

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 35946-359646A Wilmington A Vault

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I58699562 thru I58699572

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

June 2,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	А	Нір	1	1	Job Reference (optional)	158699562

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:23 ID:JoK2W1iAnXXTSV5d79IQCtzuC4y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.2

Plate Offsets (X, Y): [7:0-5-0,0-1-7], [13:0-6-13, Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)	-0.37	16-17	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.70	16-17	>715	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.18	13	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 242 lb	FT = 20%	
														-
LUMBER			2)	Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)							
TOP CHORD	2x4 SP No.2 *Except	t* 1-5,10-13:2x4 SP	DSS	Vasd=103mp	h; TCDL=6.0psf; B	CDL=6	.0psf; h=30ft;	;						
BOT CHORD	2x4 SP No.1			Cat. II; Exp E	; Enclosed; MWFR	S (env	elope) exterio	or						
WEBS	2x4 SP No.2 *Except	t* 19-4,14-11:2x4 SI	P	zone and C-0	Exterior (2) zone;	C-C for	members an	nd						
	No.3			forces & MW	FRS for reactions s	hown;	Lumber							
SLIDER	Left 2x4 SP No.3 1	I-6-0, Right 2x6 SP	No.2	DOL=1.60 pl	ate grip DOL=1.60									
	2-0-0		3)	Provide adec	luate drainage to pr	event	vater ponding	g.						
BRACING			4)	All plates are	3x6 M120 unless (otherwi	se indicated.							
TOP CHORD	Structural wood shea	athing directly applie	ed or 5)	This truss ha	s been designed to	r a 10.0) pst bottom	-I						
	2-2-10 oc purlins, ex	cept	0)	chord live loa	a nonconcurrent w	ith any	other live loa	as.						
	2-0-0 oc purlins (3-8-	-4 max.): 7-8.	6)	" I NIS TRUSS N	as been designed i	orally	e load of 20.0	Jpst						
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc		3-06-00 tall b	v 2-00-00 wide will	fit betw	a reclangle	h						
	bracing.	7.40		chord and an	v other members.	vith BC	DL = 10.0psf							
VVEBS	I Row at midpt	7-10	7)	Refer to girde	er(s) for truss to trus	ss conr	ections.							
REACTIONS	(SIZE) 2=0-3-8, 1	3= Mechanical	8)	Provide mecl	nanical connection	(by oth	ers) of truss t	0						
	Max Horiz 2=166 (LC	2 12) 2 4 2 4 7 5 4 0	, ,	bearing plate	capable of withsta	nding 1	75 lb uplift at							
	Max Uplift 2=-192 (LO	C 12), 13=-175 (LC	13)	joint 13.		Ū	•							
	Max Grav 2=1709 (L	.C 1), 13=1668 (LC	1) 9)	One H2.5A S	impson Strong-Tie	conne	ctors							
FORCES	(lb) - Maximum Com	pression/Maximum		recommende	d to connect truss t	o bear	ng walls due	to						
	Tension		_	UPLIFT at jt(s) 2. This connection	on is for	uplift only ar	nd						
TOP CHORD	1-2=0/18, 2-4=-2869	/695, 4-6=-2745/75	р,	does not con	sider lateral forces.									
	6-7=-2350/680, 7-8=	-1840/612,	10) This truss is	designed in accorda	ance w	ith the 2015					minin	1111	
	8-9=-2319/679, 9-11	=-2636/732,		International	Residential Code s	ections	R502.11.1 a	ind				WHILL CA	Dall	
	11-13=-2/64/6/5	40 004/0000		R802.10.2 ar	nd referenced stand	lard AN	ISI/TPI 1.				1	altion	10/11/	•
BOICHORD	2-19=-527/2477, 17-	19=-384/2233,	11) Graphical pu	rlin representation of	does no	ot depict the s	size			~	OFFESS	a Mil	1
	10-17=-232/1802, 14	+-16=-379/2190,		or the orienta	ition of the purlin al	ong the	top and/or				22	OFF	Ni.Z	1
WERS	7 17- 152/206 7 16	- 222/200		bottom chord						-	V	:0	120	3
WEB3	8-16-150/750 /-10	=-222/200, 258/216	LC	DAD CASE(S)	Standard					1				-
	6-10-130//16 6-17	- 200/210, 527/282								=		SEA	L 1	1
	9-16=-498/275 9-14	= 027/202, =-118/328								=	:	0262	22 :	
	11-14=-200/197									1		0303	~~ ;	-
NOTES										-	9			3
1) Unbalance	ed roof live loads have	been considered for	r							5	-	·	air	3
this design	n.										25	A VGINF	E	
											11	710	DEN	8. ¹

minim G

June 2,2023

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	A1	Common	3	1	Job Reference (optional)	158699563

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Fri Jun 02 05:44:25 ID:J_Impb4Bos6iqfhqexLSe6zuC5I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	A2	Common	5	1	Job Reference (optional)	158699564

