

RE: J0623-2940 Lot 20 Jones Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0623-2940 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

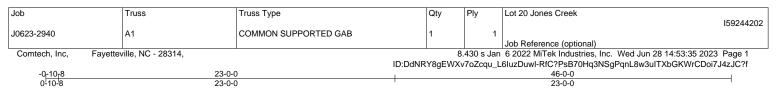
Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

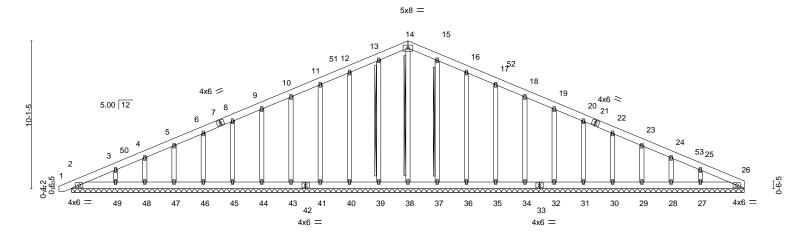
No.	Seal#	Truss Name	Date
1	159244202	A1	6/28/2023
2	159244203	A2	6/28/2023
3	159244204	A3	6/28/2023
4	159244205	A4	6/28/2023
5	159244206	B1	6/28/2023
6	159244207	B2	6/28/2023
7	159244208	V1	6/28/2023
8	159244209	V2	6/28/2023
9	159244210	V3	6/28/2023
10	159244211	V4	6/28/2023
11	159244212	V5	6/28/2023
12	159244213	V6	6/28/2023
13	159244214	V7	6/28/2023
14	159244215	V8	6/28/2023
15	159244216	V9	6/28/2023

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2023


North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Scale = 1:78.8

46-0-0 46-0-0								
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.00	<u></u> 1	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) 0.00	1	n/r	120		
CLL 0.0 *	Rep Stress Incr YES	WB 0.13	Horz(CT) 0.01	26	n/a	n/a		
CDL 10.0	Code IRC2015/TPI2014	Matrix-S	· · /				Weight: 378 lb	FT = 20%

LUMBER-TOP CHORD

2x6 SP No.1 2x6 SP No.1 BOT CHORD

OTHERS 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 14-38, 13-39, 15-37 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 46-0-0.

Max Horz 2=204(LC 16) (lb) -

- Max Uplift All uplift 100 lb or less at joint(s) 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 37, 36, 35, 34, 32, 31, 30, 29, 28, 27, 2
- All reactions 250 lb or less at joint(s) 26, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 37, 36, 35, Max Grav 34, 32, 31, 30, 29, 28, 27, 2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 10-11=-85/254, 11-12=-101/301, 12-13=-119/351, 13-14=-131/383, 14-15=-131/385,

15-16=-119/352, 16-17=-101/302, 17-18=-85/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-5 to 3-10-14, Exterior(2) 3-10-14 to 23-0-0, Corner(3) 23-0-0 to 27-7-3, Exterior(2) 27-7-3 to 46-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

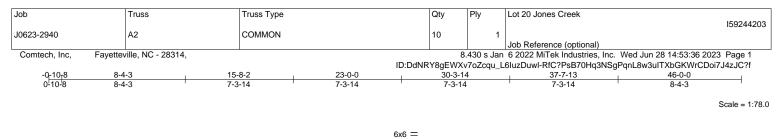
4) All plates are 2x4 MT20 unless otherwise indicated.

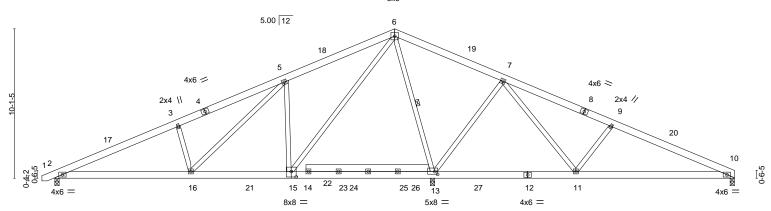
5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 37, 36, 35, 34, 32, 31, 30, 29, 28, 27, 2.


