

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q015302-R Cua, Eric DU-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Load Star - Lavonia, GA.

Pages or sheets covered by this seal: I58787726 thru I58787771

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

June 7,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	C1	Piggyback	7	1	Job Reference (optional)	158787726

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:49 ID:VfwSDsXFyQGQo6Xi5ZCaKSzD1Yp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-9-8 2-7-13 5-3-11 6-1-3 0-9-8 2-7-13 2-7-13 0-9-8 3x4 = 12 7 ┌ 3 2 4 9-4-5 5 3x4 = 3x4 = 5-3-11

Scale = 1:24.9

Plate Offsets (X, Y): [2:Edge.0-0-4], [3:0-2-0.Edge], [4:Edge.0-0-4]

2-0-6

1-10-14

	(//, i). [z.=uge,0=0=4];	, [0.0 2 0,Euge], [4.E	ugc,0-0-4j										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-11-9, 5=6-11-9, Max Horiz 1=-53 (LC Max Uplift 1=-169 (L 6=-102 (L Max Grav 1=47 (LC 4=423 (LC 6=436 (LC	eathing directly applie r applied or 10-0-0 oc , 2=6-11-9, 4=6-11-9 , 6=6-11-9, 9=6-11-9 2 12) .C 30), 2=-102 (LC 11 2 17), 5=-153 (LC 7), .C 16), 9=-91 (LC 17) .G 16), 2=436 (LC 23), C 24), 5=30 (LC 17), .C 23), 9=423 (LC 24)	4) d or 5) ; 6) ; 7) 8) 9) 6), 10	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate	57-16; Pr=20.0 p 2.55; Pg=20.0 ps late DOL=1.15); b; Cs=1.00; Ct=1 snow loads have ted for a plus or r ter. es continuous bo spaced at 4-0-0 is been designed n chord in all are by 2-00-00 wide by other member hanical connecting a canable of with	sis (roof LL sf; Pf=13.s Is=1.0; R 10 be been cor minus 20 o bitom chor oc. f for a 10.t t with any ed for a liv as where will fit betw s. on (by oth	L: Lum DOL= p psf (Lum pugh Cat C; F isidered for th degree rotatic d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 69 lb unlift at	1.25 Fully his on ds. Opsf om to t joint					
FORCES	(lb) - Maximum Con Tension 1-2=-55/138, 2-3=-1 4-5=-39/101	npression/Maximum 52/116, 3-4=-153/11	6, ¹²	 and 153 lb uplift at joint 5. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider 							U11.		
 4-5=-39/101 BOT CHORD 2-4=-65/111 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 				lateral forces) This truss is International R802.10.2 a) See Standar Detail for Co consult quali DAD CASE(S)	s. Residential Cod nd referenced sta d Industry Piggyl nnection to base fied building des Standard	ordance w e sections andard AN back Trus truss as a igner.	ith the 2018 R502.11.1 a ISI/TPI 1. s Connection applicable, or	and		Contraction of		SEA 0363	L L L L B E E R R R L L B E R R L

June 7,2023

Job	Truss Truss Type Qty		Ply	Cua, Eric DU-Roof		
Q015302-R	C1G	Piggyback	1	1	Job Reference (optional)	158787727

2-0-6

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:51

ID:zrUqRCYtjkOHQG6vfHjptfzD1Yo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-9-8 2-7-13 5-3-11 6-1-3 0-9-8 2-7-13 2-7-13 0-9-8 4x4 = 12 7 ∟ 3 T 1-10-14 2 4 9-4-5 b 5 a ø 6 1.5x3 u 2x4 = 2x4 =

5-3-11

Scale = 1:26.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.10 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASI	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-3-11, 7=5-3-11, Max Horiz 2=53 (LC Max Uplift 2=-51 (LC 6=-23 (LC 11=-58 (L Max Grav 2=168 (LC 6=196 (LC 11=-58 (L 11=-68 (L 0) - Maximum Com Tension 1-2=0/20, 2-3=-75/7 2-6=-14/41, 4-6=-8/4 3-6=-89/48 ed roof live loads have n. CE 7-16; Vult=120mph	athing directly applie applied or 10-0-0 oc 4=5-3-11, 6=5-3-11, 11=5-3-11 15), 7=53 (LC 15) 216), 4=-58 (LC 17), 216), 7=-51 (LC 16), C 17) C 23), 4=168 (LC 24), C 24) apression/Maximum 7, 3-4=-72/78, 4-5=0, 42 been considered for (3-second gust)	4) 5) d or 6) 7) 8) 9) 10 10 11 12 /20 13 14	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p overhangs no Plates check about its cem Gable studs : 0) This truss ha chord live loa chord live loa chord live loa chord and an 2.0 Cne RT7A M truss to beari This connect lateral forces B) This truss is i International R802.10.2 ar 9 See Standard	7-16; Pr=20.0 ps .25); Pg=20.0 ps ate DOL=1.15); Is (; CS=1.00; Ct=1.1 snow loads have I s been designed 1 bs for 2.00 times f on-concurrent with ed for a plus or m ter. as continuous bott spaced at 2-0-0 o s been designed 1 id nonconcurrent vi as been designed 1 id nonconcurrent vi as been designed 1 id nonconcurrent vi as been designed 1 id nonconcurrent vi iTek connectors r ng walls due to U ion is for uplift onl . designed in accor Residential Code d referenced stard ind noter vipagyba nection to base t	f (roof LL ; Pf=13.5 s=1.0; Rc 0 been cor for greate lat roof h inus 20 o tom chor c. for a 10.0 with any d for a 10.0 with any d for a 10.0 with any d for a liv s where ecomme PLIFT at y and do dance w sections dance w sections dance truss ack Truss	L: Lum DOL=' psf (Lum ough Cat C; F nsidered for th er of min roof bad of 13.9 ps re loads. degree rotatio d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ended to conn jt(s) 2, 4, and es not consid ith the 2018 R 502.11.1 a ISJ/TPI 1. s Connection applicable, or	1.25 Fully his live sf on n ds. Dpsf d. d. der her nd				WITH CA	ROUM	
Vasd=95r II; Exp C; and C-C E exposed ; members Lumber D 3) Truss dea only. For see Stanc or consult	nph; ICDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind lard Industry Gable En- qualified building deci	UL=6.0psf; h=25ft; C tvelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; DL=1.60 h the plane of the trus (normal to the face) d Details as applicab grap as per ANS/UT	;at. e LC ss , le, ! 1	consult qualif	ied building desig Standard	ner.				11111111VV		SEA 0363	L 22 EER. A	WWWWWWWWWW

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G 11111111 June 7,2023

Job	Truss		Truss Type		Qty I	Ply	Cua, Eric D	J-Roof		
Q015302-R	GD7		Half Hip Girder		1	1	Job Referen	ce (ontional)		158787728
Load Star, Lavon	ia, GA - 30553,		<u> </u>	Run: 8.71 S May 19 ID:gm5cXdg8Noesdp	2023 Print: 8.71 tqENvAHmzD1	10 S May 1 Ye-RfC?P	9 2023 MiTek In sB70Hq3NSgPq	idustries, Inc. V nL8w3uITXbGi	Ved Jun 07 07:55:51 KWrCDoi7J4zJC?f	Page: 1
		-0-10-8 0-10-8	5-5-4 5-5-4		<u>9-5-</u> 4-0-	<u>6</u> 2		<u>13-7</u> 4-2-	2-8 -2	
				NAILED	NAIL	ED	NAILED	NAILE	D NAILED	
2	Ę		4 F	4x4 = 3)	3x4 =		1.5x3	
2-4-1	0-3-15	1	12	13	7	1=	14	15	6 3x4 =	2-1-
Scale = 1:33.2		 	NAILE 7-4 7-4	ED NAILED I-10 I-10	NAIL	ED	NAILED 1 6	NAILE <u>3-7-8</u> -2-14	ED NAILED	
Plate Offsets (2	K, Y): [2:0-3-6,0-0-0],	, [3:0-2-4,0-2-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MSH	.48 DEFL Vert(LL Vert(CT .60 Horz(C	-) -0. T) -0. T) 0.	in (loc) 07 7-9 : 13 7-9 : 02 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES G MT20 2: Weight: 70 lb F	RIP 44/190 T = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 4-3-14 oc purlins, ex 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=99 (LC Max Uplift 2=-276 (L Max Grav 2=827 (LC	athing directly applied cept -11 max.): 3-5. applied or 10-0-0 oc 6= Mechanical 51) .C 8), 6=-255 (LC 8) C 34), 6=841 (LC 33)	 5) This truss ha load of 12.0 g overhangs nc 6) Provide adec 7) Plates check about its cen 8) This truss ha chord live loa 9) * This truss ha 9) * This truss ha 06-00 tall b chord and an 10) Refer to girde 11) Provide mech bearing plate 	s been designed for g post or 2.00 times flat m post or 2.00 times flat m uate drainage to preve ed for a plus or minus ter. s been designed for a d nonconcurrent with as been designed for n chord in all areas wh by 2-00-00 wide will fit y other members. er(s) for truss to truss hanical connection (by capable of withstand	reater of min pool load of 13 er live loads. ent water poor 20 degree ro 10.0 psf bott any other live a live load of here a rectang between the connections. v others) of tri ng 255 lb upl	roof live 3.9 psf on nding. otation tom e loads. f 20.0psf gle bottom uss to lift at join	V(4 <u>-</u> 10	ert: 3=-48 (F) 43 (F), 10= 3=-22 (F), 14), 5=-69 (F), 6=-31 (F -43 (F), 11=-43 (F), =-22 (F), 15=-22 (F)	F), 7=-22 (F), 12=-107 (F),

4-5=0/0 BOT CHORD 2-7=-451/1288, 6-7=-455/1301 WEBS 5-6=-196/110, 3-7=0/266, 4-7=0/358, 4-6=-1414/494

1-2=0/25, 2-3=-1393/449, 3-4=-1453/413,

Tension

NOTES

TOP CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

- 12) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) "NAILED" indicates Girder: 3-16d (0.162" x 3.5") toenails per NDS guidelines.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-48, 3-5=-58, 2-6=-20 Concentrated Loads (lb)

MILLIN RTH CAR WITH COMPANY SEAL 036322 GI minim June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	J7	Jack-Open	5	1	Job Reference (optional)	158787729

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:52 ID:zrUqRCYtjkOHQG6vfHjptfzD1Yo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

3-3-8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-3-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Machenei	athing directly applie applied or 10-0-0 or 3= Mechanical, 4=	6) 7) ed or 5; 8) 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3.	s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w yo other members er(s) for truss to the hanical connection o capable of withst	for a 10.0 with any d for a liv as where rill fit betw truss con n (by oth tanding 6	D psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss to 2 lb uplift at j	ids. Dpsf om to ioint					
FORCES TOP CHORD BOT CHORD	ACTIONS (size) $2=0-3-8$, $3 = Mechanical, 4=$ Mechanical Max Horiz $2=88$ (LC 16) Max Uplift $2=-46$ (LC 16), $3=-62$ (LC 16) Max Grav $2=225$ (LC 23), $3=101$ (LC 23), 4=59 (LC 7) IRCES (lb) - Maximum Compression/Maximum Tension IP CHORD $1-2=0/30$, $2-3=-126/59$ IT CHORD $2-4=+107/68$				 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 								
NOTES 1) Wind: AS Vasd=95r II; Exp C; and C-C E to 3-2-12 vertical le forces & M DOL=1.60 2) TCLL: AS Plate DOI DOL=1.1! Exp:: Ce=	CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (err Exterior(2E) -0-10-8 to 2 zone; cantilever left ant ft and right exposed;C- WWFRS for reactions sl 0 plate grip DOL=1.60 (CE 7-16; Pr=20.0 psf; [L=1.25); Pg=20.0 psf; [5 Plate DOL=1.15); Is= -0.9; Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=25ff; (ivelope) exterior zon 2-1-8, Interior (1) 2-1 d right exposed; enc for members and hown; Lumber roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fi	Cat. ee ⊧-8 d .25 ully							M		ORTH CA	

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 20 degree rotation about its center.

June 7,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	J7A	Half Hip	1	1	Job Reference (optional)	158787730

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:52 ID:zrUqRCYtjkOHQG6vfHjptfzD1Yo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-3-8

Scale =	1:25.5
---------	--------

Plate Offsets (X, Y): [3:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/ 5)	TPI2014 This truss ha load of 12.0 p	CSI TC BC WB Matrix-MR s been designed fo psf or 2.00 times fla	0.16 0.08 0.00 or greate	DEFL Vert(LL) Vert(CT) Horz(CT) er of min roof pad of 13.9 ps	in 0.00 0.00 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood shee 3-3-8 oc purlins, ext 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar applied or 10-0-0 oc	6) 7) d or nd 8) 9)	overhangs no Provide adeq Plates checka about its cent This truss ha chord live loa * This truss h on the bottom	on-concurrent with juate drainage to p ed for a plus or mir ter. s been designed fo d nonconcurrent w as been designed n chord in all areas	other liv revent v nus 20 c or a 10.0 rith any for a liv where	ve loads. water ponding degree rotatio 0 psf bottom other live load e load of 20.0 a rectangle	g. n ds. Opsf					
bracing. EACTIONS (size) 2=0-3-8, 5= Mechanical Max Horiz 2=60 (LC 15) Max Uplif 2=-58 (LC 16), 5=-36 (LC 13) Max Grav 2=236 (LC 38), 5=127 (LC 37) Max Grav 2=236 (LC 38), 5=127 (LC 37)													
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp C; I and C-C E exposed ; members a Lumber D0 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=(4) Unbalance design.	(lb) - Maximum Com Tension 1-2=0/33, 2-3=-104/s 4-5=-88/102 2-5=-94/87 ed roof live loads have by E 7-16; Vult=120mph ph; TCDL=4.2psf; BCI Enclosed; MWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & MWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & MWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & MWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & MWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & MWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & MWFRS (en exterior(2E) zone; canti end rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and forces & mWFRS (en exterior(2E) zone; canti end vertical left and rig and vertical l	59, 3-4=-74/72, been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon lever left and right pht exposed; C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 f=18.9 psf (Lum 1.0; Rough Cat C; Ft Lu=50-0-0 en considered for thi	12) 13) 14) e LOA .25 ully is	5. One RT7A M truss to beari connection is forces. This truss is of International R802.10.2 ar Graphical pu or the orientat bottom chord D CASE(S)	iTek connectors re ng walls due to UP for uplift only and designed in accord Residential Code s id referenced stand rin representation tion of the purlin al Standard	comme LIFT at does no ance wi sections dard AN does no ong the	nded to conn jt(s) 2. This of consider lat ith the 2018 .R502.11.1 a ISI/TPI 1. of depict the s top and/or	ect teral nd iize		Martin Martin		SEA 0363	L 22 L H B H H H H H H H H H H H H H H H H H

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R1	Common	6	1	Job Reference (optional)	158787731

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:52 ID:R22CeYZVU1W82Qh5D_F2PtzD1Yn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76

Plate Offsets (X, Y): [2:Edge,0-0-14], [3:0-1-4,0-1-8], [5:0-1-4,0-1-8], [6:Edge,0-0-14]

					-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.82 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.34 -0.48 0.04	(loc) 10-13 8-10 6	l/defl >929 >662 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=957 II; Exp C; and C-C I to 13-3-8, 16-3-8 to exposed -	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood she 5-1-15 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 6 Max Horiz 2=329 (LC Max Uplift 2=-231 (L Max Grav 2=1330 (L (Ib) - Maximum Com Tension 1-2=0/35, 2-3=-1774 4-5=-324/129, 5-6=- 2-10=-361/1297, 8-1 6-8=-163/1315 5-8=0/634, 3-10=0/6 ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) 1-0-8-10 to Exterior(2E) 13-3-8 to 27-3-10 zone; Left and ri-	t* 3-5:2x4 SP No.2 athing directly applie applied or 10-0-0 oc 3-5 5=0-5-8 C 13) C 14), 6=-231 (LC 1: -C 26), 6=1330 (LC 2: pression/Maximum 4/327, 3-4=-323/129, 1774/327, 6-7=0/35 10=-165/1223, 34, 3-5=-975/350 been considered for (3-second gust) DL=6.0ps; h=25f; C nvelope) exterior zon 2-3-6, Interior (1) 2-3 16-3-8, Interior (1) 2-3 the any neghtical construction of the any neghtical construction	3) 4) 2d or 5) 5) 6) 7) 5) 8) 27) 8) 9) LC Cat. 16 3-6	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss fa on the bottor 3-06-00 tall tb chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar DAD CASE(S)	7-16; Pr=20.0 psf .25); Pg=20.0 psf; late DOL=1.15); Is- by Cs=1.00; Ct=1.11 is been designed for psf or 2.00 times fli- on-concurrent with led for a plus or mini- ter. Is been designed for ad nonconcurrent with been designed for ad nonconcurrent with ter. Is been designed with ter. Is been designed in accord designed in accord Residential Code son Standard	(roof LL Pf=13.5 =1.0; Rc or great at roof k in nus 20 c or a 10.0 vith any for a liv s where I fit betw with BC ecomme PLIFT at and do lance w sections dard AN	L: Lum DOL= 9 psf (Lum bugh Cat C; F er of min roof bad of 13.9 p ve loads. degree rotatic 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0psi inded to conr jt(s) 2 and 6 es not consid ith the 2018 i R502.11.1 a ISI/TPI 1.	F1.25 Fully f live isf on on ads. Opsf om f. nect c. der and				SEA 0363	ROUNT	Mammin

expc ign members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R1A	Common	11	1	Job Reference (optional)	158787732

