| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | A     | Common     | 5   | 1   | Job Reference (optional) | 158937608 |

TCDL

BCLL

BCDL

1)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:30 ID:ysriNNSpFYpPvsIQK2kzJ8z6RFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | A1    | Common     | 1   | 1   | Job Reference (optional) | 158937609 |

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

SLIDER

FORCES

WEBS

NOTES

1)

LUMBER

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:32 ID:iaqTRASNrk3Dfzi4s8B7MRz6RC2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1111111111

mm June 14,2023

818 Soundside Road Edenton, NC 27932



| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | A2    | Common     | 1   | 1   | Job Reference (optional) | 158937610 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:33

Page: 1





| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | A2GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937611 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:33 ID:c9VqEHTKX3tTR4AsVHRVNAz6RSp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:61.7

## Plate Offsets (X, Y): [2:0-2-8,0-3-5], [8:0-2-4,0-2-4], [13:0-2-8,Edge], [18:0-2-4,0-2-4]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                                          |                                                                                                                                         | (psf)<br>20.0<br>20.0<br>10.0                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                   |            | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.18<br>0.07<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>n/a<br>n/a<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (loc)<br>-<br>-<br>24                                                                                                                                                                  | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                          | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PLATES<br>MT20                                                                                                                                                                                                                                                                                                         | <b>GRIP</b><br>244/190                                                                                                                                                                                                                                                                                   |                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| BCDL                                                                                                         |                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                             | oodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight: 225 lb                                                                                                                                                                                                                                                                                                         | FT = 20%                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Left 2x4 S<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing.<br>1 Row at<br>(size) | o.2<br>o.2<br>o.3<br>o.3<br>SP No.3<br>l wood she<br>burlins, exing directly<br>midpt<br>2=32-11-(<br>25=32-11)<br>27=32-11<br>30=32-11<br>37=32-11<br>37=32-11<br>39=32-11<br>41=32-11<br>2=-37 (LC<br>26=-26 (L<br>28=-43 (L<br>31=-72 (L<br>35=-41 (L<br>38=-43 (L<br>40=-30 (L<br>42=-37 (L) | 1-6-0<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>12-33, 14-32<br>0, 24=32-11-0,<br>-0, 26=32-11-0,<br>-0, 35=32-11-0,<br>-0, 35=32-11-0,<br>-0, 35=32-11-0,<br>-0, 40=32-11-0,<br>-0, 40=32-11-0,<br>-0, 40=32-11-0,<br>-0, 40=32-11-0,<br>-0, 40=32-11-0,<br>-0, 40=32-11-0,<br>-0, 40=32-11-0,<br>-10, 25=-105 (LC 142)<br>C 15), 32=-48 (LC 142)<br>C 15), 34=-64 (LC 142)<br>C 14), 37=-44 (LC 142)<br>C 14), 41=-92 (LC 142)<br>C 10) | d or<br>FORCES<br>TOP CHORE<br>BOT CHORE<br>()<br>()<br>()<br>(),<br>(),<br>(),<br>(),<br>(),<br>(),<br>(),<br>() |            | lax Grav 2=168 (<br>25=179)<br>27=161<br>30=206<br>32=204<br>34=239<br>37=160<br>39=162<br>41=190<br>(lb) - Maximum Co<br>Tension<br>1-2=0/23, 2-4=-16:<br>5-6=-109/114, 6-7:<br>9-10=-79/226, 10-<br>11-12=-109/31, 1<br>13-14=-99/285, 14<br>15-16=-85/268, 16<br>17-19=-52/180, 19<br>20-21=-53/95, 21-<br>23-24=-30/145<br>2-41=-19/87, 30-<br>27-28=-19/87, 30-<br>27-28= | LC 25), 2<br>(LC 35), (LC 35),<br>(LC 35), (LC 22),<br>(LC 22), (LC 21),<br>(LC 22), (LC 21),<br>(LC 34), (LC 34),<br>(LC 34), (LC 34), (LC 34),<br>(LC 34), (LC 34), (LC 34),<br>(LC 34), (LC 34), (L | 24=104 (LC 2<br>26=156 (LC<br>28=160 (LC<br>33=207 (LC<br>35=206 (LC<br>35=206 (LC<br>40=151 (L | /7),<br>1),<br>35),<br>22),<br>21),<br>21),<br>21),<br>21),<br>25)<br>0,<br>/70,<br>87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/87,<br>/116, | <ul> <li>2) W Va<br/>Va<br/>Ca<br/>zco<br/>2-<br/>(2)<br/>zco<br/>ar<br/>m<br/>M<br/>gr<br/>or<br/>se<br/>or</li> <li>3) T<br/>T<br/>Pl<br/>DO<br/>C3</li> <li>5) Ur<br/>de</li> </ul> | ind: ASC<br>asd=103m<br>at. II; Exp<br>ne and C<br>5-8 to 14.<br>N) 20-5-8<br>me; cantil<br>dd right ey<br>WFRS foi<br>ip DOL=1<br>russ desia<br>dy. For s<br>ee Standa<br>consult c<br>CLL: ASC<br>ate DOL=1.15)<br>is=1.00; C<br>balanced<br>sign. | F 7-16<br>F | ; Vult=130mph (<br>CDL=6.0psf; BC<br>closed; MWFRS<br>mer(3E) -0-10-8<br>orner(3R) 14-2-<br>5-12, Corner(3R)<br>;C-C for member<br>ons shown; Lun<br>provind loads in<br>sposed to wind (<br>ustry Gable End<br>d building desig<br>;; Pr=20.0 psf (Lu<br>); Rough Cat B;<br>loads have been<br>OR FESS<br>SEA<br>0363 | 3-second gust<br>DL=6.0psf; h=<br>(envelope) ex<br>to 2-5-8, Exte<br>0 to 20-5-8, Ex<br>1 29-5-12 to 3<br>sed ; end veri<br>rs and forces<br>iber DOL=1.60<br>the plane of th<br>normal to the<br>Details as app<br>ner as per ANS<br>tof LL: Lum DO<br>m DOL=1.15 F<br>Fully Exp.; Ce<br>n considered f | )<br>25ft;<br>terior<br>rior(2N)<br>terior<br>2-9-4<br>ical left<br>&<br>) plate<br>e truss<br>for this<br>ical left<br>ical left<br> |
|                                                                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOTES<br>1) Unbalan<br>this desig                                                                                 | ced<br>gn. | roof live loads hav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ve been o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | considered fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A C A                                                                                                                                                                                                                                                                                                                  | EER                                                                                                                                                                                                                                                                                                      | LINE .                                                                                                                                |



G mmm June 14,2023

## Continued on page 2

| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | A2GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937611 |

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 2, 64 lb uplift at joint 34, 41 lb uplift at joint 35, 44 lb uplift at joint 37, 43 lb uplift at joint 38, 47 lb uplift at joint 39, 30 lb uplift at joint 40, 92 lb uplift at joint 41, 72 lb uplift at joint 31, 39 lb uplift at joint 30, 43 lb uplift at joint 28, 48 lb uplift at joint 27, 26 lb uplift at joint 26, 105 lb uplift at joint 25 and 37 lb uplift at joint 2.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 42.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:33 ID:c9VqEHTKX3tTR4AsVHRVNAz6RSp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



| Job         | Truss | Truss Type   | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23050105-01 | A2T   | Roof Special | 5   | 1   | Job Reference (optional) | 158937612 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:34 ID:JytbNuZnd6otqdHa6Vz?Okz6RMF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | ASE   | Common     | 1   | 1   | Job Reference (optional) | 158937613 |

Run: 8.63 E Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Wed Jun 14 11:09:12 ID:Z?RrRUUawrsjRX0WcdE8aMz6RDJ-hMI7eeorhx9yGnO0XhBDdRRILQefppkWr53PBrz6O1L

Page: 1



| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                       | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201          | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                          | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.82<br>0.99<br>0.64                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                   | in<br>-0.15<br>-0.29<br>0.07                       | (loc)<br>27-29<br>27-29<br>22                                                                                                                                  | l/defl<br>>999<br>>999<br>n/a                                                                                                                 | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLATES<br>MT20<br>Weight: 241 lb                                                                                                                                                                                                      | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3 *Excep<br>SP No.2<br>2x4 SP No.3<br>Left 2x4 SP No.3<br>Structural wood she<br>2-2-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                  | t* 27-7,25-7,23-18:2x<br>I-6-0<br>athing directly applied<br>cept end verticals.<br>applied or 2-2-0 oc                                                                                                                                                                                                                                                                                    | 4<br>W                                          | OT CHORD 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>7<br>2<br>2<br>2<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                     | 2-29=-259/2069, 24<br>2-7-28=-259/2069, 24<br>26-46=-10/1266, 24<br>25-47=-9/1268, 24-<br>23-24=-69/1163<br>3-27=-501/208, 7-2<br>5-23=-619/149, 11<br>2-30=-197/539, 30-<br>25-31=-189/505, 4-<br>23-35=-88/1379, 32<br>8-36=-72/1297, 22<br>32-33=-11/367, 33-<br>5-34=-17/387, 7-2                                                                                                                                                                                                                                | 8-29=-2:<br>27-46=-<br>6-47=-9,<br>-25=-69,<br>27=-234,<br>0-25=-4<br>-31=-18:<br>-27=-45:<br>5-36=-6:<br>5-36=-6:<br>5-36=-1:<br>-34=-19,<br>-6=0/26:                                                           | 59/2069,<br>10/1266,<br>(1268,<br>(1163,<br>(960,<br>48/197,<br>3/507,<br>2/156,<br>9/1338,<br>4/374,<br>(382,<br>2. 17-36=-275                                                                                                                                                                            | /49.                                               | <ol> <li>Thi loa ove</li> <li>Ove</li> <li>All</li> <li>Ga</li> <li>Thi che</li> <li>Thi che</li> <li>10) * T</li> <li>on</li> <li>3-C</li> <li>che</li> </ol> | s truss h<br>d of 12.0<br>erhangs i<br>plates ai<br>ble studs<br>s truss h<br>ord live lo<br>his truss<br>the botto<br>6-00 tall<br>ord and a | as bee<br>psf or<br>non-co<br>re 2x4<br>s space<br>as bee<br>bad nor<br>has be<br>bad nor<br>has be<br>has bad<br>has babad<br>has bad<br>has bad<br>has bad<br>has bad<br>has bad<br>h | In designed for gr<br>1.00 times flat ro<br>ncurrent with other<br>MT20 unless other<br>ad at 2-0-0 oc.<br>In designed for a<br>nconcurrent with<br>en designed for<br>rd in all areas wh<br>0-00 wide will fit l<br>er members, with | reater of min roof live<br>of load of 20.0 psf on<br>er live loads.<br>erwise indicated.<br>10.0 psf bottom<br>any other live loads.<br>a live load of 20.0psf<br>ere a rectangle<br>between the bottom<br>1 BCDL = 10.0psf. |
| JOINTS<br>REACTIONS<br>(lb) -<br>FORCES<br>TOP CHORD                                              | 1 Brace at Jt(s): 30,<br>33<br>All bearings 2-5-8. ex<br>Max Horiz 2=144 (LC<br>Max Uplift All uplift 1<br>20, 22 ex<br>Max Grav All reactic<br>(s) 21 exc<br>20=907 (L<br>(lb) - Max. Comp./M<br>(lb) or less except w<br>2-3=-1137/0, 3-41=-<br>4-41=-2353/231, 4-5<br>5-42=-1840/250, 6-4<br>6-43=-1990/328, 7-4<br>7-8=-1625/332, 8-44<br>9-44=-1674/309, 9-1<br>10-11=-1593/233, 11<br>12-13=-1647/227, 11<br>14-15=-1699/203, 11<br>16-45=-1325/155, 11<br>17-18=-1253/129, 13 | cept 2=0-5-8, 22=0-3-<br>C 18)<br>00 (lb) or less at joint<br>cept 2=-146 (LC 14)<br>ns 250 (lb) or less at<br>ept 2=1444 (LC 5),<br>C 3), 22=490 (LC 3)<br>ax. Ten All forces 2<br>hen shown.<br>2382/207,<br>i=-1954/235,<br>-2=-1805/253,<br>-3=-1892/352,<br>i=-1642/314,<br>0=-1705/306,<br>1-12=-1629/235,<br>3-14=-1666/211,<br>5-16=-1255/147,<br>7-45=-1347/146,<br>3-20=-892/142 | 8 <b>N</b><br>(s) 2)<br>joint<br>50<br>3)<br>4) | <ul> <li>OTES</li> <li>Unbalanced i<br/>this design.</li> <li>Wind: ASCE<br/>Vasd=103mp<br/>Cat. II; Exp E<br/>zone and C-C<br/>2-5-0 to 14-0<br/>Interior (1) 2C<br/>33-9-8 zone;<br/>vertical left ar<br/>forces &amp; MW<br/>DOL=1.60 pig<br/>only. For stu<br/>see Standarc<br/>or consult qu</li> <li>TCLL: ASCE<br/>Plate DOL=1<br/>DOL=1.00; Ct=</li> <li>Unbalanced<br/>design.</li> </ul> | 7-16; Vult=130mp<br>roof live loads have<br>7-16; Vult=130mp<br>b; TCDL=6.0psf; E<br>c Enclosed; MWFF<br>C Exterior(2E) -0-1<br>-10, Exterior(2E) 1<br>-7-10 to 30-6-0, E<br>cantilever left and<br>nd right exposed;<br>C FRS for reactions<br>ate grip DOL=1.60<br>med for wind loads<br>ds exposed to wind<br>loads ds exposed to wind<br>loads ds exposed to wind<br>loads the second to be<br>alified building des<br>7-16; Pr=20.0 psf<br>(15); Pf=20.0 psf (<br>s=1.0; Rough Cat<br>1.10<br>snow loads have b | e been of<br>h (3-sec<br>SCDL=6<br>RS (env<br>0-8 to 2<br>(4-0-10)<br>(xterior(2)<br>right ex<br>-C for n<br>shown;<br>in the p<br>d (norm<br>nd Deta<br>signer as<br>(roof LL<br>Lum DC<br>B; Fully<br>been cor | considered for<br>cond gust)<br>.opsf; h=25ft;<br>elope) exterio<br>-5-0, Interior (<br>to 20-7-10,<br>2E) 30-6-0 to<br>posed ; end<br>nembers and<br>Lumber<br>lane of the tru<br>al to the face)<br>ils as applicat<br>s per ANSI/TP<br>.: Lum DOL=1<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for th | r<br>1)<br>ss<br>1,<br>16,<br>11.<br>15<br>;<br>is |                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SEA<br>0363                                                                                                                                                                                                                           | ROCKATION INTERNET                                                                                                                                                                                                           |

June 14,2023



| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | В     | Common     | 3   | 1   | Job Reference (optional) | 158937614 |

1)

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:35 ID:WwcS\_ow9RvOcm3mRjBta1yz6RCI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



June 14,2023

Page: 1



| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | B1    | Common     | 6   | 1   | Job Reference (optional) | 158937615 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:35 ID:DE5Yhhuboc7FTqi0oB8dWFz6RYk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932



| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | B1GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937616 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:35 ID:kEyumvGz1eadDrk1IGCRPHz6RZY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



| Plate Olisets (                                                                                   | X, Y): [2:0                                                                                                   | -2-8,0-0-5],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [29.0-3-0,0-3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                                                                                                                         |                                                                                                                                             |                                                                                                                | -                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                        |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                       |                                                                                                               | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 018/TPI2014                                                                                                                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08<br>0.07<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in<br>n/a<br>n/a<br>0.00                       | (loc)<br>-<br>-<br>21                                                                                                                   | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                 | L/d<br>999<br>999<br>n/a                                                                                       | PLATES<br>MT20<br>Weight: 192 II                                                                                                                                                                                    | <b>GRIP</b><br>244/190                                                                                                                                   | %                                                                                                                                      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Left 2x4 S<br>Structura<br>6-0-0 oc<br>Rigid ceil<br>bracing. | lo.2<br>lo.3<br>lo.3<br>SP No.3 1<br>l wood she<br>purlins, exi<br>ing directly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I-5-14<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORCES<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                      | (lb) - Maximum Cor<br>Tension<br>1-2=0/23, 2-3=-71/<br>4-5=-91/86, 5-6=-7<br>8-9=-59/173, 9-10=<br>11-12=-96/262, 12-<br>13-14=-59/173, 14-<br>16-17=-38/83, 17-1<br>19-20=-109/45, 20-<br>2-36=-21/105, 35-<br>34-35=-21/105, 33-<br>32-33=-21/105, 33-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | npressi<br>41, 3-4=<br>1/109, 6<br>-78/220<br>13=-78,<br>16=-41,<br>8=-45/3<br>21=-72,<br>6=-21/1<br>34=-21,<br>32=-21,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on/Maximum<br>123/72,<br>8=-61/133,<br>-, 10-11=-96/2<br>/220,<br>-,<br>1/128,<br>-9, 18-19=-66/<br>/23<br>05,<br>-,<br>1/05,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>-/105,<br>- | :<br>62, 4<br>/31, 4                           | <ul> <li>Tru only see or c</li> <li>TCL</li> <li>Plat</li> <li>DOI</li> <li>Cs=</li> <li>Unb</li> <li>des</li> <li>This load</li> </ul> | uss desig<br>/. For st<br>Standar<br>consult q<br>LL: ASC<br>te DOL=<br>L=1.15);<br>=1.00; Ci<br>aalancec<br>ign.<br>s truss h<br>d of 12.0 | gned fo<br>uds ex<br>rd Indu<br>ualifieo<br>E 7-16<br>1.15);<br>Is=1.0<br>Is=1.0<br>I snow<br>as bee<br>psf or | pr wind loads in<br>cposed to wind<br>stry Gable End<br>d building desig<br>; Pr=20.0 psf (r<br>Pf=20.0 psf (Lu<br>0; Rough Cat B;<br>loads have been<br>n designed for<br>1.00 times flat                          | the plane of<br>normal to th<br>Details as a<br>ner as per A<br>zoof LL: Lum<br>m DOL=1.1<br>Fully Exp.;<br>an considere<br>greater of m<br>roof load of | i the truss<br>ne face),<br>applicable,<br>NSI/TPI 1.<br>DOL=1.15<br>5 Plate<br>Ce=0.9;<br>ed for this<br>nin roof live<br>20.0 psf on |
| REACTIONS                                                                                         | (size)<br>Max Horiz<br>Max Uplift<br>Max Grav                                                                 | 2=30-5-8,<br>23=30-5-8<br>26=30-5-8<br>29=30-5-8<br>32=30-5-8<br>2=330-5-8<br>2=332 (LC<br>22=-313 (LC<br>22=-113 (<br>24=-45 (L<br>23=-44 (L<br>33=-44 (L<br>33=-44 (L<br>33=-44 (L<br>33=-44 (L<br>33=-44 (L<br>22=128 (L<br>24=159 (L<br>24=159 (L<br>24=159 (L<br>32=175 (L)<br>32=175 | $\begin{array}{c} 21=30-5-8,\ 22=30-5\\ 8,\ 24=30-5-8,\ 25=30-5\\ 8,\ 27=30-5-8,\ 28=30-5\\ 8,\ 30=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-8,\ 31=30-5-5-8,\ 31=30-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5$ | 5-8,<br>5-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5-8,<br>-5,<br>-5,<br>-5,<br>-5,<br>-5,<br>-5,<br>-5,<br>-5 | WEBS<br>NOTES<br>1) Unbalancec<br>this design.<br>2) Wind: ASCI<br>Vasd=103rr<br>Cat. II; Exp<br>zone and C<br>2-2-1 to 12-<br>(2N) 18-6-1<br>zone; cantil<br>and right ex<br>MWFRS for<br>grip DOL=1 | 30-31=-21/105, 28<br>27-28=-21/105, 24<br>23-24=-21/105, 24<br>23-24=-21/105, 22<br>21-22=-21/105, 22<br>21-22=-21/105<br>11-29=-166/25, 10<br>9-31=-188/81, 8-32<br>5-34=-120/76, 4-35<br>12-28=-204/70, 13<br>14-26=-135/76, 16<br>17-24=-120/74, 18<br>19-22=-97/143<br>d roof live loads have<br>57-16; Vult=130mp<br>ph; TCDL=6.0psf; I<br>B; Enclosed; MWFF<br>-C Corner(3E) -0-10<br>4-15, Corner(3E) - | 30=-21,<br>27=-21,<br>25=-21,<br>30=-20,<br>=-135/7<br>=-124/8<br>27=-18,<br>25=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>23=-12,<br>24=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12,<br>25=-12 | (105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(105,<br>(10,))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                        | r78,<br>06,<br>r<br>2N)<br>rrior<br>left<br>te | ove<br>7) All (<br>3) Gat<br>10) This<br>cho<br>11) * Th<br>on t<br>3-0(<br>cho                                                         | rhangs r<br>polates ar<br>ple requi<br>ple studs<br>s truss h<br>rd live lc<br>his truss<br>the botto<br>6-00 tall<br>rd and a              | inn-co<br>inn-co<br>e 2x4  <br>res coordinates and nor<br>has bee<br>m cho<br>by 2-0<br>ny oth                 | ncurrent with of<br>MT20 unless of<br>ntinuous bottom<br>ed at 2-0-0 oc.<br>en designed for<br>nconcurrent wit<br>een designed for<br>rd in all areas v<br>00-00 wide will fi<br>er members. I<br>H C<br>SE/<br>036 | AL                                                                                                                                                       | Is.<br>icated.<br>ing.<br>ottom<br>live loads.<br>of 20.0psf<br>angle<br>he bottom                                                     |

