 12, 3-31=-34 1/198, 3/90, (62, (57, (87, 19,	29	de 6) Th lo ov 7) Al 8) Tr br 9) G 10) Th ch 11) * - or 3- ch	esign. his truss h ad of 12.0 verhangs i Il plates al russ to be raced aga able studs his truss h nord live k This truss of the botto 06-00 tall nord and a	as bee) psf or non-co re 2x4 fully si inst lat s space bad noi has be bad noi has be bad noi has be bad noi bas be bad noi has bad has	en designed for gr 1.00 times flat ro ncurrent with othe MT20 unless othe heathed from one eral movement (i. ed at 2-0-0 oc. en designed for a nconcurrent with a een designed for a ro in all areas wh 10-00 wide will fit h	erwise indicated. face or securely e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom b BCDL = 10.0psf.
FORCES TOP CHORD	$\begin{array}{rl} 17=17-5-0, \ 18=17-5-0, \ 19=17-5-1, \ 20=17-5-0, \ 22=17-5-0, \ 23=17-5-1, \ 24=17-5-0, \ 25=17-5-0, \ 26=0-3-8, \ 27=0-3-0\\ \mbox{Max Horiz} \ 27=-242 \ (LC \ 12)\\ \mbox{Max Uplift} \ 14=-99 \ (LC \ 15), \ 17=-81 \ (LC \ 1), \ 18=-157 \ (LC \ 15), \ 19=-86 \ (LC \ 15), \ 20=-17 \ (LC \ 15), \ 19=-86 \ (LC \ 15), \ 20=-24 \ (LC \ 14), \ 22=-24 \ (LC \ 14), \ 22=-24 \ (LC \ 14), \ 22=-24 \ (LC \ 15), \ 12=-25 \ (LC \ 21), \ 14=-356 \ (LC \ 25), \ 15=91 \ (LC \ 7), \ 16=85 \ (LC \ 27), \ 17=151 \ (LC \ 15), \ 18=-356 \ (LC \ 25), \ 18=-222 \ (LC \ 24), \ 25=-76 \ (LC \ 14), \ 26=-359 \ (LC \ 24), \ 25=-76 \ (LC \ 14), \ 26=-359 \ (LC \ 24), \ 25=-76 \ (LC \ 14), \ 26=-359 \ (LC \ 24), \ 25=-76 \ (LC \ 14), \ 26=-359 \ (LC \ 24), \ 27=-365 \ (LC \ 21) \ 20=-241 \ (LC \ 24), \ 27=-365 \ (LC \ 21) \ 20=-241 \ (LC \ 24), \ 25=-76 \ (LC \ 25), \ 25=-76 \ (LC \ 25), \ 25=-76 \ (LC \ 25), $			19-32=-193/103 19-32=-193/103 17-33=-130/145 ad roof live loads h DE 7-16; Vult=130 mph; TCDL=6.0ps p B; Enclosed; MV C-C Exterior(2E) - 3-8, Exterior(2E) - 3-8, Exterior(2E) - 20-10-0, Exterior(2 left and right expo sed;C-C for memb ns shown; Lumber igned for wind loa studs exposed to v ard Industry Gable qualified building CE 7-16; Pr=20.0 [=1.15]; Pf=20.0 p); Is=1.0; Rough C Cl=1.10	, 10-33=-8 , 16-34=-2 mph (3-sec sf; BCDL=6 VFRS (env 0-10-8 to 2 8-3-8 to 14 2::) 20-10-(used ; end v ers and fo r DOL=1.6(ds in the p wind (norm ≥ End Deta designer a: psf (roof LL sf (Lum DC	5/99, 3/11, 15-35= considered f ond gust) .0psf; h=25f elope) exteri -1-8, Interior *8-0, Interior to 23-10-0 vertical left a cces & MWF 0 plate grip lane of the tr al to the fac ils as applica s per ANSI/T s. Lum DOL= JL=1.15 Plat	t; or (1) (1) zone; nd RS uss e), ;PI 1. :PI 1. e	re Ul 17 cc 13) Tł In	COMMENC PLIFT at j 7. This cou onsider lat his truss is ternationa	ded to o t(s) 18 nnectic eral fo s desig al Resid and ref	connect truss to b , 24, 27, 14, 22, 2 on is for uplift only ress. ned in accordanc dential Code sect erenced standard	earing walls due to 0, 23, 25, 19, and and does not e with the 2018 ions R502.11.1 and ANSI/TPI 1.

June 29,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	B1SE	Common Structural Gable	1	1	Job Reference (optional)	159229476
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.63 S Apr 6 20	023 Print: 8.6	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jun 28 09:35:11	Page: 2

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:11 ID:oS1UdvQqwgjBqerIEXzXI2zBIaL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	C1	Monopitch	4	1	Job Reference (optional)	159229477

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:11 ID:Qb5IZxzyP1s84s5fJHsVqazRR57-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

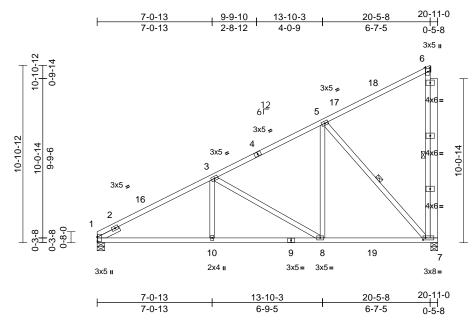
Scale = 1:71.1 Plate Offsets (X, Y	(): [2:0-3-1,0-0-1]	, [9:0-1-12,0-1-8]	7-0-13	6-9-5		6-7-5	0	-5-8	
Loading	(nsf)	Spacing	2-0-0	CSI	DEEL	in	(loc)	l/defl	h/ ا	G

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.76 0.61	DEFL Vert(LL) Vert(CT)	in -0.07 -0.13	(loc) 9-10 9-10	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES	3/TPI2014	WB Matrix-MSH	0.70	Horz(CT)	0.03	9	n/a	n/a		
BCDL	10.0	Code	IRC201	5/1912014	Matrix-MSH							Weight: 148 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 2x6 SP No.2 Left 2x4 SP No.3 1		2) 3) 4)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	snow loads have s been designed	(Lum DC tt B; Fully been cor for greate	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the Per of min root	9; his f live					
TOP CHORD	Structural wood she	0 7 11	d or		osf or 1.00 times on-concurrent wit			st on					
BOT CHORD WEBS REACTIONS	(size) 2=0-5-8, 9	applied or 9-1-10 oc 7-9, 6-9 9=0-5-0	; 5) 6) 7)	All plates are This truss ha chord live loa * This truss h	3x5 MT20 unles s been designed ad nonconcurrent has been designe n chord in all area	s otherwi for a 10.0 with any d for a liv	se indicated.) psf bottom other live loa e load of 20.						
	Max Horiz 2=398 (LC Max Uplift 2=-95 (LC Max Grav 2=946 (LC	, 9=-184 (LC 16) 8)	chord and ar	y 2-00-00 wide w y other members Simpson Strong-T	s, with BC	DL = 10.0ps						
FORCES	(lb) - Maximum Com Tension	pression/Maximum			ed to connect trus s) 9 and 2. This c								
TOP CHORD	1-2=0/23, 2-4=-1358 6-7=-223/168, 7-8=-3	, ,	9)	and does not	consider lateral designed in acco	forces.		Offiy					
BOT CHORD	2-12=-489/1160, 10- 9-10=-242/654		0)	International	Residential Code	e sections	R502.11.1 a	and				TH CA	Ullin,
WEBS	4-12=0/267, 4-10=-6 6-9=-941/222	600/180, 6-10=-4/587	' , 10) Hanger(s) or	other connection	device(s) shall be	The			AN	ATH CA	ROUT
Vasd=103	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(p B; Enclosed; MWFR;	CDL=6.0psf; h=25ft;		design/selec responsibility OAD CASE(S)	tion of such conn of others.	ection de	vice(s) is the			4	<i>i</i>	2 SEA	

zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-6-0, Exterior(2E) 17-6-0 to 20-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-7=-60, 7-8=-60, 9-14=-20


818 Soundside Road Edenton, NC 27932

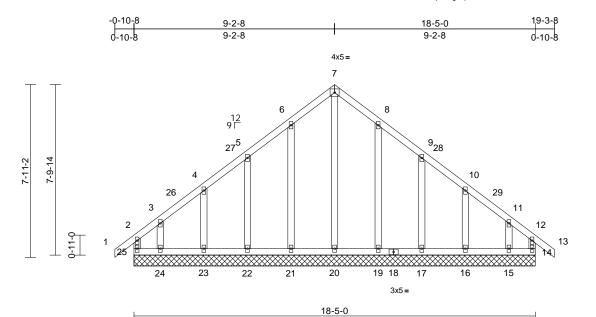
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	C2	Monopitch	1	1	Job Reference (optional)	59229478

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:12 ID:IE6FRV_evE0OIUkDZDHacuzRR_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.8 Plate Offsets (X, Y): [1:0-3-1,0-0-5], [7:0-1-12,0-1-8]