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:53 ID:c9CMyJhPuQvas61CMoxeMBzD1Yc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.3 Plate Offsets (X, Y): [2:0-1-7,0-1-12], [3:0-1-4,0-1-8], [5:0-1-4,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.83 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.35 -0.49 0.06	(loc) 9-12 7-9 6	l/defl >908 >647 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI BOT CHORI WEBS WEDGE BRACING TOP CHORI BOT CHORI WEBS REACTIONS FORCES TOP CHORI BOT CHORI WEBS NOTES 1) Unbalan this desi 2) Wind: AS Vasd=95 II; Exp C and C-C to 13-3-8 to 13-3-8	 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 5-1-11 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 6 Max Horiz 2=323 (LC Max Uplift 2=-230 (L Max Grav 2=1323) (L (lb) - Maximum Com Tension 1-2=0/35, 2-3=-1753 4-5=-329/131, 5-6=- 2-9=-374/1269, 7-9= 6-7=-169/1287 3-9=0/629, 5-7=0/62 Ced roof live loads have gn. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC ; Enclosed; MWFRS (en Exterior(2E) -0.8-10 to 2 ; Exterior(2E) 13-3-8 to 	t* 3-5:2x4 SP No.2 athing directly applie applied or 10-0-0 oc 3-5 6=0-3-8 C 11) C 14), 6=-207 (LC 1: C 26), 6=1280 (LC 2: apression/Maximum 3/323, 3-4=-326/131, 1745/326 -177/1196, 27, 3-5=-953/346 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon 2-3-6, Interior (1) 2-3 16-3-8, Interior (1) 2-3	3) 4) ed or 5) 5 6) 7) 5) 8) 27) 8) 27) 8) 9) LC Cat. 10 3-6 ed :	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 0 overhangs n Plates check about its cen This truss ha chord live loa * This truss ha chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar DAD CASE(S)	7-16; Pr=20.0 psf .25); Pg=20.0 psf; late DOL=1.15); Is- 0; Cs=1.00; Ct=1.10 is been designed for psf or 2.00 times fit on-concurrent with ed for a plus or mini- ter. Is been designed for ad nonconcurrent with as been designed in a chord in all areas by 2-00-00 wide will y other members, fit Rk connectors re- ing walls due to UF ion is for uplift only categined in accord Residential Code sin of referenced stan Standard	(roof LL Pf=13.5 =1.0; Ro or great at roof lo or a 10.0 or a 10.0	L: Lum DOL= 2) psf (Lum bugh Cat C; f er of min roo bad of 13.9 p ve loads. degree rotation 0 psf bottom other live load e load of 20. a rectangle veen the bott DDL = 10.0ps inded to com it the 2018 is R502.11.1 a ISI/TPI 1.	flive Fully flive sof on ads. Opsf oom f. nect der and				ORTH CA ORTESS SEA 0363	L 22	Manual Comments
end verti	cal left and right expose	d;C-C for members a	and							S	-	NO.	ERIX	1

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R1G	Common Supported Gable	2	1	Job Reference (optional)	158787733

Run: 8.7 E 0 Mar 9 2023 Print: 8.700 E Mar 9 2023 MiTek Industries, Inc. Wed Jun 07 10:31:47

Load Star, Lavonia, GA - 30553,

	26-	7-0
--	-----	-----

Scale = 1:71.3

Plate Offsets (X, Y): [26:0-2-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-SH	0.09 0.05 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 255 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (lb) -	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt All bearings 26-7-0. Max Horiz 2=-329 (LI Max Uplit All uplift 11 2, 16, 24 e 19=-104 (I 21=-117 (I 25=-122 (I 28=-110 (I 30=-174 (I Max Grav All reactio (s) 2, 16, '25, 27, 28	athing directly applied applied or 10-0-0 oc 8-24, 10-23, 7-25, 11- C 12) 00 (lb) or less at joint(except 18=-168 (LC 19 -C 15), 22=-110 (LC - C 15), 27=-115 (LC - C 14), 27=-115 (LC - C 14), 27=-105 (LC - C 14), 29=-105 (LC - C 14), 29=-105 (LC - S 250 (lb) or less at j 8, 19, 20, 21, 22, 23, , 29, 30	2) or -22 3) 55, 4) 15), 15), 15), 15), 14), 5) ioint 6) 24, 7)	Wind: ASCE Vasd=95mph II; Exp C; End and C-C Exte to 13-3-8, Ex 16-3-8 to 27- exposed ; en members and Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs no All plates aree Plates check	7-16; Vult=120mpl ;; TCDL=4.2psf; BC closed; MWFRS (e rior(2E) -0-8-10 to terior(2R) 13-3-8 td 3-10 zone; cantilev d vertical left and r d forces & MWFRS =1.60 plate grip DC ed for wind loads in ds exposed to winn I Industry Gable Er alified building des 7-16; Pr=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10; s been designed fo sof or 2.00 times fit con-concurrent with 2x4 MT20 unless ed for a plus or mir ter.	h (3-sec CDL=6.0 2-3-8, 0 16-3-8 ight exp 3 for rea DL=1.60 n the pla d (norm nd Deta igner as (roof LL Pf=13.2 =1.0; Rc 0 or great at roof h other lin other win nus 20 of	cond gust) Opsf; h=25ft; (e) exterior zor Interior (1) 2- 3, Interior (1) 2- 3, Interior (1) 2- 3, Interior (1) 2- 5, Interior (1) 2- 5, Interior (1) 2- 3, Interior	Cat. ne 3-8 ; ss), ble, PI 1. 1.25 fully live sf on	14) This Inter R80: LOAD C	truss is nationa 2.10.2 a ASE(S)	desig I Resid nd ref Star	ned in accordanc Jential Code secti erenced standarc ndard	e with the 2018 ons R502.11.1 and ANSI/TPI 1.
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design	(lb) - Max. Comp./Ma (lb) or less except wi 2-3=-403/258, 3-4=-2 2-30=-136/306, 29-3 28-29=-136/306, 25- 24-25=-136/306, 25- 24-25=-136/306, 25- 22-23=-136/306, 21- 20-21=-136/306, 16- 18-19=-136/306, 16- ad roof live loads have n.	 ax. Ten All forces 25 ten shown. 267/199, 15-16=-344/ 0=-136/306, 28=-136/306, 24=-136/306, 22=-136/306, 22=-136/306, 18=-136/306 been considered for 	50 8) 9) 172 10 11 11 12 12	Gable require Gable studs s) This truss ha chord live loa) * This truss h on the botton 3-06-00 tall b chord and an) Provide mech bearing plate joint(s) 2, 16, 29=104, 30= 18=168.	ss continuous botto spaced at 2-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta 24 except (jt=lb) 2 173, 22=124, 21=1 e or shim required truss chord at joint	om chor or a 10.0 vith any for a liv where l fit betv (by oth unding 1 25=122, 16, 20= to provi (s) 2.	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 00 lb uplift at 27=115, 28= 110, 19=104 de full bearing	ds.)psf om 110, g		M. Manutan		SEA 0363	

June 7,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R2	Common	1	1	Job Reference (ontional)	158787734

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:53 ID:NQAy3Eal0fmsHkrUKPHWUIzD1YI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.8

Plate Offsets (X, Y): [2:Edge.0-0-0], [4:0-1-12.0-1-8], [9:0-1-12.0-1-8]

	() () () [<u>L</u> .Edgele e e]	, [::e : : _ ;e : e]; [e:	· · · _,• ·	•]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.70 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.37 0.02	(loc) 9-10 9-10 9	l/defl >999 >657 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 : Structural wood she 5-9-13 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-8, s	2-6-0 eathing directly applie except end verticals. applied or 10-0-0 or 9=0-3-8	3) 4) ed or 5) c 6) 7)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss h	7-16; Pr=20.0 psf (.25); Pg=20.0 psf (.25); Pg=20.0 psf (late DOL=1.15); Is= 0; Cs=1.00; Ct=1.10 is been designed fo psf or 2.00 times fla on-concurrent with ed for a plus or min ter. Is been designed fo ad nonconcurrent w pas heen designed fo	(roof LL Pf=13.9 1.0; Ro r great t roof le other lin us 20 o r a 10.0 ith any	: Lum DOL=) psf (Lum) pugh Cat C; F er of min rool pad of 13.9 p ve loads. degree rotation) psf bottom other live loag e load of 20	ads.					
FORCES	Max Horiz 2=264 (LC Max Uplift 2=-204 (L Max Grav 2=870 (LC (lb) - Maximum Com	C 13) LC 14), 9=-190 (LC 1 C 2), 9=879 (LC 2) npression/Maximum	5) 8)	on the bottor 3-06-00 tall to chord and ar One RT7A M	n chord in all areas by 2-00-00 wide will by other members. fiTek connectors rea	where fit betw	a rectangle veen the bott ended to conr	om					
TOP CHORD	1 ension 1-2=0/37, 2-4=-944/ 5-6=-752/236, 6-7=- 7-9=-215/103	249, 4-5=-758/241, 153/95, 7-8=0/43,	9)	truss to bear This connect lateral forces This truss is	ing walls due to UP ion is for uplift only designed in accorda	LIFT at and do ance w	i jt(s) 2 and 9 es not consid ith the 2018	l. der					
WEBS	2-12=-267/919, 10-1 9-10=-142/584 6-9=-799/217, 5-10= 6-10=-123/210, 4-10	12=-238/919, =-100/469,)=-428/267, 4-12=0/	LO 172	International R802.10.2 a AD CASE(S)	Residential Code s nd referenced stand Standard	ections lard AN	s R502.11.1 a ISI/TPI 1.	and				TH CA	Route
NOTES		,									15	A	Delaite
 Unbaland this desig Wind: AS Vasd=95 	ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC	been considered fo (3-second gust) DL=6.0psf; h=25ft; (r Cat.							4	20	SEA	L

II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-3-9, Exterior(2R) 11-3-9 to 14-3-9, Interior (1) 14-3-9 to 21-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

and a straight The second second G minin June 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R2A	Common	1	1	Job Reference (optional)	158787735

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:54 ID:rckLGabNnyujvuQgu6ol1VzD1Yk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-9-0	11-1-13	10-0-11
	5-9-8	5-4-4	7-6-14
Scale = 1:56.5			
Plate Offsets (X, Y): [2:Edge,0-0-0], [4:0-1-12,0-1-8], [6:0-2-4,0-1-12]		

			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.47 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 Structural wood she 2-2-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=276 (LC Max Uplift 2=-190 (L Max Grav 2=797 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-4=-825/ 5-6=-658/203, 6-7=- 2-9=-283/821, 8-9=- 5-8=-47/3/32, 6-8=-6 4-8=-474/258	2-6-0 athing directly applie cept end verticals. applied or 10-0-0 oc 7= Mechanical C 13) C 14), 7=-143 (LC 1- C 2), 7=742 (LC 2) pression/Maximum 224, 4-5=-634/224, 672/203 271/821, 7-8=-71/10 5/453, 4-9=0/194,	4) 5) 6) 6) 7) 5 8) 9) 4) 9) 1(9) 11	 This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa This truss ha chord live loa This truss to on the bottor 3-06-00 tall th chord and ar Refer to gird Provide mec bearing plate 7. One RT7A M truss to bear connection is forces. This truss is International 8802 10 2 ar 	as been designed f psf or 2.00 times fl on-concurrent with ted for a plus or mi ter. Is been designed f ad nonconcurrent v has been designed n chord in all areas y 2-00-00 wide wi hy other members. er(s) for truss to tru hanical connectior e capable of withsta diTek connectors rr ing walls due to UI s for uplift only and designed in accord Residential Code nd referenced stan	or great at roof I other Ii nus 20 or a 10. with any for a liv s where II fit betv uss comme (by oth anding 2 ecomme PLIFT a I does n dance w section	er of min roo pad of 13.9 p ve loads. Jegree rotatii D psf bottom other live loa e load of 20. a rectangle veen the bott hections. ers) of truss 43 lb uplift a ended to con i; jt(s) 2. This pot consider la ith the 2018 s R502.11.1 i	f live osf on ads. Opsf tom t joint nect ateral						
NOTES 1) Unbalanc this design 2) Wind: AS Vasd=95i II; Exp C; and C-C1 to 11-3-9, 14-3-9 to exposed members Lumber E 3) TCLL: AS Plate DO	ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -0-10-8 to : Exterior(2R) 11-3-9 to 18-6-15 zone; cantileve end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO IOL=7-16; Pr=20.0 psf; F L=1.25); Pg=20.0 psf; F	been considered for (3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zon 2-1-8, Interior (1) 2-1 14-3-9, Interior (1) 2r left and right ght exposed;C-C for for reactions shown; vL=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum	Li Cat. e -8 .25	OAD CASE(S)	Standard					Continue.		SEA 0363	ROWER REPORT	Lanning

- -3-9, Exterior(2R) 11-3-9 to 14-3-9, Interior (1) to 11-3-9, Exterior(2R) 11-3-9 to 14-3-9, Interior 14-3-9 to 18-6-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١

minim

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R2B	Common	1	1	Job Reference (optional)	158787736

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:54 ID:rckLGabNnyujvuQgu6ol1VzD1Yk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

I	8-4-5	16-8-11
Г	8-4-5	8-4-5

Scale = 1:56.6 Plate Offsets (X, Y): [2:0-2-4,0-0-4], [5:0-2-4,0-1-4], [7:0-2-0,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.77 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.32 0.01	(loc) 7-8 7-8 7	l/defl >928 >617 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=295 (LC Max Uplift 2=-172 (L Max Grav 2=815 (LC	t* 8-5,7-5:2x4 SP No 2-6-0 athing directly applie cept end verticals. applied or 10-0-0 or 5-7 7= Mechanical C 13) C 14), 7=-151 (LC 1 C 26), 7=790 (LC 26	4) o.2 5) 6) ed or 7) c 8) 9) 4) 11	This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing plate 7.	as been designed psf or 2.00 times f on-concurrent with ed for a plus or m ter. as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members er(s) for truss to tt hanical connectio a capable of withst	for greats flat roof lof n other lin inus 20 of for a 10.0 with any d for a liv is where where a liv is where ill fit betv uss conr n (by oth tanding 1	er of min roo bad of 13.9 p ve loads. degree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott iDL = 10.0ps hections. ers) of truss 51 lb uplift a	f live ssf on on ads. Opsf com f. to t joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/37, 2-4=-831/2 5-6=-218/218, 6-7=- 2-8=-338/847, 7-8=- 4.8=-247/282, 5.8=	pression/Maximum 224, 4-5=-776/254, 240/191 173/414 149/705 5 7 - 656/1	, 10 100	truss to bear connection is forces. 1) This truss is International	designed in accor desidential Code	d does not d	ith the 2018 R502.11.1 a	ateral					
WEBS	4-8=-347/282, 5-8=-	148/705, 5-7=-656/1	190	R802.10.2 a	nd referenced stal	ndard Ar	ISI/TPI 1.					minin	Mun.
 NOTES Unbalance this design Wind: ASC Vasd=95n II; Exp C; and C-C E to 11-3-9, 14-3-9 to exposed; members Lumber D TCLL: AS Plate DOL 	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -0-10-8 to i Exterior(2E) 11-3-9 to 16-6-15 zone; cantileve end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf; F =1.25); Pg=20.0 psf; F	been considered for (3-second gust) DL=6.0psf; h=25ft; (vvelope) exterior zor 2-1-8, Interior (1) 2-1 14-3-9, Interior (1) er left and right ght exposed;C-C for for reactions shown vL=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum	Li Cat. ne 1-8 ;	JAD CASE(S)	Siandard					Marinine.	K. M.	SEA 0363	EER. AUTOM

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-3-9, Exterior(2R) 11-3-9 to 14-3-9, Interior (1) 14-3-9 to 16-6-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١

uninin'

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R2C	Common	1	1	Job Reference (optional)	158787737

Plate Offsets ((X. Y):	[5:0-2-4.0-1-4].	[7:0-1-12.0-1-8]
	.,	[0.0 = .,0],	[

Scale = 1:56.6

	(,,, ,): [e:e = :je : :];	[1:0 : :2;0 : 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.59 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.20 0.01	(loc) 7-8 7-8 2	l/defl >999 >857 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalanci this desig 2) Wind: ASI Vasd=95r II; Exp C; and C-C E to 11-3-9, left and rit exposed;(reactions DOL=1.6(3) TCLL: AS Plate DOI	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 2 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=0-315 (LC Max Uplift 2=-150 (L Max Grav 2=719 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-4=-654// 5-6=-207/217, 6-7=- 2-8=-397/726, 7-8=- 4-8=-357/294, 5-8=- ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=4-2psf; BC Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 2 Exterior(2E) 11-3-9 to pht exposed ; end vertid 2-C for members and fo shown; Lumber DOL=1) CE 7-16; Pr=20.0 psf (=1.25); Pg=20.0 psf (t* 8-5,7-5:2x4 SP No 2-6-0 athing directly applie cept end verticals. applied or 9-6-15 oc 5-7 7= Mechanical C 14), 7=-163 (LC 1- C 26), 7=727 (LC 26) pression/Maximum 213, 4-5=-703/292, 183/170 191/294 217/732, 5-7=-606/2 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon 2-1-8, Interior (1) 2-1 14-6-15 zone; cantil cal left and right proces & MWFRS for I.60 plate grip roof LL: Lum DOL=1 Y=13.9 psf (Lum	4) 5) 2 5) 6) 7) 5 8) 9) 4) 10 92 11 92 Cat. e -8 ever .25	This truss ha load of 12.0 overhangs n Plates check about its cer This truss ha chord live loa * This truss Is on the bottor 3-06-00 tall k chord and ar Refer to gird Provide mec bearing plate 7.) One RT7A M truss to bear connection is forces.) This truss is International R802.10.2 a DAD CASE(S)	as been designed for psf or 2.00 times fli- on-concurrent with ted for a plus or mi- ter. Is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru- hanical connections capable of withsta tiTek connectors re- ing walls due to UF s for uplift only and designed in accord Residential Code nd referenced stan Standard	or great at roof lk other lin nus 20 d or a 10.0 vith any for a liv s where l fit betw with BC iss comme (by oth anding 1 ecomme PLIFT at does no dance w sections dard AN	er of min roof bad of 13.9 p re loads. degree rotatic) psf bottom other live loa e load of 20.1 a rectangle reen the bott DL = 10.0psi ections. ers) of truss t 63 lb uplift at nded to conr jt(s) 2. This ot consider la th the 2018 R502.11.1 a ISI/TPI 1.	f live sf on on dds. Opsf om f. to to to to teral				SEA 0363	L 22 EFR.A.L	Norman

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

and a starting G١ 11111111 June 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R2D	Common	1	1	Job Reference (optional)	158787738

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:55 ID:KpHjUvc0YG0ZW1?sSqJ_ajzD1Yj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52.6

Plate Offsets (X, Y): [1:0-3-4,0-1-0], [3:0-2-4,0-1-8], [5:0-2-4,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9/	(psf) 20.0 /20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.39 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 cc purl Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1= 7=	*Except bod sheat lins, exc directly = Mechanica =-279 (LC =-123 (LC =-123 (LC =-123 (LC =-12454 (LC	* 6-3:2x4 SP No.2 athing directly applie pept end verticals. applied or 6-0-0 oc nical, 5= Mechanica al C 25), 7=170 (LC 26 C 14), 5=-146 (LC 1- 2 25), 5=575 (LC 25) 5)	ed or II, 7= 3) 4)),	 TCLL: ASCE Plate DOL= DOL=1.15 P Exp.; Ce=0.4 Plates check about its cer This truss ha chord live lo * This truss lo on the bottoo 3-06-00 tall chord and ai Refer to gird Provide mecha pearing plate 	E 7-16; Pr=20.0 psf (1.25); Pg=20.0 psf (1.4te DOL=1.15); Is= 9; Cs=1.00; Ct=1.10 ted for a plus or mini- tter. as been designed for ad nonconcurrent w has been designed for m chord in all areas by 2-00-00 wide will by other members, w er(s) for truss to trus thanical connection a capable of withsta	(roof LI Pf=13.9 1.0; Ro us 20 r a 10. ith any for a liv where fit betw with BC ss coni (by oth nding 1	: Lum DOL= 9 psf (Lum ough Cat C; F degree rotatio 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss 1 23 lb uplift a	1.25 Fully on dds. Opsf om f. to t joint						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximu Tension 1-2=-558/14 4-5=-185/192 6-7=-135/10 2-6=-373/340	um Comp 5, 2-3=-5 2, 1-7=0/ 8, 5-6=-1 0, 3-6=-2	pression/Maximum 527/349, 3-4=-228/2 /0 160/196 288/586, 3-5=-539/4	244,	 Non Standai Non Standai This truss is International R802.10.2 a Gap betwee diagonal or y 	rd bearing condition designed in accorda Residential Code s nd referenced stanc n inside of top chorc vertical web shall no	. Revie ance w ections lard AN bearing t excee	ew required. ith the 2018 R502.11.1 a ISI/TPI 1. Ing and first ed 0.500in.	and						
NOTES 1) Unbalance	1-6=-229/480 ed roof live load	6 ds have I	been considered for	r	LOAD CASE(S)	Standard		54 0.000ml				All	NH CA	ROLIN	_

1) this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 1-4-12 to 4-4-12, Interior (1) 4-4-12 to 11-3-9, Exterior(2E) 11-3-9 to 12-6-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R2E	Monopitch	1	1	Job Reference (optional)	158787739

7-5-11

2-1-6

 \mathbf{F}

Load Star, Lavonia, GA - 30553.

