Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 39808 JOB: 23-4638-F02 JOB NAME: LOT 0.0045 HONEYCUTT HILLS Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2015 as well as IRC 2018. *16 Truss Design(s)*

Trusses:

F201, F202, F203, F204, F206, F207, F208, F209, F210, F211, F212, F213, F214, F215, F216, F217

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to

Job	Truss	Truss Type	Qty	Ply	LOT 0.0045 HONEYCU	JTT HILLS 114 SHELBY	MEADOW LANE ANGIER, NC	
23-4638-F02	F201	Floor Supported Gable	1	1	Job Reference (opti		# 39808	
0- <u>1</u> -8	11		Run: 8.430 s ID:Wl8rkg6Bł	Feb 12 2021 F 55aRYCYG	rint: 8,430 s Feb 12 202	1 MiTek Industries, Inc. Fr	i Jul 7 10:45:07 2023 Page 1 oWjWEdRiLw64Umz_V0A Scale = 1:28.7	
$ \begin{array}{c} 1.5x3 \\ 1.5x3 = 1.5x3 \\ 1 2 \\ 31 \\ 1 \\ 31 \\ 1 \\ 31 \\ 31 \\ 31 \\ 31 \\$	T1 3 4 5	1.5x3 = 1.5x3 3x4 6 7 8 0 0 7 8 ST1 ST1 W2 ST 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	1.5x3 10 T2 ST1 	1.5x3 1.5x3 11 12 ST1 ST1 SX1 ST1	13	.5x3 3x4 14 15 511 W1 CXXXXXX	
30 29	28 27	26 25 24	23 22	21	20 19	18	17 16	
3x4 1.5x3	1.5x3 1.5x3	$1.5x3 \parallel 3x4 = 1.5x$	(3 3x8 FI		1.5x3 1.5x3	1.5x3 1	.5x3 3x4	
1.5x3 1.5x3 1.5x3 1.5x3 17-5-12 Plate Offsets (X,Y) [8:0-1-8.Edge], [25:0-1-8.Edge], [30:Edge,0-1-8]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYES	CSI. TC 0.07 BC 0.01 WB 0.03	Vert(CT) I	in (loc) n/a - n/a - 00 16	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 244/190	
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH		00 10	11/d 11/d	Weight: 76 lb	FT = 20%F, 11%E	

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-5-12.

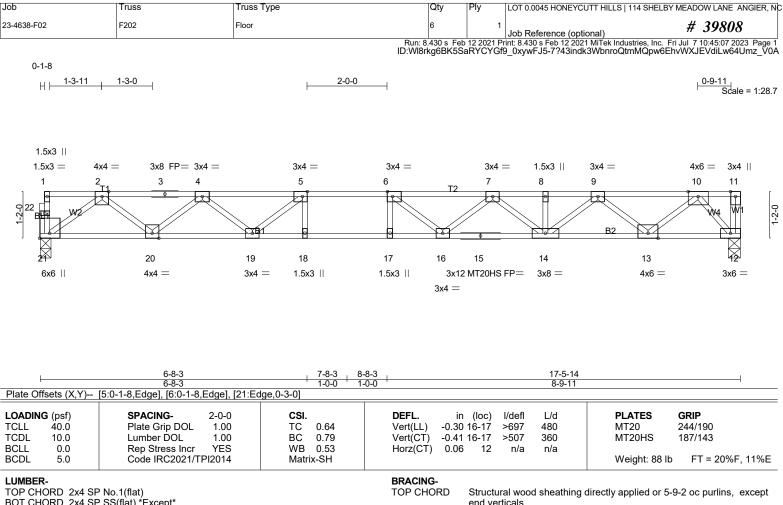
(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 24, 23, 21, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

7/5/2023

BOT CHORD

B2: 2x4 SP No.1(flat) WFBS 2x4 SP No.3(flat)

REACTIONS. (lb/size) 21=942/0-3-6 (min. 0-1-8), 12=948/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2028/0, 3-4=-2028/0, 4-5=-3259/0, 5-6=-3830/0, 6-7=-3780/0, 7-8=-3111/0, 8-9=-3111/0, 9-10=-1700/0

BOT CHORD 20-21=0/1226, 19-20=0/2785, 18-19=0/3830, 17-18=0/3830, 16-17=0/3830, 15-16=0/3619, 14-15=0/3619, 13-14=0/2529, 12-13=0/837

5-18=-65/292, 6-17=-260/97, 5-19=-879/0, 4-19=0/650, 4-20=-986/0, 2-20=0/1044, 2-21=-1514/0, 6-16=-424/231, WEBS 7-16=0/374, 7-14=-648/0, 9-14=0/744, 9-13=-1079/0, 10-13=0/1122, 10-12=-1256/0