Flate Offsets ((A, T). [1.0-3-1,0-0-5],	[7.0-1-12,0-1-6]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.61 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 20%
Vasd=103 Cat. II; Ex zone and 3-0-0 to 1 cantilever right expos	2x4 SP No.2 2x4 SP No.3 *Excep 2x6 SP No.2 Left 2x4 SP No.3 1 Structural wood sheat 4-9-0 oc purlins, exit Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-5-8, 7 Max Horiz 1=389 (LC Max Uplift 1=-79 (LC Max Uplift 1=-79 (LC Max Grav 1=901 (LC (Ib) - Maximum Com Tension 1-3=-1360/193, 3-5= 6-7=-262/81 1-10=-306/1164, 8-1 7-8=-111/654 3-10=0/268, 3-8=-60 5-7=-946/226 CE 7-16; Vult=130mph Bript, TCDL=6.0psf; BG p B; Enclosed; MWFR C-C Exterior(2E) 0-0-0 7-3-12, Exterior(2E) 17 left and right exposed sed;C-C for members a ins shown; Lumber DO	1-6-0 athing directly applie cept end verticals. applied or 10-0-0 oc 6-7, 5-7 7=0-5-0 C 13) 141, 7=-179 (LC 14) C 5), 7=1022 (LC 5) pression/Maximum e-826/176, 5-6=-221/- 0=-215/1164, 03/180, 5-8=-4/588, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-0, Interior (1) -3-12 to 20-3-12 zon; end vertical left and and forces & MWFRS	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. All plates are This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommended UPLIFT at jt(and does no This truss is International R802.10.2 ai Hanger(s) or provided suff design/selec responsibility DAD CASE(S) Dead + Sno Increase=1 Uniform Loa	snow loads have b s 3x5 MT20 unless is been designed f ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wi by other members, Simpson Strong-Tie do connect truss s) 7 and 1. This co t consider lateral for designed in accoro Residential Code in referenced stam other connection of icient to support co tion of such conner of others. Standard by (balanced): Lun 15	Lum DC B; Fully been con- otherwi or a 10. with any for a liv s where Il fit bett with BC e conne to bear onnectio orces. dance w sections. dance (s oncentra ction de	DL=1.15 Plate Exp.; Ce=0. hsidered for t se indicated. D psf bottom other live load e load of 20. a rectangle ween the bott DL = 10.0ps ctors ing walls due n is for uplift ith the 2018 \$ R502.11.1 a JSI/TPI 1. .) shall be ated load(s) . vice(s) is the	e 9; this ads. .0psf tom sf. e to only and . The				SEA 0363	• —


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

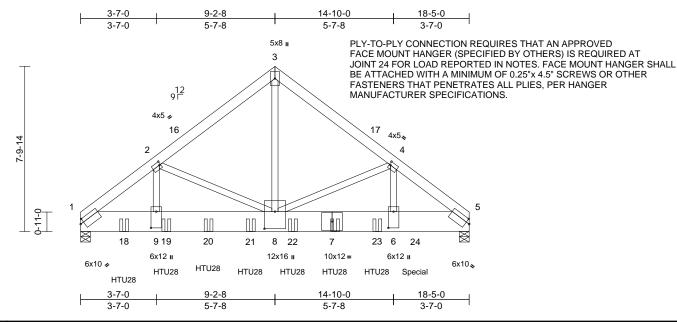
G minim June 29,2023

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	D1GE	Common Supported Gable	1	1	Job Reference (optional)	159229479

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:12 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.07 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 P FT = 20%
WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-5-1 21=18-5-1 24=18-5-1 Max Horiz 25=202 (1 Max Uplift 14=-73 (L 16=-60 (L 22=-71 (L 24=-136 (1 16=174 (1 19=267 (1 21=267 (1	applied or 6-0-0 oc 0, 15=18-5-0, 16=18-5- 0, 19=18-5-0, 20=18-5- 0, 22=18-5-0, 23=18-5- 0, 22=18-5-0 LC 13) C 11), 15=-125 (LC 15), C 15), 17=-71 (LC 15), C 15), 21=-64 (LC 14), C 14), 23=-59 (LC 14), (LC 14), 25=-113 (LC 14), (LC 14), 25=-113 (LC 14), (LC 14), 25=-113 (LC 25), IC 24), 15=163 (LC 25), C 22), 20=204 (LC 27), LC 24), 22=214 (LC 24), 22=214 (LC 24), 24=181 (LC 24), C 24), C 24), 24=181 (LC 24), C 24),	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103my Cat. II; Exp E 0, zone and C-1 0, 2-1-8 to 6-2- 0, 2-1-8 to 6-2- 12-2-8 to 16- cantilever lef right exposer for reactions DOL=1.60 3) Truss design only. For stu 0, see Standard 0, ro consult qu 1, DOL=1.15); 0, Cs=1.00; Ct=	7-16; Vult=130m oh; TCDL=6.0psf 3; Enclosed; MW C Corner(3E) -0- 8, Corner(3E) -0- 8, Corner(3E) 6- 3-8, Corner(3E) 4; C-C for membe shown; Lumber l ned for wind load dds exposed to w d Industry Gable talified building d 5; 7-16; Pr=20.0 psi (s=1.0; Rough Ca	-24=-119 17=-174/1 11-15=-1 we been ; BCDL=6 FRS (env 10-8 to 2- 2-8 to 12- 16-3-8 to ed ; end v rs and fo DOL=1.6(s in the p ind (norm End Deta esigner a: s f (roof LL s (tun DC at B; Fully	 /112, 06, 10/109 considered for considered for cond gust) copst; h=25ft; elope) exterior 1-8, Exterior(2 2-8, Exterior(2 2-8, Exterior(2 19-3-8 zone; vertical left anc; or cress & MWFRS c) plate grip lane of the trust al to the face), ils as applicab s per ANSI/TP L: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9; 	N) N) I S S I I 1. 15	on 1 3-00 cho 13) Pro bea 25, upli join lb u 14) This Inte	the botto 6-00 tall rd and a vide me rring pla 73 lb up ft at join t 24, 63 plift at jo s truss is rnationa 02.10.2 s	om cho by 2-0 any oth chanic te capa blift at j t 22, 5 lb upli bint 16 s desig al Resi and re	ord in all areas w 20-00 wide will fi her members. cal connection (b able of withstance oint 14, 64 lb up 9 lb uplift at joint ft at joint 19, 71 and 125 lb uplif ned in accordar dential Code see ferenced standa	nce with the 2018 ctions R502.11.1 and
	(lb) - Maximum Com Tension 2-25=-149/86, 1-2=(3-4=-105/105, 4-5=- 6-7=-118/259, 7-8=-	npression/Maximum 0/37, 2-3=-153/141, 89/112, 5-6=-81/188, 118/259, 8-9=-81/188, 118/259, 8-9=-81/188, 12-72/76, 11-12=-117/9 -124/56 24=-91/133, 22=-91/133, 17=-91/133,	 load of 12.0 overhangs n 7) All plates are 8) Gable requir 9) Truss to be f braced agair 10) Gable studs 11) This truss ha 		flat roof le th other li so otherwi ttom chor m one fac ent (i.e. c cc. for a 10.	bad of 20.0 psi ve loads. se indicated. d bearing. te or securely liagonal web). D psf bottom	fon			2 All Andrews and	SEA 0363	S22

June 29,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	D1GR	Common Girder	1	3	Job Reference (optional)	159229480

Scale = 1:54.6

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:13 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-2-0,0-2-4], [2:0-0-12,0-2-0], [4:0-0-12,0-2-0], [5:0-2-0,0-2-4], [6:0-9-4,0-3-0], [8:0-9-12,0-6-0], [9:0-9-4,0-3-0]