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:55 ID:o?r5hFceJa8Q8BZ3?XqD6wzD1Yi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.5

Plate Offsets (X, Y):	[1:0-3-4,0-1-0], [2:0-1-12,0-1-8]
-----------------------	-----------------------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.71 0.24 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	/TPI2014	Matrix-MP							Weight: 58 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1= Mecha Mechanic: Max Horiz 1=202 (LC Max Uplift 1=-41 (LC 6=-12 (LC Max Grav 1=304 (LC (I C 10)	t* 3-4:2x4 SP No.2 athing directly applie cept end verticals. applied or 6-0-0 oc nical, 4= Mechanical al 2 11), 6=137 (LC 13) 14), 4=-127 (LC 14) 5) 2 2), 4=322 (LC 25),	4) 5) d or 6) 7) l, 6= 8) 9) l, 6=-4 10)	This truss ha chord live loas * This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mect bearing plate 6, 127 lb upli Non Standare This truss is of International R802.10.2 ar Gap between diagonal or v	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta- t at joint 4 and 41 d bearing condition designed in accord Residential Code s d referenced stan- inside of top chor- ertical web shall no	or a 10.0 vith any for a liv where I fit betw ss conr (by oth unding 1 Ib uplifit ance w sections dard AN d bearin ot excee) psf bottom other live loa e load of 20.0 a rectangle veen the botto ections. ers) of truss t 2 lb uplift at j at joint 1. w required. th the 2018 R502.11.1 a R502.11.1 a g and first ed 0.500in.	ds. Dpsf om oont nnd					
FORCES	(lb) - Maximum Com	pression/Maximum	LO	AD CASE(S)	Standard								
TOP CHORD	1-2=-310/182, 2-3=-2 1-6=0/0	239/214, 3-4=-224/23	35,										
BOT CHORD WEBS	5-6=-129/75, 4-5=-24 2-5=-154/222, 2-4=-2	47/272 237/223, 1-5=-195/3	26										
NOTES 1) Wind: ASC Vasd=95m II; Exp C; and C-C E to 10-6-15 vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Plates che about its c	CE 7-16; Vult=120mph nph; TCDL=4.2psf; BCI Enclosed; MWFRS (en exterior(2E) 3-4-12 to 6 is zone; cantilever left at t and right exposed;C-1 WFRS for reactions sl vplate grip DOL=1.60 CE 7-16; Pr=20.0 psf; I is Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 csked for a plus or minu- center.	(3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zon- 4-12, Interior (1) 6-4 nd right exposed; er C for members and hown; Lumber roof LL: Lum DOL=1 Y=13.9 psf (Lum 1.0; Rough Cat C; Fu us 20 degree rotation	eat. e 1-12 nd .25 ully							M. MITTHE		SEA 0363	L 22 LBERTIN

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R3	Common	4	1	Job Reference (optional)	158787740

3x5 =

1.5x3 🛛

Scale = 1:35.6 Plate Offsets (X, Y): [2:Edge.0-0-4], [3:0-2-0.0-2-4], [4:Edge.0-0-4]

	(,,, ,). [2:2090,0 0 .],	[0:0 2 0;0 2 :];[::2	age,e e .]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.57 0.42 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4	athing directly applie applied or 10-0-0 or I=0-3-8	5) 6) ed or 7) 5 8)	This truss ha load of 12.0 overhangs n Plates check about its cer This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a	as been designed f psf or 2.00 times fl on-concurrent with ked for a plus or mi tter. as been designed f ad nonconcurrent t has been designed m chord in all area: by 2-00-00 wide wi by other members	or great at roof lo other lin nus 20 o or a 10.0 with any l for a liv s where Il fit betw	er of min rool oad of 13.9 p ve loads. Jegree rotation O psf bottom other live loz e load of 20.1 a rectangle veen the bott	f live sf on on ads. Opsf om					
FORCES	Max Horiz 2=74 (LC Max Uplift 2=-134 (L Max Grav 2=534 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-657/3	20) C 16), 4=-107 (LC 1 C 2), 4=478 (LC 2) pression/Maximum 312, 3-4=-656/317	7) ⁹⁾ 10	One RT7A M truss to bear This connec lateral forces) This truss is International	AiTek connectors r ring walls due to UI tion is for uplift only s. designed in accord	ecomme PLIFT at y and do dance w	ended to conr i jt(s) 4 and 2 ies not consid ith the 2018	hect der					
BOT CHORD	2-5=-184/518, 4-5=-	184/518		R802.10.2 a	nd referenced star	idard AN	ISI/TPI 1.						
WEBS	3-5=0/270		LC	DAD CASE(S)	Standard								
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95r II; Exp C; and C-CE to 6-0-0, E 12-0-0 zo vertical le forces & N DOL=1.6(3) TCLL: AS Plate DOI	ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 3 Exterior(2R) 6-0-0 to 9-1 ne; cantilever left and r ft and right exposed;C- WWFRS for reactions sl 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (L=1.25); Pg=20.0 psf; F	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon 2-1-8, Interior (1) 2-1 0-0, Interior (1) 9-0-0 ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 rf=13.9 psf (Lum	Cat. le -8) to .25							Jan 11111		ORTH CA ORTEESS SEA 0363	

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

June 7,2023

GI 11111111

Page: 1

3x5 =

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R3A	Common	1	1	Job Reference (optional)	158787741

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:56 ID:o?r5hFceJa8Q8BZ3?XqD6wzD1Yi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-10-8	10-0-8
4-10-8	5-2-0

Plate Offsets	(X. Y):	[1:0-2-12.0-0-5].	[5:0-6-0.0-0-2]

Scale = 1:34.1

Plate Offsets	(X, Y): [1:0-2-12,0-0-5], [5:0-6-0,0-0-2]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.26 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.01	(loc) 6-13 6-13 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20HS MT20 Weight: 50 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95r	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x8 SP No.2 - 2 2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=-53 (LC Max Uplift 1=-86 (LC Max Grav 1=421 (LC (lb) - Maximum Com Tension 1-3=-396/288, 3-5=- 1-6=-196/352, 5-6=- 3-6=0/194 ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC	2-6-0, Right 2x6 SP athing directly appli applied or 10-0-0 o anical, 5=0-3-8 (17) 2 16), 5=-88 (LC 17) 2 22), 5=414 (LC 23 apression/Maximum 396/280 213/352 been considered fo (3-second gust) DL=6.0psf; h=25ft; i	4) 5) 6) 2, ed or 8) 2, 2, 3) 11] 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 12] 5, 13] 5, 14] 5, 14] 5, 14] 5, 14] 5, 14] 5, 14] 5, 14] 5, 14] 5, 14] 5, 14] 7,111,11111] 7,11111111111111111111111	Unbalanced design. All plates are Plates check about its cer This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird) Provide mec bearing plate 1.) One RT7A M truss to bear connection is forces.) This truss is International R802.10.2 a AD CASE(S)	snow loads have to a MT20 plates unle- ted for a plus or mi- ther. Is been designed f ad nonconcurrent to has been designed m chord in all area: by 2-00-00 wide wi- by 2-00-00 wide wide wide wide wide wide wide wide	eeen con ess other nus 20 of or a 10. with any l for a liv s where ll fit betw uss comme h (by oth anding & ecomme PLIFT at l does no dance w sections idard AN	hsidered for the wise indicate degree rotation of the live load e load of 20.0 a rectangle veen the both nections. ers) of truss is 66 lb uplift at j ended to comr i jt(s) 5. This of consider la ith the 2018 is R502.11.1 a ISI/TPI 1.	his ed. on dds. Opsf om to joint nect and				WHTH CA	ROLU	
$\Pi; Exp C;$	Enclosed; IVIVERS (er	ivelope) exterior zoi	ne								-	:0	T : -	-

and C-C Exterior(2E) 1-1-8 to 4-1-8, Interior (1) 4-1-8 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 11-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R3G	Common Supported Gable	1	1	Job Reference (optional)	158787742

6-0-0

6-0-0

Load Star, Lavonia, GA - 30553

-0-10-8

0-10-8

Run: 8 7 F 0 Mar. 9 2023 Print: 8 700 F Mar. 9 2023 MiTek Industries. Inc. Wed Jun 07 10:34:36 ID:GBPTvbdG4tGHmL8FZFLSf8zD1Yh-VTW5pHOLdTkGeYY4KrUn38NTBrIgFmFn63bhXzz8j41

12-0-0

6-0-0

12-10-8

0-10-8

8

3x4 :

GRIP

244/190

FT = 20%

9

4x4 = 5 12 6 6 4 16 17 ю 3-5-15 3-9-3 3 7 15 18 P 6 2 J-5-15 ø 14 13 12 11 10 3x4 = 12-0-0 Scale = 1:30.6 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.25 TC 0.07 Vert(LL) n/a 999 MT20 n/a BC Snow (Pf/Pg) 1 25 0.03 13 9/20 0 Lumber DOL Vert(CT) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 8 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-SH 10.0 Weight: 54 lb Unbalanced snow loads have been considered for this 5) desian. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 This truss has been designed for greater of min roof live 6) 2x4 SP No.3 load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. All plates are 1.5x3 MT20 unless otherwise indicated. 7) Structural wood sheathing directly applied or TOP CHORD Plates checked for a plus or minus 20 degree rotation 8) 6-0-0 oc purlins. about its center BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 9) Gable requires continuous bottom chord bearing. bracing. 10) Gable studs spaced at 2-0-0 oc. REACTIONS All bearings 12-0-0. This truss has been designed for a 10.0 psf bottom 11) (lb) - Max Horiz 2=-66 (LC 17) chord live load nonconcurrent with any other live loads. Max Uplift All uplift 100 (lb) or less at joint(s) 12) * This truss has been designed for a live load of 20.0psf 2, 8, 10, 11, 13, 14 on the bottom chord in all areas where a rectangle Max Grav All reactions 250 (lb) or less at joint 3-06-00 tall by 2-00-00 wide will fit between the bottom (s) 2, 8, 10, 11, 12, 13, 14 chord and any other members. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TCLL (roof)

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-0-0. Interior (1) 2-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 12-10-8 zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 4) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R4	Piggyback Base	7	1	Job Reference (optional)	158787743

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:56 ID:RJadCMm9UGfja1UMi222bSzD1YW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:98.5

Plate Offsets ((X, Y): [2:0-3-6,0-0-8],	[7:0-7-8,0-4-0], [11:0	-3-6,0-0-8], [18:0-3-0,0-2	2-0], [19:0-2-12,0-2	-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.83 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.55 0.07	(loc) 14-16 14-16 13	l/defl >999 >953 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 375 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 *Excep 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep 18-6,14-8,16-7,16-6, Structural wood shee 2-9-15 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing.	t* 1-5,9-12:2x4 SP N t* 17-15:2x6 SP No.1 t* 16-8:2x4 SP No.2 athing directly applied (cept 1-7 max.): 6-7. applied or 6-0-0 oc	1) 0.2 2) d or	Unbalanced this design. Wind: ASCE Vasd=95mpH II; Exp C; End and C-C Exte 4-8-10 to 25- Interior (1) 31 37-11-11, Int left and right exposed; por	roof live loads have 7-16; Vult=120mph t; TCDL=4.2psf; BC closed; MWFRS (e rrior(2E) -0-10-8 to 6-15, Exterior(2R) 1-2-1 to 32-6-9, Ext erior (1) 37-11-11 t exposed ; end vert ch left and right ex MWERS for condition	been of CDL=6.0 Nvelope 4-8-10 25-6-15 erior(2F o 56-9- ical left posed;0	considered fo ond gust) Opsf; h=25ft; (e) exterior zor Interior (1) to 31-2-1, 3) 32-6-9 to 3 zone; cantil and right C for memb	r Cat. ne lever pers	12) Gra or th bott	phical pr ne orient om chor CASE(S)	urlin re ation d d. Star	presentation doe of the purlin along ndard	s not depict th the top and/c	e size r
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-8, 1 19=0-3-8 Max Horiz 2=206 (LC Max Uplift 2=-261 (L 13=-498 (Max Grav 2=70 (LC 13=2575 (4-19, 6-18, 8-16 11=0-3-8, 13=0-3-8, C 20) C 57), 11=-409 (LC 5 LC 17), 19=-575 (LC 49), 11=26 (LC 16), (LC 3), 19=2762 (LC	3) 59), 16) 4) 3) 5)	DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	ate grip DOL=1.60 7-16; Pr=20.0 psf .25); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have b	(roof LL Pf=18.9 =1.0; Rc), Lu=5(een cor	: Lum DOL= psf (Lum pugh Cat C; F)-0-0 usidered for th	1.25 Fully his						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	, 5)	load of 12.0 p	osf or 2.00 times fla	t roof lo	ad of 13.9 ps	sf on					1.5	
TOP CHORD	1-2=0/24, 2-3=-290/ 4-5=-2248/600, 5-6= 6-7=-1956/724, 7-8= 8-9=-3467/1011, 9-1 10-11=-395/1403, 12	1064, 3-4=-388/1265 2536/841, 2193/737, 0=-3126/812, 1-12=0/24	, 6) 7) 8)	Provide adec Plates check about its cen This truss ha	puate drainage to p ed for a plus or mir ter. s been designed fo	revent v nus 20 c or a 10.0	vater ponding legree rotatio) psf bottom other live loa	g. on ds		6	- HI	OR EESS	ROLL	
BOT CHORD	2-19=-980/323, 18-1 16-18=-270/1776, 14 13-14=-417/1550, 11	9=-233/981, 4-16=-502/2394, 1-13=-1289/440	9)	* This truss h on the botton	as been designed n chord in all areas	for a liv where	e load of 20.0 a rectangle	Opsf		111		SEA		1111
WEBS	3-19=-422/287, 4-19 5-18=-866/463, 4-18 9-14=-933/401, 10-1 10-13=-3604/1075, 6 8-14=-246/1030, 7-1 6-16=-47/520, 8-16=	9=-3045/901, 3=-266/1454, 4=-210/1622, 6-18=-257/619, 6=-151/839, 886/395	10) 11)	chord and an One RT7A M truss to beari and 13. This consider late This truss is o	y other members, y liTek connectors re ing walls due to UP connection is for u ral forces. designed in accord	with BC comme LIFT at plift only ance w	DL = $10.0psf$ nded to conn jt(s) 2, 19, 1° / and does no th the 2018	nect 1, ot		IIII III			ER K	anninn.
NOTES				R802.10.2 ar	nd referenced stand	ard AN	R502.11.1 a	uid				111. G	initi	

June 7,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R4G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158787744

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:57 ID:K4p82kpgYU993fo7xu7_mIzD1YS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.5

