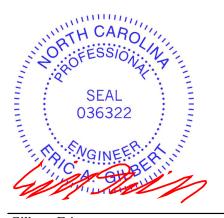


Trenco 818 Soundside Rd Edenton, NC 27932


Re: J0623-3101 Sterling (Rec Room)

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I58961500 thru I58961511

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

June 15,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

J0623-3101 ET1 Floor Supported Gable 1 1 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Jun 15 08:04:30 2023 Pag ID:NpSit5YZ_4qsCWpC5omWUAyBIVRfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC 0-1-8 0-1-6 3x6 FP = 3x6 FP =	Job		Truss				Tr	uss Ty	pe						Qty		Ply		Sterling	g (Rec	Room)					150	004500
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Jun 15 08:04:30 2023 Pag ID:NpSit5YZ_4qsCWpC5omWUAyBIVRfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC 0-1-8 0-1-8 0-1-6 3x6 FP = 3x6 FP =	J0623-3101		ET1				FI	oor Su	oported	d Gabl	Э				1												150	961500
ID:NpSit5YZ_4qsCWpC5omWUAyBIVRfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC 0-1-8 Scale: : 3x6 FP = 3x6 FP =																												
3x6 FP = 3x6 FP =	Comtech, Inc, F	ayettev	ille, NC	- 2831	14,									ID:NpS	it5YZ_4													
3x6 FP = 3x6 FP =	0-1-8																										0-1	-8
																											Scale	3/16"=1'
												_			0.0													
										•	SX6 FP	_			3X6	FP —												
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	1 2 3	4	5	6	7	8	9	10	11	12	13 1	4 ´	15 16	17	18 1	9 20	0 21	22	23	24	25	26	27	28	29	30	31 32	
																												66 6-
		*****					*****			****									*****		****			*****			*****	
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33	64 63 62	2 61	60	59	58	57	56	55	54 5	3 52	51	50	49	48	47 4	46 48	5 44	43	42	41	40	39	38	37	36	35	34 33	
3x4 = 3x6 FP = 3x6 FP = 3x4 =	3x4 =								3x6	FP =					3x6	FP =	=										3x4	=

			38-5-0 38-5-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. i Vert(LL) n/: Vert(CT) n/: Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 6-0-0	oc purlins,

BOT CHORD

WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 38-5-0.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 64, 33, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 52, 51, 50, 49, 48, 47, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss			Truss	Туре					Qty	Ply	Ste	rling (Rec I	Room)				15	0004504
J0623-3101	ET2			Floor	Supporte	ed Gable)			1	1							10	8961501
													Reference						
Comtech, Inc, Fa	etteville, NC	- 28314,						I	ID:NpSit5									31 2023 Pa rCDoi7J4z	
0- <u>1</u> -8																		0-	1-8 H
																		Scal	e = 1:46.1
										3x6 FP	=								
1 2	3 4	5	6	7	8	9	10	11	12	13 14	4 15	16	17	18	19	20	21	22 23	
	8 8	9	8	e	8	e	8	8	e		9	-	8	9	8	8	8	e e a	48 0-2-1
1 0 																			
46 45	44 43	42	41	40	39	38	3736	35	34	33	32	31	30	29	28	27	26	25 24	1
3x4 =	40	-12		.5			$x_{6} FP =$		34	23	02	51	50	20	20		20		. =

			27-7-8 27-7-8			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a - n/a 999	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	2 11	oc purlins,

WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 27-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 46, 24, 45, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

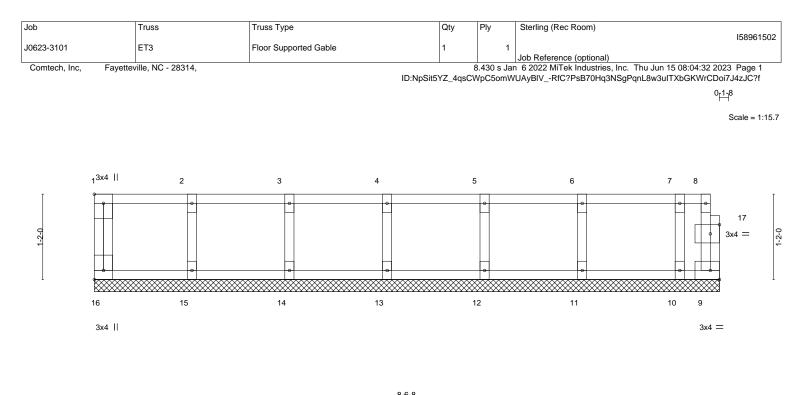
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L			8-6-8			
	I			8-6-8			I
Plate Offset	ts (X.Y)	[1:Edge,0-1-8], [16:Edge,0-1-8], [17:0-1-	8.0-1-8]				
			· ·				
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/a	a - n/a 999	MT20	244/190
TCDL	10.0	Lumber DOL 1.00	BC 0.02	Vert(CT) n/a	a - n/a 999		
BCLL	0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00) 9 n/a n/a		
BCDL	5.0	Code IRC2015/TPI2014	Matrix-R			Weight: 39 lb	FT = 20%F, 11%E
LUMBER-				BRACING-			
TOP CHOR	RD 2x4 SF	P No.1(flat)		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0	oc purlins,
BOT CHOR	RD 2x4 SF	P No.1(flat)			except end verticals.		
WEBS	2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.	

