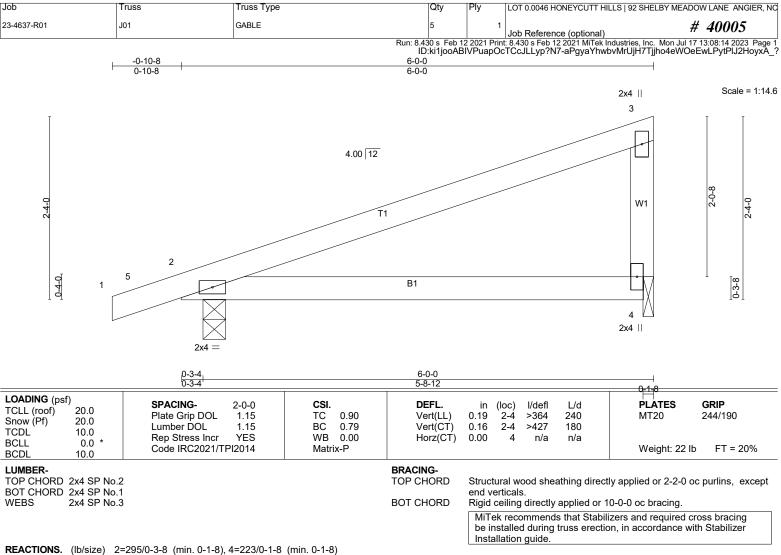
Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

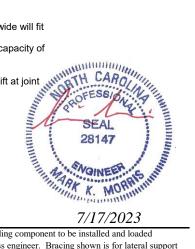

AST #: 40005 JOB: 23-4637-R01 JOB NAME: LOT 0.0046 HONEYCUTT HILLS Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *32 Truss Design(s)*

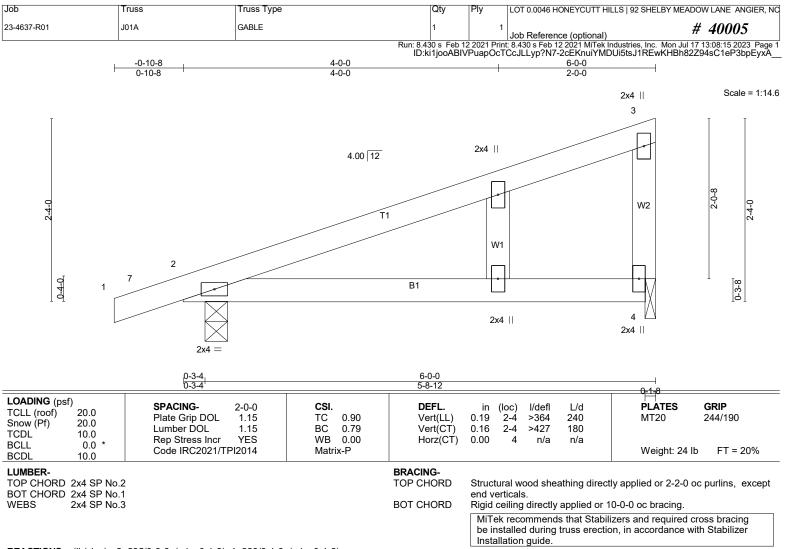
Trusses:

J01, J01A, J02, P01, P02, R01, R02, R02A, R03, R03A, R04, R05, R06, R07, R08, R10, R11, R12, R15, R16, R17, R18, R19, R20, V10, V11, V12, V13, V14, V15, V16, V17

Warning !--- Verify design parameters and read notes before use.

REACTIONS. (Ib/size) 2=295/0-3-8 (min. 0-1-8), 4=223/0-1-8 (min. 0-1 Max Horz 2=70(LC 11) Max Uplift2=-101(LC 10), 4=-73(LC 10) Max Grav2=389(LC 21), 4=300(LC 21)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

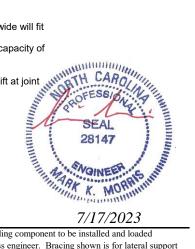

NOTES- (10)

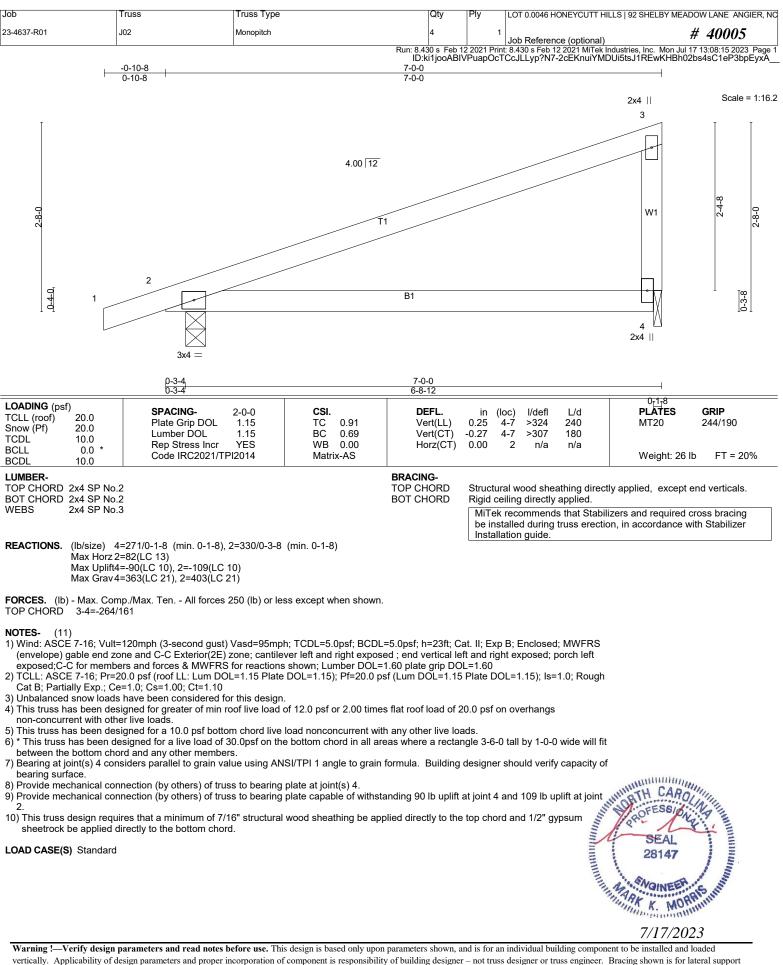
- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 2 and 73 lb uplift at joint 🔬

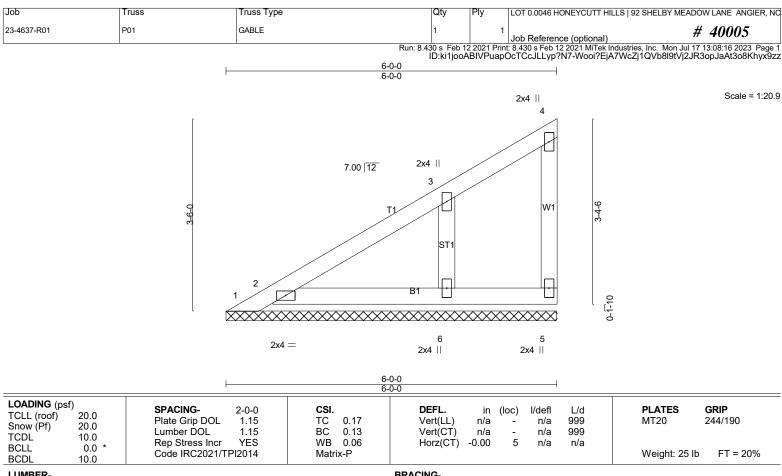
4.

LOAD CASE(S) Standard


```
REACTIONS. (lb/size) 2=295/0-3-8 (min. 0-1-8), 4=223/0-1-8 (min. 0-1-8)
Max Horz 2=70(LC 11)
Max Uplift2=-101(LC 10), 4=-73(LC 10)
Max Grav 2=389(LC 21), 4=300(LC 21)
```


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES- (10)


- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 2 and 73 lb uplift at joint 🔪

4.

LOAD CASE(S) Standard

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except
BOT CHORD	2x4 SP No.3		end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 6-0-0.

(lb) - Max Horz 1=93(LC 11)

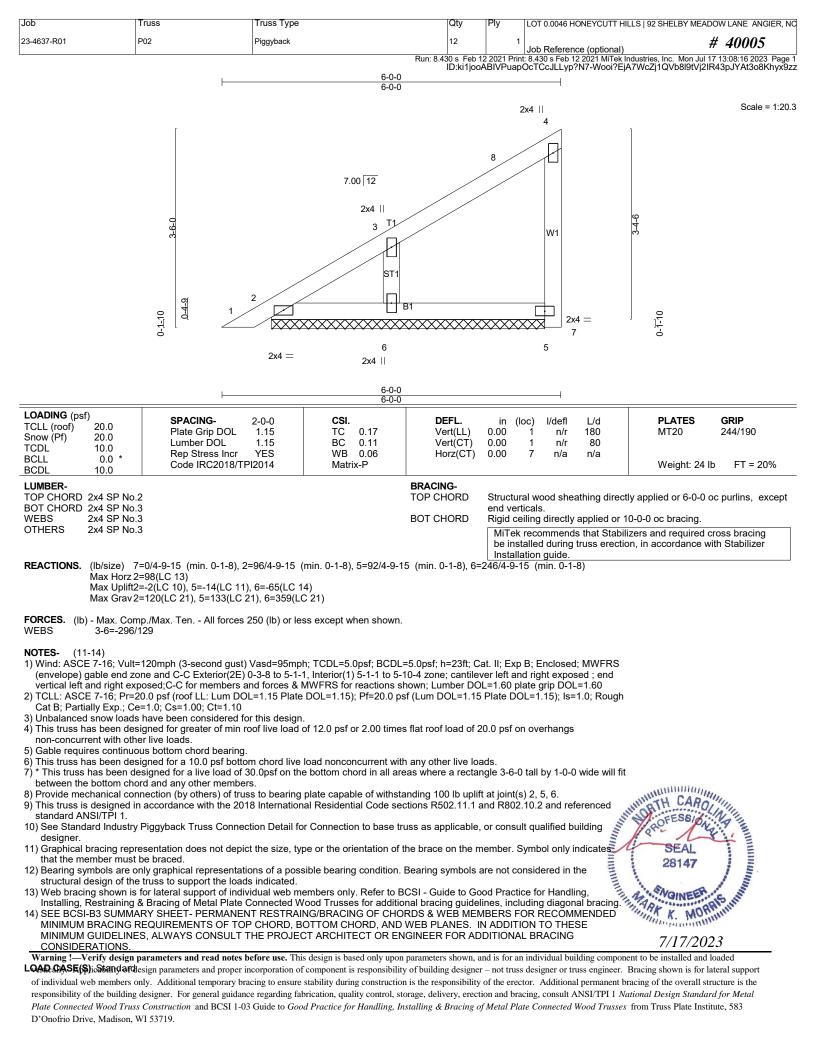
Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 6 except 1=-112(LC 21)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 2=338(LC 21), 6=339(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WFBS 3-6=-273/121

NOTES-(12)

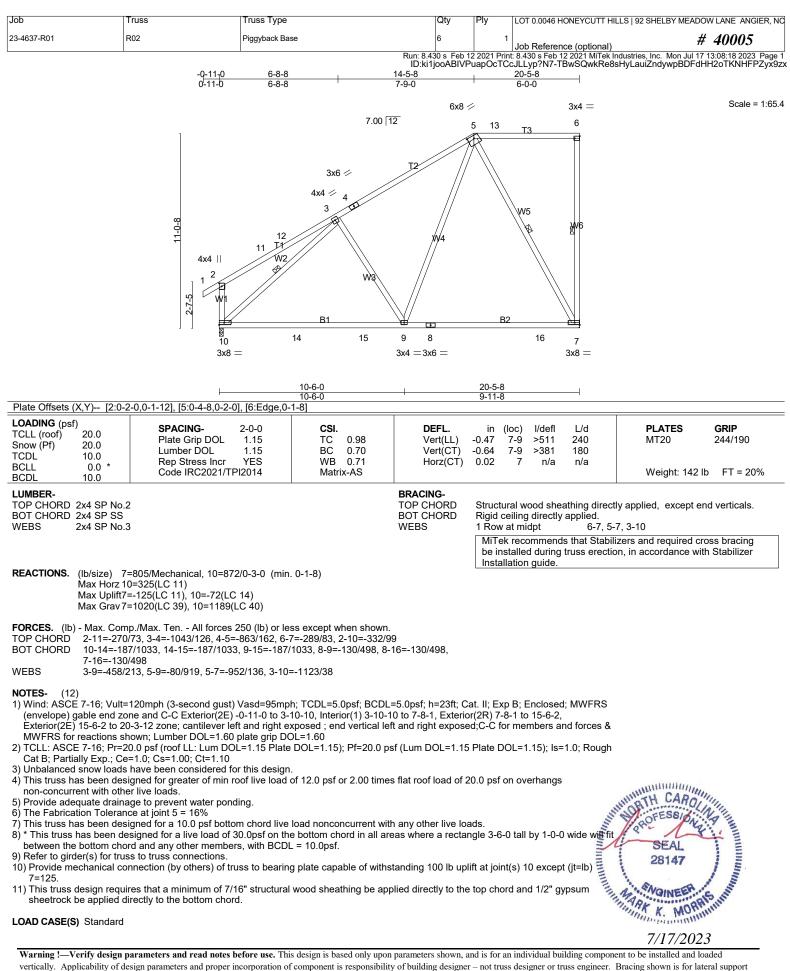
- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry


Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

- 9) Bearing at joint(s) 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity.
 10) Provide mechanical connection (by others) of the stress of the st
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6 except (jt=lb) 1=112.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0046 HONEYCUTT HILLS 92 SHELBY MEADOW LANE ANGIER, NC
23-4637-R01	R01	Piggyback Base Supported Gable	1	1	Job Reference (optional) # 40005
					: 8.430 s Feb 12 2021 MiTek Industries, Inc. Mon Jul 17 13:08:17 2023 Page 2 OcTCcJLLyp?N7M4CajpuqkQLB?i8sGOQiG6rrKLYjJK5jYis7yx9zy

NOTES- (14) 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 20, 21, 22, 23, 18, 17, 16, 15 except (jt=lb) 25=146, 24=236.