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:25 ID:Z7Tb9nwnIT3TMwb5bgkAnmzuCGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [8:0-3-0,Edge], [14:0-6-13,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.86 0.94 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.45 -0.68 0.15	(loc) 20-22 20-22 14	l/defl >999 >736 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.1 *Excep 16-14:2x4 SP DSS 2x4 SP No.2 *Excep No.3 Left 2x4 SP No.3 2-0-0 Structural wood she 2-2-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8	ot* 1-5,11-14:2x4 SP ot* 19-18:2x8 SP DS ot* 15-12,22-4,7-9:2x 1-6-0, Right 2x6 SP I eathing directly applie applied or 2-2-0 oc 14= Mechanical	2) DSS S, 4 SP No.2 3) 4) ed or 5)	Wind: ASCE Vasd=103m Cat. II; Exp I zone and C- forces & MW DOL=1.60 p All plates and This truss ha chord live Io. * This truss I on the bottoo 3-06-00 tall I chord and an Refer to gird	7-10; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) zond /FRS for reactions late grip DOL=1.6 e 3x6 MT20 unless as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members.	bh (3-sec BCDL=6 RS (env. e;C-C foi shown; 0 s otherwi for a 10.1 with any d for a liv s where ill fit betv, with BC uss conr	cond gust) .0psf; h=30ft elope) exterior members an Lumber se indicated. D psf bottom other live lose e load of 20.1 a rectangle ween the bott DL = 10.0ps nections.	; or nd ds. Opsf om f.					
REACTIONS	Max Horiz 2=0-3-6, Max Horiz 2=190 (L Max Uplift 2=-210 (L Max Grav 2=1709 (C 12) C 12), 14=-193 (LC LC 1), 14=1668 (LC	7) 13) 1) ₈₎	Provide med bearing plate joint 14.	hanical connection capable of withst	n (by oth anding 1	ers) of truss t 93 lb uplift at	to t					
	(lb) - Maximum Con Tension	npression/Maximum	-	recommende UPLIFT at jt	ed to connect truss (s) 2. This connect	to bear tion is for	ing walls due uplift only a	to nd					
TOP CHORD	1-2=0/18, 2-4=-290. 6-7=-2373/710, 7-8= 9-10=-2361/707, 10 12-14=-2798/687	2/708, 4-6=-2778/767 =-99/77, 8-9=-104/70 -12=-2683/743,	(, , 9)	does not cor This truss is International R802.10.2 a	nsider lateral force designed in accor Residential Code nd referenced star	s. dance w sections ndard AN	ith the 2015 R502.11.1 a	and					11111
BOT CHORD	2-22=-538/2505, 20 17-20=-234/1812, 1 14-15=-513/2405	-22=-403/2257, 5-17=-398/2230,	10	UNINHABIT	CE SHOWN IS DE ABLE.	SIGNED	AS				ALL S	ORTH CA	RO
WEBS	9-17=-163/844, 10- 10-15=-106/350, 12 7-20=-170/872, 6-20 6-22=-118/434, 4-22 7-9=-1802/697	17=-629/302, -15=-176/194, 0=-665/305, 2=-230/212,	Ľ		Stanuaru							SEA	L
NOTES										=	1	. 0505	j E
 Unbalance this design 	ed roof live loads have n.	been considered for										S. ENGINE	EREALIN

June 2,2023

818 Soundside Road Edenton, NC 27932

P 11111111

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	A3	Roof Special	1	1	Job Reference (optional)	158699565

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Fri Jun 02 05:44:26

Page: 1

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	A4	Roof Special	7	1	Job Reference (optional)	158699566

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:26 ID:u_Cv?ObfNZTYz32fUEv?p9zuBuB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-0-7,0-4-5]