Plate Offsets ((X, Y): [15:0-3-0,0-3-1	12], [19:0-3-0,0-3-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.18 0.18 0.19 MSH	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 30	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 448	GRIP 244/190 3 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS	2x6 SP No.2 *Excep No.2 2x6 SP No.2 2x4 SP No.3 *Excep 44-17,43-18,42-20,4 2x4 SP No.2	ot* 1-10,25-31:2x4 S ot* 11-21,45-16,46-14,47	P 7-13:	Max Uplift	2=-85 (LC 12), 3 32=-134 (LC 13) 34=-69 (LC 17), 36=-59 (LC 17), 38=-77 (LC 17), 41=-84 (LC 17), 44=-60 (LC 12), 47=-83 (LC 16)	30=-95 (LC 13), 33=-22 (LC 35=-51 (LC 37=-93 (LC 39=-82 (LC 43=-19 (LC 45=-24 (LC 48=-81 (LC)	3), : 17), 13), 17), 17), 13), 13), 13),	TOP CH	IORD	1-2=0 4-5=-7 7-8=-7 10-11 12-13 14-15 16-17 18-19	/21, 2-3=-225 147/106, 5-6= 70/142, 8-9=- =-47/201, 11: =-103/313, 13 =-122/345, 13 =-115/352, 1 =-115/352, 1	/92, 3-4=-171/9 -114/114, 6-7=- 48/169, 9-10=-5 -12=-80/254, 3-14=-127/369, 5-16=-115/352, 7-18=-115/352, 9-20=-122/334	5, 92/124, 0/196,
BRACING TOP CHORD BOT CHORD WEBS	Structural wood she 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	eathing directly applie cept D-0 max.): 15-19. / applied or 6-0-0 oc 17-44, 18-43, 20-42	ed or	Max Grav	47=-83 (LC 16), 50=-78 (LC 16), 52=-60 (LC 12), 54=-56 (LC 12), 56=-19 (LC 12), 2=223 (LC 64), 32=453 (LC 53),	448=-81 (LC 51=-60 (LC 53=-59 (LC 55=-69 (LC 57=-145 (LC 30=252 (LC 33=63 (LC 57	16), 16), 16), 16), 51), 51), 52),			20-21 22-23 24-25 26-27 29-30	=-113/332, 1 =-127/342, 2 =-79/221, 23 =-44/163, 25 =-48/116, 27 =-146/58, 30	1-22=-103/279, :24=-57/165, :26=-30/141, :28=-70/93, 28-2 :31=0/21	?9=-95/72,
REACTIONS	(size) 2=55-11- 32=55-11 34=55-11 38=55-11 41=55-11 43=55-11 45=55-11 45=55-11 50=55-11 52=55-11 54=55-11 Max Horiz 2=206 (LI	21-41, 1b-45, 14-4c 13-47 0, 30=55-11-0, -0, 33=55-11-0, -0, 35=55-11-0, -0, 39=55-11-0, -0, 42=55-11-0, -0, 44=55-11-0, -0, 44=55-11-0, -0, 51=55-11-0, -0, 51=55-11-0, -0, 51=55-11-0, -0, 55=55-11-0, -0, 57=55-11-0 C 20)	FORCES	(lb) - Maı Tension	36=152 (LC 45), 38=210 (LC 45), 41=221 (LC 59), 43=207 (LC 44), 45=207 (LC 44), 47=221 (LC 57), 50=215 (LC 45), 52=184 (LC 49), 54=173 (LC 49), 56=52 (LC 49), s6=52 (LC 49),	37=246 (LC 39=214 (LC 42=176 (LC 44=222 (LC 46=190 (LC 48=215 (LC 51=159 (LC 53=182 (LC 55=211 (LC 57=421 (LC 4	45), 45), 45), 45), 44), 63), 45), 49), 49), 49), 49)		4		SI O36 SI O36	EAL 5322	

G١ 11111111 June 7,2023

Continued on page 3 WARNING - Veri

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R4G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158787744
Load Star, Lavonia, GA - 30553.		Run: 8.71 S May 19	- 2023 Print: 8	710 S Mav ⁻	19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:57	Page: 2

16) This truss is designed in accordance with the 2018

ID:K4p82kpgYU993fo7xu7_mlzD1YS-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Load Star, Lavonia, GA - 30553

BOT CHORD	$\begin{array}{l} 2{\cdot}57{=}{\cdot}66/199, 56{\cdot}57{=}{\cdot}66/197, \\ 55{\cdot}56{=}{\cdot}66/197, 54{\cdot}55{=}{\cdot}66/197, \\ 53{\cdot}54{=}{\cdot}66/197, 52{\cdot}53{=}{\cdot}66/197, \\ 51{\cdot}52{=}{\cdot}66/197, 50{\cdot}51{=}{\cdot}66/197, \\ 48{\cdot}50{=}{\cdot}66/197, 47{\cdot}48{=}{\cdot}66/197, \\ 46{\cdot}47{=}{\cdot}66/197, 45{\cdot}46{=}{\cdot}66/197, \\ 44{\cdot}45{=}{\cdot}66/197, 43{\cdot}44{=}{\cdot}66/197, \\ 42{\cdot}43{=}{\cdot}66/197, 41{\cdot}42{=}{\cdot}66/197, \\ 39{\cdot}41{=}{\cdot}66/197, 38{\cdot}39{=}{\cdot}66/197, \\ 37{\cdot}38{=}{\cdot}66/197, 36{\cdot}37{=}{\cdot}66/197, \\ 33{\cdot}34{=}{\cdot}59/190, 34{\cdot}35{=}{\cdot}59/190, \\ 30{\cdot}32{=}{\cdot}59/190, \\ 30{\cdot}32{=}{\cdot}59/190, \\ \end{array}$	
WEBS	$\begin{array}{l} 17\text{-}44\text{=-}182/141, 18\text{-}43\text{=-}167/59,\\ 20\text{-}42\text{=-}136/0, 21\text{-}41\text{=-}181/181,\\ 22\text{-}39\text{=-}174/167, 23\text{-}38\text{=-}170/107,\\ 24\text{-}37\text{=-}206/117, 25\text{-}36\text{=-}112/91,\\ 26\text{-}35\text{=-}136/76, 27\text{-}34\text{=-}156/89,\\ 28\text{-}33\text{=-}99/62, 29\text{-}32\text{=-}250/133,\\ 16\text{-}45\text{=-}167/53, 14\text{-}46\text{=-}150/7,\\ 13\text{-}47\text{=-}181/181, 12\text{-}48\text{=-}175/167,\\ 11\text{-}50\text{=-}175/117, 9\text{-}51\text{=-}118/100,\\ \end{array}$	

8-52=-145/84, 7-53=-140/82, 6-54=-138/81, 5-55=-150/88, 4-56=-99/59, 3-57=-239/140

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-8-10, Exterior(2N) 4-8-10 to 25-6-15, Corner(3R) 25-6-15 to 31-0-12, Exterior(2N) 31-0-12 to 32-6-9, Corner(3R) 32-6-9 to 38-1-10, Exterior(2N) 38-1-10 to 56-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 5) design
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Plates checked for a plus or minus 20 degree rotation about its center.
- 10) Gable requires continuous bottom chord bearing.
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 2, 95 lb uplift at joint 30, 60 lb uplift at joint 44, 19 lb uplift at joint 43, 84 lb uplift at joint 41, 82 lb uplift at joint 39, 77 lb uplift at joint 38, 93 lb uplift at joint 37, 59 lb uplift at joint 36, 51 lb uplift at joint 35, 69 lb uplift at joint 34, 22 Ib uplift at joint 33, 134 lb uplift at joint 32, 24 lb uplift at joint 45, 83 lb uplift at joint 47, 81 lb uplift at joint 48, 78 Ib uplift at joint 50, 60 lb uplift at joint 51, 60 lb uplift at joint 52, 59 lb uplift at joint 53, 56 lb uplift at joint 54, 69 Ib uplift at joint 55, 19 lb uplift at joint 56 and 145 lb uplift
- at joint 57 15) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R5	Monopitch	5	1	Job Reference (optional)	158787745

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:58

Page: 1

Load Star, Lavonia, GA - 30553,

Scale =	1:41
---------	------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.55 0.37 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 0.10 0.00	(loc) 6-9 6-9 5	l/defl >609 >720 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Max Horiz 2=207 (LC Max Uplift 2=-154 (L 6=-246 (L) Max Grav 2=263 (LC 6=569 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 5=0-1-8, 6=0-3-8 C 15) C 12), 5=-77 (LC 16) C 12) C 2), 5=-243 (LC 23), C 2)	4) 5) _{d or} 6) ; 7) , 8)), 9)	This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Bearing at jo using ANSI/1 designer sho Provide mec	is been designed f psf or 2.00 times fl on-concurrent with ed for a plus or mi ter. Is been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members. int(s) 5 considers I FPI 1 angle to grain uld verify capacity hanical connection of biotic 15	or great at roof le other lin nus 20 d or a 10.0 vith any for a liv s where Il fit betw parallel f o formula of bear	er of min roof pad of 13.9 p: re loads. legree rotatic) psf bottom other live loa e load of 20.0 a rectangle reen the botto o grain value a. Building ng surface. ers) of truss t	live sf on on ds. Dpsf om					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/21, 2-3=-160/ ⁻ 4-5=-184/155	pression/Maximum 159, 3-4=-134/85,	10)) One RT7A M truss to bear This connect	liTek connectors re ing walls due to UI ion is for uplift only	ecomme PLIFT at / and do	nded to conn jt(s) 2, 6, and es not consid	nect d 5. der					
BOT CHORD WEBS NOTES	2-6=-209/117, 5-6=- 3-6=-403/315, 3-5=-	149/106 52/123	11) This truss is International R802.10.2 a	a designed in accord Residential Code nd referenced stan	dance w sections dard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	ind					
1) Wind: AS(Vasd=95n II; Exp C; and C-C E	CE 7-16; Vult=120mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en Exterior(2E) -0-10-8 to 2	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon 2-1-8, Interior (1) 2-1	LC Cat. e -8	DAD CASE(S)	Standard						T.L.	ORTH CA	ROLIN

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R6	Half Hip	3	1	Job Reference (optional)	158787746

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:59 ID:GBPTvbdG4tGHmL8FZFLSf8zD1Yh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

							-				-	
(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2018	3/TPI2014 Wind: ASCE	CSI TC BC WB Matrix-MSH 7-16; Vult=120mj	0.98 0.55 0.72 oh (3-sec	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.13 -0.14 -0.02	(loc) 12-14 12-14 10 13) Two	l/defl >999 >999 n/a	L/d 240 180 n/a MiTek	PLATES MT20 Weight: 248 lb	GRIP 244/190 FT = 20%
 2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep No.3 Structural wood she: 3-5-10 oc purlins, e 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. 1 Pow at midpt 	t* 3-15,4-6,12-4:2x4 athing directly applie xcept end verticals, a -6 max.): 4-14, 5-9. applied or 5-6-5 oc	SP d or and 3)	Vasd=95mpf II; Exp C; Enn and C-C Exte 2-6-12 to 14- Interior (1) 19 right exposed exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1	;; TCDL=4.2psf; E closed; MWFRS (errior(2E) -0-10-8 t 1-12, Exterior(2E] -0-1 to 34-2-13 z t; end vertical left for members and wm; Lumber DOL 7-16; Pr=20.0 psf -25); Pq=20.0 psf	3CDL=6.(envelope o 2-6-12) 14-1-12 one; can t expose d forces & =1.60 pla f (roof LL ; Pf=18.9	Dpsf; h=25ft; e) exterior zou , Interior (1) t to 19-0-1, tilever left an d; porch left & MWFRS fo ate grip .: Lum DOL= 0 psf (Lum	Cat. ne d 1.25	trus con forc 14) This Inte R80 15) Gra or th bott 16) Dou ties	s to bea nection es. s truss is rnationa 02.10.2 a phical p ne orient om chor uble insta to be in	ring wa is for u desig I Resid and ref urlin re cation o d. allation stalled	alls due to UPLI plift only and do ned in accordar Jential Code sec erenced standa presentation do of the purlin alor is of RT7A requ on opposite sid	FT at jt(s) 15. This bes not consider lateral nee with the 2018 ctions R502.11.1 and rd ANSI/TPI 1. bes not depict the size ing the top and/or ire the two hurricane les of top plate to avoid
(size) 2=0-3-8, 1 Max Horiz 2=392 (LC Max Uplift 2=-142 (L 15=-1079 Max Grav 2=263 (LC 15=2458	6-11, 8-11, 9-11 10=0-1-8, 15=0-3-8 C 14), 10=-437 (LC (LC 12) C 38), 10=1457 (LC 5 (LC 3)	-, 4) 13), 5) 39), 6)	DOL=1.15 PI Exp.; Ce=0.9 Unbalanced a design. This truss ha load of 12.0 p overhangs no Provide adec	ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 snow loads have s been designed osf or 2.00 times f on-concurrent with uate drainage to	S=1.0; Ro 10, Lu=50 been cor for greate for greate a ther liv prevent v	bugh Cat C; F D-0-0 hisidered for the er of min roof bad of 13.9 p ve loads. water pondim	Fully nis live sf on g.	nail 17) Har prov Ib d des resp 18) In th of th	interfere nger(s) o vided su own and ign/sele bonsibilit ne LOAE ne truss	ence in r other fficient I 1510 ction o cy of ot O CASI are no	single ply truss connection dev to support cond lb up at 14-1-1 f such connection hers. E(S) section, loa ted as front (F)	s. vice(s) shall be centrated load(s) 1372 2 on top chord. The on device(s) is the ads applied to the face or back (B).
(lb) - Maximum Com Tension 1-2=0/24, 2-3=-598/ 4-14=-969/1029, 4-5 5-6=-141/138, 6-8=- 9-10=-1324/678 2-15=-505/271, 14-1	pression/Maximum 660, 3-4=-1990/1519 =-227/114, 906/452, 8-9=-906/4 5=-505/271,	7) 9, 8) 52, 9)	Plates check about its cent This truss ha chord live loa * This truss h on the botton 3-06-00 tall h	ed for a plus or m ter. s been designed d nonconcurrent as been designed h chord in all area y 2-00-00 wide w	for a 10.0 with any d for a liv is where	degree rotation 0 psf bottom other live loa e load of 20.0 a rectangle	ds. Dpsf	LOAD	CASE(S)	Star	ORTH CA	AROJUNI,
12-14=-1715/2051, 10-11=-5/13 3-15=-2149/1705, 3 4-6=-1390/755, 4-12 6-12=-578/835, 6-11 8-11=-558/260, 9-11 ed roof live loads have in.	11-12=-782/1221, 114=-2036/2543, =-1160/1123, =-614/534, =-723/1447 been considered for	10 11 12	 beoroo tail of chord and an bearing at joi using ANSI/T designer sho Provide mech bearing plate One RT7A M truss to bearing This connect 	y other members nt(s) 10 consider: Pl 1 angle to grai uld verify capacity nanical connection at joint(s) 10. iTek connectors r ng walls due to U on is for uplift onl	, with BC s parallel n formula of beari n (by oth recomme PLIFT at y and do	EDL = 10.00psi to grain valu a. Building ing surface. ers) of truss t ended to conrr jt(s) 2 and 1 es not consid	e e nect 0. der		THUMPS		SE/ 0363	AL B22
	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0 0.0* 10.0 2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep No.3 Structural wood she 3-5-10 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins, (4-6 Rigid ceiling directly bracing, 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=392 (LC Max Uplift 2=-142 (L 15=-1079 Max Grav 2=263 (LC 15=2458 (L) 1-2=0/24, 2-3=-598/(4-14)=-398/(4-14)=-392/(12), 4-5 5-6=-141/138, 6-8=- 9-10=-1324/678 2-15=-505/271, 14-1 12-14=-1715/2051, 7 10-11=-5/13 3-15=-2149/1705, 3-1 2-12=-578/835, 6-11 8-11=-558/260, 9-11 ed roof live loads have n.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline (psf)\\ 20.0\\ 18.9/20.0\\ 18.9/20.0\\ 10.0\\ 0.0^*\\ 10.0\\ \hline \\ \hline$	(psf) 20.0 18.9/20.0 18.9/20.0 10.0Spacing Plate Grip DOL 1.25 Rep Stress Incr NO CodeCSI TC C 0.55 WB WB 0.72DEFL Vert(LL) Vert(LL) Vert(CT) Horz(CT) Horz(CT)2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2s4 SP NO.2 2	(psf) 20.0 18.9/20.0 18.9/20.0 10.0Spacing Plate Grip DOL 1.25 Rep Stress Incr NO CodeCSI TC 0.98 BC 0.55 WB Matrix-MSHDEFL in Vert(LL) 0.13 Vert(CT) 0.14 Horz(CT)2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 10.02Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. 11; Exp C: Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10.8 to 2-6-12, Interior (1) 2-6-12 to 14-1-12, Exterior(2E) 1-41-12 to 19-0-1, Interior (1) 19-0-1 to 34-2-13 zone; cantilever left and right exposed; cold left exposed; porch left exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.603tructural wood sheathing directly applied or 3-5-10 oc purlins, except end verticals, and 2-0-0 oc purling directly applied or 5-6-5 oc bracing. 1 Row at midpt 9-10, 3-14, 4-6, 4-12, 6-11, 8-11, 9-11 (size) 2-0-38, 10=0-1-8, 15=0-3-8 Max Horiz 2-263 (LC 30), 10=1457 (LC 39, 15=-2458 (LC 30), 10=1457 (LC 39, 15=-2459(102, 4-5=-227/114, 1-15=-505/271, 14-15=-505/271, 12-14=-1715/2051, 11-12=-782/1221, 10-11=5/13 3-11==-508/200, 9-11=-723/1447(b) Maximum Compression/Maximum Tension 12-2024, 2-3=-598/660, 3-4=-1990/1519, 1-14==-614/534, 8-11==-558/200, 9-11=-723/1447(c) Horizon 2-15==505/271, 14-15=-205/271, 12-14=-1715/2051, 11-12=-782/1221, 10-11==5/31 3-11==-508/200, 9-11=-723/1447(c) Horizon 2-15==505/271, 14-15=-2036/2543, 6-12=-578/835, 6-11=-614/534, 8-11==-558/200, 9-11=-723/1447(c) Horizon (c) Horizon	(pst) (20.0) 18.9/20.0 19.8/20.0 10.0 10.0 0.0^+ 10.0Spacing Plate Grip DOL 1.25 Lumber DOL 1.25 CodeCSI TC 0.98 BC 0.55 WB Matrix-MSHDEFL in(loc) Vert(LL)0.13 12-14 Vert(CT)0.14 12-14 Vert(CT)0.14 12-14 Vert(CT)0.14 12-14 Vert(CT)0.14 12-14 Vert(CT)0.14 12-14 Vert(CT)10.02x4 SP No.2 2x4 SP	(psf) 20.0 18.9/20.0 18.9/20.0 	(psf) 20.0 18.9/20.0 18.9/20.0 19.00 10.0Spacing Plate Grip DOL 1.25 Lumber DOL 1.26CSI TC C 0.01 TCDEFL TC 0.98 BC C 0.02DEFL vert(LJ)in (loc)(l	(pst) Spacing 2-0-0 CSI 0.0 0.0 (loc) //det Latter 18.9/20.0 12.8/20.0 1.25 TC 0.98 BC 0.55 Vert(CT) 0.11 12.14 >999 240 0.00 0.00 10.00 Rep Stress Incr NO Matrix-MSH Vert(CT) 0.14 12.14 >999 180 2x4 SP No.2 Zx6 SP No.2 Except* 3.15.4-6,12-4.2x4 SP No.3 111 ESpc C Exteior(2E) 1.12 to 19-0-1. 111 ESpc C Exteior(2E) 1.14 to 191 111 ESpc C Exteior(2E) 1.12 to 19-0-1. 111 ESpc C Exteior(2E) 1.12 to 19-0-1. 111 ESpc C Exteior(2E) 1.12 to 19-0-1. 1.12 to 19-0-1. 111 ESpc C Exteior(2E) 1.12 to 19-0-1. 1.12 to 19-0.1. <td< td=""></td<>

Continued on page 3 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R6	Half Hip	3	1	Job Reference (optional)	158787746