10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

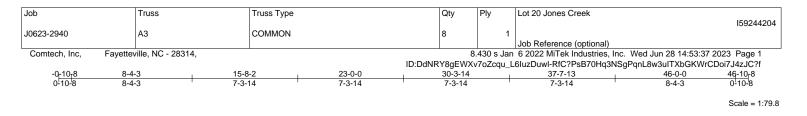
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

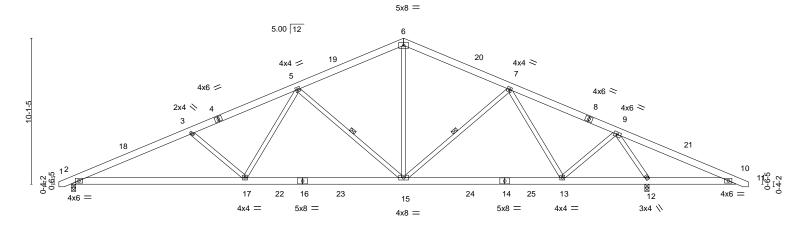
 	9-2-7	<u>16-0-0</u> 6-9-9	<u>1,7-0-ρ</u> 1-0-0	<u>25-6-12</u> 8-6-12	<u>35-3-4</u> 9-8-8	<u>46-0-0</u> 10-8-12	_
Plate Offsets (X,Y)	[13:0-2-4,0-2-4], [15:0-4-0,0	0-4-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPl2	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.30 BC 0.37 WB 0.93 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) I/defl L/d -0.08 10-11 >999 360 -0.18 10-11 >999 240 0.01 13 n/a n/a 0.04 2-16 >999 240	PLATES GRIP MT20 244/190 Weight: 334 lb FT = 20%	,
				BRACING- TOP CHOF BOT CHOF WEBS	RDStructural wood sheathing dRDRigid ceiling directly applied	irectly applied or 5-11-9 oc purlins. or 6-0-0 oc bracing. 6-13	
Max H Max U	e) 2=0-3-8, 13=0-3-8, 10= forz 2=122(LC 16) Jplift 2=-60(LC 12), 10=-81(I Grav 2=881(LC 23), 13=279	LC 13)	535(LC 24)				
TOP CHORD 2-3=	Comp./Max. Ten All force -1462/194, 3-5=-1334/264, 5 =-689/186	· · ·					
WEBS 3-16:	=-123/1265, 15-16=0/571, 1 =-457/251, 5-16=-225/874, =-835/300, 7-11=-127/760, 9	5-15=-806/34	1, 6-15=-175/1376, 6-1				
2) Wind: ASCE 7-10; V and C-C Exterior(2)	e loads have been consider /ult=130mph Vasd=103mph -0-8-5 to 3-10-14, Interior(1 ers and forces & MWFRS fc	n; TCDL=6.0p) 3-10-14 to 2	sf; BCDL=6.0psf; h=15 23-0-0, Exterior(2) 23-0	-0 to 27-7-3, Interio			

3) 200.0lb AC unit load placed on the bottom chord, 21-0-0 from left end, supported at two points, 5-0-0 apart.

4) All plates are 4x4 MT20 unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Af 818 Soundside Road Edenton, NC 27932

12-0-2 12-0-2		23-0-0 10-11-14	+ <u>33-11-14</u> 10-11-14	<u>46-0-0</u> 6-0-0	
L OADING (psf) ICLL 20.0 ICDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.37 BC 0.59 WB 0.65	DEFL. in (loc) l/defl Vert(LL) -0.20 15-17 >999 Vert(CT) -0.33 2-17 >999 Horz(CT) 0.07 12 n/a	L/d PLATE : 360 MT20 240 n/a	244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.08 17 >999 BRACING-	240 Weight:	312 lb FT = 20%

TOP CHORD

BOT CHORD

WEBS

L	U.	М	в	E	F	۲-	•	

2x6 SP No.1 TOP CHORD 2x6 SP No.1 BOT CHORD WEBS 2x4 SP No.2

REACTIONS. 2=0-3-8, 12=0-3-8 (size) Max Horz 2=118(LC 12) Max Uplift 2=-127(LC 12), 12=-163(LC 9) Max Grav 2=1603(LC 1), 12=2157(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3237/634, 3-5=-2929/555, 5-6=-1853/445, 6-7=-1853/425, 7-9=-1658/222,

9-10-623/803

2-17=-473/2924, 15-17=-255/2291, 13-15=-125/1683, 12-13=-15/707, 10-12=-642/652 BOT CHORD WFBS 6-15=-106/1021, 7-13=-562/302, 9-13=-183/1051, 5-15=-923/291, 5-17=-40/711, 3-17=-481/266, 9-12=-2337/755

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-5 to 3-10-14, Interior(1) 3-10-14 to 23-0-0, Exterior(2) 23-0-0 to 27-7-3, Interior(1) 27-7-3 to 46-8-5 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