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.98 0.93	DEFL Vert(LL) Vert(CT)	in -0.36 -0.81	(loc) 17-18 18-19	l/defl >999 >622	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS	0.66	Horz(CT)	0.34	13	n/a	n/a	Weight: 238 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.1 *Excep 2x4 SP No.1 *Excep 2x4 SP No.2 *Excep 11-15,4-19,5-19,20 Left 2x4 SP No.3 - 2 1-6-0 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=181 (LC Max Uplift 2=-210 (L Max Grav 2=1720 (L (Ib) - Maximum Com Tension 1-2=0/18, 2-4=-4336 5-7=-4888/1189, 7-8 8-9=-2296/732, 9-11 11-13=-2883/706, 13 2-20=-837/3795, 19- 18-19=-517/2770, 17 15-17=-397/2206, 13 8-18=-177/738, 8-17 9-17=-641/338, 9-15 11-15=-235/202, 4-1 5-19=-269/152, 7-19 7-18=-1467/479, 4-2 ed roof live loads have n.	t* 1-6,10-14:2x4 SP t* 2-19:2x4 SP DSS t* 4:2x4 SP No.3 2-0-0, Right 2x4 SP No.3 2-0-0, Right 2x4 SP No.3 2-0-0, Right 2x4 SP No.3 2-0-0, Right 2x4 SP No.3 3:13=0-3-8 C 12) C 12), 13=-210 (LC - 2, C 1), 13=1720 (LC - 1, 13=1720	DSS No.3 d. (13) 1)	 2) Wind: ASCE Vasd=103m, Cat. II; Exp E zone and C- forces & MW DOL=1.60 p 3) All plates are the truss hat chord live low on the botton 3-06-00 tall I chord and are bearing at jo using ANSI/ designer shat on One H2.5A st recommendd UPLIFT at jt only and doe 3) This truss is International R802.10.2 a 	7-10; Vult=130m ph; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) zon /FRS for reactions: late grip DOL=1.6 3x6 MT20 unles as been designed ad nonconcurrent nas been designed ad nonconcurrent ns chord in all area y 2-00-00 wide w ny other members int(s) 2 considers TPI 1 angle to gra zold verify capacit Simpson Strong-T ad to connect trus (s) 2 and 13. This as not consider lat designed in acco Residential Code nd referenced sta Standard	ph (3-sec BCDL=6 FRS (env e;C-C for s shown; i0 s otherwi for a 10.1 with any d for a 10.1 with any d for a 10.1 with any d for a liv as where vill fit betw s, with BC parallel 1 in formula y of bear ic connecti teral force rdance w e sections indard AN	is for uplit is the the two set of the two set of the two set of t	t; or nd ads. Opsf to ft and		Million.		SEA 0363	L 22 EER.R.L

G minin June 2,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	A5	Нір	1	1	Job Reference (optional)	158699567

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:27 ID:CmsOa5X0ijdr9eHPsrnXIvzuBrh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.7

Plate Offsets (X, Y): [2:0-0-7,0-4-5], [8:0-4-6, Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.79 0.92 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.84 0.35	(loc) 18-19 19-20 14	l/defl >999 >603 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 248 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 2x4 SP No.1 *Except 2x4 SP No.2 *Except 16-12,21-4,4-20,6-20 Left 2x4 SP No.3 2 1-6-0 Structural wood sheat 2-1-8 oc purlins, exc 2-0-0 oc purlins (3-8- Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=157 (LC	t* 5-1,11-15:2x4 SP I t* 2-20:2x4 SP DSS t*):2x4 SP No.3 -0-0, Right 2x4 SP N athing directly applied ept -5 max.): 8-9. applied or 2-2-0 oc 7-19, 8-18 4=0-3-8 ; 12)	2) DSS do.3 3) 4) d or 5) 6) 7)	Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-0 forces & MW DOL=1.60 pl. Provide adec All plates are This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Bearing at joi using ANSI/T	7-10; Vult=130mph h; TCDL=6.0psf; B s; Enclosed; MWFR C Exterior (2) zone; FRS for reactions s ate grip DOL=1.60 juate drainage to pr 3x6 MT20 unless of s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members, y int(s) 2 considers p PI 1 angle to grain uid work exercite	a (3-sec CDL=6 S (enve C-C for shown; revent to otherwi r a 10.0 ith any for a liv where fit betw with BC arallel t formula	ond gust) .0psf; h=30ft; elope) exterior members an Lumber water ponding se indicated. .0 psf bottom other live load e load of 20.0. a rectangle veen the bottt DL = 10.0psf o grain value a. Building	or dd g. ds.)psf om					
FORCES TOP CHORD	Max Uplift 2=-192 (Ld Max Grav 2=1720 (L (lb) - Maximum Com Tension 1-2=0/18, 2-4=-4333 6-7=-4920/1181, 7-8 &-9=-1824/620, 9-10	C 12), 14=-192 (LC 1 C 1), 14=1720 (LC 1 pression/Maximum /994, 4-6=-4898/107 =-2140/644, =-2278/686,	3) 8)) 5, 9)	One H2.5A S recommende UPLIFT at jt(only and doe This truss is o International R802.10.2 ar	tin connect truss is s) 2 and 14. This co s) 2 and 14. This co s not consider later designed in accord. Residential Code s d referenced stanc	connection to bear connection cal force ance w ections dard AN	ng surrace. ctors ng walls due on is for uplift s. th the 2015 R502.11.1 a ISI/TPI 1.	to					11111
BOT CHORD	10-12=-2779/771, 12 14-15=0/18 2-21=-814/3792, 20- 19-20=-478/2741, 18	2-14=-2891/695, 21=-831/3870, 3-19=-214/1834,	10) LC) Graphical pu or the orienta bottom chord DAD CASE(S)	rlin representation of tion of the purlin al Standard	does no ong the	ot depict the s top and/or	ize		4	A.	ORTH CA	ROLL
WEBS	10-16=-369/2189, 14 9-18=-154/727, 10-1 12-16=-267/224, 10- 4-21=-217/112, 4-20 7-20=-551/2702, 7-1 8-19=-117/621, 8-18	- 10=-0∪0/2488 8=-528/279, 16=-141/448, =-4/635, 6-20=-324/1 9=-1346/403, =-227/195	190,							THE DAY		SEA 0363	L 22
NOTES	a de la d									5	1.0	N. ENGINI	ERIX
 Unbalance this design 	ed roof live loads have	been considered for									14	PIO GINI	EF

1) Unbalanced roof live loads have been considered for this design.