June 14,2023



| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         | 150007040 |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | B1GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937616 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:35 ID:kEyumvGz1eadDrk1IGCRPHz6RZY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

12) <sup>N/A</sup>

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



| Job         | Truss | Truss Type   | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23050105-01 | С     | Roof Special | 4   | 1   | Job Reference (optional) | 158937617 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries. Inc. Wed Jun 14 09:03:36 ID:IXiJ0Luyki5W8bFrb88Afoz6iod-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



12-6-6 to 19-5-8. Exterior(2E) 19-5-8 to 22-5-8 zone: cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G mm

June 14,2023

| Job         | Truss | Truss Type                   | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | CGE   | Roof Special Supported Gable | 1   | 1   | Job Reference (optional) | 158937618 |

#### Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:36 ID:IXiJ0Luyki5W8bFrb88Afoz6iod-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:54 Plate Offsets (X, Y): [2:0-2-8,0-0-5]

| L <b>oading</b><br>TCLL (roof)<br>Snow (Pf)<br>TCDL                                                            |                                                                                                                                 | (psf)<br>20.0<br>20.0<br>10.0                                                                                                                                                          | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES                                         |                                                                                                                                                                                                                                           | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                         | 0.10<br>0.04<br>0.07                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                      | in<br>n/a<br>n/a<br>0.00                                 | (loc)<br>-<br>-<br>15                                                                            | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L/d<br>999<br>999<br>n/a                                                                                                      | PLATES<br>MT20                                                                                                                                                                                                                                                | <b>GRIP</b><br>244/190                                                                                                                                                                 |                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| BCLL<br>BCDL                                                                                                   |                                                                                                                                 | 0.0*<br>10.0                                                                                                                                                                           | Code                                                                                                                                                                                                                                                                            | IRC2018                                                              | 3/TPI2014                                                                                                                                                                                                                                 | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                               |                                                          |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | Weight: 112 lb                                                                                                                                                                                                                                                | FT = 20%                                                                                                                                                                               |                                                                                                                               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No<br>2x4 SP No<br>2x4 SP No<br>2x4 SP No<br>Left 2x4 S<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing.<br>(size) | 0.2<br>0.2<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3                                                                                                       | I-6-14<br>athing directly applied<br>cept end verticals.<br>applied or 6-0-0 oc<br>15=21-7-0, 16=21-7-                                                                                                                                                                          | Or<br>01<br>1)<br>0, 2)                                              | DT CHORD                                                                                                                                                                                                                                  | 2-26-8/63, 25-26=-<br>23-24=-8/63, 22-23=<br>19-20=-8/63, 18-19=<br>16-17=-24/84, 15-16<br>7-22=-143/21, 6-23=<br>4-25=-139/69, 3-26=<br>9-19=-185/66, 10-18<br>12-16=-100/82, 11-1<br>roof live loads have<br>7-16; Vult=130mph                                                                                                                                                              | 8/63, 2<br>8/63,<br>8/63,<br>21/8<br>21/8<br>206/7<br>98/68<br>3=-146,<br>7=-13<br>been (<br>(3-sec                                       | 4-25=-8/63,<br>20-22=-8/63,<br>17-18=-8/63,<br>10<br>4, 5-24=-187/<br>78,<br>5/64<br>considered for<br>considered for                                                                                                         | 68,<br>(4,                                               | 10) This<br>cho<br>11) * Th<br>3-0<br>cho<br>12) Pro<br>bea<br>17,<br>upli<br>25,<br>upli<br>ion | s truss ha<br>rd live lo<br>his truss<br>the botto<br>6-00 tall<br>rd and a<br>vide mec<br>vide mec<br>vide glat<br>19 lb up<br>ft at joint<br>51 lb up<br>ft at joint<br>t 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | as bee<br>ad nor<br>has be<br>m choi<br>by 2-0<br>ny oth<br>chanica<br>e capa<br>lift at jo<br>23, 44<br>lift at jo<br>19, 50 | en designed for a<br>nconcurrent with<br>een designed for<br>rd in all areas wh<br>0-00 wide will fit<br>er members.<br>al connection (by<br>able of withstandi<br>bint 15, 72 lb upli<br>4 lb uplift at joint<br>bint 26, 43 lb upli<br>0 lb uplift at joint | 10.0 psf bot<br>any other liv<br>a live load o<br>iere a rectar<br>between the<br>rothers) of ti<br>ng 18 lb upli<br>ft at joint 2,<br>24, 44 lb upl<br>ft at joint 20<br>18 and 72 lb | tom<br>e loads.<br>f 20.0psf<br>igle<br>bottom<br>russ to<br>iff at joint<br>45 lb<br>lift at joint<br>, 43 lb<br>o uplift at |
|                                                                                                                | Max Horiz<br>Max Uplift                                                                                                         | 17=21-7-0<br>20=21-7-0<br>24=21-7-0<br>2=-117 (L<br>2=-72 (LC<br>16=-72 (L<br>18=-50 (L<br>20=-43 (L<br>24=-44 (L                                                                      | ), 18=21-7-0, 19=21-7<br>), 22=21-7-0, 23=21-7<br>), 25=21-7-0, 26=21-7<br>C 15)<br>: 15), 15=-19 (LC 15),<br>C 15), 17=-18 (LC 15)<br>C 15), 19=-43 (LC 15)<br>C 15), 23=-45 (LC 14)<br>C 14), 25=-44 (LC 14)                                                                  | ),<br>-0,<br>-0,<br>-0<br>),<br>),<br>),<br>),<br>),<br>2)           | Vasd=103mp<br>Cat. II; Exp E<br>zone and C-t<br>2-1-8 to 6-6-<br>12-6-6 to 19-<br>cantilever lef<br>right expose<br>for reactions<br>DOL=1.60                                                                                             | bh; TCDL=6.0psf; Bi<br>3; Enclosed; MWFR<br>C Exterior(2E) -0-10<br>6, Exterior(2R) 6-6-6<br>5-8, Exterior(2E) 19<br>t and right exposed<br>d;C-C for members<br>shown; Lumber DO                                                                                                                                                                                                             | CDL=6<br>S (env)<br>-8 to 2<br>6 to 12<br>-5-8 to<br>; end v<br>and for<br>L=1.60                                                         | .0psf; h=25ft;<br>elope) exterior<br>-1-8, Interior (<br>-6-6, Interior (<br>-22-5-8 zone;<br>vertical left and<br>rces & MWFR:<br>                                                                                           | r<br>1)<br>1)<br>S                                       | Join<br>13) Bev<br>suri<br>26,<br>14) This<br>Inte<br>R80<br>LOAD (                              | t 16.<br>veled plat<br>face with<br>20, 19, 1<br>s truss is<br>ernationa<br>02.10.2 a<br>CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | te or sl<br>truss<br>18, 16.<br>design<br>Resign<br>Resign<br>nd refe<br>Star                                                 | him required to p<br>chord at joint(s)<br>ned in accordanc<br>dential Code sec<br>erenced standar<br>ndard                                                                                                                                                    | rovide full b<br>17, 2, 22, 23<br>xe with the 2<br>tions R502.1<br>d ANSI/TPI                                                                                                          | earing<br>, 24, 25,<br>018<br>1.1 and<br>1.                                                                                   |
| FORCES<br>TOP CHORD                                                                                            | (lb) - Max<br>Tension<br>1-2=0/23,<br>4-5=-65/1<br>7-8=-90/2<br>10-11=-4<br>13-14=0/2                                           | 26=-51 (L<br>2=125 (LC<br>16=140 (L<br>18=195 (L<br>20=247 (L<br>23=246 (L<br>25=179 (L<br>imum Com<br>2-3=-38/52<br>59, 5-6=-7<br>24, 8-9=-7<br>24, 8-9=-7<br>21, 11-1<br>27, 13-15=- | C 14)<br>C 1, 15=141 (LC 22),<br>C 35), 17=166 (LC 1).<br>C 22), 19=222 (LC 2;<br>C 22), 22=183 (LC 2;<br>C 21), 24=227 (LC 2;<br>C 21), 26=135 (LC 3/<br>pression/Maximum<br>2, 3-4=-73/136,<br>1/184, 6-7=-90/224,<br>1/180, 9-10=-54/142,<br>2=-18/55, 12-13=-39/<br>1/22/73 | 3)<br>(2),<br>(2),<br>(4)<br>(5)<br>(6)<br>(33,<br>(7)<br>(8)<br>(9) | Iruss design<br>only. For stu<br>see Standar<br>or consult qu<br>TCLL: ASCE<br>Plate DOL=1.15);<br>Cs=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>All plates are<br>Gable requir<br>Gable studs | ned for wind loads in<br>ids exposed to wind<br>d Industry Gable En-<br>ialified building desii<br>(7-16; Pr=20.0 psf (<br>.15); Pf=20.0 psf (<br>.15); Pf=20.0 psf (<br>.15); Pf=20.0 psf (<br>.10); Rough Cat E<br>=1.10<br>snow loads have be<br>us been designed for<br>psf or 1.00 times fla<br>on-concurrent with o<br>2x4 MT20 unless of<br>es continuous botto<br>spaced at 2-0-0 oc. | n the p<br>(norm<br>d Deta<br>gner as<br>roof LL<br>um DC<br>3; Fully<br>een cor<br>r great<br>t roof k<br>other lin<br>otherwi<br>m chor | lane of the fru:<br>al to the face)<br>ils as applicab<br>s per ANSI/TP<br>.: Lum DOL=1<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for th<br>er of min roof 1<br>pad of 20.0 ps<br>ve loads.<br>se indicated.<br>d bearing. | ss<br>,<br>ble,<br>11.<br>.15<br>;<br>is<br>live<br>f on |                                                                                                  | Contraction of the second seco |                                                                                                                               | SEA<br>0363                                                                                                                                                                                                                                                   | L<br>22<br>EEER.                                                                                                                                                                       | . Annoning                                                                                                                    |

June 14,2023



| 🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not        |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing    |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the             |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component      |
| Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601                                                   |

| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | DGE   | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937619 |

Scale = 1:40.3

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:37 ID:mUH0bgkx?JHgiBKEi6sHglz6RWM-RfC?PsB70Hg3NSgPgnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1



LUMBER TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 12=13-7-0, 13=13-7-0, 14=13-7-0, 15=13-7-0, 16=13-7-0, 17=13-7-0, 18=13-7-0, 19=13-7-0, 20=13-7-0 Max Horiz 20=-141 (LC 12) Max Uplift 12=-59 (LC 11), 13=-93 (LC 15), 14=-58 (LC 15), 15=-60 (LC 15), 17=-60 (LC 14), 18=-58 (LC 14), 19=-104 (LC 14), 20=-96 (LC 10) Max Grav 12=123 (LC 24), 13=133 (LC 25), 14=228 (LC 22), 15=259 (LC 22), 16=165 (LC 27), 17=259 (LC 21), 18=228 (LC 21), 19=154 (LC 12), 20=153 (LC 25) (lb) - Maximum Compression/Maximum FORCES Tension TOP CHORD 2-20=-120/66. 1-2=0/34. 2-3=-104/96. 3-4=-71/76, 4-5=-61/119, 5-6=-82/191. 6-7=-82/191, 7-8=-56/119, 8-9=-50/55 9-10=-72/61, 10-11=0/34, 10-12=-102/54 BOT CHORD 19-20=-62/110, 18-19=-62/110, 17-18=-62/110, 16-17=-62/110, 15-16=-62/110, 14-15=-62/110, 13-14=-62/110, 12-13=-62/110 WEBS 6-16=-137/4, 5-17=-220/106, 4-18=-187/122, 3-19=-103/86, 7-15=-220/106, 8-14=-187/121, 9-13=-92/94 NOTES

- Unbalanced roof live loads have been considered for this design.
   Wind: ASCE 7-16: Vult=130mph (3-second gust)
  - Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 3-9-8, Corner(3R) 3-9-8 to 9-9-8, Exterior(2N) 9-9-8 to 11-5-8, Corner(3E) 11-5-8 to 14-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
   Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
  12) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 20, 59 lb uplift at joint 12, 60 lb uplift at joint 17, 58 lb uplift at joint 18, 104 lb uplift at joint 19, 60 lb uplift at joint 15, 58 lb uplift at joint 14 and 93 lb uplift at joint 13.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type    | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|---------------|-----|-----|--------------------------|-----------|
| 23050105-01 | DGR   | Common Girder | 1   | 2   | Job Reference (optional) | 158937620 |

Scale = 1:42.8

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL BCDL

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:37 ID:qvIXtQKgSNSj4jaf4vEm9dz6RVb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190



| BCLL<br>BCDL                                                                                                                                                                       | 0.0*<br>10.0                                                                                                                                                                                                                                                                                                                      | Code                                                                                                                                                                       | IRC2018                   | 3/TPI2014                                                                                                      | Matrix-MSH                                                                                                                                                                                                                       |                                                                                                                               |                                                                                          | Weight: 168 lb FT = 20%                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                          | 0)                        | l labolone!                                                                                                    | l                                                                                                                                                                                                                                | Lensidered for                                                                                                                |                                                                                          | L /4)                                                                                                                   |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER                                                                                                                                 | 2x4 SP No.2<br>2x6 SP No.2<br>2x4 SP No.3<br>Left 2x4 SP No.3<br>1-6-0                                                                                                                                                                                                                                                            | 1-6-0, Right 2x4 SP N                                                                                                                                                      | 3)<br>4)<br>No.3          | Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=103mp<br>Cat. II; Exp B<br>zone; cantile                      | roof live loads have been of<br>7-16; Vult=130mph (3-sec<br>bh; TCDL=6.0psf; BCDL=6<br>3; Enclosed; MWFRS (envi-<br>ver left and right exposed                                                                                   | considered for<br>cond gust)<br>c.0psf; h=25ft;<br>elope) exterior<br>; end vertical left                                     | Uniform Loads (I<br>Vert: 1-4=-60,<br>Concentrated Lo<br>Vert: 20=-1192<br>23=-1192 (B), | <sup>b/ft</sup> )<br>4-7=-60, 10-14=-20<br>ads (lb)<br>2 (B), 21=-1192 (B), 22=-1192 (B),<br>24=-1192 (B), 25=-1192 (B) |
| BRACING<br>TOP CHORD                                                                                                                                                               | Structural wood she                                                                                                                                                                                                                                                                                                               | eathing directly applie                                                                                                                                                    | ed or<br>5)               | and right exp<br>DOL=1.60<br>TCLL: ASCE                                                                        | osed; Lumber DOL=1.60 p<br>7-16; Pr=20.0 psf (roof LL                                                                                                                                                                            | late grip<br>.: Lum DOL=1.15                                                                                                  |                                                                                          |                                                                                                                         |
| BOT CHORD                                                                                                                                                                          | Rigid ceiling directly bracing.                                                                                                                                                                                                                                                                                                   | applied or 10-0-0 oc                                                                                                                                                       | <b>;</b>                  | Plate DOL=1<br>DOL=1.15); I                                                                                    | .15); Pf=20.0 psf (Lum DC<br>s=1.0; Rough Cat B; Fully                                                                                                                                                                           | L=1.15 Plate<br>Exp.; Ce=0.9;                                                                                                 |                                                                                          |                                                                                                                         |
| REACTIONS                                                                                                                                                                          | (size) 1=0-5-8,<br>Max Horiz 1=-106 (L<br>Max Uplift 1=-433 (L<br>Max Grav 1=4340 (l                                                                                                                                                                                                                                              | 7=0-5-8<br>_C 8)<br>_C 12), 7=-403 (LC 13<br>L C 18)_7=4055 (LC 1                                                                                                          | 6)<br>3) 7)<br>19)        | Unbalanced<br>design.<br>This truss ha                                                                         | snow loads have been cor                                                                                                                                                                                                         | isidered for this<br>0 psf bottom                                                                                             |                                                                                          |                                                                                                                         |
| FORCES                                                                                                                                                                             | (lb) - Maximum Con<br>Tension<br>1-3=-5231/538, 3-4=                                                                                                                                                                                                                                                                              | =-5126/581,                                                                                                                                                                | 8)                        | * This truss h<br>on the botton<br>3-06-00 tall b                                                              | ad nonconcurrent with any<br>has been designed for a liv<br>n chord in all areas where<br>by 2-00-00 wide will fit betw                                                                                                          | e load of 20.0psf<br>a rectangle<br>veen the bottom                                                                           |                                                                                          |                                                                                                                         |
| BOT CHORD                                                                                                                                                                          | 4-5=-5072/576, 5-7=<br>1-9=-461/4272, 8-9=<br>7-8=-393/4220                                                                                                                                                                                                                                                                       | =-5182/533<br>=-278/3025,                                                                                                                                                  | 9)                        | chord and an<br>LGT2 Simpso<br>connect truss                                                                   | iy other members.<br>on Strong-Tie connectors i<br>s to bearing walls due to U                                                                                                                                                   | ecommended to<br>PLIFT at jt(s) 1                                                                                             |                                                                                          | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                  |
| WEBS                                                                                                                                                                               | 4-8=-341/2886, 5-8=<br>4-9=-352/2992, 3-9=                                                                                                                                                                                                                                                                                        | =-102/190,<br>=-126/180                                                                                                                                                    |                           | and 7. This c<br>consider late                                                                                 | connection is for uplift only ral forces.                                                                                                                                                                                        | and does not                                                                                                                  |                                                                                          | TH CARO                                                                                                                 |
| NOTES                                                                                                                                                                              | s to be connected to co                                                                                                                                                                                                                                                                                                           | ther with 10d                                                                                                                                                              | 10                        | ) This truss is<br>International                                                                               | designed in accordance w<br>Residential Code sections                                                                                                                                                                            | th the 2018<br>R502.11.1 and                                                                                                  | and and                                                                                  | ON FESSION 1                                                                                                            |
| <ol> <li>2-piy truss<br/>(0.131"x3"<br/>Top chord<br/>oc.</li> <li>Bottom ch<br/>staggered<br/>Web conn</li> <li>All loads a<br/>except if r<br/>CASE(S)<br/>provided t</li> </ol> | ") nails as follows:<br>Is connected as follows:<br>Is connected as follow<br>nords connected as follow<br>at 0-9-0 oc.<br>In the total of the total of the total<br>are considered equally<br>noted as follows: 2x4<br>are considered equally<br>noted as fornt (F) or ba<br>section. Ply to ply conn<br>o distribute only loads | s: 2x4 - 1 row at 0-9-(<br>lows: 2x6 - 2 rows<br>- 1 row at 0-9-0 oc.<br>- applied to all plies,<br>lock (B) face in the LO,<br>nections have been<br>noted as (F) or (B), | 0 11<br>12<br>AD 13<br>LC | 11-10dx1 1/2<br>spaced at 2-0<br>end to 11-6-4<br>chord.<br>) Fill all nail ho<br>) LGT2 Hurrica<br>the truss. | And referenced standard AN<br>a Strong-Tie HTU26 (20-10<br>2 Truss, Single Ply Girder)<br>0-0 oc max. starting at 1-6<br>4 to connect truss(es) to bac<br>alles where hanger is in cor<br>ane ties must have two stu<br>Standard | ISI/TPI 1.<br>Jd Girder,<br>or equivalent<br>-4 from the left<br>ack face of bottom<br>ttact with lumber.<br>ds in line below | Contraction of the second second                                                         | SEAL<br>036322                                                                                                          |