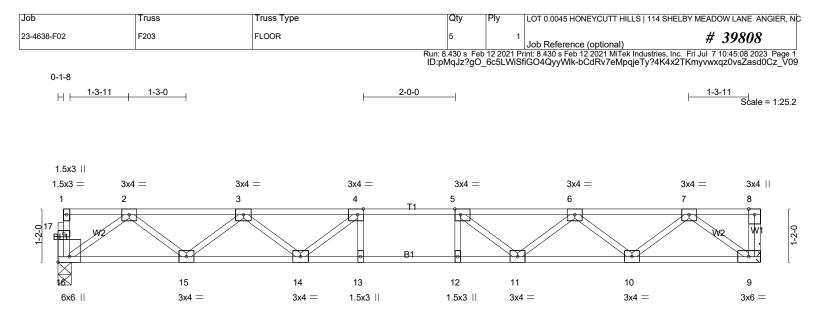
NOTES-(5)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.


4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP SS(flat) *Except*

1	6-8-3		7-8-3	8-8-3	1	5-4-6
	6-8-3		1-0-0	1-0-0		6-8-3
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [16:Ed	lge,0-3-0]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.24 BC 0.51 WB 0.28 Matrix-SH		Vert(CT) -0.	in (loc) l/defl L/d 11 11-12 >999 480 15 12-13 >999 360 03 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 77 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			·	BRACING- TOP CHORD	Structural wood sheathing end verticals.	directly applied or 6-0-0 oc purlins, except

WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

....

REACTIONS. (lb/size) 16=550/0-3-8 (min. 0-1-8), 9=554/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

. . .

TOP CHORD 2-3=-1153/0, 3-4=-1785/0, 4-5=-1990/0, 5-6=-1785/0, 6-7=-1154/0

BOT CHORD 15-16=0/707, 14-15=0/1576, 13-14=0/1990, 12-13=0/1990, 11-12=0/1990, 10-11=0/1576, 9-10=0/708

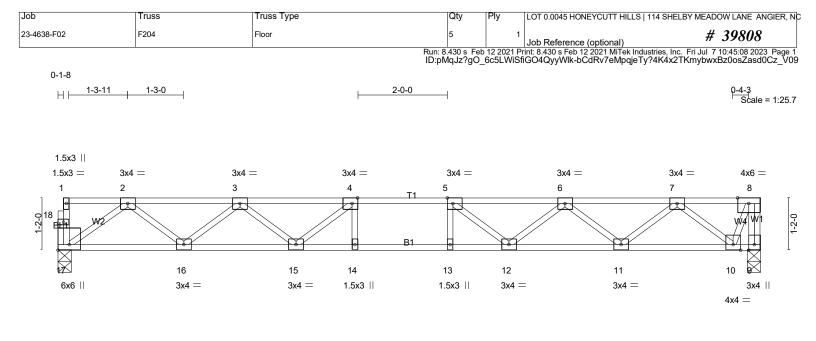
4-14=-387/0, 3-14=0/314, 3-15=-550/0, 2-15=0/580, 2-16=-873/0, 5-11=-387/0, 6-11=0/314, 6-10=-550/0, 7-10=0/580, 2-16=-873/0, 5-11=-387/0, 6-11=0/314, 6-10=-550/0, 7-10=0/580, 2-16=-873/0, 5-11=-387/0, 6-11=0/314, 6-10=-550/0, 7-10=0/580, 2-16=-873/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-11=-387/0, 5-10=-550/0, 7-10=0/580, 5-10=-550/0, 7-10=0/580, 5-10=-550/0, 7-10=0/580, 5-10=-550/0, 5-10=-550/0, 7-10=0/580, 5-10=-550/0, 5-10=-550/0, 7-10=0/580, 5-10=-550/0, 5-10=-500/0, 5-10=-500/0, 5-10=-500/0, 5-10=-50/0, 5-10=-500/0, 5-100 WEBS

NOTES-(6)

1) Unbalanced floor live loads have been considered for this design.

Refer to girder(s) for truss to truss connections

7-9=-875/0


3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

L	6-8-3	7-8-		15-7	
	6-8-3	' 1-0·	-0 ' 1-0-0 '	6-11	-11
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [17:Ed	lge,0-3-0]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.26 BC 0.56 WB 0.28	Vert(LL) -0.1	n (loc) l/defl L/d 2 12-13 >999 480 6 12-13 >999 360 3 9 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH			Weight: 79 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			BRACING- TOP CHORD	end verticals.	directly applied or 6-0-0 oc purlins, except
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied	a or 10-0-0 oc bracing.