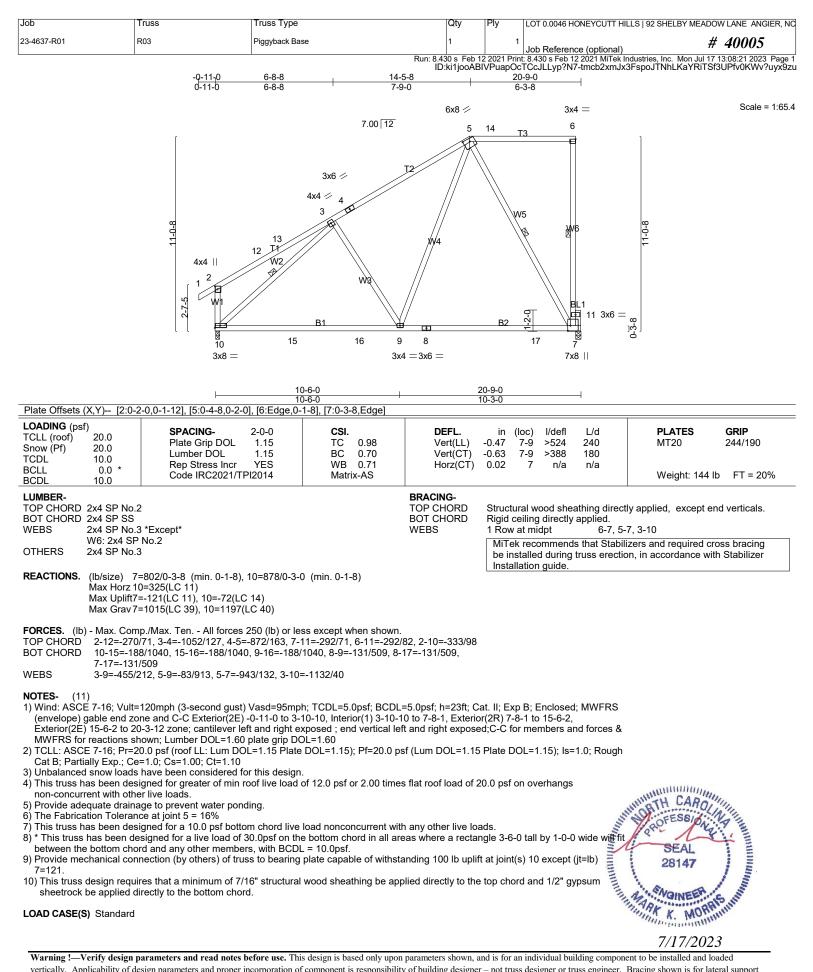
LOAD CASE(S) Standard

4837601 No.24 Pagenak Base 4 1 1 Jone Reference (pplote) # 40005 No.45 Coll Pack Mark End Coll Pack Mark En	Job	Truss	Truss Type		Qty	Ply LOT 0.00	46 HONEYCUTT HILI	LS 92 SHELBY MEADO	W LANE ANGIER, NC
$\frac{1}{10000000000000000000000000000000000$	23-4637-R01	R02A	Piggyback Base		4		/ // N	#	40005
$\frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{20} \frac{1}{10} 1$					Run: 8.430 s Feb 1:	2 2021 Print: 8,430 s l	eb 12 2021 MiTek Inc	dustries. Inc. Mon Jul 17	13:08:19 2023 Page 1
407 308 408 700 409 700 409 400 400 4000 400 <td< td=""><td></td><td>-0-</td><td>11-0 2-3-0</td><td></td><td>14-5-8</td><td>18-5-8 20-</td><td>5-8</td><td>_00004010377201</td><td>w2021020 1px : yx524</td></td<>		- 0 -	11-0 2-3-0		14-5-8	18-5-8 20-	5-8	_00004010377201	w2021020 1px : yx524
$\frac{1}{1000} = \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{10000000000000000000000000000000000$		0-	11-0 2-0-0	0-1-4		4-0-0 2-0	5-0		Scale = 1:70 3
$ \frac{1}{1 + 2} 1$					4x8 —		3x8 =		
Image: Second		Т		7 00 12	6	19 T3 3 x4 +	8		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$							Т		
Image: State of the state									
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$				18 ⁵		\w7			
$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		-8				1 4 45	T		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		11-0	17 5		W5 W6	° \\ [[
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		3х		vv4		\\ //			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		W3					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2-7-5	W1	3			W9 IO		
$\frac{16}{34 \text{ H}} \frac{5}{36 \text{ H}} - \frac{300 - 10}{34 \text{ H}} \frac{9}{366 - \frac{3}{346 \text{ H}}} - \frac{300 - 10}{34 \text{ H}} \frac{9}{366 - \frac{3}{34 \text{ H}}} - \frac{16.29}{34 \text{ H}} - \frac{12.59}{320 H$					20	21			
344 II 1 344 III 1 344 IIII 1 344 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			16 15	3x4 =	5X6	= 10			
Lab Offsets (X,Y): [23:0 6:14 4:03 [24:0 ⁻¹] CADING (pst) SPACING. 2:0.0 ⁻² [12:0:3:0,0:3:4] [12:0:3:0,0:3:4] CADING (pst) O Plant Edip (pst) [12:0:3:0,0:3:4] DEFL in (loc) / lide L/d [M120 2:44/190 CADING (pst) 0.0 Rep Stress Incr V/S WB 0.47 Werl(L1) 0.0 IS 1:44 >:599 Na Na COLI 10.0 Rep Stress Incr V/S WB 0.47 Werl(C1) 0.15 9 Na Na COLI 10.0 Rep Stress Incr V/S WB 0.47 Matrix-AS BCACNC- TOC (HORD) Stress Incr V/S WE 0.47 Na Na Na Na Stress Incr V/S WE 0.47 Na Na Na Na Stress Incr V/S Na			5x4 5x6			3x4			
Bits Offsets (XY) = 13:0-10:0-2:0, [16:0-5:0.2-0;11:0-2:0.0-2:0, 17:0-3:0, 0-3:0] ODING (op) SPACING- 0:0 PLATES (Figure 10:0-0) PLATES (Figure 10:0-0) PLATES (Figure 10:0-0) PLATES (Figure 10:0-0) PLATES (Figure 10:0-0) PLATES (Figure 10:0-0) OBDING (op) Dist (op) PLATES (Figure 10:0-0) PLATES (Figure 10:0-0) <td></td> <td></td> <td>2-3-0</td> <td></td> <td></td> <td>18-5-8 ₁ 20-</td> <td>5-8</td> <td></td> <td></td>			2-3-0			18-5-8 ₁ 20-	5-8		
CLL (root) 20.0 SPACKO DU 2-44 Cal. 89 UP (LL) 0.0 0.00 CAL 800 Cal. 800 UP (LL) 0.0 0.00 CAL 800 Cal. 800	Plate Offsets (X,Y)	[3:0-1-0,0-2-0], [6:0-5-8,0-			6-1-4	4-0-0 2-0)-0]		
LL, Iron 1 0.0 Plate Grip DOL 1.15 TC 0.89 Vert(LL) -0.05 1.14 >999 240 MT20 244/190 CLL 0.0 Rep Stress Incr YES WB 0.47 World LL -0.15 1.51 999 100 Weight: 185 ib FT = 20% UMBER- OCL 0.0 CEL 0.0 FRep Stress Incr YES WB 0.47 World LL -0.05 1.55 99 100 Weight: 185 ib FT = 20% UMBER- OF CHORD 2x4 SP No.3 FRep Stress Incr YES Structural wood sheathing directly applied, except: FT = 20% MAR Horz 16=523(LC 11) Max Horz 16=523(LC 11) Max Horz 16=523(LC 11) MT ex recommends that Stabilizer Max Horz 16=523(LC 11) Max Horz 129/13, 11-21=128/13, 11-41=-138/104/01, 13-10=-997/105, 5-5-59/962 S-13-73/13, 31-72 S-14-55/78, 21-14=-343/1047, 13-20=-190/1087, 12-20=-190/1087,	LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) I/d	efl L/d	PLATES	GRIP
Lill 10.0 Rep Stress Incr YES WB 0.47 Hor2(CT) 0.15 9 n/a Weight: 185 Ib FT = 20% MBERA DP CHORD 24 SP No.2 FT = 20% Structural wood sheathing directly applied, except end verticals. FT = 20% DP CHORD 24 SP No.3 FT = 20% Structural wood sheathing directly applied, except end verticals. FT = 20% JEBS 224 SP No.3 WEBS Structural wood sheathing directly applied, except end verticals. FT = 20% JECTOND 24 SP No.2 Structural wood sheathing directly applied, except end verticals. FT = 20% JEBS 224 SP No.3 WEBS Structural wood sheathing directly applied, except end verticals. JECTONDS. (Ibrizie) 9=805/Mechanical, 16=872/0-30 (min. 0-1-8) Mark Horz 16=325(IC 11) MT ex recommends that Stabilizer and reguined cross bracing binstalled during truss and binstand truss and binstand truss and binstal	Snow (Pf) 20.0	Lumber DOI						MT20	244/190
UDL 100 100 WBRER. OP CHORD 2x4 SP No.2 FX SP No.1 B5: 2x4 SP No.1 B5: 2x4 SP No.1 Structural wood sheathing directly applied, except end verticals. Rigid celling directly applied, except end verticals. B2: 2x4 SP No.1 B5: 2x4 SP No.3 WEBS WEBS Structural wood sheathing directly applied, except end verticals. B2: 2x4 SP No.3 B5: 2x4 SP No.3 WEBS WEBS Structural wood sheathing directly applied, except end verticals. B2: 2x4 SP No.3 D9: 2x4 SP No.3 WEBS WEBS Structural wood sheathing directly applied, except end verticals. B2: 2x4 SP No.3 D9: 2x4 SP No.3 D9: 2x4 SP No.3 Structural wood sheathing directly applied, except end verticals. B2: 2x4 SP No.3 D9: 2x4 SP No.3 D9: 2x4 SP No.3 Structural wood sheathing directly applied. B2: 2x4 SP No.3 D9: 2x4 SP No.3 D9: 2x4 SP No.3 Structural wood sheathing directly applied. B2: 2x4 SP No.3 D9: 2x4 SP No.3 D9: 2x4 SP No.3 Structural wood sheathing directly applied. B2: 2x4 SP No.3 D9: 2x4 SP No.3 D9: 2x4 SP No.3 Structural wood sheathing twapplied. B2: 2x4 SP No.3 D9: 2x4 SP No.3 D9: 2x4 SP No.3 Structural wood sheathing SP No.3 D0	BCLL 0.0	* Rep Stress In	icr YES	WB 0.47				Weight [.] 185 I	b FT = 20%
CP CHORD 2x4 SP No.2 TOP CHORD Statural wood sheathing directly applied, except and verticals. B2: 2x4 SP No.1, B5: 2x4 SP No.3 BOT CHORD Statural wood sheathing directly applied. Except: 1R0x at midpt 7-11 1R0x at midpt 7-12 1R0x at midpt 8-9.5-12.6-11 Mide ASC midptilder acceptilder acceptilder Ax8 Comparity acceptilder acceptilder acceptilder Nax Comparity acceptilder					BRACING-				
B2: 2x4 SP No.1, B5: 2x4 SP No.3 1 Row at midpt 7-11 I Row at midpt 7-12 I Row at midpt 7-12<	TOP CHORD 2x4 SI				TOP CHORD				nd verticals.
EACTIONS: (Ib/size) 9=805/Mechanical, 16=872/0-3-0 (min. 0-1-8) Max Horz 16=325(LC 11) Max Uplif8=-125(LC 11), 16=-72(LC 14) Max Grav 9=899(LC 39), 16=1154(LC 36) ORCES. (Ib) - Max. Comp/Max. Ten All forces 250 (Ib) or less except when shown. OP CHORD 2-3=7537(9, 3-17)-12947(3, 4-17)=-1276(33, 4-18=-1154/101, 5-18=-997/105, 5-6=-723/137, 8-9=-884/119, 2-16=-1258/107 OT CHORD 16-16=-309(201, 14-15=-599(33), 3-14=-576(26, 13-14=-343/1047, 13-20=-190/1087, 12-20=-190/1087, 12-21=-132/531, 1-12=-132/531, 7-11=-3557(29) EVES 5-13=-1/200, CF-12-779/166, 6-12=-607(10, 6-11=-266/110, 6-11=-127/859, 2-15=-59/962) OTES. (12-15) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf, BCDL=5.0psf, BCDL=5.0psf, 18-23h; Cat. II; Exp B; Enclosed; MWFRS (envelope) guade end zone and C-G Extentic(ZF) -0-11-0 to 3-10-10, Interior(1), 3-10-10 to 7-8-1, Extentic(ZR) 7-8-1 to 15-6-2, Extentic(ZF) 15-6-2 to 20-3-12 zone; Callever left and right exposed; end vertical left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; CHORD Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed. C-G for members and forces 8 MOLL: ASCE 7-16; Pustom, Lumic antilever left and right exposed in end of 20.0 psf on overhangs non-concurrent with other live load. 50. Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the 2018 international connection (by others) of truss to tasign is based only upon parameters shown, and is for an	B2: 2x	4 SP No.1, B5: 2x4 SP No	0.3			1 Row at midpt	7-11		
Installation guide. Installation guide. Installat	WEBS 2X4 SI	2 NO.3			VVEBS				oss bracing
EACTIONS. (Ib/size) 9=805/Mechanical, 16=872/03-0 (min. 0-1-8) Max Upilf9=-125(LC 11), 16=-72(LC 14) Max Grav9=899(LC 39), 16=1154(LC 36) ORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. OP CHORD 2-33=-753/79, 3-17=-1294/73, 4-17=-1276/83, 4-18=-1154/101, 5-18=-997/105, 56=723/137, 8-03=864/110, 2-16=-1258/107 OT CHORD 15-16=-309/201, 14-15=-559/30, 3-14=-557/82, 13-14=-343/1047, 13-20=-190/1087, 12-20=-100/1087, 12-21=-32/531, 11-21=-132/531, 7-11=-3265/129 5-13=-11/260, 5-12=-779/166, 6-12=-617/55, 6-11==-866/110, 8-11==172/859, 2-15=-59/962 OTES - (12-15) (Wind: ASCE 7-16; VIII=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) galee nd zone and C-C Exterior(2E)-0-11-0 to 3-10-10, Interior(1) 3-10-10 to 7-8-1, Exterior(2R) 7-8-1 to 15-6-2, Exterior(2E) 15-6-2 to 20-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for carcitons shown; Lumber DCL=1.60 plate ggr DDL=1.60 TCLL: ASCE 7-16; Pr=200 psf (roof LL: Lum DDL=1.15; Pf=20.0 psf (Lum DDL=1.15; Is=1.0; Rough TCLL: ASCE 7-16; Pr=200 psf (roof LL: Lum DDL=1.15; Pf=20.0 psf (Lum DDL=1.15); Is=1.0; Rough CatB; Partialing; Exp; C==1.0, Cs=1.00; C=1.00 Unbalanced snow loads have been considered for this design. This truss has been designed for a restor of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs Provide adegined for a restor and 30.0 psf to thord. In elad anonconcurrent with any other live loads. Provide mechanical connection. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilit at joint(s) 16 except (I=Ib) 9=125.)) This truss has been designed for a 180 cade of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with standard ANS/TFI 1.) This truss has been designed for a site load 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with s								n, in accordance wit	h Stabilizer
Max Uplifies—125(IC 11), 16=-72(IC 14) Max Grav9=699(IC 39), 16=1154(IC 36) ORCES. (b) - Max. Comp. Max. Ten All forces 250 (b) or less except when shown. OP CHORD 2-3=-753/78, 3-17=-1294/73, 4-17=-1276/83, 4-18=-1154/101, 5-18=-997/105, 5-732177, 3-17=-1294/73, 4-17=-1276/182, 4-18=-1154/101, 5-18=-997/105, 6-723177, 3-17=-5998(3), 3-14=-557/82, 13-14=-343/1047, 13-20=-190/1087, 12-20=-190/1087, 12-21=-132/531, 11-21=-132/531, 7.11=-365/129 CEBS 5-13=-1/200, 5-12=-779/166, 6-12=-617765, 6-11=-866/110, 6-11=-172/859, 2-15=-59/962 OTES- (12-15) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Extenior(2E) -0-11-0 to 3-10-10. Interior(1) 3-10-10 to 7-8-1, Exterior(2R) 7-8-1 to 15-6-2, Exterior(2E) 15-6-2 to 20-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for creations shown; Lumber DOL=1.160 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (root LL: Lum DOL=-1.15); PF=20.0 psf (Lum DOL=1.15) PIste DOL=1.15); Is=1.0; Rough Cat B; Partially Exp; C=C=1.0, Cs=1.00; Cs=1.00; Cs=1.00; Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adeclarged for greater of min col live load of non-concurrent with any other live loads. Provide mechanical connection, By of the sottom chord in all areas where a rectangle 3-6-1 tall by 1-0-0 wide wide the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection, By of truss to bearing plate capable of withstanding 100 bull flat joint(s) 16 except (I=Ib) 9-125. 0) This truss has been designed for a live load for 2.00 tenses flat roof load of 12.0 grapsum sheetrock be applied directly to the bottom chord. Provide mechanical connection, By of truss to bearing plate capable o			=872/0-3-0 (min. 0-	1-8)					
ORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. OP CHORD 2-3a-r53/79, 3-17a-1224/73, 4-17a-1276/83, 4-18a-1154/101, 5-18a-997/105, 5-6a-7231/37, 8-9a-864/119, 2-16a-1258/107 OT CHORD 15-16a-309/201, 14-15a-599/30, 3-14a-557/62, 13-14a-343/1047, 13-20a-190/1087, 12-20a-190/1087, 12-21a-132/531, 1-21a-132/531, 7-11a-3557/129 FEBS 5-13a-1/260, 5-12a-779/166, 6-12a-617/55, 6-11a-866/110, 8-11a-172/859, 2-15a-59/962 OTES- (12-15) JWInd: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0.1-10 to 3-10-10, Interior(1), 3-10-10 to 7-8-1, Exterior(2R) 7-8-1 to 15-6-2, Exterior(2E) 7-5-2 to 20-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plategrip DOL=1.60 OTCL: ASCE 7-16; Pre20.0 pef (roof LL: Lum DOL=1.15); Pf=20.0 pef (Lum DOL=1.15); Is=10; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ce=1.00 This truss has been designed for greater of min rool live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with ther live loads. * This truss has been designed for a 10x p5 bottom chord live load on concourrent with any other live loads. * This truss has been designed for a 10x p5 bottom chord live load on concurrent with any other live loads. * This truss has been designed for a 10x p5 bottom chord live load or 200 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.	Max l	Jplift9=-125(LC 11), 16=-72							
 CPC HORD 2-3-8-753/79, 3-17=-1276/83, 4-18=-1154/101, 5-18=-997/105, 5-8-723/173, 9-8-864/110, 2-168-1284/107 CPC HORD 15-168-309/201, 14-15=-599/80, 3-14=-557/82, 13-14=-343/1047, 13-20=-190/1087, 12-20=-100, 15-61, 160 Urbalanced sowi loads have been considered for this design. This truss has been designed for a live load of 12.0 pef or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a live load of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will for the set of the second and any other members, with BCDL = 10.0 psf. Provide adeujate diranage to prevent water ponding. This truss has been designed for a live load for 10.8 load sheathing be applied directly to the top chord and 1/2" gypsum standard ANS/ITP1 1. This truss has been designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. This truss has been designed in accordance with the 2018 International			, , ,	avaant whan shown					
OT CHORD 15-16=-309/201, 14-15=-599/30, 3-14=-559/80, 13-14=-534/1047, 13-20=-190/1087, 12-20=-190/1087, 12-21=-132/531, 11-21=-132/531, 17-11=-355/129 YEBS 5-13=-1/260, 5-12=-779/166, 6-12=-61/755, 6-11=-866/110, 8-11=-72/859, 2-15=-59/962 OTES- (12-15) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=231; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior/2E) -0-11-0 to 3-10-10, Interior(1) 3-10-10 to 7-8-1, Exterior/2B, 7-8-1 to 15-6-2, Exterior/2D, 0-50 psf (cold L) = 1.05; Pf=20.0 psf (Lum DOL=1.15) Flate DOL=1.15); Is=1.0; Rough CAL B; Partially Exp; Ce=1.0; Cs=1.00; Cl=1.15, Plate DOL=1.15; Pf=20.0 psf (Lum DOL=1.15); Is=1.0; Rough CAL B; Partially Exp; Ce=1.0; Cs=1.00; Cl=1.10 Unbalanced snow loads have been considered for this design. Intrus has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-courcurrent with other live loads. Provide adequate drainage to prevent water ponding. Intrus has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Provide adequate drainage to prevent water ponding. Provide adequate drainage to prevent water ponding. IT his truss has been designed for a 10.0 psf to the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 10. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 11. This truss design pa	TOP CHORD 2-3=	-753/79, 3-17=-1294/73, 4	-17=-1276/83, 4-18=						
/EBS 5-13=-1/260, 5-12=-779/166, 6-12=-61/755, 6-11=-866/110, 8-11=-172/859, 2-15=-59/962 OTES: (12-15) /Wink: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 3-10-10, Interior(1) 3-10-10 to 7-8-1, Exterior(2R) 7-8-1 to 15-6-2, Exterior(2E) 15-6-2 to 20-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DU=1.60 plute grip DU=1.60; Pr=20.0 psf (troot LL: Lum DU=1.15 Plate DU=1.15); Is=1.0; Rough / TCLL: ASCE 7-16; Pr=20.0 psf (root LL: Lum DU=1.15 Plate DU=1.15); Pf=20.0 psf (Lum DU=1.15 Plate DU=1.15); Is=1.0; Rough / One-concurrent with other live loads / One-concurrent with other live loads / Provide adequate drainage to prevent water ponding. / This truss has been designed for a 10.0 psf bottom chord live load on concourrent with any other live loads. / * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. / * This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. / This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. / This truss is designed praneters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Wintelliv, AphitBdbffity of design par	BOT CHORD 15-1	6=-309/201, 14-15=-599/3	0, 3-14=-557/62, 13-		0=-190/1087,				
 Winci: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BcJ25t, Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-11-0 to 3-10-10, Interior(1) 3-10-10 to 7-8-1, Exterior(2R) 7-8-1 to 15-6-2; Exterior(2E) 15-6-2 to 20-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.16 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (root LL: Lum DOL=1.15 Plate DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load on nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (It=Ib) 9=125. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. This truss design parameters and proper incorporation of component is responsibility of building designer – not trus sengineer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of me overall structure is the responsibility of the					/859, 2-15=-59/962	2			
<pre>(envelope) gable end zone and C-C Exterior(2E)-0-11-0 to 3-10-10, Interior(11) 3-10-10 to 7-8-1, Exterior(2R) 7-8-1 to 15-6-2, Exterior(2E) 15-6-2 to 20-3-12 zone; cantillever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp; Ce=1.0; CS=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design.) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in eld an onconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with <u>standard for a live load of 30.0psf</u> on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with <u>standard ANSI/TP1 1</u>. Provide mechanical connection. (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except ([t=lb) 9=125. 0) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 1) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Warning !Verify Jesign parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. "Applicability of design parameters and proper incorporation of component is responsibility of buil</pre>	NOTES- (12-15)								
MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 9=125. 0) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 1) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Warning IVrify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicibility of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss enginges for the standard bracing fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 1 National Design Standard for Metal									
 1 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 1 Unbalanced snow loads have been considered for this design. 1 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 1 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the bottom chord and any other members, with BCDL = 10.0 psf. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 9=125. O) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Warning ' Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded or individual we members only. Additional temporary bracing to ensure stability during construction is the responsibility of building designer – not truss designer or truss design parameters and prooper incorporation of component is responsibility of building designer – not truss designer. Bracing shown is for lateral support of individual we members only. Additional temporary bracing to ensure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and b					ft and right expose	d;C-C for membe	rs and forces &		
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	2) TCLL: ASCE 7-16	: Pr=20.0 psf (roof LL: Lum	n DOL=1.15 Plate D0	OL=1.15): Pf=20.0 p	sf (Lum DOL=1.15	Plate DOL=1.15)	; ls=1.0; Rough		
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	3) Unbalanced snow	loads have been consider	ed for this design.	12.0 pof or 2.00 time	a flat roof load of 2	0 0 pof op ovorha	200	WHOMEN CARO	111.
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	non-concurrent wit	th other live loads.	nanding	12.0 psi or 2.00 time			ilys and	OFESSIO	Nally
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	6) This truss has bee	in designed for a 10.0 psf h	portaing. pottom chord live loa	d nonconcurrent wit	h any other live loa	ids.	a a sta sta	and the	
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	7) This truss has be between the botton	en designed for a live load m chord and any other me	d of 30.0psf on the b mbers, with BCDL =	ottom chord in all an 10.0psf.	eas where a rectan	igle 3-6-0 tall by 1	-0-0 wide will fit	28147	11111
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	8) Refer to girder(s) f 9) Provide mechanic	or truss to truss connection al connection (by others) o	ns. f truss to bearing pla	te capable of withst	anding 100 lb uplift	t at joint(s) 16 exc	ept (jt=lb)		
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	9=125. 10) This truss is desi	gned in accordance with th	ne 2018 Internationa	Residential Code s	ections R502.11.1	and R802.10.2 a	nd referenced	A NOINEER	Sum
Street over be applied uncerty to the bottom endu. 7/17/2023 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded onlined on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	standard ANSI/TI 11) This truss design	PI 1. requires that a minimum (of 7/16" structural wo	ood sheathing be ap	olied directly to the	top chord and 1/2	2" avpsum	Mining K. MOH	inn
Warning I—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded on page 2 wertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	sheetrock be app	lied directly to the bottom	chord.			1	JJ1 ·-···	7/17/202	3
of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	Warning !—Verify d Continued on bade 2	esign parameters and read no	otes before use. This de	esign is based only upor	parameters shown, an	nd is for an individua	al building componen		
responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal									
						-		-	-