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:55:59 ID:GBPTvbdG4tGHmL8FZFLSf8zD1Yh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-48, 5-9=-58, 2-10=-20 Concentrated Loads (lb)

Vert: 4=-1000 (F)

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R7	Monopitch	12	1	Job Reference (optional)	158787747

Scale = 1:41.9

Plate Offsets (X, Y): [2:0-3-6,0-0-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.41 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.09 0.01	(loc) 6-8 6-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 75 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m II; Exp C; I and C-C I to 13-10-4 vertical lef forces & M DOL=1.65 Exp.; Ce=(3) Unbalance design. 4) This truss	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 5-5-9 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-8,5 Max Horiz 2=229 (LC Max Uplift 2=-203 (LI Max Grav 2=612 (LC (b) - Maximum Com 1-2=0/24, 2-3=-1040 4-5=-199/164 2-6=-438/943, 5-6=-4 3-6=0/334, 3-5=-979 CE 7-16; Vult=120mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en ixterior(2E) -0-10-8 to 2 cone; cantilever left at t and right exposed;C-1 WFRS for reactions sl plate grip DOL=1.60 CE 7-16; Pr=20.0 psf; IP Plate DOL=1.15); Is=- 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for	athing directly applie sept end verticals. applied or 10-0-0 oc 5:=0-1-8 C 12), 5=-181 (LC 10 C 12), 5=-181 (LC 10 C 12), 5=-569 (LC 23) pression/Maximum /336, 3-4=-139/91, 438/943 /376 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon 2-1-8, Interior (1) 2-1 di right exposed ; er C for members and hown; Lumber roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for th	5) 6) 7) d or 8) 9) 10) 11) LO cat. e -8 nd .25 JIIy is ive	Plates check about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho Provide mecl bearing plate One RT7A M truss to beari This connect lateral forces This truss is - International R802.10.2 ar AD CASE(S)	ed for a plus or mir ter. s been designed fo d nonconcurrent w las been designed in n chord in all areas by 2-00-00 wide will y other members. int(s) 5 considers p TP 1 angle to grain uld verify capacity hanical connections re ing walls due to UF ion is for uplift only designed in accord Residential Code s and referenced stand Standard	nus 20 d r a 10.0 for a liv for a liv where fit betw arallel f formula of bear (by oth comme 2LIFT at and do and co sections dard AN	degree rotation of the live load e load of 20. e load of 2	ads. Opsf com to nect der and				SEA 0363	L 22 BERIN	Mannung

- Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G

11111111

June 7,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R7A	Half Hip	1	1	Job Reference (optional)	158787748

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:00

Page: 1

				7	-0-14				13-7-8	3			
			I	7	-0-14		I		6-6-10)		I	
Scale = 1:38.7					·								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.60 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.15 0.02	(loc) 7-10 7-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=95n I); Exp C; and C-C E to 11-5-4, left and rig exposed;(creactions : DOL=1.6C 2) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-7-5 oc purlins, exi 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=193 (LC Max Uplift 2=-196 (L Max Grav 2=721 (LC (lb) - Maximum Com Tension 1-2=0/21, 2-3=-1273 4-5=-91/87, 5-6=-71/ 2-7=-566/1174, 6-7= 3-7=-479/296, 4-7=: CE 7-16; Vult=120mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er Enclosed; MWFRS (er Enclosed; PUFRS (sc) Enclosed; PUFRS (sc) Enclosed; end vertio 2-C for members and fo shown; Lumber DOL=1) CE 7-16; Pr=20.0 psf (=1.25); Pg=20.0 psf; F 5 Plate DOL=1.15); Is=: 0.9; Cs=1.00; Ct=1.10, ed snow loads have be	athing directly applie cept end verticals, ar -0 max.): 4-5. applied or 7-9-2 oc 5= Mechanical C 15) C 12), 6=-172 (LC 1 C 38), 6=563 (LC 38) pression/Maximum 1/372, 3-4=-1091/351 (46 -226/279 277/910, 4-6=-583/3 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior 201 2-1-8, Interior (1) 2-1 13-5-12 zone; cantil cal left and right proces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=18.9 psf (Lum 1.0; Rough Cat C; Fr Lu=50-0-0 ien considered for th	4) 5) 6) 7) 8) 2) 10 2) 11 77 12 2, 13 e -8 ever LC .25 ully is	This truss ha load of 12.0 overhangs n Provide ader Plates check about its cer This truss ha chord live loa * This truss ha chord and an Refer to gird) Provide mec bearing plate 6.) One RT7A N truss to bear connections forces.) This truss is International R802.10.2 a 0 or the orient bottom chord DAD CASE(S)	as been designed f psf or 2.00 times ff on-concurrent with quate drainage to p ted for a plus or mi iter. as been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi y other members. er(s) for truss to tru- hanical connectior e capable of withsta MiTek connectors re- ing walls due to Uf s for uplift only and designed in accord Residential Code nd referenced stan urlin representation ation of the purlin a d. Standard	or great at roof le other li prevent i nus 20 d or a 10.1 with any for a liv s where Il fit betw uss conne (by oth anding 1 ecomme PLIFT at does no dance w sections dard AN does no along the	er of min roo bad of 13.9 p ve loads. water pondin degree rotatio D psf bottom other live loz e load of 20. a rectangle veen the bott nections. ers) of truss 72 lb uplift a ended to com jt(s) 2. This of consider la ith the 2018 R502.11.1 a (SI/TPI 1. of depict the e top and/or	f live ssf on g. on ads. Opsf to t joint nect ateral size				SEA 0363	EER. AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

GI 11111111 June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R7B	Half Hip	1	1	Job Reference (optional)	158787749

TCDL

BCLL

BCDL

WFBS

1)

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 2) Plate DOL=1.25); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10. Lu=50-0-0

vertical left and right exposed;C-C for members and

forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Edenton, NC 27932

CHINA CONTRACTOR

G mm June 7,2023

SEAL

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R7C	Roof Special	3	1	Job Reference (optional)	158787750

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:00

Page: 1

Load Star, Lavonia, GA - 30553,

				7-0	-14			13-7	7-8				
Scale = 1:41.4			I	7-0	-14	I		6-6-	10		l		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.53 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.16 0.02	(loc) 6-9 6-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-3-6 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Max Horiz 2=226 (LC Max Uplift 2=-192 (LC	athing directly applic cept end verticals. applied or 8-8-0 oc 5= Mechanical C 15) C 12), 5=-178 (LC 1	5 6 7 ed or 8 9 9	 Plates check about its cer This truss ha chord live lo. * This truss I on the bottoo 3-06-00 tall chord and ai Refer to gird Provide mec bearing plate 5. One RT7A M 	ked for a plus or r tter. as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v y other member: ler(s) for truss to chanical connectid e capable of withs AiTek connectors	ninus 20 for a 10. t with any ed for a liv as where will fit betv s. truss coni on (by oth standing 1 recomme	degree rotati 0 psf bottom other live loa e load of 20. a rectangle veen the bot nections. ers) of truss 78 lb uplift a ended to con	on ads. .0psf tom to tt joint nect					
FORCES	(lb) - Maximum Com	pression/Maximum		truss to bear	ring wails due to t s for uplift only ar	JPLIFI a nd does n	t jt(s) 2. This at consider la	ateral					

Tension TOP CHORD 1-2=0/21, 2-3=-1003/334, 3-4=-140/92, 4-5=-189/161 BOT CHORD 2-6=-439/919, 5-6=-439/919 WEBS 3-6=0/310, 3-5=-961/388 NOTES

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 13-5-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider latera forces.
11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

Residential Code sections R502.11.1 an R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R8	Common	7	1	Job Reference (optional)	158787751

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

WEBS

NOTES

1)

LUMBER

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:01 ID:44FJbrVMgVurxfp8QRftipzD1Ys-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?

Page: 1

Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-11-8, Exterior(2R) 11-11-8 to 14-11-8, Interior (1) 14-11-8 to 24-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322 G mm June 7,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

UTITITITI I

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	150707750
Q015302-R	R8G	Common Supported Gable	1	1	Job Reference (optional)	158787752

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:01 ID:ZGohoAV_Rp0iZpNK_8A6F1zD1Yr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.8

Plate Offsets (X, Y): [22:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.03 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(lo	oc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size)	0.2 10.2 10.3 1 wood sheat purlins. ing directly 16=23-11- 18=23-11- 20=23-11- 22=23-11- 26=23-11- 30=23-11-	athing directly applie applied or 10-0-0 or 0, 14=23-11-0, 0, 17=23-11-0, 0, 17=23-11-0, 0, 21=23-11-0, 0, 23=23-11-0, 0, 25=23-11-0, 0, 27=23-11-0, 0	ed or E	TOP CHORD	1-2=0/33, 2-3=-175 1-5=-124/116, 5-6= 7-8=-128/208, 8-9= 10-11=-62/94, 11-1 13-14=-119/73, 14- 2-26=-69/147, 25-2 24-25=-69/147, 25-2 24-25=-69/148, 18- 17-18=-69/148, 18- 17-18=-69/148, 18- 17-18=-69/148, 18- 17-18=-69/148 3-21=-143/33, 7-22 5-23=-134/104, 5-2 1-25=-133/104, 3-2 3-20=-172/101, 10- 11-18=-132/101, 12 13-16=-128/96	/156, 3- -108/13 -128/20 2=-58/3 15=0/3 6=-69/1 24=-69/ 19=-69/ 19=-69/ 19=-69/ 17=-69/ 19=-132/ 6=-129/ 19=-13 -17=-13	4=-141/134, 10, 6-7=-96/16 18, 9-10=-95/1 19, 12-13=-73/ 3 47, (147, (147, (148, (148, (148, (148, 03, (102,)97, 4/105, 33/104,	5, 53, 52,	5) 6) 7) 8) 9) 10) 11) 12)	Unba desig This t load c overh All pla Blates about Gable This t chord * This on the 3-06-1 chord	lanced n. rruss ha of 12.0 hangs n ates ard s check t its cer e requir e studs truss ha t live lo s truss ha l live lo s truss la e botton 00 tall l and a	snow as bee psf or ion-co e 2x4 ced for ter. res cor space as bee ad nor has bee m cho by 2-0 ny oth	loads have been en designed for g 2.00 times flat m ncurrent with oth MT20 unless oth r a plus or minus oth at 2-0-0 oc. en designed for a nconcurrent with een designed for a lal areas w 0-00 wide will fit er members.	 considered reater of min pof load of 12 er live loads er live loads 20 degree rist chord bearin 10.0 psf bot any other livit a live load o here a rectarist between the 	for this 1 roof live 3.9 psf on ated. otation ug. ttom re loads. f 20.0psf ugle b bottom
FORCES	Max Horiz Max Uplift Max Grav (Ib) - Max Tension	2=-213 (LC 2=-50 (LC 16=-79 (L1 20=-77 (L2 23=-79 (L2 25=-78 (L2 27=-50 (L2 27=-50 (L2 27=-50 (L1 27=-50 (L1 27=-50 (L1 27=-50 (L1 27=-50 (L2 20=212 (L2 20=212 (L2 20=212 (L2 20=217 (L3) 30=137 (L3) 30=137 (L3)	C 14), 27=-213 (LC 12), 14=-8 (LC 13) C 17), 17=-78 (LC 1 C 17), 19=-81 (LC 1 C 17), 22=-79 (LC 1 C 16), 24=-78 (LC 1 C 16), 26=-81 (LC 1 C 12), 30=-81 (LC 1 C 12), 30=-8 (LC 13 C 31), 14=137 (LC 2 C 31), 17=171 (LC C 24), 21=182 (LC C 23), 23=175 (LC C 30), 25=171 (LC C 30), 27=151 (LC C 2) pression/Maximum	14) , 77), 77), 6), 6), 6), 31), 24), 33), 23), 23), 30), 31),	 Unbalanced this design. Wind: ASCE Vasd=95mpf II; Exp C; En and C-C Cor 1-11-8 to 11- Exterior(2N) right exposer for members Lumber DOL Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 	roof live loads have 7-16; Vult=120mpl ;; TCDL=4.2psf; BC closed; MWFRS (ener(3E) -0-10-8 to 11-8, Corner(3R) 1 14-11-8 to 24-9-8 ; d; end vertical left; and forces & MWF =1.60 plate grip DC ned for wind loads ids exposed to wind a Industry Gable Er alified building des 7-16; Pr=20.0 psf; late DCL=1.15; Is= ; Cs=1.00; Ct=1.10;	e been of n (3-sec CDL=6.0 nvelope 1-11-8, 1-11-8 cone; ca and righ RS for DL=1.60 in the pi d (norm nd Deta igner as (roof LL Pf=13.9 =1.0; Rc)	considered for opd gust) Ops; h=25ft; C exterior(2N) to 14-11-8, antilever left an it exposed;C-1 reactions sho o lane of the tru al to the face) is as applicat s per ANSI/TP .: Lum DOL=1 psf (Lum pugh Cat C; Fi	cat. le Md C wn; ss , ole, .25 ully			Willing		SEA 0363	L L L L L L L L L L L L L L L L L L L	A MANANA AND AND AND AND AND AND AND AND AN

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R8G	Common Supported Gable	1	1	Job Reference (optional)	158787752

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 2, 8 lb uplift at joint 14, 79 lb uplift at joint 22, 79 lb uplift at joint 23, 78 lb uplift at joint 24, 78 lb uplift at joint 25, 81 lb uplift at joint 26, 77 lb uplift at joint 20, 81 lb uplift at joint 19, 78 lb uplift at joint 18, 78 lb uplift at joint 17, 79 lb uplift at joint 16, 50 lb uplift at joint 2 and 8 lb uplift at joint 14.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:01 ID:ZGohoAV_Rp0iZpNK_8A6F1zD1Yr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R9	Common	8	1	Job Reference (optional)	158787753

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:01

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R9G	Common Structural Gable	1	1	Job Reference (optional)	158787754

Page: 1

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:02 ID:1TM30WWdB68ZBzyWXshLnEzD1Yq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 6-2-9 12-1-4 16-5-8 32-11-1 0-10-8 5-10-11 4-4-4 16-5-9 6-2-9 5x5= 7 Æ 4x8 💋 6 8 36 37 938 5 7¹² 10 3x5 💋 11 9-11-8 10-5-6 4 26 12 3 25 24 13 27 14 28 15 0-4-5 ∏ 0-4-4 ⊤ 20 XX 23 39 40 22 21 2019 18 17 16 3x4= 3x5= 3x4= 3x4= 3x4=

	8-1-8	15-9-8	23-8-14	23-9-4	32-11-1	J
Scale = 1:68.2	8-1-8	7-7-15	7-11-7	0-0-6	9-1-13	1

Plate Offsets (X, Y): [2:0-0-5,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.	(psf) 20.0 .9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.80 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.23 0.05	(loc) 21-23 23-35 30	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 215 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 3-11-10 oc Rigid ceilin bracing. 1 Brace at 26, 28 (size)	.2 .2 .3 *Except .3 wood shee purlins. ig directly Jt(s): 24, 2=0-3-8, 1 17=9-3-9, 20=0-3-8, 2=283 (LC	* 20-5:2x4 SP No.2 athing directly applied applied or 9-3-2 oc 5=9-3-9, 16=9-3-9, 18=9-3-9, 19=9-3-9, 30=9-3-9, 15)	d or N 1 2	/EBS 2 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21-24=-272/195, 5 3-23=-382/271, 5-2 5-26=-1274/326, 2 24-25=-1299/340, 27-28=-1341/384, 20-29=-1365/411, 3-27=-221/154, 9-2 1-19=-342/241, 1 3-17=-151/115, 1 roof live loads hav 7-16; Vult=120mpp t; TCDL=4.2psf; B closed; MWFRS ((erior(2E) -0-10-8 to	-23=-17/ 21=-85/5 5-26=-1: 24-27=- 28-29=- 7-25=-5 28=-40/3 2-18=-2 4-16=-1: re been (oh (3-sec CDL=6.) envelope o 2-5-0,	6/757, 60, 312/348, 1297/338, 1353/396, 7/57, 6-26=-9 0, 10-29=-48 1/28, 54/113 considered for cond gust) Dpsf; h=25ft; exterior zo Interior (1) 2-	94/45, 3/42, or Cat. ne -5-0	 This choor is the choor of the	s truss h rd live lo is truss he botto 5-00 tall rd and a vide me ring plat e RT7A I s to bea and 16. conside s truss is russ is rustiona 22.10.2 s	as bee bad noi has be orn cho by 2-0 iny oth chanic te capa MiTek tring w This c r latera s desig and ref	en designed for a nconcurrent with een designed for rd in all areas wi 00-00 wide will fit er members, with al connection (b able of withstand connectors reco alls due to UPLII connectors is for al forces. Ined in accordan dential Code sec ierenced standar	10.0 psf botto any other live a live load of 2 here a rectangl between the b h BCDL = 10.0 / others) of true ing 30 lb uplift mmended to c -T at jt(s) 15, 2 uplift only and ce with the 20" tions R502.11 d ANSI/TPI 1.	m loads. 20.0psf le oottom lpsf. ss to at joint onnect 2, 19, does 18 1 and
FORCES TOP CHORD BOT CHORD	Max Uplift 2 Max Grav 2 (lb) - Maxir Tension 1-2=0/33, 2 5-6=-282/5 8-9=-204/6 11-12=-24(13-14=-33(2-23=-386/ 20-21=-13(18-19=-13(16-17=-13)	2=-241 (LC 16=-108 (I 19=-394 (I 30=-20 (LC 2=-1208 (L 16=261 (L 18=107 (L 20=1346 (mum Comp 2-3=-1782; 44, 6-7=-21 8, 9-10=-2 6/109, 12=- 0/122, 14- 1/1692, 21- 3/1403, 19 0/366, 15- 0/366, 15-	C 16), 15=-20 (LC 13 LC 17), 17=-87 (LC 12 C 17), 20=-30 (LC 16 C 30), 15=241 (LC 3 C 30), 15=241 (LC 3 C 31), 17=205 (LC 3 C 31), 19=20 (LC 37 LC 30), 30=241 (LC pression/Maximum /338, 3-5=-1664/369 19/86, 7-8=-210/107, 233/62, 10-11=-277/5 13=-302/93, 15=-388/151 23=-172/1150, 0-20=-130/366, 18=-130/366, 18=-130/366	3), 17), 3), 33), 33), 33) 4, 59, 5, 59, 5, 6 7, 8	to 16-5-8, EX 19-9-0 to 32- exposed; en Lumber DOL) Truss design only. For stu see Standard or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9) Unbalanced design.) This truss ha load of 12.0 p overhangs nd All plates are) Plates check	terior(2R) 16-5-8 t 11-1 zone; cantile d vertical left and d forces & MWFR =1.60 plate grip D ned for wind loads ds exposed to wir l Industry Gable E alified building dee 7-16; Pr=20.0 psf; ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 snow loads have b s been designed f pon-concurrent with 2x4 MT20 unless ed for a plus or mi	to 19-9-C ver left a right exp S for reading OL=1.60 in the p nd (norm ind Deta signer at f (roof LL Pf=13.9 0 peen cor or great lat roof la o other lin o therwi	h, Interior (1) and right ososed;C-C fo ctions showr alane of the tri al to the face is as applicat s per ANS/IT :: Lum DOL= b psf (Lum ough Cat C; F asidered for t er of min roof bad of 13.9 p ve loads. se indicated. degree rotatic	r n; bble, bble, PI 1. 1.25 Fully his f live sf on	LOAD	ASE(S)	Sta	SEA 0363	L EEERER	A Manual Marine
				9	about its cen Gable studs	ter. spaced at 2-0-0 od	c.						Minin		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R10	Common	5	1	Job Reference (optional)	158787755

