

RE: Belhaven D,E.F Belhaven D.E.F Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer:Project Name: Belhaven D,E.FLot/Block:Model:Address:Subdivision:City:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 21 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	158903646	A01	6/13/2023	21	158903666	V7	6/13/2023
2	158903647	A01E	6/13/2023				
3	158903648	A01M	6/13/2023				
4	158903649	A02	6/13/2023				
5	158903650	A02E	6/13/2023				
6	158903651	A02M	6/13/2023				
7	158903652	A03M	6/13/2023				
8	158903653	B01	6/13/2023				
9	158903654	B01E	6/13/2023				
10	158903655	B01G	6/13/2023				
11	158903656	M1	6/13/2023				
12	158903657	M1G	6/13/2023				
13	158903658	M2	6/13/2023				
14	158903659	V1	6/13/2023				
15	158903660	V1E	6/13/2023				
16	158903661	V2	6/13/2023				
17	158903662	V3	6/13/2023				
18	158903663	V4	6/13/2023				
19	158903664	V5	6/13/2023				
20	158903665	V6	6/13/2023				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by 84 Components - #2383.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A01	Common	6	1	Job Reference (optional)	158903646

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:36 ID:uudXsR2jkNbtYs13u3t6cTz6mEm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A01E	Common Supported Gable	1	1	Job Reference (optional)	158903647

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:38 ID:7Akou8Zhca0nCTpJva9CrXz6mE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.5

Plate Offsets (X, Y): [2:0-2-8,0-0-5]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.08	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/1	, 190
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a		n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.01	23	n/a	n/a			
BCDL		10.0	Code	IRC2015/TPI2014		Matrix-MS							Weight: 223	lb FT =	20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 33-12,34- Left 2x4 S Structural 6-0-0 oc p Rigid ceilli bracing. 1 Row at n (size) Max Horiz Max Uplift	10.0 0.2 0.3 0.3 *Except 11,35-10,33 P No.3 1 wood sheat ourlins, excord ng directly midpt 2=34-0-0, 25=34-0-0 35=34-0-0 35=34-0-0 35=34-0-0 2=-152 (LC 24=-123 (I	t* 2-13,31-14:2x4 SP N -0-3 athing directly applie cept end verticals. applied or 10-0-0 oc 12-33 23=34-0-0, 27=34- 0, 26=34-0-0, 27=34- 0, 26=34-0-0, 27=34- 0, 33=34-0-0, 34=34- 0, 33=34-0-0, 34=34- 0, 40=34-0-0, 41=34- 0, 43=34-0-0 2 12), 43=152 (LC 12 2 17), 23=-6 (LC 11), LC 13), 25=-44 (LC	IRC2015/TPI2014	M () 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Matrix-MS ax Grav 2=155 (I 24=129 26=159 28=160 31=159 33=195 35=159 38=160 40=159 42=130 Ib) - Maximum Co Tension -2=0/13, 2-3=-82/ -5=-119/92, 5-6=- 5-9=-55/158, 9-10= 1-12=-105/267, 1 3-14=-89/222, 14 5-16=-55/125, 16 9-20=-57/25, 20-2 22-23=87/21 242=-32/112, 41-4 39-40=-32/112, 38 37-38=-32/112, 35 242=-52/112, 38 37-38=-32/112, 35 242=-52/112, 38 37-38=-32/112, 35 34=-52/112, 35 35=-52/112, 3	LC 12), 2 (LC 24), (LC 24), (LC 24), (LC 2), (LC 2), (LC 23), (LC 23), (LC 23), (LC 23), (LC 23), (LC 23), (LC 23), (LC 23), (LC 19), mpressi 45, 3-4= 87/109, =-71/183 2-13=-11 -15=-71, -18=-38, 21=-90/3 42=-32/1 -39=-32, -37=-32,	23=130 (LC 1 25=166 (LC 27=160 (LC 29=160 (LC 23=168 (LC 2 34=168 (LC 2 37=160 (LC 1 39=160 (LC 1 39=160 (LC 1 39=160 (LC 1 41=165 (LC 41=165 (LC 41=165 (LC 41=165 (LC 43=155 (LC 50) (LC 1 39=160 (LC	3), 1), 1), 1), 23),), 1), 1), 12) 2222, 7/38, 9/46, 2/112,	I) Uu th th (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (3) (2) (3) (2) (3) (3) (4) (4) (5) (6) (6) (3) (3) (3) (4) (4) (5) (5) (6) (3) (3) (3) (4) (4) (5) (5) (6) (3) (3) (3) (4) (4) (5) (5) (6) <th>hbalanced is design. ind: ASC asd=103n at. II; Exp ine and C cres & MM DL=1.60 Jruss designation or state is cress to the state able stude is truss to the botto 06-00 tall 06-00 tall 06-00 tall ord and a I bearings pacity of</th> <th>d roof E 7-10 mph; T B; En -C Ex WFRS plate <u>c</u> rd Ind uualifier re 1.55 rs space as be ad no has b has b has b has b has b has c has c ha</th> <th>Weight: 223 live loads have compared by Vult=130mpl CDL=6.0psf; E closed; MWFF terior (2) zone for reactions s grip DOL=1.60 or wind loads i xposed to wind ustry Gable Er d building des 4 MT20 unles ontinuous botto eed at 2-0-0 oc en designed for noconcurrent w een designed prof in all areas 00-00 wide will her members. issumed to be si.</th> <th>Ib FT = been con 1 (3-second CDL=6.0p IS (envelog C-C for ma shown; Lur n the plane d (normal t id Details a igner as pe s otherwise m chord b r a 10.0 ps where a ri fit betwee SP No.2 c</th> <th>20% sidered for d gust) sf; h=30ft; be) exterior embers and mber e of the truss o the face), as applicable, er ANSI/TPI 1. e indicated. iearing. sf bottom her live loads. bad of 20.0psf ectangle in the bottom rushing</th>	hbalanced is design. ind: ASC asd=103n at. II; Exp ine and C cres & MM DL=1.60 Jruss designation or state is cress to the state able stude is truss to the botto 06-00 tall 06-00 tall 06-00 tall ord and a I bearings pacity of	d roof E 7-10 mph; T B; En -C Ex WFRS plate <u>c</u> rd Ind uualifier re 1.55 rs space as be ad no has b has b has b has b has b has c has c ha	Weight: 223 live loads have compared by Vult=130mpl CDL=6.0psf; E closed; MWFF terior (2) zone for reactions s grip DOL=1.60 or wind loads i xposed to wind ustry Gable Er d building des 4 MT20 unles ontinuous botto eed at 2-0-0 oc en designed for noconcurrent w een designed prof in all areas 00-00 wide will her members. issumed to be si.	Ib FT = been con 1 (3-second CDL=6.0p IS (envelog C-C for ma shown; Lur n the plane d (normal t id Details a igner as pe s otherwise m chord b r a 10.0 ps where a ri fit betwee SP No.2 c	20% sidered for d gust) sf; h=30ft; be) exterior embers and mber e of the truss o the face), as applicable, er ANSI/TPI 1. e indicated. iearing. sf bottom her live loads. bad of 20.0psf ectangle in the bottom rushing
		26=-50 (L(28=-49 (L(31=-52 (L(37=-48 (L(37=-48 (L(41=-48 (L(43=-41 (L(C 13), 27–48 (LC 1 C 13), 29–48 (LC 1 C 13), 32=-48 (LC 1 C 12), 35=-51 (LC 1 C 12), 35=-51 (LC 1 C 12), 35=-54 (LC 1 C 12), 40=-49 (LC 1 C 12), 40=-49 (LC 1 C 12), 42=-125 (LC 2 C 17)	(3), 3), 3), 2), 2), 2), WEBS NOTES	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44-35=-32/112, 33 32-33=-32/112, 31 29-31=-32/112, 28 27-28=-32/112, 26 25-26=-32/112, 24 23-24=-32/112, 24 23-33=-166/17, 11 0-35=-119/87, 9-5 5-39=-120/83, 5-44 3-42=-90/127, 13-5 4-31=-119/87, 15 6-28=-120/83, 18 9-26=-119/83, 20 21-24=-98/104	-34=-32 -32=-32 -29=-32 -27=-32 -25=-32 -34=-120 -37=-120 -37=-120 -32=-128 -29=-12 -27=-12 -25=-12	(112, (112, (112, (112, (112, (112, (112, (22, 8-38=-12) (22, 4-41=-124) (75, (23, 4-41=-124) (75, (282, (283, (283, (283, (283, (293, (201))))))))))))))))))))))))))))))))))))	0/83, /85,		W. HILLING	The second secon	SE 036	ARO SSICA AL 322 NEER GILB	A A A A A A A A A A A A A A A A A A A

June 13,2023

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A01E	Common Supported Gable	1	1	Job Reference (optional)	158903647

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 2, 6 lb uplift at joint 23, 46 lb uplift at joint 34, 51 lb uplift at joint 35, 48 lb uplift at joint 37, 49 lb uplift at joint 38, 49 lb uplift at joint 39, 49 lb uplift at joint 40, 48 lb uplift at joint 41, 125 lb uplift at joint 42, 43 lb uplift at joint 32, 52 lb uplift at joint 31, 48 lb uplift at joint 29, 49 lb uplift at joint 26, 44 lb uplift at joint 25, 123 lb uplift at joint 24 and 41 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:38 ID:7Akou8Zhca0nCTpJva9CrXz6mE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A01M	Common	1	1	Job Reference (optional)	158903648