			,			1/1								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.09	6-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.16	6-8	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.94	Horz(CT)	0.03	5	n/a	n/a	-		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 530 lb	FT = 20%	
LUMBER			5)		7-16; Vult=130r							(B), 18=-1916 (B		
TOP CHORD					ph; TCDL=6.0ps							21=-1916 (B), 22	2=-1916 (B),	
BOT CHORD					B; Enclosed; MW					23=-19	16 (B),	24=-5454 (B)		
WEBS	2x4 SP No.3 *Excep	ot* 8-3:2x4 SP No.1			ever left and right			left						
BRACING				DOL=1.60	posed; Lumber D	OOL=1.60	plate grip							
TOP CHORD		athing directly applie	ed or		7 16. Dr-20.0 r			1 15						
	6-0-0 oc purlins.		6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15): Pf=20.0 psf (lum DOL=1.15 Plate											
BOT CHORD	0 0 7	applied or 10-0-0 o	С	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate										
	bracing.			DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10										
REACTIONS	()	5=0-5-8 7) Unbalanced snow loads have been considered for this												
	Max Horiz 1=-162 (L	,	,	design.										
	Max Grav 1=10796	(LC 5), 5=14492 (LC	C 22) 8)		as been designed	d for a 10.	0 psf bottom							
FORCES	(lb) - Maximum Corr	pression/Maximum	,		ad nonconcurrer			ads.						
	Tension		9)	 * This truss has been designed for a live load of 20.0psf 										
TOP CHORD	,	11145/0, 3-4=-1114	1/0,	on the bottom chord in all areas where a rectangle										
	4-5=-17424/0				by 2-00-00 wide		veen the bott	om						
BOT CHORD		/11292, 6-8=0/1388			ny other member									
	5-6=0/13888				designed in acc									
WEBS	3-8=0/12819, 4-8=-5 2-8=-2706/0, 2-9=0/		5,		Residential Coc			and						
	2-0=-2700/0, 2-9=0/	3012			nd referenced st									
NOTES			1.		n Strong-Tie HT							minin	1111	
1) N/A					2 Truss, Single F ·0-0 oc max. star						1	WAH CA	Rolly	
 2 mb (true) 		the arrivith 10 d			12 to connect tru			ieit				R		
	s to be connected toge 3") nails as follows:	ther with TOO		bottom chor		133(63) 10	Jack lace of			/	N.	O' FESS	127. 11/1	
	ds connected as follows.	2 2 x 6 - 2 rows	1:		oles where hang	er is in cor	ntact with lum	nber		4	50	NOV 1		
	d at 0-9-0 oc.	5. 280 - 21005			r other connectio					-	5	:0	4	
	hords connected as foll	ows: 2x12 - 4 rows		, , ,	ficient to support	```	,	3435				ОГА	1 3	
	d at 0-4-0 oc.	011012/12 110110		Ib down and 598 lb up at 15-10-8 on bottom chord. The										
	nected as follows: 2x4 -	- 1 row at 0-9-0 oc.			tion of such con					1		0363	22 : =	
	are considered equally			responsibilit			.,			-			- : :	
	noted as front (F) or ba		DAD LO	DAD CASE(S)	Standard						-	N	1. 1. 2	
	section. Ply to ply conr		1)		ow (balanced): L	umber Inc	rease=1.15.	Plate			-	A. En	Riks	
provided	to distribute only loads	noted as (F) or (B),	,	Increase=1	. ,		-,				21	S. GIN	EFRAN	
unless oth	herwise indicated.			Uniform Lo							11	10	BEIN	
4) Unholono	ad reaf live leads have	been considered fo	r	Martin A. C		~ ~ ~						A C		

Vert: 1-3=-60, 3-5=-60, 10-13=-20

- 3) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 4) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Concentrated Loads (lb)

G mmm

June 29,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	F1	Common	5	1	Job Reference (optional)	159229481

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

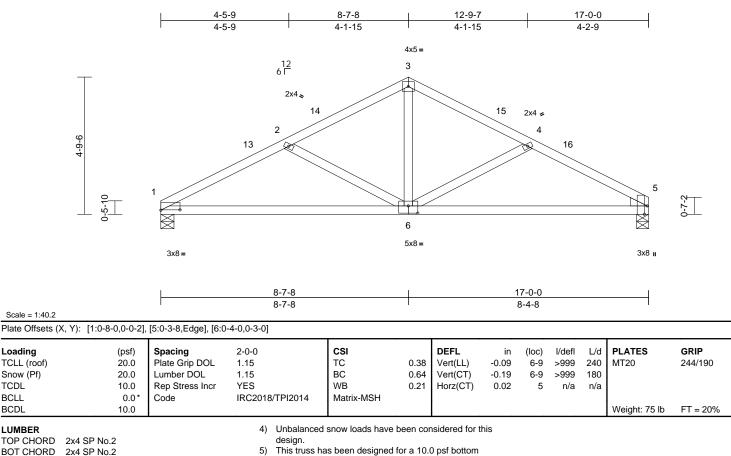
LUMBER

WEBS

NOTES

this design.

DOL=1.60


Cs=1.00; Ct=1.10

1)

2)

3)

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:13 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TOP CHORD	2x4 SP No	5.2		a
BOT CHORD	2x4 SP No	o.2	5)	TI
WEBS	2x4 SP No	o.3		cł
WEDGE	Right: 2x4	SP No.3	6)	* •
BRACING	Ū			or
TOP CHORD	Structural 5-1-8 oc p	wood sheathing directly applied or ourlins.		3- cł
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc	7)	O re U
REACTIONS	(size)	1=0-5-8, 5=0-5-0		-
	Max Horiz	1=71 (LC 14)	8)	ar Ti
	Max Uplift	1=-66 (LC 14), 5=-64 (LC 15)	0)	In
	Max Grav	1=745 (LC 20), 5=745 (LC 21)		R
FORCES	(lb) - Maxi	imum Compression/Maximum	LO	
	Tension		20	
TOP CHORD	1-2=-1260)/310, 2-3=-879/232, 3-4=-871/231,		
	4-5=-1209	9/300		
BOT CHORD	1-5=-223/			

3-6=-52/475, 4-6=-399/159, 2-6=-445/175

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1)

11-7-8 to 14-0-0, Exterior(2E) 14-0-0 to 17-0-0 zone;

cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

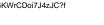
3-0-0 to 5-7-8, Exterior(2R) 5-7-8 to 11-7-8, Interior (1)

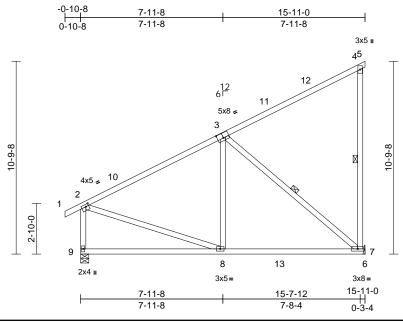
Wind: ASCE 7-16; Vult=130mph (3-second gust)

- hord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle -06-00 tall by 2-00-00 wide will fit between the bottom
- hord and any other members. One H2.5A Simpson Strong-Tie connectors ecommended to connect truss to bearing walls due to JPLIFT at jt(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.
- his truss is designed in accordance with the 2018 nternational Residential Code sections R502.11.1 and 802.10.2 and referenced standard ANSI/TPI 1. D CASE(S) Standard

0 1111111111 SEAL 036322 G

mm June 29,2023




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	G1	Monopitch	5	1	Job Reference (optional)	159229482

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:13 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.64.5	Scale	= 1:64.5	
----------------	-------	----------	--

Plate Offsets (X, Y):	[2:0-2-0,0-1-8], [3:0-4-0,0-3-4]

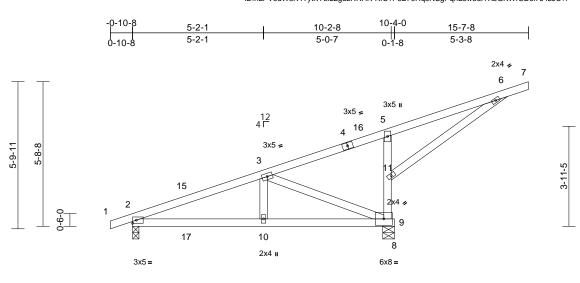

	(X, T). [2.0-2-0,0-1-0],	, [3.0-4-0,0-3-4]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.67 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >921 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and 2-1-8 to 1 cantilever exposed; reactions DOL=1.6 (2) TCLL: AS Plate DOI DOL=1.15	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 9=272 (L0 Max Uplift 7=-221 (L Max Grav 7=829 (L0 (lb) - Maximum Com Tension 1-2=0/27, 2-4=-672/ 4-7=-327/122, 2-9=- 8-9=-333/217, 7-8=- 3-8=0/313, 3-7=-677 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B qp B; Enclosed; MWFR C-C Exterior(2E) -0-10 2-11-0, Exterior(2E) -0-10 5); Is=1.0; Rough Cat E	athing directly applie cept end verticals. applied or 10-0-0 or 4-7, 3-7 anical, 9=0-5-8 C 14) C 5), 9=752 (LC 5) pression/Maximum 119, 4-5=-12/0, 643/84 196/536, 6-7=0/0 7/250, 2-8=0/487 I (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior I-8 to 2-1-8, Interior CDL=6.0psf; h=25ft; S (envelope) exterior I-10 to 15-11-0 zor ; end vertical left orces & MWFRS for 1.60 plate grip	5) ed or 6) c 7) 8) 9) LO (1) ne;	load of 12.0 j overhangs ni This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate joint 7. This truss is International	Is been designed for performance of the second second second performance of the second second second second second second second as been designed for a do nonconcurrent with second sec	at roof k other lin or a 10.0 vith any for a liv s where Il fit betw with BC uss conr I (by oth anding 2 dance w sections	bad of 20.0 ps re loads. 0 psf bottom other live loa e load of 20.0 a rectangle rectangle rections. ers) of truss t rections. ers) of truss t rections. recti	ds. Dpsf om				SEA 0363	
Cs=1.00; 3) Unbalanc	Ct=1.10 ed snow loads have be	een considered for th	is								14	S GIN	BELIN

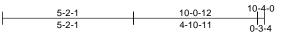
3) Unbalanced snow loads have been considered for this design.