2x4 SP No.3(flat)

REACTIONS. (lb/size) 9=565/0-3-8 (min. 0-1-8), 17=561/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

~ ~ ~

TOP CHORD 8-9=-566/0, 2-3=-1181/0, 3-4=-1839/0, 4-5=-2067/0, 5-6=-1886/0, 6-7=-1281/0

BOT CHORD 16-17=0/723, 15-16=0/1614, 14-15=0/2067, 13-14=0/2067, 12-13=0/2067, 11-12=0/1691, 10-11=0/851

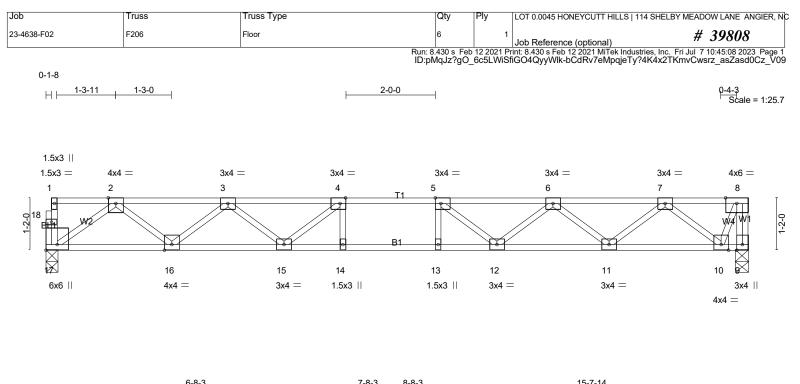
4-15=-413/0, 3-15=0/330, 3-16=-565/0, 2-16=0/596, 2-17=-891/0, 5-12=-371/0, 6-12=0/305, 6-11=-533/0, 7-11=0/559, WEBS 7-10=-798/0, 8-10=0/576

NOTES-(5)

1) Unbalanced floor live loads have been considered for this design.

2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

.

Plate Offsets (X,Y)	6-8-3 6-8-3 [4:0-1-8,Edge], [5:0-1-8,Edge], [17:Ed	1-0- dge,0-3-0]		15-7 6-11	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.41 BC 0.83 WB 0.43 Matrix-SH	Vert(CT) -0.	in (loc) l/defl L/d 18 12-13 >999 480 24 12-13 >772 360 05 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 79 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF		I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except

REACTIONS. (lb/size) 9=847/0-3-8 (min. 0-1-8), 17=841/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 8-9=-849/0, 2-3=-1771/0, 3-4=-2758/0, 4-5=-3101/0, 5-6=-2829/0, 6-7=-1921/0, 7-8=-358/0

BOT CHORD 16-17=0/1084, 15-16=0/2422, 14-15=0/3101, 13-14=0/3101, 12-13=0/3101, 11-12=0/2536, 10-11=0/1277

WEBS 4-15=-620/0, 3-15=0/496, 3-16=-847/0, 2-16=0/894, 2-17=-1337/0, 5-12=-556/0, 6-12=0/457, 6-11=-800/0, 7-11=0/839, 7-10=-1197/0, 8-10=0/864

NOTES- (4)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty Pl	y	LOT 0.0045 HO	NEYCUTT HILI	LS 114 SHELBY I	MEADOV	LANE ANGI	ER, NC
23-4638-F02	F207	Floor Supported Gable		1	1	Job Reference	e (optional)			89808	
			Run: 8. ID:pN	430 s Feb 12 lqJz?gO_6c	2021 Prin 5LWiSfi	nt: 8.430 s Feb GO4QyyWlk-3	12 2021 MiTek 3OBp6Tf_a8rl	Industries, Inc. Fri J46ZGtnTH?XJ/	Jul 7 10 ARKP?i	:45:09 2023 F K_?oEbAYez	Page 1 z_V08
0 ₁ -8											
										Scale = 1	1:25.7
1.5x3											
1.5x3 = 1.5x3			x3 3x4 =	1.5x3		1.5x3	1.5x3	1.5x3	1.5x3		
1 2	3 4	5 6	7 	8		9	10	11	12	13	-
	<u> </u>			•		<u> </u>	<u> </u>	<u>e</u>	<u> </u>		
0 ²⁷ [−] [−] [−] [−] [−] [−] [−] [−]	ST1 ST1	ST1 S1	T1 W2 ST1	ST1		ST1	ST1	ST1	ST1	W1	1-2-0
		Ц	від				Ц		Ц	H	'
											l
26 25	24 23	22 21	20	19	/////	18	17	16	15	14	
3x4 1.5x3			3x4 = 1.5x3	1.5x3		1.5x3	1.5x3	1.5x3	1.5x3		

			10-7-12		
1			15-7-12		
Plate Offsets (X,Y)	[7:0-1-8,Edge], [21:0-1-8,Edge], [26:E	dge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES GRIP MT20 244/190 Weight: 69 lb FT = 20%F, 11%E
			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except