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:39 ID:8JvKQH7rvPqunSFBPqhT9Wz6ltQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	1	6-2-0	1	12-0-0	15-6-12	17-8-8	21-8-8	23-10-4	27-6-4	34-0-0	1
	[6-2-0	1	5-10-0	3-6-12	2-1-12	4-0-0	2-1-12	3-8-0	6-5-12	1
Scale = 1:64.7											
Plate Offsets (X, Y):	[2:0-5-1,Edge], [8:0-3-0,Edge],	[10:0-4-12,Edg	e], [14:0-5-1,E	Edge], [15:0-1-15,0	-1-8], [17:0-4	4-0,0-3-4], [20	:0-3-0,0-3-0],	[23:0-2-8,0-2	-12]	

Lading TCLL (rod) (pst) (pst) Spacing Plate Sip DCL 2-0- (1.15) CSI Opt 0.05 Vert(L1) 0.05 Hold Lide DCL Descent Display PLATES GRIP CUL (rod) 0.00 Rep Dises in r YES PLATES GRIP PLATES GRIP CUL (rod) 0.01 0.00 Rep Dises in r YES PLATES GRIP COL 0.01 Code REACTION 0.01															
TCLL (roof) 200 Plate Grip DOL 1.15 TC 0.94 Vert(T) 0.63 16-17 -989 240 MT20 244/190 BCLL 0.01 Rep Stress Incr YES WB 0.88 Vert(CT) 0.61 1-67 7-699 240 MT20 244/190 LUMBER Code IRC201S/TPI2014 Matrix.MS WB 0.88 Horz(CT) 0.10 1-4 n/a n/a <th>Loading</th> <th>(psf)</th> <th>Spacing</th> <th>2-0-0</th> <th></th> <th>CSI</th> <th></th> <th>DEFL</th> <th>in</th> <th>(loc)</th> <th>l/defl</th> <th>L/d</th> <th>PLATES</th> <th>GRIP</th> <th></th>	Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL 10.0 Lumber DOL 1.15 BC 0.33 Ver(CT) 0.67 16.17 50.08 Mode BCDL 10.0 Code IRC2015/TH2014 Matrix-MS B B Matrix-MS Weight: 221 lb FT = 20% LUMBER 10.0 Code IRC2015/TH2014 Matrix-MS B B Matrix-MS Weight: 221 lb FT = 20% LUMBER 20%7.6521,1510,719.222.32x4 SP No.3 Wind: ASCE 7-10; Vull=130mph (3-second gust) Vull=400mph (3-second gust) Vull=400mph (3-second gust) Vull=400mph (3-second gust) VEBS 2.0%7.6521,1510,719.222.32x4 SP No.3 Veraf-103mph (3-second gust) Vull=130mph (3-second gust) Vull=130mph (3-second gust) Code Veraf-100mph (3-second gust) Code Veraf-100mph (3-second gust) Code Code Veraf-100mph (3-second gust) Code Code Code Vull=130mph (3-second gust) Code C	TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)	0.36	16-17	>999	240	MT20	244/190	
BCLL 0.0° Resp. Inc. YES WB 0.88 Horz(CT) 0.10 14 n/a n/a BCDL 10.0 Code IRC2015/TFI2014 Watrix-MS Marrix-MS Marrix-MS Weight: 221 Ib FT = 20% LUMBER 204 SP No.3 * Except* 5-8,8-11:2x4 SP DS3 24 SP No.3 * Except* Second Code	TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.67	16-17	>608	180			
BCDL 10.0 Code IRC2015TP12/214 Matrix-MS Weight: 221 /b FT = 20% LUMBER TOP CHORD 2x4 SP No.2 "Except" 5-8.8-11:2x4 SP DSS BOT CHORD Wind: ASCE 7-10; Vult=130mb (3-second gust) Weight: 221 /b FT = 20% VIESS 2x4 SP No.1 "Secopt" 5-8.8-11:2x4 SP DSS BOT CHORD Wind: ASCE 7-10; Vult=130mb (3-second gust) Vult=130mb (3-second gust) VIESS 2x4 SP No.1 "Content of 2x4 SP No.3 "Content of 2x4 SP No.3 "Content of 2x4 SP No.3 UNDESS 1207 (6-71,15-10; 71.9; 22-23):2x3 X4 SP No.3 - 1-6-0 "Do Chord Dive load sheathing directly applied "Secopt" A fill obstitution of 2x4 SP No.3 "All plates are 3x6 MT20 unless otherwise indicated." Structural wood sheathing directly applied "This truss has been designed for a live load of 20.0psf on the load nonconcurrent with any other load of 20.0psf on the load nonconcurrent with any other load of 20.0psf on the load monoconcurrent with any other methods: FORCES (b). Maximum Compression/Maximum Taresion "All plates are 3x6 MT20 unless otherwise indicated." This truss has been designed for ocnorect truss hing appality of 566 psp. Sin Ong-Tie connectors for 11 theraitonal Resolution to condit an less tore upite on the solution tore soluton tore solution tore soluton tore solution tore solution	BCLL	0.0*	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.10	14	n/a	n/a			
LUMBER TOP CHORD 2x4 SP No.3 "Except" 5-8,11.2x4 SP DS 2x4 SP No.3 - 1-60, Right 2x4 SP No.2 - 1-60 2) Wind: ASCE 7-10; Vull=130mph (3-second gusl) Vasi-103mph; TCDL=6,0pt; BCDL=6,0pt; BCDL=6,0pt; BCDL=6,0pt; BCDL=6,0pt; SCDL=7,821,15-10,17,92,223,2x4 SP No.2 - 1-60 SLIDER Left 2x4 SP No.3 - 1-60, Right 2x4 SP No.3 - 1-60, Right 2x4 SP No.3 - 1-60, Right 2x4 SP No.2 - 1-60 Structural wood sheathing directly applied DCL=160 plate ginp DDL=1.60 BRACIMS REACTORN Max Horiz 2 - 150 (LC 12) Max Grav 2 - 1390 (LC 1), 14-158 (LC 13) Max Grav 2 - 1390 (LC 1), 14-158 (LC 13) Max Grav 2 - 1390 (LC 1), 14-158 (LC 14) Max Grav 2 - 1390 (LC 1), 14-158 (LC 15) Max Grav 2 - 1390 (LC 1), 14-158 (LC 15) Max Grav 2 - 1390 (LC 1), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 15) Max Grav 2 - 1390 (LC 12), 14-158 (LC 15) Max Grav 2 - 1390 (LC 12), 14-158 (LC 15) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 15) Max Grav 2 - 1390 (LC 12), 14-158 (LC 15) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 12), 14-158 (LC 14) Max Grav 2 - 1390 (LC 14), 14-158 (LC 14) Max Grav 2 - 1390 (LC 14), 14-158 (LC 14) Max Grav 2 - 1390 (LC 14), 14-158 (LC 14) Max Grav 2 - 1390 (LC 14), 14-158 (LC 14) Max Grav 2 - 1390 (LC 14), 14-158 (LC 14) Max Grav 2 - 11430 (LC 14), 14-158 (LC 14) Max Grav 2 - 11430 (LC 14), 14-158 (LC 14) Max Grav 2 - 11430 (LC 14), 14-158 (LC 14) Max Grav 2 - 11430 (LC 14), 14-158 (LC 14) Max Grav 2 - 11430 (LC 14), 14-158 (LC 14) Max Grav 2 -	BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS				-			Weight: 221 lb	FT = 20%	
 TOP CHORD 24 49 PN 0.2 *Except* 58.8-11:244 SP DSS 224 59 PN 0.3 *Except* 224 59 P	LUMBER			2)	Wind: ASCE	7-10; Vult=130m	oh (3-seo	cond qust)							
BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.1 WEBS 2x4 SP No.3 SUDER Left 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 STOCHORD Structural wood sheathing directly applied. TOP CHORD Structural wood sheathing directly applied. Stores 1.8 w an midpt 7-19, 22-23 MESS 1.8 w an midpt 7-19, 22-23 MESS 1.8 w an midpt 7-19, 22-23 MESS 1.8 w an midpt 7-19, 22-23 Max Horiz 2=150 (LC 12) Max Horiz 2=150 (LC 12) Max Korz 2=1390 (LC 1), 14=-158 (LC 13) Max Grav 2=1390 (LC 1), 14=-158 (LC 13) Max Horiz 2=160 (LC 12) Max Horiz 2=162 (LC 14) Max Horiz 2=162 (LC 14) Max Horiz 2=162 (LC 12) Max Horiz 2=162 (LC 12) Max Horiz 2=162	TOP CHORD	2x4 SP No.2 *Excep	t* 5-8.8-11:2x4 SP D	SS	Vasd=103mp	h; TCDL=6.0psf;	BCDL=6	.0psf; h=30ft;							
WEES 2×4 SP No.3 = Except zone and C-C Exterior (2) zone-C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 SLIDER Left Zv4 SP No.3 = -16-0, Right 2x4 SP No.3 = -16-0 Structural wood sheathing directly applied. BRACING Structural wood sheathing directly applied or 2-2-0 oc bracing. WWFRS for reactions shown; Lumber Dol 0 pt bottom ochor live load of 20.0psf on the bottom chord in all areas where a rectangle 3:06-00 tall by 2-00-00 wide will fit between the bottom ochor dire load any other members. BRACTIONS (size) 2=0-3.8, 14=0-3.4 All petate of the bottom chord in all areas where a rectangle 3:06-00 tall by 2-00-00 wide will fit between the bottom ochor dire load any other members. FORCES (b) - Maximum Compression/Maximum Tension Top 2-16.36 (L-12), 14=-158 (LC 13), 14=-158 (LC 13), 14=158 (LC 13), 14	BOT CHORD	2x4 SP No.1			Cat. II; Exp E	; Enclosed; MWF	RS (env	elope) exterio	r						
