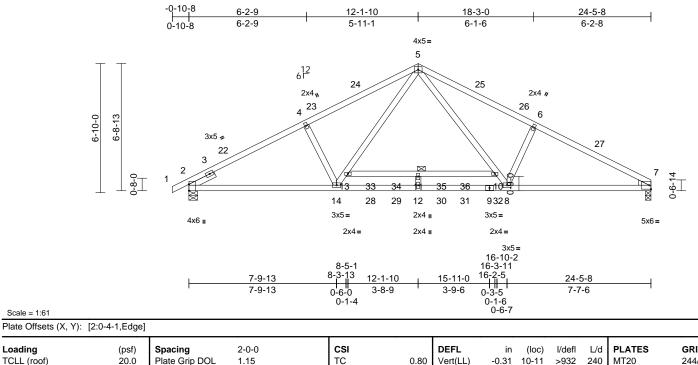

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	A	Common	1	1	Job Reference (optional)	159456629

2)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:48 ID:sL1H2zO6Ev519wGE9Ha53QyzB67-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	A1	Common	10	1	Job Reference (optional)	159456630

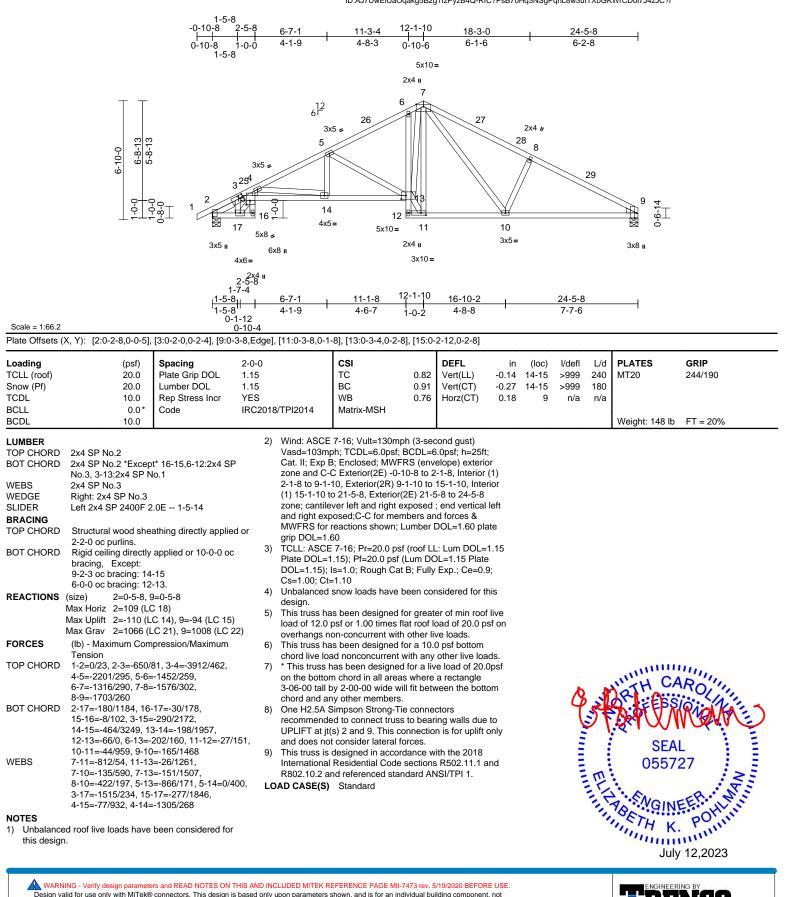
Scale = 1:61

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:50 ID:1N5k5UiLgOv7p9PHKp3jFOyzB70-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MSH	0.80 1.00 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.70 0.06	(loc) 10-11 10-11 7	l/defl >932 >422 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	bracing. Except: 4-7-0 oc bracing: 10	1-6-0 athing directly applie applied or 10-0-0 oc -13 7=0-3-8 C 18) -C 5), 7=1340 (LC 6)	2 4) 5) d or 6) 7) 8)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced si design. This truss ha load of 12.0 p overhangs no 200.0lb AC u 12-1-10 from apart. This truss ha chord live loa * This truss ha	snow loads have b s been designed fo osf or 1.00 times fla on-concurrent with nit load placed on left end, supporter s been designed fo d nonconcurrent w as been designed n chord in all areas	Lum DC B; Fully een cor or great at roof le other lif the both d at two or a 10. vith any for a liv s where	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min root and of 20.0 p ve loads. om chord, points, 5-0-(D) psf bottom other live load e load of 20. a rectangle	e 9; his f live sf on 0 ads. 0psf					
TOP CHORD	Tension 1-2=0/23, 2-4=-2303 5-6=-2283/0, 6-7=-2	8/0, 4-5=-2194/0,	9)	chord and an This truss is o	y 2-00-00 wide wil y other members, designed in accord	with BC lance w	DL = 10.0ps ith the 2018	f.					
BOT CHORD	2-14=-57/1998, 12-1 7-8=0/2078, 11-13=	4=0/1479, 8-12=0/14 -158/0, 10-11=-158/0	179, LO /		Residential Code s ad referenced stan Standard			and					un.
WEBS	4-14=-369/220, 13-1 5-10=0/1072, 8-10=- 11-12=-39/23	,	,							R	A	RTH CA	ROLIN
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 9 (1) 15-1-1 zone; can and right of	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior(2E) -0-10 -1-10, Exterior(2R) 9-1 0 to 21-5-8, Exterior(2I tilever left and right exp exposed;C-C for memb or reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (-10 to 15-1-10, Interi E) 21-5-8 to 24-5-8 oosed ; end vertical libers and forces &	1) or eft								E CONTRACTOR	SEA 0557 NGIN	27

July 12,2023



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	A2	Roof Special	8	1	Job Reference (optional)	159456631

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:51 ID:AJ7UwEiUaOqakq5B2g1fzPyzB4Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	A3	Half Hip	1	1	Job Reference (optional)	159456632

Loading

Snow (Pf)

LUMBER

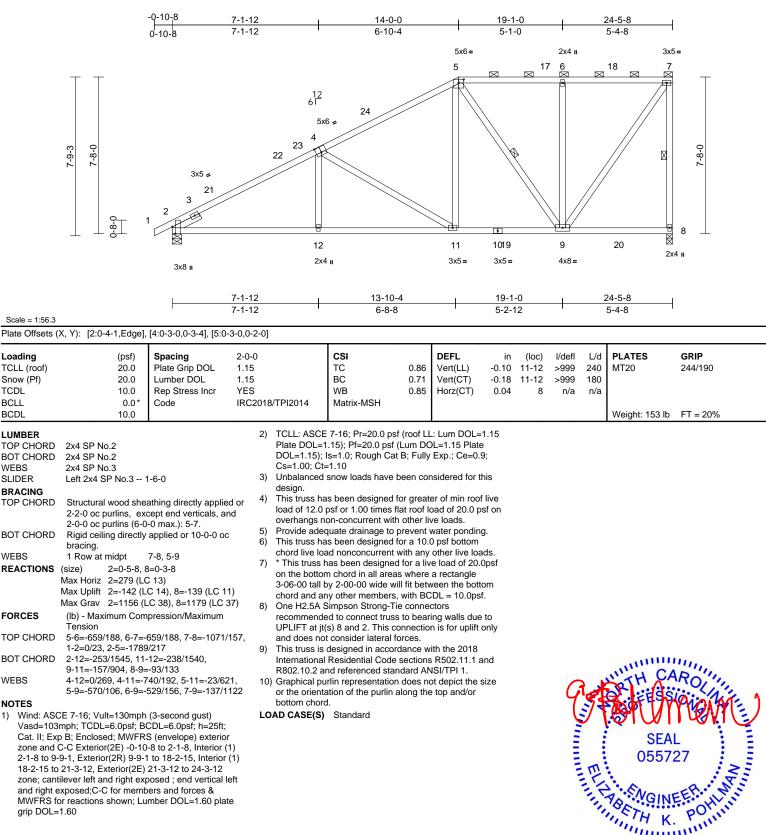
TCDL

BCLL

BCDL

WEBS

WEBS


FORCES

WEBS

NOTES

SLIDER

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:51 ID:N_FUI7kAVpqTDsHve?dz?XyzB8G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	A4	Half Hip	1	1	Job Reference (optional)	159456633

5x6=

5

10-8-0

5-2-4

Carter Components (Sanford), Sanford, NC - 27332

6-1-3

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

WFBS

NOTES

1)

SLIDER

-0-10-8

0-10-8

5-5-12

5-5-12

12 6 Г

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:52 ID:8_hfrEPsdpZA5tlv6Y9sy2yzB8g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

6 21

17-5-0

6-9-0

20 ⊠

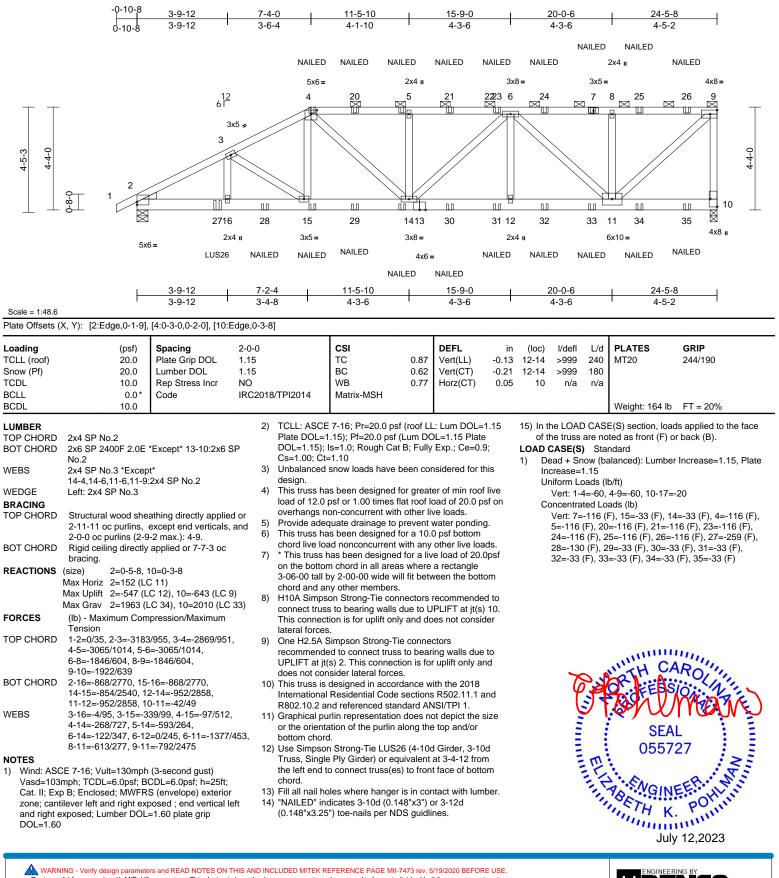
Page: 1

3x6 =

24-5-8

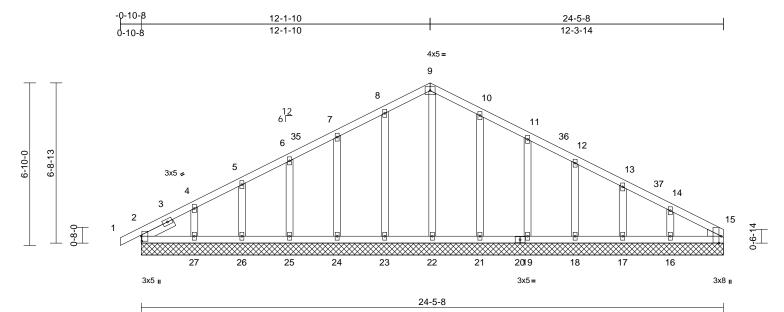
7-0-8

22


 ∇

3x5 🤞 19 4 6-0-0 0-0-9 X 3x5 🖌 18 17 0-8-0 • 8 Ø 12 23 9 11 10 24 2x4 II 2x4 II 3x5 = 3x5= 4x8= 3x6 II 10-6-4 17-5-0 5-5-12 24-5-8 5-5-12 5-0-8 6-10-12 7-0-8 Scale = 1:48.8 Plate Offsets (X, Y): [2:0-3-13,0-0-1], [5:0-3-0,0-2-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 1.00 Vert(LL) -0.09 9-11 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.70 Vert(CT) -0.16 9-11 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.59 0.04 8 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 141 lb 10.0 FT = 20% LUMBER 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2x4 SP No.2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD BOT CHORD 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 2x4 SP No.3 Left 2x4 SP No.3 -- 1-6-0 3) Unbalanced snow loads have been considered for this desian. BRACING 4) This truss has been designed for greater of min roof live TOP CHORD Structural wood sheathing directly applied or load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 3-8-4 oc purlins, except end verticals, and overhangs non-concurrent with other live loads. 2-0-0 oc purlins (2-2-0 max.): 5-7. Provide adequate drainage to prevent water ponding. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 6) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. 1 Row at midpt 7-8, 5-9 7) * This truss has been designed for a live load of 20.0psf REACTIONS 2=0-5-8.8=0-3-8 (size) on the bottom chord in all areas where a rectangle Max Horiz 2=217 (LC 13) 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Uplift 2=-143 (LC 14), 8=-146 (LC 11) chord and any other members, with BCDL = 10.0psf. Max Grav 2=1150 (LC 38), 8=1241 (LC 37) One H2.5A Simpson Strong-Tie connectors FORCES (Ib) - Maximum Compression/Maximum recommended to connect truss to bearing walls due to Tension UPLIFT at jt(s) 8 and 2. This connection is for uplift only TOP CHORD 1-2=0/23, 2-4=-1789/224, 4-5=-1359/205, and does not consider lateral forces. 5-6=-1115/189, 6-7=-1115/189, This truss is designed in accordance with the 2018 7-8=-1122/177 International Residential Code sections R502.11.1 and BOT CHORD 2-12=-229/1543, 11-12=-229/1543, R802.10.2 and referenced standard ANSI/TPI 1. 9-11=-185/1188, 8-9=-69/105 Graphical purlin representation does not depict the size 4-12=0/163, 4-11=-524/135, 5-11=0/517, or the orientation of the purlin along the top and/or 5-9=-358/79, 6-9=-704/201, 7-9=-172/1414 bottom chord. LOAD CASE(S) Standard Summer ELICIE Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 055727 zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-5-1, Exterior (2R) 6-5-1 to 14-10-15, Interior July 12 (1) 14-10-15 to 21-3-12, Exterior(2E) 21-3-12 to 24-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	A5GR	Half Hip Girder	1	1	Job Reference (optional)	159456634


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:53 ID:LxL4nxeDZSif7gIvCyYAAlyzBCF-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	AGE	Common Supported Gable	1	1	Job Reference (optional)	159456635