Unuminitien (June 2,2023

P

Page: 1

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	A5E	Hip Supported Gable	1	1	Job Reference (optional)	158699568

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:27 ID:wJdk4OtGK7kybsrwQMonrWzuBpx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.4

Plate Olisets (A	., Y): [2:0-1-	-11,0-0-6]	, [6:0-3-0,0-3-0], [11:	0-3-0,Edge], [17:0-3-0),Edge], [27:0	0-2-8,0-1-5], [42	:0-3-0,0-0-12]							
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-M	0.08 0.08 0.13 IS	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc 27) l/defl - n/a - n/a 7 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 281	GRIP 244/190 lb FT = 20	0 0%
LUMBER TOP CHORD BOT CHORD DTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. 2x5 SP No. 2x4 SP 10- 1 Comparison 2-0-0 oc pu 2-0-0 oc pu 2-0-0 oc pu 2-0-0 oc pu Rigid ceiling fracing. 1 Row at m size) 2 3 3 4 4 4 4 4 5 Max Horiz 2 Max Uplift 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5	2 2 3 *Except 3,43-12,44 SP No.2 No.3 - 1 vood shea rlins, exce rlins, exce	* 4-10,39-15,38-16,37- -6-0, Right 2x4 SP N athing directly applied ept 0 max.): 11-17. applied or 10-0-0 oc 14-40, 13-41, 15-39, 16-38 27=42-0-0, 32=42-0, 31=42-0-0, 32=42-0, 31=42-0-0, 35=42-0, 34=42-0-0, 45=42-0, 41=42-0-0, 42=42-0, 50=42-0-0, 51=42-0, 50=42-0-0, 51=42-1, 50=42-0-0, 51=42-1, 50=42-0-0, 51=42-1, 13), 29=-96 (LC 13), C13), 31=-49 (LC 13), C13), 35=-59 (LC 13), C13), 35=-59 (LC 13), C13), 35=-59 (LC 13), C13), 35=-59 (LC 12), C13), 41=-38 (LC 8), C13), 41=-34 (LC 12), C13), 43=-22 (LC 9), C12), 46=-45 (LC 12), C12), 50=-123 (LC 12), C13), 31=-49 (LC 12), C12), 50=-123 (LC 12), C13), 31=-49 (LC 12), C13), 31=-54 (LC 12), C13), 41=-38 (LC 12), C13), 41=-34 (LC 12), C13), C14), 41=-34 (LC 12), C15), C15), 41=-34 (LC 12), C16), C17), 41=-34 (LC 12), C17), C18), 41=-34 (LC 12), C18), C19), 41=-34 (LC 12), C19), C19), 41=-34 (LC 12), C10), C10), 41=-34 (LC 12), C10), C110), 41=-34 (LC 12), C10), C110), 41=-34 (L	18, 18, 10.3 f or FORCES TOP CHORD 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	(lb) - Maxir Tension 1-2=0/18, 2 5-7=-85/11 9-10=-100, 11-12=-92, 13-14=-91, 15-16=-91, 17-18=-97, 2-50=-35/1 42-426=-97, 2-50=-35/1 48-49=-29, 46-47=-32, 44-45=-33, 42-43=-28, 40-41=-27, 38-39=-27, 33-34=-27, 31-32=-27, 29-30=-27,	2=157 (LC 1), 2 229=115 (LC 24), 31=159 (LC 24), 33=160 (LC 1), 3 33=160 (LC 1), 3 33=160 (LC 1), 3 33=160 (LC 1), 4 40=161 (LC 1), 4 42=16 (LC 22), 46=163 (LC 1), 4 44=156 (LC 23), 55=119 (LC 23), 55=119 (LC 22) num Compressi 2-4=-154/62, 4-5 4, 7-8=-66/138, (233, 10-11=-97, (231, 12-13=-91, (230, 14-15=-91, (230, 14-15=-91, (231, 12-13=-91, (231, 12-13=-91, (233, 10-11=-97, (231, 24-25=-57, (231, 34-35=-27, (131, 30-31=-27, (131, 27-29=-27, (131, 27-29)))))))))))))))))))))))))))))))))))	7=119 (LC 22) 30=165 (LC 33=160 (LC 2) 33=160 (LC 2) 37=153 (LC 2) 37=153 (LC 2) 31=151 (LC 2) 45=159 (LC 1) 45=159 (LC 1) 45=159 (LC 1) 45=159 (LC 1) 45=157 (LC 51=157 (LC 51=), 1), 1), 4), 4), 23), 4), 1), 1), 1), 1),	NOTE 1) U th 2) W V C zc c or or ss or or 4) P	S nbalancec is design. find: ASCE asd=103rr at. II; Exp one and C rrces & MV OL=1.60 p russ design hy. For st e Standar r consult q rovide ade	14-400 12-433 8-46= 5-49= 15-39 18-37, 20-344 22-32 24-30 1 roof li E 7-10; B; Encc -C Extr VFRS 0 late gg gned fc uds ex quate	=-120/52, 13-4 =-117/42, 10-4 -119/81, 7-47= -103/66, 4-50= =-122/66, 16-3 =-113/0, 19-35 =-120/81, 21-3 =-120/83, 23-3 =-120/83, 23-3 =-120/	1=-121/66, 4=-114/3, 9 -122/84, 6-4 -161/124, 18=-118/41, i=-121/95, i3=-120/83, i1=-119/82, 9=-81/105 been consid (3-second (CDL=6.0psf S (envelope C-C for mern hown; Lumb n the plane of (normal to f d Details as gner as per event water ARO Signer as per ARO Signer as per ARO Sig	dered for gust) ; h=30ft; ;) exterior nbers and per of the truss the face), applicable, ANSI/TPI 1. ponding.