REACTIONS. All bearings 8-6-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Sterling (Rec Room)		158961503
J0623-3101	F1	Floor	5	1			100001000
					Job Reference (optional)		
Comtech, Inc, Fayette	ville, NC - 28314,				n 6 2022 MiTek Industries, Inc. Thu		
		ID:NpS	it5YZ_4qsC\	NpC5omW	/UAyBIVRfC?PsB70Hq3NSgPqnL8	3w3ulTXbGKWrCD	oi7J4zJC?f
0-1-8							
8 2-6-0	1-8-4		2-4-0		1-6-0 2-0)-4 📊 1-6-0 📊	0-1-8
		Here and the second sec					Scale: 3/16"=1'
		$3x10 = 3x4 \parallel$		3x6 FP =			
3x6 =	3x4 =	3x6 FP = 3x6 =		3x4	= 3x4 3x4 =	3x4 =	
1 2	3 4 5	6 7 8 9 10	11	12 13	14 15 16	17 18	19
d.			P				
							34 0-2-1
4			0 2		<u> </u>		
32	31 30 29	28 27 26	25	24	23 22	21	20
3x6 =	3x4 = 3x10 =	3x6 FP = 3x10 = 3x4 =	3x4 =	=	3x10 = 3x4 =	3x4 =	3x6 =
				3x6 FP=	=		

	14-11-4 14-11-4		<u> </u>		31-9-4 4-0-0	34-3-8 2-6-4	<u>38-5-0</u> 4-1-8
Plate Offsets (X,Y)	[4:0-1-8,Edge], [21:0-1-8,Edge], [22:0-1	-8,Edge], [25:0-1-8,Edge],	[26:0-1-8,Edge], [31:0-	1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.62 BC 0.55 WB 0.67 Matrix-S	- ()	29-30 >999 31-32 >799	L/d 480 360 n/a	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end ver	•	tly applied or 6-0-0 o	oc purlins,

REACTIONS. All bearings 0-5-0 except (jt=length) 27=0-3-8, 23=0-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) except 32=718(LC 14), 27=1713(LC 16), 23=1378(LC 4), 20=507(LC 5)

- TOP CHORD
 2-3=-2261/0, 3-4=-2261/0, 4-5=-1868/0, 5-6=-1868/0, 6-8=0/1828, 8-9=0/1828, 9-10=-1299/388, 10-11=-1299/388, 11-13=-1299/388, 13-14=0/1140, 14-15=0/1140, 15-16=-1097/57, 16-17=-1097/57, 17-18=-1097/57

 BOT CHORD
 31-32=0/1502, 30-31=0/2261, 29-30=0/2261, 27-29=-358/661, 26-27=-797/551, 12-1097/57
- 25-26=-388/1299, 23-25=-420/661, 22-23=-385/631, 21-22=-57/1097, 20-21=0/960

 WEBS
 8-27=-293/0, 14-23=-298/0, 2-32=-1609/0, 2-31=0/819, 6-27=-2107/0, 6-29=0/1412, 5-29=-296/0, 4-29=-780/0, 13-23=-1446/0, 13-25=0/751, 9-27=-1640/0, 9-26=0/1033, 10-26=-324/0, 15-23=-1434/0, 18-20=-1026/0, 15-22=0/760, 16-22=-341/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

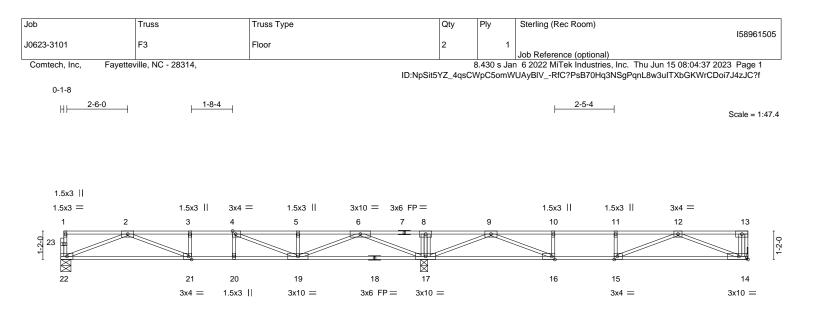
5) CAUTION, Do not erect truss backwards.