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:54 ID:_6rcLEIwA7tnIXY?wa67GkyzB5f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.4 Plate Offsets (X, Y): [2:0-2-8,0-0-5], [15:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.05 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Left 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=24-5-8 17=24-5- 24=24-5- 27=27-5- 27=27-5-7-5- 27=27-5-7-5-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	eathing directly applied y applied or 10-0-0 or , 15=24-5-8, 16=24-5 8, 18=24-5-8, 19=24 8, 22=24-5-8, 23=24 8, 25=24-5-8, 23=24 2, 25=24-5-8, 32=24 C 18), 28=109 (LC 1	C WEBS 5-8, -5-8, -5-8, -5-8, NOTES -5-8, 1) Unbalance (b) (c) (c) (c) (c) (c) (c) (c) (c	1-2=0/23, 2-4=-1 5-6=-65/78, 6-7= 8-9=-82/189, 9-1 11-12=-52/98, 12 14-15=-78/24 2-27=-24/91, 26 24-25=-24/90, 11 9-22=-112/14, 8- 6-25=-138/78, 5- 10-21=-211/78, 7 12-18=-133/77, 7 14-16=-130/124 ed roof live loads ha b CE 7-16; Vult=130r mph; TCDL=6.0ps p B; Enclosed; MW	-54/101, 7 0=-82/19(2-13=-47/5 3-24=-24/9 3-24=-24/9 3-21=-24/9 3-21=-24/9 23=-198/7 26=-119/7 26=-119/7 26=-119/7 ave been of nph (3-sec f; BCDL=€	7-8=-65/147,), 10-11=-63/)3, 13-14=-59 , 25-26=-24/)1, 22-23=-24)0, 18-19=-24)0, 15-16=-24)2, 7-24=-191 (2, 7-24=-191 (2, 7-24=-191 (2, 7-24=-191 (2, 7-24=-191 (2, 7-24) (3, 7) (5, 7) (9/17, 91, W91, W90, W90 W1080, W112,	load ove 7) All J 8) Gat 9) Gat 10) This cho 11) * Th on f 3-00 cho 12) Pro bea 2, 4 upli 27, upli 16 a 3.3) This	d of 12.0 rhangs blates a ble requises a ble studa is struss h rd live k nis truss the botto 6-00 tall rd and a vide me ring pla 2 lb upl ft at join 46 lb up ft at join and 13 l s truss is	D psf or non-cc re 2x4 ires co s space oad no bas bee oad no chas bee oad no the chanic te capa ift at jo tt 25, 3 blift at j tt 18, 3 b uplift s desig	en designed for g r 1.00 times flat ra nocurrent with oth MT20 unless oth ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with een designed for a nconcurrent with een designed for a rd in all areas wh 00-00 wide will fit her members. all connection (by able of withstandi int 23, 45 lb uplift 5 lb uplift at joint at joint 21, 44 lb uplif r at joint 2. ned in accordance	bof load of 20 er live loads. erwise indica chord bearing 10.0 psf bott any other live a live load of erere a rectang between the r others) of tru ing 13 lb upliff at joint 24, 4 26, 78 lb uplif ft at joint 19, 17, 69 lb uplif ce with the 20

(LC 15), 21=-46 (LC 15), zone and C-C Corner(3E) -0-10-8 to 2-2-12, Exterior 23=-42 (LC 14), 24=-45 (LC 14), (2N) 2-2-12 to 9-1-10, Corner(3R) 9-1-10 to 15-1-10, 25=-46 (LC 14), 26=-35 (LC 14), Exterior(2N) 15-1-10 to 21-5-8, Corner(3E) 21-5-8 to 27=-78 (LC 14), 28=-13 (LC 15) 24-5-8 zone; cantilever left and right exposed ; end Max Grav 2=151 (LC 1), 15=84 (LC 1), vertical left and right exposed;C-C for members and 16=191 (LC 35), 17=152 (LC 1), forces & MWFRS for reactions shown; Lumber 18=175 (LC 22), 19=225 (LC 22), DOL=1.60 plate grip DOL=1.60 21=251 (LC 22), 22=152 (LC 27), 3) Truss designed for wind loads in the plane of the truss 23=239 (LC 21), 24=231 (LC 21), 25=178 (LC 21), 26=156 (LC 1),

27=175 (LC 34), 28=151 (LC 1), 32=84 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
- Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design

for greater of min roof live flat roof load of 20.0 psf on th other live loads. s otherwise indicated.

Page: 1

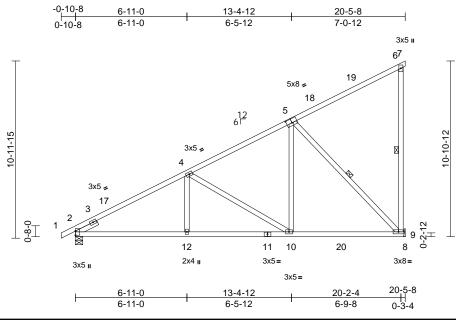
- ttom chord bearing.
- DC.
- for a 10.0 psf bottom with any other live loads.
- ed for a live load of 20.0psf as where a rectangle vill fit between the bottom
- on (by others) of truss to tanding 13 lb uplift at joint uplift at joint 24, 46 lb joint 26, 78 lb uplift at joint b uplift at joint 19, 45 lb joint 17, 69 lb uplift at joint
- ordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	AGE	Common Supported Gable	1	1	Job Reference (optional)	159456635
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.63 S Apr 6 20	2023 MiTek Industries, Inc. Tue Jul 11 10:01:54	Page: 2		

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:54 ID:_6rcLElwA7tnIXY?wa67GkyzB5f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	В	Monopitch	3	1	Job Reference (optional)	159456636

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:55 ID:uKtrJGkYuK_5qa1S4NLaLYyzBNI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f .

Page: 1

Scale = 1:71.5

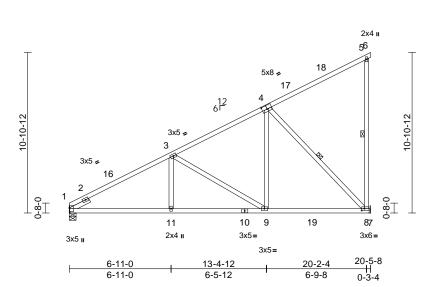
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.87 0.61	DEFL Vert(LL) Vert(CT)	in -0.09 -0.16	(loc) 9-10 9-10	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.03	9	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	3/TPI2014	Matrix-MSH							Weight: 124 lb	FT = 20%
		1-6-0 athing directly applie cept end verticals. applied or 10-0-0 or 6-9, 5-9 9= Mechanical C 14) C 14), 9=-231 (LC 14	6) 7) 8)	design. This truss he load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall l chord and an Refer to gird Provide mecu bearing plate joint 9.	snow loads have b as been designed for psf or 1.00 times fit on-concurrent with is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wil y other members, er(s) for truss to tru hanical connection e capable of withsta Simpson Strong-Tie	or great at roof le other li or a 10. ith any for a liv where fit betw with BC ss conr (by oth nding 2	er of min rood oad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0ps tections. ers) of truss i 31 lb uplift a	f live osf on ads. Opsf tom to					
FORCES	(lb) - Maximum Com Tension		5)	recommende	ed to connect truss (s) 2. This connecti	to bear	ing walls due						
TOP CHORD	1-2=0/23, 2-4=-1334 6-7=-12/0, 6-9=-309		10		sider lateral forces designed in accord		ith the 2018						
BOT CHORD	2-12=-397/1138, 10- 9-10=-159/673, 8-9=	,		Ínternational	Residential Code s	ections	R502.11.1 a	and					
WEBS													
Vasd=103	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi p B: Enclosed: MWER	CDL=6.0psf; h=25ft;									Q (K ohly	MAM

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-5-8, Exterior(2E) 17-5-8 to 20-5-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


Job	Truss	ss Truss Type Qty Ply		Ply		
23060130-01	B1	Monopitch	2	1	Job Reference (optional)	159456637

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:55 ID:KLIp2cdP9FdyXYyQD889fRyzBLJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

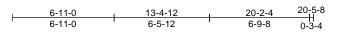
6-11-0	13-4-12	20-2-4	20-5-8
6-11-0	6-5-12	6-9-8	0-3-4

Scale = 1:78.2

Plate Offsets (X, Y): [1:0-3-1,0-0-5], [4:0-4-0,0-3-0], [8:0-2-4,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.65 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.19 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD	Rigid ceiling directly bracing. 1 Row at midpt	1-6-0 athing directly applie applied or 10-0-0 oc 5-8, 4-8 8= Mechanical C 14) C 14), 8=-231 (LC 14 C 5), 8=1044 (LC 5) appression/Maximum	; 7) 8)) 9)	chord live lo. * This truss I on the bottoo 3-06-00 tall chord and an Refer to gird Provide mee bearing platt joint 8. One H2.5A S recommend UPLIFT at jt does not cor This truss is International	as been designed f ad nonconcurrent to has been designed m chord in all area: by 2-00-00 wide wi ny other members, ler(s) for truss to tru- chanical connectior e capable of withst. Simpson Strong-Ti- ed to connect truss (s) 1. This connect nsider lateral forces designed in accord I Residential Code nd referenced star Standard	with any I for a liv s where II fit betw with BC uss conne (by oth anding 2 e conne to bear ion is for s. dance w sections	other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss i (31 lb uplift ai ctors ing walls due uplift only ai ith the 2018 s R502.11.1 a	Opsf com f. to t t to nd					
BOT CHORD WEBS	CHORD 1-11=-408/1138, 9-11=-314/1138, 8-9=-161/676, 7-8=0/0												
Vasd=103 Cat. II; Exp	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR	CDL=6.0psf; h=25ft; S (envelope) exterior							Ç		CALLER SS	ROLINI	

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 17-5-8, Exterior(2E) 17-5-8 to 20-5-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A		
23060130-01	B2	Monopitch	9	1	Job Reference (optional)	159456638	

Run: 8.63 E May 25 2023 Print: 8.630 E May 25 2023 MiTek Industries, Inc. Wed Jul 12 10:12:08 ID:DTBTk2iEBbrKjDFXxKE1mCyzBJw-C1C7ILBnxXaR5CunqP5DjJS9HNSM7Ekn6eLKnUyyr8s

Page: 1

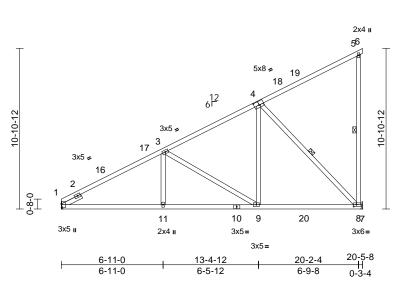
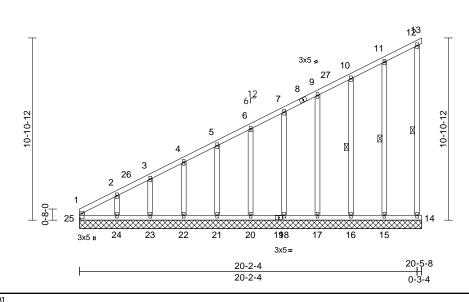


Plate Offsets (X, Y): [1:0-3-1,0-0-5], [4:0-4-0,0-3-0], [8:0-2-4,0-1-8]

- 1010 0110010	(,,, ,). [[2 1,0 1 0]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code			CSI TC BC WB Matrix-MSH				(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt 	1-6-0 athing directly applie applied or 10-0-0 or 5-8, 4-8 echanical, 8=829/ al C 14) C 14)		DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha chord live lo * This truss ha chord live lo * This truss lo on the botto 3-06-00 tall chord and an Refer to gird Provide med	I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I as been designed ad nonconcurrent has been designed n chord in all area boy 2-00-00 wide w hy other members. er(s) for truss to tr hanical connection e capable of withst	B; Fully been col for a 10. with any d for a liv s where ill fit bety , with BC uss coni n (by oth	Exp.; Ce=0. nsidered for t 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps ections. ers) of truss	9; this ads. .0psf tom sf. to					
FORCES	(lb) - Maximum Com Tension 1-2=-689/0, 2-16=-1 3-17=-1218/0, 3-4=- 18-19=-64/18, 5-19=	333/0, 16-17=-1272 814/0, 4-18=-147/7,	/0,	 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 									
BOT CHORD	,	-11=-201/1138, 20=-104/676, =0/0 01/92, 4-9=0/590,								Ģ	-	WITH CA	ROLIN
Vasd=10: Cat. II; Ex zone and 3-0-0 to 1 cantilever exposed;	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br xp B; Enclosed; MWFR C-C Exterior(2E) 0-0-0 16-2-9, Exterior(2R) 16- 1eft and right exposed C-C for members and f shown; Lumber DOL=	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 3-0-0, Interior (1) 2-9 to 20-5-8 zone; ; end vertical left orces & MWFRS for	r								ELLIN	Minimum	27 EEF.R. HANNING


July 12,2023

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A			
23060130-01	B2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	159456639		

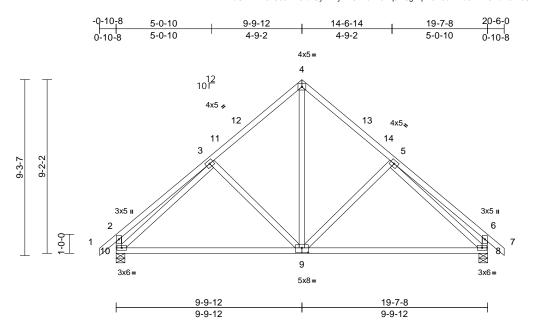
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:56 ID:pRYBEe4gu7lwx_7UFLIIXlyzBJR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-5-8

Scale = 1:68.9

Plate Offsets (X, Y): [25:0-3-11,0-1-8]


-			-		-						
Loading (psf)	Spacing 2-0	0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.1	15	тс	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.1	15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr YE	ES	WB	0.14	Horiz(TL)	-0.02	13	n/a	n/a		
BCLL 0.0*	Code IR	C2018/TPI2014	Matrix-MR								
BCDL 10.0										Weight: 150 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Excep OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood she 6-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS (size) 13=20-5-1 20=20-5-1 23=20-5-4 Max Horiz 25=367 (I Max Uplift 13=-9 (LC 15=-44 (L 22=-53) (L 15=252 (I 17=171 (L 20=141 (L 22=162 (L 24=-174 (L 22=162 (L 24=186 (L FORCES (lb) - Maximum Com TOP CHORD 1-25=-223/75, 1-2=- 3-4=-360/145, 4-5=- 6-7=-219/89, 7-9=-1	applied or 10-0-0 oc 12-14, 10-16, 11-15 3, 14=20-5-8, 15=20-5-8, 3, 17=20-5-8, 18=20-5-8, 3, 21=20-5-8, 22=20-5-8, 3, 21=20-5-8, 25=20-5-8, 2, 14), 14=-20 (LC 14), C 14), 16=-45 (LC 14), C 14), 16=-45 (LC 14), C 14), 18=-44 (LC 14), C 14), 21=-42 (LC 14), C 14), 23=-9 (LC 14), LC 14) C 20), 14=102 (LC 20), .C 20), 16=225 (LC 20), .C 20), 18=160 (LC 1), .C 20), 23=153 (LC 20), .C 1), 25=265 (LC 14)	 WEBS NOTES 1) Wind: ASCE Vasd=103m Cat. II; Expl zone and C- 3-1-12 to 20 end vertical MWFRS for grip DOL=1. 2) Truss desig only. For stu see Standar or consult qu 3) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) All plates and 6) Gable requir 7) Truss to be 1 braced again 8) Gable struss I on the bottoo 10) * This truss I on the bottoo 30-06-00 tall 	Ined for wind loads uds exposed to win d Industry Gable Er ualified building des 5 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (Is=1.0; Rough Cat	-1/1, 18 -1/1, 18 -1/1, 15 =-120/7 =-136/2 6=-186/ h (3-sec 3CDL=6 3CDL=6 3CDL=6 3CS (env, 2 to 3-1 er left ar r memb umber I in the pl d (norm md Deta igner as (roof LL Lum DC B; Fully eeen cor otherwi or ne fac to in (i.e. d) or a 10.0 where	-20=-1/1, -16=-1/1, 9, 4-22=-121 01, 7-18=-12 79, 11-15=-2 ond gust) .0psf; h=25ft elope) exteric -12, Exterior id right expos ers and force DOL=1.60 pla ane of the tru ane of the tru by per ANSI/TI but the tru and the tru ane of the tru ane of the tru ane of the tru ane of the tru by the tru and the tru and the tru ane of	/84, 10/80, 208/85 ; or (2N) sed ; sed ; sed ; sed ; sed ; lss & lss & lss & lss & lss & lss & lss & lss & lss & lss & lss & l	usir des 12) Pro bea 13, upli 23, upli join 13) Thi: Inte R80	ng ANSI, igner sh vide me tring plat 20 lb up ft at join 174 lb u ft at join 174 lb u ft at join t 15. s truss is truss is case(S	/TPI 1 ould vi chanic te capa t 21, 53 iplift at i t 21, 53 iplift at t 17, 44 s desig al Resid and ref) Sta	13 considers para angle to grain for erify capacity of the al connection (by able of withstandi bint 14, 44 lb upli 3 lb uplift at joint joint 24, 44 lb up 5 lb uplift at joint ned in accordance dential Code sec- erenced standar	rallel to grain value mula. Building bearing surface. o others) of truss to ing 9 lb uplift at joint ft at joint 20, 42 lb 22, 9 lb uplift at joint blift at joint 18, 43 lb 16 and 44 lb uplift at ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	iss Truss Type Qty Ply				
23060130-01	С	Common	6	1	Job Reference (optional)	159456640