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0046 HONEYCUTT HILLS 92 SHELB	Y MEADOW LANE ANGIER, NC
23-4637-R01	R02A	Piggyback Base	4	1	Job Reference (optional)	# 40005
		F	Run: 8.430 s Feb 12	2021 Print	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. M	on Jul 17 13:08:19 2023 Page 2

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

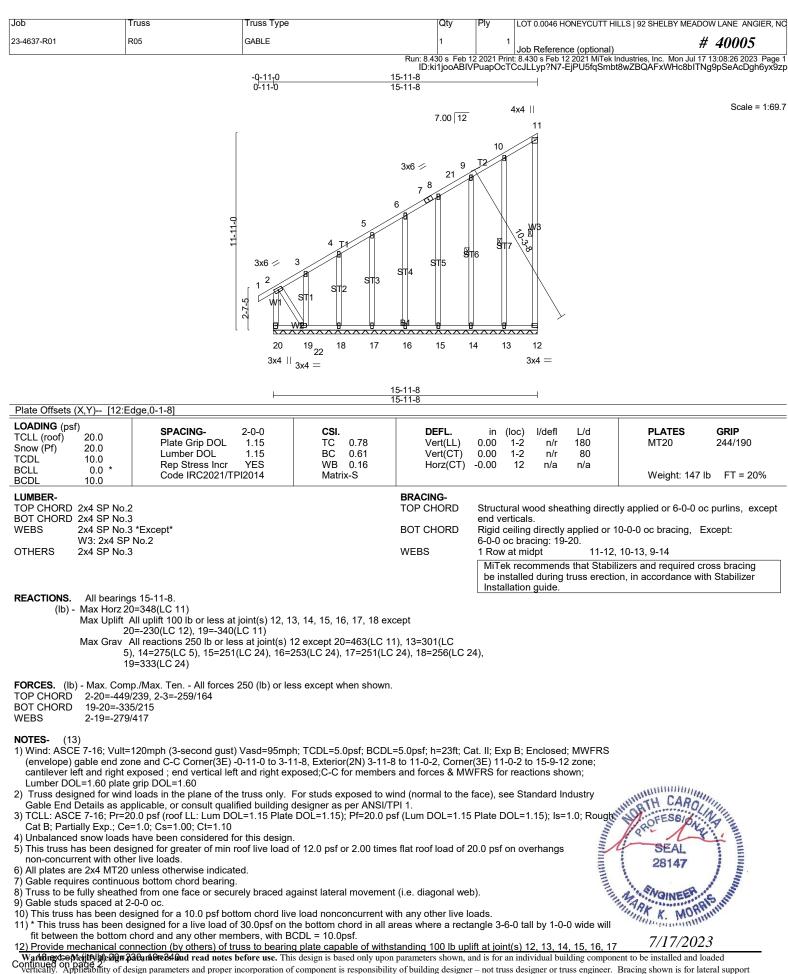
	T	Truco	Truce Ture		Otr			
Job		Truss	Truss Type		Qty		JT 0.0046 HONEYCUT	T HILLS 92 SHELBY MEADOW LANE ANGIER, NC
23-4637-R01		R03A	Piggyback Base		Bun: 8 420 a Eab 1		ob Reference (option	al) # 40005 ek Industries, Inc. Mon Jul 17 13:08:23 2023 Page 1
					ID:ki1jooABIV	/PuapOcTCc	JLLyp?N7-p8jLTdoZ 20-9-8	TgVZ36TrV6NofzW7MGHZyNuCUe?04nyx9zs
		-0 <u>-10₇8</u> 0-10-8	2-3-8	8-4-12	<u>14-6-0</u> 6-1-4	<u>18-6-0</u> 4-0-0	20-5-0	
		0-10-8	2-3-0	0-1-4	4x8 =		2-0-00-3-0	Scale = 1:70.3
							3x8 =	
		r		7.00 12	6 11	<mark>20 т</mark> з	7 8 3 3∦4 	1
		ې 2- 1-	3x6 = 4x6 = 4 3 ¹⁸	3x6 == 19 ⁵ 12	W5 W	/6	w/s Bs5 // w10	-1- 0-0- 8
		5.5 0.2 0.2 -2 -2 -2	B2 W2	W4 W3		р В4	w9	
			B1 14	. 13	1	- -		
		16	3x6 =	3x4 =	21	2 22 6 =	10 9	
			↓ 4x8 =				3x10 =	
							3x4	
		F	<u>2-3-8</u>	<u>8-4-12</u> 6-1-4	14-6-0	18-6-0 4-0-0	20-9-8	
Plate Offsets (X,Y) [3:0-	0-12,0-2-0], [6:0-5-8,0-2-0				4-0-0	2-3-8	
LOADING (psf) TCLL (roof) Snow (Pf)	20.0 20.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0.70 BC 0.89	DEFL. Vert(LL) Vert(CT)	in (loc) -0.08 13-14 -0.16 13-14	>999 240	PLATES GRIP MT20 244/190
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr Code IRC2018/TP	YES	WB 0.47 Matrix-AS	Horz(CT)	0.15 9		Weight: 187 lb FT = 20%
	2x4 SP No.	.2 *Except* 9 No.1, B5: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS		ng directly applied. nidpt 7-1	
							ed during truss ere	abilizers and required cross bracing ction, in accordance with Stabilizer
	Max Horz 1 Max Uplift9	9=795/0-3-8 (min. 0-1-8), 16=325(LC 11) 9=-116(LC 11), 16=-72(LC 9=893(LC 40), 16=1158(LC	14)	(min. 0-1-8)		motanatic	Jir guide.	
	2-3=-773/	np./Max. Ten All forces 2 /78, 3-18=-1310/74, 4-18=- /138, 9-17=-899/116, 8-17:	-1292/85, 4-19)=-1170/103, 5-19=-10				
BOT CHORD WEBS	15-16=-30 12-21=-19 5-13=-1/2	08/201, 14-15=-594/30, 3- 91/1100, 12-22=-134/542, 262, 5-12=-783/166, 6-12=-	14=-552/62, 1 11-22=-134/5	3-14=-342/1068, 13-2 42, 7-11=-335/123	,	6,		
	l roof live loa	ads have been considered			5 0			~
(envelope) g 15-4-14 to 2 reactions sh 3) TCLL: ASCE	gable end zo 20-2-8 zone; nown; Lumb E 7-16; Pr=2	=120mph (3-second gust) one and C-C Exterior(2E) - ; cantilever left and right ex er DOL=1.60 plate grip DC 20.0 psf (roof LL: Lum DOI	0-10-8 to 3-1 (posed ; end v)L=1.60	I-2, Interior(1) 3-11-2 t ertical left and right ex	o 7-8-9, Exterior(2 kposed;C-C for me	R) 7-8-9 to mbers and	15-4-14, Exterior(2 forces & MWFRS f	E) or
4) Unbalanced 5) This truss ha non-concurr	l snow loads as been des rent with oth	e=1.0; Cs=1.00; Ct=1.10 s have been considered fo signed for greater of min ro er live loads.	oof live load of	12.0 psf or 2.00 times	s flat roof load of 2	0.0 psf on o	verhangs	E) or gh hunneth CAROL PROFESSION AND AND AND AND AND AND AND AND AND AN
7) This truss ha 8) * This truss between the	as been des has been de bottom cho	age to prevent water pond signed for a 10.0 psf botton esigned for a live load of 3 ord and any other member	m chord live lo 0.0psf on the s, with BCDL	bottom chord in all are = 10.0psf.	eas where a rectar	ngle 3-6-0 ta	ll by 1-0-0 wide wit	gh TH CARO SEAL 28147 T/17/2023 ponent to be installed and loaded
´9=116.	is designed	nnection (by others) of trus in accordance with the 20	01			,	6 except (jt=lb) 0.2 and referenced	A MORE A
11) This truss of sheetrock b	design requ be applied o	ires that a minimum of 7/1 directly to the bottom chord	ł.	0 11		•	ind 1/2" gypsum	7/17/2023
of individual we	eb members o	only. Additional temporary bra		ability during construction	n is the responsibility	of the erector.	esigner or truss engine Additional permaner	er. Bracing shown is for lateral support nt bracing of the overall structure is the

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0046 HONEYCUTT HILLS 92 SHELBY	MEADOW LANE ANGIER, NC
23-4637-R01	R03A	Piggyback Base	1	1	Job Reference (optional)	# 40005
			Run: 8.430 s Feb 12	2021 Print	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Mo	on Jul 17 13:08:23 2023 Page 2

ID:ki1jooABIVPuapOcTCcJLLyp?N7-p8jLTdoZTgVZ30TrV6NotzW7MGHZyNuCUe?04nyx9zs 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