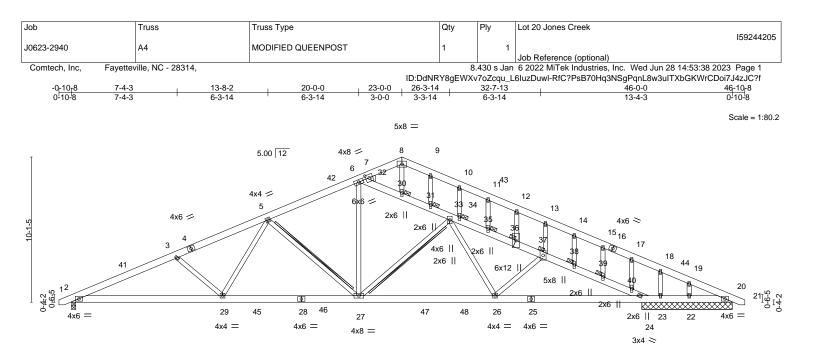
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=127, 12=163.

Structural wood sheathing directly applied or 3-10-11 oc purlins.

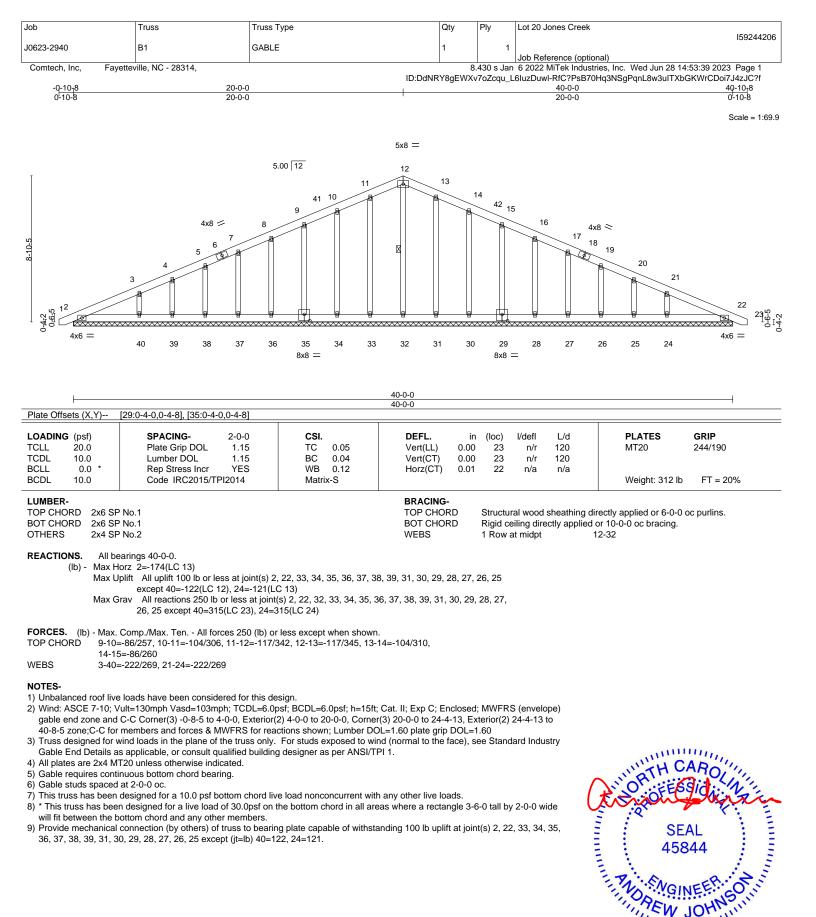
7-15, 5-15


Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 10-12.

1 Row at midpt

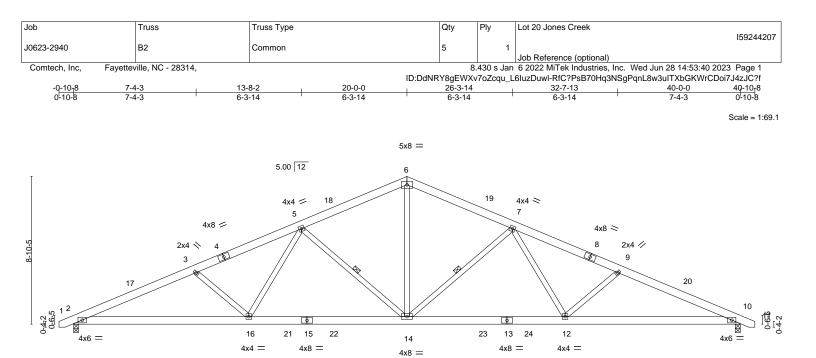
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