June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


Identified 12:10-0 4-0-0 2-6-4 4-1-E Plate Offsets (X,Y) [4:0-1-8,Edge], [16:0-1-8,Edge], [21:0-1-8,Edge], [22:0-1-8,Edge], [25:0-1-8,Edge], [26:0-1-8,Edge], [26:0-1-8,Edge], [26:0-1-8,Edge] [31:0-1-8,Edge] Plate Grip LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) 1/defl L/d TCLL 40.0 Plate Grip DOL 1.00 TC 0.85 Vert(LL) -0.17 29-30 >999 480 MT20 244/1 TCDL 10.0 Lumber DOL 1.00 BC 0.59 Vert(CT) -0.22 31-32 >794 360 BCLL 0.0 Rep Stress Incr NO WB 0.68 Horz(CT) 0.04 20 n/a n/a	Job	Truss	Truss Type	Qty	Ply	Sterling (Rec Room)	100001
Content, Inc. The spectratic NC - 2814, Determined in the spectra of the spectr	J0623-3101	F2	Floor	1		1		158961504
$\begin{bmatrix} 1.414 \\ 1.$	Comtech. Inc. Fav	etteville. NC - 28314.			8.430 s J			:04:36 2023 Page 1
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$, ··,	,		ID:NpSit5YZ_4q				
$\begin{aligned} & \sum_{k=1}^{k+1} \sum_{k=1}^{k$		4.0.4		2.4.0			100 004 40	0 0 4 0
$\frac{368}{9} = \frac{344}{9} = \frac{366}{9} = \frac{366}{9} = \frac{366}{9} = \frac{366}{9} = \frac{366}{9} = \frac{346}{9} = 34$	∦⊢			2-4-0				0-1-8 Scale: 3/16"=
$\frac{366}{9} = \frac{346}{9} = \frac{346}{9} = \frac{366}{9} = \frac{366}{9} = \frac{366}{9} = \frac{346}{9} = 34$			2v10 — 2v1 II		3v6 ED-	_		
Image: space of the s	3x6 =	3x4 =		.6 =			5x8 3x4 =	3x4 =
B B		3 4 5	5 6 7 8 9	9 10 1	1 12 1	3 1435	15 16 17	18 19
B B	N3							34
$345 \qquad 344 $	Ŕ			1%	21		<u>ra</u>	×
14:114 27.94 31.94 34.38 36.54 Pate Offsets (X/Y)- 14:01-8.Edgel, [21:0-18.Edgel, [22:0-18.Edgel, [25:0-18.Edgel, [25:0-18.Edgel, [21:0-18.Edgel, [25:0-18.Edgel, [25:0-18.Edgel, [25:0-18.Edgel, [21:0-18.Edgel, [25:0-18.Edgel, [25:0-18.Edgel, [21:0-18.Edgel, [25:0-18.Edgel,								20 3x6 =
International control in the international control internatecont intereconal control internation internation internation inte	3x0 —	3x4 —	10 - 3x0 FF - 3x10 -	3x4 — 3x			5x4 — 5x4 —	3x0 —
Bite Offsets (X,Y)- [4:0-1-8,Edge], [1:0-1-8,Edge], [2:0-1-8,Edge], [2:0-1-8,Edge], [2:0-1-8,Edge], [2:0-1-8,Edge], [2:0-1-8,Edge], [2:0-1-8,Edge] LOADING (ps) TCLL SPACING- 2:0-0 Net Grip DOL C3. 1:00 1:00 Net Grip DOL DEFL 1:00 Net Grip DOL I/d 1:00 Net Grip DOL PLATES 0:59 Net (CT) Out of the top of th								38-5-0
LOADING (pst) TCLL 40.0 TCL 40.0 TCL 40.0 CCL 0.0 CCL 0.0 CCL 0.0 Rep Stress Incr NO CCL 0.0 Rep Stress Incr NO Rep Stre	Plate Offsets (X,Y)		dge], [21:0-1-8,Edge], [22:0-1-8.Edg		6:0-1-8,Edge		0 2-6-4	4-1-8
LUMBER- TOP CHORD 2x4 SP No.1 (flat) BOT CHORD 2x4 SP No.1 (flat) BOT CHORD 2x4 SP No.1 (flat) WEBS 2x4 SP No.3 (flat) BOT CHORD X4 SP No.1 (flat) WEBS 2x4 SP No.3 (flat) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 0-5-0 except (jt=length) 27=0-3-8, 23=0-3-8. (lb) - Max Grav All reactions 250 lb or less at joint(s) except 32=714(LC 14), 27=1701(LC 16), 23=1946(LC 4), 20=522(LC 5) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2242(0, 3-4=-2242(0, 4-5=-1837/0, 5-6=-1837/0, 6-8=0/1867, 8-9=0/1867, 9-10=-1190/497, 10-11=-1190/497, 13-14=0/1414, 14-15=0/1327, 15-16=-1187/0, 16-17=-1183/0, 17-18=-1183/0 BOT CHORD 31-32=0/1494, 30-31=0/2242, 29-300-02242, 27-29=-391/623, 26-27=-865/485, 25-26=-497/1190, 23-25=-574/499, 22-23=-215/803, 21-22=0/1183, 20-21=0/1020 WEBS 8-27=-291/0, 14-23=-756/0, 2-32=-1500/0, 2-31=0/808, 6-27=-2115(0, 6-29=0/1418, 5-29=-295/0, 4-29=-792/0, 13-23=-1518/0, 13-25=0/803, 11-25=-263/0, 9-27=-1599/0, 9-26=0/974, 10-26=-308/0, 15-23=-11768/0, 18-20=-1072/0, 15-22=0/661, 16-22=-291/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 1.5x3 MT20 unless otherwise indicated. 3) Plates checked for a plus or minus 1 degree rotation about its center. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0-0 c cand fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not reter truss backwards. 6) CHAUTION, Do not reter truss backwards. 6) CHAUTION, Do not reter truss backwards. 6) CHAUTION, Do not reter truss achowards. 6) CHAUTION, Do not reter truss backwards. 6) CHAUTION,	LOADING (psf) TCLL 40.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.00 TC 0.85 1.00 BC 0.59	DEFL. Vert(LL) -0 Vert(CT) -0	in (loc) 0.17 29-30 0.22 31-32	l/defl L/d >999 480 >794 360	-	GRIP 244/190
TOP CHORD 2x4 SP No.1(flat) DOT CHORD 2x4 SP No.1(flat) TOP CHORD 2x4 SP No.1(flat) EX4 SP No.3(flat) REACTIONS. All bearings 0-5-0 except (jt=length) 27=0-3-8, 23=0-3-8. (b) Max Grav All reactions 250 lb or less at joint(s) except 32=714(LC 14), 27=1701(LC 16), 23=1946(LC 4), 20=522(LC 5) FORCES. (b) Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-32242/0, 3-42242/0, 4-51837/0, 5-61837/0, 6-8=0/1867, 9-10=1190/497, 10-11=-1190/497, 11-13=-1193/0 BOT CHORD 31-32=-01494, 30-31=-02242, 27-30=-391/623, 26-27=-865/485, 25-26-497/1190, 2-32=-574/499, 30-31=-02242, 27-29=-391/623, 26-27=-865/485, 52-26=-497/1190, 2-32=-574/499, 30-23=-1600/0, 2-31=0/808, 6-27=-2115/0, 6-29=0/1418, 5-29=-295/0, 4-29=-792/0, 13-23=-1518/0, 13-25=0/803, 11-25=-20/163, 9-27=-1599/0, 9-26=0/974, 10-28=-308/0, 15-23=-1768/0, 18-20=-1072/0, 15-22=0/661, 16-22=-291/0 NOTES- 1) Unbalanced flor live loads have been considered for this design. 2) All plates are 1.5X3 MT20 unless otherwise indicated. 3) Plates checked for a plus or minus 1 degree rotation about its center. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131* X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUITION, Do not erect truss backwards. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of suck connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of suck connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of suck connection device(s) is the responsibility of otheres. 7) In the LOAD CASE(S) shall be proxide su	BCDL 5.0	Code IRC2015/TPI2	014 Matrix-S				Weight: 188 lb	FT = 20%F, 11%E