20-7.6-21, 15-10, 7-19, 22-23, 24 SP No.2 Forces & MWFRS for reactions shown; Lumber DOL=1.60 SLIDER Left 2x4 SP No.3 1.6-0, Right 2x4 SP No.3 All plates are 3x6 MT20 unless otherwise indicated. BRACING Structural wood sheathing directly applied. All plates are 3x6 MT20 unless otherwise indicated. BTACING Structural wood sheathing directly applied. 7-19, 22-23 BRACING restore the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord in all ony other remembers. WEBS 1 Row at midpt 7-19, 22-23 All bearings are assumed to be SP No.1 crushing capacity of 566 psi. WEBS 1 Row at midpt 7-19, 22-23 All bearings are assumed to be SP No.1 crushing capacity of 566 psi. Max Horiz 2-150 (LC 12), 14-158 (LC 13) MA crav 2-1390 (LC 11, 14-158 (LC 13) Max Foriz 2-150 (LC 12), 14-158 (LC 13) PLIFT at (K) 2 and 14. This connections is for uplit only and does not consider lateral forces. 10 P CHORD 12-20/13, 2-4-2279/569, 4-6-2170/009, 15-166/64, 99, 10:12-22-23/631, 12-166/64, 99, 10:12-22-23/631, 12-166/742, 16:18-06/82/030, 15:16-8-38/93107, 14-15-429/1972 12-4-228/428/68 12-4-228/428/68 BOT CHORD 2-21-43/28/68 12-4-228/4768 15-16-8-38/93107, 12-162-32/0178, 12-322/178, 12-322/178, 12-	WEBS	2x4 SP No.3 *Excep	t*		zone and C-0	C Exterior (2) zone	e;C-C for	members an	d						
SLIDER Left 244 SP No.3 - 1-6-0, Right 24-224 SP No.1 - 1-8-0, Right 24-224 SP No.1 - Right 24-224 SP No.1 - Right 24-224 SP No.1 - 1-8-0, Right 24-24 SP No.1 - 1-8-0, Right 24-24 SP No.1 - 1-8-0, Right 24-24 SP No.1 - 1-8-0, Right 24-24-1-14 Right 24-24 SP No.1 - 1-8-0, Right 24-		20-7,6-21,15-10,7-19	9,22-23:2x4 SP No.2		forces & MW	FRS for reactions	shown;	Lumber							
 -1-6-0 3) All plates are 3x6 MT20 unless otherwise indicated. This trues has been designed for a 10.0 pd bottom chord in all areas where a rectangle on the bottom chord in all areas where a rectangle on the bottom chord and any other members. 6) This trues has been designed for a 10.0 pd bottom chord and any other members. 6) All bearings are assumed to be 5P No.1 crushing capacity of 665 ps. 6) All bearings are assumed to be 5P No.1 crushing capacity of 665 ps. 7) This trues has been designed for a live load of 20.0 ps of the bottom chord and any other members. 6) All bearings are assumed to be 5P No.1 crushing capacity of 665 ps. 7) Max frav 2 =1390 (LC 1), 14=158 (LC 13) Max Grav 2 =1390 (LC 1), 14=158 (LC 13) Ma	SLIDER	Left 2x4 SP No.3 1	I-6-0, Right 2x4 SP N	lo.3	DOL=1.60 pl	ate grip DOL=1.60	0								
BRACING 4) This truss has been designed tor a 10.0 psf bottom TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD MEES Structural wood sheathing directly applied or 2-2-0 as, 14-0-3-8 Max Horiz 2-169 (LC 12), Max Uplit 2169 (LC 12), 14=-158 (LC 13) Max Grav 2-1390 (LC 1), 14=-1360 (LC 1) 4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 67 2-1924/616, 7-82-97/387, 8-93-88/250, 9-101566/499, 10-12=-2227/631, 12-14=-224/568 4) This truss has been designed to a SOL on ectors recommended to connect truss to bearing walls due to UPLIT at tigs 2 and 14. This connection is for uplit only and does not consider lateral forces. BOT CHORD 2-21-434/1961, 19-21-322/1763, 15-168-4893/107, 14-15-429/1972, 15-168-4893/107, 14-15-429/1972, 15-163-889/30107, 14-15-429/1972, 15-163-889/30107, 14-15-429/1972, 15-220-220/57, 12-15-287/196, 19-222-21/56, 7-22-32/377, 16-33-20/178, 10-15-3532/977, 17-23-20/177, 17-33-20/178, 12-23-59/1342, 12-18-28/196, 19-222-539/1342, 12-18-28/196, 19-222-539/1342, 12-18-28/196, 19-222-539/1342, 12-18-28/196, 19-222-539/1342, 12-18-28/196, 19-222-539/1342, 12-18-28/196, 19-222-539/1342, 12-122-329/136, 12-23-59/1342, 12-22-349/1326, 12-24-52-114/3001, 22-22-349/1326, 12-24-52-114/3001, 22-22-349/1326, 12-22-32077/797, 7-9=-177/4638 Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes <		1-6-0		3)	All plates are	3x6 MT20 unless	s otherwi	se indicated.							
 TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 7-19, 22-23 WEBS 1 Row at midpt 7-19, 22-23 Wax Upift 2160 (LC 12). Maximum Tompression/Maximum Tomoression/Maximum Tompression/Maximum Tompression/Maxi	BRACING			4)	This truss ha	s been designed	for a 10.0	0 psf bottom							
 BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 7-19, 22-23 REACTIONS (size) 2-0-3.8, 14=0-3-8 Max Horiz 2-150 (LC 12) Max Upilt 2=-169 (LC 12), 14=-158 (LC 13) Max Grav 2=1390 (LC 1), 14=-1360 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-220/13, 2-4=-2279/569, 4-6=-2170/609, 6-7=-1924/616, 7-8=-97/387, 8-9=-88/250, 9-10=-1566/499, 10-12=-223/631, 12-14=-238/4/586 BOT CHORD 2-21=-434/1961, 19-21=-322/1763, 18-19=-88/250, 9-10=-1566/44, 4-21=-166/144, 6-21=-839/2305, 6-20=-438/251, 10-15=-532957, 12-15=-237/196, 14-22=-248/1386, 12-22=-248/1386, 12-22=-248/1326, 12-22=-248/1326, 12-22=-23/4371, 16-23=-20/178, 10-15=-352957, 12-15=-287/198, 12-22=-24/143/201, 23-25=-1230/334, 18-24=-234/92, 18-22=-348/1326, 17-23=-1207/718, 15-23=-207/779, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design. 	TOP CHORD	Structural wood shea	athing directly applied	d	chord live loa	ad nonconcurrent	with any	other live load	ds.						
 bracing. cond the bottom chord in all reas where a rectangle bracing. bracing. cond the bottom chord in all reas where a rectangle bracing. bracing. cond the bottom chord in all reas where a rectangle bracing. cond the bottom chord in all reas where a rectangle bracing. bracing. bracing. cond the bottom chord in all reas where a rectangle bracing. brac	BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc	5)	* This truss h	as been designed	d for a liv	e load of 20.0)psf						
WEBS 1 Row at midpt 7-19, 22-23 REACTIONS (size) 2-0-3-8, 14=0-3-8 Max Hoirz 2=150 (LC 12) Max Grav 2=1390 (LC 1), 14=158 (LC 13) Max Grav 2=2279/569, 4-6=-2170/609, 9-10=-1566/499, 10-12=-2223/631, 12-14=-2245/688 TOP CHORD 1-2-0/13, 2-4=-2279/569, 4-6=-2170/609, 9-10=-1566/499, 10-12=-2223/631, 12-14=-2245/688 BOT CHORD 2-21=-434/1961, 19-21=-322/1763, 15-16=-889/3107, 14-15=-429/1972 T10 P EXES 7-20=-200/654, 4-21=-166/164, 6-2=67/0008, 15-16=-889/3107, 14-15=-429/1972 WEBS 7-20=-200/654, 4-21=-166/164, 6-2=-71/924, 16-18=-926/3208, 12-2=-329/377, 16-23=-20/178, 10-23=-59/3/42, 22-24=-114/3/301, 22-25=-123/334, 15-23=-20/178, 10-23=-59/3/42, 22-24=-34/9/326, 17-25=-1022/74, 17-23=-1027/538, 15-23=-207/79, 7-9=-177/4638 NOTES 1) Unbalanced roof live loads have been considered for this design.		bracing.			on the bottor	n chord in all area	s where	a rectangle							
REACTIONS (size) 2=0-3.8, 14=0-3.8 Max Horiz 2=150 (LC 12) Max Upilit 2=-169 (LC 12), 14=-158 (LC 13) Max Grav 2=1390 (LC 1), 14=1360 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-4=-2279/569, 4-6=-2170/609, 9-10=-1566/499, 10-12=-2223/831, 12-14=-2284/568 BOT CHORD 2-21=-343/1961, 19-21=-322/1763, 18-19=-162/1342, 16-18=-926/3208, 15-16=-893/3107, 14-15=-429/1972 WEBS 7-20=200/654, 4-21=-166/164, 6-21==83/265, 6-20-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-2=-32/371, 10-23=-20/178, 15-25=-102/274, 17-23=-1027/538, 15-25=-102/274, 17-23=-102/275, 15-25=-102/274, 17-23=-102/275, 15-25=-102/274, 17-23=-102/275, 15-25=-102/274, 17-23=-102/275, 15-25=-102/274, 17-23=-102/275, 15-25=-102/274, 17-23=-102/275, 15-25=-102/274, 17-23=-102/275, 15-25=	WEBS	1 Row at midpt	7-19, 22-23		3-06-00 tall t	y 2-00-00 wide w	ill fit betv	veen the botto	om						