June 2,2023

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault			
35946-359646A	A5E	Hip Supported Gable	1	1	Job Reference (optional)	158699568		

- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 2, 34 lb uplift at joint 47, 27 lb uplift at joint 40, 38 lb uplift at joint 41, 22 lb uplift at joint 43, 58 lb uplift at joint 45, 45 lb uplift at joint 46, 54 lb uplift at joint 48, 20 lb uplift at joint 39, 17 lb uplift at joint 38, 59 lb uplift at joint 35, 47 lb uplift at joint 34, 49 lb uplift at joint 31, 48 lb uplift at joint 30, 96 lb uplift at joint 29 and 47 lb uplift at joint 2.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 47, 43, 44, 45, 46, 48, 49, 50.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:27 ID:wJdk4OtGK7kybsrwQMonrWzuBpx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	AE	Hip Supported Gable	1	1	Job Reference (optional)	158699569

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:28 ID:Wp3Ijdg205wjurJQkWS1zDzuBow-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76

Plate Offsets ((X, Y): [2:0-	2-8,0-0-5],	[6:0-3-0,0-3-0], [11:0)-3-0,Edge], [17:0-3-0	0,Edg	ge], [22:0-3-0,0-3-	0]										
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014		CSI TC BC WB Matrix-MS	0.09 0.07 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(le	oc) - - 27	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 292	GRI 244/ lb FT =	P /190 = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 39-14,40- 6-18,34-1 Left 2x4 S Structural 6-0-0 cc p 2-0-0 oc p Rigid ceili bracing.	0.2 0.3 0.3 *Except 13,41-12,4 9:2x4 SP N P No.3 1 wood shea burlins, exc burlins (6-0- ng directly	2-10,44-9,38-15,37- lo.2 -0-3 athing directly applie xept end verticals, ar -0 max.): 11-17. applied or 10-0-0 oc	d or Id FORCES	(It	x Grav 2=148 (L 28=118 (J 30=152 (32=166 (34=160 (37=159 (39=160 (41=159 (44=160 (46=166 (48=152 (50=122 (b) - Maximum Cor ension	C 21), 2 LC 24), LC 24), LC 1), 3 LC 1), 4 LC 23), LC 1), 4 LC 23), LC 1), 4 LC 23), LC 1), 4 LC 23), LC 1), 4 LC 23, LC 1), 4 LC 23, LC 1), 4 LC 23, LC 1), 4 LC 23, LC 1, 4 LC 1, 4 LC 2, 4 LC	27=184 (LC 1: 29=167 (LC 2: 31=159 (LC 2: 33=158 (LC 2: 38=161 (LC 2: 38=161 (LC 2: 42=161 (LC 2: 42=161 (LC 2: 42=161 (LC 2: 47=159 (LC 2: 9=167 (LC 1) 51=148 (LC 2: 51=148 (LC 2: 51=	3), 1), 24), 4), 23), 4), 22), 3), 3), 3), 21)	WE NO 1) 2)	EBS TES Unbal this de Wind: Vasd	lanced esign. : ASCE =103m	14-39= 12-41= 8-45=- 5-48=- 15-38= 18-36= 20-33= 22-31= 24-29= roof li 7-10; ph; TC		i0=-121/k i2=-121/i i2=-126/87, :-126/86, 37=-119/4 i=-120/94 i2=-126/8 30=-112/i 28=-92/1: been co i (3-secoi CDL=6.0	65, 7, 9-44=-120 6-47=-119/ 3-50=-84/12 43, 4, 36, 77, 25 nsidered for nd gust) psf; h=30ft;)/94, 82, 23,