 (lb) - Max Grav All reactions 250 lb or less at joint(s) except 32=714(LC 14), 27=1701(LC 16), 23=1946(LC 4), 20=522(LC 5) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2242(0, 3-4=-2242(0, 4-5=-1837/0, 5-6=-1837/0, 6-8=-01/867, 8-9=0/1867, 9-10=-1190/497, 10-11=-1190/497, 11-13=-1190/497, 13-14=0/1414, 14-15=0/1327, 15-16=-1187/0, 16-17=-1183/0, 17-18=-1183/0 BOT CHORD 31-32=0/1494, 30-31=0/2242, 29-30=0/2242, 27-29=-391/623, 26-27=-865/485, 25-26=-497/1190, 23-25=-574/499, 22-23=-215/833, 21-22=0/1183, 20-21=0/1002 WEBS 8-27=-291/0, 14-23=-756/0, 2-32=-1600/0, 2-31=-0/808, 6-27=-2115/0, 6-29=0/1418, 5-29=-295/0, 4-29=-792/0, 13-23=-1518/0, 13-25=-0/803, 11-25=-263/0, 9-27=-1599/0, 9-26=0/974, 10-26=-308/0, 15-23=-1768/0, 18-20=-1072/0, 15-22=-0/661, 16-22=-291/0 NOTES- Unbalanced floor live loads have been considered for this design. All plates are 1.5x3 MT20 unless otherwise indicated. Plates checked for a plus or minus 1 degree rotation about its center. Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 c cand fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. CAUTION, Do not erect truss backwards. 	TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.1(flat)		TOP CHORD	except	t end verticals.		oc purlins,
TOP CHORD 2-3=-2242/0, 3-4=-2242/0, 4-5=-1837/0, 5-6=-1837/0, 6-8=0/1867, 8-9=0/1867, 9-10=-1190/497, 10-11=-1190/497, 11-13=-1190/497, 13-14=0/1414, 14-15=0/1327, 15-16=-1187/0, 16-17=-1183/0 BOT CHORD 31-32=0/1494, 30-31=0/2242, 29-30=0/2242, 27-29=-391/623, 26-27=-865/485, 25-26=-497/1190, 23-25=-574/499, 22-23=-215/833, 21-22=0/1183, 20-21=0/1002 WEBS 8-27=-291/0, 14-23=-756/0, 2-32=-1600/0, 2-31=0/808, 6-27=-2115/0, 6-29=0/1418, 5-29=-295/0, 4-29=-792/0, 13-23=-1518/0, 13-25=0/803, 11-25=-263/0, 9-27=-1599/0, 9-26=0/974, 10-26=-308/0, 15-23=-1072/0, 15-22=0/661, 16-22=-291/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 1.5x3 MT20 unless otherwise indicated. 3) Plates checked for a plus or minus 1 degree rotation about its center. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. 5) CAUTION, Do not erect truss backwards. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section, loads apolied to the face of the truss are noted as front (F) or back (B).		rav All reactions 250 lb or		4), 27=1701(LC 16), 23	3=1946(LC 4	4),		
 WEBS 8-27=-291/0, 14-23=-756/0, 2-32=-1600/0, 2-31=0/808, 6-27=-2115/0, 6-29=0/1418, 5-29=-295/0, 4-29=-792/0, 13-23=-1518/0, 13-25=-0/803, 11-25=-263/0, 9-27=-1599/0, 9-26=0/974, 10-26=-308/0, 15-23=-1768/0, 18-20=-1072/0, 15-22=0/661, 16-22=-291/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 1.5x3 MT20 unless otherwise indicated. 3) Plates checked for a plus or minus 1 degree rotation about its center. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0- oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section. loads applied to the face of the truss are noted as front (F) or back (B). 	TOP CHORD 2-3=- 9-10= 15-16 BOT CHORD 31-32	2242/0, 3-4=-2242/0, 4-5=- =-1190/497, 10-11=-1190/49 6=-1187/0, 16-17=-1183/0, 1 2=0/1494, 30-31=0/2242, 29	1837/0, 5-6=-1837/0, 6-8=0/1867, 8)7, 11-13=-1190/497, 13-14=0/1414 7-18=-1183/0 -30=0/2242, 27-29=-391/623, 26-27	-9=0/1867, , 14-15=0/1327, 7=-865/485,				
 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 1.5x3 MT20 unless otherwise indicated. 3) Plates checked for a plus or minus 1 degree rotation about its center. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section. loads applied to the face of the truss are noted as front (F) or back (B). 	WEBS 8-27= 5-29=	=-291/0, 14-23=-756/0, 2-32 =-295/0, 4-29=-792/0, 13-23	=-1600/0, 2-31=0/808, 6-27=-2115/ =-1518/0, 13-25=0/803, 11-25=-263	0, 6-29=0/1418, 3/0, 9-27=-1599/0,				
Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 635 lb down at 28-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section. loads applied to the face of the truss are noted as front (F) or back (B).	 Unbalanced floor live All plates are 1.5x3 li Plates checked for a 	MT20 unless otherwise india a plus or minus 1 degree rota	cated. ation about its center.	truss with 3-10d (0.131	" X 3") nails	5.		
LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 20-32=-10, 1-19=-100 Concentrated Loads (lb) Vert: 35=-570(F)	5) CAUTION, Do not e 6) Hanger(s) or other c chord. The design/s	rect truss backwards. connection device(s) shall be selection of such connection	provided sufficient to support conc device(s) is the responsibility of oth	entrated load(s) 635 lb hers.	down at 28		PUP RTH C	SIGN
Vert: 35=-570(F)	I) Dead + Floor Live (b Uniform Loads (plf) Vert: 20-32:	ealanced): Lumber Increase =-10, 1-19=-100	=1.00, Plate Increase=1.00				SE 036	
A. GIL							A.	NEER