Loading

TCDL

BCLL

BCDL

WEBS

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

Max Grav 2=1570 (LC 30), 10=1570 (LC 31)

(Ib) - Maximum Compression/Maximum

1-2=0/33, 2-3=-2481/516, 3-5=-2154/412,

7-9=-2151/412, 9-10=-2479/514, 10-11=0/33

5-6=-2200/584, 6-7=-2196/582,

2-16=-532/2298, 12-16=-135/1375,

5-16=-364/298, 6-16=-357/1190,

3-16=-403/264, 7-12=-364/298,

6-12=-356/1187, 9-12=-403/264

Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp C; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) -0-10-8 to 2-5-0, Interior (1) 2-5-0 to 16-5-8, Exterior(2R) 16-5-8 to 19-9-0, Interior (1) 19-9-0 to 33-9-8 zone; cantilever left and right exposed end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=120mph (3-second gust)

Tension

DOL=1.60 plate grip DOL=1.60

10-12=-336/2079

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:02 ID:R22CeYZVU1W82Qh5D_F2PtzD1Yn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

This truss has been designed for a 10.0 psf bottom 8)

chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MILLIN ORT CONTRACTOR NO. SEAL 036322 GI minin June 7,2023

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof		
Q015302-R	R10G	Common	1	1	Job Reference (optional)	158787756	

14-10-4

Load Star, Lavonia, GA - 30553,

-0-10-8

7-7-1

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:03 ID:k6RQY7RErzFZruwAdu3i?mzD1Yx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 33-9-8 0-10-8 32-11-0 16-5-8

16-5-8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.79 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.42 0.06	(loc) 19-21 21-32 15	l/defl >999 >846 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 198	GRIP 244/19 Ib FT = 2	30 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No. 2x4 SP 165 2x4 SP No. No.3 2x4 SP No. Structural v 3-0-9 oc pu Rigid ceiling bracing. 1 Brace at	2 50F 1.7E 2 *Except 3 wood shea urlins. g directly It(s): 22	t* 19-22,21-3:2x4 SP athing directly applied applied or 10-0-0 oc	V d or 1	VEBS	19-22=-411/337, 5- 3-21=-476/339, 5-1 5-23=-1654/445, 22 24-25=-1671/448, 2 22-26=-1701/471, 2 27-28=-1809/567, 2 18-29=-1885/613, 6 8-25=-134/108, 9-2 11-27=-54/39, 12-2 13-29=-144/109, 14 roof live loads bay	21=-22: 9=-200/ 3-24=-11 22-25=- 26-27=- 28-29=- 5-23=-5 26=-265/ 28=-10/1 4-17=-3: e been (2/958, 843, 644/431, 1706/477, 1781/552, 1813/570, 1/80, 7-24=-9 /214, 2, 50/241	91/55, or	9) Gat 10) This cho 11) * Th 3-00 cho 12) One trus This late 13) One	ble studs truss h rd live lo is truss he botto 6-00 tall rd and a RT7A I s to bea connec ral force HTS20	space as bee ad nor has be m cho by 2-0 ny oth ViTek ring wa stion is s. Simps	ed at 2-0-0 oc. an designed for neoncurrent we een designed for rd in all areas 0-00 wide will er members, 1 connectors re alls due to UP for uplift only son Strong-Tie	r a 10.0 psf ith any othe for a live loa where a rec fit between with BCDL = commender LIFT at jt(s) and does n e connector.	⁶ bottom r live loads. ad of 20.0psf ctangle the bottom = 10.0psf. d to connect) 2 and 17. iot consider \$
REACTIONS	23, 24, 27, (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2 1 3	28 2=0-5-8, 1 18=0-3-8, 2=288 (LC 2=-284 (LC 18=-237 (L 2=1422 (L 17=55 (LC 33=225 (L	5=3-11-8, 17=3-11-8 33=3-11-8 3 15) C 16), 17=-295 (LC 1 LC 17) C 30), 15=225 (LC 3 3 37), 18=1601 (LC 3 C 33)	3, 2; 17), 33), 11),	 this design. Wind: ASCE Vasd=95mpl II; Exp C; En and C-C Ext to 16-5-8, Ex 19-9-0 to 33- end vertical I forces & MW 	7-16; Vult=120mp n; TCDL=4.2psf; B(closed; MWFRS (e erior(2E) -0-10-8 to tterior(2R) 16-5-8 to -9-8 zone; cantileve left and right expos /FRS for reactions	h (3-sec CDL=6.(envelope o 2-5-0, l o 19-9-0 er left ar ed;C-C shown;	cond gust) Dpsf; h=25ft; h e) exterior zon Interior (1) 2- d, Interior (1) nd right exposi for members Lumber	Cat. ne 5-0 sed ; and	reco UPI doe 14) This Inte R80 LOAD (ommend LIFT at jf s not co s truss is rnationa 02.10.2 a CASE(S)	ed to c (s) 18. nsider desig I Resid I Resid ind ref Star	connect truss This connect lateral forces. ned in accord dential Code s erenced stand ndard	to bearing w ion is for up ance with th ections R50 dard ANSI/T	valls due to Jiff only and te 2018 J2.11.1 and TPI 1.
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum	3)	DOL=1.60 pl) Truss design	late grip DOL=1.60 ned for wind loads	in the p	lane of the tru	uss				WH C	ARO	11.
TOP CHORD BOT CHORD	1-2=0/33, 2 5-6=-237/1 8-9=-267/0, 12-13=-280 14-15=-374 2-21=-417/ 18-19=-237 15-17=-139	2-3=-2110, 18, 6-7=-2 , 9-11=-2()/33, 13-1- 1/191, 15- 1968, 19-1 7/1703, 17 9/343	/408, 3-5=-1961/445 235/85, 7-8=-277/49, 06/48, 11-12=-232/48 4=-281/68, 16=0/33 21=-147/1281, 7-18=-139/343,	, 3, 4; 5;	only. For stu see Standard or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5) Unbalanced	Ids exposed to win d Industry Gable En ualified building des : 7-16; Pr=20.0 psf .25); Pg=20.0 psf; late DOL=1.15); Is 0; Cs=1.00; Ct=1.10 snow loads have b	d (norm nd Deta signer as (roof LL Pf=13.9 =1.0; Rc 0 been cor	al to the face ils as applica s per ANSI/TI .: Lum DOL=) psf (Lum ough Cat C; F	i), ble, PI 1. 1.25 Fully his		A	IT.	OR SE 036	AL 322	
				6	aesign.) This truss ha	as been designed fo	or greate	er of min roof	live						1 3

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Plates checked for a plus or minus 20 degree rotation
- about its center.

111111111 June 7,2023

G

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R11	Common	2	1	Job Reference (optional)	158787757

Run; 8.71 S May 19 2023 Print; 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:03 Page: 1 ID:CJ?oITSscGNPT2VMBbaxYzzD1Yw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 30-3-8 7-7-1 21-9-15 14-8-8 29-5-0 0-10-8 7-7-1 7-1-7 7-1-7 7-7-1 0-10-8 6x6= 4 19 20 7 18 3x4 2x4 🛛 3 5 9-5-2 8-11 ±4-5 X Š 9 11 10 22 8 2x4 ı 3x5= 3x4= 3x4= 3x4= 3x4. 7-7-1 14-8-8 20-6-5 29-5-0 7-7-1 7-1-7 5-9-13 8-10-11 Plate Offsets (X, Y): [3:0-1-12,0-1-8], [4:0-3-8,Edge], [6:0-2-4,0-1-8] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.25 тс 0.76 Vert(LL) -0.16 8-17 >679 240 MT20 244/190 13.9/20.0 Lumber DOL 1.25 BC 0.68 Vert(CT) -0.34 8-17 >315 180 Rep Stress Incr WB Horz(CT) 10.0 YES 0.47 0.03 8 n/a n/a 0.0 IRC2018/TPI2014 Matrix-MSH Code Weight: 150 lb 10.0 FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 2x4 SP No 2

- BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *Except* 3-11,8-5:2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 4-5-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 6-8. WEBS 1 Row at midpt 3-9, 4-8 **REACTIONS** (size) 2=0-3-8, 6=0-5-8, 8=0-3-8 Max Horiz 2=258 (LC 15) Max Uplift 2=-209 (LC 16), 6=-98 (LC 17), 8=-269 (LC 17) Max Grav 2=960 (LC 30), 6=391 (LC 31), 8=1446 (LC 31) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/33, 2-3=-1265/252, 3-4=-577/187, 4-5=-77/248, 5-6=-168/107, 6-7=0/33 BOT CHORD 2-11=-266/1214, 9-11=-266/1214, 8-9=-32/493, 6-8=-42/95
- WEBS 3-11=0/334, 3-9=-851/339, 4-9=-100/662, 4-8=-985/200, 5-8=-514/366
- NOTES

Scale = 1:62.8

Loading

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

TCLL (roof)

Snow (Pf/Pg)

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-8-8, Exterior(2R) 14-8-8 to 17-8-8, Interior (1) 17-8-8 to 30-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. Plates checked for a plus or minus 20 degree rotation
- 6) about its center. 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 269 lb uplift at joint 8.
- 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R11G	Common Supported Gable	1	1	Job Reference (optional)	158787758

. . . .

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:04 ID:CJ?oITSscGNPT2VMBbaxYzzD1Yw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:58.1							-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9/	(psf) 20.0 /20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.06 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(1	oc) l/de - n/ - n/ 16 n/	fi L a 99 a 99 a n	/d 99 99 /a	PLATES MT20 Weight: 187 lb	GRIP 244/190 FT = 20))%
LUMBER TOP CHORD BOT CHORD TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 oc purl Rigid ceiling bracing. 1 Row at mid (size) 2= 25 29 32 Max Horiz 2= Max Uplift 2= 18 20 22 Max Grav 2= 18 30 Max Grav 2= 18 30 32 Max Grav 2= 18 30 32 Max Grav 2= 18 30 32 31 35	*Excep bod shead ins. directly dpt 229-5-0, =29-5-0 [=-76 (L) =-75 (L) =-77 (L)	t* 24-9:2x4 SP No.2 athing directly applie applied or 10-0-0 oc 9-24 16=29-5-0, 18=29-5 0, 20=29-5-0, 21=29- 0, 23=29-5-0, 24=29- 0, 23=29-5-0, 24=29- 0, 30=29-5-0, 31=29- 0, 30=29-5-0, 31=29- 0, 30=29-5-0 2 15), 32=258 (LC 15 2 12), 16=-4 (LC 13), LC 17), 19=-70 (LC 15 C 17), 21=-77 (LC 11 C 16), 26=-81 (LC 16 C 16), 31=-106 (LC 2 C 12), 35=-4 (LC 13) C 31), 16=161 (LC 2) C 31), 21=171 (LC 3 C 32), 25=211 (LC 2 C 33), 25=211 (LC 2 C 33), 32=111 (LC 3 C 30), 32=181 (LC 3 C 30), 32=	d or 5-0, 5-0, 5-0, 5-0, 5-0, 5-0, 5) (17), 7), 7), (7), (7), (7), (7), (7), (7)	TOP CHORD BOT CHORD WEBS 1) Unbalanced this design. 2) Wind: ASCI Vasd=95mp II; Exp C; E and C-C CC to 14-8-8, C 17-8-8 to 30 end vertical forces & M DOL=1.60 p 3) Truss desig only. For si	1-2=0/33, 2-3=-2 4-5=-153/143, 5- 7-8=-125/213, 8- 10-11=-125/197, 12-13=-59/82, 13 15-16=-144/91, 1 2-31=-84/178, 20 29-30=-84/178, 2 24-25=-84/178, 2 24-25=-84/178, 2 20-21=-84/178, 1 9-24=-175/59, 8- 7-26=-134/105, 6 5-29=-134/104, 4 3-31=-162/119, 1 11-22=-134/106, 1 13-20=-134/104, 4 15-18=-162/119 d roof live loads have E 7-16; Vult=120m corner(3E) -0-10-8 to corner(3E) 1-0-10-8 to corner(3E) 1-0-10-8 to corner(3E) 1-0-10-8 to corner(3E) 14-8-8 0-3-8 zone; cantille left and right expo WFRS for reaction olate grip DOL=1.0 gned for wind load tuds exposed to wind load	13/193, 3 6=-137/14 9=-157/22 11-12=-9 1-14=-66/4 15-26=-84 15-26=-84 15-26=-84 15-26=-84 15-26=-84 15-22=-84 1-22=-84 9-20=-84 (1-22=-84 9-20=-84 12-22=-17 12-21=-1 12-21=-1 12-12=-1 14-19=-1 ave been nph (3-see BCDL=6. (envelop: to 2-1-8, E to 17-8-8 ver left ai ossed;C-C s s shown; 50 s is in the p ind (norm	-4=-171/160, i3, 6-7=-120/1 50, 9-10=-157, 1/138, i5, 14-15=-83, 3 178, 1/179, 1/197, 2/101, 2/3/97, considered for cond gust) 0/05; h=25ft; (0) exterior(2N) 2- 5 (cond) (co	r Cat. he and sss),	 4) 5) 6) 7) 8) 9) 10) 11) 12) 	TCLL: As Plate DC DOL=1.1 Exp.; Ce Unbaland design. This trus load of 1 overhang All plates Plates ch about its Gable re Gable stu chord live * This trus on the bc 3-06-00 1 chord an	SCE 7: L=1.2: 5 Plat: 5 Plat: 0.9: 0 (2) 2: 0 ped sn s has b 2:0 psi s non- ecked centei quires s has b 0 load ss has centei ttom centei d any c	-16; I 5); P e DC Cs=1 ow k f or 2 	Pr=20.0 psf (rc g=20.0 psf; Pf DL=1.15); Is=1. 1.00; Ct=1.10 oads have bee a designed for g 2.00 times flat r current with ott TT20 unless ott a plus or minus tinuous bottom d at 2-0-0 oc. a designed for a concurrent with en designed for a conc	of LL: Lurr =13.9 psf (); Rough (); Rough (); Rough (); Rough () reater of r oof load of ier live loa erwise inc. 20 degree chord bea i 10.0 psf f any other a live loac here a rect between 1	n DOL=1.25 'Lum Cat C; Fully red for this min roof live f 13.9 psf on ids. dicated. e rotation aring. bottom · live loads. d of 20.0psf tangle the bottom

FORCES (lb) - Maximum Compression/Maximum Tension

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

100000 G June 7,2023

Page: 1

Continued on page 3 WARNING - Veri

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R11G	Common Supported Gable	1	1	Job Reference (optional)	158787758

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 2, 4 lb uplift at joint 16, 76 lb uplift at joint 25, 81 lb uplift at joint 26, 77 lb uplift at joint 28, 81 lb uplift at joint 29, 69 lb uplift at joint 30, 106 lb uplift at joint 31, 73 lb uplift at joint 23, 82 lb uplift at joint 22, 77 lb uplift at joint 21, 77 lb uplift at joint 20, 70 lb uplift at joint 19, 105 lb uplift at joint 18, 55 lb uplift at joint 2 and 4 lb uplift at joint 16.
 14) Beveled plate or shim required to provide full bearing
- surface with truss chord at joint(s) 16, 35.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:04 ID:CJ?oITSscGNPT2VMBbaxYzzD1Yw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R12	Common	2	1	Job Reference (optional)	158787759

9-5-2

Scale = 1:62.6

Page: 1

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:04 ID:gVZBzpSUNaVG4B4ZII5A4BzD1Yv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 30-3-8 0-10-8 7-7-1 21-9-15 14-8-8 29-5-0 7-7-1 7-1-7 7-1-7 7-7-1 4x5= 4 18 19 12 7 17 20 2x4 🏿 2x4 3 5 8-11-4 6 1-4-5 × 8 10 9 21 22 3x4= 3x4= 4x4 =4x4 =3x5= 9-11-8 19-5-8 29-5-0 9-11-8 9-5-15 9-11-8 Plate Offsets (X, Y): [4:0-2-8,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.77 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.43 0.05	(loc) 8-10 8-16 6	l/defl >999 >825 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 141 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP 1650F 1.7E 2x4 SP No.2 *Excep Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=258 (LC Max Grav 2=21410 (I (lb) - Maximum Com Tension 1-2=0/33, 2-3=-2087 4-5=-1939/452, 5-6= 2-10=-404/1929, 8-1 6-8=-237/1735 4-8=-235/965, 5-8=- 3-10=-490/354	ot* 8-5,10-3:2x4 SP N eathing directly applie v applied or 10-0-0 oc 6=0-5-8 C 15) C 16), 6=-285 (LC 1 LC 30), 6=1410 (LC 3 npression/Maximum 7/413, 3-4=-1939/451 =-2088/413, 6-7=0/33 10=-120/1227, -490/354, 4-10=-235/	4; 10.3 10 or 6; 10 or 7; 11 8; 11 11 9; 14 11 14 12 14	 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cer This truss ha chord live loa This truss fa on the bottor 3-06-00 tall fa chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 a CAD CASE(S) 	snow loads have to as been designed fi psf or 2.00 times fi on-concurrent with teed for a plus or mi- ter. as been designed fi ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi- hy other members, fiTek connectors rr ing walls due to Uf tion is for uplift only s. designed in accord Residential Code nd referenced stan Standard	for great lat roof la o ther li inus 20 o for a 10. with any l for a liv s where with BC ecomme PLIFT at y and do dance w sections ndard AN	nsidered for the er of min roof bad of 13.9 ps re loads. degree rotatic 0 psf bottom other live loa e load of 20.6 inded of 20.6 inded to conne it(s) 2 and 6. es not consid ith the 2018 R502.11.1 a ISI/TPI 1.	his live sf on n ds. Dpsf pm ect ler nd					1111.
NOTES 1) Unbalance this design	d roof live loads have	been considered for										WITH CA	ROUL

this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-8-8, Exterior(2R) 14-8-8 to 17-8-8, Interior (1) 17-8-8 to 30-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

annun an Vananovana SEAL 036322 G minin June 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R13G	Common	1	1	Job Reference (optional)	158787760