WEBS REACTIONS	1 Row at (size) Max Horiz Max Uplift	midpt 2=41-8-8, 29=41-8-8 32=41-8-8 39=41-8-8 42=41-8-8 40=41-8-8 49=41-8-8 49=41-8-8 2=-31 (LC 28=-173 (I 30=-44 (Ld 30=-44 (Ld 30=-52 (Ld 40=-35 (Ld 40=-35 (Ld 48=-44 (Ld 50=-120 (I	14-39, 13-40, 12-41, 15-38, 16-37 27–41-8-8, 28–41-8, 30=41-8-8, 31=41-1, 33=41-8-8, 34=41-1, 40=41-8-8, 41=41-1, 40=41-8-8, 45=41-1, 44=41-8-8, 45=41-1, 50=41-8-8, 45=41-1, 51=145 (LC 12 (C), $51=145$ (LC 12 (C), $31=-49$ (LC 11), C 13), $33=-46$ (LC 12) C 13), $33=-46$ (LC 12) C 13), $33=-46$ (LC 12) C 13), $33=-46$ (LC 12) C 13), $33=-40$ (LC 12) C 13), $45=-47$ (LC 12) C 12), $45=-47$ (LC 12)	 -8, -8, 8-8, 8-8,	4- 8- 8- 11 13 15 21 25 2- 2- 46 44 44 41 33 37 32 30 28	2=0/16, 2-3=-30/ 5=-111/81, 5-7=-4 -9=-69/170, 9-10= 1-12=-81/220, 12- 3-14=-80/219, 16- 7-18=-86/218, 18- 9-20=-69/168, 20- 1-23=-39/72, 23-2 5-26=-143/47, 26- 50=-29/104, 49-5 8-49=-29/104, 47- 50=-29/104, 47- 50=-29/104, 47- 5-32-105, 45- 4-45=-32/105, 45- 1-42=-32/105, 45- 1-42=-32/105, 38- 7-38=-32/105, 33- 2-33=-32/105, 33- 3-32- 3-32=-32/105, 33- 3-32=-32/105, 33- 3-32=-32/105, 33- 3-32=-32=-32/105, 33- 3-32=-32=-32=-32/105, 33- 3-33=-32=-32=-32=-32=-32=-32=-32=-32=-32	40, 5-4= 33/121, -88/220 13=-80, 15=-80, 17=-81, 19=-88, 21=-53, 44=-53, 44=-32, 44=-32, 44=-32, 33=-32, 37=-32, 34=-32, 30=-29, 28=-29,	-130,05, 7-88-53/147, , 10-11=-86/2 219, 219, 220, 220, 122, 9, 24-25=-86/ 5/36 04, 105, 105, 105, 105, 105, 105, 105, 105	18,	3) 4)	Cat. II zone forces DOL= Truss only. see S or cor Provid	I; Exp in and C- and C- s & MW =1.60 p s design For stu- tiandar ansult qu de adee	5) EnC C Exter C Exter Inter graned for Juds ext d Indu aulifiec quate	losed; MWFK erior (2) zone; for reactions s ip DOL=1.60 r wind loads in posed to wind stry Gable En I building desi drainaga to pr SE 036	S (envelo C-C for n hown; Lu n the plan (normal d Details gner as p event wa ARC S ARC S ARC S S ARC S S S S S S S S S S S S S	pe) exterior nembers and imber ne of the trus to the face), as applicab per ANSI/TP iter ponding.	1 ss , le, 11

June 2,2023

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault				
35946-359646A	AE	Hip Supported Gable	1	1	Job Reference (optional)	158699569			

- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27, 2, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 38, 37, 34, 33, 32, 31, 30, 29, and 28. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:28 ID:Wp3Ijdg205wjurJQkWS1zDzuBow-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	BE	Common Supported Gable	1	1	Job Reference (optional)	158699570

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jun 02 05:44:28 ID:kU9mRfeslJpzCK_YFuRhnXzuCOO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.5