 	10-6-2	<u> </u>	<u>29-5-14</u> 9-5-14			<u>46-0-0</u> 16-6-2	
Plate Offsets (X,Y)	[32:0-3-0,0-2-12]					1002	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.30 BC 0.57 WB 0.32 Matrix-S	Vert(CT) -(Horz(CT) (in (loc) l/defi 0.17 26-27 >999 0.32 26-27 >999 0.10 20 n/a 0.13 27-29 >999	360 240 n/a	PLATES MT20 Weight: 379 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling o 8-8-2 oc brac T-Brace: Fasten (2X) (0.131"x3") na	lirectly applied ong: 2-29. 2 2 r and I braces to	rectly applied or 3-10-1 or 10-0-0 oc bracing, x4 SPF No.2 - 5-27, 2 o narrow edge of web o n 3in minimum end dist b lenath.	Except: 7-33 with 10d
REACTIONS. All b			JOINTS			5, 36, 37, 38, 39	
Max U Max C FORCES. (lb) - Max TOP CHORD 2-3= 8-9= 13-1 19-2 BOT CHORD 2-29 22-2 WEBS 6-32 34-3 38-3 5-27	 Horz 2=-200(LC 13) Jplift All uplift 100 lb or less at joi 3), 24=-174(LC 13) Grav All reactions 250 lb or less a 20=392(LC 1), 24=1709(LC - Comp./Max. Ten All forces 250 3446/775, 3-5=-3132/680, 5-6=-2 -556/238, 9-10=-559/197, 10-11=- 4=-584/68, 14-15=-588/43, 15-17: 10=-629/0 =-818/3111, 27-29=-557/2561, 26 3=0/565, 20-22=0/565 2=-1605/445, 30-32=-1625/443, 30 35=-2258/516, 35-36=-2280/525, 3 9=-2614/704, 39-40=-2602/705, 2 '=-784/345, 6-27=-171/1119, 27-33 '7=-255/205, 18-23=-378/196 	t joint(s) 22 except 2=1670(LC) (lb) or less except when show 226/534, 6-7=-573/231, 7-8=-5 566/162, 11-12=-590/143, 12- -651/34, 17-18=-645/0, 18-19 27=-324/2350, 24-26=-520/29 31=-1541/424, 31-33=-1585/4 6-37=-2305/537, 37-38=-2576 4-40=-2654/732, 3-29=-400/29	C 1), /n. 568/246, 13=-616/123, I=-545/0, 949, 23-24=0/565, 438, 33-34=-2223/479, 5/690, 97, 5-29=-83/584,			LUNG TH C	AROLIN
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; gable end zone and 46-8-5 zone;C-C fo 3) All plates are 2x4 M 4) This truss has beer will fit between the between the 6) Provide mechanica 2=380, 23=460, 24:	e loads have been considered for Vult=130mph Vasd=103mph; TCD I C-C Exterior(2) -0-8-5 to 3-10-14 r members and forces & MWFRS IT20 unless otherwise indicated. n designed for a 10.0 psf bottom cf en designed for a live load of 30.0 bottom chord and any other memb I connection (by others) of truss to	L=6.0psf; BCDL=6.0psf; h=15i Interior(1) 3-10-14 to 23-0-0, or reactions shown; Lumber D ord live load nonconcurrent wi sf on the bottom chord in all a ers, with BCDL = 10.0psf. bearing plate capable of withs	Exterior(2) 23-0-0 to 2 OOL=1.60 plate grip DO ith any other live loads reas where a rectangle standing 100 lb uplift at	17-7-3, Interior(1) 27 DL=1.60 s. e 3-6-0 tall by 2-0-0 t joint(s) 22 except		SE 458 SNGI	AL AL JOHNSON DOHNSON DOHNSON DOHNSON DOHNSON DOHNSON DOHNSON DOHNSON
Design valid for use	r design parameters and READ NOTES ON T only with MiTek® connectors. This design is re use, the building designer must verify the	based only upon parameters shown, a	and is for an individual buildi	ng component, not			