100000 June 29,2023

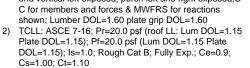
G١

818 Soundside Road Edenton, NC 27932




Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	H1	Monopitch	6	1	Job Reference (optional)	159229483

Scale = 1:45.5

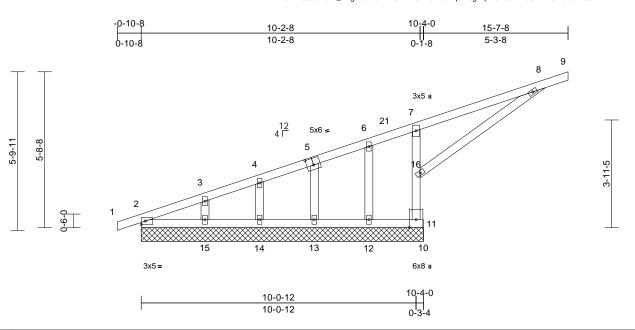

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:14 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.45.5													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.85 0.38 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.05 -0.01	(loc) 10-14 9-10 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Except: 4-10-0 oc bracing: 9 Rigid ceiling directly bracing.	athing directly applie cept end verticals. -11 · applied or 7-4-7 oc 9=0-5-8 C 10) C 10), 9=-368 (LC 10)	d or d or o or httruss i International d or o or httruss i or o or httruss i or o or o o or o or o or o o or o or o or o or o or o	as been designed psf or 1.00 times f non-concurrent with as been designed bad nonconcurrent has been designed by 2-00-00 wide w ny other members Simpson Strong-T led to connect trus: t(s) 2 and 9. This c ot consider lateral f s designed in accor al Residential Code	ilat roof k n other lin for a 10. with any d for a liv is where ill fit betv ie conne s to bear onnectio orces. dance w sections	bad of 20.0 ps ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift of ith the 2018 s R502.11.1 a	sf on ds. Dpsf om to only						
FORCES	(lb) - Maximum Com	,. , ,	R802.10.2 LOAD CASE(S	and referenced star) Standard	ndard AN	ISI/TPI 1.							
TOP CHORD	5-6=-433/729, 6-7=- 5-11=-362/183 2-10=-586/377, 9-10	25/0, 9-11=-824/435,)=-586/377, 8-9=0/0											
WEBS	3-10=-334/227, 3-9=	=-632/809, 6-11=-790	/431									un.	
Vasd=103 Cat. II; Ex zone and 2-1-8 to 1 end vertic C for mer shown; Lt 2) TCLL: AS Plate DO DOL=1.19 Cs=1.00;	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi qp B; Enclosed; MWFR C-C Exterior(2E) -0-10 5-7-8 zone; cantilever l al left exposed; porch l nbers and forces & MW umber DOL=1.60 plate CE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterior 0-8 to 2-1-8, Interior (* left and right exposed left and right exposed VFRS for reactions grip DOL=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	1) 1; ;;C- .15						9	E	OR TH CA	AL	

mmm June 29,2023

G



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	H1GE	Monopitch Supported Gable	2	1	Job Reference (optional)	159229484

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:14 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.2

Plate Offsets (X, Y): [5:0-3-0,0-3-0]

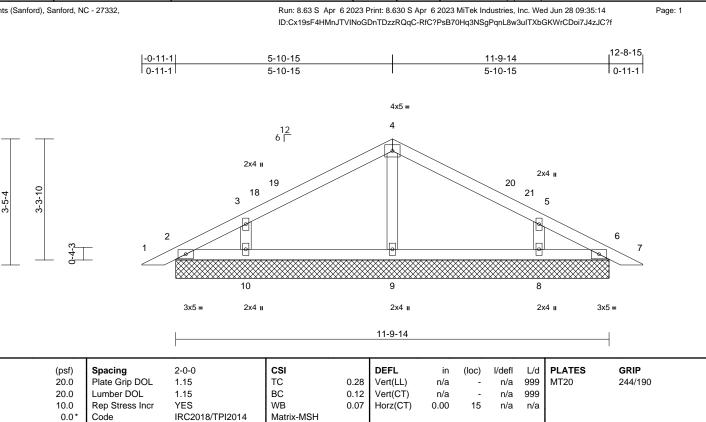
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.99	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	n/a	-	n/a	999		
CDL	10.0	Rep Stress Incr	YES		WB	0.44	Horz(CT)	-0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 65 lb	FT = 20%
UMBER			1)	Wind: ASCE	7-16; Vult=130m	ph (3-seo	ond gust)		LOAD	CASE(S)	Sta	ndard	
OP CHORD	2x4 SP No.2				oh; TCDL=6.0psf;								
OT CHORD	2x4 SP No.2				3; Enclosed; MWF								
VEBS	2x4 SP No.2 *Excep	t* 16-8:2x4 SP No.3			C Corner(3E) -0-1								
THERS	2x4 SP No.3				'-8 zone; cantileve eft exposed;C-C f								
RACING					reactions shown;								
OP CHORD		athing directly applied	lor	grip DOL=1.									
	6-0-0 oc purlins, ex	cept end verticals.	2)		ned for wind loads	s in the p	ane of the tru	ISS					
	Except: 2-2-0 oc bracing: 11	16	_/		ids exposed to wi								
BOT CHORD	Rigid ceiling directly			see Standar	d Industry Gable I	End Deta	ils as applica	ble,					
	bracing, Except:	applied of 0-0-0 oc			alified building de								
	10-0-0 oc bracing: 1	0-11.	3)		7-16; Pr=20.0 ps								
REACTIONS	•	11=10-4-0, 12=10-4-	0.		.15); Pf=20.0 psf								
	()), 14=10-4-0, 15=10-4			ls=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9);					
	17=10-4-0) í	. 4)	Cs=1.00; Ct=	snow loads have	hoon co	sidered for th	nie					
	Max Horiz 2=204 (LC) '	design.	Show loads have	Deen coi		115					
	Max Uplift 2=-7 (LC 2				is been designed	for great	er of min roof	live					
		C 14), 14=-18 (LC 10			psf or 1.00 times								
		C 14), 17=-7 (LC 21)		overhangs n	on-concurrent wit	h other li	/e loads.						
	Max Grav 2=91 (LC	14), 11=803 (LC 21), C 7), 13=181 (LC 21),		6) All plates are 2x4 MT20 unless otherwise indicated.									1111
		_C 1), 15=234 (LC 21),	\ <i>(</i>)		es continuous bot		d bearing.					WHILL CA	Dall
	17=91 (LC		··· 0)		spaced at 2-0-0 c							aTHO	
ORCES	(lb) - Maximum Com	,	9)		is been designed					/	SI	ESS	Idi? Nor
011020	Tension	procolori/maximam	10		ad nonconcurrent has been designe					4	X		
TOP CHORD	1-2=0/17, 2-3=-651/3	378, 3-4=-585/366,	IC IC		n chord in all area			psi				:0	R:/-
	4-6=-546/374, 6-7=-	511/456, 7-8=-614/71	0,		oy 2-00-00 wide w			m		-		054	1 1 3
		22/718, 7-16=-472/35	6		y other members					=		SEA	• -
BOT CHORD	2-15=-333/264, 14-1		11		hanical connectio		ers) of truss t	0		Contraction (1997)		0363	22 : =
	13-14=-333/264, 12-				capable of withs					-			- ; :
	11-12=-338/270, 10-				ift at joint 11, 44 lt							1. July 1. Jul	1 3
NEBS	6-12=-101/164, 5-13	,	601		14, 79 lb uplift at	joint 15 a	nd 7 lb uplift	at			- 1	N. ENG	-ERIX S
	4-14=-98/101, 3-15=	-159/184, 8-16=-770		joint 2.							1	A GIN	EF. AN
NOTES			12		designed in accor			ام ما			1	CA C	BEIN
					Residential Code			nđ				11, 4. 0	
				rðuz. 10.2 a	nd referenced sta	nuaru Ar	ISI/TPLT.					minin	TITE .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 29,2023

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	PB1	Piggyback	18	1	Job Reference (optional)	159229485

Scale = 1:31.4 Loading


TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural	0.2	2)	Wind: A Vasd=1 Cat. II; E zone an 3-4-3 to (1) 9-10
BOT CHORD	6-0-0 oc p	3 3 11		zone; ca and righ
Bor onone	bracing.			MWFRS
REACTIONS	(size)	2=11-9-14, 6=11-9-14, 8=11-9-14, 9=11-9-14, 10=11-9-14, 11=11-9-14, 15=11-9-14	3)	grip DO Truss d only. Fo
	Max Horiz Max Uplift	2=52 (LC 18), 11=52 (LC 18) 2=-11 (LC 15), 6=-4 (LC 11), 8=-87 (LC 15), 10=-87 (LC 14), 11=-11	4)	see Sta or consi TCLL: A Plate D0
	Max Grav	(LC 15), 15=-4 (LC 11) 2=84 (LC 1), 6=84 (LC 1), 8=422 (LC 22), 9=301 (LC 21), 10=422 (LC 21), 11=84 (LC 1), 15=84 (LC 1)	5) 6)	DOL=1. Cs=1.00 Unbalar design. This true
FORCES	(lb) - Max Tension	imum Compression/Maximum	0)	load of overhan
TOP CHORD	,	2-3=-54/45, 3-4=-124/95, 95, 5-6=-33/45, 6-7=0/17	7) 8)	Gable re Gable s
BOT CHORD WEBS		6, 9-10=-2/46, 8-9=-2/46, 6-8=-7/46 92, 3-10=-378/201, 5-8=-378/201	9)	This true
NOTES			10)	* This tr
1) Unbalance this design		oads have been considered for	,	on the b 3-06-00