Plate Offsets (X, Y):	[2:Edge,0-0-0],	[9:0-3-0,Edge], [16:Ed	age,0-0-0], [24:0-3-0,0-	3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.01	16	n/a	n/a		
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 137 lb	FT = 20%
LUMBER TOP CHORD 3OT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N No.2 Left 2x6 S 1-6-0 Structura 6-0-0 oc Rigid ceil	o.2 o.3 *Excep SP No.2 1 I wood shea purlins. ing directly	* 23-8,22-10:2x4 SF -6-0, Right 2x6 SP N athing directly applied applied or 10-0-0 oc	BC No.2 WE d or 1)	DT CHORD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2-27=-101/170, 26-2 5-26=-101/170, 23- 5-26=-101/170, 23- 5-26=-101/170, 21- 0-21=-101/170, 16- -23=-87/9, 10-22=- -25=-136/95, 5-26= 1-21=-116/92, 12-2 3-19=-127/79, 14-1 roof live loads have	27=-10 -25=-10 -22=-10 -20=-10 -18=-10 73/5, 7 127/7 20=-130 [8=-15] been 0	1/170, 11/170, 11/170, 11/170, 11/170 -24=-115/89, 8, 4-27=-157/ \$/95, 7/126 considered for	/131, r	10) This Inte R80 LOAD (truss is rnationa 2.10.2 a CASE(S)	desig I Resid und ref Star	ned in accordanc dential Code secti erenced standard ndard	e with the 2015 ons R502.11.1 and ANSI/TPI 1.
REACTIONS	bracing. (size) Max Horiz Max Uplift	2=20-0-0, 19=20-0-0 22=20-0-0 28=20-0-0 28=20-0-0 28=20-0-0 28=20-0-0 28=320-0-0 28=320-0-0 28=31 (LC 18=-133 (LC 20=-72 (L1 24=-70 (L1 24=-70 (L1 26=-46 (L1) 28=-31 (L1)	16=20-0-0, 18=20-0 , 20=20-0-0, 21=20- , 23=20-0-0, 24=20- , 22=20-0-0, 27=20- , 32=20-0-0 C 10), 28=-176 (LC 1 8), 16=-5 (LC 9), LC 13), 19=-47 (LC 1 C 13), 21=-77 (LC 12 C 12), 25=-72 (LC 12 C 12), 25=-72 (LC 12 C 12), 27=-140 (LC 12 C 12), 27=-140 (LC 12 C 12), 27=-140 (LC 12)	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu All plates are Gable require	7-10; Vult=130mph h; TCDL=6.0psf; B; ; Enclosed; MWFR C Exterior (2) zone; FRS for reactions s ate grip DOL=1.60 need for wind loads in ds exposed to wind I Industry Gable En alified building desi 1.5x4 MT20 unless ss continuous botto	(3-sec CDL=6 S (enve C-C for hown; h the pl (norm d Deta gner as s other m chor	ond gust) .0psf; h=30ft; elope) exterio members an Lumber ane of the tru al to the face) Is as applicat per ANSI/TF vise indicated d bearing.	r d Iss), Dle, PI 1. J.						
F ORCES TOP CHORD	(lb) - Max Tension 1-2=0/22, 5-6=-111, 8-9=-106, 11-12=-70 14-16=-1	2=178 (LC 18=195 (L 20=181 (L 22=157 (L 24=109 (L 26=161 (L 28=178 (L imum Com 2-4=-199/' (64, 6-7=-99) (65, 9-10=- 6/59, 12-13) 74/113, 16-	21), 16=164 (LC 22 C 20), 19=162 (LC 2 C 20), 21=109 (LC 2 C 21), 23=171 (LC 2 C 23), 25=181 (LC 1 C 19), 27=203 (LC 1 C 21), 32=164 (LC 2 pression/Maximum 120, 4-5=-121/83, 9/78, 7-8=-118/115, 106/95, 10-11=-118/ =-86/32, 13-14=-103 17=0/22	2), 6) (0), 7) (4), 8) (2), 8) (2), 8) (9), 9), (2) (9), (2) (9), (2) (9), (114, (/51,	Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 2, 5 lb uplift at at joint 25, 46 77 lb uplift at at joint 19, 12 and 5 lb uplif	spaced at 2-0-0 oc. s been designed for d nonconcurrent wi as been designed for a chord in all areas y 2-00-00 wide will y other members, v nanical connection capable of withstar t joint 16, 70 lb uplif b lb uplift at joint 26, joint 21, 72 lb uplift 3 lb uplift at joint 18 t at joint 16.	r a 10.0 ith any or a liv where fit betw vith BC (by oth nding 3 ft at joi 140 lb at join 3, 31 lb	b) psf bottom other live load e load of 20.00 a rectangle teen the botto DL = 10.0psf. ars) of truss to 1 lb uplift at joint t 24, 72 lb up uplift at joint : 20, 47 lb upl uplift at joint	ds. om o oint plift 27, lift 2		Withhit		SEA 0363	

June 2,2023

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	BGR	Common Girder	1	3	Job Reference (optional)	158699571

Run: 8.63 E May 9 2023 Print: 8.630 E May 9 2023 MiTek Industries, Inc. Fri Jun 02 05:59:23 ID:A7nrEjpZBnR0LhEjR1grTlzuBok-RiM8agttms3_U2gxXzs5upraDvK1QU_B3aoFHQzAPhq