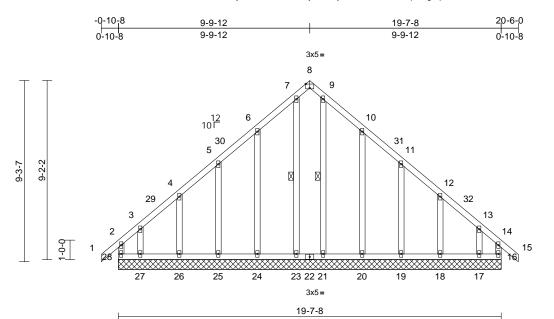
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:56 ID:veOhTnYiIJvCs5ZfZ6xbfGyzBEy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:60.9

Plate Offsets (X, Y): [9:0-4-0,0-3-0]

		-											-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.90 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.34 0.02	(loc) 8-9 8-9 8	l/defl >999 >673 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 8=0-5-8, 1 Max Horiz 10=-236 (Max Uplift 8=-73 (LC Max Grav 8=883 (LC	applied or 10-0-0 oc 10=0-5-8 LC 12) : 15), 10=-73 (LC 14)	5) 6) 7)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss on the botto	E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b as been designed fr psf or 1.00 times fl ion-concurrent with as been designed fr ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wil	Lum DC B; Fully or great at roof I other li or a 10. with any for a liv s where	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min rooi bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle	e 9; his f live osf on ads. 0psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	chord and a	ny other members.								
TOP CHORD													
BOT CHORD WEBS													
NOTES 1) Unbalance	Unbalanced roof live loads have been considered for												

this design.Wind: ASCE 7-16; Vult=130mph (3-second gust)

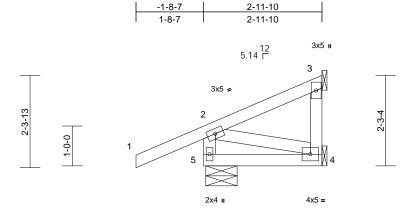

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-9-12, Exterior(2R) 6-9-12 to 12-9-12, Interior (1) 12-9-12 to 17-6-0, Exterior(2E) 17-6-0 to 20-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

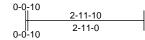
Job	Truss	Truss Type G		Ply	18 Serenity-Roof-B328 A		
23060130-01	CGE	Common Supported Gable	1	1	Job Reference (optional)	159456641	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:57 ID:y?IVUHJnnTWv5Ac?yd58OGyzBFF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:59.1

Plate Offsets (X, Y): [8:0-2-8,Edge]

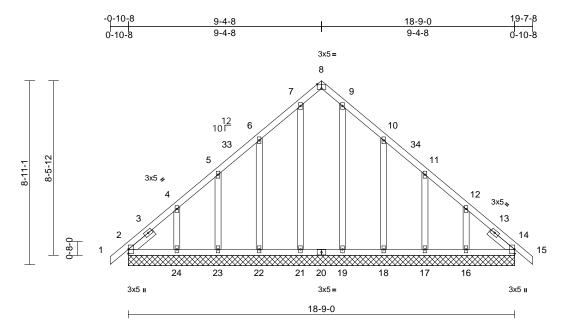

			-									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	1 1	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999	-	
TCDL	10.0		YES	WB	0.19	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*		IRC2018/TPI2014	Matrix-MR								
BCDL	10.0	0000		Mathx Mite							Weight: 143 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 16=19-7-1 23=19-7-1 23=19-7-1 23=19-7-1 28=236 (L 20=-98 (L 25=-76 (L 20=-98 (L 27=-199 (I 18=175 (I 20=264 (I) 23=197 (I 25=179 (I)	applied or 6-0-0 oc 7-23, 9-21 3, 17=19-7-8, 18=19-7- 3, 20=19-7-8, 21=19-7- 3, 24=19-7-8, 25=19-7- 3, 27=19-7-8, 28=19-7- LC 12) LC 13), 17=-187 (LC 1 C 15), 19=-75 (LC 15), C 15), 24=-97 (LC 14), C 14), 26=-66 (LC 14), LC 14), 28=-147 (LC 1 .C 25), 19=179 (LC 22) .C 22), 21=197 (LC 22) .C 21), 26=173 (LC 28) .C 21), 26=173 (LC 28) .C 12), 28=228 (LC 11)	8, NOTES 8, 1) Unbalanc 8, this desig 8, 2) Wind: ASI 5, Cat. II; Ex 5, Cat. II; Ex 2, 1-8 to 6 2.1-8 to 6 2, 2 zone; can and right 1 1, and right 1 1, grip DOL= 1, only. For 2, only. For 3, Truss des 1, see Stanc	25-26=-112/179, 2 23-24=-112/179, 2 20-21=-112/179, 1 18-19=-112/179, 1 16-17=-112/179, 1 16-17=-112/179 7-23=-165/14, 9-2' 5-25=-140/102, 4-2 3-27=-130/145, 10 11-19=-140/103, 1 13-17=-120/139 ed roof live loads hav n. CE 7-16; Vult=130mp 3mph; TCDL=6.0psf; 1 p B; Enclosed; MWF C-C Corner(3E) -0-10 -9-12, Corner(3E)	4-25=-1 1-23=-1 9-20=-1 7-18=-1 1=-165/ ² 26=-136 -20=-22 2-18=-1 we been wh (3-see BCDL=6 RS (env 0-8 to 2- 3-12 to 1 (3E) 17- xposed nbers ar unbers ar in the p in the p in the p ad (norm nd Deta signer a	12/179, 12/179, 12/179, 12/179, 12/179, 12/179, 12/179, 12/139, 2/139, 37/112, considered foi cond gust) .0psf; h=25ft; elope) exterio 1-8, Exterior(2 2-9-12, Exteri	r 2N) ior left te ss), oble, PI 1.	 9) Trubra bra bra bra bra bra bra bra bra bra	ss to be ced agai ble studs s truss h ord live lc 6-00 tall ord and a vide mea tring plat t 28, 102 iplift at jc s truss is ernationa 02.10.2 a CASE(S)	fully sl nst late space as beee aad nor has be m choo by 2-00 by 2-00	eral movement (i. ed at 2-0-0 oc. an designed for a naconcurrent with been designed for rd in all areas wh 0-00 wide will fit1 er members. al connection (by able of withstandi lift at joint 16, 97 66 Ib uplift at joint t at joint 20, 75 Ib and 187 Ib uplift ned in accordance dential Code sect erenced standard	e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf iere a rectangle between the bottom others) of truss to ng 147 lb uplift at lb uplift at joint 24, 76 nt 26, 199 lb uplift at o uplift at joint 19, 67 at joint 17. ze with the 2018 ions R502.11.1 and d ANSI/TPI 1.
	Tension			CE 7-16; Pr=20.0 psf _=1.15); Pf=20.0 psf (:	SEA	L : E
TOP CHORD	3-4=-126/128, 4-5=- 6-7=-119/260, 7-8=- 9-10=-119/260, 10-1	28=-169/107, 1-2=0/39, 2-3=-210/178, 4=-126/128, 4-5=-105/109, 5-6=-82/157, 7=-119/260, 7-8=-88/182, 8-9=-88/182, 10=-119/260, 10-11=-65/157, 11-12=-75/83, -13=-96/97, 13-14=-190/137, 14-15=0/39,							0557 NGIN	EER. HAT		


July 12,2023

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	CJ1	Jack-Open Structural Gable	1	1	I5 Job Reference (optional)	9456642

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:57 ID:sO9akXcGp1tsoTjN9u??hcyzBDb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.9


Ocale = 1.20.3					_						-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.08 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-11-10 oc purlins, Rigid ceiling directh bracing. (size) 3= Mech 5=0-9-7 Max Horiz 5=86 (LC Max Uplift 5=86 (LC Max Uplift 3=22 (LL) (LC 10) Max Grav 3=64 (LC (LC 21)	C 11), 4=-2 (LC 11), 5	chord live 6) * This trus on the boi 3-06-00 ta chord and 7) Refer to g 8) Provide m bearing p 4. 9) One H2.5 recomme UPLIFT a does not d 377 10) One RT8/ truss to br connectio	has been designed load nonconcurrent is has been designed tom chord in all are ull by 2-00-00 wide v any other members irder(s) for truss to echanical connectid ate capable of withis A Simpson Strong- nded to connect trus i ti(s) 3. This conner consider lateral force A MiTek connectors earing walls due to to in is for uplift only ar	t with any ad for a liv as where will fit betv s. truss con on (by oth standing 2 Fie conne ess to bear ction is fo es. recomme UPLIFT a	other live load e load of 20. a rectangle ween the bott nections. ers) of truss ? Ib uplift at jo ctors ing walls due r uplift only a ended to conn ; jt(s) 5. This	0psf to to pint to nd nd					
TOP CHORD BOT CHORD WEBS NOTES	Tension 1-2=0/67, 2-3=-71/5	54, 3-4=0/0, 2-5=-350	/247 Internatio R802.10.2 12) Gap betw	is designed in acco nal Residential Code and referenced sta een inside of top ch or vertical web shall	e sections andard AN ord bearin	s R502.11.1 a NSI/TPI 1. ng and first	and					
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D DOL=1.15 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12	CE 7-16; Vult=130mpl 3mph; TCDL=6.0psf; E qp B; Enclosed; MWFF C-C Corner (3) zone; end vertical left and r and forces & MWFRS DOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf L=1.15); Pf=20.0 psf (I 5); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b a has been designed for 2.0 psf or 1.00 times fla s non-concurrent with	CDL=6.0psf; h=25ft; Conversional exteriors Cantilever left and rig ight exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9 een considered for th or greater of min roof l at roof load of 20.0 ps	ht .15 ; is	S) Standard						1	SEA 0557 78STH K	EER. HUNT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	EGE	Common Supported Gable	1	1	Job Reference (optional)	159456643

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:58 ID:x0ypEL3Up0yR9Rp3VsFHJqyzBIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.9

Plate Offsets (X, Y): [8:0-2-8,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01	14	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH		· · /						
BCDL		10.0											Weight: 127 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP No 2x4 SP No Left 2x4 S 1-6-0	o.2 o.3 SP No.3 1 wood shea	1-6-0, Right 2x4 SP N athing directly applie	10.3 V	NEBS	2-24=-84/253, 23-2 22-23=-84/253, 21- 19-21=-84/253, 18- 17-18=-84/253, 16- 14-16=-84/253 7-21=-174/28, 9-19 5-23=-128/96, 4-24 10-18=-215/140, 11 12-16=-152/155	22=-84, 19=-84, 17=-84, =-174/5 =-155/1	/253, /253, /253, 5, 6-22=-215/1 55,	40,	cho 11) * Th on 1 3-0 cho 12) Pro bea	rd live lo his truss the botto 6-00 tall rd and a vide me ring plat	bad noi has be om cho by 2-0 iny oth chanic te capa	een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi	any other live loads. a live load of 20.0psf
BOT CHORD			applied or 10-0-0 oc	I	NOTES					at je	oint 22, 5	55 ĺb u	plift at joint 23, 13	39 lb uplift at joint 24,
	bracing.	• •			1) Unbalanced	roof live loads have	been	considered for						
	 bracing. ACTIONS (size) 2=18-9-0, 14=18-9-0, 19=18-9-0, 21=18-9-0, 22=14-12, 20-10-18-18-18, 20-10-18-18, 20-10, 20-118-18-18, 20-10, 20-118-18-18-19, 20-118-18-18-19-18-18-18-18-19-18-18-18-19-18-18-18-18-18-1						s desig al Resid and ref) Sta	ned in accordance dential Code sect erenced standard indard	e with the 2018 tions R502.11.1 and d ANSI/TPI 1.					
FORCES	Tension				 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 2-0-0 oc. 							EER. HANNING		

- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	EGR	Common Girder	1	2	Job Reference (optional)	159456644

Scale = 1:60.2 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WFBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

8-11-1 ŗ. 8-2

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x6 SP No.2

2x4 SP No 3

Left: 2x6 SP No 2

5-3-4 oc purlins.

Max Horiz 2=195 (LC 11)

bracing.

Tension

(0.131"x3") nails as follows:

(size)

Right: 2x6 SP No.2

0.0

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 2=-128 (LC 12), 6=-109 (LC 13)

Max Grav 2=4704 (LC 5), 6=4550 (LC 6)

(lb) - Maximum Compression/Maximum

1-2=0/34, 2-3=-5543/158, 3-4=-3868/197,

4-8=-141/4542, 5-8=-1808/193, 5-7=0/2026,

4-5=-3868/197, 5-6=-5566/157

3-8=-1784/190, 3-9=0/1994

Top chords connected as follows: 2x4 - 1 row at 0-9-0

2-ply truss to be connected together with 10d

2=0-5-8, 6=0-5-8

<u>ام</u> ÷

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:58

Page: 1

ID:xqX4xngTohNCmGDs_3fFtayzBHN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 4-8-5 14-0-11 18-9-0 9-4-8 0-10-8 4-8-5 4-8-3 4-8-3 4-8-5 4x5 II 4 12 10 3x6 🖌 3x6. 16 17 3 5 6 R 18 21 22 24 19 9 20 8 23 7 25 3x8 II 10x12 =3x8 II 6x8= 6x8= HTU26 HTU26 HTU26 HTU26 HTU26 HTU26 HTU26 HTU26 HTU26 14-0-11 4-8-5 9-4-8 18-9-0 4-8-5 4-8-3 4-8-3 4-8-5 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) 1.15 TC 0.45 Vert(LL) -0.08 7-8 >999 240 MT20 244/190 BC 1 15 Vert(CT) 0.77 -0.147-8 >999 180 NO WB 0.94 Horz(CT) 0.04 6 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 251 lb FT = 20% Wind: ASCE 7-16; Vult=130mph (3-second gust) Concentrated Loads (lb) 4) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Vert: 8=-813 (B), 18=-813 (B), 19=-813 (B), 20=-813 (B), 21=-813 (B), 22=-813 (B), 23=-813 (B), 24=-813 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left (B), 25=-813 (B) and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 6) Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live 7) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 2-9=-191/4274, 7-9=-157/4274, 6-7=-71/4222 chord and any other members.

- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and standard ANSI/TPI 1.
 - TU26 (20-10d Girder. Ply Girder) or equivalent arting at 1-2-12 from the left russ(es) to back face of

ger is in contact with lumber.

- Lumber Increase=1.15, Plate
 - 10-13=-20

HOW THE ELLER

2) 3)	except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.	 R802.10.2 and referenced s 12) Use Simpson Strong-Tie HT 11-10dx1 1/2 Truss, Single I spaced at 2-0-0 oc max. sta end to 17-2-12 to connect tru- bottom chord. 13) Fill all nail holes where hang LOAD CASE(S) Standard 1) Dead + Snow (balanced): I Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-60, 4-6=-60, 7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and property incorporate dust using in the version of the system planteets and property incorporate dust using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	F	Common	4	1	Job Reference (optional)	159456645

3-5-14

Scale = 1:35.9

3-4-11

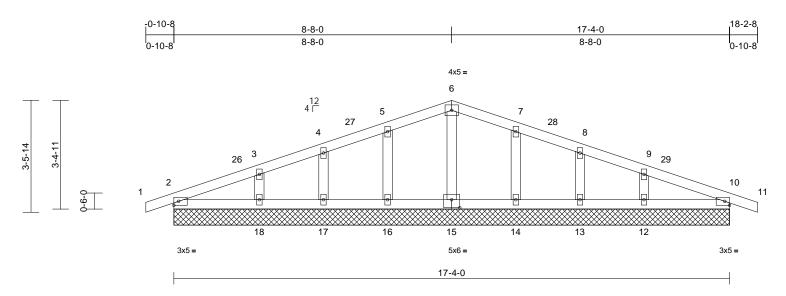
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:59 Page: 1 ID:qaiA6xbzzIROKF1mhdDvcwyzBUO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 <u>17</u>-4-0 4-5-13 8-8-0 12-10-3 4-5-13 4-2-3 4-2-3 4-5-13 0-10-8 4x5 = 12 4 Г 4 T 2x4 🕿 2x4 🚅 17 16 3 5 De 15 18 2 0-9-0 0 Ø X 19 20 8 21 22 5x8 = 3x5 = 3x5 = 8-8-0 17-4-0 8-8-0 8-8-0 Plate Offsets (X, Y): [8:0-4-0,0-3-0]

18-2-8

0-10-8

6

July 12,2023


818 Soundside Road Edenton, NC 27932

7

	, . , .											-	-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.70 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.19 0.03	(loc) 8-11 8-11 6	l/defl >949 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
BOT CHORD 22 WEBS 25 BRACING TOP CHORD S BOT CHORD S BOT CHORD S Ma Ma Ma FORCES (II TOP CHORD 1- 4 BOT CHORD 1- 4 BOT CHORD 2- WEBS 4- NOTES 1) Unbalanced rd this design. 2) Wind: ASCE 7 Vasd=103mpl Cat. II; Exp 8; zone and C-C 2-1-8 to 5-8-0 11-8-0 to 15-2 cantilever left right exposed; members and Lumber DU= 3) TCLL: ASCE 1 Plate DU=1	4-6 oc purlins. (gid ceiling directly acing. e) 2=0-3-0, 1 x Horiz 2=-50 (LC x Uplift 2=-266 (LC x Grav 2=816 (LC o) - Maximum Com- ension 2=0/17, 2-3=-1656 5=-1134/1295, 5-6 6=-1340/1528 8=-655/461, 5-8=- bof live loads have (-16; Vult=130mph ; TCDL=6.0psf; B Enclosed; MWFR Exterior(2E) -0-10 Exterior(2E) 5-8-1- -8, Exterior(2E) 15 and right exposed porch left and rigit forces & MWFRS 1.60 plate grip DC 7-16; Fr=20.0 psf (5); Pf=20.0 psf (=1.0; Rough Cat E	 2 19) C 10), 6=-266 (LC 1: C 21), 6=816 (LC 22) ppression/Maximum 5/1476, 3-4=-1134/12 5=-1656/1476, 6-7=0/ 547/253, 3-8=-547/2 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior A to 21-8, Interior ('5-2-8 to 18-2-8 zone; ; end vertical left and the exposed;C-C for for reactions shown; 	7) 1) 295, 53 r 1) 1) 1 1 1 1 1 1 1 1 1 1 1 1 1	design. This truss ha load of 12.0 J overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International	snow loads have b is been designed for performation of the second second is been designed for ad nonconcurrent with is been designed for ad nonconcurrent with is been designed with youther members. Simpson Strong-Tie ad to connect truss s) 2 and 6. This co t consider lateral for designed in accord Residential Code s and referenced stand Standard	or great at roof I other li or a 10. vith any for a liv s where I fit betw conne to bear nnectio rces. lance w sections	er of min rood pad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	f live sf on ads. Opsf om e to only				SEA 0557 SEA 0557	EEP. HUNN

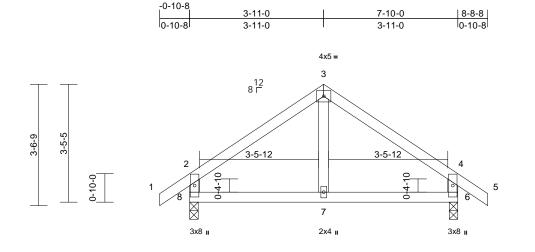
Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	FGE	Common Supported Gable	1	1	Job Reference (optional)	159456646

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:01:59 ID:blbw4E4_5X0UgfFVg5xqNryzBV3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.9

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018	8/TPI2014	Matrix-MSH		. ,						
BCDL	10.0											Weight: 74 lb	FT = 20%
LUMBER				DTES									others) of truss to
TOP CHORD	2x4 SP No.2		1)		roof live loads hav	e been	considered for	r					ng 38 lb uplift at joint at joint 16, 30 lb
BOT CHORD OTHERS	2x4 SP No.2		2)	this design.	7-16; Vult=130mp	b (2 co)	cond quist)						18, 38 lb uplift at joint
	2x4 SP No.3		2)		h; TCDL=6.0psf; I								ft at joint 12, 38 lb
BRACING	0	a da la su alla a ada a su a Ra			; Enclosed; MWFI							45 lb uplift at joi	
TOP CHORD	6-0-0 oc purlins.	eathing directly applie	d or		C Corner(3E) -0-10							ned in accordance	
BOT CHORD		applied or 10-0-0 oc), Corner(3R) 5-8-		, , , , ,	2N)					tions R502.11.1 and
	bracing.				2-8, Corner(3E) 1							ferenced standar	d ANSI/TPI 1.
REACTIONS	(size) 2=17-4-0	, 10=17-4-0, 12=17-4	-0,		t and right expose t;C-C for members				LOAD	CASE(S) Sta	ndard	
		0, 14=17-4-0, 15=17-	- /		shown; Lumber D			5					
		0, 17=17-4-0, 18=17-	4-0,	DOL=1.60	Shown, Eamber D	02-1.00	plate grip						
		0, 23=17-4-0	3)		ned for wind loads	in the p	lane of the tru	ISS					
	Max Horiz 2=-50 (LC		,		ds exposed to win								
	Max Uplift 2=-38 (LC	LC 15), 10=-45 (LC 11) LC 15), 13=-31 (LC 11			I Industry Gable E								
		_C 15), 13=-31 (LC 14	Ň		alified building des								
		_C 10), 18=-49 (LC 14			7-16; Pr=20.0 psf								
		_C 10), 23=-45 (LC 11			.15); Pf=20.0 psf (
	Max Grav 2=160 (L		/		s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	;					
		LC 22), 13=203 (LC 2		Cs=1.00; Ct=	snow loads have b		cidorod for th	vic					
		LC 22), 15=135 (LC 2	1), '	design.				115					1111
		LC 21), 17=203 (LC 2			s been designed f	or areat	er of min roof	live		~		TH UA	ROUL
		LC 21), 19=160 (LC 1), 0,		osf or 1.00 times fl					- (K		28 00	the state of the second st
	23=160 (,			on-concurrent with					Ť	3	tordF499	RAIOKAK
FORCES		npression/Maximum	7)	All plates are	2x4 MT20 unless	otherwi	se indicated.				1		
TOP CHORD	Tension 1-2=0/17, 2-3=-60/3	4 2 4 51/47	8)		es continuous bott		d bearing.			-			
TOP CHORD	4-5=-49/78, 5-6=-53		9)		spaced at 2-0-0 oc							SEA	
	7-8=-49/78, 8-9=-51		10		s been designed f					=		OFET	07
	10-11=0/17	, 10, 0 10 10, 01,			d nonconcurrent v					=	2	0557	21 : . :
BOT CHORD	2-18=-22/45, 17-18	=0/45. 16-17=0/45.	11		as been designed			pst			1		123
	14-16=0/45, 13-14=				n chord in all areas y 2-00-00 wide wi			m			32	1. 6.	a. Nº
	10-12=-18/45				y other members.			/11			1	A VGIN	EENN
WEBS		-193/109, 4-17=-170/8	36,		,						ELITIT	OFT	L 27 EER. HUM 12,2023
	3-18=-190/104, 7-14	,										WH K	Fun
	8-13=-170/86, 9-12	=-190/104										· · · · · · · · · · · · · · · · · · ·	mm.
												, luly	/ 12 2023
												Jui	, 12,2020



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	G	Common	2	1	Job Reference (optional)	159456647

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:00 ID:DP_INHM2klcG82JXPRIrjVyzBPX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

. .

3-11-0	7-10-0	
3-11-0	3-11-0	

Scale = 1:33.7				1	3-11-0		I	3-11	1-0		1		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.36 0.16 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 6-7 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 BRACING TOP CHORD 3 BOT CHORD 4 REACTIONS (s M M FORCES (TOP CHORD 4	6-0-0 oc purlins, exc Rigid ceiling directly pracing. ize) 6=0-3-0, 8 ax Horiz 8=96 (LC ax Uplift 6=-44 (LC	applied or 10-0-0 oc 3=0-3-0 13) 15), 8=-44 (LC 14) 2 22), 8=497 (LC 21) pression/Maximum 322, 3-4=-358/321, 309, 4-6=-454/307	6 d or 7 8 g	load of 12.0 overhangs n This truss ha chord live loa 3-06-00 tall li chord and ar One H2.5A \$ recommende UPLIFT at ju and does no This truss is International	as been designed psf or 1.00 times on-concurrent wit as been designed ad nonconcurrent has been designe m chord in all area oy 2-00-00 wide w ny other members Simpson Strong-T ed to connect trus (s) 8 and 6. This t consider lateral designed in acco Residential Code nd referenced sta Standard	flat roof li h other li for a 10. with any d for a liv as where vill fit betw s. Tie conne s to bear s to bear s to bear s to roces. rdance we	oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 \$ R502.11.1 a	osf on ads. 0psf tom ≥ to only					

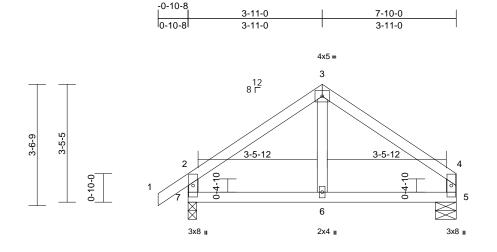
 Unbalanced roof live loads have been considered for this design.

3-7=-224/148

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 5-8-8, Exterior(2E) 5-8-8 to 8-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.


SEAL 055727 TH K. POHINI July 12,2023

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	G1	Common	1	1	I5945 Job Reference (optional)	56648

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:00 ID:?D?Cdqfjr_mjeujLNBFiEnyzBP8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

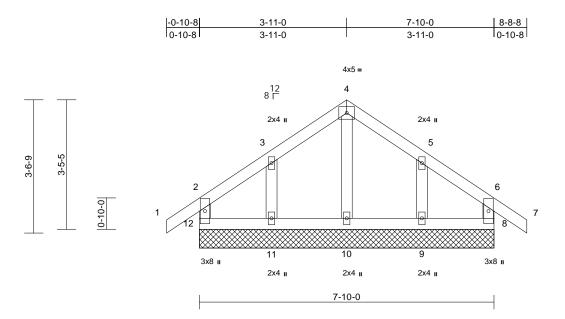
	3-11-0	7-10-0
I	3-11-0	3-11-0

	Scale = 1:33.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MR	0.37 0.18 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 5=0-7-5, 7 Max Horiz 7=91 (LC Max Uplift 5=-24 (LC Max Grav 5=387 (LC	cept end verticals. applied or 10-0-0 oc 7=0-3-0 11) : 15), 7=-44 (LC 14)	8)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jtt does not cor	s been designed f psf or 1.00 times fi on-concurrent with s been designed fi d nonconcurrent v has been designed n chord in all area by 2-00-00 wide wi y other members. Simpson Strong-Ti ed to connect truss s) 7. This connect sider lateral forces liTek connectors r	at roof lo other liv or a 10.0 with any l for a liv s where ll fit betv e connec to bear ion is for s.	bad of 20.0 p ve loads.) psf bottom other live loa e load of 20.1 a rectangle ween the bott ctors ing walls due uplift only an	sfon ads. Opsf om e to nd					
this design 2) Wind: ASC Vasd=103r	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-352/: 2-7=-399/309, 4-5=- 6-7=-167/205, 5-6=- 3-6=-217/144 dr oof live loads have to E 7-16; Vult=130mph mph; TCDL=6.0psf; B0 b B; Enclosed; MWFR:	323, 3-4=-359/318, 341/243 167/205 been considered for (3-second gust) CDL=6.0psf; h=25ft;	LC	connection is forces.) This truss is International	ing walls due to U s for uplift only and designed in accorr Residential Code nd referenced star Standard	l does no dance w sections	ot consider la ith the 2018 s R502.11.1 a					TH CA	NROjin,

- zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-8-4, Exterior(2E) 4-8-4 to 7-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 3) Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

H K. POHLUM July 12,20



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	GGE	Common Supported Gable	1	1	Job Reference (optional)	159456649

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:01 ID:eRc1th_b1mifwHRa5QEZzzyzBQ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

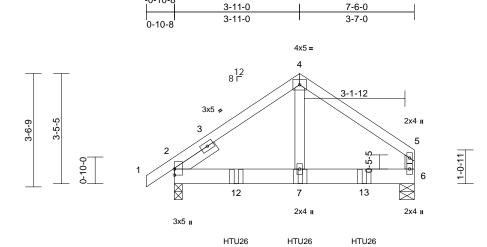
Loading	(psf)	Spacing
TCLL (roof)	20.0	Plate Grip I
Creany (Df)	20.0	Lunghan DC