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:05

6-3-8

Page: 1

11-7-0

3000 = 1.33.4

Plate Offsets (X, Y): [1:0-3-0,0-0-11], [11:0-1-12,0-2-0], [12:0-3-0,0-0-10]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.38 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.07 0.02	(loc) 13-22 13-22 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 108 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly	athing directly applied	1) 2) or	Unbalanced of this design. Wind: ASCE Vasd=95mph II: Exp C; End and C-C Exter to 8-11-4, Ext 11-11-4 to 17 exposed; en members and Lumber DOL	oof live loads have 7-16; Vult=120mph ; TCDL=4.2psf; BC closed; MWFRS (er prior(2E) 0-0-0 to 2- terior(2R) 8-11-4 to -10-8 zone; cantile d vertical left and rig d forces & MWFRS =1.60 plate grip DC	been ((3-sec DL=6.0 Nvelope 11-4, 1 11-11 ver left ght exp for rea DL=1.60	considered for cond gust) Opsf; h=25ft; C exterior zon hterior (1) 2-1 4, Interior (1) and right loosed;C-C for ctions shown;	Cat. le 1-4	12) This Inte R80 13) Gra or th bott LOAD C	truss is rnationa 2.10.2 a phical pu ne orient om chor CASE(S)	desig I Resic Ind ref urlin re ation c d. Star	ned in accordanc lential Code sect erenced standarc presentation doe of the purlin along ndard	e with the 2018 ions R502.11.1 and I ANSI/TPI 1. s not depict the size the top and/or
JOINTS	bracing. 1 Brace at Jt(s): 8,		3)	Truss design only. For stu	ed for wind loads in ds exposed to wind Industry Gable En	n the p (norm d Deta	ane of the true al to the face)	ss , le					
REACTIONS	6 (size) 1=5-7-0, 1 15=5-7-0, Max Horiz 1=212 (LC Max Uplift 1=-62 (LC 14=-228 (I 16=-179 (I Max Grav 1=271 (LC 14=574 (L 16=182 (L	2=0-3-8, 14=5-7-0, 16=5-7-0, 17=5-7-0 : 11), 17=212 (LC 11) 12), 12=-68 (LC 15), .C 14), 15=-92 (LC 14 .C 14), 17=-62 (LC 12 : 14), 12=533 (LC 2), C 2), 15=100 (LC 25), C 25), 17=271 (LC 14	4) 4) 2) 5) 6) 7) 7)	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 All plates are Plates check about its cent Gable studs s	alified building desi; 7-16; $Pr=20.0 \text{ psf}$; 225); $Pg=20.0 \text{ psf}$; $Pate DOL=1.15$; $Is=$ 5; $Cs=1.00$; $Ct=1.10$ 2x4 MT20 unless c ed for a plus or min er. spaced at 2-0-0 oc.	gner as roof LL Pf=13.9 1.0; Ro otherwi us 20 o	s per ANSI/TP : Lum DOL=1 psf (Lum pugh Cat C; Fi se indicated. degree rotation	no, 1 1. .25 ully n				MAR CA	ROUM
FORCES	(lb) - Maximum Com	pression/Maximum	ý 8)	chord live loa	s been designed foi d nonconcurrent wi	r a 10.0 th any	other live load	ds.			S	R	- Intin
TOP CHORD	1-2=-325/138, 2-3=-2 4-5=-161/4, 5-7=-12 9-11=-174/75, 11-12 6-8=-441/256, 8-10= 10-11=-418/238	228/90, 3-4=-171/49, 5/58, 7-9=-163/95, =-587/77, 6-14=-460/2 -431/251,	9) 285, 10)	* This truss h on the bottom 3-06-00 tall b chord and an Provide mech	as been designed f n chord in all areas y 2-00-00 wide will y other members. nanical connection	or a liv where fit betv (by oth	e load of 20.0 a rectangle veen the botto ers) of truss to	ipsf im D		Jun 1		SEA	
BOT CHORD	1-16=-134/285, 15-1 14-15=-119/285, 13-	6=-119/285, 14=0/373, 12-13=-68/3	373 11)	bearing plate 14. One RT7A M	capable of withstar	naing 2 comme	nded to conne	joint ect		1111		0363	
WEBS	7-8=-33/33, 5-6=-75/ 3-15=-117/120, 2-16 11-13=0/280	87, 4-14=-204/175, =-122/147, 9-10=-21/3	30,	truss to beari and 16. This consider late	ng walls due to UPI connection is for up ral forces.	LIFT at	jt(s) 1, 12, , / and does no	, 15, ot				A G	E.P. KININ
NOTES												111111	11111

June 7,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R13X	Common Girder	1	2	Job Reference (optional)	158787761

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:05 ID:c9CMyJhPuQvas61CMoxeMBzD1Yc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.3

Plate Offset	s (X, Y): [1:0-3-0,0-2-5],	[2:0-1-0,0-2-0], [3:0-	2-0,0-2-8]	, [4:0-1-0,0-2-0)], [5:0-3-0,0-2-5]	[6:0-4-12	2,0-1-8], [7:0-	4-12,0-3	·8], [9:0·	-4-12,0-1	I-8]			
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.81 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.05	(loc) 7-9 7-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 270 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHOR BOT CHOR WEBS WEDGE BRACING TOP CHOR BOT CHOR	 D 2x6 SP No.2 D 2x6 SP No.1 2x4 SP No.3 *Except Left: 2x4 SP No.3 D Structural wood sheat 5-2-4 oc purlins. D Rigid ceiling directly bracing. 	t* 7-3:2x4 SP No.2 athing directly applied applied or 10-0-0 oc	3) 4) ^{d or} 5)	Unbalanced this design. Wind: ASCE Vasd=95mpl II; Exp C; En cantilever lef right expose TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp: Co. 00	roof live loads ha 7-16; Vult=120m n; TCDL=4.2psf; closed; MWFRS t and right expos d; Lumber DOL= 7-16; Pr=20.0 ps late DOL=1.15); Co. 4.00; Co. 4.1	ve been of ph (3-sec BCDL=6.((envelope ed ; end v 1.60 plate sf (roof LL f; Pf=13.9 s=1.0; Ro	considered fo cond gust) Dpsf; h=25ft; (exterior zon vertical left an grip DOL=1. .: Lum DOL=) psf (Lum ough Cat C; F	r Cat. ne; id 60 1.25	Co	Vert: 1-3 oncentra Vert: 16 19=-109 (B), 23=	3=-48, ted Loz =-1092 92 (B), -1092	3-5=-48, 10-13= ads (lb) 2 (B), 17=-1092 (20=-1092 (B), 2 (B)	-20 B), 18=-1092 1=-1092 (B), 2	(B), 2=-1092
REACTION	S (size) 1=0-3-8, ((req. 0-4-0 Max Horiz 1=212 (LC Max Uplift 1=-1327 (Max Gray 1=6571 (req. 0-3-14), 5=0-3-8)) ; 7) LC 10), 5=-1361 (LC C 21) 5=6741 (LC 2	^{(,} 6) 7) 11) 8)	Exp.; Ce=0.9 All plates are Plates check about its cen This truss ha	9; Cs=1.00; Ct=1. MT20 plates unl ed for a plus or n ter. is been designed	10 ess other ninus 20 o for a 10.0	wise indicate degree rotatic 0 psf bottom							
FORCES	(lb) - Maximum Com Tension D 1-2=-8585/1748, 2-3	=-5926/1295,	9)	* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent has been designe n chord in all are by 2-00-00 wide v	with any d for a liv as where vill fit betv	other live loa e load of 20.0 a rectangle veen the botto	ids. Opsf om						
BOT CHOR WEBS	3-4=-5925/1295, 4-5=-8624/1752 DT CHORD 1-9=-1391/6717, 7-9=-1391/6717, 6-7=-1294/6630, 5-6=-1294/6630 EBS 2-9=-624/3376, 2-7=-2868/732, 3-7=-1504/7197, 4-7=-2908/741,				 chord and any other members. 10) WARNING: Required bearing size at joint(s) 1, 5 greater than input bearing size. 11) One HTS20 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to 							WATH CA	RO	,
NOTES 1) 2-ply tru (0.131"> Top cho stagger Bottom stagger Web co 2) All loads except i CASE(5 provided unless of	ss to be connected toget (3") nails as follows: rds connected as follows: ad at 0-9-0 oc. chords connected as follows: ad at 0-7-0 oc. nnected as follows: 2x4 - are considered equally a f noted as front (F) or bac (F) or bac	her with 10d : 2x6 - 2 rows ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ ections have been noted as (F) or (B),	12 13 AD LC 1)	orFLF1 at Jt(and does no) This truss is International R802.10.2 at) Use MiTek H 6-16d nails it max. starting connect truss) Fill all nail ho DAD CASE(S) Dead + Sno Increase=1 Uniform Lo	s) i and 5. I his ć t consider lateral designed in acco Residential Code nd referenced sta IUS26 (With 14-1 hto Truss) or equ at 2-0-12 from ti s(es) to back face bles where hange Standard w (balanced): Lu .15 ads (lb/ft)	connection forces. rdance we a sections indard AN 6d nails i ivalent sp ne left end of bottoor r is in cor	ith the 2018 s R502.11.1 a ISI/TPI 1. nto Girder & aced at 2-0-0 1 to 16-0-12 t n chord. ntact with lum rease=1.15, I	only and o oc o ber. Plate		Within		SEA 0363	L 22 EERRA	and an

June 7,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R14	Common	1	1	Job Reference (optional)	158787762

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:05 ID:vEcasuZ7FLe?faGHmhmHy4zD1Ym-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-10-8 13-5-8 6-3-8 12-7-0 0-10-8 6-3-8 6-3-8 0-10-8 4x4 = 3 12 10 □ 13 5-10-3 6-4-4 0-7-5 5 6 1.5x3 🛚 3x6 II 3x6 II

Scale = 1:46.2 Plate Offsets (X, Y): [2:0-3-0,0-0-6], [3:0-2-0,0-2-4], [4:0-3-0,0-0-6]

	()) [])	L											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.40 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.09 -0.02	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanci this desig 2) Wind: ASI Vasd=95r II; Exp C; and C-CE to 6-3-8, E 13-5-8 zoi vertical lei	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=170 (LC Max Uplift 2=-124 (L Max Grav 2=556 (LC (lb) - Maximum Com Tension 1-2=0/42, 2-3=-541/; 4-5=0/42 2-6=-142/358, 4-6=- 3-6=-7/289 ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 1 Exterior(2R) 6-3-8 to 9- Exterior(2R) 6-3-8 to 9- Exterior(2R) 6-3-8 to 9-	athing directly applie applied or 10-0-0 or 4=0-3-8 C 13) C 14), 4=-124 (LC 1 C 2), 4=556 (LC 2) apression/Maximum 207, 3-4=-541/207, 76/358 been considered for (3-second gust) DL=6.0psf; h=25ft; 0 avelope) exterior zor 2-1-8, Interior (1) 2-3 -8, Interior (1) 2-3-8 ight exposed ; end C for members and	4) 5) 6) 6) 7) 5) 5) 9) 5) 9) LC Cat. e -8 3 to	This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar DAD CASE(S)	Is been designed f psf or 2.00 times fi on-concurrent with ted for a plus or mi ter. Is been designed f ad nonconcurrent to as been designed n chord in all area by 2-00-00 wide wi by other members. TiTek connectors r ing walls due to U ion is for uplift only chesigned in accore Residential Code nd referenced star Standard	for great lat roof lo o ther lin inus 20 d for a 10.0 with any f for a liv s where ll fit betw ecomme PLIFT at y and do dance w sections ndard AN	er of min rooi oad of 13.9 p ve loads. degree rotatic 0 psf bottom other live loa e load of 20. a rectangle veen the bott ended to comr ; jt(s) 2 and 4 ves not consid ith the 2018 5 R502.11.1 a JSI/TPI 1.	f live sf on on ads. Opsf om hect der and			in the second se	ORTH CA ORTH SS ORTH SS ORTH SS SEA 0363	Route and All
DOL=1.60 3) TCLL: AS) plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (-1.25): Pg=20.0 psf: F	roof LL: Lum DOL=1	.25								11	A SNGIN	EEREALIN

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

G minin

June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R14G	Common Supported Gable	1	1	Job Reference (optional)	158787763

Run; 8.71 S May 19 2023 Print; 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:06 ID:cuhxOVUkvBI_KVExsj8eAczD1Yt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			L			12	2-7-0					I	
Scale = 1:42.5			Г										
Plate Offsets ((X, Y): [2:0-3-0,0-0-10]], [8:0-3-0,0-0-10]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB Matrix MSH	0.08 0.08 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	INCZUIC	5/1712014								Weight: 73 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=12-7-0.	athing directly applie applied or 10-0-0 oc 8=12-7-0, 10=12-7-0	1) 2) d or ; 0, 3)	Unbalanced this design. Wind: ASCE Vasd=95mph II; Exp C; En and C-C Cor to 6-3-8, Cor 13-5-8 zone; vertical left a forces & MW DOL=1.60 pl Truss design	roof live loads ha 7-16; Vult=120m 1; TCDL=4.2psf; closed; MWFRS ner(3E) -0-10-8 t ner(3R) 6-3-8 to cantilever left an nd right exposed (FRS for reaction ate grip DOL=1.6 ned for wind load	ave been ph (3-sec BCDL=6. (envelope o 2-3-8, E 9-3-8, Ex nd right ex ;C-C for r s shown; 60 Is in the p	considered for cond gust) Opsf; h=25ft; e) exterior zoo xterior(2N) 2 terior(2N) 9-3 ;posed ; end nembers and Lumber lane of the tr	Cat. one 2-3-8 3-8 to 1 uss	13) This Inte R80 LOAD C	s truss is rnationa i2.10.2 a :ASE(S	s desig al Resid and ref) Star	ned in accordand Jential Code sec erenced standar ndard	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.

	. ,	11=12-7-0, 12=12-7-0, 13=12-7-0, 14=12-7-0, 15=12-7-0, 19=12-7-0
	Max Horiz	2=170 (LC 13), 15=170 (LC 13)
	Max Uplift	2=-44 (LC 10), 8=-13 (LC 11),
		10=-147 (LC 15), 11=-103 (LC 15),
		13=-102 (LC 14), 14=-151 (LC 14),
		15=-44 (LC 10), 19=-13 (LC 11)
	Max Grav	2=176 (LC 27), 8=166 (LC 2),
		10=211 (LC 27), 11=180 (LC 27),
		12=150 (LC 29), 13=180 (LC 26),
		14=216 (LC 26), 15=176 (LC 27),
		19=166 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/42,	2-3=-131/106, 3-4=-115/90,
	4-5=-130/	213, 5-6=-130/213, 6-7=-82/91,
	7-8=-101/	/61, 8-9=0/42
BOT CHORD	2-14=-91/	/184, 13-14=-56/184,
	12-13=-56	6/184, 11-12=-56/184,
	10-11=-56	6/184, 8-10=-56/184
WEBS	5-12=-168	8/56, 4-13=-147/175,
	3-14=-15	5/215, 6-11=-146/175,
	7-10=-156	6/214

NOTES

- Truss designed for wind loads in the plane of the truss
- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 4) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- All plates are 1.5x3 MT20 unless otherwise indicated. 6) 7) Plates checked for a plus or minus 20 degree rotation about its center
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 2, 13 lb uplift at joint 8, 102 lb uplift at joint 13, 151 lb uplift at joint 14, 103 lb uplift at joint 11, 147 lb uplift at joint 10, 44 lb uplift at joint 2 and 13 lb uplift at joint 8.

minin June 7,2023

G

VIIIIIIIIII

MILLIN

SEAL

036322

OR

CHILLING STREET

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R15X	Half Hip Girder	1	3	Job Reference (optional)	158787764

Scale = 1:41.8

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:06 ID:8zf_kzgm86njFyS0o4QPp_zD1Yd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-1-12 8-10-12 14-11-0 5-1-12 3-9-0 6-0-4