- 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent Bottom chords connected as follows: 2x6 - 2 rows spaced at 2-0-0 oc max. starting at 1-6-4 from the left end to 11-6-4 to connect truss(es) to back face of bottom chord.
- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) LGT2 Hurricane ties must have two studs in line below
- the truss
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

mm June 14,2023

G

818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | EGE   | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937621 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:38 ID:1SfXIVJYql6Slw6AgLBDoDz6RT1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:41.5

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                          |                                                                                                                                                  | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20                                                                       | 18/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                              | 0.20<br>0.11<br>0.15 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)     | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>12                                                                                                                                                         | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                             | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 88 lb | <b>GRIP</b><br>244/190<br>FT = 20% |   |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|----------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------------|---|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Structura<br>6-0-0 oc<br>Rigid ceil<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | o.2<br>o.2<br>o.3<br>o.3<br>I wood shea<br>burlins, exc<br>ing directly<br>12=13-5-C<br>15=13-5-C<br>20=174 (L<br>12=-227 (<br>14=-60 (L<br>17=-58 (L)<br>19=-225 (<br>12=242 (L<br>14=226 (L<br>14=226 (L<br>14=226 (L<br>16=178 (L<br>18=226 (L<br>20=262 (L) | athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>), 13=13-5-0, 14=13<br>), 19=13-5-0, 20=13<br>, 19=13-5-0, 20=13<br>, 19=13-5-0, 20=13<br>, 19=13-5-0, 20=13<br>, 19=-210 (LC<br>C 13), 13=-210 (LC<br>C 12), 13=291 (LC<br>C 22), 15=260 (LC<br>C 22), 15=260 (LC<br>C 21), 19=307 (LC<br>C 21), 19=307 (LC<br>C 13) | -5-0,<br>-5-0,<br>-5-0,<br>-5-0,<br>2 10),<br>5),<br>4),<br>2 10)<br>13),<br>22),<br>5<br>21),<br>12),<br>6 | <ol> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> <li>Wind: ASCE 7-16; Vult=130mph (3-second gust)<br/>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N)<br/>2-1-8 to 3-8-8, Corner(3R) 3-8-8 to 9-8-8, Exterior(2N)<br/>9-8-8 to 11-3-8, Corner(3E) 11-3-8 to 14-3-8 zone;<br/>cantilever left and right exposed ; end vertical left and<br/>right exposed; C-C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>Truss designed for wind loads in the plane of the truss<br/>only. For studs exposed to wind (normal to the face),<br/>see Standard Industry Gable End Details as applicable,<br/>or consult qualified building designer as per ANSI/TPI 1.</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br/>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live</li> </ol> |                                                                 |                      |                                              |                          | al connection (b)<br>able of withstand<br>lift at joint 12, 58<br>225 lb uplift at ji<br>t at joint 14 and<br>ned in accordan<br>dential Code sec<br>erenced standar<br>ndard | <sup>11</sup> others) of truss to<br>ng 245 lb uplift at<br>lb uplift at joint 17, 60<br>jint 19, 58 lb uplift at<br>210 lb uplift at joint<br>ce with the 2018<br>tions R502.11.1 and<br>d ANSI/TPI 1. | )                        |                                 |                                    |   |
| FORCES                                                                                               | (lb) - Max<br>Tension                                                                                                                            | imum Com                                                                                                                                                                                                                                                        | pression/Maximum                                                                                                                                                                                                                                                                                                                              | -                                                                                                           | overhangs no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on-concurrent with                                              | other liv            | /e loads.                                    |                          |                                                                                                                                                                               |                                                                                                                                                                                                         |                          | "TH CA                          | ROUT                               |   |
| TOP CHORD                                                                                            | 2-20=-16<br>3-4=-67/1<br>6-7=-95/2<br>9-10=-11                                                                                                   | 3/162, 1-2=<br>19, 4-5=-5<br>272, 7-8=-5<br>4/119, 10-1                                                                                                                                                                                                         | 0/34, 2-3=-124/129,<br>8/201, 5-6=-95/272,<br>8/201, 8-9=-62/119,<br>1=0/34, 10-12=-155                                                                                                                                                                                                                                                       | , 8<br>9<br>5/121 1                                                                                         | ) All plates are<br>) Gable require<br>) Truss to be fi<br>braced again                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es continuous botto<br>ully sheathed from<br>st lateral movemen | one fac              | d bearing.<br>e or securely<br>iagonal web). |                          |                                                                                                                                                                               | 4                                                                                                                                                                                                       | i                        | OFESS                           | Maria                              | 7 |
| BOT CHORD                                                                                            | 19-20=-9<br>16-17=-9<br>13-14=-9                                                                                                                 | 2/87, 18-19<br>2/87, 15-16<br>2/87, 12-13                                                                                                                                                                                                                       | =-92/87, 17-18=-92/<br>=-92/87, 14-15=-92/<br>=-92/87                                                                                                                                                                                                                                                                                         | /87, 1<br>/87, 1                                                                                            | 10) Gabe study spaced at 2000 cc.<br>11) This truss has been designed for a 10.0 psf bottom<br>chord live load nonconcurrent with any other live loads.<br>12) This true has been designed for a live load s.<br>13) This true has been designed for a live load s.<br>13) This true has been designed for a live load s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                      |                                              |                          |                                                                                                                                                                               |                                                                                                                                                                                                         |                          | L<br>22                         |                                    |   |
| WEBS                                                                                                 | 6-16=-22<br>4-18=-18<br>7-15=-22<br>9-13=-13                                                                                                     | 2/12, 5-17=<br>5/123, 3-19<br>0/103, 8-14<br>4/112                                                                                                                                                                                                              | 220/103,<br> =-141/119,<br> =-185/123,                                                                                                                                                                                                                                                                                                        | ·                                                                                                           | on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                      |                                              |                          |                                                                                                                                                                               |                                                                                                                                                                                                         | EERA                     |                                 |                                    |   |
| NOTES                                                                                                |                                                                                                                                                  |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |                      |                                              |                          |                                                                                                                                                                               |                                                                                                                                                                                                         |                          | June                            | allBr<br>e 14,2023                 |   |

## 818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type    | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|---------------|-----|-----|--------------------------|-----------|
| 23050105-01 | EGR   | Common Girder | 1   | 2   | Job Reference (optional) | 158937622 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:38 ID:QCiWCkeHS2khFeTgPxQLfPz6R9E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

, ,



| Scale = 1:48.4                                           | 4-0-13 | · | 4- |
|----------------------------------------------------------|--------|---|----|
| Plate Offsets (X, Y): [7:0-5-0,0-4-12], [8:0-5-0,0-4-12] |        |   |    |

|                                 | (), <u></u>                   | J, E = = = ( = _ ]                        |                      |                                                                                                      |                         |             |                 |              |       |           |                    |                  |          |     |
|---------------------------------|-------------------------------|-------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------|-------------------------|-------------|-----------------|--------------|-------|-----------|--------------------|------------------|----------|-----|
| Loading                         | (psf)                         | Spacing                                   | 2-0-0                |                                                                                                      | CSI                     |             | DEFL            | in           | (loc) | l/defl    | L/d                | PLATES           | GRIP     |     |
| TCLL (roo                       | f) 20.0                       | Plate Grip DOL                            | 1.15                 |                                                                                                      | TC                      | 0.78        | Vert(LL)        | -0.04        | 6-7   | >999      | 240                | MT20             | 244/190  |     |
| Snow (Pf)                       | 20.0                          | Lumber DOL                                | 1.15                 |                                                                                                      | BC                      | 0.96        | Vert(CT)        | -0.08        | 6-7   | >999      | 180                | MT20HS           | 187/143  |     |
| TCDL                            | 10.0                          | Rep Stress Incr                           | NO                   |                                                                                                      | WB                      | 0.56        | Horz(CT)        | 0.02         | 6     | n/a       | n/a                |                  |          |     |
| BCLL                            | 0.0*                          | Code                                      | IRC201               | 8/TPI2014                                                                                            | Matrix-MSH              |             |                 |              |       |           |                    |                  |          |     |
| BCDL                            | 10.0                          |                                           |                      |                                                                                                      |                         |             |                 |              |       |           |                    | Weight: 202 lb   | FT = 20% |     |
| LUMBER                          |                               |                                           | 4)                   | Wind: ASCE                                                                                           | 7-16; Vult=130m         | ph (3-seo   | cond gust)      |              |       | Vert: 1-3 | 3=-60,             | 3-5=-60, 6-9=-20 |          |     |
| TOP CHO                         | RD 2x4 SP No.2                |                                           |                      | Vasd=103m                                                                                            | oh; TCDL=6.0psf;        | BCDL=6      | 0.0psf; h=25ft  | ;            | C     | oncentra  | ted Lo             | ads (lb)         |          |     |
| BOT CHO                         | RD 2x6 SP No.2                |                                           |                      | Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior Vert: 12=-1290 (B), 13=-1                        |                         |             |                 |              |       |           | ) (B), 13=-1290 (I | 3), 14=-1290     | ) (B),   |     |
| WEBS                            | 2x4 SP No.3                   |                                           |                      | zone; cantilever left and right exposed ; end vertical left 15=-1290 (B), 16=-1290 (B), 17=-1290 (B) |                         |             |                 |              |       |           |                    |                  |          |     |
| BRACING                         |                               |                                           |                      | and right exposed; Lumber DOL=1.60 plate grip                                                        |                         |             |                 |              |       |           |                    |                  |          |     |
| TOP CHO                         | RD Structural wood she        | athing directly applie                    | ed or                | DOL=1.60                                                                                             |                         |             |                 |              |       |           |                    |                  |          |     |
|                                 | 6-0-0 oc purlins, ex          | cept end verticals.                       | 5)                   | TCLL: ASCE                                                                                           | : 7-16; Pr=20.0 ps      | f (roof Ll  | _: Lum DOL=     | 1.15         |       |           |                    |                  |          |     |
| вот сно                         | RD Rigid ceiling directly     | applied or 10-0-0 or                      |                      | Plate DOL=1                                                                                          | .15); Pf=20.0 psf       | (Lum DC     | DL=1.15 Plate   | Э            |       |           |                    |                  |          |     |
|                                 | bracing.                      |                                           |                      | DOL=1.15);                                                                                           | ls=1.0; Rough Ca        | t B; Fully  | Exp.; Ce=0.     | 9;           |       |           |                    |                  |          |     |
| REACTIO                         | NS (size) 6=0-5-8.9           | 9=0-5-8                                   |                      | Cs=1.00; Ct=                                                                                         | =1.10                   |             |                 |              |       |           |                    |                  |          |     |
|                                 | Max Horiz 9=155 (LC           | C 36)                                     | 6)                   | Unbalanced                                                                                           | snow loads have         | been coi    | nsidered for t  | his          |       |           |                    |                  |          |     |
|                                 | Max Uplift 6=-444 (L          | .C 13). 9=-403 (LC 1                      | 2) -                 | design.                                                                                              |                         |             | nuice indicate  |              |       |           |                    |                  |          |     |
|                                 | Max Grav 6=4686 (L            | _C 19), 9=4269 (LC                        | -/ /)<br>18) ()      | All plates are                                                                                       | e IVI I 20 plates uni   | ess othe    | wise indicate   | ea.          |       |           |                    |                  |          |     |
| FORCES                          | (lb) - Maximum Com            | (lb) - Maximum Compression/Maximum        |                      |                                                                                                      | as been designed        | with onv    | other live ler  | de           |       |           |                    |                  |          |     |
| 1 011020                        | Tension                       | procoroni, maximum                        | 0)                   | * This trues h                                                                                       | au nonconcurrent        | d for a liv | load of 20      | ius.<br>Onef |       |           |                    |                  |          |     |
| тор сно                         | RD 1-2=-417/85. 2-3=-4        | 107/471. 3-4=-4146/                       | (475. <sup>9</sup> ) | on the bottom chord in all areas where a rectangle                                                   |                         |             |                 |              |       |           |                    |                  |          |     |
|                                 | 4-5=-461/90, 1-9=-3           | 27/76. 5-6=-353/79                        | ,                    | 3-06-00 tall b                                                                                       | 2-00-00 wide w          | ill fit hot | veen the hott   | om           |       |           |                    |                  |          |     |
| вот сно                         | RD 8-9=-314/3105, 7-8=        | -232/2591,                                |                      | chord and ar                                                                                         | y other members         |             |                 | om           |       |           |                    |                  |          |     |
|                                 | 6-7=-290/3138                 |                                           | 10                   | ) LGT2 Simps                                                                                         | on Strong-Tie cor       | nectors     | recommende      | d to         |       |           |                    |                  |          |     |
| WEBS                            | 3-7=-284/2364, 4-7=           | -141/1076,                                |                      | connect trus                                                                                         | s to bearing walls      | due to U    | PLIFT at it(s   | ) 9          |       |           |                    |                  |          |     |
|                                 | 3-8=-274/2268, 2-8=           | -140/1076,                                |                      | and 6. This c                                                                                        | connection is for u     | plift only  | and does no     | t            |       |           |                    |                  | 11.      |     |
|                                 | 2-9=-4255/376, 4-6=           | -4249/375                                 |                      | consider late                                                                                        | eral forces.            |             |                 |              |       |           |                    | IN CA            | DUL      |     |
| NOTES                           |                               |                                           | 11                   | ) This truss is                                                                                      | designed in accor       | rdance w    | ith the 2018    |              |       |           |                    | THUA             | ROIT     | 1   |
| 1) 2-ply t                      | russ to be connected toge     | ther with 10d                             |                      | International                                                                                        | <b>Residential Code</b> | sections    | s R502.11.1 a   | and          |       |           | N                  | M JESO           | a. In    | 1   |
| (0.131                          | "x3") nails as follows:       |                                           |                      | R802.10.2 a                                                                                          | nd referenced sta       | ndard Al    | ISI/TPI 1.      |              |       | /         | 22                 | OFF              | PN       | 2-1 |
| Top cl                          | nords connected as follows    | s: 2x4 - 1 row at 0-9-                    | 0 12                 | <ol> <li>Use Simpson</li> </ol>                                                                      | n Strong-Tie HTU        | 26 (20-1    | 0d Girder,      |              |       |           | V                  |                  | 120      |     |
| OC.                             |                               |                                           |                      | 11-10dx1 1/2                                                                                         | 2 Truss, Single Ply     | / Girder)   | or equivalen    | t            |       | -         | è – р              | N N              |          |     |
| Bottor                          | n chords connected as foll    | ows: 2x6 - 2 rows                         |                      | spaced at 2-                                                                                         | 0-0 oc max. starti      | ng at 2-0   | -12 from the    | left         |       | -         |                    | SEA              |          | 8 E |
| stagge                          | ered at 0-7-0 oc.             |                                           |                      | end to 12-0-12 to connect truss(es) to back face of                                                  |                         |             |                 |              |       |           |                    |                  |          |     |
| Web c                           | onnected as follows: 2x4 -    | 1 row at 0-9-0 oc.                        |                      | bottom chord                                                                                         | 1.<br>                  |             |                 |              |       |           |                    | 0363             | 22 :     | -   |
| <ol><li>All loa</li></ol>       | ds are considered equally     | applied to all plies,                     | 13                   | ) Fill all hall ho                                                                                   | pies where hange        |             | itact with lum  | iber.        |       | -         | 3                  |                  |          | -   |
| excep                           | t it noted as front (F) or ba | ck (B) face in the LC                     | DAD 14               | the trues                                                                                            | ane ties must hav       | e two sti   | ius in line bel | OW           |       |           | 1                  |                  | a        | 1   |
| CASE                            | (5) section. Ply to ply conr  | section. Ply to ply connections have been |                      |                                                                                                      | the truss.              |             |                 |              |       |           | 2.0                | NGINI            | EL       | 5   |
| provid                          | eu lo distribute only loads   | noted as (F) or (B),                      | LC                   | LOAD CASE(S) Standard                                                                                |                         |             |                 |              | EX    | N         |                    |                  |          |     |
| 2) Uniess                       | ounerwise indicated.          | hoon considered for                       | . 1)                 | 1) Dead + Snow (paranced): Lumber increase=1.15, Plate                                               |                         |             |                 |              |       |           |                    |                  |          |     |
| <li>J) UNDaliant this data</li> | anceu root live loads have    | been considered for                       | ſ                    | increase=1                                                                                           | .15<br>ada (lk/#)       |             |                 |              |       |           |                    | 1111.0           | in in    |     |
| unis de                         | siyn.                         |                                           |                      | Uniform Loads (lb/tt)                                                                                |                         |             |                 |              |       |           |                    |                  |          |     |

June 14,2023



| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | F     | Common     | 5   | 1   | Job Reference (optional) | 158937623 |

6-3-12

6-3-12

Carter Components (Sanford), Sanford, NC - 27332,

2-7-4

0-9-0

2-8-7

-0-10-8

0-10-8

#### Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:39 ID:VNhUx16Vbr5kqTu5L\_uT9rz6RTH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-7-8

6-3-12



13-6-0

0-10-8

4

3x5 =

5

4x5 = 12 4 Г 3 15 14 13 16 2 Ю 6 17 18 19 20 2x4 u 3x5 =

|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                    |                                                                                                                                                                                                                                                                        | 6-3-12                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                   |                            | 12-7-8                        | 3                        |                                 |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                    | Γ                                                                                                                                                          |                                                    | (                                                                                                                                                                                                                                                                      | 6-3-12                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                   |                            | 6-3-12                        | 2                        |                                 |                                    |
| Scale = 1:31.7                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                   |                            |                               |                          |                                 |                                    |
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                            | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018            | 3/TPI2014                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                     | 0.75<br>0.53<br>0.10                                                                                                                                                                                                  | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                | in<br>0.10<br>-0.11<br>0.01                                       | (loc)<br>6-12<br>6-12<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 45 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>3-9-3 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-0,4<br>Max Horiz 2=-38 (LC<br>Max Uplift 2=-203 (Li<br>Max Grav 2=651 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-913/'<br>4-5=0/17<br>2-6=-1038/782, 4-6=<br>3-6=-454/271 | athing directly applie<br>applied or 5-5-6 oc<br>-15)<br>C 10), 4=-203 (LC 1<br>2 21), 4=651 (LC 22<br>pression/Maximum<br>1196, 3-4=-913/119<br>-1038/782 | 5)<br>ed or 7)<br>8)<br><sup>(1)</sup> 9)<br>6, LC | This truss ha<br>load of 12.0 j<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>One H2.5A S<br>recommende<br>UPLIFT at jt(<br>and does not<br>This truss is<br>International<br>R802.10.2 ar | Is been designed<br>psf or 1.00 times<br>on-concurrent win<br>is been designed<br>ad nonconcurrent<br>has been designed<br>n chord in all area<br>by 2-00-00 wide v<br>by other members<br>Simpson Strong-T<br>ed to connect trus<br>s) 2 and 4. This of<br>t consider lateral<br>designed in acco<br>Residential Code<br>nd referenced sta<br>Standard | I for great<br>flat roof I<br>I for a 10.1<br>I for a 10.1<br>I for a 10.1<br>I with any<br>as where<br>vill fit betv<br>s.<br>Fie conne<br>sto bear<br>connectio<br>forces.<br>ordance we<br>e sections<br>andard AN | er of min roc<br>bad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live lo:<br>e load of 20<br>a rectangle<br>veen the bot<br>ctors<br>ing walls dua<br>n is for uplift<br>ith the 2018<br>\$ R502.11.1<br>ISI/TPI 1. | of live<br>osf on<br>ads.<br>.0psf<br>tom<br>e to<br>conly<br>and |                            |                               |                          |                                 |                                    |
| NOTES<br>1) Unbalance                                                                                                                  | ed roof live loads have                                                                                                                                                                                                                                                                                                            | been considered fo                                                                                                                                         | r                                                  |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                   |                            |                               |                          |                                 |                                    |

this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-3-12, Exterior(2R) 3-3-12 to 9-3-12, Interior (1) 9-3-12 to 10-6-0, Exterior(2E) 10-6-0 to 13-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.