ENGINEERING BY ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road

Edenton, NC 27932

June 28,2023

10-6-2 10-6-2		20-0-0 9-5-14	29-5-14 9-5-14	40-0-0 10-6-2
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.29 BC 0.52 WB 0.31	DEFL. in (loc) l/defl L/d Vert(LL) -0.17 12-14 >999 360 Vert(CT) -0.32 12-14 >999 240 Horz(CT) 0.10 10 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.09 14-16 >999 240	Weight: 266 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. 2=0-3-8, 10=0-3-8 (size) Max Horz 2=-103(LC 13) Max Uplift 2=-112(LC 12), 10=-112(LC 13) Max Grav 2=1639(LC 1), 10=1639(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD $2\hbox{-}3\hbox{-}3370/704, \, 3\hbox{-}5\hbox{-}-3053/638, \, 5\hbox{-}6\hbox{-}-2145/548, \, 6\hbox{-}7\hbox{-}-2145/548, \, 7\hbox{-}9\hbox{-}-3053/638, \, 5\hbox{-}6\hbox{-}-2145/548, \, 7\hbox{-}9\hbox{-}-3053/638, \, 5\hbox{-}7$ 9-10=-3370/704
- BOT CHORD 2-16=-547/3041, 14-16=-375/2484, 12-14=-383/2484, 10-12=-540/3041 WFBS 6-14=-215/1277, 7-14=-791/252, 7-12=-32/591, 9-12=-403/229, 5-14=-791/252, 5-16=-31/591, 3-16=-403/229

NOTES-

1) Unbalanced roof live loads have been considered for this design.

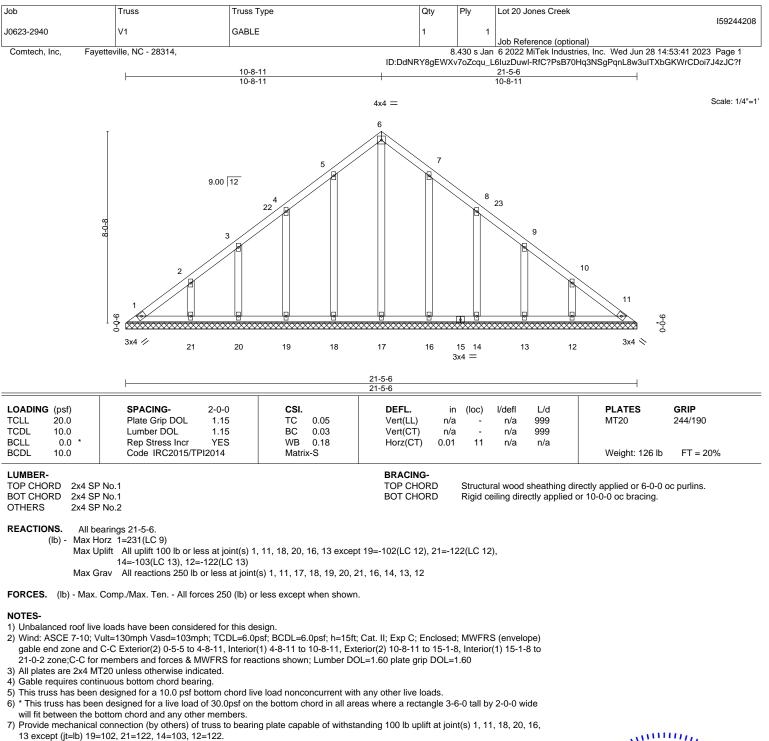
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-5 to 3-8-8, Interior(1) 3-8-8 to 20-0-0, Exterior(2) 20-0-0 to 24-4-13, Interior(1) 24-4-13 to 40-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=112, 10=112.

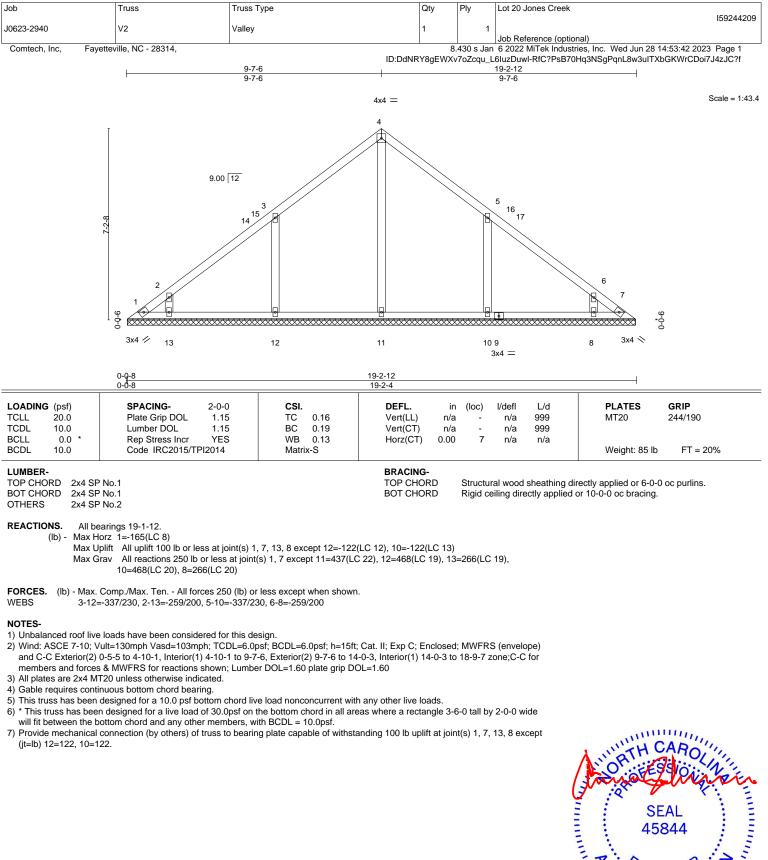
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