Scale = 1:30.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc Rigid cei bracing. (size) Max Horiz Max Uplift Max Grav	lo.2 lo.3 lo.3 l wood she purlins, ex ling directly 8=7-10-0, 11=7-10-0 12=96 (LC 8=-26 (LC 11=-70 (L 8=211 (LC 10=174 (I 12=211 (L	C 14), 9=-69 (LC 15), C 14), 12=-29 (LC 1 C 22), 9=230 (LC 22) C 22), 11=230 (LC 22)	4 ed or 5 0, 6 5) 8 5) 9 21), 1	 only. For stt see Standarn or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Truss to be f braced again Gable studs This truss ha chord live loa 	ned for wind load dids exposed to w d Industry Gable ialified building d i.7-16; Pr=20.0 ps is=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times on-concurrent wi es continuous be ully sheathed fro iss lateral movern spaced at 2-0-0 as been designed ad nonconcurrent	ind (norm End Deta esigner a: sf (roof LL f (Lum DC at B; Fully been cor l for great flat roof li th other li th other li tho of the roof tho of the cor m one fac ent (i.e. co co. f for a 10. t with any	al to the face ils as applica is per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 insidered for the er of min roof pad of 20.0 p ve loads. d bearing. er or securely iagonal web) 0 psf bottom other live loa), ble, Pl 1. 1.15 D; D; live sf on ds.					
TOP CHORD	3-4=-76/	,	=0/57, 2-3=-52/62, 6/156, 5-6=-45/60, 160		on the bottor 3-06-00 tall t chord and ar	n chord in all are by 2-00-00 wide w by other members hanical connection	as where will fit betv s.	a rectangle veen the bott	, Dm					un.
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 1-11-0 to s cantilever right expo	8-9=-44/4 4-10=-13 ed roof live n. CE 7-16; Vu mph; TCDI p B; Enclos C-C Corner 5-11-0, Cor left and rig sed;C-C for ns shown;	85 i4/0, 3-11=- loads have ult=130mph .=6.0psf; B iced; MWFR r(3E) -0-10- ner(3E) 5-1 ht exposed r members	I=-44/85, 9-10=-44/8 193/143, 5-9=-193/1 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior. 8 to 1-11-0, Corner(; 1-0 to 8-8-8 zone; ; end vertical left and and forces & MWFR VL=1.60 plate grip	5, 48 1 L 3R) d	bearing plate 12, 26 lb upl uplift at joint 3) This truss is International	e capable of withe ift at joint 8, 70 lb 9. designed in accc Residential Code nd referenced sta	standing 2 uplift at jund ordance we sections	9 lb́ uplift at j bint 11 and 6 ith the 2018 ₅ R502.11.1 a	oint 9 lb			ELLIN	SEA 0557 VGIN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TATH K. POHLMIN


Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	GGR	Common Girder	1	2	Job Reference (optional)	159456650

0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

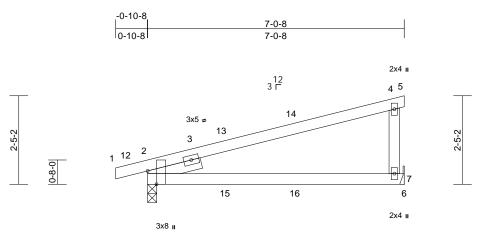
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:01 ID:mIX4RCA3yu3lhLxPq??YxdyzBOU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

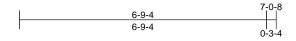
Page: 1

3-11-0	7-6-0
3-11-0	3-7-0

Scale = 1:36				I	3-11-0		1	3-7-0		1			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TP	12014	CSI TC BC WB Matrix-MP	0.33 1.00 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.26 0.05	(loc) 7-10 7-10 2	l/defl >549 >337 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chords oc. Bottom cho staggered Web conne 2) All loads a except ifn m CASE(S) s provided to unless other	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea 6-0-0 oc purlins, exu Rigid ceiling directly (size) 2=0-3-0, 6 Max Horiz 2=85 (LC Max Uplift 2=-193 (LI Max Grav 2=894 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-4=-580/ 5-6=-173/67 2-7=-51/59, 6-7=-10/ 4-7=-292/34 to be connected toget) nails as follows: s connected as follows: s connected as follows: ords connected as follows ords connected as follows prote considered equally oted as follows: 2x4 - re considered equally oted as fo	athing directly applie cept end verticals. applied. 5=0-5-8 11) C 12), 6=-195 (LC 10 C 19), 6=907 (LC 20) pression/Maximum 196, 4-5=-77/77, /7 ther with 10d s: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	Va Ca zoo an DC Solution Ca DC Ca Ca Ca Ca Ca Ca Ca Ca Ca C	sd=103mp t. II; Exp B ne; cantilev d right exp DL=1.60 pls; LL: ASCE tate DOL=1 DL=1.15); I =1.00; CL: balanced s sign. is truss ha do f 12.0 p erhangs nc is truss ha his truss ha his truss ha his truss ha the bottom D6-00 tall b ord and an are H2.5A S commende PLIFT at jt(s d does not is truss is (ernational 02.10.2 ar te Simpsor -10dx1 1/2 acced at 2-0 d to 5-11-4 ord. all nail ho CASE(S) lead + Sno corease=1. Iniform Loa	snow loads have l s been designed i post or 1.00 times f on-concurrent with s been designed i id nonconcurrent i as been designed id nonconcurrent as been designed y 2-00-00 wide w y other members. Simpson Strong-Ti d to connect truss s) 2 and 6. This co consider lateral f designed in accor Residential Code dr eferenced star a Strong-Tie HTU2 Truss, Single Ply D-0 oc max. startir to connect truss to connect truss les where hanger Standard w (balanced): Lur 15	BCDL=6 RS (envi- exposed in nd right of f (roof LL (Lum DC is B; Fully) been cor for greated at roof k is B; Fully been cor for greated at roof k is other lin for a 10.0 with any f for a liv s where e connection orces. dance w sections ndard AN 26 (20-10 ' Girder) ng at 1-1 (es) to ba	.0psf; h=25fi elope) exteri- end vertical exposed; Lur : Lum DOL= L=1.15 Plate Exp.; Ce=0. sidered for t er of min roo bad of 20.0 p re loads.) psf bottom other live loa e load of 20. a rectangle n is for uplift th the 2018 R 502.11.1 a th the 2018 R Stor 2.11.1 d Girder, or equivalen 1-4 from the tact with lur	or I left mber 41.15 e 9; his f live sof on only and t left ottom aber.			335 (l	B), 12=-335 (B), CH C ESS SEA 0557 78 78 74 K GIN	

- this design.
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-4=-60, 4-5=-60, 6-8=-20





Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	н	Monopitch	5	1	I5 Job Reference (optional)	9456651

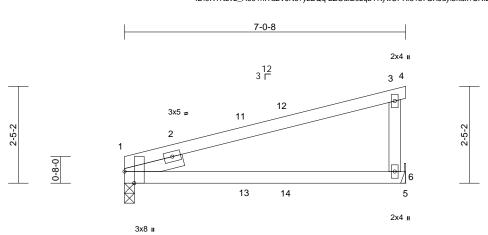
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:01 ID:KTXq?QfDiHz7LXcdC1n?2_yzBRj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

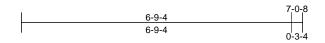
Page: 1

Scale = 1:31.6

Plate Offsets (X, Y): [2:0-4-6,Edge]

	·]							
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YI	-0-0 .15 .15 ES RC2018/TPI2014	CSI TC 0.93 BC 0.59 WB 0.00 Matrix-MP	DEFL in Vert(LL) 0.32 Vert(CT) -0.26 Horz(CT) -0.05	7-10 7-10	l/defl L/ >256 24 >314 18 n/a n/	0 MT20 0	GRIP 244/190 FT = 20%
REACTIONS (size) 2=0-3-0 Max Horiz 2=80 (L Max Uplift 2=130 Max Grav 2=424 (eathing directly applied or except end verticals. Iy applied or 10-0-0 oc (7 = Mechanical C 13) (LC 10), 7=-108 (LC 10) LC 21), 7=-381 (LC 21) mpression/Maximum 0/447, 4-5=-6/0, =0/0 bh (3-second gust) BCDL=6.0psf; h=25ft; RS (envelope) exterior 10-8 to 2-1-8, Interior (1) -8 to 7-0-8 zone; d; end vertical left and ght exposed;C-C for S for reactions shown; OL=1.60 (con LL: Lum DOL=1.15 (Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9;	 load of 12.0 p overhangs nd This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide med bearing plate joint 7. One H2.5A S recommende UPLIFT at jt(does not con This truss is International R802.10.2 ar LOAD CASE(S) 	as been designed for great psf or 1.00 times flat roof I on-concurrent with other li is been designed for a 10. ad nonconcurrent with any mas been designed for a liv in chord in all areas where by 2-00-00 wide will fit betw y other members. er(s) for truss to truss com hanical connection (by oth e capable of withstanding 1 Simpson Strong-Tie conne ed to connect truss to bear (s) 2. This connection is for isider lateral forces. designed in accordance w Residential Code sections and referenced standard AN Standard	bad of 20.0 psf on ve loads. D psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom nections. ers) of truss to 08 lb uplift at ctors ing walls due to r uplift only and ith the 2018 s R502.11.1 and			SEA 0557	• -


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	H1	Monopitch	1	1	Job Reference (optional)	159456652

Run: 8.63 E May 25 2023 Print: 8.630 E May 25 2023 MiTek Industries, Inc. Wed Jul 12 08:36:52 ID:9RTNzvL_Ho91hITa2VJNs?yzBQq-2ZOdIB0zqbYKywUPXf31b7GXJdyibflax?SRiEyysY9

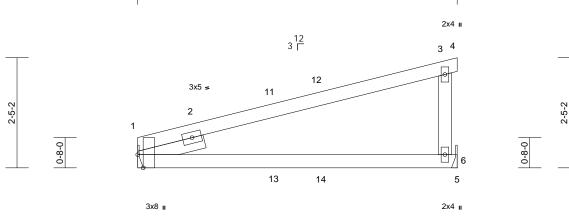
Page: 1

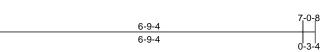
Scale = 1:28.9

Plate Offsets (X, Y): [1:0-3-8,Edge]

	X, 1). [1.0 0 0,Euge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.95 0.62 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.33 -0.27 -0.06	(loc) 6-9 6-9 1	l/defl >243 >305 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103; Cat. II; Exp zone and 0 3-0-0 to 4- cantilever right expos members a Lumber D0 2) TCLL: ASC Plate DOL D0L=1.15 Cs=1.00; 0	2-2-0 oc purlins, exe Rigid ceiling directly bracing. (lb/size) 1=270/0-3 Max Horiz 1=76 (LC Max Uplift 1=-96 (LC Max Uplift 1=-96 (LC Max Grav 1=355 (LC (lb) - Maximum Com Tension 1-2=-315/524, 2-11= 3-12=-38/57, 3-4=-6 1-13=-318/425, 13-1 5-6=0/0 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bf o B; Enclosed; MWFR3 C-C Exterior(2E) 4-0-6 left and right exposed left and right exposed left and right exposed left and right exposed sed; porch left and righ and forces & MWFRS DL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (L 1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat B	athing directly applied cept end verticals. applied or 10-0-0 oc 3-0, 6=293/ Mechanic 13) 10), 6=-110 (LC 10) 2 20), 6=385 (LC 20) pression/Maximum -58/41, 11-12=-38/46 (0, 3-6=-270/213 4=-26/39, 6-14=-26/3 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-0, Interior (1) 3 to 7-0-8 zone; ; end vertical left and tt exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9;	5) 1 or 6) 7) 8) 10 3) 10 3) 10 39, LC 15	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate Provide mec bearing plate 6. One RT4 Mir truss to bear connection s forces.) This truss is International	Is been designed f ad nonconcurrent to has been designed in chord in all area by 2-00-00 wide wi hy other members. er(s) for truss to tru- hanical connection at joint(s) 1. hanical connection capable of withst Tek connectors rea- ing walls due to Ut s for uplift only and designed in accorr Residential Code and referenced star Standard	with any I for a liv s where III fit betw uss conr (by oth anding 1 commen PLIFT at I does no dance w sections	other live load e load of 20. a rectangle veen the bott nections. ers) of truss i 10 lb uplift ai ded to conne jt(s) 1. This of consider la ith the 2018 s R502.11.1 a	Opsf om to to t joint ect ateral			e el tritte	SEA 0557	• -

July 12,2023


Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	H2	Monopitch	3	1	Job Reference (optional)	159456653


7-0-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:02 ID:9RTNzvL_Ho91hITa2VJNs?yzBQq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

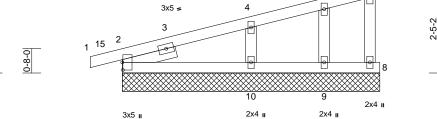
Page: 1

Scale = 1:25.4

Plate Offsets (X, Y): [1:0-3-8,Edge]

	(x, i): [1:0 0 0,Edg0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-MP	0.95 0.62 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.33 -0.27 -0.06	(loc) 6-9 6-9 1	l/defl >243 >305 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex zone and 3-0-0 to 4- cantilever right expo: members Lumber DOL	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Left 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=76 (LC Max Uplift 1=-96 (LC Max Uplift 1=-96 (LC (lb) - Maximum Com Tension 1-3=-315/524, 3-4=- 1-6=-318/425, 5-6=(C CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br p B; Enclosed; MWFR C-C Exterior(2E) -0-0- 0-8, Exterior(2E) -0-0- left and right exposed sed; porch left and rigf and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	athing directly applie cept end verticals. applied or 10-0-0 o anical, 6= Mechanica 13) 2 10), 6=-110 (LC 10 C 20), 6=385 (LC 20 pression/Maximum 6/0, 3-6=-270/213)/0 1 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exteric 1 to 3-0-0, Interior (1 3 to 7-0-8 zone; ; end vertical left an nt exposed;C-C for for reactions shown DL=1.60 roof LL: Lum DOL=:	on the 3-06- chord 6) Refer 7) Provi- ed or 1 and c 8) This t Interr al LOAD CA 0) 0) 1)	truss has been designe e bottom chord in all are 00 tall by 2-00-00 wide v and any other member to girder(s) for truss to de mechanical connecting plate capable of withe 110 lb uplift at joint 6. russ is designed in acco ational Residential Cod 10.2 and referenced sta SE(S) Standard	eas where will fit betw s. truss coni on (by oth standing s ordance w e sections	a rectangle ween the bott nections. ers) of truss 06 lb uplift at ith the 2018 \$ R502.11.1 a	to joint		2		SEA	AROJINA D
design.4) This truss	ed snow loads have be has been designed for load nonconcurrent wi	r a 10.0 psf bottom								in the	ABETH K	EEP

July 12,2023


Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	HGE	Monopitch Supported Gable	1	1	Job Reference (optional)	159456654


2-5-2

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:03 ID:1aYKOOAVMhpxxEzIlwYOtKyzBSM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

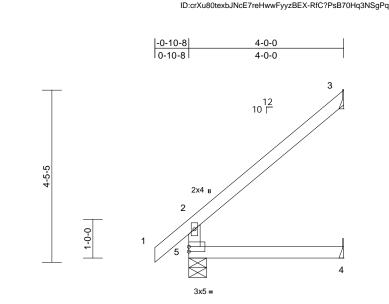
-0-10-8 7-0-8 0-10-8 7-0-8 2x4 u 12 3 Г 2x4 II 67 2x4 II 5