| Job         | Truss | Truss Type             | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | FGE   | Common Supported Gable | 1   | 1   | Job Reference (optional) | 158937624 |

6-3-12

6-3-12

Carter Components (Sanford), Sanford, NC - 27332,

-0-10-8 0-10-8

#### Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:39 ID:NtPZCayMfrSanTObUl9Q75z6RTU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







Scale = 1:28.5

| Loading      |                 | (psf)       | Spacing                   | 2-0-0       |                                     | CSI                                  |                       | DEFL                           | in         | (loc)    | l/defl     | L/d     | PLATES           | GRIP                 |
|--------------|-----------------|-------------|---------------------------|-------------|-------------------------------------|--------------------------------------|-----------------------|--------------------------------|------------|----------|------------|---------|------------------|----------------------|
| TCLL (roof)  |                 | 20.0        | Plate Grip DOL            | 1.15        |                                     | TC                                   | 0.07                  | Vert(LL)                       | n/a        | -        | n/a        | 999     | MT20             | 244/190              |
| Snow (Pf)    |                 | 20.0        | Lumber DOL                | 1.15        |                                     | BC                                   | 0.04                  | Vert(CT)                       | n/a        | -        | n/a        | 999     |                  |                      |
| TCDL         |                 | 10.0        | Rep Stress Incr           | YES         |                                     | WB                                   | 0.04                  | Horz(CT)                       | 0.00       | 8        | n/a        | n/a     |                  |                      |
| BCLL         |                 | 0.0*        | Code                      | IRC20       | 18/TPI2014                          | Matrix-MSH                           |                       |                                |            |          |            |         |                  |                      |
| BCDL         |                 | 10.0        |                           |             |                                     |                                      |                       |                                |            |          |            |         | Weight: 51 lb    | FT = 20%             |
| LUMBER       |                 |             |                           |             | 2) Wind: ASCE                       | 7-16; Vult=130m                      | iph (3-sec            | cond gust)                     |            | 14) This | s truss is | s desig | ned in accordan  | ce with the 2018     |
| TOP CHORD    | 2x4 SP No       | o.2         |                           |             | Vasd=103m                           | oh; TCDL=6.0psf                      | BCDL=6                | 0.0psf; h=25ft;                |            | Inte     | rnationa   | al Resi | dential Code sec | ctions R502.11.1 and |
| BOT CHORD    | 2x4 SP No       | o.2         |                           |             | Cat. II; Exp E                      | 3; Enclosed; MWI                     | FRS (env              | elope) exterior                |            | R80      | 2.10.2     | and ref | ferenced standa  | rd ANSI/TPI 1.       |
| OTHERS       | 2x4 SP No       | o.3         |                           |             | zone and C-                         | C Corner(3E) -0-                     | 10-8 to 2-            | 3-12, Exterior                 |            | LOAD C   | CASE(S     | ) Sta   | ndard            |                      |
| BRACING      |                 |             |                           |             | (2N) 2-3-12                         | o 3-3-12, Corner                     | (3R) 3-3-             | 12 to 9-3-12,                  |            |          | -          | -       |                  |                      |
| TOP CHORD    | Structural      | wood she    | athing directly applie    | d or        | Exterior(2N)                        | 9-3-12 to 10-3-12 cantilever left an | 2, Corner             | (3E) 10-3-12 to<br>mosed : end | )          |          |            |         |                  |                      |
|              | 6-0-0 oc p      | ourlins.    |                           |             | vertical left a                     | nd right exposed                     | :C-C for n            | nembers and                    |            |          |            |         |                  |                      |
| BOICHORD     | bracing.        | ng directly | applied or 10-0-0 oc      | ;           | forces & MW                         | FRS for reaction                     | s shown;              | Lumber                         |            |          |            |         |                  |                      |
| REACTIONS    | (size)          | 2=12-7-8.   | 8=12-7-8, 10=12-7-8       | 8           | DOL=1.60 p                          | ate grip DOL=1.6                     | 50                    |                                |            |          |            |         |                  |                      |
|              | ()              | 11=12-7-8   | 3, 12=12-7-8, 13=12-      | 7-8,        | <ol> <li>I russ designed</li> </ol> | ned for wind load                    | s in the p            | lane of the true               | SS         |          |            |         |                  |                      |
|              |                 | 14=12-7-8   | 3, 15=12-7-8, 18=12-      | -7-8        | only. For Stu                       | ids exposed to w                     | ina (norm<br>End Data | al to the face),               |            |          |            |         |                  |                      |
|              | Max Horiz       | 2=-38 (LC   | 15), 15=-38 (LC 15)       | )           | or concult a                        | a industry Gable                     | Ellu Dela             | ns as applicad                 | 10,<br>1 1 |          |            |         |                  |                      |
|              | Max Uplift      | 2=-41 (LC   | 10), 8=-47 (LC 11),       |             |                                     | 7-16. Pr=20.0 p                      | sf (roof I I          | $\cdot$ Lum DOI =1             | 15         |          |            |         |                  |                      |
|              |                 | 10=-39 (L   | C 15), 11=-37 (LC 1       | 1),         | Plate DOI =1                        | 15) Pf=20.0 ps                       |                       | )I =1 15 Plate                 | .10        |          |            |         |                  |                      |
|              |                 | 13=-36 (L   | C 10), 14=-41 (LC 14      | 4),         | DOL=1.15):                          | ls=1.0: Rough Ca                     | at B: Fully           | Exp.: Ce=0.9:                  |            |          |            |         |                  |                      |
|              |                 | 15=-41 (L   | C 10), 18=-47 (LC 1       | 1)          | Cs=1.00: Ct                         | =1.10                                | ,                     | , ,                            |            |          |            |         |                  |                      |
|              | Max Grav        | 2=176 (LC   | C 21), 8=176 (LC 22)      | l, <u>t</u> | 5) Unbalanced                       | snow loads have                      | been cor              | nsidered for thi               | s          |          |            |         |                  |                      |
|              |                 | 10=250 (L   | LC 22), 11=222 (LC 2      | 22),        | design.                             |                                      |                       |                                |            |          |            |         |                  |                      |
|              |                 | 12=139 (L   | LC 1), 13=222 (LC 21      | 1), (       | <ol><li>This truss has</li></ol>    | is been designed                     | for great             | er of min roof I               | ive        |          |            |         |                  |                      |
|              |                 | 14=250 (L   | C 21), 15=176 (LC 2       | 21),        | load of 12.0                        | psf or 1.00 times                    | flat roof lo          | bad of 20.0 ps                 | on         |          |            |         |                  |                      |
| 500050       |                 | 10=170 (L   | -0 22)                    |             | overhangs n                         | on-concurrent wit                    | th other liv          | ve loads.                      |            |          |            |         |                  | 1111                 |
| FURCES       | (ID) - Maxi     | Imum Com    | pression/iviaximum        | 7           | <ol><li>All plates are</li></ol>    | e 2x4 MT20 unles                     | s otherwi             | se indicated.                  |            |          |            |         | 11111            | A.D. 111             |
|              | 1 2-0/17        | 2 2- 52/2   | 5 2 1- 51/56              | 8           | <ol> <li>Gable requir</li> </ol>    | es continuous bo                     | ttom chor             | d bearing.                     |            |          |            | 1       | I'TH U           | ARO (1)              |
| TOF CHORD    | 1-2=0/17,       | 2-3=-32/3   | 1/108 6-751/56            | ę           | <ol> <li>Gable studs</li> </ol>     | spaced at 2-0-0 o                    | DC.                   |                                |            |          |            | 1       | A                | De Main              |
|              | 7-852/3         | 5 8-9-0/1   | 4/100, 0-7 =-3 1/30,<br>7 |             | 10) This truss ha                   | is been designed                     | for a 10.0            | 0 psf bottom                   |            |          |            | 21      |                  | Print                |
| BOT CHORD    | 2-14=-20/       | 44 13-14=   | ,<br>_0/44 12-13_0/44     |             | chord live loa                      | ad nonconcurrent                     | with any              | other live load                | s.         |          | 1          |         | 19 10            | 19.11                |
| Bol onone    | 11-12=0/4       | 4 10-11=    | 0/44 8-10=-20/44          |             | 11) ^ This truss r                  | has been designe                     | d for a liv           | e load of 20.0                 | DST        |          | -          |         | .4               | 19.12                |
| WEBS         | 5-12=-97/4      | 46. 4-13=-  | 187/141. 3-14=-192/       | 120.        | on the bottor                       | n chord in all are                   | as where              | a rectangle                    |            |          | -          |         | SF/              | 1 : =                |
|              | 6-11=-187       | 7/141. 7-10 | )=-192/120                | ,           | 3-06-00 tall t                      | by 2-00-00 wide v                    |                       | veen the botto                 | n          |          | =          |         | OLA              | ··· : =              |
| NOTES        |                 | ,           |                           |             | 12) Provido moo                     | hapical connection                   | o.<br>on (by oth      | ore) of truce to               |            |          | =          |         | 0363             | 322 : =              |
| 1) Unbalance | ed roof live la | oads have   | been considered for       |             | hearing plate                       | canable of withe                     | tanding /             | 1 lb unlift at io              | int        |          | -          | - 3     |                  |                      |
| this desig   | n.              |             |                           |             | 2 47 lb unlift                      | at joint 8 36 lb i                   | inlift at ini         | nt 13 41 lb un                 | lift       |          |            | -       | ·                | - A 1 - E            |
| abbig        |                 |             |                           |             | at joint 14. 3                      | 7 lb uplift at joint                 | 11. 39 lb             | uplift at joint 10             | <br>).     |          |            | 2.0     | S. SNOW          | FER. AN              |
|              |                 |             |                           |             | 41 lb uplift at                     | ioint 2 and 47 lb                    | uplift at i           | pint 8.                        | ,          |          |            | 1       | 8                | 5. 64 5              |
|              |                 |             |                           |             | 13) Beveled plat                    | e or shim require                    | d to provi            | de full bearing                |            |          |            | 1       | IL A C           | 31LBL IN             |

surface with truss chord at joint(s) 2, 15.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G١ 1000 minut

June 14,2023

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | G     | Monopitch  | 2   | 1   | Job Reference (optional) | 158937625 |

#### Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:39 ID:2wnvx1AnUG3TGubNowWlwRz6gRC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:38.2