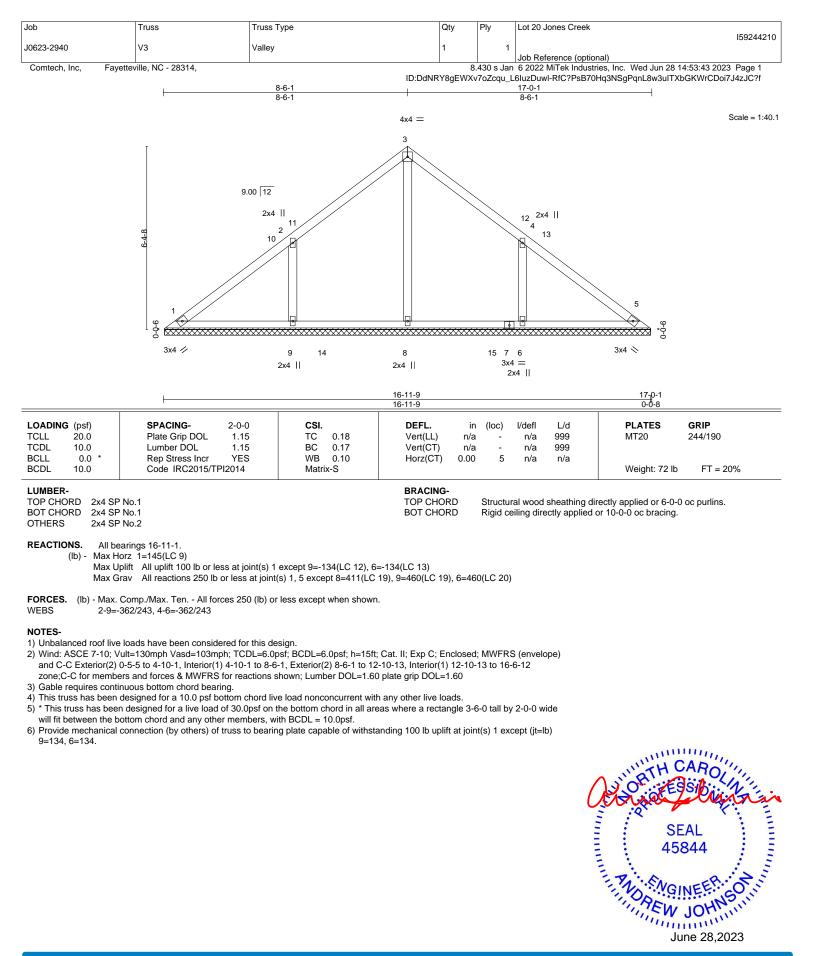
BRACING-TOP CHORD BOT CHORD

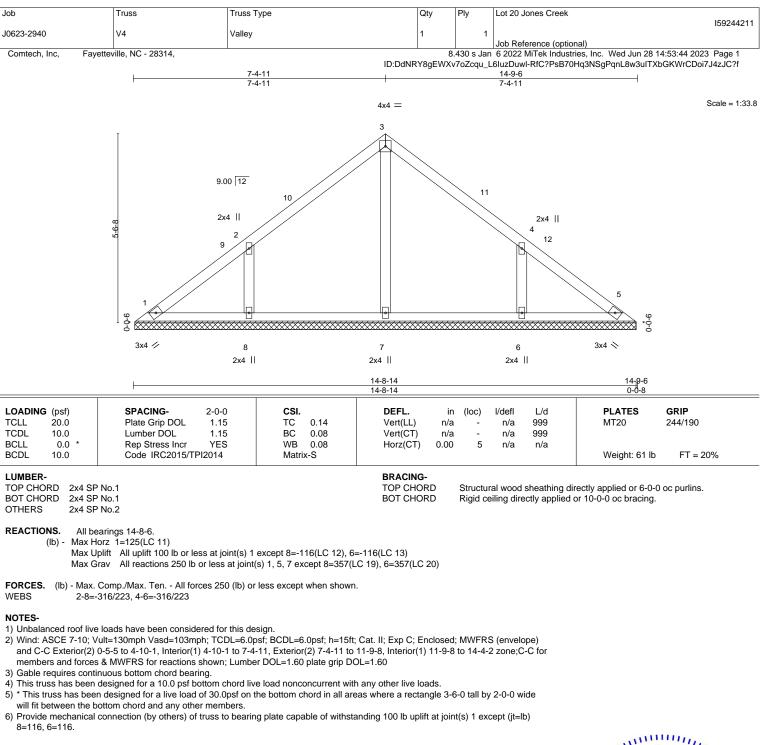
WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 7-14, 5-14