Scale = 1:31.5

Plate Offsets (X, Y): [2:0-2-8,0-0-3]

Fiale Olisels	(X, T). [2.0-2-0,0-0-3]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.16 0.12 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=7-0-8, - 9=7-0-8, - Max Horiz 2=80 (LC Max Uplift 2=-41 (LC (LC 14), 5 14), 11=-4 Max Grav 2=226 (LC (LC 21), 5 (LC 21), 5 	eathing directly applied c cept end verticals. r applied or 10-0-0 oc 7=7-0-8, 8=7-0-8, 10=7-0-8, 11=7-0-8 13), 11=80 (LC 13) C 10), 7=-3 (LC 13), 8=- 3=-14 (LC 10), 10=-61 (I 41 (LC 10) C 21), 7=1 (LC 21), 8=8 3=120 (LC 21), 10=368 11=226 (LC 21)	3) 5) 6) 7) 14 8) 5 5	only. For st see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa	snow loads have as been designed psf or 1.00 times i on-concurrent witt es continuous bot spaced at 2-0-0 o is been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w by other members	nd (norm End Deta ssigner as is for for LL (Lum DC t B; Fully been cor for great flat roof la h other lin tom chor oc. for a 10.0 with any d for a liv as where ill fit betv.	al to the face ils as applical is per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 ps we loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottom), ble, PI 1. 1.15 9; his f live sf on dds. 0psf om					
Vasd=10: Cat. II; Ex zone and 2-1-8 to 7 end vertio forces & I	5-6=-32/46, 6-7=-5/(2-10=-26/48, 9-10=- 4-10=-267/234, 5-9= 3mph; TCDL=6.0psf; B 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Corner(3E) -0-10 7-0-8 zone; cantilever le	1, 4-5=-43/52, 0, 6-8=-69/54 26/48, 8-9=-26/48 =-112/105 1 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-1-8, Exterior(2N) 6ft and right exposed; ad;C-C for members and	11) LOA	bearing plate 2, 3 lb uplift a joint 10, 14 ll This truss is International	hanical connectio capable of withs at joint 7, 14 lb up o uplift at joint 9 a designed in accor Residential Code nd referenced sta Standard	tanding 4 lift at join nd 41 lb rdance w e sections	1 lb uplift at j t 8, 61 lb uplit uplift at joint 2 ith the 2018 \$ R502.11.1 a	joint ft at 2.			ELLIN	SEA 0557 SEA	• -

- -8 to 7-0-8 zone: cantilever left and right exit end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	Ι	Jack-Open	9	1	I59456655 Job Reference (optional)	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:03 ID:crXu80texbJNcE7reHwwFyyzBEX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

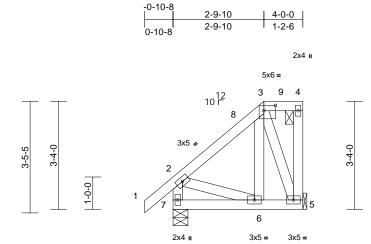
4-4-0

Page: 1

Scale = 1:29.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (l	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43				>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.29				>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT) -	0.03	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER				uss has been designe			f					
TOP CHORD				ottom chord in all are tall by 2-00-00 wide								
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3			nd any other member		ween the bottom						
	2X4 SP N0.5			ngs are assumed to I		efined crushing						
BRACING TOP CHORD	Structural wood she	athing directly appli	, oonooiti	of 425 psi.		j						
	4-0-0 oc purlins, ex		8) Refer to	girder(s) for truss to	truss con	nections.						
BOT CHORD				mechanical connecti								
	bracing.			plate capable of with	standing 9	92 lb uplift at join	t					
REACTIONS	(size) 3= Mecha	anical, 4= Mechanic		lb uplift at joint 4. is is designed in acco	ordance w	vith the 2018						
	5=0-5-8	.		onal Residential Cod								
	Max Horiz 5=133 (L	,	R802.10	.2 and referenced sta	andard Al	NSI/TPI 1.						
	Max Uplift 3=-92 (LC Max Grav 3=176 (L		5-307 LOAD CAS	E(S) Standard								
	(LC 21)	021), 4-72 (207),	0=001									
FORCES	(lb) - Maximum Con	npression/Maximum										
TOP CHORD	Tension 2-5=-284/85, 1-2=0/	39 2-3-143/87										
BOT CHORD	,	00, 2 0= 140/07										
NOTES												
1) Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)										
	Bmph; TCDL=6.0psf; B											III.
	p B; Enclosed; MWFR										11"IL C	AD
	C-C Exterior(2E) zone end vertical left and ri								0	1	IQT.A	10/11
	and forces & MWFRS								(১	2	EE\$	5100 N 2
	OL=1.60 plate grip DC		',						Ϋ́	77	TRASH 1	
	CE 7-16; Pr=20.0 psf		1.15							/	NO V	
	_=1.15); Pf=20.0 psf (L								=		SE/	AL 1 1
	5); Is=1.0; Rough Cat I	B; Fully Exp.; Ce=0.	9;						=	:		• •
Cs=1.00; (Ct=1.10 ed snow loads have be	on considered for t	hic						=		0557	/27
 Unbalance design. 	eu snow loads nave be	een considered for t	1115						111111	E		EER. WIT
	has been designed fo	r greater of min root	f live									Q . N .
	.0 psf or 1.00 times fla									11	A NGIN	IEE. W.
	s non-concurrent with										OFT	pOr in
	has been designed fo									1	TH W	(
chord live	load nonconcurrent w	ith any other live loa	ads.									mm
											lu lu	1/ 12 2023

4-0-0


- overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

July 12,2023

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A
23060130-01	11	Half Hip	1	1	I59456656 Job Reference (optional)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:03 ID:oyh2Rm0XL_ipQxTyo5dVCHyzBEM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

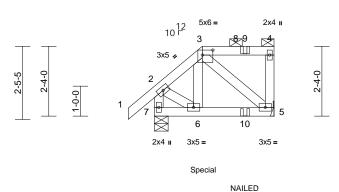
2-7-14	4-0-0
2-7-14	1-4-2

Scale = 1:35.5

Plate Offsets (X, Y): [3:0-4-4,0-2-0]

	(,,, ,). [0:0 : 1,0 2 0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.05 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	cept end verticals, a l. applied or 10-0-0 or anical, 7=0-5-8 C 11) C 11), 7=-24 (LC 14) C 35), 7=319 (LC 36	nd 7) _C 8) 9) 1(design. This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss l on the botto 3-06-00 tall l chord and an Refer to gird)) One H2.5A S recommende	snow loads have as been designed psf or 1.00 times on-concurrent wit quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to Simpson Strong-T ed to connect trus (s) 7 and 5. This c	for great flat roof I h other li prevent for a 10. with any d for a liv as where vill fit betw s. truss cor ie conne as to bear	er of min roo oad of 20.0 p we loads. water pondin 0 psf bottom other live loa re load of 20. a rectangle ween the bott nections. ctors ing walls due	f live osf on g. ads. Opsf com					
TOP CHORD	Tension 1-2=0/63, 2-3=-153/ 4-5=-51/25, 2-7=-29		1'	I) This truss is	t consider lateral designed in acco Residential Code	rdance w		and					
BOT CHORD	,				nd referenced sta								
WEBS	3-6=-4/87, 3-5=-166	68, 2-6=-40/120	12		Irlin representatio ation of the purlin			size					
NOTES	ed roof live loads have	been considered fo	r	bottom chore		along th	e top anu/or						A.D.111
this desig 2) Wind: AS Vasd=10 Cat. II; Ez zone and 2-1-8 to 2 cantilever right expo for reaction DOL=1.6	gn. iCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Exterior(2E) -0-10 2-9-10, Exterior(2E) 2-9 r left and right exposed osed;C-C for members ons shown; Lumber DC	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Exterior -10 to 3-10-4 zone; ; end vertical left an and forces & MWFR 0L=1.60 plate grip	L(or (2R) d &S	DAD CASE(S)	Standard						Contraction of the second	SEA 0557	• -
Plate DO	L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	um DOL=1.15 Plate									111	ABETH K	POHLIN

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A
23060130-01	I2GR	Half Hip Girder	1	1	I59456657 Job Reference (optional)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:04 ID:5fFqIE7FhFHmT3VeBQG4whyzBCw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 1-7-3 4-0-0 1-7-3 2-4-13 0-10-8

Special

4-0-0 1-5-7 1-5-7

2-6-9

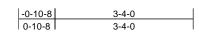
Scale = 1:38.5

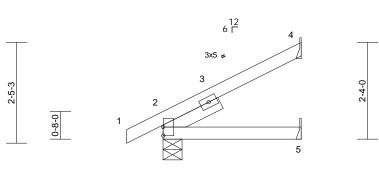
Plate Offsets	(X,	Y):	[3:0-4-4,0-2-0]
---------------	-----	-----	-----------------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.10 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 BOT CHORD 2x4 BRACING TOP CHORD Stru 4-0- 2-0- BOT CHORD Rigit brac REACTIONS (size) Max H Max U Max C FORCES (lb) FORCES (lb) FORCES (lb) FORCES (lb) FORCES (lb) FORCES (lb) FORCES (lb) FORCES (lb) FORCES (lb) Max H Max U Max C FORCES (lb) FORCES	SP No.2 SP No.2 SP No.3 ctural wood she 0 oc purlins, ex 0 oc purlins; 3-4 d ceiling directly ing. 5= Mecha Horiz 7=85 (LC Jplift 5=-64 (LC Grav 5=279 (LC • Maximum Com 50/63, 2-3=-217/ -132/42, 2-7=-3 =0/84, 3-5=-172/ live loads have 6; Vult=130mph fCDL=6.0psf; B nclosed; MWFR left and right ex id; Lumber DOL 6; Pr=20.0 psf (L .0; Rough Cat E 0	applied or 10-0-0 oc anical, 7=0-5-8 9) 2 (9), 7=-57 (LC 12) 2 (3), 7=371 (LC 34) pression/Maximum 44, 3-4=-26/20, 68/58 /127 57, 2-6=-30/152 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior posed ; end vertical I =1.60 plate grip	6) 7) dor 8) 5 9) 10 11 12 13 14 15 15 ; 16	load of 12.0 overhangs n Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 5. O ne H2.5A S recommende UPLIFT at jt(does not cor the orient bottom chore W This truss is International R802.10.2 at 0 Graphical pu or the orient bottom chore W ThAILED" ind (0.148"x3.25 i) Hanger(s) or provided suff Ib down and down and 9 I design/selec responsibility i) In the LOAD of the truss a	dicates 3-10d (0.14 ") toe-nails per ND other connection of icient to support co 76 lb up at 1-7-3 or b tion of such connect of others. CASE(S) section, re noted as front (I Standard ww (balanced): Lurr 15	at roof I other Ii orevent or a 10. with any for a liv s where I fit betw uss conne to bear on is fo dance w sections dard AN does n long the 18"x3") of S guidli device(s oncentra on top co toto n co	bad of 20.0 p: ve loads. water ponding 0 psf bottom other live loa re load of 20.0 a rectangle veen the bottur nections. ers) of truss t 44 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a VSI/TPI 1. to depict the se a top and/or or 3-12d nes. i) shall be ated load(s) 1 hord, and 33 hord. The vice(s) is the pplied to the f ck (B).	sf on g. dds. Opsf oom to joint to nd and size 09 Ib	Co	oncentra Vert: 3=	ted Lo ⊧-67 (B	2-3=-60, 3-4=-60 ads (lb)	0, 5-7=-20 39 (B), 10=-31 (B)

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)


July 12,2023


Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	J	Jack-Open	2	1	I5945665 Job Reference (optional)	58

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:04 ID:wY4gRT_LHtvJeN9W1caV_MyzBD5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

3x5 ш

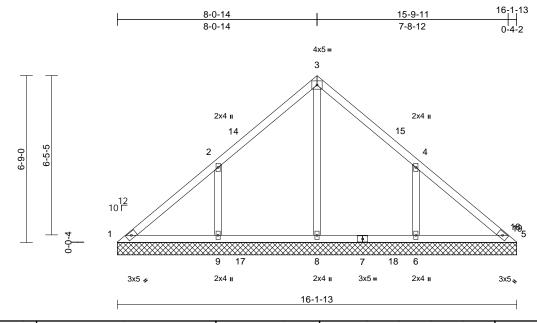
3-4-0

Scale = 1:27.8

Plate Offsets (X, Y): [2:0-2-8,0-0-1]

	(,,, ,). [2:0 2 0,0 0 1]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		truss has been design			in -0.01 -0.01 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 3-4-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=274 (LC Max Grav 2=276 (LC 5=58 (LC (lb) - Maximum Com	athing directly applie applied or 10-0-0 or 4= Mechanical, 5= 14) 5 14), 4=-44 (LC 14) 5 21), 4=124 (LC 21 7)	chor 6) * Thi on th 3-06 chor 7) All b capa 8) Refe 9) Prov bear 4. 10) One reco 0, UPL does	d live load nonconcurre s truss has been desig le bottom chord in all a -00 tall by 2-00-00 wid d and any other memb earings are assumed tu city of 425 psi. r to girder(s) for truss t ide mechanical connect ing plate capable of wi H2.5A Simpson Strong mmended to connect tu IFT at jt(s) 2. This conr not consider lateral fo truss is designed in ac	ent with any ined for a liv reas where e will fit betw ers. o be User D o truss conr tition (by oth thstanding ² g-Tie conne russ to bear nection is for rces.	other live loa e load of 20. a rectangle veen the bott efined crushi nections. ers) of truss 4 lb uplift at ctors ing walls due uplift only a	Opsf tom to joint e to					
Vasd=102 Cat. II; Ex zone and exposed ; members Lumber D DOL=1.15 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12	2-5=-110/78 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B φ B; Enclosed; MWFR C-C Exterior(2E) zone ; end vertical left and riu and forces & MWFRS JOL=1.60 plate grip DC iCE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio; ; cantilever left and 1 ght exposed;C-C for for reactions shown IL=1.60 roof LL: Lum DOL=1 IS Fully Exp.; Ce=0.9 even considered for the r greater of min roof t roof load of 20.0 ps	R80; LOAD C ight 1.15 ; is live	national Residential Co 2.10.2 and referenced : ASE(S) Standard			and				SEA 0557 SEA 0557	27

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A MiTek Affiliate B18 Soundside Road Edenton, NC 27932

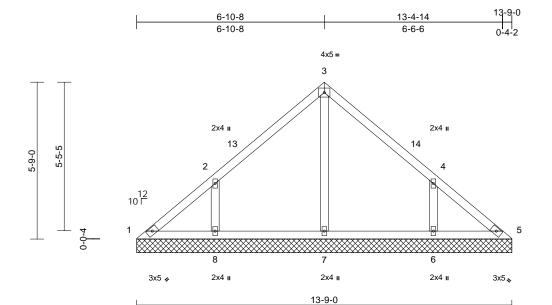
Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V1	Valley	1	1	Job Reference (optional)	159456659