| Loading<br>TOLL (rod)         (pd)<br>200<br>Show (P)         Spacing<br>200<br>Plate Grip DOL<br>1.15         2-0-0<br>Plate Grip DOL<br>1.15         CSI<br>TC         0.25<br>DC         Vert(L1)         0.002         8.8         9999         240         MT20         244/190           TOLL<br>Som (P)         20.00<br>TOL<br>BCL         0.00         Rep Stress Incr         YES<br>REP Stress Incr         YES Stres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |                                             |          |                 | · · · · · ·          |             |                 |       |       |        |     |               |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|---------------------------------------------|----------|-----------------|----------------------|-------------|-----------------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof)         20.0         Plake Grp DOL         1.15         TC         0.25         Vert(C1)         0.02         8 > 999         240         MT20         244/190           TCDL         0.07         Rep Stress Incr         YES         0.01         Rep Stress Incr         YES         0.01         7         n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Loading       | (psf)                                   | Spacing                                     | 2-0-0    |                 | CSI                  |             | DEFL            | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| Snow (P)       20.0       Lumber DOL       1.15       BC       0.17       I (vrr(CT)       0.03       8 > > > > > > > > > > > > > > 999       180         BCLL       0.0*       Code       IRC2018/TPI2014       BCL       0.0*       Weight: 37 lb       FT = 20%         LUMBER       T0.0       D.0*       Code       IRC2018/TPI2014       BCL       0.0*       Veight: 37 lb       FT = 20%         LUMBER       T0.0       Code       IRC2018/TPI2014       BCL       0.0*       Veight: 37 lb       FT = 20%         LUMBER       T0.0       Code       Veight: 37 lb       FT = 20%       Veight: 37 lb       FT = 20%         Structural wood sheathing directly applied or 10-00 oc       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet bottom chord in all areas where a recommetions.       FT his truss has been designed for a 10.0 pet baring truss to bearing walls due to 10.0 pet 10.0 pet 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TCLL (roof)   | 20.0                                    | Plate Grip DOL                              | 1.15     |                 | TC                   | 0.25        | Vert(LL)        | -0.02 | 8     | >999   | 240 | MT20          | 244/190  |
| TCDL       10.0       Reg Stress Incr       YES       WB       0.26       Horz(CT)       0.01       7       n/a       n/a         BCDL       10.0       Code       IRC2018/TPI2014       Mark-MP       WB       0.26       Horz(CT)       0.01       7       n/a       n/a         LUMBER       10.0       Code       IRC2018/TPI2014       Mark-MP       Weight: 37 Ib       FT = 20%         LUMBER       TOP CHORD       2x4 SP No.3       This truss has been designed for a 10.0 psf bottom       chord ive leads anonconcurrent with any other live leads.       -       This truss has been designed for a 10.0 psf bottom         FOP CHORD       Structural wood sheathing directly applied or 100-0 cot bracing.       FT is truss has been designed for a live loads.       -       -       This truss tas been designed for a live loads.       -       -       -       -       -       This truss has been designed for a live loads.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Snow (Pf)     | 20.0                                    | Lumber DOL                                  | 1.15     |                 | BC                   | 0.17        | Vert(CT)        | -0.03 | 8-9   | >999   | 180 |               |          |
| BCLL       0.0°       Code       IRC2018/TPI2014       Matrix-MP       Weight: 37 Ib       FT = 20%         LUMBER<br>TOP CHORD       2x4 SP No.2       5       This truss has been designed for a 10.0 psf bottom<br>chord live load anoncoursent with any other live loads.       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TCDL          | 10.0                                    | Rep Stress Incr                             | YES      |                 | WB                   | 0.26        | Horz(CT)        | 0.01  | 7     | n/a    | n/a |               |          |
| BCDL       10.0       Weight: 37 lb       FT = 20%         LUMBER<br>TOP CHORD       2x4 SP No.2       S       This truss has been designed for a 10.0 p5 bottom<br>chord live load nonconcurrent with any other live loads.       S       This truss has been designed for a 10.0 p5 bottom<br>chord live load nonconcurrent with any other live loads.         BTACINON<br>TOP CHORD       Structural wood sheathing directly applied or 10-0-0 oc<br>bracing.       This truss has been designed for a live load of 20.0 p5f<br>on the bottom chord in all areas where a rectangle<br>3:06-00 all by 2:00-00 wide will fit between the bottom<br>chord live load nonconcurrent with any other live loads.         FRACTONS<br>GIC CHORD       Structural wood sheathing directly applied or 10-0.0 oc<br>bracing.       This truss has been designed for a live load of 20.0 p5f<br>on the bottom chord in all areas where a rectangle<br>3:06-00 tall by 2:00-00 wide will fit between the bottom<br>chord and any other members.         FREACTONS<br>GIS (Size)       7 - Mechanical, 9=-0.5-8<br>Max Horiz 9=-130 (LC 14),<br>9:-00-00 tall by 2:00-00 wide will fit applied to<br>fold on 4 any other members.       9 Provide mechanical connection. (by others) of truss to<br>bearing plate capabiel of withstanding g9 lb upilit at joint<br>7.0 met 12:6.5 Simpson Strong-Tie connecturus to bearing walls due to<br>recommended connector upili for upili only and<br>does need standed in accortaince with the 2018<br>Intermational Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standerd ANSUTPI 1.         IV Mict ASCE 7-16; Vull=130mph (3-second gust)       11 This truss has been designed for chis<br>for Live back in the DOL-1.150 plate grip<br>DOL-1.150; PF-200 pdf (cur IL): uno DL-1.151 Pic200 pdf (cur DDL-1.150 plate grip<br>DOL-1.150; Pi                                                                                                                                                                                                                                                                                                                                                               | BCLL          | 0.0*                                    | Code                                        | IRC2018  | 3/TPI2014       | Matrix-MP            |             |                 |       |       |        |     |               |          |
| LUMBER<br>TOP CHORD<br>2x4 SP No.2<br>BOT CHORD<br>2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2<br>STUCLUTal wood sheathing directly applied or<br>toP CHORD<br>Structural wood sheathing directly applied or<br>toP CHORD<br>Co-O or puttine, except end verticals.<br>BOT CHORD<br>Rigid celling directly applied or 10-0-0 or<br>bracing.<br>REACTIONS<br>(size) 7 - Mechanical, 9=-0-5-8<br>Max Ivoit 7 7=-375 (LC 21), 9=-30 (LC 14)<br>Max Upilit 7 -=-69 (LC 14), 9=-30 (LC 12)<br>Max Upilit 7 -=-69 (LC 14), 9=-30 (LC 14)<br>Max Upilit 7 -=-69 (LC 14)<br>Max Upilit Approxed60 (LC 14) (                                                    | BCDL          | 10.0                                    |                                             |          |                 |                      |             |                 |       |       |        |     | Weight: 37 lb | FT = 20% |
| TOP CHORD       2x4 SP No.2       chord live load nonconcurrent with nay other live loads.         BOT CHORD       2x4 SP No.2       chord live load nonconcurrent with nay other live loads.         BRACING       Structural wood sheathing directly applied of co-0 co purifies, except end verticals.       chord in a lareas where a rectangle         SOT CHORD       Structural wood sheathing directly applied or 100-00 co bracing.       Refer total by 2-00.00 wide will fit between the bottom chord and any other members.         REACTIONS       Size)       7 - Mechanical, 9=-0-5-8         Max Holit       7 - Mechanical, 9=-0-5-8         Max Holit       9 (10 c14), 9=-30 (LC 14), 9=-30 (LC 14), Max Grav         Max Grav       7-375 (LC 21), 9=-384 (LC 21)         FORCES       (b) - Maximum Compression/Maximum         TOP CHORD       2-9=-349/213, 1-2-0/27, 2-3=-731/234, 42-8-65/0, 45-8-1/20, 4711/131         BOT CHORD       2-9=-349/213, 1-2-0/27, 2-3=-731/234, 42-8-65/0, 45-8-1/20, 4711/131         NOTES       11 This truss is designed in a coordance with the 2018         International Residential Code sections R502-11.1 and R826 T-16: Valler 3-6, fitcher 3-1, fitcher R       11 This truss is designed in a coordance with the 2018         International Residential Code section R502.11.1 and R820.12.1.5; PH=20.0 psf (cord LL: Lum DOL=1.15; Phate DOL=1.15; Pher20.0 psf (cord LL: Lum DOL=1.15 Phate DOL=1.15; Phate DOL=1.15; Phate DOL=1.15; Pher20.0 psf (cord LL: Lum DOL=1.15; Phate DOL=1.15; Pher2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LUMBER        |                                         |                                             | 5)       | This truss ha   | s been designed f    | or a 10.    | ) psf bottom    |       |       |        |     |               |          |
| BOT CHORD 2x4 SP No.2<br>SRACING<br>BRACING<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>6-0-0 oc purlins, except end verticals,<br>BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br>REACTIONS (size) 7= Mechanical, 9=0-5-8<br>(size) 7= Michanical, 9=0 | TOP CHORD     | 2x4 SP No.2                             |                                             |          | chord live loa  | ad nonconcurrent v   | with any    | other live loa  | ids.  |       |        |     |               |          |
| <ul> <li>WEBS 2x4 SP No.3</li> <li>BRACING</li> <li>Structural wood sheathing directly applied or f0-00 cutils, sexcept end verticals.</li> <li>BOT CHORD Structural wood sheathing directly applied or f0-00 cutils 2-0-00 und will if between the bottom chord and any other members.</li> <li>BOT CHORD REACTIONS (size) 7 = Mechanical, 9=-05-8<br/>Max Horiz 9=130 (LC 11)<br/>Max Grav 7-375 (LC 21), 9=-384 (LC 21)</li> <li>FORCES (b) - Maximum Compression/Maximum Tension</li> <li>TOP CHORD 2-9-3-349213, 1-2=-0/27, 2-3=-731/234, 4-46/80, 4-5=-120, 4-7=-111/31</li> <li>BOT CHORD 8-9143/168, 7-8=-233672, 6-7=-0/0</li> <li>Wind: ASCE 7-16; Ville 130mph (3-second gust)</li> <li>WeES 2-8-128/618, 3-8-52/212, 3-7-e18/229</li> <li>Notres</li> <li>Notres</li> <li>1) Wind: ASCE 7-16; Ville 130mph (3-second gust)</li> <li>Vasce-103specid (2E) -0-10 do 12-1.5, Interior (1)</li> <li>2-1-8 to 3-60, Extenor(2E) 3-6-0 to 6-0-2 cne; carativer et and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-16 ruembers and forces &amp; MWFRS (revelope) exterior cons show; Lumber DDL=1.160 pilk ergin</li> <li>DOL=1.16); I=-10, Rough Cat B; Fully Exp.; Cee-0.9; Cs=1-10; Ccl=1.10</li> <li>This trues has been designed for trains to faste and role uses and roces &amp; how been considered for this design.</li> <li>This trues has been designed for trains tor form the faste form the considered for this design.</li> <li>This trues has been designed for trains tor form the faste form the faste form the considered for this design.</li> <li>This trues has been designed for trains and force as multicated for this designed for trains and form the faste form the form this design.</li> <li>This trues has been designed for trains and form the faste form the form the fa</li></ul>                                                                                                             | BOT CHORD     | 2x4 SP No.2                             |                                             | 6)       | * This truss h  | as been designed     | l for a liv | e load of 20.0  | Opsf  |       |        |     |               |          |
| <ul> <li>BRACING</li> <li>Brockerial wood sheathing directly applied or 10-0-0c bracing.</li> <li>BOT CHORD Rigid ceiling directly applied or 10-0-0c bracing.</li> <li>BOT CHORD Rigid ceiling directly applied or 10-0-0c bracing.</li> <li>BOT CHORD (Size) 7- Mechanical, 9=0-5-8 Max Horiz 9=130 (LC 11) Max Uplit 7-e69 (LC 14), 9=-30 (LC 11) Max Uplit 7-e69 (LC 14), 9=-30 (LC 11) Max Grav 7=375 (LC 21), 9=-384 (LC 21)</li> <li>FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 2-98-349/213, 1-2=0/27, 2-3=-731/234, 3-4=-66/50, 4-5=-120, 4-7=-111/31 Horiz 10, 12-92-349/213, 1-2=0/27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27, 2-3=-731/234, 12-92-27</li></ul>                                                                                                                           | WEBS          | 2x4 SP No.3                             |                                             |          | on the bottor   | n chord in all area  | s where     | a rectangle     |       |       |        |     |               |          |
| <ul> <li>TOP CHORD Structural wood shearthing directly applied or 10-0-0 c bracing.</li> <li>BOT CHORD REACTIONS (size) 7 - Mechanical, 9=0-5-8 Max Horiz 9=130 (LC 11) Max Upit 7 - 69 (LC 14), 9=-30 (LC 14), 9=-30 (LC 14) Max Grav 7 -375 (LC 21), 9=384 (LC 21)</li> <li>FORCES (b) - Maximum Compression/Maximum ToP-resion/Maximum ToP-resion/Maximum 2-38-126/018, 3-8-52/212, 3-7-e10123</li> <li>TOP CHORD 2-9-349/213, 1-2-0/27, 2-3731/234, 3-4-e6/67, 0-45120, 4-7-4111/31</li> <li>BOT CHORD 8-9143/168, 7-8-233/672, 6-7-0/0 UPIET at (j6) 9 - This connection is to public only and does not consider lateral forces. 1 This use is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TPI 1.</li> <li>LOAD CASE(S) Standard</li> <li>LOAD CASE(S) Standard</li> <li>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-60, Exterior(2E) -0-0-9 to 2-1-8, Interior (1) 2-1-8 to 3-60, Exterior(2E) -0-0-9 to 2-1-8, Interior (1) 2-1-8 to 3-60, Exterior(2E) -0-0-9 to 2-1-8, Interior (1) 2-1-8 to 3-1-8, Interior (1) 2-1-8 to 3-1, Exp B; Enclosed; red writical left and right exposed; c: of or members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.16 Plate DOL=-1.15) Plate DOL=-1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (troub L=1.15 Plate DOL=-1.16)</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (troub L=1.15 Plate DOL=-1.16)</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (troub L=1.15 Plate DOL=-1.16)</li> <li>3) Unbalanced snow loads have been considered for this designed for meater of ming not line</li> <li>4) This truss has been designed for creater of ming not line</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BRACING       |                                         |                                             |          | 3-06-00 tall b  | y 2-00-00 wide wi    | II fit betv | veen the bott   | om    |       |        |     |               |          |
| <ul> <li>B-0-0 oc pulmis, except end verticals.</li> <li>B-Bearing at joint(3) 9 considers parallel to grain value using ANS/TP1 1 angle to grain value using ANS/TP1 1 angle to grain value using ANS/TP1 1 angle to grain formula. Building designer should vertify capacity of bearing surface.</li> <li>Provide mechanical connection (by others) of truss to bearing wills due to trust to bearing wills due to connect trusts to bearing wills due to trust to bearing wills due to true trust to bearing wills due to the trust to the trust to bearing wills due to the trust to the trust to bearing wills due to the trust to the trust to bearing wills due to the trust to bearing wills due to the trust to bearing wills due to the trust to trust to the trust to the trust to the trust to tr</li></ul>                                                                                                                           | TOP CHORD     | Structural wood she                     | athing directly applie                      | ed or 7) | chord and an    | y other members.     |             | ections         |       |       |        |     |               |          |
| <ul> <li>bracing.</li> <li>bracing.</li> <li>Brack Truns (size)</li> <li>Te Mechanical, 9=0-5-8</li> <li>Max Horiz 9=130 (LC 11)</li> <li>Max Grav 7=375 (LC 21), 9=384 (LC 21)</li> <li>Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 7.</li> <li>FORCES (lb) - Maximum Compression/Maximum Tension</li> <li>TOP CHORD 2-9=-349/213, 1-2=0/27, 2-3=-731/234, 3-4=-66/50, 4-5=-120, 4-7=-111/31</li> <li>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=0/0</li> <li>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vull=130mph (3-second gust)</li> <li>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25/1; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2nc and C-C Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0. Exterior(2E) -0-10.8 to 21-18, Internation (1) 2-1-18 to 3-6-0.0 psf (cm DL=-1.15 plate DL=-1.6)</li> <li>TOLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DL=-1.15 Plate DL=-1.15); Pl=20.0 psf (cord LL: Lum DL=-1.15 Plate DL=-1.15); Pl=20.0 psf (cord LL: Lum DL=-1.15 Plate DL=-1.15); Pl=20.0 psf (cord DL=-1.15 Plate DL=-1.15); Pl</li></ul>                                                                                                                           | BOT CHORD     | Rigid ceiling directly                  | cept end verticals.<br>applied or 10-0-0 or | c 8)     | Bearing at jo   | int(s) 9 considers   | parallel    | o grain value   | •     |       |        |     |               |          |
| <ul> <li>REACTIONS (size) 7= Mechanical, 9=0-5-8<br/>Max Horiz 9=130 (LC 11),<br/>Max Upilit 7=-69 (LC 14), 9=-30 (LC 14),<br/>Max Grav 7=375 (LC 21), 9=384 (LC 21)</li> <li>FORCES (lb) - Maximum Compression/Maximum<br/>Tension</li> <li>TOP CHORD 2-9=-349/213, 1-2=0/27, 2-3=-731/234,<br/>-34=-86/50, 4-5=-120, 4-7s111/31</li> <li>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=0/0</li> <li>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vull=130mph (3-second gust)<br/>vasd=-103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br/>2-1-8 to 3-6-0, Exterior(2E) -0-0-8 to 6-6-0 zone;<br/>cantilever left and right exposed; end vertical left and<br/>right exposed; -C: for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DDL=1.60 paff; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; tum DDL=1.15 Plate<br/>DDL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DDL=1.15<br/>Plate DDL=1.160</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DDL=1.15<br/>Plate DDL=1.15; N=10; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced show loads have been considered for this<br/>design.</li> <li>4) This truss is bas been designed for orgater of min tory filty</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | bracing.                                |                                             |          | using ANSI/I    | PI 1 angle to grai   | n formul    | a. Building     |       |       |        |     |               |          |
| <ul> <li>Max Horiz 9–130 (LC 11)<br/>Max Upitf 7=-69 (LC 14), 9=-30 (LC 14)<br/>Max Grav 7=375 (LC 21), 9=-384 (LC 21)</li> <li>FORCES (b) - Maximum Compression/Maximum<br/>Tension</li> <li>TOP CHORD 2-9=-349/213, 1-2=0/27, 2-3=-731/234,<br/>-3-4=-66/50, 4-5=-12/0, 4-7=-111/31</li> <li>OT CHORD 8-9=-143/168, 7-8=-235/72, 6-7-0/0<br/>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>NOTES</li> <li>I) Wind: ASCE 7-16; Vult=130mph (3-second gust)<br/>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=-25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Exterior(2E) -0-10 ts 10 2-18, Interior (1)<br/>2-1-8 to 3-6-0, Exterior(2E) -0-10 ts 10 2-18, Interior (1)<br/>2-1-8 to 3-6-0. C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=-1.60 plate grip<br/>DOL=1.60</li> <li>TOLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=-1.15<br/>Plate DOL=-1.15); Is=-1.0; Rough Cat B; Fully Exp; : Ce=0.9;<br/>Cs=-1.00; Ct=1-110;</li> <li>I) Unbalanced snow loads have been considered for this<br/>design.</li> <li>M This truss has been designed for rereater of min frond live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REACTIONS     | (size) 7= Mecha                         | anical, 9=0-5-8                             | 0)       | designer sno    | buid verify capacity | of bear     | ng surrace.     | -     |       |        |     |               |          |
| Max Uplift 7=-69 (LC 14), 9=30 (LC 14)<br>Max Grav 7=375 (LC 21), 9=384 (LC 21)<br>FORCES (b) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 2-9=349/213, 1-2=0/27, 2-3=-731/234,<br>-3-4=-66/50, 4-5=-12/0, 4-7=-111/31<br>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=-0/0<br>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297<br>NOTES<br>1) Wind: ASCE 7-16; Vult=130mph (3-second gust)<br>Vasd= 103mph; TCDL=6.0ps; bc2DL=6.0ps; th=25ft;<br>Cat. II; zp B; Enclosed: MWFRS (envelope) exterior<br>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br>2-1-8 to 3-6-0, Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br>2-1-8 to 3-6-0, Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br>2-1-8 to 3-6-0, Exterior(2E) -0-10-8 to 2-1-15, Plate<br>DOL=1.15); Fl=20.0 psf (tum DOL=-1.15<br>Plate DOL=-1.15); Fl=20.0 psf (roof LL: Lum DOL=-1.15<br>Plate DOL=-1.10;<br>Plate DOL=-1.10;<br>3) Unbalanced snow loads have been considered for this<br>design.<br>This trues has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Max Horiz 9=130 (LO                     | C 11)                                       | 9)       | bearing plate   | canable of withet    | andina ƙ    | albunlift at i  | oint  |       |        |     |               |          |
| <ul> <li>Max Grav 7=375 (LC 21), 9=384 (LC 21)</li> <li>FORCES (Ib) - Maximum Compression/Maximum Tension</li> <li>TOP CHORD 2-9=-349/213, 1-2=0//27, 2-3=-731/234, 3-4=-66(5, 4-5=-120, 4-7=-111/31</li> <li>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=0/0</li> <li>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>NOTES 10 Wint: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf;</li></ul>                                                                                                                            |               | Max Uplift 7=-69 (LC                    | C 14), 9=-30 (LC 14)                        |          | 7               |                      | anding c    | o ib upint at j | onn   |       |        |     |               |          |
| <ul> <li>FORCES (Ib) - Maximum Compression/Maximum Tension</li> <li>ToP CHORD 2-9=-349/213, 1-2=0/27, 2-3=-731/234, 3-4=-66/50, 4-5=-120, 4-7=-111/31</li> <li>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=0/0</li> <li>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; HcDL=6.0ps; BCDL=6.0ps; HcDL=6.0ps; BCDL=6.0ps; too 66-0 zone; cantilever left and right exposed; c-C for members and forces &amp; MWFRS for reactions shown; Lumber DDL=1.60 pb12 ergip DDL=1.60</li> <li>2) TCLL: ASCE 7-16; Vre=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.15; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.16; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.15; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.16; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.16; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.15; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.16; Pl=20.0 psf (roof LL: Lum DDL=1.15; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.16; Pl=20.0 psf (roof LL: Lum DDL=1.15; Pl=20.0 psf (roof LL: Lum DDL=1.15; Pl=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.16; Pl=20.0 psf (roof LL: Lum DDL=1.16; Pl=20.0 psf (roof LL: Plate Pl</li></ul>                                                                                                                       |               | Max Grav 7=375 (L0                      | C 21), 9=384 (LC 21                         | ) 10     | ) One H2 5A S   | Simpson Strong-Ti    | e conne     | ctors           |       |       |        |     |               |          |
| Tension<br>TOP CHORD 2:9=-349/213, 1:2=0/27, 2:3=-731/234,<br>3:4=-6650, 4-5=-12/0, 4-7=-111/31<br>BOT CHORD 8:9=-143/168, 7-8=-233/572, 6-7=0/0<br>WEBS 2:8=-126/618, 3:8=-52/212, 3:7=-618/297<br>NOTES<br>1) Wind: ASCE 7-16; Vult=130mph (3-second gust)<br>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br>2-1-8 to 3-6-0, Exterior(2E) -0-10-8 to 2-1-16, Interior (1)<br>2-1-160<br>2) TCLL: SCE 7-16; Pr=20.0 psf (toof LL: Lum DOL=1.15<br>Plate DOL=1.15); Pf=20.0 psf (toof LL: Lum DOL=1.15<br>Plate DOL=1.15); Pf=20.0 psf (toof LL: Lum DOL=1.15<br>Plate DOL=1.15); Pf=20.0 psf (toof LL: Lum DOL=1.15<br>Plate DOL=1.10<br>3) Unbalanced snow loads have been considered for this<br>design.<br>4) Tbis trunss has been designed for grapter of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FORCES        | (lb) - Maximum Corr                     | pression/Maximum                            |          | recommende      | ed to connect truss  | to bear     | ing walls due   | to    |       |        |     |               |          |
| <ul> <li>TOP CHORD 2-9=-349/213, 1-2=0/27, 2-3=-731/234, 3-4=-66/50, 4-5=-12/0, 4-7=-111/31</li> <li>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=-00</li> <li>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>NOTES</li> <li>NOTES</li> <li>NOTES</li> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior (1) 2-1-8 to 3-6-0. Exterior(2E) 3-6-0 to 6-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; core members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.160 plate grip DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (troof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (troof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (turn DOL=1.15 Plate DOL=1.10); Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) Tbis truss has been desimed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Tension                                 |                                             |          | UPLIFT at jt(   | s) 9. This connect   | ion is fo   | uplift only ar  | nd    |       |        |     |               |          |
| <ul> <li>3-4=-66/50, 4-5=-12/0, 4-7=-111/31</li> <li>BOT CHORD 8-9=-143/168, 7-8=-233/572, 6-7=0/0</li> <li>WEBS 2-8=-126/018, 7-8=-233/572, 6-7=0/0</li> <li>Wind: ASCE 7-16; Vult=130mph (3-second gust)<br/>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br/>2-1-8 to 3-6-0, Exterior(2E) 3-6-0 to 6-6-0 zone;<br/>cantilever left and right exposed; end vertical left and<br/>right exposed; C-C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pl=20.0 psf (cord LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pl=20.0 psf (cord LL: Lum DOL=1.15<br/>Plate DOL=1.10; Nough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this<br/>design.</li> <li>4) This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOP CHORD     | 2-9=-349/213, 1-2=0                     | 0/27, 2-3=-731/234,                         |          | does not con    | sider lateral forces | 5.          |                 |       |       |        |     |               |          |
| BOT CHORD       8-9=-143/168, 7-8=-233/572, 6-7=0/0         WEBS       2-8=-126/18, 3-8=-52/212, 3-7=-618/297         NOTES       International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1.         LOAD CASE(S)       Standard         1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 3-6-0 to 6-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60         2) TCLL: ASCE 7-16; Pr=20.0 psf (troof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (troof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (troof LL: Lum DOL=1.15 Plate DOL=1.16)         3) Unbalanced snow loads have been considered for this design.         4) This truss has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 3-4=-66/50, 4-5=-12                     | 2/0, 4-7=-111/31                            | 11       | ) This truss is | designed in accore   | dance w     | ith the 2018    |       |       |        |     |               |          |
| <ul> <li>WEBS 2-8=-126/618, 3-8=-52/212, 3-7=-618/297</li> <li>R802.10.2 and referenced standard ANSI/TPL1.</li> <li>LOAD CASE(S) Standard</li> <li>Wind: ASCE 7-16; Vult=130mph (3-second gust)</li> <li>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br/>2-1-8 to 3-6-0, Exterior(2E) -0-10-8 to 2-1-15 Plate<br/>DOL=1.60</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BOT CHORD     | 8-9=-143/168, 7-8=-                     | 233/572, 6-7=0/0                            | _        | International   | Residential Code     | sections    | R502.11.1 a     | and   |       |        |     |               |          |
| NOTES       LOAD CASE(S)       Standard         1) Wind: ASCE 7-16; Vult=130mph (3-second gust)       Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;         Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior       zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)         2-1-8 to 3-6-0, Exterior(2E) 3-6-0 to 6-6-0 zone;       cantilever left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS         for reactions shown; Lumber DOL=1.60 plate grip       DOL=1.60         2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15; Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15; Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.10; SEAL 036322         3) Unbalanced snow loads have been considered for this design.         42         42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WEBS          | 2-8=-126/618, 3-8=-                     | ·52/212, 3-7=-618/29                        | 97       | R802.10.2 a     | nd referenced star   | ndard AN    | ISI/TPI 1.      |       |       |        |     |               |          |
| <ol> <li>Wind: ASCE 7-16; Vult=130mph (3-second gust)<br/>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br/>2-1-8 to 3-6-0, Exterior(2E) -3-6-0 to 6-6-0 zone;<br/>cantilever left and right exposed; end vertical left and<br/>right exposed; C-C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTES         |                                         |                                             | LC       | AD CASE(S)      | Standard             |             |                 |       |       |        |     |               |          |
| <ul> <li>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br/>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br/>2-1-8 to 3-6-0, Exterior(2E) 3-6-0 to 6-0 zone;<br/>cantilever left and right exposed ; end vertical left and<br/>right exposed; C-C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); IS=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this<br/>design.</li> <li>4) This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1) Wind: ASC  | CE 7-16; Vult=130mph                    | (3-second gust)                             |          |                 |                      |             |                 |       |       |        |     |               |          |
| Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior<br>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)<br>2-1-8 to 3-6-0, Exterior(2E) 3-6-0 to 6-6-0 zone;<br>cantilever left and right exposed; end vertical left and<br>right exposed; C-C for members and forces & MWFRS<br>for reactions shown; Lumber DOL=1.60 plate grip<br>DOL=1.60<br>2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br>Plate DOL=1.15); IS=20.0 psf (Lum DOL=1.15 Plate<br>DOL=1.15); IS=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br>Cs=1.00; Ct=1.10<br>3) Unbalanced snow loads have been considered for this<br>design.<br>4) This truss has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vasd=103      | Bmph; TCDL=6.0psf; B                    | CDL=6.0psf; h=25ft;                         |          |                 |                      |             |                 |       |       |        |     |               | 1111.    |
| <ul> <li>zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1)</li> <li>2-1-8 to 3-6-0, Exterior(2E) 3-6-0 to 6-6-0 zone;</li> <li>cantilever left and right exposed; end vertical left and</li> <li>right exposed; C-C for members and forces &amp; MWFRS</li> <li>for reactions shown; Lumber DOL=1.60 plate grip</li> <li>DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15</li> <li>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate</li> <li>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;</li> <li>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cat. II; Ex   | p B; Enclosed; MWFR                     | S (envelope) exterio                        | r        |                 |                      |             |                 |       |       |        |     | White CA      | Dall     |
| <ul> <li>2-1-8 to 3-6-U, Extendr(2E) 3-6-U to 6-6-0 Zone;<br/>cantilever left and right exposed; end vertical left and<br/>right exposed; C-C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br/>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this<br/>design.</li> <li>4) This truss has been designed for greater of min roof live.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | zone and      | C-C Exterior(2E) -0-10                  | )-8 to 2-1-8, Interior (                    | (1)      |                 |                      |             |                 |       |       |        |     | aTHO          |          |
| <ul> <li>claimlever left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) This truss has been designed for greater of min roof live.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-1-8 to 3-   | -b-U, EXTERIOR(2E) 3-b-U                | U to 6-6-0 zone;                            | d        |                 |                      |             |                 |       |       | /      | S   | O FSS         | 12:21/2  |
| for reactions shown; Lumber DOL=1.60 plate grip<br>DOL=1.60<br>2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br>Cs=1.00; Ct=1.10<br>3) Unbalanced snow loads have been considered for this<br>design.<br>4) This truss has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | right expo    | sod: C C for mombors                    | and forces & MW/EP                          | u<br>c   |                 |                      |             |                 |       |       | 6      | X   |               | N: A     |
| <ul> <li>SEAL</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br/>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for reactio   | ns shown: Lumber DC                     | and forces & MWER                           | .0       |                 |                      |             |                 |       |       |        |     | ·0            | N        |
| <ul> <li>SEAL</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br/>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOI = 1.60    | )                                       | L= 1.00 plate grip                          |          |                 |                      |             |                 |       |       | -      |     |               |          |
| Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br>Cs=1.00; Ct=1.10<br>3) Uhbalanced snow loads have been considered for this<br>design.<br>4) This truss has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2) TCLL · AS  | ,<br>CF 7-16 <sup>,</sup> Pr=20.0 psf ( | (roof LL · Lum DOL =1                       | 15       |                 |                      |             |                 |       |       |        | :   | SEA           | L : =    |
| <ul> <li>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) This truss has been designed for greater of min roof live.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plate DOL     | _=1.15): Pf=20.0 psf (L                 | um DOL=1.15 Plate                           |          |                 |                      |             |                 |       |       |        |     | 0363          | 22 =     |
| Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DOL=1.15      | 5); Is=1.0; Rough Cat E                 | B; Fully Exp.; Ce=0.9                       | );       |                 |                      |             |                 |       |       | -      |     | . 0505        |          |
| <ul> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) This truss has been designed for greater of min roof live.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cs=1.00; 0    | Ct=1.10                                 |                                             |          |                 |                      |             |                 |       |       |        |     | λ.            | 1 5      |
| design.<br>4) This truss has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3) Unbalance  | ed snow loads have be                   | een considered for th                       | nis      |                 |                      |             |                 |       |       | 5      | 1.  | N.En.         | Rich     |
| 4) This truss has been designed for greater of min roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | design.       |                                         |                                             |          |                 |                      |             |                 |       |       |        | 25  | S, GIN        | EFRAN    |
| load of 12 0 perfort 100 times flat reef load of 20 0 perfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4) This truss | has been designed fo                    | r greater of min roof                       | live     |                 |                      |             |                 |       |       |        | 11  | CA C          | II BE IN |