10.0

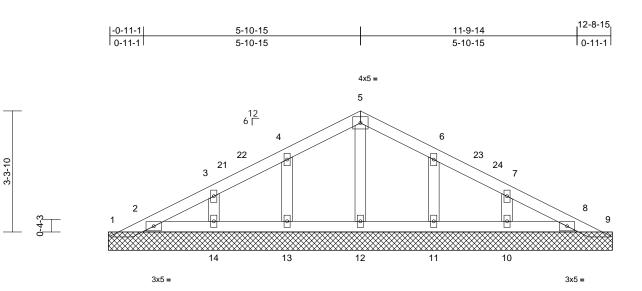
- ASCE 7-16; Vult=130mph (3-second gust) 03mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Exp B; Enclosed; MWFRS (envelope) exterior nd C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) o 3-10-8, Exterior(2R) 3-10-8 to 9-10-8, Interior 0-8 to 10-4-13, Exterior(2E) 10-4-13 to 13-4-13 antilever left and right exposed ; end vertical left ht exposed;C-C for members and forces & S for reactions shown; Lumber DOL=1.60 plate DL=1.60
- designed for wind loads in the plane of the truss for studs exposed to wind (normal to the face), andard Industry Gable End Details as applicable, ult qualified building designer as per ANSI/TPI 1. ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 OL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate .15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
- 0; Ct=1.10 inced snow loads have been considered for this
- iss has been designed for greater of min roof live
- 12.0 psf or 1.00 times flat roof load of 20.0 psf on ngs non-concurrent with other live loads.
- requires continuous bottom chord bearing.
- studs spaced at 4-0-0 oc.
- uss has been designed for a 10.0 psf bottom ve load nonconcurrent with any other live loads.
- russ has been designed for a live load of 20.0psf bottom chord in all areas where a rectangle 0 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One MECHANICAL connector (BY OTHERS) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 10, and 8. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard

Weight: 47 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	PB1GE	Piggyback	2	1	Job Reference (optional)	

3-5-4

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:15 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

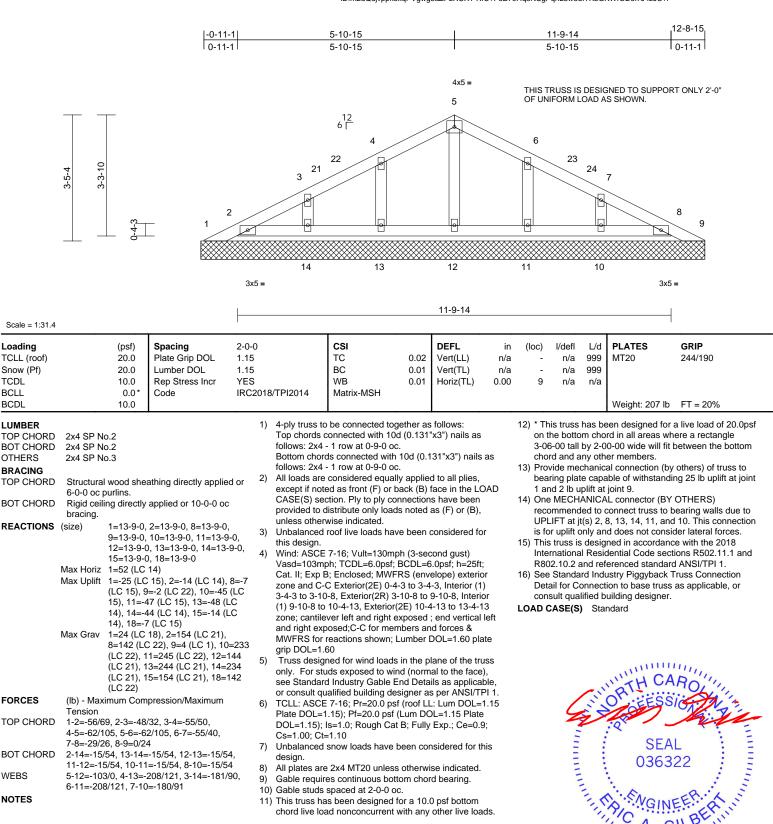
Page: 1

11-9-14

Scale =	1:31.4
---------	--------

Scale = 1:31.4														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2		CSI TC BC WB Matrix-MSH	0.08 0.03 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
	2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	lo.2 lo.3 l wood she purlins. ing directly 1=13-9-0, 9=13-9-0, 12=13-9-0 15=13-9-0 1=52 (LC 1=-25 (LC (LC 15), 9 15), 11=-4 (LC 15), 11=-4 14), 18=-7 1=24 (LC 8=147 (LC (LC 22), 1 (LC 22), 1 (LC 22)	(2 + 3), 2=-14 (LC + 14), 3=-5 (LC + 22), 10=-45 (LC + 22), 10=-48 (LC + 14), 15=-14 (L7 + 14), 15=-14 (L7 + 15) (LC + 15) (, -9-0, -9-0, (LC LC LC LC)=231 142 233	 Cat. II; Exp B zone and C- 3-4-3 to 3-10 (1) 9-10-8 to zone; cantile and right exp MWFRS for grip DOL=1. 3) Truss design only. For stu see Standar or consult qu 4) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct: 5) Unbalanced design. 6) All plates are 7) Gable requir 8) Gable studs 9) This truss has 	bh; TCDL=6.0psf 3; Enclosed; MW C Exterior(2E) 0- -8, Exterior(2R) 10-4-13, Exterior ver left and right posed;C-C for me reactions shown; 60 ned for wind load dis exposed to w d Industry Gable alified building d 7-16; Pr=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have a 2x4 MT20 unlest es continuous bo spaced at 2-0-0 is been designed ad nonconcurren	FBCDL=€ FRS (env 4-3 to 3-4 3-10-8 to 3-4 as-10-8 to r (2E) 10-4 exposed mbers ar ; Lumber I ds in the p mind (norm End Deta esigner a: sf (roof LL f (Lum DC at B; Fully been cor ss otherwittom chor oc. f for a 10. t with any	6.0psf, h=25ft; elope) exterior -3, Interior (1) 9-10-8, Interior 4-13 to 13-4-1; ; end vertical I d forces & DOL=1.60 plat lane of the tru: al to the face) ills as applicab s per ANSI/TP :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th se indicated. d bearing. 0 psf bottom other live load	r 3 eeft ee ss le, le, l 1. .15 is	Det	ail for C sult qua CASE(S	onnect lified b) Sta	tion to base true ouilding designe	k Truss Connection ss as applicable, or r.
FORCES	Tension 1-2=-56/6 4-5=-64/1	69, 2-3=-46	npression/Maximum /32, 3-4=-56/49, /4/104, 6-7=-56/39, 5		3-06-00 tall I chord and ar 11) Provide med		will fit betv s. on (by oth	veen the botto ers) of truss to)			2	Contraction of the second seco	AI
BOT CHORD WEBS NOTES 1) Unbalance this design	2-14=-15 11-12=-1 5-12=-10 6-11=-20 ed roof live	/55, 13-14= 5/55, 10-11 1/0, 4-13=- 8/121, 7-10	=-15/55, 12-13=-15/5 I=-15/55, 8-10=-15/5 208/122, 3-14=-179/	5 89,	1 and 5 lb up 12) One MECHA recommende UPLIFT at jti is for uplift o 13) This truss is International	NICAL connectored to connect trus (s) 2, 8, 13, 14, 1 nly and does not	or (BY OT ss to bear 1, and 10 consider ordance w e sections	HERS) ing walls due t . This connect lateral forces. ith the 2018 \$ R502.11.1 ar	o ion		1111AA	A A A A A A A A A A A A A A A A A A A	SE 036 NGII	VEER. AL

- this design.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


June 29,2023

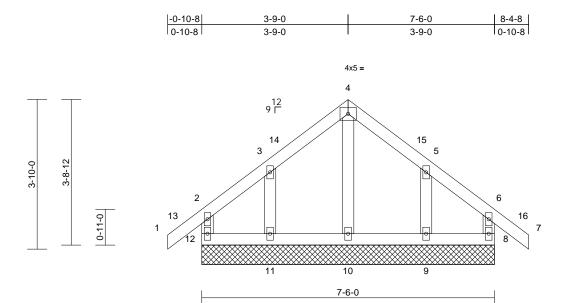
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	PB1GR	Piggyback	2	4	Job Reference (optional)	159229487

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:15 ID:m2dQdjvppkexqPVgwq5a2PzRCX1-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 29,2023

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	R1001	Common	1	1	Job Reference (optional)	159229488

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:15 ID:_dEwXjFMRmDku9ucqLNmaCzBImB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1	:29.5
-----------	-------