Scale = 1:46.6

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:04 ID:DTBTk2iEBbrKjDFXxKE1mCyzBJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.16 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	lo.2 lo.3 lo.3 ling directly 1=16-1-13 8=16-1-13 1=153 (LC 9=-177 (L 1=127 (LC	: 10), 6=-173 (LC 15 C 14) C 28), 5=87 (LC 26), C 6), 8=465 (LC 23),	5) 1-13, 6) 7)), 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th	hed for wind load hds exposed to w d Industry Gable alified building d 7-16; Pr=20.0 psi is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed y 2-00-00 wide v y other members	ind (norm End Deta esigner as sf (roof LL (Lum DC at B; Fully been cor ttom chor bc. for a 10.0 with any ed for a liv as where vill fit betw	al to the face ils as applica s per ANSI/TI :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loas e load of 20.1 a rectangle veen the bott), ble, PI 1. 1.15 e 9; his ds. Dpsf om					
FORCES	Tension 1-2=-150	/212, 2-3=-	pression/Maximum 132/163, 3-4=-133/1) Provide mec bearing plate	hanical connection capable of withs ft at joint 9 and 1	on (by oth standing 2	ers) of truss t 1 lb uplift at j	0					
BOT CHORD WEBS NOTES	5-6=-95/	133, 8-9=-9 118	5/118, 6-8=-95/118, 7/212, 4-6=-386/210	h) This truss is International	designed in acco Residential Code nd referenced sta	rdance w e sections	ith the 2018 R502.11.1 a	Ind				TH CA	ROL


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-1-3, Exterior(2R) 5-1-3 to 11-1-3, Interior (1) 11-1-3 to 12-9-9, Exterior(2E) 12-9-9 to 15-9-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V2	Valley	1	1	Job Reference (optional)	159456660

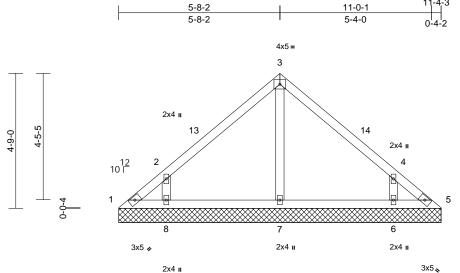
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:05 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1.12.2
Scale =	1:42.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.11 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-9-0 7=13-9-0 Max Horiz 1=-131 (L Max Uplift 1=-26 (LC 8=-151 (L Max Grav 1=115 (LL 6=444 (Lu 8=444 (Lu	, 5=13-9-0, 6=13-9-0 , 8=13-9-0 C 12) C 10), 6=-148 (LC 15 C 14) C 24), 5=91 (LC 23), C 21), 7=288 (LC 21) C 20)	5) 7 6) 7) 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha	ned for wind loads ids exposed to wi d Industry Gable E ialified building de 7-16; Pr=20.0 ps 1.5); Pf=20.0 ps Is=1.0; Rough Ca 1.10; snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed by 2-00-00 wide w by other members	nd (norm and Deta signer as f (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where s where ill fit betw	al to the face ils as applica is per ANSI/TI \perp : Lum DOL= \perp =1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle), ble, PI 1. 1.15 d; his ds. Dpsf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-2=-143/120, 2-3=- 4-5=-113/83 1-8=-50/113, 7-8=-5	191/116, 3-4=-191/1	14,	bearing plate 1, 151 lb upli) This truss is	hanical connectio capable of withs ift at joint 8 and 14 designed in accor	anding 2 18 lb uplif dance w	e lb uplift at j? It at joint 6. ith the 2018	oint					
WEBS NOTES	5-6=-50/91	4/193, 4-6=-374/191	L		Residential Code nd referenced sta Standard			na		C		WITH CA	ROL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 2-10-13, Interior (1) 2-10-13 to 3-10-13, Exterior(2R) 3-10-13 to 9-10-13, Interior (1) 9-10-13 to 10-9-5, Exterior(2E) 10-9-5 to 13-9-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V3	Valley	1	1	Job Reference (optional)	159456661

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:05 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-4-3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 46 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SP N BRACING	0.2		only. For st see Standa or consult q	ned for wind load uds exposed to wi rd Industry Gable I ualified building de E 7-16; Pr=20.0 ps	nd (norm End Deta esigner as of (roof LL	al to the face ils as applical s per ANSI/TF .: Lum DOL=), ble, ⊃I 1. 1.15					

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 12 lb uplift at joint 5, 138 lb uplift at joint 8 and 134 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=11-4-3, 5=11-4-3, 6=11-4-3, 7=11-4-3, 8=11-4-3 Max Horiz 1=-107 (LC 10) Max Uplift 1=-39 (LC 10), 5=-12 (LC 11), 6=-134 (LC 15), 8=-138 (LC 14) 1=75 (LC 24), 5=56 (LC 26), 6=442 Max Grav (LC 21), 7=252 (LC 21), 8=442 (LC

Scale = 1:40.6

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-123/101, 2-3=-224/112, 3-4=-224/112, 4-5=-100/66 BOT CHORD 1-8=-33/74, 7-8=-25/74, 6-7=-25/74, 5-6=-34/74

20)

- WEBS 3-7=-163/0, 2-8=-434/243, 4-6=-434/243 NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-4-8, Exterior(2E) 8-4-8 to 11-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V4	Valley	1	1	Job Reference (optional)	159456662

4-5-11

4-5-11

Carter Components (Sanford), Sanford, NC - 27332,

3-5-5

-0-0

3-9-0

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:06 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-7-4

4-1-9

8-11-6

GRIP 244/190

FT = 20%

2 9 10 12 10 □ 0 3 4 3x5 🍫 2x4 II 3x5 💊 8-11-6 1 DEEL IN PLATES 2-0-0 (loc) l/dofl ht: 34 lb

4x5 =

Scale = 1:32

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.40 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATE MT20 Weight
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 8-11-6 oc purlins. Rigid ceiling directly bracing. (size) 1=8-11-6, Max Horiz 1=-84 (LC Max Uplift 1=-55 (LC 4=-114 (L Max Grav 1=75 (LC (LC 21) (lb) - Maximum Com Tension 1-2=-137/342, 2-3=-	3=8-11-6, 4=8-11-6 10) 21), 3=-55 (LC 20), C 14) 20), 3=75 (LC 21), 4= pression/Maximum 137/342	5) or 6) 7) 8) 9) 732 10	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 1, 55 lb upliff) This truss is International	snow loads have es continuous b spaced at 4-0-C is been designe ad nonconcurrer nas been designe n chord in all ar oy 2-00-00 wide y other membe hanical connect e capable of with at joint 3 and 1 designed in acc Residential Con	sf (Lum DC Cat B; Fully ve been cor oottom chor o oc. d for a 10.0 nt with any ned for a 10.0 nt with any ned for a liv eas where will fit betw ers. tion (by oth hstanding 5 (14 lb uplift La buplift cordance w de sections	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottot ers) of truss t 5 lb uplift at j at joint 4. the the 2018 s R502.11.1 a	ds. Dpsf om o oint				
WEBS	2-4=-551/273	2017107	LC	AD CASE(S)	nd referenced s Standard	tandard Ar	ISI/TPI 1.					
NOTES												
, this desig	ed roof live loads have n.											min

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-11-11, Exterior(2E) 5-11-11 to 8-11-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

H K. POHLMIN July 12,20' TITLE THE TANK

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V5	Valley	1	1	Job Reference (optional)	3

2-5-5

0-0-4

2-9-0

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:06 ID:XFryJlebWm?dvpUHJx6YFyyzBHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

2x4 💊

6-6-10 6-2-8 3-3-5 3-3-5 2-11-3

> 4x5 = 2

ю

4 2x4 II

6-6-10

10 L

2x4 🦼

1

Scale = 1:28

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 GTHERS 2x4 SP No.3 BACIMO TOP CHORD Structural wood sheating directly applied or 6-0-0 or bracing. BOT CHORD Right online (CL) BOT CHORD Has Horz REACTIONS (size) Was Horz 1-66-10, 3-66-10, 4-66-10 (LC 4) Max Horz 1-66-10, 3-66-610, 4-66-10 (LC 4) Max Horz 1-102 (LC 20), 3-67 (LC 20), 4-66 (LC 4) Max Grav 1-102 (LC 20), 3-67 (LC 20), 4-66 (LC 4) Max Grav 1-102 (LC 20), 3-50 (LC 20), 4-66 (LC 4) Max Grav 1-102 (LC 20), 3-50 (LC 21), 4-457 (LC 20) FORCES (b) - Maximum Tensity TOP CHORD 1288/1188, 2-388/188 BOT CHORD 1288/1288, 2-388/188 BOT CHORD 1288/127 (B): VUH=130mph (3-second gus) Yasabe Condestor 10-10-1630mph: TCDL-6-6.0psf: In-26/15; cca. II: Exp E-160/csc. WMFRS (emelyce) exterior cross and C-C Exterior(2E) zone; camilever left and right seposed: rul write loads in the plane of the truss only, For stude seposed to and thruss of seposed co-10 for members and forces & MWFRS (or hadright points as applicable, or crossul qualified building designer as per ANSUTPI 1. OT LI-68/CE FTIS (-FTRC) C-10.0 ppt (mod LLL LI DUD-L-15)	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	2 2 1	psf) 20.0 20.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.21 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
 FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-88/188 2-3=-88/188 BOT CHORD 1-4=-136/134, 3-4=-136/134 WEBS 2-4=-316/168 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural woo 6-6-10 oc purl Rigid ceiling d bracing. (size) 1=6 Max Horiz 1=6 Max Uplift 1=- (LC Max Grav 1=1	ins. lirectly 6-6-10, 60 (LC 5 (LC 2 5 (LC 2 5 (LC 2 14) 102 (LC	applied or 6-0-0 oc 3=6-6-10, 4=6-6-10 11) 21), 3=-5 (LC 20), 4= 2 20), 3=102 (LC 21)	6 7 8 d or 5 1 -60	 design. Gable requir. Gable studs This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 5 lb uplift at 	es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members hanical connection e capable of withst at joint 3 and 60 lb designed in accor	tom chor ic. for a 10.0 with any d for a liv as where ill fit betv n (by oth tanding 5 o uplift at rdance w	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t i lb uplift at jo joint 4. ith the 2018	ids. Opsf om int				<u> </u>	
Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 July 12,2023	TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1037 Cat. II; Exp zone and C exposed ; 6 members a Lumber DC 3) Truss desi on ly. For s see Standa or consult C 4) TCLL: ASC Plate DOL= DOL=1.15)	(lb) - Maximun Tension 1-2=-88/188, 2 1-4=-136/134, 2-4=-316/168 dr oof live loads E 7-16; Vult=13 mph; TCDL=60 b B; Enclosed; N C-C Exterior(2E) end vertical left and forces & MV DL=1.60 plate g igned for wind lis studs exposed to ard Industry Gat qualified building CE 7-16; Pr=20. =1.15); Pf=20.0); Is=1.0; Rough	n Com 2-3=-88 3-4=- 3 have 30mph psf; B0 MWFRS) zone; and rig WFRS irip DO bads in o wind ble Enc g desig (0 psf (Li	pression/Maximum 8/188 136/134 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri ht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI roof LL: Lum DOL=1.	ght ss le, 11. 15			ndard AN	ISI/TPI 1.			. and the second s	U P		• -

- Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V6	Valley	1	1	Job Reference (optional)	59456664

2-0-14

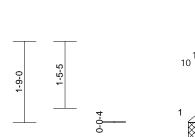
2-0-14

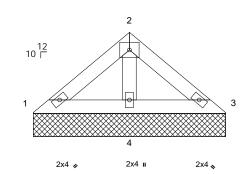
Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:06 ID:?RPKW5fDG37UXz3Ttedno9yzBHP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-9-11

1-8-12




Page: 1

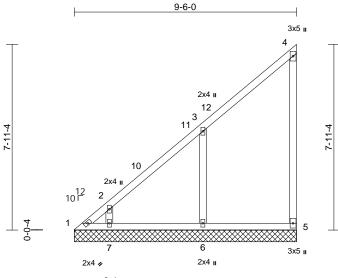
July 12,2023

GINEERING

818 Soundside Road Edenton, NC 27932

4-1-13

4x5 =


Scale = 1:24.9

Scale = 1:24.9													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.08 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-1-13 oc purlins. Rigid ceiling directly bracing. (size) 1=4-1-13, Max Horiz 1=37 (LC Max Uplift 1=-1 (LC Max Grav 1=79 (LC (LC 14) Max Grav 1=79 (LC (LC 20)	applied or 6-0-0 oc , 3=4-1-13, 4=4-1-13 11) 14), 3=-8 (LC 15), 4	6) 7) 8) ed or 9) 3 10) =-25	design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Provide mech bearing plate 1, 8 lb uplift a This truss is International	snow loads have be es continuous both spaced at 4-0-0 oc s been designed fu d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withstat t joint 3 and 25 lb designed in accord Residential Code d referenced stan	om chor c. or a 10.1 with any for a liv s where Il fit betw anding 1 uplift at dance w sections	d bearing.) psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t lb uplift at joi joint 4. ith the 2018 : R502.11.1 a	ds.)psf om o					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-72/76, 2-3=-72 1-4=-60/69, 3-4=-60 2-4=-136/67	/76	LO	AD CASE(S)	Standard								
NOTES	2-4=-130/07												
1) Unbalance	ed roof live loads have	been considered fo	r										110.
 Vasd=103 Cat. II; Exp zone and 0 exposed; members a Lumber D0 3) Truss des only. For a see Stand or consult 4) TCLL: ASC Plate DOL 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC signed for wind loads ii studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; S (envelope) exteric ; cantilever left and l ght exposed;C-C for for reactions shown DL=1.60 n the plane of the tru l (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate	or right ; uss),),) ble, 11. 1.15							. entities.	ELVIN ELVIN	SEA 0557	AROLINA NANCIAL 27 EER. HINTIN

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V11	Valley	1	1	Job Reference (optional)	159456665

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:07 ID:MUJwr2X04VK7oB8VeTRuFYyzBGG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-6-0

2x4 II

Scale = 1:49.3

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-CPlate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC	5	CSI TC BC WB Matrix-MSH	0.65 0.17 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins, exty bracing. REACTIONS (size) 1=9-6-0, 5 Max Horiz 1=271 (LC 6=-136 (LC Max Grav 1=159 (LC 6=508 (LC FORCES (lb) - Maximum Com Tension	applied or 10-0-0 oc 3=9-6-0, 6=9-6-0, 7=9-6-0 2 11) 12), 5=-65 (LC 11), C 14), 7=-100 (LC 14) 2 11), 5=218 (LC 5), 3 5), 7=307 (LC 23) pression/Maximum 224/278, 3-4=-174/157, 96/134, 5-6=-96/134 223/202 (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) exterior to 3-0-5, Interior (1) 10 to 9-4-9 zone; end vertical left and and forces & MWFRS L=1.60 plate grip the plane of the truss (normal to the face), 1 Details as applicable,	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 5, 91 lb uplift uplift at joint This truss is international 	snow loads have b es continuous bott spaced at 4-0-0 oc s been designed for d nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wil yo other members, hanical connection capable of withsta at joint 1, 136 lb u 7. designed in accorc Residential Code and referenced stan	Lum DC B; Fully peen cor om chor c. or a 10. vith any for a livs s where I fit betw with BC (by oth anding 6 plift at ju dance w sections	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botth DL = 10.0psf ers) of truss to 55 lb uplift at j point 6 and 100 ith the 2018 is R502.11.1 a	ds. opsf om ooint o lb			O THINK	Weight: 50 lb	ROLINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V12	Valley	1	1	Job Reference (optional)	156666

Scale = 1:42.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES 1)

2)

TOP CHORD

BOT CHORD

DOL=1.60

REACTIONS (size)

bracing.