June 15,2023

30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	14-11-4 14-11-4					
Plate Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1-4	8,Edge], [21:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.86 BC 0.68 WB 0.66 Matrix-S	Vert(LL) -0.27	n (loc) l/defl L/d 7 14-15 >580 480 0 14-15 >394 360 5 14 n/a n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o 6-0-0 oc bracing: 17-19.16-17	r 10-0-0 oc bracing,	. ,
REACTIONS. (size Max G	e) 22=0-5-0, 17=0-3-8, 14=Mechanical Grav 22=744(LC 10), 17=1768(LC 1), 14=					

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2410/0, 3-4=-2410/0, 4-5=-2116/0, 5-6=-2116/0, 6-8=0/1686, 8-9=0/1686, 9-10=-1854/0, 10-11=-1854/0, 11-12=-1854/0

 BOT CHORD
 21-22=0/1568, 20-21=0/2410, 19-20=0/2410, 17-19=-175/960, 16-17=-510/903, 15-16=0/1854, 14-15=0/1384

 WEBS
 8-17=-310/0, 2-22=-1680/0, 2-21=0/909, 3-21=-255/0, 6-17=-2119/0, 6-19=0/1383, 5-19=-303/0, 4-19=-708/0, 9-17=-1847/0, 9-16=0/1276, 10-16=-391/0, 12-14=-1480/0, 12-15=-115/507

NOTES-

1) Unbalanced floor live loads have been considered for this design.

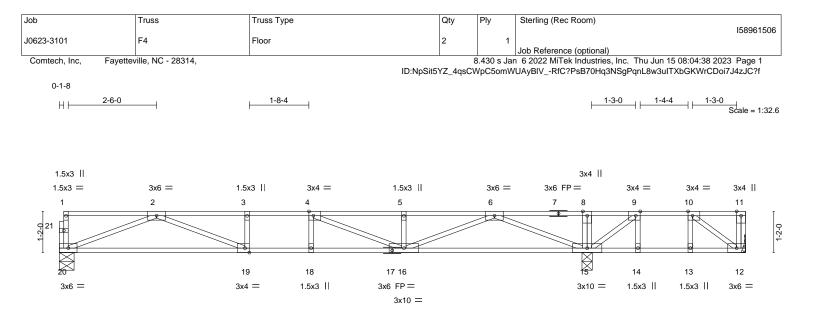
2) All plates are 3x6 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

June 15,2023

ENGINEERING BY A MITEK Atfillate B18 Soundside Road Edenton, NC 27932

L		14-11-4						19-5-0
Plate Offsets (X,	Y) [4:0-1-8,Edge], [9:0-1-8,Edge], [10:0-1-	14-11-4 8 Edgel [19:0-1-8 Edgel				0-1'-8	3 1-4-6 2	-11-14
Fiale Oliseis (A,	1) [4.0-1-0,Euge], [9.0-1-0,Euge], [10.0-1-							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.58	Vert(LL) -0.19	9 16-18	>910	480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.70	()	5 16-18	>701	360		
BCLL 0.0	Rep Stress Incr YES	WB 0.60	Horz(CT) 0.03	3 15	n/a	n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S					Weight: 97 lb	FT = 20%F, 11%E
LUMBER-			BRACING-					
TOP CHORD	x4 SP No.1(flat)		TOP CHORD	Structur	al wood s	heathing dir	rectly applied or 6-0-0	oc purlins,
BOT CHORD	x4 SP No.1(flat)			except e	end vertic	als.		
WEBS 2	ex4 SP No.3(flat)		BOT CHORD	Rigid ce	eiling direo	tly applied o	or 6-0-0 oc bracing.	
REACTIONS.	(aiza) 12 Machanical 20 0 5 0 15 0 2	0						
	(size) 12=Mechanical, 20=0-5-0, 15=0-3- Max Uplift 12=-162(LC 3)	0						
	Max Grav $12=102(LC 3)$ Max Grav $12=180(LC 4), 20=742(LC 10), 15=$	1355(LC 1)						
FORCES. (lb)	Max. Comp./Max. Ten All forces 250 (lb) o	r less except when shown.						
TOP CHORD	2-3=-2399/0, 3-4=-2399/0, 4-5=-2094/0, 5-6=	-2094/0, 6-8=0/978, 8-9=0	/973,					
	9-10=-114/412							
BOT CHORD	19-20=0/1563, 18-19=0/2399, 16-18=0/2399	, 15-16=0/944, 14-15=-412	/114,					
	13-14=-412/114, 12-13=-412/114		40.007/0					
WEBS	2-20=-1674/0, 2-19=0/920, 3-19=-253/0, 6-1	5=-1972/0, 6-16=0/1261, 5-	-16=-307/0,					
	4-16=-579/0, 10-12=-141/509, 9-15=-838/0							