Max Horiz 2=150 (LC 12) Max Uplift 2=169 (LC 12, 14=136 (LC 13) Max Grav 2=1390 (LC 1), 14=136 (LC 13) Max Grav 2=1390 (LC 1), 14=136 (LC 13) Max Grav 2=1390 (LC 1), 14=1360 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:2=013, 2-4=-2279/569, 4-6=-2170/609, 6-7=-1924/616, 7-8=-97/387, 8-9=-88/250, 9-10=-156(499, 10-12=-2223/631, 12-14=-2284/568 BOT CHORD 2:2=1=434/1961, 19-21=-322/1763, 18-19=-162/1342, 16-18=-926/3208, 15-16=-889/3107, 14-15=-429/1992, WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-2165, 7-22==23/77, 16-23=-20/178, 10-23=-591/342, 2:2=-349/1326, 17-25=-102/774, 17-23=-1027/538, 15-23=-2077/97, 7-9=-1774/638 NOTES 1) Unbalanced rool live loads have been considered for this design.	REACTIONS	(size) 2=0-3-8, 1	4=0-3-8	C)	All boorings	ly other members.		1 orushing							
Max Uplift 2=-169 (LC 12), 14=-158 (LC 13) Max Grav 2=1390 (LC 1), 14=-158 (LC 13) Max Grav 2=1390 (LC 1), 14=1360 (LC 1) (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-4=-2279/569, 4-6=-2170/609, 6-7=-1924/161, 7-8=-98/250, 9-10=-1566(499, 10-12=-2223/631, 12-14=-2284/568 BOT CHORD 2-21=-43/1961, 19-21=-322/1763, 15-16=-889/3107, 14-15=-429/1972 VWEBS 6-21=-83/265, 6-20=-498/251, 10-15=-3529/57, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 15-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		Max Horiz 2=150 (LC	C 12)	0)	capacity of 5	are assumed to be	3 3 NU.	rcrushing							
Max Grav 2=1390 (LC 1), 14=1360 (LC 1) 17 06 112:07 001 00018 (LT 05 0116 0018		Max Uplift 2=-169 (L	C 12), 14=-158 (LC 1	3) 7)	One H2 54 S	Simpson Strong-Ti	ie conne	ctors							
FORCES (lb) - Maximum Compression/Maximum Tension UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces. TOP CHORD 1-2=0/13, 2-4=-2279/569, 4-6=-2170/609, 6-7=-1924/616, 7-8=-97/387, 8-9=-88/250, 9-10=-1566/499, 10-12=-2223/631, 12-14=-2284/568 0 0 BOT CHORD 2-21=-434/1961, 19-21=-322/1763, 18-19=-162/1342, 16-18=-926/3208, 51-16=-889/3107, 14-15=-429/1972 0 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSITP1 1. 9 ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE. UNINHABITABLE. UAD CASE(S) Standard WEBS 7-20=-200/654, 4-21=-168/164, 6-21=-83/265, f-20=-498/251, 10-15=-328/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-102/7538, 15-23=-2077/797, 7-9=-1774/638 SEAL 036322 NOTES 1) Unbalanced roof live loads have been considered for this design. -		Max Grav 2=1390 (L	C 1), 14=1360 (LC 1) ''	recommende	d to connect truss	s to bear	ing walls due	to						
Tension only and does not consider lateral forces. TOP CHORD 1-2=013, 2-4=-2279/569, 4-6=-2170/609, 6-7=-1924/616, 7-8=-97/387, 8-9=-88/250, 9-10=-1566/499, 10-12=-2223/631, 12:14=-2284/568 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. 80T CHORD 2-21=434/1961, 19-21=-322/1763, 15-16=-889/3107, 14-15=-429/1972 ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE. WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/565, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22=-244=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18:24=-234/92, 18:22=-349/1326, 17-25=-102/274, 17-23=-102/7538, 15-23=-2077/797, 7-9=-1774/638 SEAL NOTES 1) Unbalanced roof live loads have been considered for this design. GILBERT	FORCES	(lb) - Maximum Com	pression/Maximum		UPLIFT at it(s) 2 and 14. This	connecti	on is for uplift							
 TOP CHORD 1-2=0/13, 2-4=-2279/569, 4-6=-2170/609, 6-7=-1924/616, 7-8=-97/387, 8-9=-88/250, 9-10=-1566/499, 10-12=-2223/631, 12-14=-2284/568 BOT CHORD 2-21=-434/1961, 19-21=-322/1763, 15-16=-889/3107, 14-15=-429/1972 WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-25=-591/342, 22-24=-114/3(01, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design. 		Tension			only and doe	s not consider late	eral force	es.							
 6-7=-1924/616, 7-8=-97/387, 8-9=-88/250, 9-10=-1566/499, 10-12=-2223/631, 12-14=-2284/568 BOT CHORD 2-21=-434/1961, 19-21=-322/1763, 18-19=-162/1342, 16-18=-926/3208, 15-16=-889/3107, 14-15=-429/1972 WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design. 	TOP CHORD	1-2=0/13, 2-4=-2279	/569, 4-6=-2170/609	, 8)	This truss is	designed in accor	dance w	ith the 2015							
9-10=-1566/499, 10-12=-2223/631, 12-14=-2284/568 R802.10.2 and referenced standard ANSI/TPI 1. 9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE. 9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE. WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 SEAL 036322 NOTES 1) Unbalanced roof live loads have been considered for this design. GL_HALL		6-7=-1924/616, 7-8=	-97/387, 8-9=-88/250),	International	Residential Code	sections	R502.11.1 a	nd						
12-14=-2284/568 9) ATTIC SPACE SHOWN IS DESIGNED AS BOT CHORD 2-21=-434/1961, 19-21=-322/1763, 18-19=-162/1342, 16-18=-926/3208, 15-16=-889/3107, 14-15=-429/1972 9) ATTIC SPACE SHOWN IS DESIGNED AS WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 SEAL NOTES 1) Unbalanced roof live loads have been considered for this design. GIL BL		9-10=-1566/499, 10-	12=-2223/631,		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.							
BOT CHORD 2-21=-434/1961, 19-21=-3221763, UNINHABITABLE. 18-19=-162/1342, 16-18=-926/3208, LOAD CASE(S) Standard 15-16=-889/3107, 14-15=-429/1972 WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		12-14=-2284/568		9)	ATTIC SPAC	E SHOWN IS DE	SIGNED	AS						(11)	
18-19=-162/1342, 16-18=-926/3208, LOAD CASE(S) Standard 15-16=-889/3107, 14-15=-429/1972 WEBS 7-202-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.	BOT CHORD	2-21=-434/1961, 19-	21=-322/1763,		UNINHABIT	ABLE.							White CA	Dall	
15-16=-889/3107, 14-15=-429/1972 WEBS 7-20=-200/654, 4-21=-166/164, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22=-24=-1143/301, 24=-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		18-19=-162/1342, 16	5-18=-926/3208,	LC	DAD CASE(S)	Standard						15	atrion	20/ 1/2	
WEBS P20=200/004, 4-21=100/104, 6-21=-83/265, 6-20=-498/251, 10-15=-352/957, 12-15=-287/196, 19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 SEAL NOTES 036322 1) Unbalanced roof live loads have been considered for this design. MGINEEER	WERS	10-10=-889/3107, 14	+-15=-429/1972								/	S	01158	the Aller	
NOTES 1) Unbalanced roof live loads have been considered for this design. 10-15=-352/057, 12-15=-287/196, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES	WEB3	6-21-83/265 6-20-	=-100/104, /08/251								4	Ì/	115 11	1 Alexander	7
19-22=-21/56, 7-22=-32/377, 16-23=-20/178, 10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		10-15352/957 12-	-490/201, .15287/196								-			all !!	
10-23=-591/342, 22-24=-1143/301, 24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		19-22=-21/56 7-22=	-32/377 16-23=-20/1	78							-				
24-25=-1143/301, 23-25=-1230/334, 18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		10-23=-591/342, 22-	24=-1143/301.									:	SEA SEA	L : =	
18-24=-234/92, 18-22=-349/1326, 17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		24-25=-1143/301, 23	3-25=-1230/334,								=		0363	22 : =	
17-25=-102/274, 17-23=-1027/538, 15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		18-24=-234/92, 18-2	2=-349/1326,								-		0505	44 i B	
15-23=-2077/797, 7-9=-1774/638 NOTES 1) Unbalanced roof live loads have been considered for this design.		17-25=-102/274, 17-	23=-1027/538,										N	1 3	
NOTES 1) Unbalanced roof live loads have been considered for this design.		15-23=-2077/797, 7-	9=-1774/638								S	-	N. En	Richi	
1) Unbalanced roof live loads have been considered for this design.	NOTES											25	S. GINI	EF. AN	
this design.	1) Unbalance	ed roof live loads have	been considered for									11	10 m	BEIN	
· (DITUTUT)	this desig	n.											11, A. G	ILLIN	
													<i></i>	(IIII)	