Plate Offsets (X, Y): [1:0-3-8,0-1-8], [2:0-1-4,0-2-0], [3:0-2-4,0-2-0], [4:0-2-0,0-1-8], [6:0-6-0,0-8-12], [7:0-11-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.81 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.16 0.02	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 374 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x12 SP No.1 2x4 SP No.3 *Excep Structural wood shee 5-9-0 oc purlins, exc 2-0-0 oc purlins, (6-0	Unbalanced this design. Wind: ASCE Vasd=95mph II; Exp C; En cantilever lef right exposed TCLL: ASCE	 Isance roof live loads have been considered for lesign. Is SCE 7-16; Vult=120mph (3-second gust) I=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. I=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. I=95mph; TCDL=1.60 plate grip DOL=1.60 IS SCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25); Pg=20.0 psf; (roof LL: Lum DOL=1.25); Pg=20.0 psf; (roof LL: 0, psf; Ps=20.0 psf; Ps=											
BOT CHORD	Rigid ceiling directly bracing. (size) 1=0-3-8, (applied or 10-0-0 oc req. 0-4-0), 5=0-3-8,	(req.	Plate DOL=1.25); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Pain surcharge applied to all starting at 5-4.4 from the left and to 13-4.4 to compo									& 2-10d c max.	
	0-4-1) Max Horiz 1=216 (LC Max Uplift 1=-792 (L Max Grav 1=10226 (C 9) C 12), 5=-859 (LC 9) (LC 38), 5=10359 (LC	6) C 43)	exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 20) Fill all nail holes where hanger is in contact with lumi Unbalanced snow loads have been considered for this design								lumber. ricane		
FORCES	(lb) - Maximum Com	pression/Maximum	7)	Provide adec	quate drainage to p	revent	water ponding	j .	nail	interfere	ence in	single ply truss.	s or top plate	
		2-0059/924	8)	All plates are	MT20 plates unles	s other	wise indicate	d.	LOAD	CASE(S)) Star	ndard		
	3-4=-8994/785, 4-5=	-6592/633	9)	Plates check	ed for a plus or mir	nus 20 d	legree rotatio	n	1) De	ead + Sn	iow (ba	alanced): Lumber	Increase=1.1	5, Plate
BOT CHORD	1-7=-1127/13201, 6-	7=-1127/13201,	10) This truss ha	s been designed fo	or a 10.0) psf bottom		In Ur	crease=	1.15 hads (ll	o/ft)		
	5-6=-60/93		,	chord live loa	ad nonconcurrent w	rith any	other live loa	ds.	01		1000 (11		111.	
NEBS	2-6=-5192/516, 3-6=	-262/4349, 317/4724	11)) * This truss h	as been designed	for a liv	e load of 20.0	Opsf			-	"H CA	Ro'l	
NOTES	4-0=-905/11014, 2-7	=-317/4724		on the botton	n chord in all areas	where fit boty	a rectangle	m			S	R	all'	1
1) 3-ply truss	s to be connected toget	her with 10d		chord and an	v other members.	III DEII	leen the boll	5111			1	OFESS	Si V	12
(0.131"x3) nails as follows:		12)	WARNING: F	Required bearing si	ze at jo	int(s) 1, 5 gre	ater		4	D		C.	9
Top chord	s connected as follows	: 2x4 - 1 row at 0-9-0	C	than input be	aring size.					-				1
oc.		0.40.0	13)) Two RT7A M	liTek connectors re	comme	nded to conn	ect		=		SEA	L :	Ξ.
Bottom ch	ords connected as follo	ows: 2x12 - 2 rows		This connect	ing walls due to UP	LIFI at	Jt(s) 1 and 5.	lor		=		0363	22	=
Web conn	ected as follows: 2x4 -	1 row at 0-9-0 oc.		lateral forces			00 1101 0011310			Ξ		0505		
Except me	ember 2-7 2x4 - 1 row a	at 0-5-0 oc.	14)) This truss is	designed in accord	ance w	ith the 2018				-	N	1.1	-
 All loads a except if n 	are considered equally noted as front (F) or bac	applied to all plies, ck (B) face in the LO	AD	International R802.10.2 ar	Residential Code s nd referenced stand	ections	R502.11.1 a ISI/TPI 1.	nd			11	& RAGINI	ERA	in the second se
CASE(S)	section. Ply to ply conn	ections have been	15)) Load case(s)	1, 3 has/have bee	n modif	ied. Building				1	10	BEN	

except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

15) Load case(s) 1, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

minin June 7,2023

G

Continued on page 3 WARNING - Veri Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	R15X	Half Hip Girder	1	3	Job Reference (optional)	158787764

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:06 ID:8zf_kzgm86njFyS0o4QPp_zD1Yd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Vert: 1-3=-48, 3-4=-58, 1-11=-634 (F=-614), 5-11=-784 (F=-614)

Concentrated Loads (lb)

Vert: 7=-507 (B), 12=-821 (B), 13=-543 (B), 14=-541 (B), 15=-541 (B), 16=-541 (B)

Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (lb/ft)

3)

Vert: 1-3=-50, 3-4=-50, 1-11=-557 (F=-537),

5-11=-1007 (F=-537)

Concentrated Loads (lb)

Vert: 7=-450 (B), 12=-630 (B), 13=-450 (B), 14=-450 (B), 15=-450 (B), 16=-450 (B)

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V1	Valley	1	1	Job Reference (optional)	158787765

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:07 ID:1TM30WWdB68ZBzyWXshLnEzD1Yq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.25 0.16 0.35	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-7-9, Max Horiz 1=-180 (L Max Uplift 1=-74 (LC 8=-247 (L Max Grav 1=77 (LC (LC 26), 7 25), 13=0	athing directly applied applied or 6-0-0 oc 5=15-7-9, 6=15-7-9, 8=15-7-9, 13=15-7-9 C 10), 5 10), 6=-243 (LC 15), C 14) 13), 5=0 (LC 13), 6=4 "=672 (LC 25), 8=474 (LC 13)	3) 4) 1 or 5) 6) 7) 8) 8) 481 9) (LC	Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Plates check about its cen Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	ned for wind loads ids exposed to wind d Industry Gable E ialified building des : 7-16; Pr=20.0 psf; late DOL=1.15); Is); Cs=1.00; Ct=1.1 ed for a plus or mi ter. es continuous bott spaced at 4-0-0 oc is been designed f ad nonconcurrent has been designed n chord in all areas y 2-00-00 wide wind	in the pi d (norm nd Deta signer as (roof LL Pf=13.9 =1.0; Rc 0 nus 20 c om chor c. or a 10.0 with any for a liv s where II fit betw	ane of the tru al to the face, ils as applicat s per ANSI/TF .: Lum DOL=' upsf (Lum ungh Cat C; F degree rotation d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottom	iss), ole, ol 1. I.25 ully n ds. opsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1() Provide mec	hanical connection	(by oth	ers) of truss to	O oint					
TOP CHORD	1-2=-137/376, 2-3=- 4-5=-121/290	20/326, 3-4=0/300,	4	1, 247 lb upli	ft at joint 8 and 24	3 lb uplit	t at joint 6.	Jint					
BOT CHORD	1-8=-187/103, 7-8=- 5-6=-199/115	187/103, 6-7=-187/10	1 [.] 13,	International R802.10.2 a	designed in accord Residential Code nd referenced stan	sections	R502.11.1 a ISI/TPI 1.	nd				mm	uun.
WEBS NOTES	3-7=-479/0, 2-8=-30	4/277, 4-6=-307/276	L	DAD CASE(S)	Standard						- II	WITH CA	ROUT

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=120mph (3-second gust)
- Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-10-2, Exterior(2R) 7-10-2 to 10-10-2, Interior (1) 10-10-2 to 15-7-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 7,2023

SEAL 036322

THE CONTRACTOR OF STREET

NITTER TRANSPORT

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V2	Valley	1	1	Job Reference (optional)	158787766

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:07 ID:1TM30WWdB68ZBzyWXshLnEzD1Yq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-10-0

Scale	- '	1 • / / /	16
ocale	_	1	·.u

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	20.0	Plate Grip DOL	1.25		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/2	20.0	Lumber DOL	1.25		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	1	10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	1	10.0											Weight: 54 lb	FT = 20%
LUMBER				3)	Truss desig	ned for wind load	ds in the p	lane of the tr	JSS					
TOP CHORD	2x4 SP No.2				only. For stu	uds exposed to v	vind (norm	al to the face),					
BOT CHORD	2x4 SP No.2				see Standar	d Industry Gable	End Deta	ils as applica	ble,					
OTHERS	2x4 SP No.3				or consult qu	alified building o	lesigner a	s per ANSI/T	PI 1.					
BRACING				4)	TCLL: ASCE	7-16; Pr=20.0 p	sf (roof LL	_: Lum DOL=	1.25					
TOP CHORD	Structural woo	od shea	athing directly applie	d or	Plate DOL=1	1.25); Pg=20.0 p	st; Pt=13.9	9 pst (Lum						
	6-0-0 oc purlir	ns.			DUL=1.15 P	late DOL= 1.15 ;	IS=1.0; R0	bugh Cat C; I	ully					
BOT CHORD	Rigid ceiling c	directly a	applied or 10-0-0 oc	5)	Exp., Ce=0.	S, CS = 1.00, Cl = 1								
	bracing.			 Plates checked for a plus or minus 20 degree rotation about its center 										
REACTIONS	(size) 1=1	12-10-0	, 5=12-10-0, 6=12-1	^{0-0,} 6)	Gable requir	es continuous be	ottom chor	d bearing						
	7=1	12-10-0	, 8=12-10-0	7)	Gable studs	spaced at 4-0-0	OC.							
	Max Horiz 1=1	147 (LC	(11)	8)	This truss ha	as been designed	d for a 10.0	0 psf bottom						
	Max Uplift 1=-	-43 (LC	10), 5=-8 (LC 11),	4)	chord live loa	ad nonconcurrer	t with any	other live loa	ids.					
	Max Croy 1-1	-203 (LU	15), δ=-207 (LC 14	⁺⁾ 9)	* This truss h	nas been design	ed for a liv	e load of 20.	Opsf					
		345 (LC	(20), 3=80 (10.23), (26) 7-256 (10.2)		on the bottor	m chord in all are	eas where	a rectangle						
	8=3	350 (LC	25)		3-06-00 tall b	by 2-00-00 wide	will fit betv	veen the bott	om					
FORCES	(lb) - Maximur	m Comr			chord and ar	ny other member	'S.							
TORGES	Tension	in com		10) Provide mec	hanical connecti	on (by oth	ers) of truss	0					
TOP CHORD	1-2=-143/128	. 2-3=-1	42/139. 3-4=-123/1	33.	bearing plate	e capable of with	standing 4	13 Ib uplift at	oint					
	4-5=-109/78	,	,	,	i, o up up lift a	ai juini 5, 207 ID 6	upilit at joi	ini o anu 203	u					
BOT CHORD	1-8=-50/105,	7-8=-49)/94, 6-7=-49/94,	11) This trues is	u. designed in acco	ordonco w	ith the 2018						
	5-6=-49/94				International	Residential Cor	le sections	R502 11 1 2	nd				mini	11111
WEBS	3-7=-172/9, 2-	-8=-280)/270, 4-6=-278/270		R802.10.2 a	nd referenced st	andard AN	NSI/TPI 1.					WAH CA	Ro

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-5-5, Exterior(2R) 6-5-5 to 9-5-5, Interior (1) 9-5-5 to 12-10-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V3	Valley	1	1	Job Reference (optional)	158787767

Scale - 1:35.5

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:07 ID:1TM30WWdB68ZBzyWXshLnEzD1Yq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 $5 \cdot 0 \cdot 3$ $5 \cdot 0 \cdot 3$ $4 \cdot 4 =$ $4 \cdot 4 =$

3x4 💊

1.5x3 🛛

10-0-6

10 Г

3-10-12

0-0-4

4-2-7

Loading	(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in r/r	(loc)	l/defl	L/d	PLATES	GRIP
CLL (1001)	20.0	Plate Grip DOL	1.20			0.27	Vert(LL)	n/a	-	n/a	999	IVIT20	244/190
	10.0	Ren Stress Incr	VES		WB	0.27	Horiz(TL)	0.00	- 3	n/a	999 n/a		
BCU	0.0*	Code	IRC2018	R/TPI2014	Matrix-MSH	0.10	110112(12)	0.00	0	Π/a	11/4		
BCDL	10.0	Cour		5,1112011								Weight: 38 lb	FT = 20 ⁶
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		4) 5)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Plates check	7-16; Pr=20.0 ps .25); Pg=20.0 ps ate DOL=1.15); I ; Cs=1.00; Ct=1. ed for a plus or m	sf (roof LL f; Pf=13.9 s=1.0; Ro 10 hinus 20 o	L: Lum DOL=) psf (Lum bugh Cat C; F degree rotatio	1.25 Fully on					
TOP CHORD	Structural wood she	athing directly applie	d or 6)	about its cen Gable require	ter. es continuous bot	tom chor	d bearing.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	7) 8)	Gable studs This truss ha	spaced at 4-0-0 c s been designed	oc. for a 10.0	0 psf bottom						
REACTIONS	(size) 1=10-0-6, Max Horiz 1=114 (LC Max Uplift 1=-32 (LC 4=-224 (L Max Grav 1=68 (LC (LC 2)	3=10-0-6, 4=10-0-6 C 13) S 32), 3=-32 (LC 31), C 14) 31), 3=68 (LC 32), 4	9) =752 10	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec	ad nonconcurrent has been designe in chord in all area by 2-00-00 wide w hy other members hanical connection canable of withs	with any d for a liv as where vill fit betw s. n (by oth tanding 3	other live loa re load of 20. a rectangle veen the bott ers) of truss	ads. Opsf om to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11	1, 32 lb uplift	at joint 3 and 22	4 lb uplift	at joint 4.	UIII					
TOP CHORD	1-2=-180/326, 2-3=-	173/325	11	International	Residential Code	sections	R502 11 1 2	and					
BOT CHORD	1-4=-259/247, 3-4=-	259/247		R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.						
WEBS	2-4=-577/405		LC	DAD CASE(S)	Standard								
NOTES													
1) Unbalance this design	ed roof live loads have n.	been considered for											11111
 Wind: ASC Vasd=95m 	CE 7-16; Vult=120mph hph; TCDL=4.2psf; BC	(3-second gust) DL=6.0psf; h=25ft; 0	Cat.								AN	OR HOA	ROI

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V4	Valley	1	1	Job Reference (optional)	158787768

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:08 ID:VfwSDsXFyQGQo6Xi5ZCaKSzD1Yp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.2

Plate Offsets (X, Y): [1:0-1-9,0-1-0], [3:0-1-9,0-1-0]

												-		
-oading FCLL (roof) Snow (Pf/Pg) FCDL 3CLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.20 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
JUMBER [OP CHORD 30T CHORD DTHERS 3RACING FOP CHORD 30T CHORD 30T CHORD REACTIONS FORCES TOP CHORD 30T CHORD WEBS NOTES 1) Unbalance- this design II; Exp C; E and C-C Ex 3-7-11, Exp C; E and C-C Ex 3-7-11 zoi vertical left forces & M DOL=1.60 3) Truss desi only. For s see Standa	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 7-2-13 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-13, Max Horiz 1=81 (LC Max Uplift 1=-6 (LC 3) 4=-143 (LI Max Grav 1=67 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-132/195, 2-3=- 1-4=-183/210, 3-4=- 2-4=-351/292 d roof live loads have E 7-16; Vult=120mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (en xterior(2R) 3-7-11 to 6- ne; cantilever left and and right exposed; C- WFRS for reactions sl plate grip DOL=1.60 igned for wind loads in studs exposed to wind ard Industry Gable End	athing directly applie applied or 6-0-0 oc 3=7-2-13, 4=7-2-13 13) 32), 3=-10 (LC 10), C 14) 31), 3=67 (LC 32), 4 pression/Maximum 126/190 183/210 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon 0-5, Interior (1) 3-0-5 5-12, Interior (1) 3-0-5 5-12, Interior (1) 6-5- right exposed ; end C for members and hown; Lumber in the plane of the trus (normal to the face), d Details as applicab	4) 5) d or 6) 7) 8) 9) =497 10) 11) 11) LO	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Plates check about its cen Gable studs : This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 10 lb uplift at This truss is a International R802.10.2 ar AD CASE(S)	7-16; Pr=20.0 ps .25); Pg=20.0 ps ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 ed for a plus or m ter. es continuous bott spaced at 4-0-0 o s been designed t d nonconcurrent v as been designed n chord in all area y 2-00-00 wide wi y other members. hanical connection capable of withst joint 3 and 143 lb designed in accor Residential Code d referenced star Standard	f (roof LL ; Pf=13.9 ;=1.0; Rc 0 inus 20 c from chor c. for a 10.0 with any i for a liv s where ill fit betw n anding 6 uplift at dance wi sections ndard AN	: Lum DOL=' psf (Lum ough Cat C; F legree rotatio d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to lb uplift at joi joint 4. th the 2018 R502.11.1 a SI/TPI 1.	I.25 ully n ds. opsf om nt 1, nd		Contraction of the second seco		ORTH CA ORTHESS SEA 0363	L 22 EER-FR	

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI

11111111 June 7,2023

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V5	Valley	1	1	Job Reference (optional)	158787769

TCDL

BCLL

BCDL

WFBS

WFBS

1)

Run; 8.71 S May 19 2023 Print; 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:08 ID:rZbjEVKxk3wzh8VtU84tQQzD0b5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V6	Valley	1	1	Job Reference (optional)	158787770

TCDL

BCLL

BCDL

WEBS

NOTES 1)

2)

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:08 ID:CaXEKHfWcVW??fldhfOwkZzD1Yf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cua, Eric DU-Roof	
Q015302-R	V7	Valley	1	1	Job Reference (optional)	158787771

5-7-13

5-7-13

Load Star, Lavonia, GA - 30553.

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Wed Jun 07 07:56:08 ID:CaXEKHfWcVW??fldhfOwkZzD1Yf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x3 u

11-3-9

Page: 1

11-3-9 10-10-6 5-2-10 0-5-3 4x4 = 2 10 3 4

3x4 🔊

3x4 🍫		

9

12 8 ┌

Scale = 1:33.7

Plate Offsets (X, Y): [2:0-2-0,0-2-4]

3-5-12

4-0-C

3-9-7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.31 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 10-0-0 oc purlins. Rigid ceiling directly a bracing. (size) 1=11-3-9, 3 Max Horiz 1=103 (LC Max Uplift 1=-49 (LC 3 4=-225 (LC Max Grav 1=64 (LC 3 (LC 2)	thing directly applie applied or 6-0-0 oc 3=11-3-9, 4=11-3-9 13) 32), 3=-49 (LC 31), 14) 11), 3=64 (LC 32), 4	4 d or 6 7 8 9 =883 1	 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Plates check about its cen Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall h chord and ar Provide mec 	7-16; Pr=20.0 psf .25); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 ed for a plus or mir ter. es continuous botto spaced at 4-0-0 oc s been designed for d nonconcurrent w has been designed in chord in all areas y 2-00-00 wide will by other members. hanical connection	(roof Ll Pf=13.9 =1.0; Ro hus 20 o om chor or a 10. vith any for a liv where l fit betw (by oth	.: Lum DOL= b psf (Lum bugh Cat C; F degree rotatic d bearing. D psf bottom other live loa e load of 20.0. a rectangle veen the bott ers) of truss t D b welft at	1.25 Fully on ds. Opsf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Windt ASC	(lb) - Maximum Comp Tension 1-2=-181/432, 2-3=-1 1-4=-332/239, 3-4=-3 2-4=-692/379 ed roof live loads have b 1. 2: 7-16: Vult=120mph (ression/Maximum 79/432 32/239 been considered for 3-second gust)	1 L	0 earing plate 1, 49 lb upliff 1) This truss is International R802.10.2 ai OAD CASE(S)	capable of withsta at joint 3 and 225 designed in accord Residential Code s nd referenced stand Standard	lb uplift ance w sections dard AN	at joint 4. at joint 4. ith the 2018 i R502.11.1 a ISI/TPI 1.	und				WITH CA	ROUT

- 2 Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-8-3, Exterior(2R) 5-8-3 to 8-8-3, Interior (1) 8-8-3 to 11-3-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١

minin June 7,2023

SEAL 036322

- ITTE CONTRACTOR

Mannannan an