NOTES-

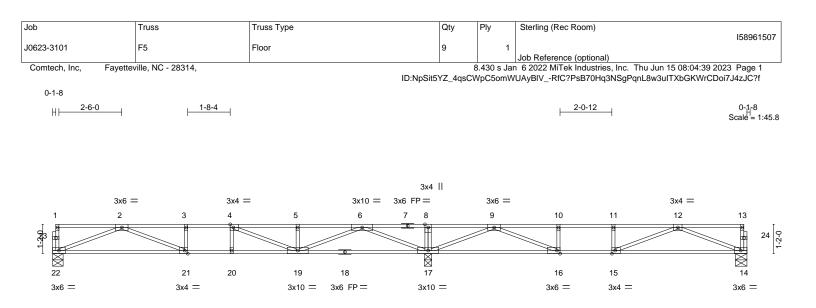
1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 162 lb uplift at joint 12.
5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	14-11-4		I	12-8-4		
Plate Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1-	8,Edge], [21:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYES	CSI. TC 0.76 BC 0.60 WB 0.66	Vert(LL) -0.2	in (loc) l/defl L/d 22 14-15 >677 480 33 14-15 >452 360 04 14 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 132 lb	FT = 20%F, 11%E
	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0 o	oc purlins,
WEBS 2x4 S	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied o	r 6-0-0 oc bracing.	

REACTIONS. (size) 22=0-5-0, 17=0-3-8, 14=0-5-8

14-11-4

Max Grav 22=730(LC 10), 17=1751(LC 1), 14=619(LC 4)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2331/0, 3-4=-2331/0, 4-5=-1987/0, 5-6=-1987/0, 6-8=0/1699, 8-9=0/1699,
 9-10=-1674/32, 10-11=-1674/32, 11-12=-1674/32 21-22=0/1533, 20-21=0/2331, 19-20=0/2331, 17-19=-198/800, 16-17=-600/793, BOT CHORD 15-16=-32/1674, 14-15=0/1250 8-17=-299/0, 2-22=-1643/0, 2-21=0/862, 6-17=-2083/0, 6-19=0/1393, 5-19=-301/0, WFBS 4-19=-723/0, 9-17=-1772/0, 9-16=0/1219, 10-16=-370/0, 12-14=-1339/0, 12-15=-154/457

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

27-7-8

June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	Sterling (Rec F	Room)		
J0623-3101	F6	Floor		5	1				158961508
				5		Job Reference			
Comtech, Inc, Faye	tteville, NC - 28314,		15.1	0.00				nc. Thu Jun 15 08:04:	
			ID:r	vpSit5YZ_4qs	CvvpC5omv	UAYBIVRIC?F	SB10Hd3NS	SgPqnL8w3uITXbGKV	/rCD0i/J4zJC?f
0-1-8									
H ⊢ 1-3-0			1-5-8	-					0-1-8 Scale = 1:34.3
1.5x3					3x4	= 1.5x3			1.5x3
1.5x3 = 4x6 =	= 3x6 = 1.8	ix3 3x4 =	3x4 ≡	3x4 =		3x6 FP =	3x6 =	4x6 =	1.5x3 =
1 2	3 4	5	6	7	8	9 10	11	12	13
									28
927							\sim	$\langle // \rangle$	
							•		
		3 22 21		19 18		17	16	15	
3x6 =		$3 \text{ M18AHS FP} = 3 \times 6 \parallel$	2x6 2	2x6 3x	6	6x6 =	3x4 =	4x6 =	3x6 =
	6	(6 =							