-4637-R01	R04	0-11-0 0-11-0 5x5 = 1 2 W1	7-11-8 7-11-8 2 9 T4	ID:ki1jooAB 15 7.00 12 3x6 - 10 x4 4 3	IVPuapOc 5 <u>-11-8</u> 3-0-0	1 Job Reference int: 8.430 s Feb 12 TCCJLLyp?N7- 4x6 ≠ 5 ₩5 ₩5	2 2021 MiTek In	# ndustries, Inc. Mon Jul 17 _dQgG223qu1CB3FVg	40005 13:08:24 2023 Page gdOhpmLilkacDyx9; Scale = 1:68.
		0-11-0 0-11-0 5x5 = 1 2	7-11-8	ID:ki1jooAB 15 7.00 12 3x6 - 10 x4 4 3	VPuapOc 5-11-8 3-0-0 2 T2	4x6 = 5	2 2021 MiTek In	ldustries, Inc. Mon Jul 17 _dQgG223qu1CB3FVς	JdOhpmLilkacDyx9
		5x5 ≠		3x6 ≠ 10 x4 4 3	12	W5			
		22 W1		WB		œ			
		` 8 3x4	W2	7 ¹¹ 4x8 =		6 3x4 =			
			7-11-8 7-11-8		5-11-8 3-0-0				
OADING (psf) CLL (roof) 20.0 chow (Pf) 20.0 CDL 10.0 COLL 0.0 COLL 0.0 COLL 0.0 COLL 10.0	Lumber DOL * Rep Stress Inc Code IBC2021	2-0-0 - 1.15 1.15 r YES	CSI. TC 0.86 BC 0.85 WB 0.55 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.38 -0.01	(loc) l/defl 6-7 >641 6-7 >493 6 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 115 II	GRIP 244/190 b FT = 20%
W5: 2		93/0-3-0 (min. 0-1-{	3)	BRACING- TOP CHORD BOT CHORD WEBS	Rigid o 1 Row MiTe be ins	eiling directly at midpt k recommends	applied. 5-6, 5-7 s that Stabili	ly applied, except er 7 zers and required cr n, in accordance wit	oss bracing
Max (Max (ORCES. (lb) - Max OP CHORD 2-9= 2-8=	Horz 8=348(LC 11) Uplift6=-143(LC 14), 8=-39(L Grav 6=865(LC 24), 8=718(L x. Comp./Max. Ten All forc =-660/89, 3-9=-566/109, 3-4= =-644/124 =-329/282	C 21) es 250 (lb) or less e:			3				
IOTES- (10)) Wind: ASCE 7-16; (envelope) gable e cantilever left and Lumber DOL=1.60) TCLL: ASCE 7-16 Cat B; Partially Ex) Unbalanced snow) This truss has bee non-concurrent wit) This truss has bee has been and the start of the start	=-595/256, 5-7=-246/862, 2-7 ; Vult=120mph (3-second gu end zone and C-C Exterior(2 right exposed ; end vertical 0 plate grip DOL=1.60 6; Pr=20.0 psf (roof LL: Lum I qp.; Ce=1.0; Cs=1.00; Ct=1.1 loads have been considered en designed for greater of mi ith other live loads. en designed for a 10.0 psf bc een designed for a 10.0 psf bc een designed for a live load m chord and any other mem for truss to truss connections cal connection (by others) of requires that a minimum of 7 lied directly to the bottom cho ndard	ist) Vasd=95mph; T(E) -0-11-0 to 3-10-1 left and right expose DOL=1.15 Plate DO 0 d for this design. n roof live load of 12 ottom chord live load of 30 0psf on the bo	0, Interior(1) 3-10- d;C-C for membe L=1.15); Pf=20.0 p 2.0 psf or 2.00 time I nonconcurrent wittom chord in all a	10 to 11-0-2, Exter rs and forces & MV osf (Lum DOL=1.15 es flat roof load of 2 th any other live lo reas where a recta	rior(2E) 1 VFRS for 5 Plate D 20.0 psf (ads. ngle 3-6-	1-0-2 to 15-9- reactions sho OL=1.15); Is= on overhangs 0 tall by 1-0-0	12 zone; wn; 1.0; Rough		A A A A A A A A A A A A A A A A A A A

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

All plates are 2x4 MT20 unless otherwise indicated.

7) Gable requires continuous bottom chord bearing.

8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

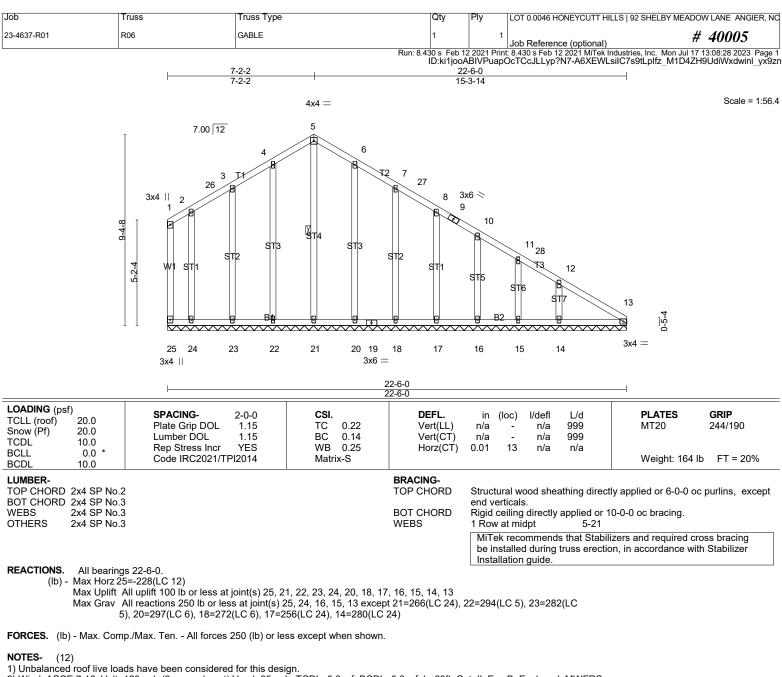
9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7/17/2023 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 14, 15, 16, 17

Wanting Copy of the state of th of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

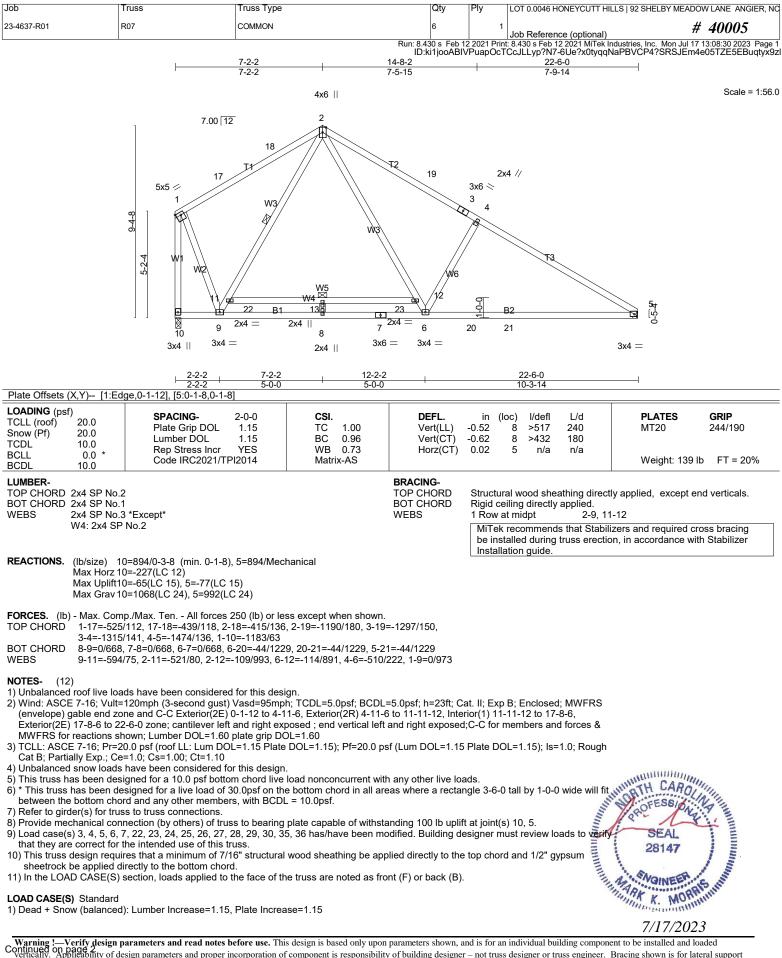

NOINEE

Job	Truss	Truss Type	Qty	Ply	LOT 0.0046 HONEYCUTT HILLS 92 SHELBY MEADOW LANE ANGIER, NC
23-4637-R01	R05	GABLE	1	1	Job Reference (optional) # 40005

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Mon Jul 17 13:08:26 2023 Page 2 ID:ki1jooABIVPuapOcTCcJLLyp?N7-EjPU5fqSmbt8wZBQAFxWHc8bITNg9pSeAcDgh6yx9zp

LOAD CASE(S) Standard

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 5-2-2, Corner(3R) 5-2-2 to 11-11-12, Exterior(2N) 11-11-12 to 17-8-6, Corner(3E) 17-8-6 to 22-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.


- a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with CARO fit between the bottom chord and any other members, with BCDL = 10.0psf.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 the with the second s

LOAD CASE(S) Standard

MORPHS INTERNAL MORPHS INTERNA Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

7/17/2023

Job	Truss	Truss Type	Qty	Ply	LOT 0.0046 HONEYCUTT HILLS 92 S	SHELBY MEADOW LANE ANGIER, NO
23-4637-R01	R07	COMMON	6		1 Job Reference (optional)	# 40005
					rint: 8.430 s Feb 12 2021 MiTek Industries, cTCcJLLyp?N7-6Ue?x0tyqqNaPBVC	
LOAD CASE(S) S	standard					
Uniform Loads						
	2=-60, 2-5=-60, 10-14=-2					
		5 Uninhab. Attic Storage: Lumber Incre	ease=1.15, Plate Increa	ase=1.15		
Uniform Loads		00 00 01 05 11 01 00 00 00 15/				
		20, 20-21=-65, 14-21=-20, 22-23=-45(l		1 1 5		
Uniform Loads	· · · ·	ninhab. Attic Storage: Lumber Increase	e= 1.15, Plate Increase=	1.15		
		20. 20-21=-65. 14-21=-20. 22-23=-45()	E)			
	,,	Uninhab. Attic Storage: Lumber Increa	/	=1 15		
Uniform Loads		enimitas. Attie eterage. Eaniber merea				
		29, 10-20=-20, 20-21=-65, 14-21=-20,	22-23=-45(F)			
		5 Uninhab. Attic Storage: Lumber Incre		se=1.15		
Uniform Loads	(plf)	Ũ				
Vert: 1-	2=-29, 2-19=-77, 5-19=-{	50, 10-20=-20, 20-21=-65, 14-21=-20,	22-23=-45(F)			
		rage: Lumber Increase=1.25, Plate Inc	rease=1.25			
Uniform Loads						
	2=-20, 2-5=-20, 10-14=-4					
		umber Increase=1.25, Plate Increase=	1.25			
Uniform Loads		00 00 01 00 11 01 00 00 00				
		:-20, 20-21=-80, 14-21=-20, 22-23=-60 ab. Attic Storage + 0.75(0.6 MWFRS V		mhorloor	accent 60 Diate Increase 1.60	
Uniform Loads		ab. Allic Slorage + 0.75(0.6 MWFRS V	vind (Neg. Int) Leit). Lu		ease-1.60, Plate increase-1.60	
		-20, 20-21=-65, 14-21=-20, 22-23=-45	(F)			
	1-2=8, 2-5=6, 1-10=16	-20, 20-2100, 14-2120, 22-2040	(I)			
		ab. Attic Storage + 0.75(0.6 MWFRS V	Vind (Nea. Int) Right): L	umber Ind	crease=1.60. Plate Increase=1.60	
Uniform Loads	s (plf) ´	0 (
Vert: 1	I-2̈=-44, 2-5=-58, 10-20=	-20, 20-21=-65, 14-21=-20, 22-23=-45	5(F)			
	1-2=-6, 2-5=-8, 1-10=-5					
		ab. Attic Storage + 0.75(0.6 MWFRS V	Vind (Neg. Int) 1st Para	llel): Luml	ber Increase=1.60, Plate Increase	=1.60
Uniform Loads						

Vert: 1-2=-34, 2-5=-44, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F)

Horz: 1-2=-16, 2-5=6, 1-10=14

26) Dead + 0.75 Snow (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-44, 2-5=-34, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F) Horz: 1-2=-6, 2-5=16, 1-10=-5

27) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-58, 2-5=-44, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F) Horz: 1-2=8, 2-5=6, 1-10=16

28) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-44, 2-5=-58, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F)

Horz: 1-2=-6, 2-5=-8, 1-10=-5

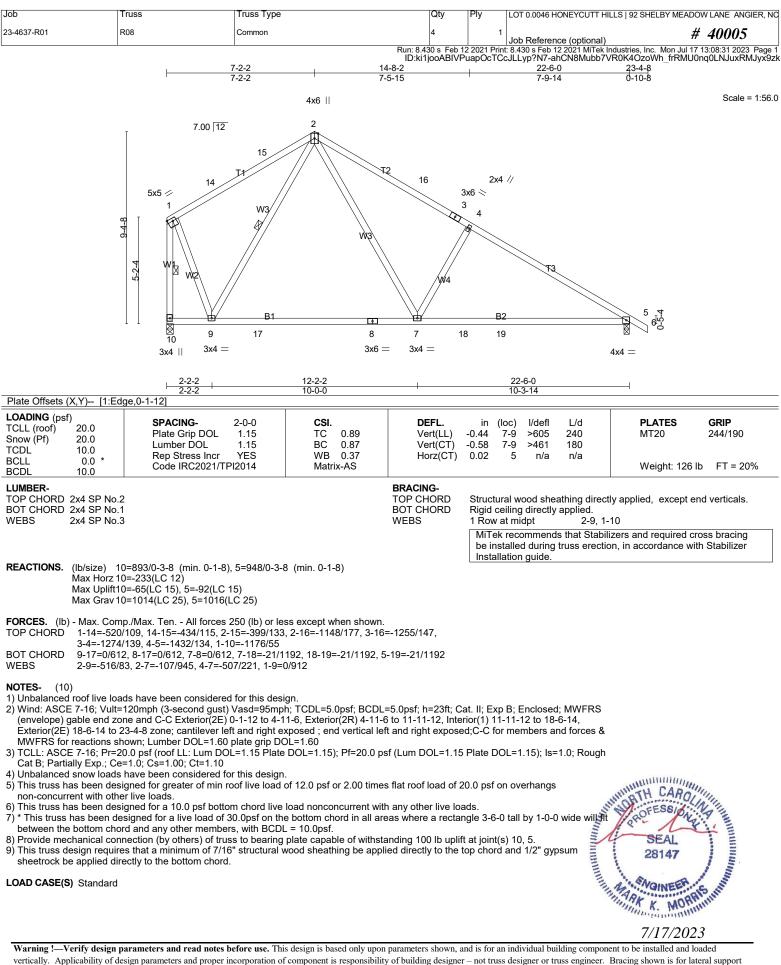
29) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