Structural wood sheathing directly applied or 3-11-6 oc purlins.

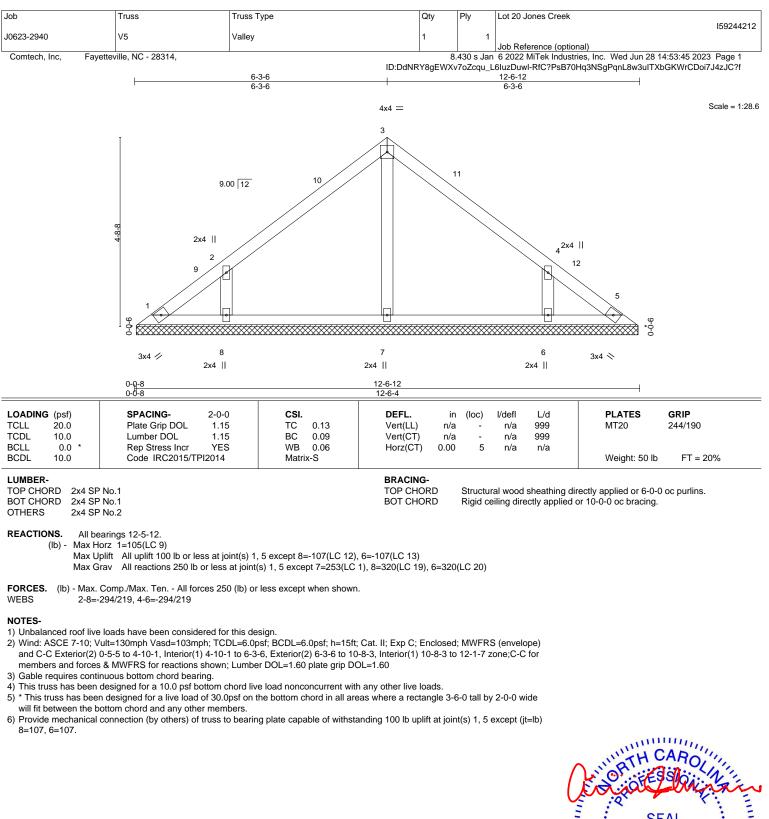
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



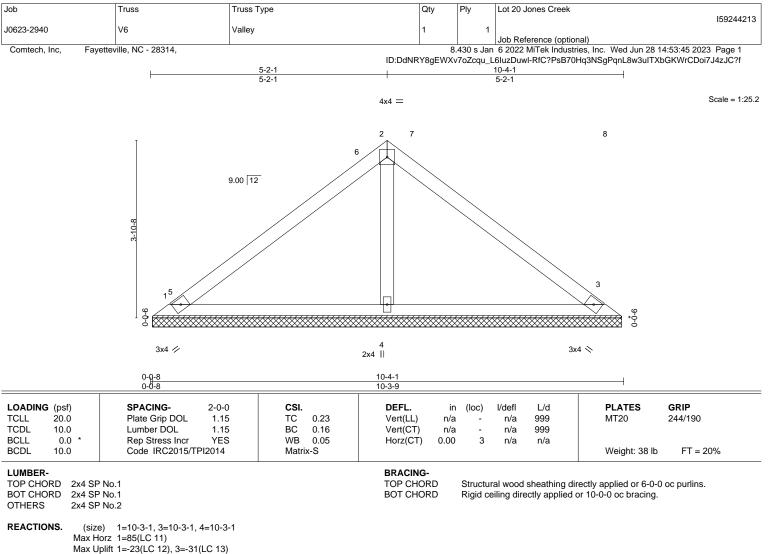

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 1=195(LC 1), 3=195(LC 1), 4=366(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