15-7-12

REACTIONS. All bearings 15-7-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Job	Truss		Truss Type		C	Qty F	Ply	LOT 0.0045 HONEYO	CUTT HILLS 114 SHEL	BY MEADOW	LANE ANGIER, N
23-4638-F02	F208		Floor Supported	Gable	1		1	Job Reference (op	tional)		9808
					Run: 8.4 ID:pMo	30 s Feb 1 JZ?gO_6	2 2021 Pr c5LWiSf	int: 8.430 s Feb 12 20 iGO4QyyWlk-3OBp	21 MiŤek Industries, Inc 6Tf_a8rU46ZGtnTH	. Fri Jul 7 10:4 ?XJARKP?iX	45:09 2023 Page 1 ?oEbAYez_V08
0 ₁ 78											0 ₁ 18
											Scale = 1:21.4
1.5x3											1.5x3
1.5x3 =	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =		(3	1.5x3	1.5x3	1.5x3	1.5x3 =
1	2	3	4	5	6 	7		8	9	10	11
	ST1	ST1	ST1	ST1 W	2 ST1 B1	ST	1	ST1	ST1	ST1	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\sim \sim \sim \sim$	$\sim$				
22	21	20	19	18	17	16	0.11	15	14	13	12
3x4	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	1.5>	<b>(</b> 3	1.5x3	1.5x3	1.5x3	3x4
				01	12-11-12 12-11-12						
Plate Offsets (X,Y)	<u>) [b:U-1-8,Edg</u>	ge], [18:0-1-8,Edg	lej, [22:Eage,0-1	-ŏj							
LOADING (psf) TCLL 40.0	Plate	CING- 2-0 Grip DOL 1.0	00 Т	<b>SI.</b> C 0.06	DEFL. Vert(LL)	in n/a	(loc)   -	l/defl L/d n/a 999	PLATES MT20	<b>GRIP</b> 244/190	)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

12

end verticals

0.00

n/a

n/a

999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%F, 11%E

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Lumber DOL

**Rep Stress Incr** 

Code IRC2021/TPI2014

1.00

YES

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

вс

WB

Matrix-SH

0.01

0.03

LOAD CASE(S) Standard

(5)

TCDL

BCLL

BCDL

WFBS

OTHERS REACTIONS.

NOTES-

LUMBER-

10.0

0.0

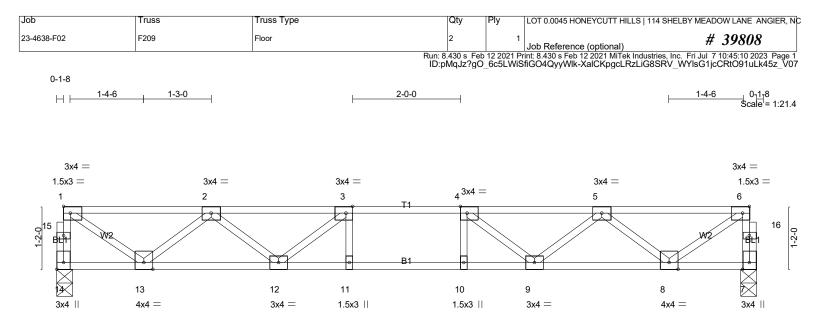
5.0

TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat)

2x4 SP No.3(flat)

2x4 SP No.3(flat)


All bearings 12-11-12.

1) Gable requires continuous bottom chord bearing.



Weight: 58 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins, except



Plate Offsets (X,Y)	5-5-14 5-5-14 [3:0-1-8,Edge], [4:0-1-8,Edge], [6:0-1	6-5- 1-0- -8,Edge], [14:Edge,0-1-8	0 1-0-0		11-12 5-14
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.32 BC 0.58 WB 0.47 Matrix-SH	DEFL. i Vert(LL) -0.1	n (loc) l/defl L/d 0 11-12 >999 480 3 9-10 >999 360 3 7 n/a n/a	PLATES         GRIP           MT20         244/190           Weight: 65 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except

REACTIONS. (lb/size) 14=694/0-3-6 (min. 0-1-8), 7=694/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 14-15=-688/0, 1-15=-687/0, 7-16=-688/0, 6-16=-687/0, 1-2=-836/0, 2-3=-1812/0, 3-4=-2109/0, 4-5=-1812/0,

5-6=-836/0

- BOT CHORD 12-13=0/1506, 11-12=0/2109, 10-11=0/2109, 9-10=0/2109, 8-9=0/1506
- WEBS 3-12=-507/0, 2-12=0/427, 2-13=-872/0, 1-13=0/984, 4-9=-507/0, 5-9=0/427, 5-8=-872/0, 6-8=0/984