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2) Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI 1000 minut

June 14,2023

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | G1    | Half Hip   | 7   | 1   | Job Reference (optional) | 158937626 |

#### Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:40 ID:einn9QFMsQjQrPrP4TucSQz6gkT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



3-7-12

3-2-4

R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or

provided sufficient to support concentrated load(s) 201 Ib down and 82 lb up at  $\,$  4-9-12 on top chord. The

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Vert: 1-2=-60, 2-4=-60, 5-6=-115, 9-10=-20, 7-9=-20

design/selection of such connection device(s) is the

15) Hanger(s) or other connection device(s) shall be

4-9-12

1-2-0

DEFL

0.32 Horz(CT)

Vert(LL)

Vert(CT)

0.24

0.19

6-6-0

1-8-4

in

-0.02

-0.03

0.02

(loc)

9-10

9 >999

7

l/defl

>999

n/a n/a

L/d

240

180

PLATES

Weight: 38 lb

MT20

GRIP

244/190

FT = 20%

2x4 II

0-5-8

0-5-8

CSI

тс

BC

WB

| WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not        |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing    |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the             |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Compone        |
| Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601                                                   |

1)

bottom chord.

responsibility of others.

Uniform Loads (lb/ft)

LOAD CASE(S) Standard

Increase=1.15

Concentrated Loads (lb) Vert: 4=-180

Scale = 1:39.6

Loading

TCLL (roof)

Snow (Pf)

TCDL

| BCLL<br>BCDL                                                                  | 0.0*<br>10.0                                                                                                                                                                                      | Code                                                                               | IRC2018/TPI2014                                                                                                                                                                                                                | Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>5-11-13 oc purlins, e<br>2-0-0 oc purlins: 5-8,<br>Rigid ceiling directly<br>bracing                                         | athing directly applied<br>except end verticals, a<br>5-6.<br>applied or 10-0-0 oc | <ul> <li>4) Unbalanced design.</li> <li>5) This truss ha load of 12.0 overhangs n</li> <li>1 or</li> <li>6) Provide adec adec and</li> <li>7) This truss ha chord live loa</li> <li>8) * This truss h on the bottor</li> </ul> | <ol> <li>Unbalanced snow loads have been considered for design.</li> <li>This truss has been designed for greater of min rol load of 12.0 psf or 1.00 times flat roof load of 20.0 overhangs non-concurrent with other live loads.</li> <li>Provide adequate drainage to prevent water pond for a live load nonconcurrent with any other live load of 20.1 in truss has been designed for a 10.0 psf botto chord live load nonconcurrent with any other live load of 2 on the bottom chord in all areas where a rectangle</li> </ol> |                                  |  |  |  |  |  |
| REACTIONS                                                                     | (size) 7= Mechanical, 10=0-5-8<br>Max Horiz 10=104 (LC 11) 9)<br>Max Uplift 7=-84 (LC 14), 10=-32 (LC 14) 10)<br>Max Grav 7=462 (LC 36), 10=478 (LC 36)<br>(lb) - Maximum Compression/Maximum 11) |                                                                                    | 3-06-00 tall t<br>chord and ar<br>9) Refer to gird<br>10) Bearing at jo<br>using ANSI/                                                                                                                                         | <ul> <li>3-06-00 tall by 2-00-00 wide will fit between the bot chord and any other members.</li> <li>9) Refer to girder(s) for truss to truss connections.</li> <li>10) Bearing at joint(s) 10 considers parallel to grain val using ANS//TEL1 angle to grain formula. Building</li> </ul>                                                                                                                                                                                                                                           |                                  |  |  |  |  |  |
| FORCES                                                                        |                                                                                                                                                                                                   |                                                                                    | designer sho<br>11) Provide mec                                                                                                                                                                                                | build verify capacity of bear<br>hanical connection (by oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing surface.<br>ers) of truss to |  |  |  |  |  |
| TOP CHORD                                                                     | 2-10=-443/254, 1-2=<br>3-4=-90/32, 5-8=-7/3                                                                                                                                                       | 0/40, 2-3=-911/388,<br>9, 4-5=-188/51,                                             | bearing plate<br>7.                                                                                                                                                                                                            | e capable of withstanding 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 lb uplift at joint             |  |  |  |  |  |
| BOT CHORD<br>WEBS                                                             | 5-0=-11/16, 6-7=-11(<br>9-10=-147/126, 8-9=<br>2-9=-266/774, 3-9=-4<br>5-9=-114/139, 5-7=-7                                                                                                       | 9/57<br>-291/618, 7-8=-302/6<br>43/218, 3-5=-698/402<br>740/366                    | 12) One H2.5A S<br>44 recommende<br>5, UPLIFT at jt(<br>does not con                                                                                                                                                           | 12) One H2.5A Simpson Strong-Tie connectors<br>recommended to connect truss to bearing walls du<br>UPLIFT at jt(s) 10. This connection is for uplift only<br>does not consider lateral forces.                                                                                                                                                                                                                                                                                                                                       |                                  |  |  |  |  |  |
| NOTES                                                                         | ad roof live loads have                                                                                                                                                                           | been considered for                                                                | 13) This truss is<br>International                                                                                                                                                                                             | designed in accordance w<br>Residential Code sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ith the 2018<br>R502.11.1 and    |  |  |  |  |  |

2-0-0

1.15

1 15

YES

Unbalanced roof live loads have been considered for 1) this design.

(psf)

20.0

20.0

10.0

Spacing

Plate Grip DOL

Rep Stress Incr

Lumber DOL

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 6-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10





| Job         | Truss | Truss Type               | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|--------------------------|-----|-----|--------------------------|-----------|
| 23050105-01 | G1GE  | Half Hip Supported Gable | 1   | 1   | Job Reference (optional) | 158937627 |

3-9-8

3-9-8

-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

3-5-12

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:40 ID:einn9QFMsQjQrPrP4TucSQz6gkT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-6-0

1-6-8

4-11-8

1-2-0

Page: 1





Scale = 1:37.3

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 3/TPI2014                                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                  | 0.23<br>0.15<br>0.07                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                     | in<br>-0.01<br>-0.02<br>0.00     | (loc)<br>9-10<br>9-10<br>7                                           | l/defl<br>>999<br>>999<br>n/a                                                               | L/d<br>240<br>180<br>n/a                                                                              | PLATES<br>MT20<br>Weight: 38 lb                                                                                     | <b>GRIP</b><br>244/190<br>FT = 20%                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORI<br>BOT CHORI<br>WEBS<br>BRACING<br>TOP CHORI                                                                      | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>Structural wood she<br/>6-0-0 oc purlins, ex<br/>2-0-0 oc purlins; 5-8</li> </ul>                                                            | athing directly applied cept end verticals, an                                                                                                                                      | 3)<br>4)<br>d or<br>d                   | Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15); I<br>Cs=1.00; Ct=                                                                                                                                                                | heed for wind loads<br>ds exposed to win<br>l Industry Gable E<br>alified building des<br>7-16; Pr=20.0 psf<br>(15); Pf=20.0 psf (<br>s=1.0; Rough Cat<br>(1.10)                                                                                    | in the p<br>nd (norm<br>nd Deta<br>signer as<br>(roof LL<br>Lum DC<br>B; Fully                                      | lane of the tru<br>al to the face)<br>ils as applicat<br>s per ANSI/TF<br>.: Lum DOL=1<br>DL=1.15 Plate<br>Exp.; Ce=0.9                                                      | ss<br>ble,<br>Pl 1.<br>I.15<br>; | 17) Har<br>pro<br>Ib d<br>des<br>res<br><b>LOAD (</b><br>1) De<br>In | nger(s) o<br>vided su<br>lown and<br>ign/sele<br>ponsibili<br>CASE(S<br>ead + Sr<br>crease= | or othe<br>officient<br>d 82 lb<br>ction o<br>ty of ot<br>ty of ot<br><b>)</b> Sta<br>now (ba<br>1.15 | r connection devi<br>to support conce<br>up at 4-9-12 on<br>f such connection<br>hers.<br>ndard<br>alanced): Lumber | ce(s) shall be<br>entrated load(s) 201<br>top chord. The<br>n device(s) is the<br>r Increase=1.15, Plate |
| BOT CHORI                                                                                                                             | <ul> <li>Rigid ceiling directly<br/>bracing</li> </ul>                                                                                                                                                               | applied or 10-0-0 oc                                                                                                                                                                | 5)                                      | Unbalanced design.                                                                                                                                                                                                                                                                         | snow loads have b                                                                                                                                                                                                                                   | been cor                                                                                                            | nsidered for th                                                                                                                                                              | is                               | Ur                                                                   | hiform Lo<br>Vert: 1-                                                                       | oads (l<br>2=-60.                                                                                     | b/ft)<br>2-4=-60. 5-6=-11                                                                                           | 15. 9-10=-20. 7-9=-20                                                                                    |
| REACTIONS                                                                                                                             | 6 (size) 7= Mecha<br>10=3-11-<br>Max Horiz 10=104 (I<br>Max Uplift 7=-49 (LC<br>Max Grav 7=247 (LC                                                                                                                   | anical, 9=3-11-8,<br>3<br>LC 11)<br>2 11), 9=-83 (LC 14)<br>C 35), 9=491 (LC 36),<br>C 26).                                                                                         | 6)<br>7)<br>8)                          | This truss ha<br>load of 12.0 p<br>overhangs no<br>Provide adeo<br>Truss to be fi<br>braced again                                                                                                                                                                                          | s been designed f<br>osf or 1.00 times fl<br>on-concurrent with<br>juate drainage to p<br>ully sheathed from<br>st lateral moveme                                                                                                                   | or great<br>at roof lo<br>other liv<br>orevent<br>one fac<br>nt (i.e. d                                             | er of min roof<br>bad of 20.0 ps<br>ve loads.<br>water ponding<br>te or securely<br>liagonal web).                                                                           | live<br>of on<br>J.              | Co                                                                   | vert: 4=                                                                                    | ted Lo                                                                                                | ads (lb)                                                                                                            | .,                                                                                                       |
| FORCES                                                                                                                                | (lb) - Maximum Com                                                                                                                                                                                                   | pression/Maximum                                                                                                                                                                    | 9)<br>10)                               | Gable studs :<br>This truss ha                                                                                                                                                                                                                                                             | spaced at 2-0-0 or<br>s been designed f                                                                                                                                                                                                             | c.<br>or a 10.0                                                                                                     | ) psf bottom                                                                                                                                                                 |                                  |                                                                      |                                                                                             |                                                                                                       |                                                                                                                     |                                                                                                          |
| TOP CHORI                                                                                                                             | Tension<br>2-10=-229/161, 1-2=<br>3-4=-72/24, 5-8=0/5<br>5-6=-11/16, 6-7=-11                                                                                                                                         | =0/40, 2-3=-35/109,<br>2, 4-5=-178/43,<br>0/57                                                                                                                                      | 11)                                     | chord live loa<br>) * This truss h<br>on the botton                                                                                                                                                                                                                                        | id nonconcurrent v<br>as been designed<br>n chord in all areas                                                                                                                                                                                      | vith any<br>for a liv<br>s where                                                                                    | other live load<br>e load of 20.0<br>a rectangle                                                                                                                             | ds.<br>Ipsf                      |                                                                      |                                                                                             |                                                                                                       |                                                                                                                     |                                                                                                          |
| BOT CHORI<br>WEBS                                                                                                                     | 9-10=-147/126, 8-9=<br>3-9=-339/175, 2-9=-<br>5-9=-292/31, 5-7=-2                                                                                                                                                    | 95/210, 7-8=-97/219<br>63/82, 3-5=-30/105,<br>48/131                                                                                                                                | 12)                                     | chord and an<br>Refer to girde                                                                                                                                                                                                                                                             | y other members.<br>er(s) for truss to tru                                                                                                                                                                                                          | uss conr                                                                                                            | nections.                                                                                                                                                                    | ,                                |                                                                      |                                                                                             |                                                                                                       |                                                                                                                     |                                                                                                          |
| NOTES<br>1) Unbalan<br>this desi<br>2) Wind: A:<br>Vasd=11<br>Cat. II; E<br>zone an<br>cantileve<br>right exp<br>for react<br>DOL=1.0 | sed roof live loads have<br>m.<br>SCE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>xp B; Enclosed; MWFR<br>I C-C Exterior(2E) -0-10<br>r left and right exposed<br>osed;C-C for members<br>ons shown; Lumber DC<br>0 | been considered for<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>I-8 to 6-4-4 zone;<br>; end vertical left and<br>and forces & MWFRS<br>DL=1.60 plate grip | 13)<br>14)<br>15)<br>3 16)              | <ul> <li>bearing at jo</li> <li>using ANSI/T</li> <li>designer sho</li> <li>Provide mecl</li> <li>bearing plate</li> <li>7 and 83 lb u</li> <li>This truss is</li> <li>International</li> <li>R802.10.2 ar</li> <li>Graphical pu</li> <li>or the orienta</li> <li>bottom chorce</li> </ul> | Int(s) 10, 9 consider<br>PI 1 angle to grain<br>uld verify capacity<br>nanical connection<br>capable of withsta<br>plift at joint 9.<br>designed in accord<br>Residential Code<br>do referenced star<br>rlin representation<br>tion of the purlin a | ers para<br>n formula<br>of bearin<br>(by oth<br>anding 4<br>dance w<br>sections<br>dard AN<br>does no<br>along the | a. Building<br>a. Building<br>ing surface.<br>ers) of truss tr<br>9 lb uplift at jo<br>https://www.superior.<br>8 R502.11.1 a<br>USI/TPI 1.<br>bt depict the s<br>top and/or | o<br>pint<br>nd<br>ize           |                                                                      | <b>C</b>                                                                                    |                                                                                                       | SEA<br>0363                                                                                                         | L<br>22<br>EER. R. L                                                                                     |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI 11111111 June 14,2023

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | н     | Monopitch  | 6   | 1   | Job Reference (optional) | 158937628 |

## Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:41 ID:X\_hcbChxDcqIIoSveVUtaUz6RjJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



3x5 =



#### Scale = 1:29.4

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                  | 8/TPI2014                                                                                                                                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                          | 0.64<br>0.55<br>0.00                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                         | in<br>0.17<br>0.14<br>0.00                  | (loc)<br>4-9<br>4-9<br>2 | l/defl<br>>420<br>>528<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 22 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHOR<br>BOT CHOR<br>BRACING<br>TOP CHOR<br>BOT CHOR<br>BOT CHOR<br>REACTION<br>FORCES<br>TOP CHOR<br>BOT CHOR<br>NOTES<br>1) Wind: A<br>Vasd=1<br>Cat. II; I<br>zone an<br>2-1-8 to<br>cantilev<br>right exi<br>membe<br>Lumber<br>2) TCLL: A | <ul> <li>D 2x4 SP No.:<br/>2x4 SP No.:<br/>2x4 SP No.:<br/>2x4 SP No.:<br/>2x4 SP No.:</li> <li>D Structural w<br/>6-0-0 oc pu<br/>D Rigid ceiling<br/>bracing.</li> <li>S (size) 2<br/>Max Horiz 2<br/>Max Uplift 2<br/>Max Grav 2<br/>(Ib) - Maxim<br/>Tension<br/>D 1-2=0/18, 2<br/>D 2-4=-122/13</li> <li>SCE 7-16; Vult=<br/>03mph; TCDL=6<br/>Exp B; Enclosed<br/>d C-C Exterior(2<br/>3-0-12, Exterior<br/>er left and right o<br/>bosed; porch left<br/>s and forces &amp; I<br/>DOL=1.60 plate<br/>SCE 7-16; Pr=2</li> </ul> | 22<br>23<br>23<br>2000 sheat<br>rlins, exc<br>2 directly<br>=0-3-0, 4<br>=64 (LC<br>==131 (LC<br>=425 (LC<br>hum Com<br>-3=-106/1<br>31<br>=130mph<br>6.0psf; BC<br>; MWFRS<br>2E) -0-10-<br>(2E) 3-0-10-<br>(2E) 3-0-0-10-<br>(2E) 3-0-0-0-10-<br>(2E) 3-0-0-0-0-<br>(2E) 3-0-0-0-0-0-<br>(2E) 3-0-0-0-0-0-0-0-0-0-0-0-<br>(2E) 3-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | L<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>I=0-1-8<br>13)<br>C 10), 4=-84 (LC 10)<br>C 21), 4=287 (LC 21)<br>pression/Maximum<br>123, 3-4=-205/187<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>(3 - second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>(3 - second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>(12 to 6-0-12 zone;<br>; end vertical left and<br>t exposed;C-C for<br>for reactions shown;<br>L=1.60<br>roof LL: Lum DOL=1 | 6)<br>7)<br>d or 8)<br>9)<br>10<br>11<br>11<br>LC<br>11 | * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Bearings are<br>capacity of 5<br>Bearing at jo<br>using ANSI/T<br>designer sho<br>Provide mecl<br>bearing plate<br>0) One H2.5A S<br>recommende<br>UPLIFT at jt(<br>and does not<br>1) This truss is<br>International<br>R802.10.2 ar<br><b>DAD CASE(S)</b> | as been designed<br>n chord in all areas<br>y 2-00-00 wide will<br>y other members.<br>assumed to be: , J<br>65 psi.<br>int(s) 4 considers p<br>PI 1 angle to grain<br>uld verify capacity<br>nanical connection<br>at joint(s) 4.<br>impson Strong-Tie<br>d to connect truss<br>s) 2 and 4. This con<br>consider lateral fo<br>designed in accord<br>Residential Code s<br>nd referenced stand<br>Standard | for a liv<br>where<br>fit betw<br>doint 4 \$<br>arallel t<br>formula<br>of beari<br>(by oth<br>connectio<br>rces.<br>ance w<br>sections<br>dard AN | e load of 20.0<br>a rectangle<br>veen the botto<br>SP No.3 crush<br>o grain value<br>a. Building<br>ng surface.<br>ers) of truss t<br>ctors<br>ing walls due<br>n is for uplift o<br>ith the 2018<br>: R502.11.1 a<br>ISI/TPI 1. | Dpsf<br>om<br>ning<br>o<br>to<br>only<br>nd |                          | 4                             |                          | OR ESS                          |                                    |
| Plate DOL=1.<br>Cs=1.00                                                                                                                                                                                                                                     | DL=1.15); Pf=20<br>15); Is=1.0; Rou<br>); Ct=1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ).0 psf (Lu<br>igh Cat B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;                                                       |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                  |                                             |                          | 11111                         |                          | SEA<br>0363                     | L<br>22                            |
| <ol> <li>Unbalar<br/>design.</li> <li>This true<br/>load of</li> </ol>                                                                                                                                                                                      | nced snow loads<br>as has been des<br>12.0 psf or 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | have be<br>signed for<br>times flat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | en considered for th<br>greater of min roof l<br>roof load of 20.0 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is<br>live<br>f on                                      |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                  |                                             |                          | 111.                          |                          | & RAGINE                        | ERA                                |
| overhar                                                                                                                                                                                                                                                     | gs non-concurre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent with o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ther live loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                  |                                             |                          |                               | 11                       | C                               | IL BE IN                           |