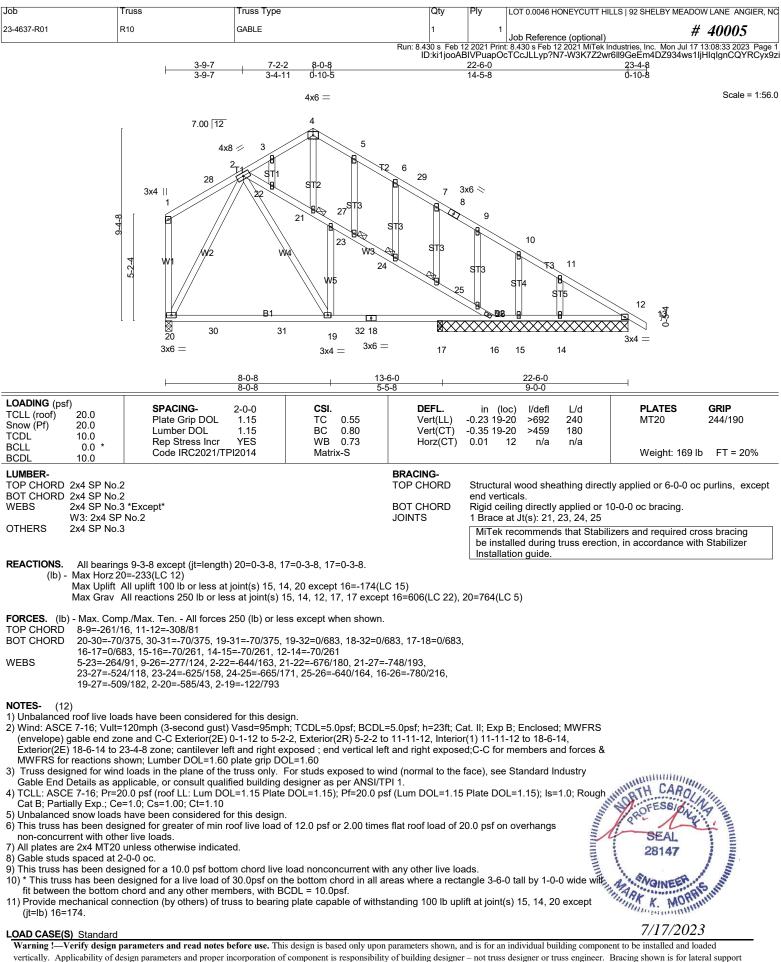
Vert: 1-2=-34, 2-5=-44, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F) Horz: 1-2=-16, 2-5=6, 1-10=14

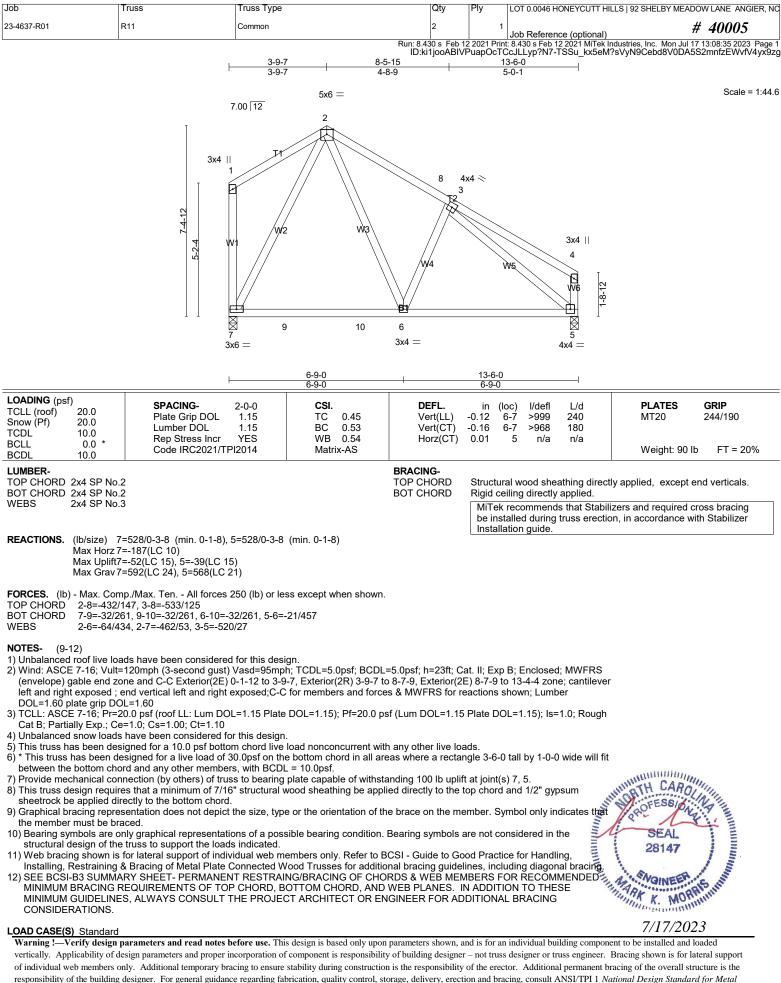
30) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-44, 2-5=-34, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F)

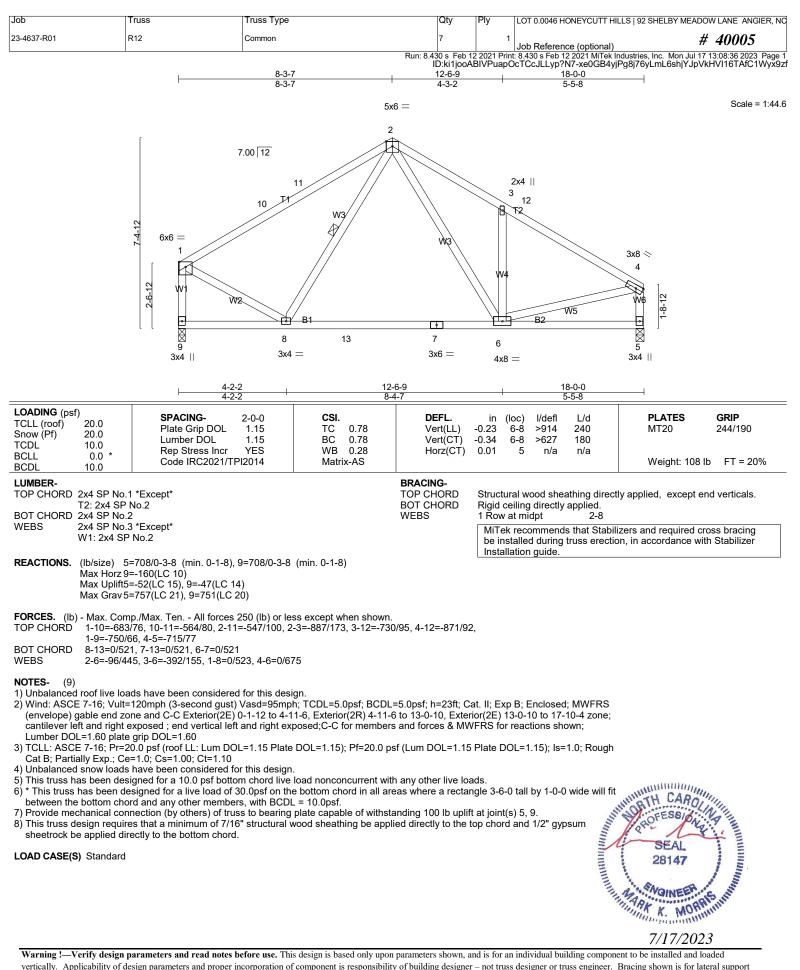
Horz: 1-2=-6, 2-5=16, 1-10=-5

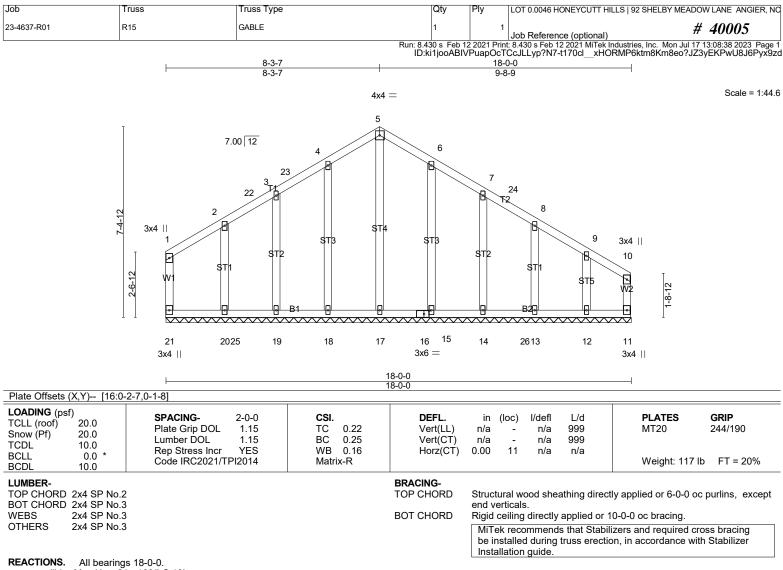

35) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-50, 2-5=-20, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F)


36) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-2=-20, 2-5=-50, 10-20=-20, 20-21=-65, 14-21=-20, 22-23=-45(F)





D'Onofrio Drive, Madison, WI 53719.

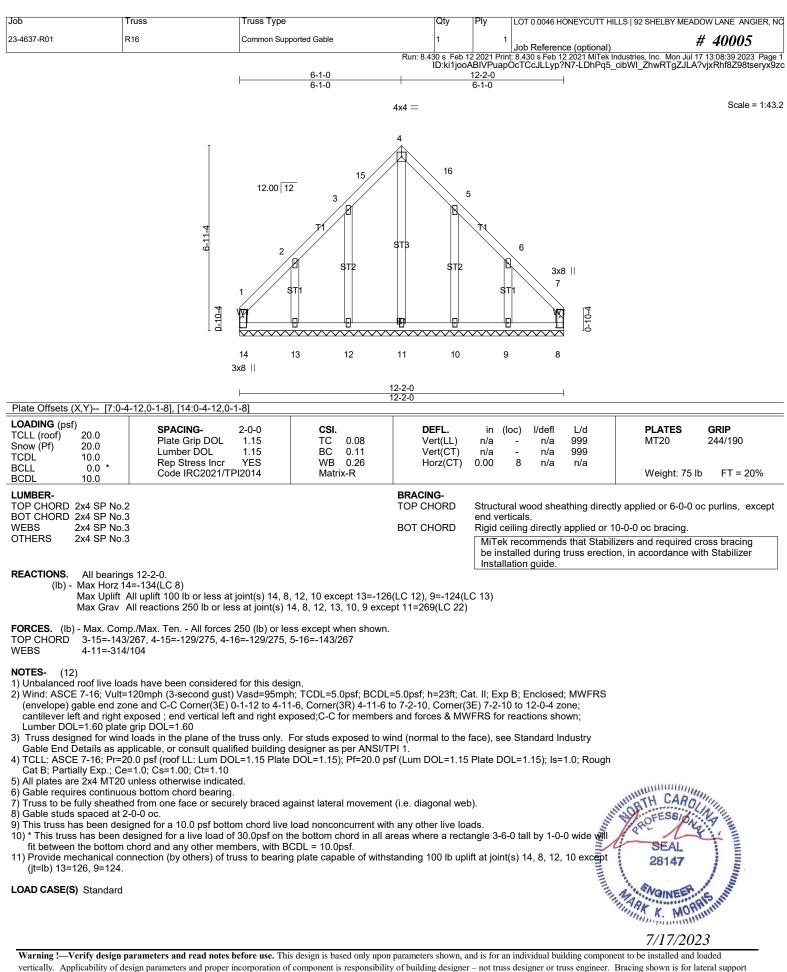
Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