#### NOTES-(3)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



7/5/2023

Job	Truss	Truss Type	Qty	Ply LO	T 0.0045 HONEYCUTT HILLS   1	14 SHELBY MEADOW LANE ANGIER, NC
23-4638-F02	F210	Floor	2	1	b Reference (optional)	# 39808
	I		Run: 8.430 s Fe	b 12 2021 Print:	8.430 s Feb 12 2021 MiTek Indus	stries, Inc. Fri Jul 7 10:45:11 2023 Page 1 Qjf?CVI4yOIq7uuAM_IFY4HdXz_V06
0-1-8						
H0 <del>-5-15 1-3-0</del>		2-0-	-0	0-10-3		1-0-10_0-1-8 Scale: 3/8"=1'
						Scale: 3/8°=1
3x4 =						
1.5x3	1.5x3	3x4 =				1.5x3
1.5x3 =	3x4 = 3x8	FP= 3x4 =	3x4 =	3x8 =	3x4 =	3x4 = 1.5x3 =
1 2	3 4 5	6 7	8	9 T2	10	11 12
			R			
0,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1, 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1,25 € 1, 1 2 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1				W4 III `	$\mathbb{N} / \mathbb{N}$	
4/ <del>  7</del> 3	¥¥4	B1		ĕ∕_Ū_		
24 23		24 22	10	18 17	10 15	14 13
		21 20	19		16 15	
6x6    3x4	4 = 3x8 =	3x4 = 1.5x3	1.5x3    :	3x4 = 3x4		3x4 = 6x6
					3x4 =	

	8-5-15	0.6	10-7-7 5-15 _ 10-5-15 _ 11-8-1 _	12-10-2 12-8-10	19-3-4	
	8-5-15		0-0 1-0-0 0-1-8 1-0-9	1-0-9 0-1-8	6-5-2	
Plate Offsets (X,Y)	[7:0-1-8,Edge], [8:0-1-8,Edge], [13:Ec			100010	002	
LOADING (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	<b>CSI.</b> TC 0.83 BC 0.88 WB 0.38 Matrix-SH	Vert(LL) -0.25	n (loc) l/defl L/d 520-21 >612 480 420-21 >451 360 3 13 n/a n/a	PLATES MT20 Weight: 100	<b>GRIP</b> 244/190 b FT = 20%F, 11%E
			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie 6-0-0 oc bracing: 17-18,16-	d or 10-0-0 oc bracir	
	e) 24=697/0-3-6 (min. 0-1-8), 17=10 Grav 24=703(LC 3), 17=1035(LC 1), 13		3=348/0-3-6 (min. 0-1	-8)		

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1058/0, 3-4=-1954/0, 4-5=-1954/0, 5-6=-1954/0, 6-7=-2133/0, 7-8=-1724/0,

8-9=-668/0, 9-10=-476/0, 10-11=-559/0

- BOT CHORD 23-24=0/442, 22-23=0/1639, 21-22=0/2254, 20-21=0/1724, 19-20=0/1724, 18-19=0/1724, 15-16=0/698, 14-15=0/698, 13-14=0/384
- WEBS 7-20=-399/0, 8-19=0/456, 9-17=-914/0, 7-21=0/562, 6-22=-383/0, 3-22=0/402, 3-23=-756/0, 2-23=0/803, 2-24=-870/0, 8-18=-1360/0, 9-18=0/775, 9-16=0/408, 10-16=-376/0, 11-13=-511/0

NOTES- (4)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qt	y Ply LOT 0.0	045 HONEYCUTT	HILLS   114 SHELBY ME	ADOW LANE ANGIER, NC
23-4638-F02	F211	Floor	5		ference (optiona	u <i>)</i>	# 39808
			Run: 8.430 ID:pMc	) s Feb 12 2021 Print: 8.430 JZ?gO_6c5LWiSfiGO40	s Feb 12 2021 Mi QyyWlk-?nJaX8h	Tek Industries, Inc. Fri Ju E6I5CKQjf?CVI4yOO	I 7 10:45:11 2023 Page 1 d7tFAK5IFY4HdXz_V06
0-1-8							
H0-5-15 1-3-0		H	2-0-0				0-9-5_0-1-8 Scale: 3/8"=1'
							Scale. 5/6 – 1
3x6 =							
1.5x3	1.5x3	3x4 =					1.5x3
1.5x3 =	3x4 = 3x8	FP= 3x4 =	= 3x4 =	3x4 =	1.5x3	3x4 =	$4x4 \equiv 1.5x3 \equiv$
1 2	3 4 5	6 7	8	9 T2	10	11	12 13
		P R F	R		•	R.	
0,25 ℃- 1,25 BETW2				$\langle \rangle / \rangle$	$\parallel$		
<u>↓</u> [/  <del> </del> ]	4 - PH	B1 a	0				<u>_</u>
24 23	22	24 20	10	10	47	10 15	14
	22 6 = 3x8 =	21 20 3x4 = 1.5x3	19    1.5x3	18 3x4 =	17 3x8 =	16 15 3x8 FP= 4x4 =	14 6x6 ∐

9-5-15 10-5-15

1-0-0

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

in (loc)

14

-0.31 19-20

-0.42 19-20

0.07

l/defl

>747

>542

n/a

2-2-0 oc bracing: 19-20.