Max Grav

Tension

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:07

Page: 1

818 Soundside Road Edenton, NC 27932

ID:BehB56cngL4GW6cf?kYJVpyzBGA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 8-3-10 2x4 II 3 10 2x4 2 6-11-4 6-11-4 9 8 12 10 □ 0-0-4 4 5 11 2x4 II 2x4 II 2x4 🥠 8-3-10 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.74 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 1 15 Lumber DOL 0.20 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.11 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 42 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this 2x4 SP No.3 desian. Gable requires continuous bottom chord bearing. 5) Structural wood sheathing directly applied or 6) Gable studs spaced at 4-0-0 oc. 6-0-0 oc purlins, except end verticals. 7) This truss has been designed for a 10.0 psf bottom Rigid ceiling directly applied or 10-0-0 oc chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) 1=8-3-10, 4=8-3-10, 5=8-3-10 on the bottom chord in all areas where a rectangle Max Horiz 1=235 (LC 11) 3-06-00 tall by 2-00-00 wide will fit between the bottom 1=-19 (LC 10), 4=-58 (LC 11), Max Uplift chord and any other members, with BCDL = 10.0psf. 5=-165 (LC 14) Provide mechanical connection (by others) of truss to 9) 1=199 (LC 24), 4=201 (LC 5), bearing plate capable of withstanding 58 lb uplift at joint 5=552 (LC 5) 4, 19 lb uplift at joint 1 and 165 lb uplift at joint 5. (lb) - Maximum Compression/Maximum 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 1-2=-259/278, 2-3=-171/157, 3-4=-163/76 R802.10.2 and referenced standard ANSI/TPI 1. 1-5=-83/208, 4-5=-83/119 LOAD CASE(S) Standard 2-5=-419/319 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-11-4, Exterior(2R) 3-11-4 to 8-2-2 zone; cantilever left and right exposed ; end vertical left and All and the state of the state right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 055727 Truss designed for wind loads in the plane of the truss July 12 only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V13	Valley	1	1	Job Reference (optional)	

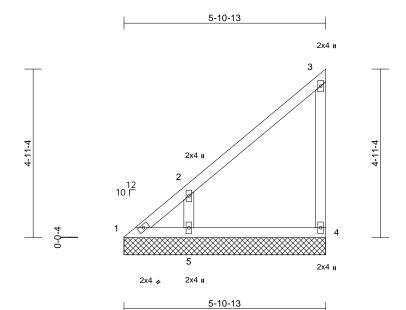
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:08 ID:0o2TM9gXFBrQE13pL?fjk4yzBG4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

7-1-3 2x4 II 3 8 2x4 II 5-11-4 5-11-4 2 12 10 Г 1 • 0-0-0 4 5 2x4 II 2x4 II 2x4 🍫

7-1-3

Scale = 1:38

Loading TCLL (rod) (pc) 20.0 (pc) Spacing Plate Grip DOL Lumber DOL 1.15 CSI TC DEF 0.52 Ver(TL) Ver(TL) na va - na va 999 PMT20 PLATES PLATES GRIP PMT20 CDL 0.00 10.0 1.55 TC 0.52 Ver(TL) na va - na va 999 PMT20 PLATES GRIP LUMBER 0.00 24.4 PN 0.2 Code No ver(TL) 0.00 4 na va na va No ver(TL) No ver(TL	Scale = 1:38								
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 cc. THERS 2x4 SP No.3 Gable studs spaced at 4-0-0 cc. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tal by 2-00-00 wide will fle between the bottom chord and any other members. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tal by 2-00-00 wide will fle between the bottom chord and any other members. * This truss has been designed for a 10 up to 0-0 or with standing 53 lb uplift at joint 4. 26 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 4. 26 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 4. 26 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 4. 26 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of the 2018 ltrust method. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5. Protemether the 2018 ltrust method with the 2018 ltrust method bearing plate capable of withstanding the trust with the 2018	TCLL (roof) 20.1 Snow (Pf) 20.1 TCDL 10.1 BCLL 0.1	Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr Y Code IR	15 15 ES	TC 0.52 BC 0.12 WB 0.09	Vert(LL) n/a Vert(TL) n/a	-	n/a 999 n/a 999	MT20	244/190
Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10	TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood 6-0-0 oc purlins, BOT CHORD Structural wood 6-0-0 oc purlins, SOT CHORD 1=2-18 Max Horiz 1=199 Max Uplift 1==-26 5==14 Max Grav 1=137 5=466 FORCES (Ib) - Maximum O Tension TOP CHORD 1=2==183/256, 2 BOT CHORD 1=2==183/256, 2 BOT CHORD 1=5==70/151, 4=5 WEBS 2=5==383/290 NOTES 1) Wind: ASCE 7=16; Vult=130r Vasd=103mph; TCDL=6.0ps Cat. II; Exp B; Enclosed; MWF Lumber DOL=1.60 plate grip 2) Truss designed for wind loat only. For studs exposed to v see Standard Industry Gable or consult qualified building of 3) TCLL: ASCE 7=16; Pr=20.0 ps DOL=1.15); Is=1.0; Rough C	except end verticals. ctly applied or 10-0-0 oc 3, 4=7-1-3, 5=7-1-3 (LC 11) (LC 10), 4=-53 (LC 11), 3 (LC 24), 4=198 (LC 20), (LC 24), 4=198 (LC 20), (LC 20) compression/Maximum 3=-155/148, 3-4=-167/71 =-70/102 mph (3-second gust) f; BCDL=6.0psf; h=25ft; FRS (envelope) exterior one; cantilever left and right d right exposed;C-C for RS for reactions shown; DOL=1.60 ds in the plane of the truss vind (normal to the face), End Details as applicable, lesigner as per ANSI/TPI 1. sf (roof LL: Lum DOL=1.15 f (Lum DOL=1.15 Plate	 design. Gable requir Gable studs This truss ha chord live loc. * This truss I on the bottor 3-06-00 tall I chord and ar Provide mec bearing plate 4, 26 lb uplif This truss is International R802.10.2 a 	res continuous bottom chor spaced at 4-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betw ny other members. chanical connection (by oth e capable of withstanding 5 t at joint 1 and 148 lb uplift designed in accordance w I Residential Code sections and referenced standard AN	d bearing. D psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom ers) of truss to 33 lb uplift at joint at joint 5. tith the 2018 s R502.11.1 and		in the	0557	EER.


July 12,2023

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V14	Valley	1	1	Job Reference (optional)	56668

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:08 ID:MmrMPskg4jTiKoxm8YEuR8yzBG?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				_								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0				-						Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-10-13 oc purlins, Rigid ceiling directly bracing.	except end verticals applied or 10-0-0 or 3, 4=5-10-13, 5=5-1(C 11) C 12), 4=-46 (LC 11), C 14)	design. 5) Gable requ 6) Gable stud 7) This truss I chord live I ad or 6) * This truss 9) * This truss 100 the bott 100 the bott 100 the bott 100 the struss 100 t	d snow loads have ires continuous bo s spaced at 4-0-0 of has been designed oad nonconcurrent bas been designed om chord in all arec by 2-00-00 wide v any other members echanical connection the capable of withs if at joint 1 and 13 s designed in acco al Residential Code	ttom choi oc. for a 10. with any d for a liv as where vill fit betv s. on (by oth standing 4 3 lb uplift vrdance w e sections	rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott lers) of truss t 66 lb uplift at j at joint 5. tith the 2018 s R502.11.1 a	ids. Opsf om oont					
	5=451 (L0	C 20)	LOAD CASE(S	and referenced sta	andard Ar	NSI/TPL1.						
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS NOTES	. , -		34									
Vasd=103 Cat. II; Exp zone and ' exposed ; members Lumber D 2) Truss des only. For see Stand or consult 3) TCLL: AS Plate DOL	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B 3p; B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS IOL=1.60 plate grip DC signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown PL=1.60 h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate	r right ; iss), ole, 21 1. 1.15						. etter the second	ELLUT	SEA 0557 VISETH K	EER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A
23060130-01	V15	Valley	1	1	I59456669 Job Reference (optional)

3-6-12

3-6-12

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:08 ID:f6m?tGq3QtLjgt_72WsXDcyzBFu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 II

4-8-6 1-1-10

3x5 🍫 2 8 3

7

Page: 1

818 Soundside Road Edenton, NC 27932

2-11-14 2-11-14 12 10 ∟ 0-0-4 4 \propto 3x5 🛛 3x5 🍫 4-8-6 GRIP 244/190 FT = 20% WGINEER. POHLUM July 12,20 THANK SNG

Scale = 1:31.4 Plate Offsets (X, Y): [2:0-2-8,0-0-3]

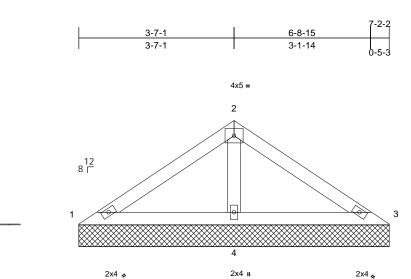
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.51 0.34 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-8-6 oc purlins, ex 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing. (size) 1=4-8-6, 4 Max Horiz 1=100 (LC Max Uplift 1=-12 (LC Max Grav 1=259 (LC	applied or 10-0-0 oc 4=4-8-6 C 11) C 14), 4=-39 (LC 11) C 35), 4=208 (LC 35)	5 dor 6 nd 7 8 9 1	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. Provide ade: Gable requir Gable studs This truss ha chord live los 0) * This truss los on the bottoo 3-06-00 tall I chord and ai	snow loads have quate drainage to es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members	(Lum DC t B; Fully been cor prevent tom chor c. for a 10. with any d for a liv s where ill fit betw.	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the water ponding d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle ween the bottom	e) 9; his g. ds. 0psf om				
FORCES	, -			bearing plate 4 and 12 lb u	hanical connection capable of withst plift at joint 1.	anding 3	39 lb uplift at j					
BOT CHORD NOTES	1-4=-98/251		1:		designed in accor Residential Code			and				
1) Unbalanc	ed roof live loads have	been considered for		R802.10.2 a	nd referenced star	ndard AN	NSI/TPI 1.					
Vasd=103 Cat. II; Ex zone and 3-0-5 to 3 cantilever right expo for reaction DOL=1.60	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B kp B; Enclosed; MWFR C-C Exterior(2E) 0-0-5 r-7-1, Exterior(2E) 3-7-7 r left and right exposed ssed;C-C for members pons shown; Lumber DC	CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-5, Exterior(2F I to 4-6-15 zone; ; end vertical left and and forces & MWFR: L=1.60 plate grip	- L R) I S	/ / /				SIZE			B J	SEAL 05572

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V21	Valley	1	1	Job Reference (optional)	159456670

4

5


-0-0

2-4-15

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:09

ID:wFUqCSffOUJUB8tO0FFENGyzBQR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-2-2

2x4 🍫

Scale - 1:26.6

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.24	Vert(TL)	n/a	-	n/a	999		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES	3/TPI2014	WB Matrix-MP	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	5/1912014	Matrix-IVIP							Weight: 25 lb	FT = 20%
	2x4 SP No.3 Structural wood she 7-2-2 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-2, 5 Max Horiz 1=53 (LC Max Uplift 1=-10 (LC 4=-52 (LC Max Grav 1=104 (LC 4=505 (LC	v applied or 6-0-0 oc 3=7-2-2, 4=7-2-2 11) 2 21), 3=-10 (LC 20) 2 14) C 20), 3=104 (LC 21 C 20)	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide meci	7-16; Pr=20.0 p: 15); Pf=20.0 psi s=1.0; Rough Ca 1.10 snow loads have es continuous bo spaced at 4-0-0 d s been designed d nonconcurrent as been designed n chord in all are by 2-00-00 wide w y other members hanical connection capable of withs	(Lum DC tt B; Fully been cor ttom chor oc. for a 10.1 with any d for a liv as where vill fit betv s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t	ds. Dpsf om					
ORCES	(lb) - Maximum Com Tension		11		at joint 3 and 52 designed in acco								
OP CHORD	1-2=-98/230, 2-3=-9			⁷ International	Residential Code	e sections	R502.11.1 a	nd					
BOT CHORD	1-4=-163/129, 3-4=- 2-4=-355/166	163/129			nd referenced sta	Indard AN	ISI/TPI 1.						
	2-4=-300/100		LC	OAD CASE(S)	Standard								
	ed roof live loads have	been considered fo	r										• 121 M 11
this design												TH CA	1111
0	CE 7-16; Vult=130mph	n (3-second gust)										TH CA	Roin

- 2 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 4-2-8, Exterior(2E) 4-2-8 to 7-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

annun Erinnin

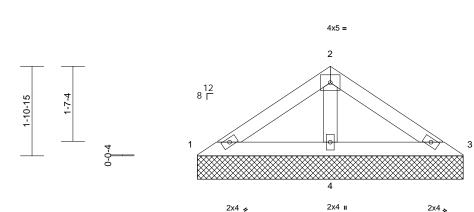
Job	Truss	Truss Type	Qty	Ply	18 Serenity-Roof-B328 A	
23060130-01	V22	Valley	1	1	Job Reference (optional)	159456671

2-10-1

2-10-1

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jul 11 10:02:09 ID:wFUqCSffOUJUB8t00FFENGyzBQR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-8-2

5-2-15

2-4-14

5-8-2

Page: 1

Scale = 1:24.6

Scale = 1:24.6												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.14 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
	5-8-2 oc purlins. Rigid ceiling directly bracing.	3=5-8-2, 4=5-8-2 11) 14), 3=-11 (LC 15), -	4=-33 4=-358 46) Gable strue (1) Gable strue (2) Gabl	ed snow loads have quires continuous be ds spaced at 4-0-0 s has been designed a load nonconcurrer ss has been design ttom chord in all are all by 2-00-00 wide d any other member nechanical connecti late capable of with plift at joint 3 and 3 s is designed in accural Residential Coc	ottom chor oc. d for a 10. nt with any ed for a liv eas where will fit betv rs. ion (by oth standing 4 3 lb upliff a ordance w de sections	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I buplift at jo at joint 4. ith the 2018 s R502.11.1 a	ids. Opsf om int					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Con Tension 1-2=-93/144, 2-3=-9 1-4=-108/95, 3-4=-1)3/144		2 and referenced st (S) Standard		NG#1F11.						
WEBS	2-4=-232/118											
NOTES	ed roof live loads have	been considered fo	-									
this design 2) Wind: ASC Vasd=103) Cat. II; Exp zone and C exposed ; members a Lumber DC 3) Truss des only. For s see Standa		a (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior; ; cantilever left and 1 ght exposed;C-C for for reactions shown DL=1.60 n the plane of the trud (normal to the face; d Details as applical	; rrght ; uss), ble,								SEA 0557	EER. HUNTIN
 TCLL: ASC Plate DOL: 	CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat I	(roof LL: Lum DOL= um DOL=1.15 Plate	1.15							unin.	ABETH K	EEF

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