1)

818 Soundside Road Edenton, NC 27932

June 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A02	Common	5	1	Job Reference (optional)	158903649

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:39 ID:c_SkWMpIME_93IB6RjVLWFz6mCU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A02E	Common Supported Gable	1	1	Job Reference (optional)	158903650

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:40 ID:zUJThhHmADvdFHgcDPiVbTz6mBt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-2-8,0-0-5]

,	, , .						-									
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/19	90	
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999	1			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.01	23	n/a	n/a				
BCDL		10.0	Code	IRC2015/TPI20	14	Matrix-MS							Weight: 222	ib FT = 2	20%	
					-								• • • • •			
LUMBER					N	lax Grav 2=154	(LC 12),	23=186 (LC 1	3),	1) Unt	alanced	d roof	live loads have	been cons	sidered for	
TOP CHORD	2x4 SP N	o.2				24=12	6 (LC 24)	25=166 (LC	1),	this	design.			10		
BOT CHORD	2x4 SP N	0.2				26=15	9 (LC 24)	27=160 (LC	1), :	2) VVIN	d: ASCI	E 7-10	; Vult=130mph	(3-second	I gust)	
WEBS	2x4 SP N	0.3				28=16	0 (LC 24)	29=160 (LC	1),	vas	a=103m	npn; i	CDL=6.0pst; B	-DL=6.0ps	st; n=30tt;	
OTHERS	2x4 SP N	o.3 *Excep	ot*			31=15	9 (LC 1),	32=168 (LC 24	4), 00)	Cat	. II; Exp	B; En	CIOSED; IVIVVER	5 (envelop	e) exterior	
	33-12,34-	11,35-10,3	2-13,31-14:2x4 SP N	lo.2		33=19	7 (LC 22)	34=168 (LC)	23),	200			terior (2) zone;		mbers and	
SLIDER	Left 2x4 S	SP No.3 1	1-0-3			30=15	9 (LC 1), 0 (LC 22)	20-160 (LC 1), 1)			NFRO	rin DOL -1 60	iown; Lun	iber	
BRACING						30=10	0 (LC 23) 0 (LC 22)	39=160 (LC	1), 1)	2) Tr	L= 1.00 µ	plate (np DOL=1.60	the plane	of the truce	
TOP CHORD	Structural	l wood she	athing directly applie	d or		40-13	3 (LC 23) 1 (LC 10)	41=103 (LC	1), .	3) 110 only		tude o	vpocod to wind	(normal to	the face)	
	6-0-0 oc p	ourlins, ex	cept end verticals.	FORCES		(llh) Maximum C	1 (LC 13)		12)	500	Standa	rd Ind	ustry Gable En	d Dotaile a	s annlicable	
BOT CHORD	Rigid ceili	ing directly	applied or 10-0-0 oc	FURGES		(ID) - Maximum C	ompressi	on/iviaximum		0r 0	onsult a	nu mu malific	d building desig	ner as ne		
	bracing.				חח		0/4E 2 4	160/00		4) ΔIIr	lates ar	ro 1 5	4 MT20 unless	otherwise	indicated	
WEBS	1 Row at	midpt	12-33	TUP CHC	κD	1-2=0/13, 2-3=-0	2/40, 3-4=	= 102/03,		5) Gab	le requi	ires cr	ntinuous hotto	m chord he	earing	
REACTIONS	(size)	2=33-8-8,	23=33-8-8, 24=33-8	-8,		8-056/162 0-1	=-00/113, 072/186	0-0=-05/150, 10-1180/2	25	6) Gat	le stude	s snac	ed at 2-0-0 oc		Jannig.	
		25=33-8-8	8, 26=33-8-8, 27=33-	8-8,		11-12-106/270	12-12-10	06/270	.20,	7) Thie	s truss h	as he	en designed for	ra 10.0 ns	f bottom	
		28=33-8-8	8, 29=33-8-8, 31=33-	8-8,		13-1489/225 1	4-1572	/176		cho	rd live lo	had no	nconcurrent wi	th any oth	er live loads	
		32=33-8-8	3, 33=33-8-8, 34=33-	8-8,		15-16=-56/128 1	6-18=-39	/81 18-19=-3	7/38	8) * Th	is truss	has b	een designed f	or a live lo	ad of 20.0psf	
		35=33-8-8	3, 37=33-8-8, 38=33-	8-8,		19-20=-55/25 20)-21=-87/2	9 21-22=-14	4/48	ont	he botto	om cho	ord in all areas	where a re	ectangle	
		39=33-8-8	3, 40=33-8-8, 41=33-	8-8,		22-23=-116/37	2. 0.7.		.,,	3-00	5-00 tall	by 2-0	00-00 wide will	fit betweer	n the bottom	
	Max Llavia	42=33-8-6	5, 43=33-8-8 2 43) 42 455 (LO 43	BOT CHC	RD	2-42=-29/103, 41	-42=-29/1	03.		cho	rd and a	any oth	ner members.			
	Max Horiz	2=155 (LC	5 12), 43=155 (LC 12	.)		40-41=-29/103, 3	9-40=-29	/103,		9) All b	bearings	s are a	ssumed to be S	SP No.2 cr	rushing	
	Max Oplin	2=-43 (LU 24- 175 () 17), 23=-23 (LU 11) 1 C 12) 25- 46 (LC 1	,		38-39=-29/103, 3	7-38=-29	/103,		cap	acity of	565 p	si. , , , , , 1111	uun.		
		24=-175 ((10, 13), 23 = 40 (10, 13)	(),))		35-37=-29/103, 3	4-35=-29	/103,					White C	AD"	11.	
		20=-49 (L 2849 (l	C(13), 27 = 40 (LC 13) C(13), 29 = 48 (LC 13)	<i>)</i> , })		33-34=-29/103, 3	2-33=-29	/103,					"aTH U	770	1 de la	
		31=-52 (L	C 13) 32=-43 (LC 13	,, })		31-32=-29/103, 2	9-31=-29	/103,				×	OFFES	Sala	All.	
		34=-46 (L	C 12), 35=-51 (LC 12	2).		28-29=-29/103, 2	27-28=-29	103,			1	33		TH	1411	
		37=-48 (L	C 12), 38=-49 (LC 12	2),		26-27=-29/103, 2	25-26=-29	/103,				U	41 1		1 1	
		39=-49 (L	.C 12), 40=-49 (LC 12	2),		24-25=-29/103, 2	23-24=-29	/103			-			10		
		41=-48 (L	.C 12), 42=-125 (LC 1	2), WEBS		12-33=-168/18, 1	1-34=-12	8/75,	~ ~ ~ ~		=		: SE	AL	1 1	
		43=-43 (L	C 17)			10-35=-119/87, 9	-37=-120	82, 8-38=-12	0/83, /05				0.26	200	: z	
						0-39=-120/83, 5-	40=-119/0)Z, 4-4 =- Z4/ /75	85,		1		: 030	322		
						3-42=-91/127, 13 14 21 - 110/07 1	F 20 120	0/02				2	A		1 - E - E	
						16-28-120/83 1	8-27-12	0/82,			5	2	·	0	1. 8	
						19-26=-119/82 2	0-27 =- 12	4/85				2,5	SA SNGI	NEE	25	
						21-24=-96/123						1	710	in of	N 18	
				NOTES									IL A	GILD	in	
				NOTES									111111	mini	8°	
													.lu	ne 13 2	023	
													ou			

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A02E	Common Supported Gable	1	1	Job Reference (optional)	158903650

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 2, 23 lb uplift at joint 23, 46 lb uplift at joint 34, 51 lb uplift at joint 35, 48 lb uplift at joint 7, 49 lb uplift at joint 38, 49 lb uplift at joint 39, 49 lb uplift at joint 40, 48 lb uplift at joint 41, 125 lb uplift at joint 42, 43 lb uplift at joint 32, 52 lb uplift at joint 31, 48 lb uplift at joint 29, 49 lb uplift at joint 26, 48 lb uplift at joint 27, 49 lb uplift at joint 26, 46 lb uplift at joint 25, 175 lb uplift at joint 24 and 43 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:40 ID:zUJThhHmADvdFHgcDPiVbTz6mBt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	A02M	Common	1	1	Job Reference (optional)	158903651

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:40 ID:n7hJUJ4Dfnqroc056pjCu4z6m?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.00.2