- 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI 11111111

June 14,2023

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | H1    | Monopitch  | 1   | 1   | Job Reference (optional) | 158937629 |

5-2-8

5-2-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:41 ID:nv1ri\_avzKYzZiWeAl69NZz6RTz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



3x5 =

-0-10-8

0-10-8



Scale = 1:28.5

| Loading         (ps           TCLL (roof)         20.           Snow (Pf)         20.           TCDL         10.           BCLL         0.           BCDL         10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>b) Spacing</li> <li>b) Plate Grip DOL</li> <li>b) Lumber DOL</li> <li>c) Rep Stress Incr</li> <li>c) Code</li> <li>c) Code</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                              | 0.40<br>0.38<br>0.00                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                            | in<br>0.08<br>0.07<br>0.00       | (loc)<br>4-9<br>4-9<br>2 | l/defl<br>>732<br>>905<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 19 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------------|--|
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>WEBS 2x4 SP No.3<br>BRACING<br>TOP CHORD Structural wood<br>5-2-8 oc purlins,<br>BOT CHORD Rigid ceiling dire<br>bracing.<br>REACTIONS (size) 2=0-3<br>Max Horiz 2=54<br>Max Uplift 2=-11<br>Max Grav 2=375<br>FORCES (lb) - Maximum 1<br>Tension<br>TOP CHORD 1-2=0/18, 2-3=-<br>BOT CHORD 2-4=-123/134<br>NOTES<br>1) Wind: ASCE 7-16; Vult=1300<br>Vasd=103mph; TCDL=6.0ps<br>Cat. II; Exp B; Enclosed; MV<br>zone and C-C Exterior(2E) z<br>exposed ; end vertical left ar<br>and right exposed;C-C for m<br>MWFRS for reactions showr<br>grip DOL=1.60<br>2) TCLL: ASCE 7-16; Pr=20.0 p<br>DOL=1.15); Is=1.0; Rough C<br>Cs=1.00; Ct=1.10<br>3) Unbalanced snow loads hav<br>design.<br>4) This truss has been designe<br>load of 12.0 psf or 1.00 time<br>overhangs non-concurrent w<br>5) This truss has been designe<br>chord live load nonconcurrent | sheathing directly applie<br>except end verticals.<br>with applied or 10-0-0 or<br>-0, 4=0-1-8<br>(LC 13)<br>7 (LC 10), 4=-68 (LC 10)<br>5 (LC 21), 4=232 (LC 21)<br>Compression/Maximum<br>09/124, 3-4=-165/162<br>mph (3-second gust)<br>f; BCDL=6.0psf; h=25ft;<br>/FRS (envelope) exterior<br>one; cantilever left and ri<br>ght exposed; porch le<br>embers and forces &<br>; Lumber DOL=1.60 plat<br>basf (roof LL: Lum DOL=1<br>if (Lum DOL=1.15 Plate<br>at B; Fully Exp.; Ce=0.9<br>e been considered for th<br>d for greater of min roof I<br>s flat roof load of 20.0 ps<br>ith other live loads.<br>d for a 10.0 psf bottom<br>t with any other live load | <ul> <li>6) * This truss<br/>on the botto<br/>3-06-00 tall<br/>chord and a</li> <li>7) Bearings ar<br/>capacity of 4</li> <li>8) Bearing at ju<br/>using ANSI/<br/>designer sh</li> <li>9) Provide met<br/>bearing plat</li> <li>10) One H2.5A<br/>recommend<br/>UPLIFT at jt<br/>and does not</li> <li>11) This truss is<br/>Internationa<br/>R802.10.2 a</li> <li>LOAD CASE(S)</li> </ul> | has been designed f<br>m chord in all areas<br>by 2-00-00 wide will<br>ny other members.<br>a assumed to be: , J<br>565 psi.<br>Dint(s) 4 considers pr<br>TPI 1 angle to grain<br>ould verify capacity of<br>chanical connection<br>e at joint(s) 4.<br>Simpson Strong-Tie<br>ed to connect truss f<br>(s) 2 and 4. This cor<br>designed in accorda<br>I Residential Code s<br>and referenced stand<br>Standard | for a live<br>where<br>fit betw<br>oint 4 S<br>arallel t<br>formula<br>of beari<br>(by othe<br>connection<br>rces.<br>ance wi<br>ections<br>lard AN | e load of 20.0p<br>a rectangle<br>eeen the bottor<br>P No.3 crushi<br>o grain value<br>1. Building<br>ng surface.<br>ers) of truss to<br>ctors<br>ng walls due to<br>n is for uplift or<br>th the 2018<br>R502.11.1 an<br>SI/TPI 1. | osf<br>m<br>ng<br>o<br>nly<br>nd |                          | Number of the second seco |                          | SEA<br>0363                     | RO<br>22<br>E.R. A.L.<br>14,2023   |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 14,2023

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V1    | Valley     | 1   | 1   | Job Reference (optional) | 158937630 |

### Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:41 ID:GrzoG?sLG?tXDXYehm59Qqz6RYm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



10-1-0

3x5 💊





10-1-0

| Scale | = | 1:31 | .9 |
|-------|---|------|----|

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                           | 8/TPI2014                                                                                                                                                                                                                                                                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50<br>0.47<br>0.22                                                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                         | in<br>n/a<br>n/a<br>-0.01                                        | (loc)<br>-<br>-<br>9 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 36 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS | $\begin{array}{l} 2x4 \; SP \; \text{No.2} \\ 2x4 \; SP \; \text{No.2} \\ 2x4 \; SP \; \text{No.3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | eathing directly applie<br>/ applied or 6-0-0 oc<br>, 3=10-1-0, 4=10-1-0<br>C 10)<br>C 21), 3=-1 (LC 15),<br>C 15), 9=-1 (LC 15),<br>C 20), 3=4 (LC 21),<br>LC 21), 9=4 (LC 21)<br>npression/Maximum<br>-167/633<br>-468/147 | 4)<br>5)<br>ed or<br>6)<br>7)<br>8)<br>9)<br>,<br>9)<br>10<br>11 | TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>0) Provide mec<br>bearing plate<br>joint 1, 1 lb u<br>uplift at joint<br>) This truss is<br>International<br>R802.10.2 a | 57-16; Pr=20.0 ps<br>1.15); Pf=20.0 ps<br>1.15); Pf=20.0 ps<br>1s=1.0; Rough Cat<br>=1.10<br>snow loads have I<br>es continuous bott<br>spaced at 4-0-0 or<br>is been designed<br>ad nonconcurrent<br>has been designed<br>n chord in all area<br>by 2-00-00 wide with<br>y other members.<br>hanical connection<br>e capable of withst<br>uplift at joint 3, 72 I<br>3.<br>designed in accor<br>Residential Code<br>nd referenced star<br>Standard | f (roof LL<br>(Lum DC<br>B; Fully<br>been cor<br>cor a 10.0<br>with any<br>f for a liv<br>s where<br>ill fit betw<br>n (by oth<br>anding 1<br>b uplift a<br>dance w<br>sections<br>ndard AN | L: Lum DOL=<br>DL=1.15 Plate<br>Exp.; Ce=0.1<br>Insidered for t<br>and bearing.<br>0 psf bottom<br>other live load<br>of 20.1<br>a rectangle<br>ween the bott<br>lef2 lb uplift ai<br>though 4 and<br>s R502.11.1 a<br>NSI/TPI 1. | 1.15<br>e)<br>e);<br>his<br>ds.<br>Opsf<br>om<br>to<br>t<br>1 lb |                      |                             |                          |                                 |                                    |
| NOTES                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                  |                      |                             |                          |                                 | 111.                               |

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 7-1-6, Exterior(2E) 7-1-6 to 10-1-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



С

818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V2    | Valley     | 1   | 1   | Job Reference (optional) | 158937631 |

2-0-14

-0-0

2-4-9

## Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:41 ID:?Usr2Y2FtIY\_pBJEDaKNjnz6RVy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:26.5

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                  | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201         | 8/TPI2014                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                               | 0.23<br>0.24<br>0.07                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                  | in<br>n/a<br>n/a<br>0.00             | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 24 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>7-1-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=7-1-0, i<br>Max Horiz 1=-52 (LC<br>Max Uplift 1=-8 (LC<br>(LC 14)<br>Max Grav 1=103 (LI<br>4=495 (LI | eathing directly applie<br>v applied or 6-0-0 oc<br>3=7-1-0, 4=7-1-0<br>C 10)<br>21), 3=-9 (LC 15), 4=<br>C 20), 3=103 (LC 21)<br>C 20) | 4)<br>5)<br>d or<br>6)<br>7)<br>8)<br>9)<br>51 | TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>)) Provide mec<br>bearing plate | 7-16; Pr=20.0 psf<br>I.15); Pf=20.0 psf<br>I.15); Pf=20.0 psf (<br>Is=1.0; Rough Cat<br>=1.10<br>snow loads have b<br>es continuous both<br>spaced at 4-0-0 oc<br>as been designed f<br>ad nonconcurrent v<br>as been designed<br>m chord in all areas<br>by 2-00-00 wide wil<br>by other members.<br>hanical connection<br>a canable of withst? | (roof LL<br>Lum DC<br>B; Fully<br>been cor<br>om chor<br>c<br>or a 10.0<br>vith any<br>for a liv<br>s where<br>Il fit betw<br>(by oth<br>anding 8 | .: Lum DOL='<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for th<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss to<br>b uplift at joi | 1.15<br>);<br>ds.<br>)psf<br>om<br>o |                      |                             |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES                                            | (lb) - Maximum Con<br>Tension<br>1-2=-98/224, 2-3=-9<br>1-4=-160/127, 3-4=-<br>2-4=-347/163                                                                                                                                                  | npression/Maximum<br>18/224<br>•160/127                                                                                                 | 11<br>LC                                       | 1, 9 lb uplift<br>1) This truss is<br>International<br>R802.10.2 a<br>DAD CASE(S)                                                                                                                                                                          | at joint 3 and 51 lb<br>designed in accord<br>Residential Code<br>nd referenced stan<br>Standard                                                                                                                                                                                                                                                 | uplift at<br>dance w<br>sections<br>dard AN                                                                                                       | joint 4.<br>ith the 2018<br>\$R502.11.1 a<br>ISI/TPI 1.                                                                                                                                                    | nd                                   |                      |                             |                          |                                 |                                    |

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 4-1-6, Exterior(2E) 4-1-6 to 7-1-6 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.





| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V3    | Valley     | 1   | 1   | Job Reference (optional) | 158937632 |

2-0-8

2-0-8

2x4 🍫

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:42 ID:qeD6lc60S8J8Y6mOaqRnz2z6RVs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> <u>3-7-13</u> 1-7-5

Page: 1







4-1-0

2x4 💊

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                              | /TPI2014                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                | 0.13<br>0.11<br>0.00                                                                                                        | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                             | in<br>n/a<br>n/a<br>0.00       | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 12 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHOR<br>BOT CHOR<br>BRACING<br>TOP CHOR<br>BOT CHOR<br>BOT CHOR<br>REACTION<br>FORCES<br>TOP CHOR<br>BOT CHOR<br>NOTES<br>1) Unbalar<br>this des<br>2) Wind: A<br>Vasd=1<br>Cat. II; f<br>zone an<br>exposed<br>membei<br>Lumber<br>3) Truss c<br>only. Fo<br>see Stai<br>or consuit<br>4) TCLL: A<br>Plate Do<br>DOL=1.<br>Cs=1.00<br>5) Unbalar<br>design.<br>6) Gable re | <ul> <li>2x4 SP No</li> <li>Structural<br/>4-1-0 oc p</li> <li>Rigid ceilin<br/>bracing.</li> <li>(size)<br/>Max Horiz<br/>Max Uplift<br/>Max Grav<br/>(Ib) - Maxi<br/>Tension</li> <li>1-2=-276/<br/>D</li> <li>1-3=-71/22</li> <li>ced roof live lo<br/>gn.</li> <li>SCE 7-16; Vull</li> <li>SCE 7-16; Vull</li> <li>SCE 7-16; Pre-<br/>bol 1-60 platesigned for with<br/>or studs exposed<br/>dard Industry</li> <li>SCE 7-16; Pre-<br/>DL=1.15); Pf=2</li> <li>(signed for with<br/>resting exposed<br/>and forces &amp;<br/>DOL=1.15); Pf=2</li> <li>(signed for with<br/>sce 7-16; Pre-<br/>DL=1.15); Pf=2</li> <li>(b); Is=1.0; Ro</li> <li>(c); Ct=1.10</li> <li>(c); c); Ster 1.0; Ro</li> <li>(c); Ct=1.10</li> <li>(c); C); Ster 1.0; Ro</li> </ul> | 22<br>22<br>wood sheat<br>urlins.<br>ng directly<br>1=4-1-0, 3<br>1=-28 (LC<br>1=-15 (LC<br>1=-15 (LC<br>1=-15 (LC<br>1=-15 (LC<br>1=-189 (LC<br>mum Com<br>101, 2-3=-2<br>20<br>bads have<br>==130mph<br>-6.0psf; BG<br>-6.0psf; BG<br>-6.0psf; BG<br>-6.0psf; BG<br>-6.0psf; BG<br>-0.0psf; BG<br>-0.0psf (L1<br>-20.0 psf (L1) -20.0 psf (L1) -2 | athing directly applie<br>applied or 10-0-0 oc<br>3=4-1-0<br>10)<br>14), 3=-15 (LC 15)<br>20), 3=189 (LC 21)<br>pression/Maximum<br>276/101<br>been considered for<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and ri<br>pht exposed;C-C for<br>for reactions shown;<br>L=1.60<br>the plane of the trus<br>(normal to the face)<br>d Details as applicab<br>gner as per ANSI/TP<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9;<br>en considered for thi<br>n chord bearing. | 7)<br>8)<br>9)<br>d or<br>11)<br>LO<br>LO<br>ss<br>,<br>le,<br>11.<br>.15<br>;<br>is | Gable studs s<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide mecl<br>bearing plate<br>1 and 15 lb u<br>This truss is (<br>International<br>R802.10.2 ar<br>AD CASE(S) | spaced at 4-0-0 oc<br>s been designed fo<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members.<br>nanical connection<br>capable of withsta<br>plift at joint 3.<br>designed in accorc<br>Residential Code s<br>d referenced stan<br>Standard | c.<br>or a 10.0<br>vith any<br>for a liv<br>s where<br>I fit betw<br>(by oth<br>anding 1<br>dance wi<br>sections<br>dard AN | ) psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>5 lb uplift at ju<br>th the 2018<br>R502.11.1 a<br>SI/TPI 1. | ds.<br>psf<br>p<br>point<br>nd |                      |                             |                          | SEA<br>0363                     | EER. K                             |
|                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                       |                                |                      |                             |                          | Julie                           | ; 14,2020                          |



| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V11   | Valley     | 1   | 1   | Job Reference (optional) | 158937633 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:42 ID:AfCji4WKk\_AUC2bLvHz8jpz6RQA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