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.15	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	8	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI20	014 Matrix-MR									
BCDL	10.0										Weight: 40 lb	FT = 20%	
LUMBER			3) Trus	s designed for wind loa	ds in the p	lane of the tr	uss						
TOP CHORD	2x4 SP No.2		only.	For studs exposed to v	vind (norm	al to the face	e),						
BOT CHORD	2x4 SP No.2			Standard Industry Gable									
WEBS	2x4 SP No.3			nsult qualified building of									
OTHERS	2x4 SP No.3			.: ASCE 7-16; Pr=20.0 p									
BRACING				DOL=1.15); Pf=20.0 ps									
TOP CHORD	Structural wood she	athing directly applie		=1.15); Is=1.0; Rough C	at B; Fully	Exp.; Ce=0.9	9;						
	6-0-0 oc purlins, ex	cept end verticals.		.00; Ct=1.10									
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		lanced snow loads have	e been cor	isidered for t	his						
	bracing.		desig	in. truss has been designe	d for groot	or of min root	live						
REACTIONS	(size) 8=7-6-0, 9	9=7-6-0, 10=7-6-0,		of 12.0 psf or 1.00 times									
	11=7-6-0,	12=7-6-0		nangs non-concurrent w			31 011						
	Max Horiz 12=-105 (,	7) All nl	ates are 2x4 MT20 unle									
	Max Uplift 8=-32 (LC		8) Gabl	e requires continuous b									
		C 14), 12=-35 (LC 1	5) 9) Trus	s to be fully sheathed from			,						
	Max Grav 8=183 (LC), [′] brace	ed against lateral mover									
		_C 22), 11=229 (LC		e studs spaced at 2-0-0									
	12=183 (L	,		truss has been designe) psf bottom							
FORCES	(lb) - Maximum Com	pression/Maximum	chore	d live load nonconcurrer	nt with any	other live loa	ids.						
	Tension		12) * Thi	s truss has been design	ed for a liv	e load of 20.	0psf						
TOP CHORD				e bottom chord in all are							ORTH CA		
	4-5=-77/181, 5-6=-4		3-06	00 tall by 2-00-00 wide	will fit betw	veen the bott	om					111.	
BOT CHORD	2-12=-167/171, 6-8=			d and any other member							111110	A.D. 111	
BOT CHORD	11-12=-51/93, 10-11 8-9=-51/93	=-51/95, 9-10=-51/8	10) 1101	de mechanical connecti							N'TH U	ROUL	
WEBS	4-10=-133/0, 3-11=-	193/155 5-9193/1		ng plate capable of with						~	OPTH CA	1A.1	
	4-10-100/0, 0-11-	195/155, 5-9=-195/1	12, 0	2 lb uplift at joint 8, 80 ll	o uplift at j	pint 11 and 7	8 lb		/	22	FEE	Pinai	1
NOTES		han a secold and for		at joint 9.		ith the 2010				V	2	121	<u> </u>
this design	ed roof live loads have	been considered for		truss is designed in acc national Residential Coc			nd			<u>е</u> в	:4		3
0	CE 7-16; Vult=130mph	(2 second quet)		2.10.2 and referenced st			anu		-		SE/		=
	Smph; TCDL=6.0psf; B			ASE(S) Standard		SI/1111.			=			•	Ξ.
	p B; Enclosed; MWFR			ASE(S) Standard					-		0363	522 :	-
	C-C Corner(3E) -0-10-								-	- C	:	1	2
	-4-8, Corner(3E) 5-4-8		,								· •	A 1. 3	2
	left and right exposed		d							2.0	S. SNGIN	FERINAS	
	sed;C-C for members									1	20	E. E.	
for reactio	ns shown: Lumber DO	L=1.60 plate grip									1, CAR	II BEIN	

2-1-8 to 5-4-8, Corner(3E) 5-4-8 to 8-4-8 z cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١ minin

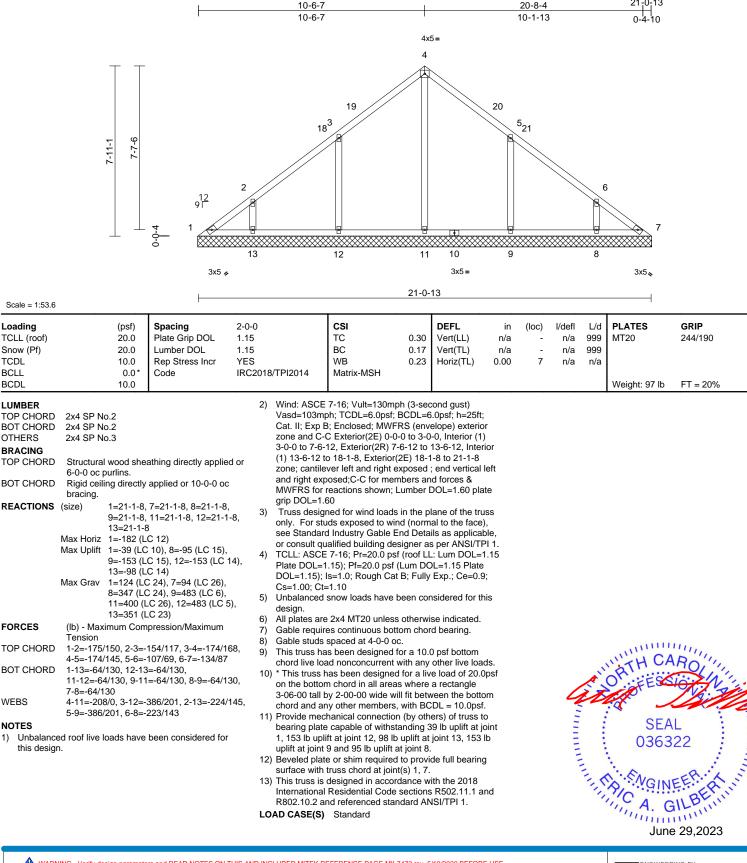
June 29,2023

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V1	Valley	1	1	Job Reference (optional)	159229489

TCDL

BCLL

BCDL


1)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:16 ID:uRu6rMLa1rImrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

21-0-13

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V2	Valley	1	1	Job Reference (optional)	159229490

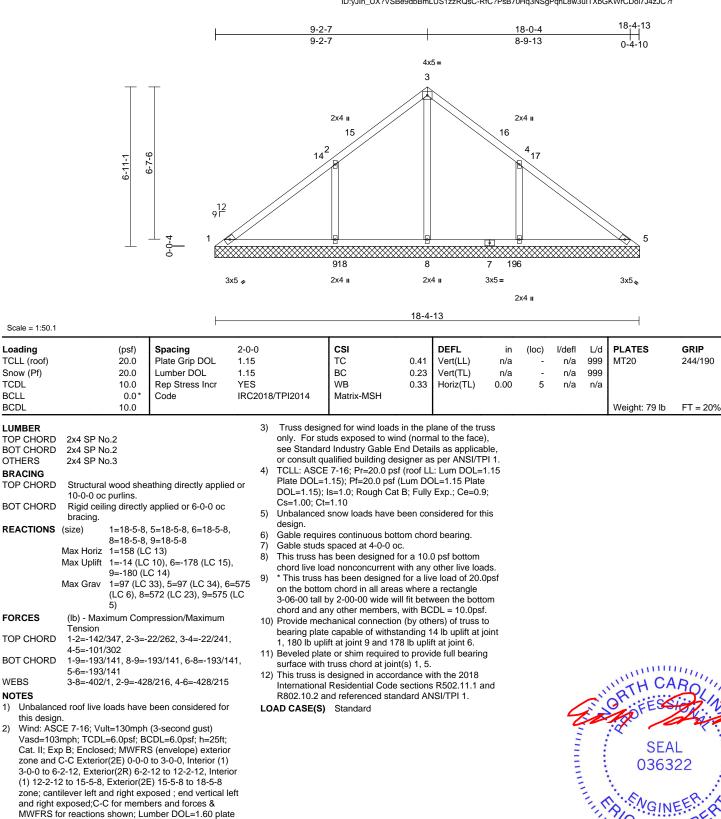
TCDL

BCLL

BCDL

WEBS

NOTES


arip DOL=1.60

1)

2)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:16 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mm June 29,2023 VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V3	Valley	1	1	Job Reference (optional)	159229491

Scale = 1:43 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

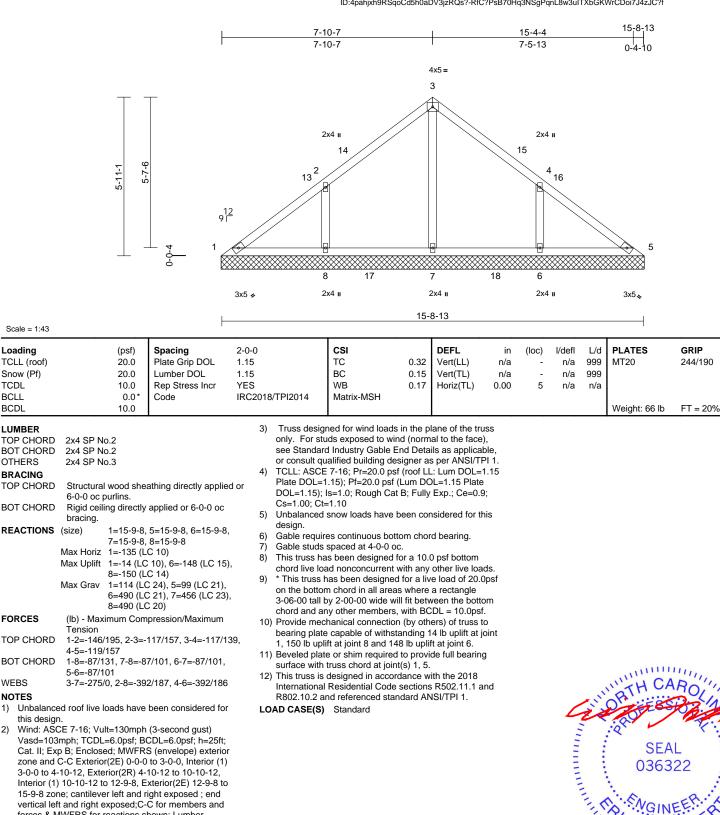
TOP CHORD

BOT CHORD

this design.