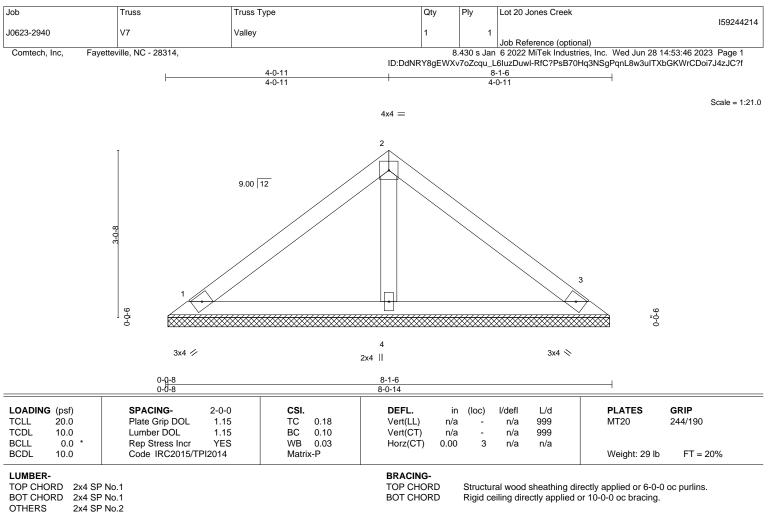
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-2-1, Exterior(2) 5-2-1 to 9-6-13, Interior(1) 9-6-13 to 9-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)


will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=8-0-6, 3=8-0-6, 4=8-0-6 Max Horz 1=-65(LC 10) Max Uplift 1=-25(LC 12), 3=-31(LC 13) Max Grav 1=162(LC 1), 3=162(LC 1), 4=254(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

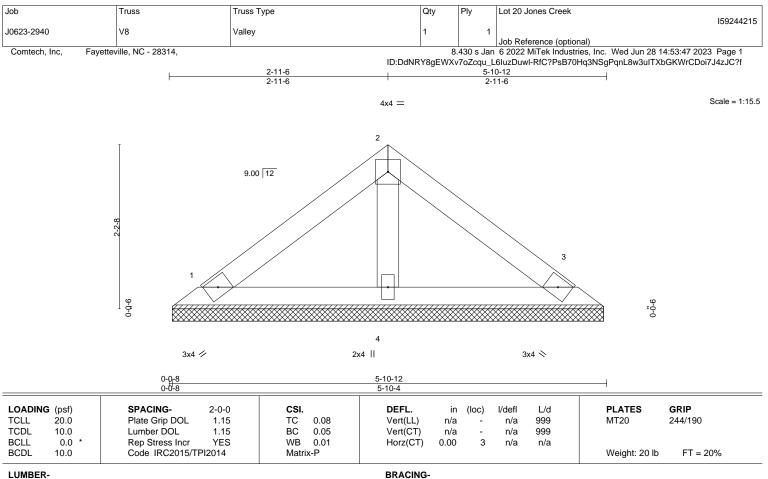
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-10-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=5-9-12, 3=5-9-12, 4=5-9-12 (size) Max Horz 1=-45(LC 8) Max Uplift 1=-17(LC 12), 3=-22(LC 13) Max Grav 1=113(LC 1), 3=113(LC 1), 4=176(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

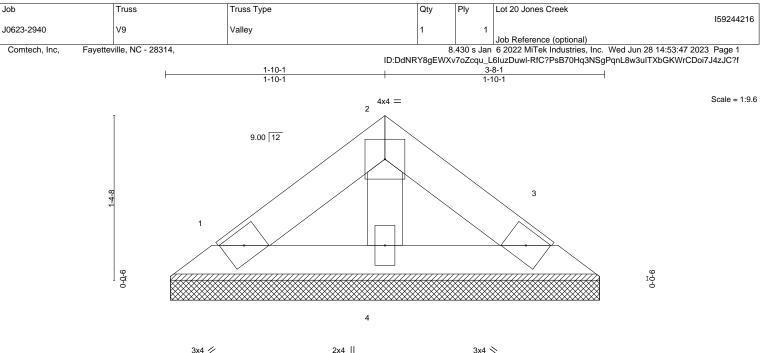
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 1/

	0- <u>0-8</u> 0-0-8		3-8-1 3-7-9						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.02 BC 0.01 WB 0.01 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=3-7-1, 3=3-7-1, 4=3-7-1 (size) Max Horz 1=-25(LC 10) Max Uplift 1=-10(LC 12), 3=-12(LC 13) Max Grav 1=63(LC 1), 3=63(LC 1), 4=98(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