Page: 1

June 2,2023

818 Soundside Road Edenton, NC 27932

			_
Plate O	ffsets (X	Y)·	[1·Ed

Scale - 1.54.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.41 0.50 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.16 0.05	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 433 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x6 SP No.2 2x6 SP DSS 2x4 SP No.3 *Excep Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=8252/0- Max Horiz 1=165 (LC Max Uplift 1=-1011 ((lb) - Max. Comp./Mi (lb) or less except wi 1-2=-11249/1458, 2- 3-4=-8064/1118, 4-5 1-16=-1175/9181, 9- 8-18=-1175/9181, 9- 8-18=-1120/9196, 16 6-20=-1120/9196, 6- 21-22=-1120/9196, 6-	t* 7-3:2x4 SP No.2 athing directly applied applied or 10-0-0 oc 3-8, 5=8180/0-3-8 2 11) LC 12), 5=-987 (LC 1 ax. Ten All forces 2 hen shown. 3=-8065/1119, =-11272/1453 3-17=-1175/9181, 8=-1175/9181, 8=-1175/9181, 9-20=-1120/9196, 21=-1120/9196	2) 3) d or 4) 13) 5) 50 7) 8) 9)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C forces & MW DOL=1.60 pl All plates are This truss ha chord live loa * This truss ha chord and an Two H2.5A S recommende UPLIFT at jt(and does not This truss is of	considered equally d as front (F) or ba tion. Ply to ply con istribute only loads vise indicated. roof live loads have 7-10; Vult=130mpl h; TCDL=6.0psf; E C Exterior (2) zone FRS for reactions s ate grip DOL=1.60 MT20 plates unlet s been designed fo d nonconcurrent w as been designed fo d no consider lateral fo designed in accord	v applied ack (B) f inection a noted a been of h (3-sec 3CDL=6 SCL=60 SCC=60 SCC=60 Sc	to all plies, ace in the LC s have been as (F) or (B), considered fo ond gust) .0psf; h=30ft; lelope) exteric members ar Lumber wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ttors ng walls due h is for uplift of th the 2015	DAD or ; or nd ds. Dpsf om to only		Vert: 8= 17=-164 20=-164	-1648 (B), 8 (B), 8 (B),	(B), 7=-1648 (B), 18=-1648 (B), 19 21=-1648 (B), 22 21=-1648 (B), 22	16=-1648 (B), 1648 (B), 1648 (B)	
NOTES 1) 3-ply truss (0.148"x3" Top chords staggered Bottom chords staggered Web conner Except me	2-s=-400/3036, 2-f= 3-7=-1093/8361, 4-7 4-6=-403/3731 to be connected toget) nails as follows: as connected as follows at 0-9-0 oc. ords connected as follows at 0-5-0 oc. ected as follows: 2x4 - mber 3-7 2x4 - 1 row a	=-3186/515, =-3186/515, :: 2x6 - 2 rows ows: 2x6 - 2 rows 1 row at 0-9-0 oc, at 0-8-0 oc.	10) 11) LO 1)	International R802.10.2 ar Use Simpsor Truss) or equ 1-11-4 from t to back face - Fill all nail ho AD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-3: Concentrate	Residential Code s nd referenced stand a Strong-Tie HUS2 livalent spaced at 2 he left end to 17-1 of bottom chord. les where hanger i Standard of Live (balanced): ise=1.15 ads (Ib/ft) =-60, 3-5=-60, 10-1 ed Loads (Ib)	sections dard AN 6 (14-10 2-3-0 oc 1-4 to co s in cor Lumber 13=-20	R502.11.1 a ISI/TPI 1. Jd Girder, 4-1 max. starting ponnect truss(tact with lum Increase=1.	ind g at es) ber. 15,		William	The second se	SEAI 03632		

Job	Truss	Truss Type	Qty	Ply	Wilmington A Vault	
35946-359646A	Р	Monopitch	10	1	Job Reference (optional)	158699572

Run: 8.63 E May 9 2023 Print: 8.630 E May 9 2023 MiTek Industries, Inc. Fri Jun 02 06:00:30 ID:CbcRNIrqXkMUg1NgqJk_aPzuCPR-w_1D2Gi9W3mCGfSB3ybGBMCQTjy04rkLwp?PCwzAPgI Page: 1

Scale = 1:29.2

Plate Offsets (X, Y):	late Offsets (X, Y): [2:Edge,0-0-7], [2:0-0-14,0-8-15]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.18	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.02	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
DODI	10.0					. ,					1 147 1 1 7 7 6 11	FT OO

			7) One H2.5A S	Simpson Strong	-Tie conne	ctors							
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 16 lb	FT = 20%	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
WEDGE	Left: 2x4 \$	SP No.3
BRACING		
TOP CHORD	Structural 4-0-0 oc p	l wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	2=198/0-3-0, 4=151/0-1-8
	Max Horiz	2=61 (LC 8)
	Max Uplift	2=-46 (LC 8), 4=-38 (LC 12)
FORCES	(lb) - Max (lb) or les	. Comp./Max. Ten All forces 250 s except when shown.

NOTES

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 $\ensuremath{\mathsf{psf}}$ bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 38 lb uplift at joint 4.

recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015

8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