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 VES		CSI TC BC	0.95	DEFL Vert(LL) Vert(CT)	in 0.35 -0.64	(loc) 16-17 16-17	l/defl >999 >630	L/d 240 180	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS	0.80	11012(01)	0.10	14	n/a	∏/a	Weight: 222 lb	FT = 20%	
LUMBER TOP CHORD SOT CHORD WEBS SLIDER BRACING TOP CHORD SOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP DSS *Excep 11-14:2x4 SP No.1 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2v7,6-21,15-10,7-15 No.2 Left 2x4 SP No.3 - 1 2-0-0 Structural wood shea Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8,1 Max Horiz 2=153 (LC Max Uplift 2=-168 (L Max Grav 2=1379 (L (lb) - Maximum Com Tension 1-2=0/13, 2-4=-2257 6-7=-1901/611, 7-8= 9-10=-1546/495, 10- 12-14=-2162/549 2-21=-436/1940, 19- 18-19=-163/1321, 1(6 15-16=-888/3018, 14 7-20=-201/658, 4-21 6-21==-84/266, 6-20= 10-15=-314/802, 12- 19-22=-21/56, 7-22= 10-23=-566/343, 22- 24-25=-1119/306, 2: 18-24=-227/93, 17-2 7-9=-1741/632, 17-2 15-23=-2020/805, 18	t* 9-10,1-5:2x4 SP N t* 2-20:2x4 SP No.2 t* 3,10-16,22-23:2x4 SP 1-6-0, Right 2x6 SP N athing directly applied applied or 1-4-12 oc 7-19, 22-23 14= Mechanical C 12), 14=-156 (LC 1 C 12), 14=-156 (LC 1 C 12), 14=-156 (LC 1 C 12), 14=-156 (LC 1 C 12), 14=-156 (LC 1 0, 12), 14=-156 (LC 1 0, 12), 14=-156 (LC 1 1, 14=-1348 (LC 1 pression/Maximum 7/564, 4-6=-2148/604 -98/382, 8-9=-86/24 12=-2068/579, 21=-324/1743, 3-18=-926/3135, 1-15=-496/163, -501/253, 15=-196/163, -533/367, 16-23=-21/ 24=-1119/306, 3-25=-1204/339, 15=-103/266, 3=-100/544, 3-22=-353/1297	1) p.2., 2) (0.2 3) (1) (1) (1) (1) (1) (1) (1) (1	Unbalanced i this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-C forces & MW DOL=1.60 pl. All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are capacity of 56 Provide mecl bearing plate joint 14. One H2.5A S recommende UPLIFT at jt(does not con) This truss is d International R802.10.2 ar) ATTIC SPAC UNINHABITA	roof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; B; ; Enclosed; MWFR C Exterior (2) zone; FRS for reactions s ate grip DOL=1.60 3x6 MT20 unless c s been designed fo d nonconcurrent wi as been designed for n chord in all areas y 2-00-00 wide will y 2-00-00 wide will s been designed fo concurrent wi assumed to be: Joi 55 psi. er(s) for truss to trus anical connection anical connection truss to sider lateral forces. Jesigned in accorda Residential Code s d referenced stand E SHOWN IS DES BLE. Standard	been of (3-secc CDL=6 S (envit C C for hown; ith any or a liv where fit betw int 2 SF ss conrr (by oth nding 1 connec to bearin n is for ance w ections IGNED	considered fo ond gust) .0psf; h=30ff; elope) exterio members an Lumber se indicated.) psf bottom other live load e load of 20.0 a rectangle veen the botto P No.2 crushin rections. ers) of truss to 56 lb uplift at ctors ng walls due uplift only an ith the 2015 .R502.11.1 a .R502.11.1 a .R502.11.1 a	r ds.)psf om ng o to id				SEA 0363	RO 22 E.P. H. I.	Manunity

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X, Y): [2:0-5-1,Edge], [8:0-3-0,Edge], [10:0-4-12,Edge], [14:0-6-13,Edge], [17:0-4-0,0-3-4], [20:0-3-0,0-3-0], [23:0-2-8,0-2-0]

June 13,2023

Belhaven D,E.F A03M Roof Special 3 1 Job Reference (optional)	Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
	Belhaven D,E.F	A03M	Roof Special	3	1	Job Reference (optional)	158903652

BCLL

UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

June 13,2023

G mm

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	B01	Common	1	1	Job Reference (optional)	158903653

9-10-0

84 Components (Dunn, NC), Dunn, NC - 28334,

TCDL

BCLL

BCDL

1)

2)

3)

4)

5)

-0-6-0

4-9-13

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:42 ID:z3UdWtvFkozd_2kHC9kNcrz6mIp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-10-3

Page: 1

20-2-0

19-8-0

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MANDER IN THE

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	B01E	Common Supported Gable	1	1	Job Reference (optional)	158903654

TCDL

BCLL

BCDL

BOT CHORD

2-24=-14/75, 23-24=-14/75, 22-23=-14/75,

21-22=-14/75, 19-21=-14/75, 18-19=-14/75,

17-18=-14/75, 16-17=-14/75, 14-16=-14/75

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:42 ID:NNeKZ5kT1VCclvfbODU52uz6mJ1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 14, 29.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 13,2023

G

mm

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	B01G	Common Girder	1	3	Job Reference (optional)	158903655

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:42 ID:RCtq1JdZF?_4Clt4Jxw4J9z6lsn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	M1	Monopitch	6	1	Job Reference (optional)	158903656

-0-6-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:43 ID:jADp4I9ItFhC4m8PDCdNEGz6mL4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exa Rigid ceiling directly bracing.	athing directly applied sept end verticals. applied or 10-0-0 oc	7) One H2. recomm UPLIFT and doe 8) This trus Internati R802.10 LOAD CASI	A Simpson Strong-T ended to connect trus at jt(s) 2 and 4. This of s not consider lateral s is designed in acco onal Residential Code .2 and referenced sta E(S) Standard	Tie connection connection forces. rdance w e sections indard AN	ctors ing walls due n is for uplift ith the 2015 \$ R502.11.1 a ISI/TPI 1.	e to only and					
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=58 (LC Max Uplift 2=-41 (LC Max Grav 2=186 (LC	=0-1-8 8) 8), 4=-36 (LC 12) 2 1), 4=152 (LC 1)										
FORCES	(lb) - Maximum Com Tension 1-2=0/9, 2-3=-85/25, 2-4=-45/72	pression/Maximum 3-4=-99/76										
 NOTES 1) Wind: ASC Vasd=103i Cat. II; Exp zone and forces & M DOL=1.60 2) This truss chord live I 3) * This truss on the bott 3-06-00 tal chord and 4) Bearings a capacity of 565 psi. 5) Bearing at using ANS designer si 6) Provide me bearing pla 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B() B; Enclosed; MWFR8 C-C Exterior (2) zone; (WWFR8 for reactions sl plate grip DOL=1.60 has been designed for load nonconcurrent wi s has been designed for iom chord in all areas v ll by 2-00-00 wide will s any other members. any other members. if 565 psi, Joint 4 SP N joint(s) 4 considers pa I/TPI 1 angle to grain 1 hould verify capacity o echanical connection (ate at joint(s) 4.	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior C-C for members and hown; Lumber a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the botton ht 2 SP No.2 crushin o.3 crushing capacity arallel to grain value formula. Building f bearing surface. by others) of truss to	ls. osf m g y of						A HILLING.		SEA 0363	EER. Human

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 13,2023

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	M1G	Half Hip Girder	1	1	Job Reference (optional)	158903657

3-3-0

3-3-0

12 4 Г

-0-6-0

0-6-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:43 ID:zXQmNFVwkLgSuq7ID07PEgz6mJL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-0

0-9-0

3x6 =

3 4 0

2x4 🛛

1-1-7

Page: 1

csi DEFL (psf) Spacing 2-0-0 Loading TCLL (ro TCDL BCLL BCDL LUMBER TOP CH BOT CH WEBS BRACIN TOP CH BOT CH REACTI FORCES TOP CH BOT CH NOTES 1) Unba this 2) Wind Vaso Cat. zone force DOL 3) Prov

1-4-15

0-3-15

1-6-11

- 4) This
- chor 5) * Thi on th 3-06 chor
- 6) Bear capa . 565

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:30.3

Plate Offsets (X, Y): [3:0-3-0,0-2-8], [5:Edge,0-2-0]

of)	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	/TPI2014	CSI TC BC WB Matrix-MR	0.28 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 5-8 5-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
R ORD 2x4 3 ORD 2x4 3 ORD 2x4 3 ORD Struc 4-0-(2-0-C ORD Rigid brac ONS (size) Max H Max U Max C (lb) - Tens ORD 1-2= ORD 2-5= ORD 2-5= ORD 2-5= ORD 2-5= ORD 2-5= ORD 2-5= ORD 2-5= ORD 2-5= ORD 2-5= 0RD 2-5= 0	SP No.2 SP No.2 SP No.3 ctural wood sheat o co purlins, exc o co purlins; 3-4. d ceiling directly ing. 2=0-3-8, 5 foriz 2=51 (LC - foriz 2=51 (LC - director) foriz 2=51 (LC - director) foriz 2=54 (LC Grav 2=209 (LC Maximum Com ion 0/9, 2-3=-142/46 -91/75 -63/124 live loads have 0; Vult=130mph CDL=6.0psf; BG nclosed; MWFRS terior (2) zone; C 8 for reactions st grip DOL=1.60 e drainage to pre- teen designed for proconcurrent with opeen designed for proconcurrent will f her members. umed to be: Join isi, Joint 5 SP No	athing directly applied cept end verticals, and applied or 10-0-0 oc i=0-1-8 8), 5=-45 (LC 8) 21), 5=179 (LC 1) pression/Maximum 5, 3-4=-124/63, been considered for (3-second gust) CDL=6.0psf; h=30ft; 5 (envelope) exterior C-C for members and nown; Lumber event water ponding. a 10.0 psf bottom th any other live loads or a live load of 20.0ps where a rectangle fit between the bottorr nt 2 SP No.2 crushing o.3 crushing capacity	7) 8) 9) 10) 11) 12) 13) LO 1) Set of	Bearing at joi using ANSI/T designer sho Provide mecl bearing plate One RT7A M truss to beari This connect lateral forces This truss is d lateral forces This truss is d R802.10.2 ar Graphical pu or the orienta bottom chord "NAILED" inc (0.148"x3.25 In the LOAD of the truss a AD CASE(S) Dead + Roc Plate Increa Uniform Loc Vert: 1-3 Concentrate Vert: 9=-1	nt(s) 5 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 5. Tek connectors re- ng walls due to UF ion is for uplift only designed in accord Residential Code and referenced stan flin representation tion of the purlin a dicates 3-10d (0.14 ') toe-nails per ND CASE(S) section, re noted as front (I Standard of Live (balanced): se=1.15 dds (lb/ft) =-60, 3-4=-60, 5-6 ad Loads (lb) 50 (F)	ecomme of beari (by oth ecomme PLIFT at and do lance w sections dard AN does no long the 8"x3") of S guidli loads a F) or ba Lumber	to grain value a. Building ing surface. ers) of truss to ended to conn it (s) 2 and 5. es not consid ith the 2015 is R502.11.1 a ISI/TPI 1. of depict the s e top and/or or 3-12d nes. oplied to the fick (B).	o ect er nd ize ace				SEAL OR ESS SEAL O3632	RO(111 22 E.B. K 13,2023	Mannung