Interior (1) 10-10-12 to 12-9-8, Exterior(2E) 12-9-8 to 15-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60


TCDL

BCLL

BCDL

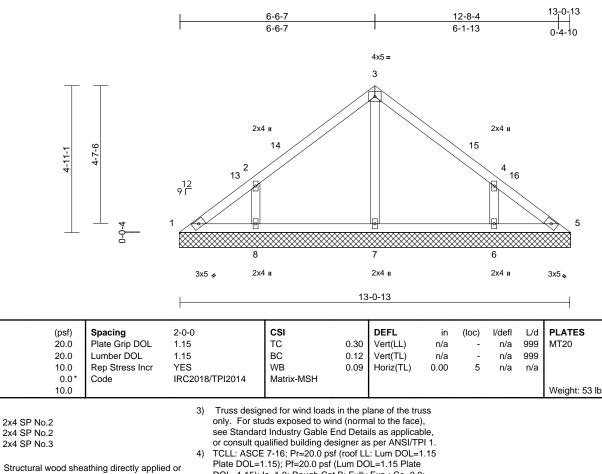
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries. Inc. Wed Jun 28 09:35:16 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mm June 29,2023

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V4	Valley	1	1	Job Reference (optional)	159229492


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:17 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

- 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=13-1-8, 5=13-1-8, 6=13-1-8,
- 7=13-1-8, 8=13-1-8 Max Horiz 1=-111 (LC 10) 1=-20 (LC 10), 6=-125 (LC 15), Max Uplift 8=-128 (LC 14) 1=97 (LC 24), 5=78 (LC 1), 6=446 Max Grav (LC 21), 7=285 (LC 20), 8=446 (LC 20) FORCES (Ib) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=-128/100, 2-3=-183/105, 3-4=-183/105, 4-5=-99/64 BOT CHORD 1-8=-36/97, 7-8=-36/69, 6-7=-36/69,
- 5-6=-36/78 WEBS 3-7=-200/0. 2-8=-388/176. 4-6=-388/176 NOTES

Scale = 1:38.6 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 3-6-12, Exterior(2R) 3-6-12 to 9-6-12, Interior (1) 9-6-12 to 10-1-8, Exterior(2E) 10-1-8 to 13-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1, 128 lb uplift at joint 8 and 125 lb uplift at joint 6.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V5	Valley	1	1	Job Reference (optional)	159229493

5-2-7

5-2-7

Carter Components (Sanford), Sanford, NC - 27332,

Scale = 1:34.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design

DOL=1.60

TCDL

BCLL

BCDL

3-11-1

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

2-4=-698/273

(size)

10-0-0 oc purlins.

0.0

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:17 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-0-4

4-9-13

10-4-13

0-4-10

4x5 = 2 9 10 12 9 Г 3 0-0-0 4 2x4 II 3x5 🥠 3x5 💊 10-4-13 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Spacing in (loc) Plate Grip DOL 1.15 TC 0.53 Vert(LL) n/a 999 MT20 244/190 n/a 1 15 BC Lumber DOL 0.49 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.21 Horiz(TL) 0.01 4 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 38 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=10-5-8, 3=10-5-8, 4=10-5-8 9) Max Horiz 1=-88 (LC 10) on the bottom chord in all areas where a rectangle 1=-77 (LC 21), 3=-77 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-110 (LC 14) chord and any other members. 1=110 (LC 20), 3=110 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=885 (LC 21) bearing plate capable of withstanding 77 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 77 lb uplift at joint 3 and 110 lb uplift at joint 4. 11) Beveled plate or shim required to provide full bearing 1-2=-126/457, 2-3=-126/457 surface with truss chord at joint(s) 1, 3. 1-4=-261/178, 3-4=-261/178 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Unbalanced roof live loads have been considered for LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 7-5-8, Exterior(2E) 7-5-8 to 10-5-8 zone; VIIIIIIIIIIIIII cantilever left and right exposed ; end vertical left and SEAL right exposed;C-C for members and forces & MWFRS 036322 for reactions shown; Lumber DOL=1.60 plate grip

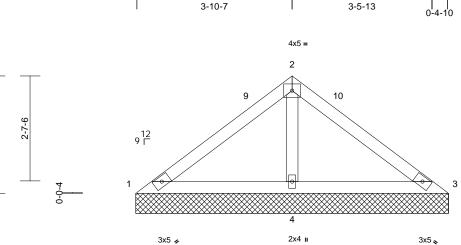
Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mm June 29,2023

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V6	Valley	1	1	Job Reference (optional)	159229494

3-10-7


Carter Components (Sanford), Sanford, NC - 27332,

2-11-1

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:17 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-4

7-8-13

Scale = 1	:28.7
-----------	-------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.30 0.30 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-8-13 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=7-9-8, 4=7-9-8 11) 2 21), 3=-29 (LC 20), 2 14) C 20), 3=101 (LC 21	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide meci	7-16; Pr=20.0 ps .15); Pf=20.0 ps s=1.0; Rough Ca .1.10 snow loads have es continuous bo spaced at 4-0-0 d s been designed in chord in all area y 2-00-00 wide v y other members hanical connection capable of withs	(Lum DC tt B; Fully been cor ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottwers) of truss the	ds. Dpsf om o				vvergini. 20 ib	11 = 2078
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Corr Tension 1-2=-100/275, 2-3=- 1-4=-190/157, 3-4=- 2-4=-433/205 ed roof live loads have	100/275 190/157	12	 29 lb uplift Beveled plate surface with This truss is International 	at joint 3 and 73 e or shim require truss chord at join designed in acco Residential Code nd referenced sta	Ib uplift a d to provient(s) 1, 3. rdance w e sections	it joint 4. de full bearing ith the 2018 \$ R502.11.1 a	g					Lines

this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-9-8, Exterior(2E) 4-9-8 to 7-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

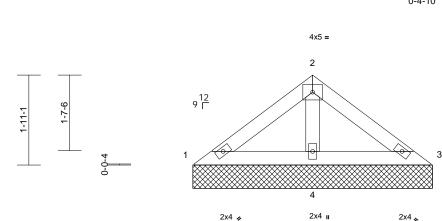
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V7	Valley	1	1	Job Reference (optional)	159229495

2-6-7

2-6-7

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:17 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-8-4

2-1-13

5-0-13

5-0-13

Scale = 1:24.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI	2014	CSI TC BC WB Matrix-MP	0.10 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	5-0-13 oc purlins. Rigid ceiling directly bracing.	3=5-1-8, 4=5-1-8 13) 14), 3=-9 (LC 15), 4= 20), 3=89 (LC 21), 4 npression/Maximum 14/119	edes 6) Gal 7) Gal 8) Thi 6 chc 9) * Th 00 10) Pro 10) Pro 10 11) Bev sur 12) Thi Inte R80	sign. ble required ble studs s s truss ha rof live loa his truss h the bottom 6-00 tall b ord and an wide med b uplift a veled plate face with face with s s truss is s truss a p s truss	snow loads have b es continuous bott spaced at 4-0-0 oc s been designed find an onconcurrent w has been designed in chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withsta at joint 3 and 32 lb e or shim required truss chord at joint designed in accord Residential Code nd referenced stan Standard	om chor c. or a 10.1 vith any for a liv s where Il fit betw (by oth anding 2 uplift at to provi (s) 1, 3. dance w sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t D uplift at jo joint 4. de full bearing ith the 2018 s R502.11.1 a	ds. Dpsf om to int g					
this design 2) Wind: ASC	ed roof live loads have n. CE 7-16; Vult=130mph mph: TCDI =6 0psf: B	(3-second gust)										TH CA	Routin

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

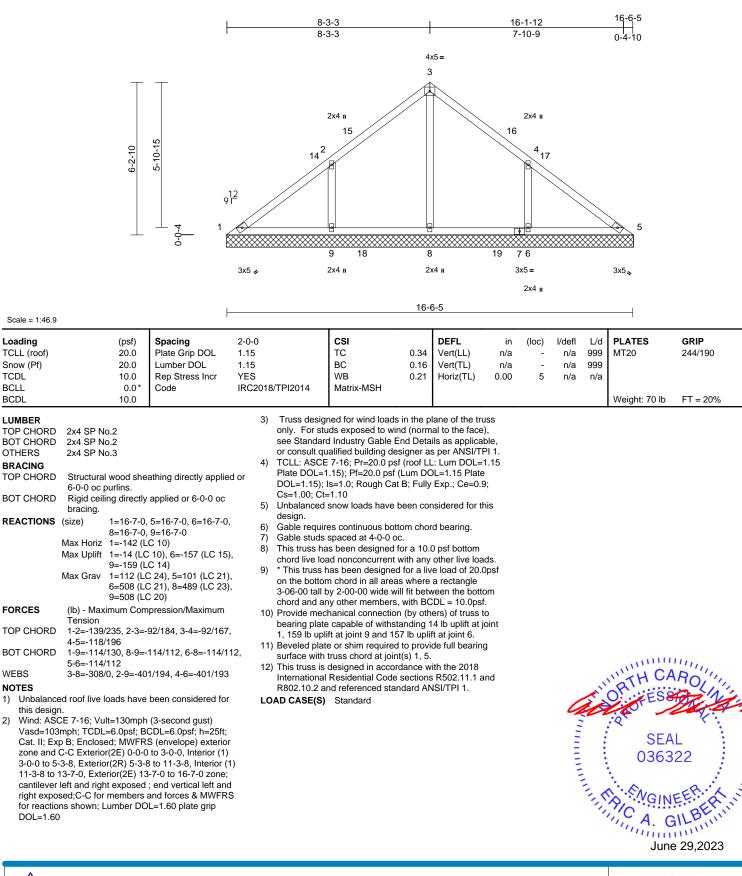
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL

036322

an manual and

annunnan a


Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V11	Valley	1	1	Job Reference (optional)	

1)

2)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries. Inc. Wed Jun 28 09:35:18 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

VIVILLE IN THE

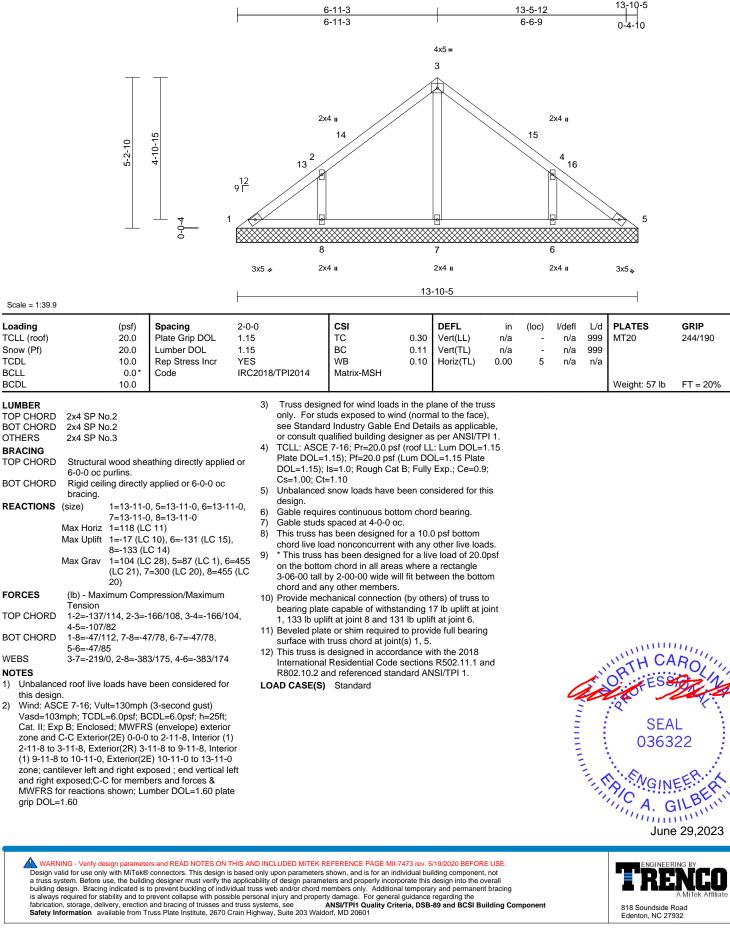
Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V12	Valley	1	1	Job Reference (optional)	159229497

TCDL

BCLL

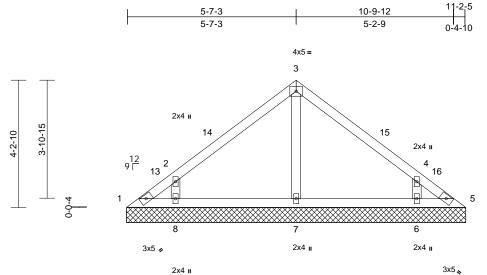
BCDL

WEBS


NOTES

1)

2)


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries. Inc. Wed Jun 28 09:35:18 ID:Th_ZgqfOm8nUgyqbk?jKoVzRQuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

MANDER IN INTERNET

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V13	Valley	1	1	Job Reference (optional)	159229498

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:18 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-2-5

Scale = 1:38.2				I								1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-3-0, 7=11-3-0, Max Horiz 1=-95 (LC Max Uplift 1=-33 (LC 6=-119 (L Max Grav 1=60 (LC	2 10)	5) 6) 7) 8) 452 ⁹⁾	only. For str see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live lo * This truss lo on the botto 3-06-00 tall	snow loads have h res continuous bott spaced at 4-0-0 or as been designed has been designed m chord in all area by 2-00-00 wide wi	nd (norm ind Deta signer a: f (roof Ll (Lum DC B; Fully been cor om chor c. or a 10. with any l for a liv s where Il fit betw	al to the face) ils as applicat s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle), ble, Pl 1. 1.15); his ds. 0psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10) Provide med	ny other members. chanical connectior e capable of withst	n (by oth							
TOP CHORD	4-5=-86/67	07/102, 3-4=-207/102,			t at joint 5, 121 lb ι								
BOT CHORD	5-6=-37/66	, ,) Beveled plat surface with	te or shim required truss chord at join	t(s) 1, 5.		9				WITH CA	11111
WEBS	3-7=-170/11, 2-8=-4	57/228, 4-6=-457/228	12) This truss is	designed in accord	dance w	ith the 2018					N'AH UA	ROW

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 8-3-0, Exterior(2E) 8-3-0 to 11-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V14	Valley	1	1	Job Reference (optional)	159229499

4-3-3

4-3-3

12 9 Г

9

Carter Components (Sanford), Sanford, NC - 27332

2-10-15

3-2-10

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:19 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4x5 = 2

8-1-12 3-10-9

10

3

GRIP

244/190

FT = 20%

4 3x5 🍫 2x4 II 3x5 💊 8-6-5 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.38 Vert(LL) n/a n/a 999 MT20 BC 20.0 Lumber DOL 1 15 0.36 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.13 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP Weight: 31 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. ed or Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 7) 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. =690 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 48 lb uplift at joint 3 and 89 lb uplift at joint 4. 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=130mph (3-second gust) C ALTER DATE OF THE STREET SEAL 036322 Truss designed for wind loads in the plane of the truss G mm June 29,2023

WWWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:29.9

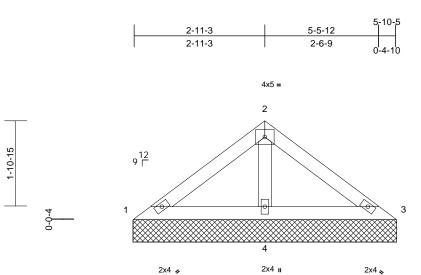
Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL


BCDL		10.0	
LUMBER			
TOP CHORD	2x4 SP N	0.2	
BOT CHORD	2x4 SP N	o.2	
OTHERS	2x4 SP N	0.3	
BRACING			
TOP CHORD	Structura	wood shea	athing directly applie
	8-6-5 oc j	ourlins.	
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 6-0-0 oc
REACTIONS	(size)	1=8-7-0, 3	=8-7-0, 4=8-7-0
	Max Horiz	1=-71 (LC	12)
	Max Uplift	1=-48 (LC	21), 3=-48 (LC 20),
		4=-89 (LC	
	Max Grav	1=99 (LC (LC 21)	20), 3=99 (LC 21), 4
FORCES	(lb) - Max Tension	imum Com	pression/Maximum
TOP CHORD	1-2=-120/	/334, 2-3=- ⁻	120/334
BOT CHORD	1-4=-225/	176, 3-4=-2	225/176
WEBS	2-4=-517/	234	
NOTES			

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 5-7-0, Exterior(2E) 5-7-0 to 8-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	17 Serenity-Roof-B326 B	
23060129-01	V15	Valley	1	1	Job Reference (optional)	159229500

2-2-10

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 28 09:35:19 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-5

Scale = 1:25.8

Scale = 1.23.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.16 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-5 oc purlins. Rigid ceiling directly bracing. (size) 1=5-11-0. Max Horiz 1=-48 (LC Max Uplift 3=-8 (LC Max Grav 1=96 (LC (LC 21) (lb) - Maximum Com Tension 1-2=-90/159, 2-3=-9	applied or 6-0-0 oc , 3=5-11-0, 4=5-11-(; 10) 15), 4=-42 (LC 14) 20), 3=96 (LC 21), - npression/Maximum 0/159	9) 1 4=390 1 1	 design. Gable requir Gable studs This truss hat chord live lo * This truss long the botton 3-06-00 tall 1 chord and ai Provide meet bearing plate and 42 lb up Beveled platt surface with This truss is International 	e or shim requirec truss chord at join designed in accor Residential Code nd referenced star	tom choi c. for a 10. with any d for a liv s where ill fit betv n (by oth anding & I to provi t(s) 1, 3. dance w sections	d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss : B lb uplift at jo de full bearin ith the 2018 s R502.11.1 a	ads. Opsf to to pint 3					
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex zone and exposed ; 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B cp B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri-	i (3-second gust) CDL=6.0psf; h=25ft S (envelope) exterio ; cantilever left and ght exposed;C-C for	; or right							4	I III	OR FESS	ROLIN

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 3) see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

SEAL

036322

Page: 1