1-0-0

2x4 SP No.3(flat) WEBS

40.0

10.0

0.0

5.0

TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat)

LOADING (psf)

TCLL

TCDL

BCLL

BCDL

LUMBER-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

PLATES

Weight: 98 lb

MT20

GRIP

244/190

FT = 20%F, 11%E

19-3-4

8-9-5

I/d

480

360

n/a

REACTIONS. (lb/size) 24=831/0-3-6 (min. 0-1-8), 14=831/0-3-6 (min. 0-1-8)

Code IRC2021/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

8-5-15 8-5-15

1 - 7 - 3

1.00

1.00

YES

Plate Offsets (X,Y)-- [7:0-1-8,Edge], [8:0-1-8,Edge], [24:Edge,0-3-0]

SPACING-

Plate Grip DOL

Rep Stress Incr

Lumber DOL

TOP CHORD 2-3=-1325/0, 3-4=-2720/0, 4-5=-2720/0, 5-6=-2720/0, 6-7=-3509/0, 7-8=-3788/0, 8-9=-3565/0, 9-10=-2835/0,

10-11=-2835/0, 11-12=-1502/0 BOT CHORD 23-24=0/513, 22-23=0/2114, 21-22=0/3233, 20-21=0/3788, 19-20=0/3788, 18-19=0/3788, 17-18=0/3324, 16-17=0/2263, 15-16=0/2263, 14-15=0/717

CSI.

тс

BC

WB

Matrix-SH

0.46

0.92

0.50

WEBS 7-21=-579/9, 6-21=0/454, 6-22=-656/0, 3-22=0/773, 3-23=-1028/0, 2-23=0/1057, 2-24=-1008/0, 8-18=-531/57,

9-18=0/423, 9-17=-624/0, 11-17=0/730, 11-15=-990/0, 12-15=0/1022, 12-14=-1096/0

NOTES-(3)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



7/5/2023

Job	Truss	Truss Type	Qty	Ply LOT 0.0			EADOW LANE ANGIER, NC
300	Truss	Truss Type	Qty		045 HONEYCUTT		
23-4638-F02	F212	Floor	5	1	ference (optiona	51)	# 39808
		F	Run: 8.430 s Fe	eb 12 2021 Print: 8.430	) s Feb 12 2021 Mi	Tek Industries. Inc. Fri Ju	ul 7 10:45:12 2023 Page 1
			ID:pMqJz?g	gO_6c5LWiSfiGO4	QyyWlk-UztylUh	st3D3xalrZv0_dAxZM	XDSvnLRUCqq9zz_V05
0-1-8							
H <mark>0-5-15 1-3-0</mark>		2-0-0	I.				0-9-7
							Scale: 3/8"=1'
3x6 =							
1.5x3	1.5x3	3x4 =					
1.5x3 =	3x4 = 3x8	FP= 3x4 =	3x4 =	3x4 =	1.5x3	3x4 =	4x4 = 3x4
1 2	3 4 5	6 7	8	9	10	11	12 13
0 78			- <del>[</del>		0		रि हि
9,25 6,25 8,907 7,-					$\sim \parallel$		
- 117		B1 B		$\sim$		B2	
			P	<u>1</u>			
24 23	22	21 20	19	18	17	16 15	, i i i i i i i i i i i i i i i i i i i
	6 = 3x8 =	$3x4 = 1.5x3 \parallel$	1.5x3	3x4 =	3x8 =	3x8 FP = 4x4 =	3x6 =

	8-5-15 8-5-15	.	9-5-15   10-5-15   1-0-0 1-0-0	19-3- 8-9-7		I
Plate Offsets (X,Y)	[7:0-1-8,Edge], [8:0-1-8,Edge], [24:E0	age,0-3-0j				
LOADING (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	<b>CSI.</b> TC 0.46 BC 0.92 WB 0.50 Matrix-SH	Vert(LL) -0.3	n (loc) l/defl L/d 1 19-20 >745 480 2 19-20 >541 360 7 14 n/a n/a		<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing c end verticals. Rigid ceiling directly appliec 2-2-0 oc bracing: 19-20.	, , ,	. , .

REACTIONS. (lb/size) 24=832/0-3-6 (min. 0-1-8), 14=837/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1326/0, 3-4=-2722/0, 4-5=-2722/0, 5-6=-2722/0, 6-7=-3512/0, 7-8=-3792/0, 8-9=-3570/0, 9-10=-2841/0,

- 10-11=-2841/0, 11-12=-1510/0 BOT CHORD 23-24=0/513, 22-23=0/2116, 21-22=0/3236, 20-21=0/3792, 19-20=0/3792, 18-19=0/3792, 17-18=0/3330, 16-17=0/2270, 15-16=0/2270, 14-15=0/725
- WEBS 7-21=-581/9, 6-21=0/455, 6-22=-656/0, 3-22=0/774, 3-23=-1028/0, 2-23=0/1058, 2-24=-1008/0, 8-18=-531/59,

9-18=0/423, 9-17=-624/0, 11-17=0/730, 11-15=-989/0, 12-15=0/1022, 12-14=-1101/0

#### NOTES-(4)

1) Unbalanced floor live loads have been considered for this design.

- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.
- 3) CAUTION, Do not erect truss backwards.

# LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	LOT 0.0045 HONEYCUTT HILLS   114 SHEL	
300	Truss	Truss Type	Qty	FIY	LOT 0.0043 HONE FCOTT HILLS   THA SHEL	
23-4638-F02	F213	Floor	3	1	Job Reference (optional)	# 39808
		Ru	n: 8.430 s Fel	b 12 2021 Pr	int: 8.430 s Feb 12 2021 MiTek Industries, Inc.	Fri Jul 7 10:45:14 2023 Page 1
			ID:pMqJz?g	gO_6c5LWi	SfiGO4QyyWlk-QL?iAAj7PgTnBtSDgK2	Sib0wILvjNh_kyWJxEsz_V03
0-1-8						
H <mark>0-5-15 1-3-0</mark>	4	2-0-0				0-5-15 Scale = 1:31.2
	1	I	I			Scale = 1:31.2
$4x4 \equiv$						
1.5x3	1.5x3	3x4 =				$4x4 \equiv$
1.5x3 =	3x4 = 3x8	FP= 3x4 =	3x4 =		3x4 = 1.5x3    3x4 =	3x4
1 2	- ³ 4 5	6 7	8	Т2	9 10 11	12 13
			1e1	12		रिक्ति ।
0,25 N BB WZ				/		W2 W1 17
$\frac{1}{2}$		B1 B1		$\searrow$		
			9			
24 2		01 00	40	40	17 10	- 44
	23 22	21 20	19	18		15 14
6x6    4	x4 = 3x8 =	3x4 ≕ 1.5x3	1.5x3	3x4 =	3x8 = 3x8 FP= 4	x4 = 3x6 =

	8-5-15 8-5-15 [7:0-1-8,Edge], [8:0-1-8,Edge], [24:Ed		9-5-15   10-5-15   1-0-0 1-0-0	18-11- 8-5-1	
	[ <u>7:0-1-0,Euge], [0:0-1-0,Euge], [24.Eu</u>	ge,0-0-0]			
LOADING (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.43 BC 0.87 WB 0.49 Matrix-SH	Vert(LL) -0.29	n (loc) l/defl L/d 9 19-20 >785 480 0 19-20 >569 360 7 14 n/a n/a	PLATES         GRIP           MT20         244/190           Weight: 98 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

Rigid ceiling directly applied or 10-0-0 oc bracing.

# REACTIONS. (lb/size) 24=819/0-3-6 (min. 0-1-8), 14=824/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1303/0, 3-4=-2667/0, 4-5=-2667/0, 5-6=-2667/0, 6-7=-3426/0, 7-8=-3678/0, 8-9=-3426/0, 9-10=-2667/0,

- 10-11=-2667/0, 11-12=-1303/0 BOT CHORD 23-24=0/505, 22-23=0/2077, 21-22=0/3168, 20-21=0/3678, 19-20=0/3678, 18-19=0/3678, 17-18=0/3168, 16-17=0/2077, 15-16=0/2077, 14-15=0/506
- WEBS 7-21=-549/27, 6-21=0/434, 6-22=-640/0, 3-22=0/753, 3-23=-1008/0, 2-23=0/1038, 2-24=-994/0, 8-18=-549/27,

9-18=0/434, 9-17=-640/0, 11-17=0/752, 11-15=-1008/0, 12-15=0/1038, 12-14=-989/0

#### NOTES-(5)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

# LOAD CASE(S) Standard





# LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 8=332/0-3-8 (min. 0-1-8), 5=332/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-327/0, 1-2=-295/0, 2-3=-422/0

BOT CHORD 6-7=0/538, 5-6=0/275

WEBS 1-7=0/370, 2-7=-317/0, 3-5=-416/0

#### NOTES-(3)

1) Refer to girder(s) for truss to truss connections.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard





BRACING-

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

2x4 SP No.3(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 5-7-1 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

2-2-0 oc bracing: 18-20.

REACTIONS. (lb/size) 26=856/0-3-8 (min. 0-1-8), 13=851/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 13-27=-853/0, 12-27=-851/0, 2-3=-1815/0, 3-4=-3107/0, 4-5=-3107/0, 5-6=-3947/0, 6-7=-3947/0, 7-8=-4218/0, 8-9=-4008/0, 9-10=-3550/0, 10-11=-2316/0, 11-12=-615/0

BOT CHORD 25-26=0/1025, 24-25=0/2580, 23-24=0/3613, 22-23=0/4175, 21-22=0/4253, 20-21=0/4253, 19-20=0/3550, 18-19=0/3522, 17-18=0/3550, 16-17=0/3550, 15-16=0/1537, 14-15=0/1538

WEBS 9-18=-545/0, 10-17=0/736, 9-20=-24/716, 8-20=-363/31, 7-23=-292/0, 5-23=0/426, 5-24=-659/0, 3-24=0/685,

3-25=-996/0, 2-25=0/1028, 2-26=-1311/0, 10-16=-1540/0, 11-16=0/987, 11-14=-1202/0, 12-14=0/969