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	M2	Half Hip	1	1	Job Reference (optional)	158903658

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:43 ID:kFKWLY_yt8GYEDLUCUrK_cz6mK0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-0-0 oc purlins, exc 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Max Horiz 2=31 (LC Max Uplift 2=-18 (LC Max Grav 2=108 (LC (lb) - Maximum Com Tension 1-2=0/13, 2-3=-22/5, 2-6=-14/17, 5-6=0/0 3-6=-54/44	athing directly applied cept end verticals, an applied or 10-0-0 oc 5= Mechanical 12) 12), 5=-11 (LC 9) C 1), 5=-70 (LC 1) opression/Maximum , 3-4=0/0, 4-5=-21/17	8) 9) d or d 10 LC	One H2.5A S recommende UPLIFT at jt(and does not This truss is a International R802.10.2 ar Graphical pui or the orienta bottom chord DAD CASE(S)	impson Strong-Tie d to connect truss s) 5 and 2. This con consider lateral fo designed in accord Residential Code s ad referenced stand tion of the purlin al Standard	e connect to beari nnectior rces. ance wi sections dard AN does no long the	tors ng walls due t n is for uplift o th the 2015 R502.11.1 ar SI/TPI 1. t depict the si top and/or	to inly ize						
 Unbalance, this design. Wind: ASC Vasd=103r Cat. II; Exp zone and C forces & M DOL=1.60 Provide ad Provide ad Provide ad This truss on the botto 3-06-00 tall chord and a Bearings an capacity of Refer to gir 	d roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; BG B; Enclosed; MWFRS C Exterior (2) zone; WFRS for reactions sl plate grip DOL=1.60 equate drainage to pre- has been designed for oad noncourrent with s has been designed for om chord in all areas of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior C-C for members and hown; Lumber event water ponding. r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor nt 2 SP No.2 crushin ss connections.	l s. ssf g							Manifold Maria		SEA OBCHESS		Name in the

June 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V1	Valley	1	1	Job Reference (optional)	158903659

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:43 ID:mi_LOMJONkt7h0oy6VNyOVz6mMA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

All bearings are assumed to be SP No.2 crushing

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 1, 107 lb uplift at joint 15, 98 lb uplift at joint 16, 80 lb

uplift at joint 17, 107 lb uplift at joint 12, 99 lb uplift at

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

DOL=1.60 plate grip DOL=1.60

Gable studs spaced at 4-0-0 oc.

joint 11 and 75 lb uplift at joint 10.

capacity of 565 psi.

LOAD CASE(S) Standard

3)

4)

5) 6)

7)

8)

9)

BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc	purlins.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=29-8-0, 9=29-8-0, 10=29-8-0,
		11=29-8-0, 12=29-8-0, 13=29-8-0,

		15=29-8-0, 16=29-8-0, 17=29-8-0
	Max Horiz	1=126 (LC 12)
	Max Uplift	1=-14 (LC 13), 10=-75 (LC 13),
		11=-99 (LC 13), 12=-107 (LC 13),
		15=-107 (LC 12), 16=-98 (LC 12),
		17=-80 (LC 12)
	Max Grav	1=91 (LC 21), 9=58 (LC 22),
		10=299 (LC 1), 11=322 (LC 1),

12=416 (LC 26), 13=397 (LC 22),

	15=416 (LC 25), 16=321 (LC 1), 17=304 (LC 1)
ORCES	(Ib) - Maximum Compression/Maximum
	Tension
FOP CHORD	1-2=-153/71, 2-3=-106/92, 3-4=-70/130,
	4-5=-88/202, 5-6=-88/202, 6-7=-63/103,
	7-8=-68/54, 8-9=-102/45
BOT CHORD	1-17=-30/126, 16-17=-30/100,
	15-16=-30/100, 13-15=-30/100,
	12-13=-30/100, 11-12=-30/100,

WEBS 12-13=-30/100, 11-12=-30/100, 10-11=-30/100, 9-10=-30/100 WEBS 5-13=-208/0, 4-15=-259/173, 3-16=-241/169, 2-17=-220/141, 6-12=-259/173, 7-11=-242/169, 8-10=-218/139

NOTES

1) Unbalanced roof live loads have been considered for

this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V1E	Roof Special	1	1	Job Reference (optional)	158903660

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:44 ID:bPPTn1oUy1wSU9seSv5L0xz6mLY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:57.9
---------	--------

Plate Offsets (X, Y): [13:0-4-13,Edge], [18:0-3-0,0-1-8]

Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.10 0.09 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS	••••						Weight: 137 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N No.2 Structura 10-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 *Excep I wood sheat purlins. ing directly 1=24-0-8, 15=24-0-8 24=24-0-8 24=24-0-8 24=24-0-8 1=241 (LC 13=-18 (L 13=-18 (L 13=-18 (L 13=-14 (L 20=-48 (L) 22=-49 (L) 22=-50 (L) 1=103 (LC 14=253 (L 16=180 (L) 20=161 (L 22=166 (L) 22=166 (L) 24=231 (L)	t* 16-10,17-9:2x4 SF athing directly applie applied or 6-0-0 oc 13=24-0-8, 14=24-0 8, 16=24-0-8, 17=24- 8, 19=24-0-8, 20=24- 8, 22=24-0-8, 23=24- 8 (12), 14=-71 (LC 1: C 12), 14=-71 (LC 1: C 12), 13=-50 (LC 1: C 12), 21=-49 (LC 1: C 12), 21=-49 (LC 1: C 12), 23=-49 (LC 1: C 12), 13=86 (LC 24) C 24), 15=136 (LC 22) C 1), 17=160 (LC 22) C 1), 17=160 (LC 22) C 2), 21=158 (LC - C 23), 23=137 (LC - C 23), 23=137 (LC - C 23)	V P N ad or 2)-8, -0-8, -0-8, -0-8, 2), 2), 2), 2), 2), 2), 2), 2), 2), 3), 2), 1), 24), 3), 1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	VEBS IOTES) Unbalanced this design.) Wind: ASCE Vasd=103mg Cat. II; Exp E zone and C-1 forces & MW DOL=1.60 pl) Truss design only. For stu see Standard or consult qu) All plates are chord live loa) This truss ha chord and ar) All bearings capacity of 5 0) Provide mec bearing plate	10-16=-134/0, 9-17: 7-20=-121/83, 5-21: 3-23=-111/84, 2-24: 12-14=-170/107 roof live loads have 7-10; Vult=130mpf ph; TCDL=6.0psf; E 3; Enclosed; MWFR C Exterior (2) zone; (FRS for reactions s ate grip DOL=1.60 ned for wind loads in ds exposed to winned d Industry Gable Er talified building dess 1.5x4 MT20 unless es continuous botto spaced at 2-0-0 oc is been designed for ad nonconcurrent w has been designed for ad nonconcurrent will y other members. are assumed to be 65 psi. hanical connection e capable of withsta	=-129/8 =-119/8 =-119/8 =-149/8 & been of GCDL=6 SC (env; sc (env; of a (3-sec SC (env; SC (env; d) (3-sec SC (env; sc (a) (3-sec SC (a) (3-se	2, 8-19=-118 3, 4-22=-122 0, 11-15=-11 considered fo ond gust) .0psf; h=30ft; elope) exterior members ar Lumber ane of the tru al to the face ils as applical s per ANSI/TF wise indicated d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 6 lb uplift at i	/84, /82, 2/75, r ; ; or id uss), ble, PI 1. d. ds. Dpsf com	12) This Inter R80 LOAD C	truss is nationa 2.10.2 a ASE(S)	e desig I Resiand ref () Sta	ned in accordanc Jential Code secti ierenced standard Indard	e with the 2015 ons R502.11.1 a ANSI/TPI 1.	and
	Tension				18, 18 lb upli uplift at joint	ift at joint 13, 55 lb i	uplift at	joint 17, 50 lt 19 lb unlift at) ioint		Ξ		0363	22	Ξ
TOP CHORD BOT CHORD	1-2=-220, 4-5=-94/6 8-9=-18/8 11-12=-22 1-24=-76, 21-22=-3 18-19=-3 15-16=-4	/105, 2-3=- 52, 5-7=-51/ 33, 9-10=-34 2/86, 12-13 /100, 23-24 3/39, 20-21 3/39, 17-18 7/49, 14-15	181/81, 3-4=-137/67 (63, 7-8=-12/72, 6/131, 10-11=-35/13 i=-76/80 :=-33/39, 22-23=-33/ :=-33/39, 19-20=-33/ i=-36/48, 16-17=-45/ i=-41/48, 13-14=-57/	, 30, /39, 1 /39, /49, /61	uplift at joint 21, 49 lb upli uplift at joint joint 14. 1) Beveled plat surface with	19, 48 lb uplitt at jo ift at joint 22, 49 lb i 24, 43 lb uplift at jo e or shim required f truss chord at joint(int 20, 4 uplift at int 15 a to provid (s) 1, 13	i upilit at joint 23, 50 lk nd 71 lb uplif de full bearin 3, 16, 17, 15,	joint o t at g 14.		1112.		A. G	E.R	un _{ter}