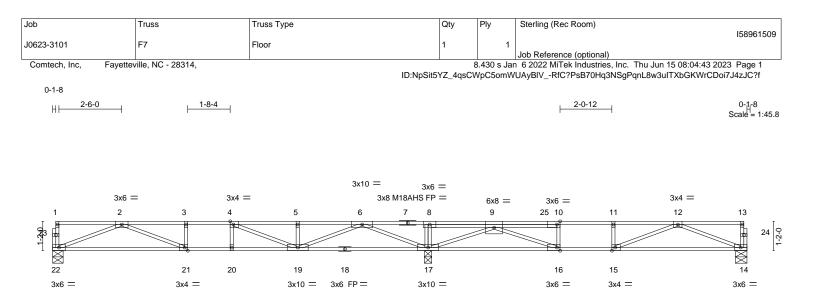
F	2-9-0 7-10-8			12-1-0		17-2-8			19-11-8	
2-9-0 5-1-8			4-2-8			5-1-8	2-9-	2-9-0		
Plate Off	sets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge], [19:0-3-0	0,0-0-0], [20:0-3-0,Edge]							
LOADIN TCLL TCDL	G (psf) 40.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00	CSI. TC 0.42 BC 0.39		in (loc) 0.31 19-20 0.42 19-20	>769	L/d 480 360	PLATES MT20 M18AHS	GRIP 244/190 186/179	
BCLL	0.0	Rep Stress Incr YES	WB 0.60	Horz(CT)	0.06 14	n/a	n/a			
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S					Weight: 118 lb	FT = 20%F, 11%E	
LUMBER- BRACING- TOP CHORD 2x4 SP 2400F 2.0E(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins, except end verticals. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 26=0-5-0, 14=0-5-8 Max Grav 26=1078(LC 1), 14=1078(LC 1)								oc purlins,		
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2314/0, 3-4=-4115/0, 4-5=-4115/0, 5-6=-5118/0, 6-7=-5398/0, 7-8=-5118/0, 8-10=-4115/0, 10-11=-4115/0, 11-12=-2314/0										
BOT CH	BOT CHORD 25-26=0/1351, 23-25=0/3312, 21-23=0/4786, 20-21=0/5398, 19-20=0/5398, 18-19=0/5398, 17-18=0/4786, 15-17=0/3312, 14-15=0/1351									
WEBS		12-14=-1693/0, 2-26=-1693/0, 12-15=0/1254, 2-25=0/1254, 11-15=-1298/0, 3-25=-1298/0, 11-17=0/1002, 3-23=0/1002, 8-17=-838/0, 5-23=-838/0, 8-18=0/513,								

5-21=0/513, 7-18=-669/124, 6-21=-669/124, 6-20=-267/283, 7-19=-267/283

NOTES-

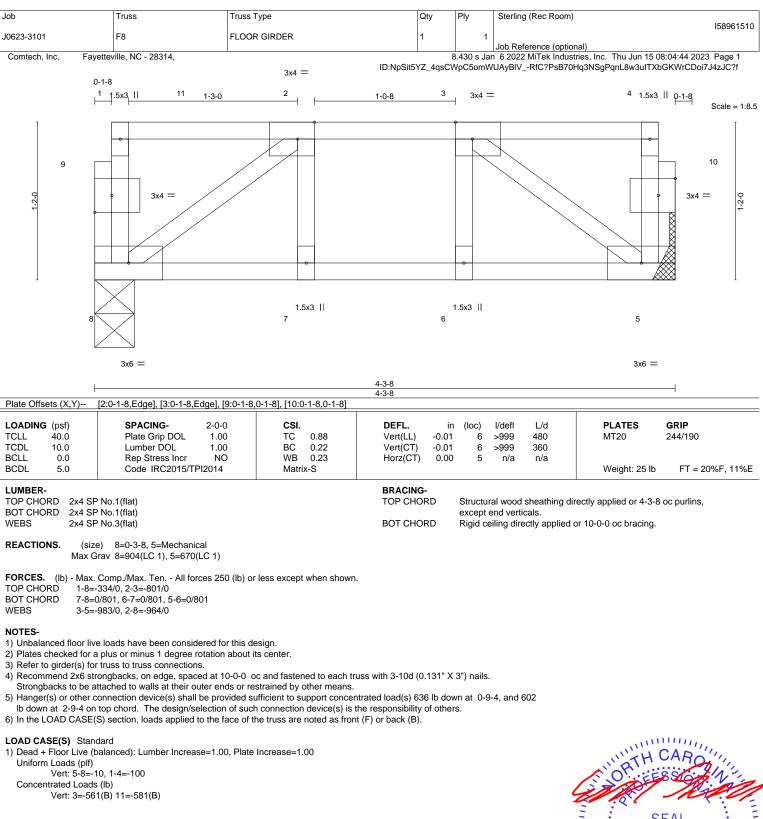
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.


3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

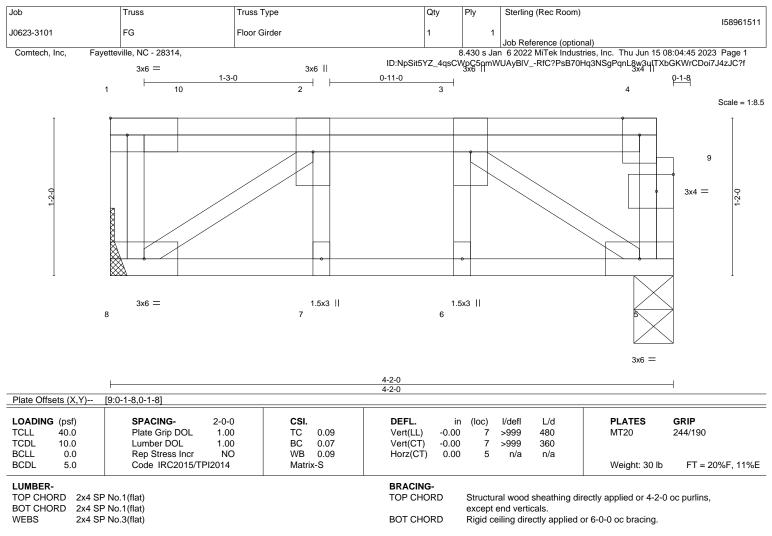
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