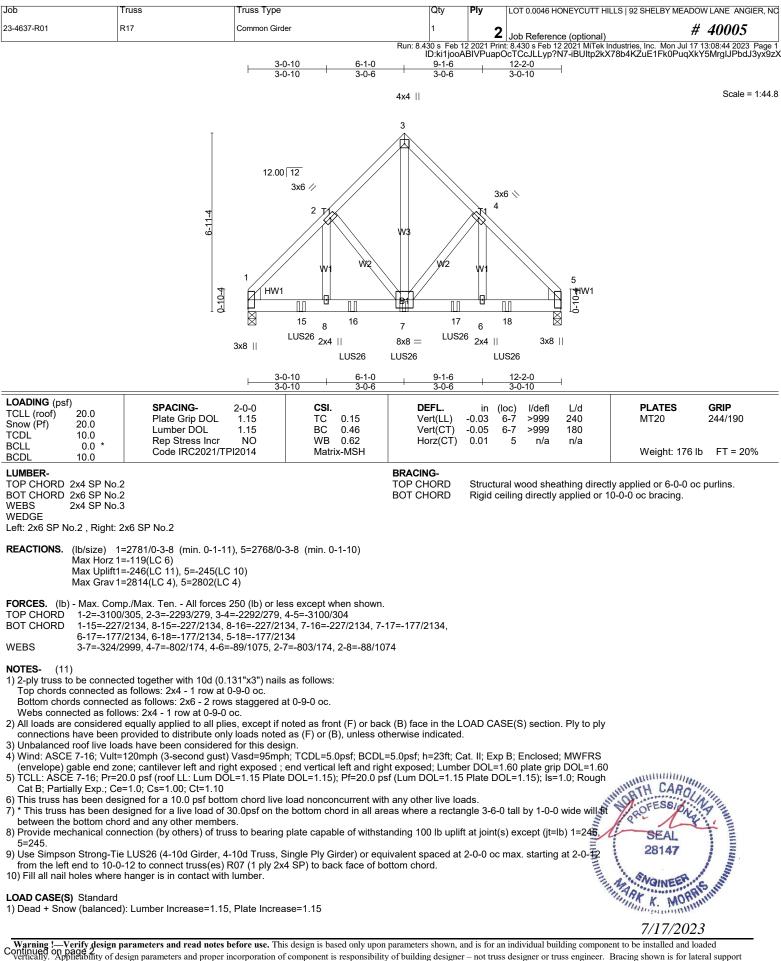
(lb) - Max Horz 21=-160(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 21, 18, 19, 20, 15, 14, 13 except 11=-142(LC 11), 12=-147(LC 10) Max Grav All reactions 250 lb or less at joint(s) 21, 11, 13, 12 except 17=250(LC 29), 18=297(LC 5), 19=273(LC 5), 20=253(LC 23), 15=283(LC 6), 14=277(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(13)

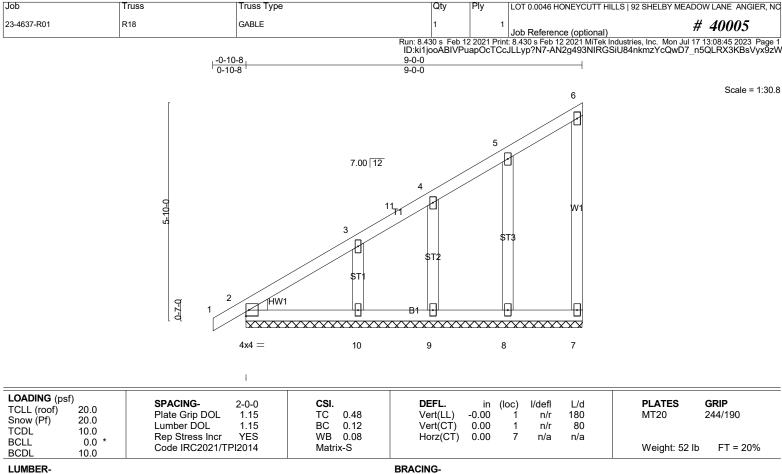

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 4-11-6, Corner(3R) 4-11-6 to 13-0-10, Corner(3E) 13-0-10 to 17-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 7)


- * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at lattice 1.1 and 7) Gable requires commentations
 8) Truss to be fully sheathed from one face or second, and the second s

MORPHS INTERNAL T17/202 Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

7/17/2023


[Job	Truss	Truss Type	Qty	Ply	LOT 0.0046 HONEYCUTT HILLS 92 SHELBY MEADOW LANE ANGIER, NC
	23-4637-R01	R17	Common Girder	1	2	Job Reference (optional) # 40005
			Run:			t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Mon Jul 17 13:08:44 2023 Page 2 DcTCcJLLyp?N7-iBUltp2kX78b4KZuE1Fk0PuqXkY5MrgIJPbdJ3yx9zX

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 9-12=-20

Concentrated Loads (lb) Vert: 7=-915(B) 15=-915(B) 16=-915(B) 17=-915(B) 18=-915(B)

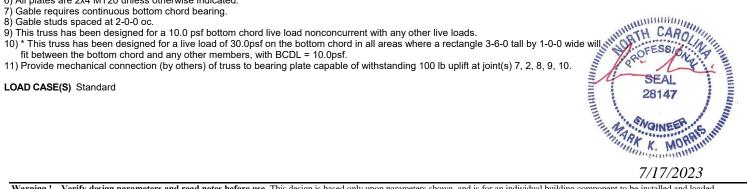
LUMBER-

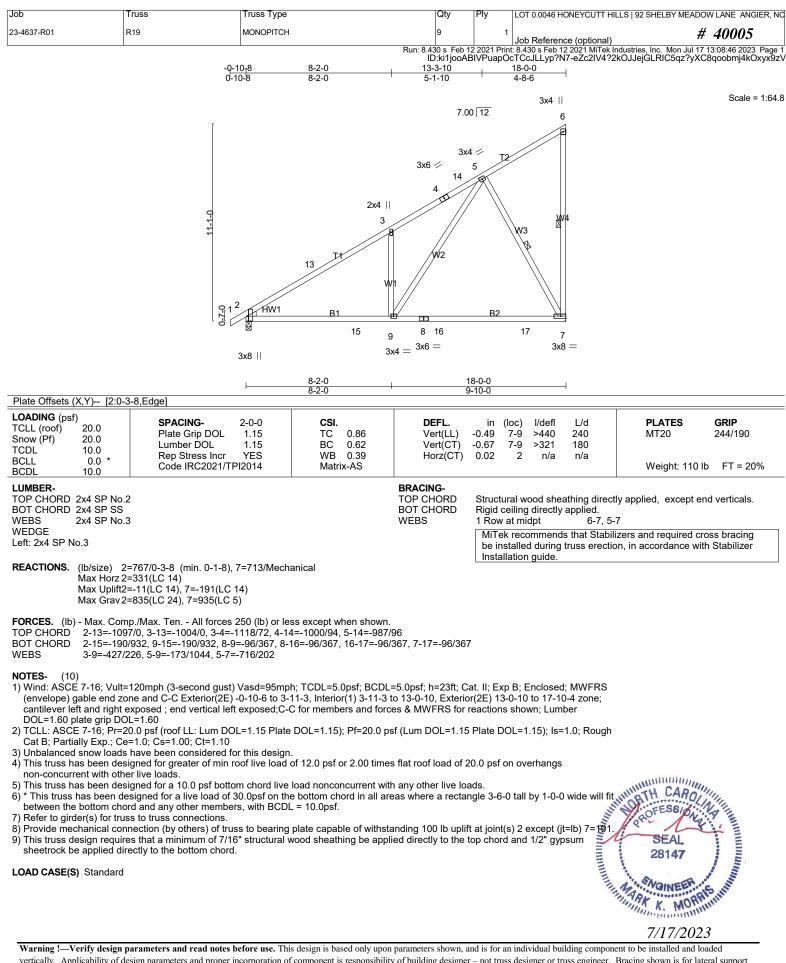
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WFBS 2x4 SP No.3 2x4 SP No.3 OTHERS WEDGE Left: 2x4 SP No.3

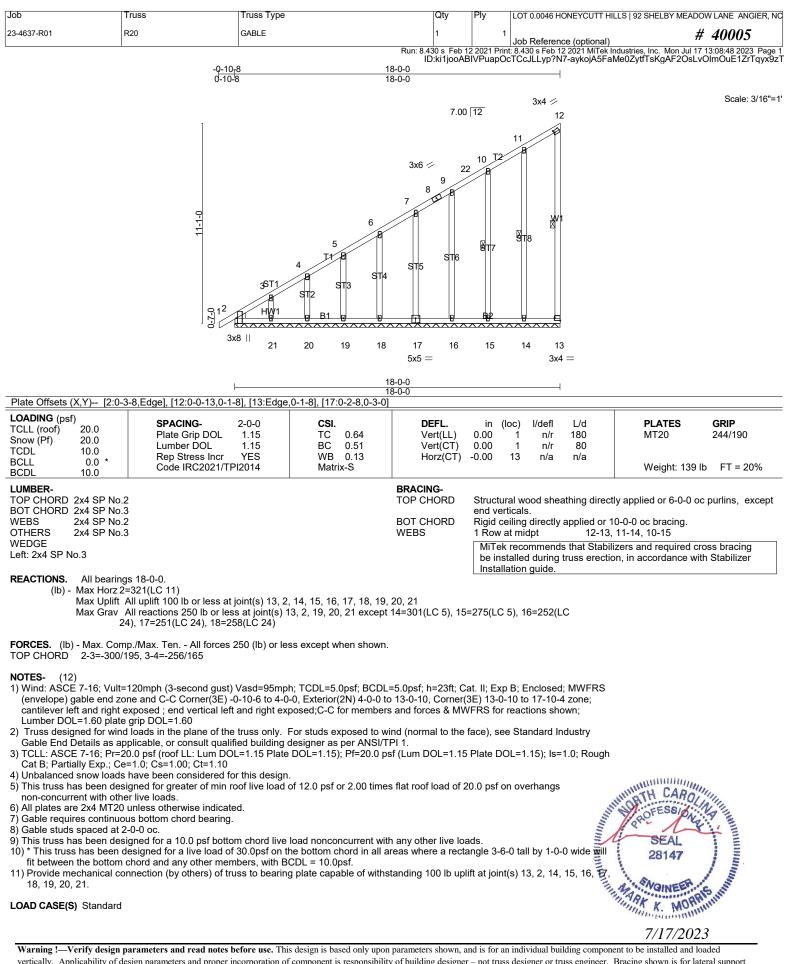
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

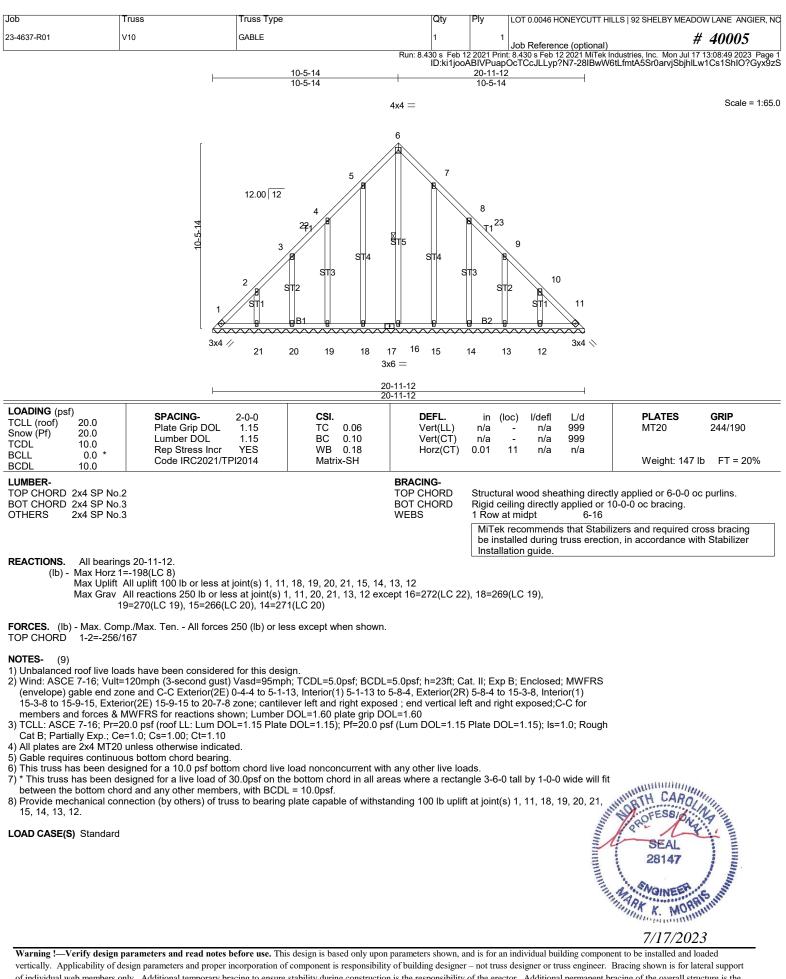
Installation guide

REACTIONS. All bearings 9-0-0.