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V2	Valley	1	1	Job Reference (optional)	158903661

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:44

84 Components (Dunn, NC), Dunn, NC - 28334,

ID:ipagEE7_v7_GOi84kscRHLz6mMP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 25-8₁0 12-10-0 25-1-1 0-6-15 12-10-0 12-3-1 4x6= 4 3 5 6-1-8 6-5-4 2 6 12 6 Г 118) 0-0-4 12 10 13 11 9 8 3x6 = 3x6 💋 3x6 25-8-0 Scale = 1:47.2 Loading (psf) 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.26 Vert(LL) n/a n/a 999 MT20 244/190 BC TCDI 10.0 Lumber DOL 1 15 0.22 999 Vert(TL) n/a n/a BCLL 0.0* Rep Stress Incr YES WB 0.23 Horiz(TL) 0.00 7 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 105 lb FT = 20%

L	U	M	B	E	R
_	-		-	_	•

LOWIDEN		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 10-0-0 oc	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=25-8-0, 7=25-8-0, 8=25-8-0, 9=25-8-0, 10=25-8-0, 12=25-8-0, 13=25-8-0
	Max Horiz	1=110 (LC 12)
	Max Uplift	1=-8 (LC 13), 8=-111 (LC 13), 9=-103 (LC 13), 12=-103 (LC 12), 13113 (LC 12)
	Max Grav	1=125 (LC 23), 7=94 (LC 24), 8=397 (LC 24), 9=332 (LC 26), 10=496 (LC 19), 12=331 (LC 25), 13=400 (LC 23)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-186/ 4-5=0/180	/179, 2-3=-34/175, 3-4=0/191,), 5-6=0/159, 6-7=-161/173
BOT CHORD	1-13=-100 10-12=-10	0/163, 12-13=-100/108, 00/108, 9-10=-100/108,
WEBS	8-9=-100/ 4-10=-317 5-9=-250/	7/1, 3-12=-249/172, 2-13=-272/170, 1/1, 3-6-8=-270/169

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 103 lb uplift at joint 12, 113 lb uplift at joint 13, 103 lb uplift at joint 9 and 111 lb uplift at joint 8.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V3	Valley	1	1	Job Reference (optional)	158903662

10-10-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:44 ID:iY3FgQwKvvrgr5LpEnoS5lz6mMg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-1-1

21-8-0

Scale = 1:42.7

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.16 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing.	.2 .2 .3 wood shea urlins. ng directly	athing directly applie applied or 6-0-0 oc	3) 4) 5) 6) 7)	Truss desig only. For stu see Standarr or consult qu All plates are Gable requir Gable studs This truss ha chord live loa	ned for wind loads uds exposed to wind d Industry Gable B lailified building de e 1.5x4 MT20 unle es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent	s in the p nd (norm End Deta signer as ess other tom chor c. for a 10.0 with any	ane of the tru al to the face ils as applical s per ANSI/TF wise indicated d bearing. 0 psf bottom other live loa	uss), ble, PI 1. J. ds.					
REACTIONS	bracing. (size) 1=21-8-0, 7=21-8-0, 8=21-8-0, 9=21-8-0, 10=21-8-0, 12=21-8-0, 13=21-8-0 Max Horiz 1=93 (LC 12) Max Uplift 1=-11 (LC 13), 8=-76 (LC 13), 9=-112 (LC 13), 12=-112 (LC 12), 13=-79 (LC 12) Max Grav 1=83 (LC 1), 7=53 (LC 1), 8=293 (LC 1), 9=347 (LC 24), 10=382 (LC 19), 12=346 (LC 23), 13=298 (LC				 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1, 112 lb uplift at joint 12, 79 lb uplift at joint 3, 112 lb uplift at joint 9 and 76 lb uplift at joint 8. 11) This truss is designed in accordance with the 2015 									
FORCES	(lb) - Maxir Tension	num Com	pression/Maximum		International R802.10.2 a	Residential Code	sections	R502.11.1 a ISI/TPI 1.	nd					
TOP CHORD	1-2=-126/6	64, 2-3=-72	2/89, 3-4=-65/138, 5/61_6-7=-85/43	L	JAD CASE(S)	Standard								0.00
BOT CHORD	1-13=-23/1 9-10=-23/7	08, 12-13 0, 8-9=-23	=-23/70, 10-12=-23/ 3/70, 7-8=-23/77	70,									TH CA	RO
WEBS	4-10=-209/ 5-9=-266/1	/0, 3-12=-2 80, 6-8=-2	266/180, 2-13=-213/ 211/137	138,								N.	OFFES	N. Y.
NOTES											Q			n
1) Unbalance this design	ed roof live lo n.	ads have	been considered for										SEA	AL E

- this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

036322

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V4	Valley	1	1	Job Reference (optional)	158903663

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:45 ID:XRu5MfnQVXSE1P?h5z6t9Rz6mMr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39			I											I
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.19 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 10-0-0 oc Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 I wood she purlins. ing directly 1=17-8-0, 7=17-8-0, 1=-71 (LC 1=-5 (LC 6=-127 (L 1=109 (LC 6=421 (LC 9=421 (LC	athing directly applied applied or 6-0-0 oc 5=17-8-0, 6=17-8-0, 9=17-8-0 13), 5=-10 (LC 13), C 13), 9=-128 (LC 12) C 23), 5=109 (LC 24) C 24), 7=393 (LC 1), C 23)	d or 2)	 This truss ha chord live loz 7) * This truss h on the bottor 3-06-00 tall h chord and ar All bearings capacity of 5 Provide mec bearing plate 1, 10 lb uplift uplift at joint This truss is International R802.10.2 a LOAD CASE(S) 	as been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members are assumed to b i65 psi. hanical connectic e capable of withs t at joint 5, 128 lb 6. designed in accoo Residential Code nd referenced sta Standard	for a 10. with any d for a liv as where vill fit betw s. es SP No. on (by oth standing 5 uplift at ju rdance w e sections indard AN	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t i b uplift at jo pint 9 and 127 ith the 2015 i R502.11.1 a ISI/TPI 1.	ids. Opsf om int 7 lb					
FORCES	(lb) - Max Tension 1-2=-150/	(223 2-3=0	pression/Maximum											
BOT CHORD	4-5=-150/ 1-9=-140/ 5-6=-140/	/223 /128, 7-9=- /128	140/98, 6-7=-140/98,	,										
WEBS NOTES 1) Unbalance	3-7=-339/ ed roof live l	/62, 2-9=-2 loads have	96/183, 4-6=-296/183 been considered for								all	WITH CA	ROLIN	

- this desian.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

G

mmm June 13,2023

SEAL

036322

WITTER PARTY

WITH COMPANY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F			
Belhaven D,E.F	V5	Valley	1	1	Job Reference (optional)	158903664		

1)

2)

3)

4) 5)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:45 ID:t7AZrYeuJryxaZ5OOSu3fvz6mN1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V6	Valley	1	1	Job Reference (optional)	158903665

9-8-0

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:45

Scale	= '	1.26.7
ocale	_	1.20.1

		-											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MP	0.30 0.28 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-8-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-8-0, 3 Max Horiz 1=38 (LC Max Uplift 1=-19 (LC 4=-78 (LC Max Grav 1=77 (LC (LC 1)	athing directly applied applied or 6-0-0 oc 3=9-8-0, 4=9-8-0 16) 24), 3=-19 (LC 23), 212) 23), 3=77 (LC 24), 4	d or =697	 This truss f on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 1, 19 lb uplift This truss is International R802,10.2 ar 	has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be 65 psi. hanical connection capable of withst at joint 3 and 78 designed in accor Residential Code ind referenced star Standard	d for a liv s where ill fit betv e SP No. n (by oth canding 1 lb uplift a dance w sections ndard AN	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 9 lb uplift at ji t joint 4. ith the 2015 s R502.11.1 a ISI/TPI 1.	opsf om o oint nd					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-142/375, 2-3=- 1-4=-303/192, 3-4=- 2-4=-511/241	pression/Maximum 142/375 303/192											

NOTES

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust)

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	Belhaven D.E.F	
Belhaven D,E.F	V7	Valley	1	1	Job Reference (optional)	158903666

2-10-0

2-10-0

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 08:12:45 ID:6ahX9pYtCNx4dKUrwnIBLDz6mN9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-1-1 5-8-0 2-3-1 0-6-15

5-8-0

Scale = 1:22.7

		-												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-8-0 oc purlins. Rigid ceiling directly bracing. (size) 1=5-8-0,3 Max Horiz 1=21 (LC Max Uplift 1=-12 (LC 4=-31 (LC Max Grav 1=72 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 3=5-8-0, 4=5-8-0 12) 12), 3=-16 (LC 13), 12) 23), 3=72 (LC 24), 4	7) 8) ed or 9) 1(L(* This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mect bearing plate 1, 16 lb uplift D) This truss is of International R802.10.2 ar DAD CASE(S)	as been designed n chord in all aree y 2-00-00 wide w y other members are assumed to b 65 psi. nanical connectio capable of withs at joint 3 and 31 designed in accor Residential Code nd referenced sta Standard	d for a liv as where iill fit betw e SP No. n (by oth tanding 1 lb uplift a rdance wi e sections ndard AN	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 2 lb uplift at jo t joint 4. th the 2015 R502.11.1 at ISI/TPI 1.	psf m o pint nd						
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-77/133, 2-3=-7' 1-4=-102/83, 3-4=-10 2-4=-207/103	pression/Maximum 7/133 02/83												

1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust)

- 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

"annununu SEAL 036322 G minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