 	<u>14-11-4</u> 14-11-4				<u>27-7-8</u> 12-8-4					
Plate Offsets (X,Y)	[4:0-1-8,Edge], [10:0-1-8,Edge], [15:0-1	-8,Edge], [16:0-1-8,Edge]], [21:0-1-8,Edge]		12 0 4					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.88 BC 0.68 WB 0.77 Matrix-S	Vert(LL) -0.2	in (loc) l/defl 20 19-20 >911 28 14-15 >529 04 14 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 139 lb	GRIP 244/190 186/179 FT = 20%F, 11%E			
7-13: BOT CHORD 2x4 S WEBS 2x4 S	P No.3(flat)	BRACING- TOP CHORD BOT CHORD	except end ver	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.						
REACTIONS. (size) 22=0-5-0, 17=0-3-8, 14=0-5-8 Max Grav 22=734(LC 24), 17=1986(LC 1), 14=673(LC 4) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2355/0, 3-4=-2355/0, 4-5=-2023/59, 5-6=-2023/59, 6-8=0/2204, 8-9=0/2170, 9-10=-2005/278, 10-11=-2000/275, 11-12=-2000/275 BOT CHORD 21-22=0/1543, 20-21=0/2355, 19-20=0/2355, 17-19=-535/852, 16-17=-824/876, 15-16=-275/2000, 14-15=0/1386 WEBS 8-17=-340/0, 2-22=-1654/0, 2-21=0/876, 6-17=-2257/0, 6-19=0/1443, 5-19=-300/0, 4-19=-852/0, 9-17=-2288/0, 9-16=0/1620, 10-16=-516/0, 12-14=-1485/0, 12-15=-306/663										
 All plates are MT20 All plates are 1.5x3 Plates checked for Recommend 2x6 st Strongbacks to be a CAUTION, Do not a Hanger(s) or other 19-6-12 on top cho In the LOAD CASE LOAD CASE(S) Star 	connection device(s) shall be provided su rd. The design/selection of such connect (S) section, loads applied to the face of the ndard	ts center. ts cand fastened to each tr strained by other means. ufficient to support concer ion device(s) is the response he truss are noted as from	ntrated load(s) 326 lb d	,	4	THORTH C	ARO SIGNAL			
	balanced): Lumber Increase=1.00, Plate					322				

Uniform Loads (plf) Vert: 14-22=-10, 1-13=-100 Concentrated Loads (lb) Vert: 25=-246(B)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

mmm

REACTIONS. (size) 8=Mechanical, 5=0-3-8 Max Uplift 8=-121(LC 10), 5=-43(LC 9) Max Grav 8=346(LC 1), 5=282(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-309/65

BOT CHORD 7-8=-65/309, 6-7=-65/309, 5-6=-65/309

WEBS 3-5=-369/82, 2-8=-374/79

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 121 lb uplift at joint 8 and 43 lb uplift at joint 5.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 169 lb down and 231 lb up at 0-7-12, and 134 lb down and 250 lb up at 2-7-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

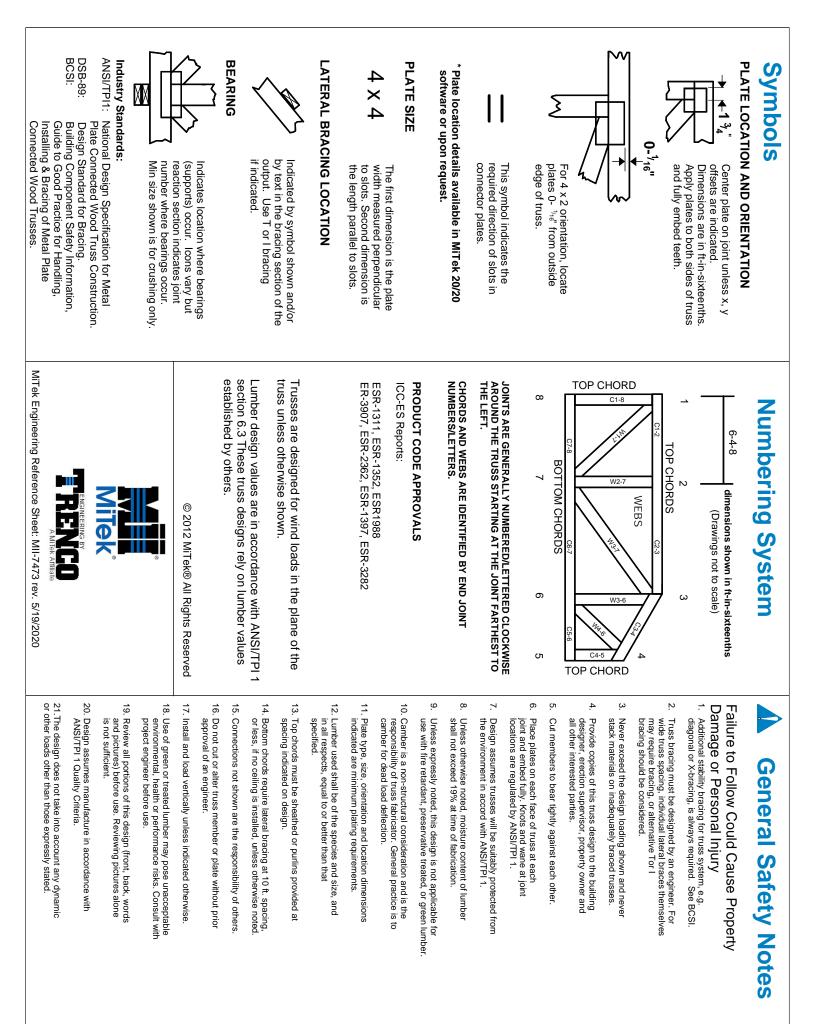
8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10. 1-4=-100

Concentrated Loads (lb)


Vert: 3=-92(B) 10=-111(B)

June 15,2023