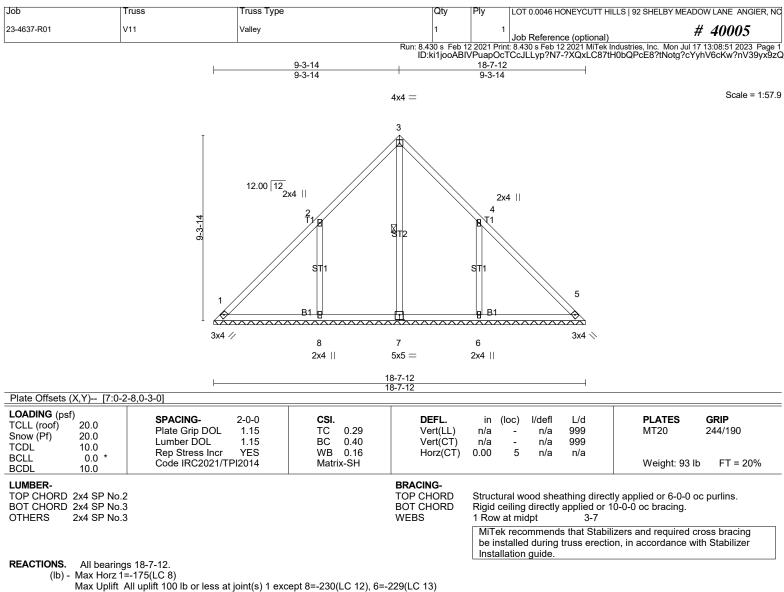

(lb) - Max Horz 2=165(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10


Max Grav All reactions 250 lb or less at joint(s) 7, 2, 9, 10 except 8=268(LC 5)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-(12)

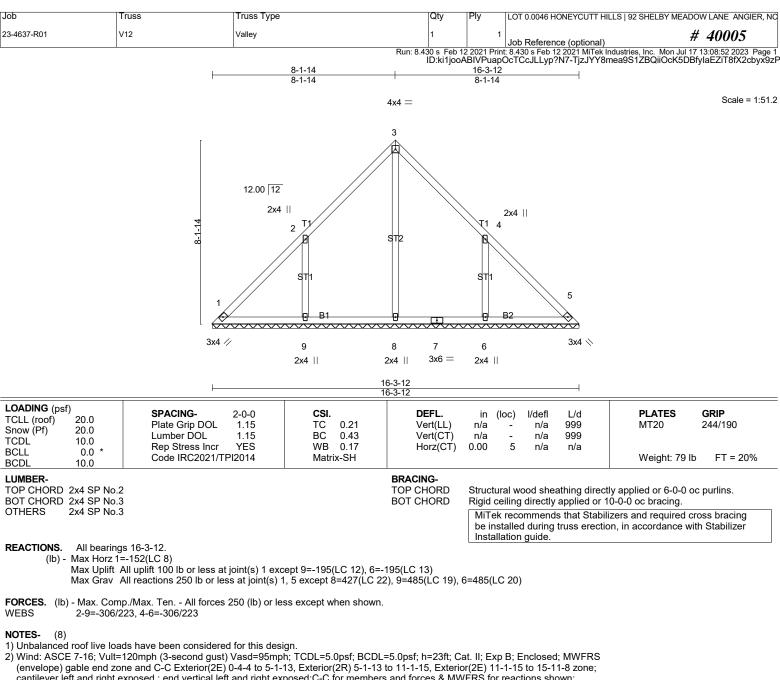
- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.



vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=421(LC 22), 8=557(LC 19), 6=557(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

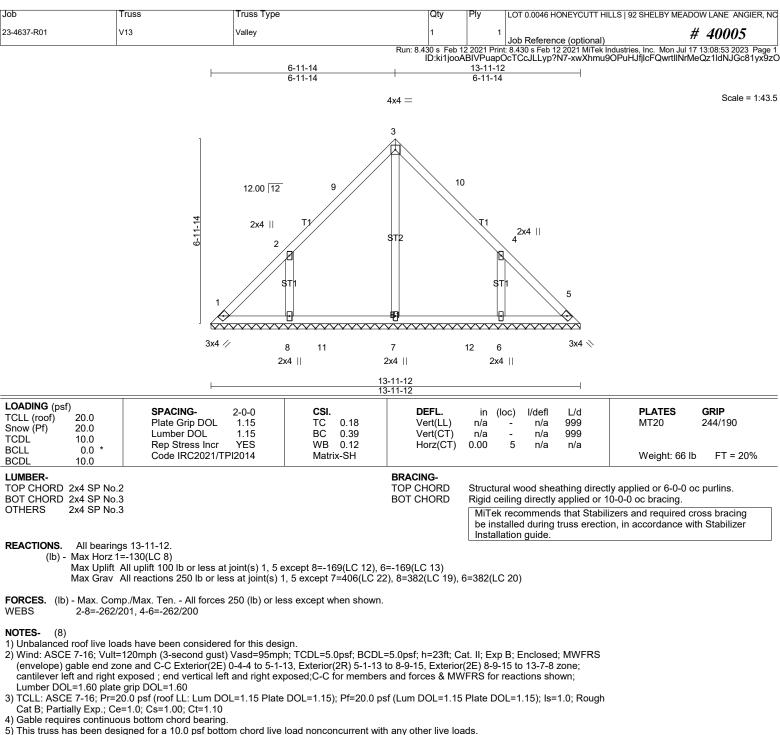

WEBS 2-8=-344/256, 4-6=-344/256

NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-3-14, Exterior(2R) 5-3-14 to 13-3-14, Exterior(2E) 13-3-14 to 18-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=230, 6=229.

- cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

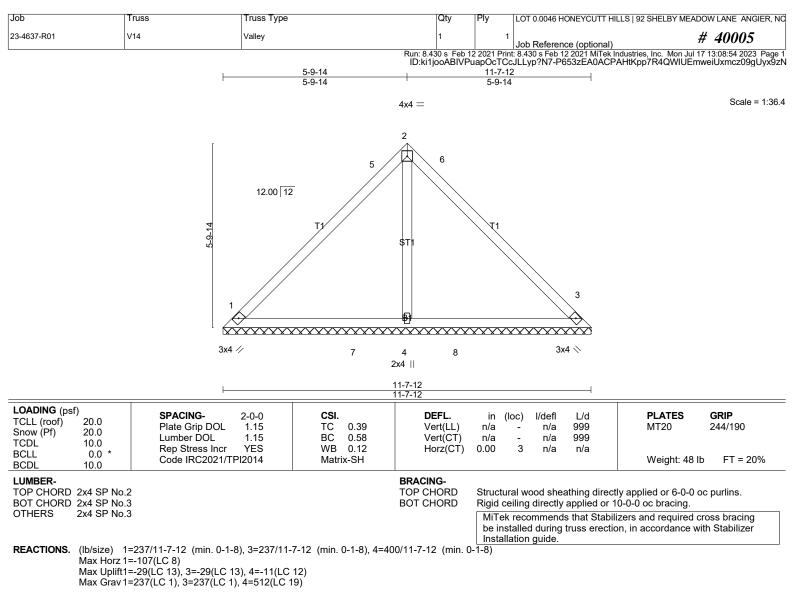
4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=195, 6=195.

```
LOAD CASE(S) Standard
```

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=169.6=169.

```
LOAD CASE(S) Standard
```


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

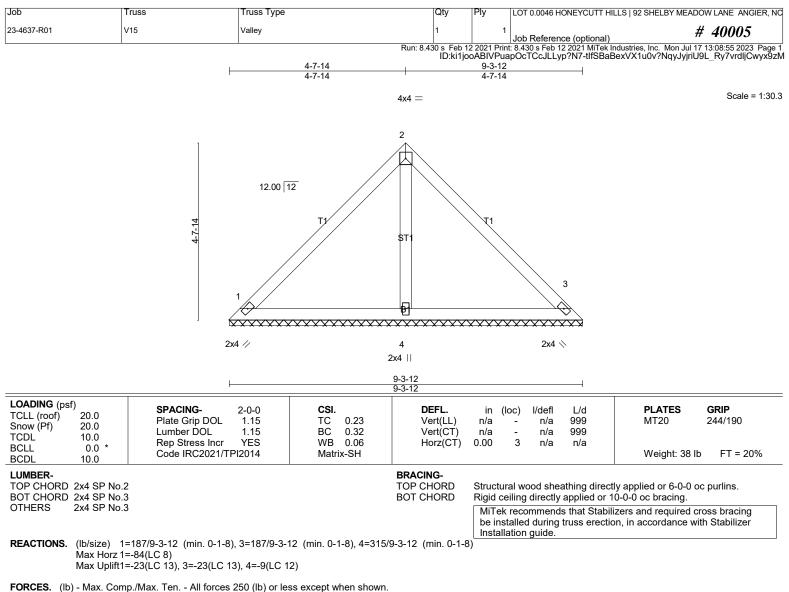
NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 6-5-15, Exterior(2E) 6-5-15 to 11-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

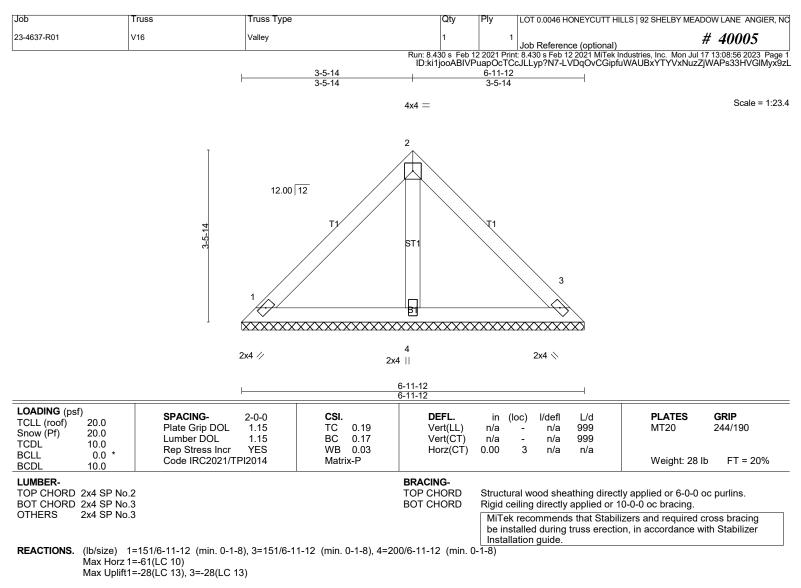
NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

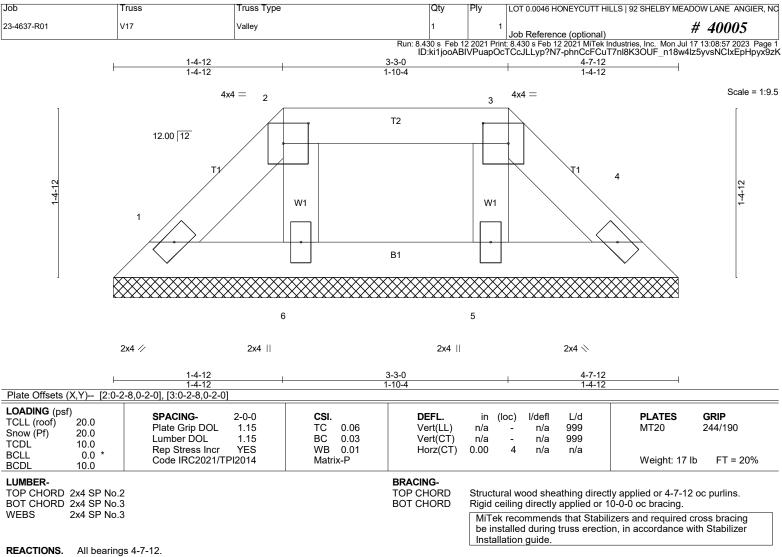
NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

(lb) - Max Horz 1=21(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 4, 6, 5 Max Grav All reactions 250 lb or less at joint(s) 1, 4, 6, 5

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (9

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 1-4-12, Exterior(2R) 1-4-12 to 3-3-0, Exterior(2E) 3-3-0 to 4-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Provide adequate drainage to prevent water ponding

5) Gable requires continuous bottom chord bearing.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 6, 5.

LOAD CASE(S) Standard