NOTES-(5)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard



7/5/2023

Job		Truss	Truss Type		Qty Ply	LOT 0.0045 HONEYC	UTT HILLS   114 SHELBY N	MEADOW LANE ANG	GIER, NC
23-4638-F02		F216	FLOOR SUPPORTED GABL		1	1 Job Reference (opt	tional)	# 39808	
L		l	1	Run: 8 ID	.430 s Feb 12 2 :pMqJz?gO_6	2021 Print: 8.430 s Feb 12 202 c5LWiSfiGO4QyyWlk-Mk6	21 MiTek Industries, Inc. Fri STaskNxHkVQBccol5wn	Jul 7 10:45:16 2023 06HZ8I_reP1Pqo2I	Page 1 Iz_V01
	<b> </b>	1-3-0							
								Scale =	1:16.8
	1 3x6 =			1.5x3	3x4 =		3x4 =	3x4	
,	1 ^{3x6}		2	3 	4		5	6	r
1-2-0	w1	$\langle \rangle$				<		W1	-2-0
-									-
		¥	¥	ЗВ1					
1									L
		10 3x4 =		9 3x8 =		8 3x4 =		$\bowtie$	
	3x4	0						$3x6 \equiv$	

	<u>9-4-8</u> 9-4-8	
Plate Offsets (X,Y) [11:Edge,0-1-8]		
LOADING (psf)         SPACING-         2-0-0         CSI.           TCLL         40.0         Plate Grip DOL         1.00         TC         0.32           TCDL         10.0         Lumber DOL         1.00         BC         0.24           BCLL         0.0         Rep Stress Incr         NO         WB         0.31           BCDL         5.0         Code IRC2021/TPI2014         Matrix-SH	DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.02         9         >999         480           Vert(CT)         -0.03         8-9         >999         360           Horz(CT)         0.01         7         n/a         n/a	PLATES MT20         GRIP 244/190           Weight: 51 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)	end verticals.	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing, Except:

:502/0-3-8 (min. 0-1-8) -8 (min. ( -8), i Max Uplift11=-56(LC 6), 7=-56(LC 7) Max Grav 11=528(LC 3), 7=528(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

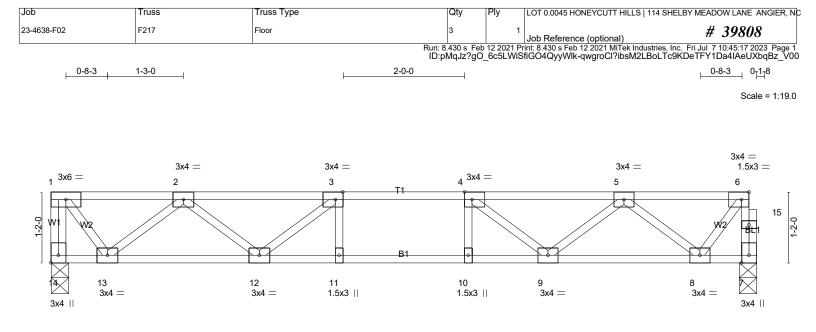
9-10=-14/954, 8-9=0/1109, 7-8=-75/627 TOP CHORD

BOT CHORD

1-10=-121/723, 2-10=-648/149, 2-9=-206/315, 4-9=-253/254, 4-8=-434/199, 5-8=-153/479, 5-7=-804/118 WEBS

NOTES-(5)

1) Unbalanced floor live loads have been considered for this design.


2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 11 and 56 lb uplift at joint 7.

3) This truss has been designed for a total drag load of 150 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 9-4-8 for 150.0 plf.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard





Plate Offsets (X.Y)	4-9-11 4-9-11 [3:0-1-8,Edge], [4:0-1-8,Edge], [6:0-1	5-9-1 1-0-0 -8.Edge]. [14:Edge.0-1-8	1-0-0		1-7-6 9-11
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.26 BC 0.50 WB 0.33 Matrix-SH	DEFL. in Vert(LL) -0.03	9 9-10 >999 360	PLATES         GRIP           MT20         244/190           Weight: 60 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except

REACTIONS. (lb/size) 14=625/0-3-8 (min. 0-1-8), 7=619/0-3-6 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-14=-624/0, 7-15=-619/0, 6-15=-618/0, 1-2=-424/0, 2-3=-1373/0, 3-4=-1681/0, 4-5=-1373/0, 5-6=-426/0

BOT CHORD 12-13=0/1056, 11-12=0/1681, 10-11=0/1681, 9-10=0/1681, 8-9=0/1055

WEBS 3-12=-476/0, 2-12=0/413, 2-13=-822/0, 1-13=0/693, 4-9=-476/0, 5-9=0/414, 5-8=-818/0, 6-8=0/669

#### NOTES-(4)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard



7/5/2023