= 20%



12-2-0

| 0     |     | 0.5  |
|-------|-----|------|
| Scale | = 1 | 1:35 |

| Loading     | (p               | osf) Spacing             | 2-0-0      |                                 | CSI                 |               | DEFL           | in    | (loc) | l/defl | L/d | PLATES        | GRIP                 |
|-------------|------------------|--------------------------|------------|---------------------------------|---------------------|---------------|----------------|-------|-------|--------|-----|---------------|----------------------|
| TCLL (roof) | 20               | 0.0 Plate Grip DO        | L 1.15     |                                 | TC                  | 0.30          | Vert(LL)       | n/a   | -     | n/a    | 999 | MT20          | 244/190              |
| Snow (Pf)   | 20               | 0.0 Lumber DOL           | 1.15       |                                 | BC                  | 0.12          | Vert(TL)       | n/a   | -     | n/a    | 999 |               |                      |
| TCDL        | 1(               | 0.0 Rep Stress Inc       | or YES     |                                 | WB                  | 0.08          | Horiz(TL)      | 0.00  | 5     | n/a    | n/a |               |                      |
| BCLL        | (                | 0.0* Code                | IRC20      | 18/TPI2014                      | Matrix-MSH          |               |                |       |       |        |     |               |                      |
| BCDL        | 10               | 0.0                      |            |                                 |                     |               |                |       |       |        |     | Weight: 46 lb | FT = 20 <sup>6</sup> |
| LUMBER      |                  |                          | 3          | ) Truss desig                   | ned for wind load   | ls in the p   | lane of the tr | uss   |       |        |     |               |                      |
| TOP CHORD   | 2x4 SP No.2      |                          |            | only. For stu                   | ids exposed to w    | ind (norm     | al to the face | e),   |       |        |     |               |                      |
| BOT CHORD   | 2x4 SP No.2      |                          |            | see Standard                    | d Industry Gable    | End Deta      | ils as applica | ble,  |       |        |     |               |                      |
| OTHERS      | 2x4 SP No.3      |                          |            | or consult qu                   | alified building d  | esigner a     | s per ANSI/T   | PI 1. |       |        |     |               |                      |
| BRACING     |                  |                          | 4          | ) TCLL: ASCE                    | 7-16; Pr=20.0 p     | sf (roof LL   | .: Lum DOL=    | 1.15  |       |        |     |               |                      |
| TOP CHORD   | Structural woo   | d sheathing directly a   | oplied or  | Plate DOL=1                     | .15); Pf=20.0 ps    | f (Lum DC     | DL=1.15 Plate  | 9     |       |        |     |               |                      |
|             | 6-0-0 oc purlin  | S.                       |            | DOL=1.15);                      | Is=1.0; Rough Ca    | at B; Fully   | Exp.; Ce=0.    | 9;    |       |        |     |               |                      |
| BOT CHORD   | Rigid ceiling di | irectly applied or 10-0- | -0 oc      | Us=1.00; Ct=                    | =1.10               | hoon oor      | oidorod for t  | hio   |       |        |     |               |                      |
|             | bracing.         |                          | 5          | design                          | Show loads have     | been cor      | Isidered for t | 1115  |       |        |     |               |                      |
| REACTIONS   | (size) 1=12      | 2-2-0, 5=12-2-0, 6=12    | -2-0,      | ) Gable requir                  | es continuous bo    | ttom chor     | d bearing      |       |       |        |     |               |                      |
|             | 7=1              | 2-2-0, 8=12-2-0          | 7          | <ol> <li>Gable studs</li> </ol> | spaced at 4-0-0     | DC.           | a bearing.     |       |       |        |     |               |                      |
|             | Max Horiz 1=-9   | 92 (LC 10)               |            | ) This truss ha                 | is been designed    | for a 10.0    | 0 psf bottom   |       |       |        |     |               |                      |
|             | Max Uplift 1=-1  | 19 (LC 10), 6=-107 (LC   | C 15),     | chord live loa                  | ad nonconcurren     | t with any    | other live loa | ids.  |       |        |     |               |                      |
|             | 8=-1             | 109 (LC 14)              | a) a 440 g | ) * This truss h                | nas been designe    | ed for a liv  | e load of 20.  | Opsf  |       |        |     |               |                      |
|             | Max Grav 1=7     | 3 (LC 24), 5=57 (LC 2    | 3), 6=442  | on the bottor                   | n chord in all are  | as where      | a rectangle    |       |       |        |     |               |                      |
|             | (LC<br>20)       | 21), 7=278 (LC 20), 8    | =442 (LC   | 3-06-00 tall b                  | y 2-00-00 wide v    | vill fit betv | veen the bott  | om    |       |        |     |               |                      |
| 505050      | (11.)            | . O                      |            | chord and ar                    | ny other member     | s.            |                |       |       |        |     |               |                      |
| FORCES      | (ID) - Maximum   | n Compression/iviaxim    | um 1       | <ol><li>Provide mec</li></ol>   | hanical connection  | on (by oth    | ers) of truss  | to    |       |        |     |               |                      |
|             | 1-205/81 2-4     | 3-177/03 3-1-177/0       | 33         | bearing plate                   | capable of with     | standing 1    | 9 lb uplift at | joint |       |        |     |               |                      |
| TOP CHORD   | 1-2=-95/61, 2-   | 3=-111/93, 3-4=-111/8    | ,          | 1, 109 lb upli                  | ft at joint 8 and 1 | 07 lb upli    | ft at joint 6. |       |       |        |     |               |                      |
| BOT CHORD   | 1-8=-22/63 7-8   | 8=-21/56 6-7=-21/56      | 1          | 1) This truss is                | designed in acco    | ordance w     | ith the 2018   |       |       |        |     |               |                      |
| 201 0110100 | 5-6=-21/56       | 2.700, 07-21700,         |            | International                   | Residential Cod     |               | 5 K502.11.1 8  | and   |       |        |     | IIIII         | 1111                 |
| WEBS        | 3-7=-191/16. 2   | 2-8=-408/173, 4-6=-40    | 8/173 .    | Rou2.10.2 al                    | nu reierenced sta   | anuard An     | NOI/TP11.      |       |       |        |     | WHILL CA      | D'''                 |
|             | ,                | -,                       |            | UAD CASE(S)                     | Standard            |               |                |       |       |        |     | · A FI U/     |                      |

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 9-2-6, Exterior(2E) 9-2-6 to 12-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



SEAL

036322

G mmm June 14,2023 "annununu

Within the state

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V12   | Valley     | 1   | 1   | Job Reference (optional) | 158937634 |

## Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:42 ID:esm5vPXyVIILqCAXS\_UNG0z6RQ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



9-2-0 4-7-0 8-8-13 4-7-0 4-1-13 4x5 =2 2-9-3 3-0-15 12 8 Г 3 -0-0 4 3x5 🍫 2x4 ı 3x5 💊 9-2-0 0.01 D..... - 1 ~ ~ ~ . PLATES GRIP MT20 244/190 Weight: 32 lb FT = 20%  $\cap$ Variation SEAL 036322 G mmm

Scale = 1:29.3 ...

| Loading                                  |                                                                                                      | (pst)                                                                                                                  | Spacing                                                                                                                                   | 2-0-0              |                                                                                                                                                                                                               | CSI                                                                                                                                                                             |                                                                                                                  | DEFL                                                                                                                 | ın                       | (IOC) | I/defi | L/d | Ł |
|------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|-------|--------|-----|---|
| TCLL (roof)                              |                                                                                                      | 20.0                                                                                                                   | Plate Grip DOL                                                                                                                            | 1.15               |                                                                                                                                                                                                               | TC                                                                                                                                                                              | 0.37                                                                                                             | Vert(LL)                                                                                                             | n/a                      | -     | n/a    | 999 | L |
| Snow (Pf)                                |                                                                                                      | 20.0                                                                                                                   | Lumber DOL                                                                                                                                | 1.15               |                                                                                                                                                                                                               | BC                                                                                                                                                                              | 0.37                                                                                                             | Vert(TL)                                                                                                             | n/a                      | -     | n/a    | 999 | L |
| TCDL                                     |                                                                                                      | 10.0                                                                                                                   | Rep Stress Incr                                                                                                                           | YES                |                                                                                                                                                                                                               | WB                                                                                                                                                                              | 0.13                                                                                                             | Horiz(TL)                                                                                                            | 0.00                     | 4     | n/a    | n/a | L |
| BCLL                                     |                                                                                                      | 0.0*                                                                                                                   | Code                                                                                                                                      | IRC20              | 18/TPI2014                                                                                                                                                                                                    | Matrix-MSH                                                                                                                                                                      |                                                                                                                  |                                                                                                                      |                          |       |        |     | L |
| BCDL                                     |                                                                                                      | 10.0                                                                                                                   |                                                                                                                                           |                    |                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                  |                                                                                                                      |                          |       |        |     | L |
| LUMBER                                   |                                                                                                      |                                                                                                                        |                                                                                                                                           | 4                  | I) TCLL: ASC                                                                                                                                                                                                  | E 7-16; Pr=20.0 p                                                                                                                                                               | sf (roof Ll                                                                                                      | L: Lum DOL=                                                                                                          | 1.15                     |       |        |     |   |
| TOP CHORD                                | 2x4 SP No                                                                                            | o.2                                                                                                                    |                                                                                                                                           |                    | Plate DOL=                                                                                                                                                                                                    | 1.15); Pf=20.0 ps                                                                                                                                                               | f (Lum DC                                                                                                        | DL=1.15 Plate                                                                                                        | 9                        |       |        |     |   |
| BOT CHORD                                | 2x4 SP No                                                                                            | o.2                                                                                                                    |                                                                                                                                           |                    | DOL=1.15);                                                                                                                                                                                                    | Is=1.0; Rough C                                                                                                                                                                 | at B; Fully                                                                                                      | Exp.; Ce=0.9                                                                                                         | 9;                       |       |        |     |   |
| OTHERS                                   | 2x4 SP No                                                                                            | 0.3                                                                                                                    |                                                                                                                                           |                    | Cs=1.00; Ct                                                                                                                                                                                                   | =1.10                                                                                                                                                                           |                                                                                                                  |                                                                                                                      |                          |       |        |     |   |
| BRACING                                  |                                                                                                      |                                                                                                                        |                                                                                                                                           | 5                  | 5) Unbalanced                                                                                                                                                                                                 | snow loads have                                                                                                                                                                 | e been coi                                                                                                       | nsidered for t                                                                                                       | his                      |       |        |     |   |
| TOP CHORD<br>BOT CHORD<br>REACTIONS      | Structural<br>9-2-0 oc p<br>Rigid ceili<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | l wood shea<br>ourlins.<br>ing directly<br>1=9-2-0, 3<br>1=-68 (LC<br>1=-35 (LC<br>4=-72 (LC<br>1=120 (LC<br>4=701 (LC | athing directly applied<br>applied or 6-0-0 oc<br>3=9-2-0, 4=9-2-0<br>10)<br>21), 3=-35 (LC 20),<br>14)<br>2 20), 3=120 (LC 21),<br>2 21) | lor<br>7<br>8<br>9 | <ul> <li>design.</li> <li>Gable requi</li> <li>Gable studs</li> <li>This truss h<br/>chord live lc</li> <li>* This truss<br/>on the botto<br/>3-06-00 tall<br/>chord and a</li> <li>Provide menene</li> </ul> | res continuous bo<br>spaced at 4-0-0<br>as been designer<br>ad nonconcurren<br>has been design<br>m chord in all are<br>by 2-00-00 wide<br>ny other member<br>chanical connecti | ottom choi<br>oc.<br>d for a 10.<br>t with any<br>ed for a liv<br>eas where<br>will fit betv<br>s.<br>on (by oth | rd bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.0<br>a rectangle<br>ween the bott<br>ters) of truss f | ads.<br>Opsf<br>om<br>to |       |        |     |   |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS | (lb) - Max<br>Tension<br>1-2=-109/<br>1-4=-207/<br>2-4=-534/                                         | imum Com<br>/349, 2-3=-<br>/138, 3-4=-;<br>/208                                                                        | pression/Maximum<br>109/349<br>207/138                                                                                                    | 1                  | 1, 35 lb upli<br>1) This truss is<br>Internationa<br>R802.10.2 a                                                                                                                                              | t at joint 3 and 72<br>designed in acco<br>Residential Cod<br>nd referenced st<br>Standard                                                                                      | 2 Ib uplift a<br>ordance w<br>e sections<br>andard AN                                                            | at joint 4.<br>vith the 2018<br>s R502.11.1 a<br>NSI/TPI 1.                                                          | and                      |       |        |     |   |
| NOTES                                    |                                                                                                      |                                                                                                                        |                                                                                                                                           | -                  |                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                  |                                                                                                                      |                          |       |        |     |   |
| <ol> <li>I had a law a</li> </ol>        | a di na affiti na d                                                                                  | a a da la avia                                                                                                         | In a second state of the second the second                                                                                                |                    |                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                  |                                                                                                                      |                          |       |        |     |   |

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 6-2-6, Exterior(2E) 6-2-6 to 9-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

# 818 Soundside Road Edenton, NC 27932

June 14,2023

VIIIIIIIIIIII

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V13   | Valley     | 1   | 1   | Job Reference (optional) | 158937635 |

3-1-0

Carter Components (Sanford), Sanford, NC - 27332,

#### Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:42 ID:IKj2z0KoemxLayU\_7484GEz6RNr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-13



6-2-0





6-2-0

Scale = 1:25.3

-

| Loading     |                         | (psf)                    | Spacing                      | 2-0-0    |                 | CSI                  |            | DEFL             | in   | (loc) | l/defl | L/d | PLATES        | GRIP           |
|-------------|-------------------------|--------------------------|------------------------------|----------|-----------------|----------------------|------------|------------------|------|-------|--------|-----|---------------|----------------|
| TCLL (roof) |                         | 20.0                     | Plate Grip DOL               | 1.15     |                 | TC                   | 0.15       | Vert(LL)         | n/a  | -     | n/a    | 999 | MT20          | 244/190        |
| Snow (Pf)   |                         | 20.0                     | Lumber DOL                   | 1.15     |                 | BC                   | 0.17       | Vert(TL)         | n/a  | -     | n/a    | 999 |               |                |
| TCDL        |                         | 10.0                     | Rep Stress Incr              | YES      |                 | WB                   | 0.06       | Horiz(TL)        | 0.00 | 4     | n/a    | n/a |               |                |
| BCLL        |                         | 0.0*                     | Code                         | IRC201   | 8/TPI2014       | Matrix-MP            |            |                  |      |       |        |     |               |                |
| BCDL        |                         | 10.0                     |                              |          |                 |                      |            |                  |      |       |        |     | Weight: 21 lb | FT = 20%       |
| LUMBER      |                         |                          |                              | 5)       | Unbalanced      | snow loads have b    | been cor   | sidered for th   | nis  |       |        |     |               |                |
| TOP CHORD   | 2x4 SP No.              | 2                        |                              | ,        | design.         |                      |            |                  |      |       |        |     |               |                |
| BOT CHORD   | 2x4 SP No.              | 2                        |                              | 6)       | Gable requir    | es continuous botto  | om chor    | d bearing.       |      |       |        |     |               |                |
| OTHERS      | 2x4 SP No.              | 3                        |                              | 7)       | Gable studs     | spaced at 4-0-0 oc   |            | Ū                |      |       |        |     |               |                |
| BRACING     |                         |                          |                              | 8)       | This truss ha   | s been designed for  | or a 10.0  | ) psf bottom     |      |       |        |     |               |                |
| TOP CHORD   | Structural w            | vood she                 | athing directly applie       | d or     | chord live loa  | ad nonconcurrent v   | vith any   | other live loa   | ds.  |       |        |     |               |                |
|             | 6-2-0 oc pu             | rlins.                   | annig anoon) appno           | 9)       | * This truss h  | as been designed     | for a liv  | e load of 20.0   | )psf |       |        |     |               |                |
| BOT CHORD   | Rigid ceiling           | g directly               | applied or 6-0-0 oc          |          | on the bottor   | n chord in all areas | s where    | a rectangle      | m    |       |        |     |               |                |
|             | bracing.                |                          |                              |          | chord and ar    | v other members      |            |                  | 2111 |       |        |     |               |                |
| REACTIONS   | (size) 1                | =6-2-0, 3                | 3=6-2-0, 4=6-2-0             | 10       | ) Provide mec   | hanical connection   | ı (bv oth  | ers) of truss to | 0    |       |        |     |               |                |
|             | Max Horiz 1             | =45 (LC                  | 11)                          |          | bearing plate   | capable of withsta   | anding 3   | b uplift at joi  | int  |       |        |     |               |                |
|             | Max Uplift 1            | =-3 (LC 1                | 14), 3=-10 (LC 15), 4        | l=-39    | 1, 10 lb uplift | at joint 3 and 39 lt | b uplift a | it joint 4.      |      |       |        |     |               |                |
|             | May Cray 1              | LC 14)                   | 20) 2 00 (1 0 24) 4          | 102 11   | ) This truss is | designed in accord   | dance w    | ith the 2018     |      |       |        |     |               |                |
|             |                         | =98 (LU                  | 20), 3=98 (LC 21), 4         | =403     | International   | Residential Code     | sections   | R502.11.1 a      | nd   |       |        |     |               |                |
| FORCES      | (h) Movim               |                          | proceion/Movimum             |          | R802.10.2 a     | nd referenced stan   | dard AN    | ISI/TPI 1.       |      |       |        |     |               |                |
| FURCES      | (ID) - Maxin<br>Tension |                          | pression/waximum             | LO       | DAD CASE(S)     | Standard             |            |                  |      |       |        |     |               |                |
| TOP CHORD   | 1-2=-96/17(             | 0 2-3=-96                | 6/170                        |          |                 |                      |            |                  |      |       |        |     |               |                |
| BOT CHORD   | 1-4=-125/10             | 07.3-4=-7                | 125/107                      |          |                 |                      |            |                  |      |       |        |     |               |                |
| WEBS        | 2-4=-270/13             | 35                       |                              |          |                 |                      |            |                  |      |       |        |     |               |                |
| NOTES       |                         |                          |                              |          |                 |                      |            |                  |      |       |        |     |               |                |
| 1) Unbalanc | ed roof live loa        | ads have                 | been considered for          |          |                 |                      |            |                  |      |       |        |     |               | (T))           |
| this desig  | n.                      |                          |                              |          |                 |                      |            |                  |      |       |        |     |               |                |
| 2) Wind: AS | CE 7-16; Vult=          | =130mph                  | (3-second gust)              |          |                 |                      |            |                  |      |       |        |     | IN TH UA      | Bolly          |
| Vasd=103    | 3mph; TCDL=6            | 6.0psf; B0               | CDL=6.0psf; h=25ft;          |          |                 |                      |            |                  |      |       |        | S.  | A             | and the second |
| Cat. II; Ex | p B; Enclosed           | i; MWFR                  | S (envelope) exterior        | r        |                 |                      |            |                  |      |       |        | 61  | U. FESO       | Children in    |
| zone and    | C-C Exterior(2          | 2E) zone;                | cantilever left and r        | ight     |                 |                      |            |                  |      |       | 4      |     | the second    |                |
| exposed ;   | end vertical le         | eft and rig              | ght exposed;C-C for          |          |                 |                      |            |                  |      |       | -      |     |               |                |
| members     | and forces &            | MWFRS                    | for reactions shown;         |          |                 |                      |            |                  |      |       |        |     | SEA           | 1 1 2          |
| Lumber D    | UL=1.60 plate           | e grip DO                | L=1.60                       |          |                 |                      |            |                  |      |       |        | :   | OLA           | 5. 5           |
| 3) Truss de | signed for wine         | d loads in               | the plane of the true        | SS       |                 |                      |            |                  |      |       | =      |     | 0363          | 22 :           |
| only. For   | Siuds expose            |                          | (normal to the face)         | ,<br>    |                 |                      |            |                  |      |       | -      | 6   |               | 1 E -          |
| see Stand   | and moustry C           |                          |                              | 11<br>11 |                 |                      |            |                  |      |       |        | 2   | ·             | - 1 E          |
|             |                         | 20 0 nef /               | $roof [1] \cdot [um DO! = 1$ | 15       |                 |                      |            |                  |      |       |        | 20  | N. SNOW       | Ethick         |
| Plate DOI   | -1 15) Pf-20            | 0.0 psi (i<br>0 nef (i i | um DOI -1 15 Plate           | .15      |                 |                      |            |                  |      |       |        | 1   | A. GIN        | 5. CA .        |
| DOI = 1.1   | 5): Is=1 0: Rou         | uch Cat R                | S Fully Exp · Ce=0.9         |          |                 |                      |            |                  |      |       |        | 1   | CA C          | II BEIN        |

- Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

GI minin

June 14,2023

| Job         | Truss | Truss Type | Qty | Ply | 14 Serenity-Roof         |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23050105-01 | V14   | Valley     | 1   | 1   | Job Reference (optional) | 158937636 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:03:43 ID:7U4JE3OZEciVIty7UKFUVUz6RNI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-13

1-1-13

3 - 2 - 0

Page: 1





3-2-0

1-7-0

1-7-0

2x4 💊

## Scale = 1:24.2

## Plate Offsets (X, Y): [2:0-2-8,Edge]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                          | 3/TPI2014                                                                                                                                                                                                                        | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                            | 0.08<br>0.08<br>0.00                                                                                                 | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                       | in<br>n/a<br>n/a<br>0.00        | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 9 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------------------------|--------------------------|--------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=103<br>Cat. II; Exp<br>zone and C<br>exposed ;<br>umber DC<br>3) Truss des<br>only. For :<br>see Stand<br>or consult<br>4) TCLL: ASC<br>Plate DOL<br>DOL=1.15<br>Cs=1.00; C<br>5) Unbalance<br>design.<br>6) Gable requ | 2x4 SP No<br>2x4 SP No<br>2x4 SP No<br>Structural w<br>3-2-0 oc pu<br>Rigid ceiling<br>bracing.<br>(size) 1<br>Max Horiz 1<br>Max Horiz 1<br>Max Upift 1<br>Max Grav 1<br>(lb) - Maxim<br>Tension<br>1-2=-198/7<br>1-3=-50/157<br>ed roof live loa<br>n.<br>CE 7-16; Vult=<br>mph; TCDL=6<br>p B; Enclosed<br>C-C Exterior(2<br>end vertical le<br>and forces & 1<br>DL=1.60 plate<br>signed for win<br>studs expose<br>ard Industry C<br>DL=1.61 Pr=2<br>.=1.15); Pf=20<br>(c); Is=1.0; Rou<br>Ct=1.10<br>ed snow loads | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>2<br>3<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | athing directly applied<br>applied or 10-0-0 oc<br>3=3-2-0<br>11)<br>14), 3=-12 (LC 15)<br>2 20), 3=143 (LC 21)<br>pression/Maximum<br>98/75<br>been considered for<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and ri<br>pht exposed;C-C for<br>for reactions shown;<br>L=1.60<br>the plane of the trus<br>(normal to the face),<br>d Details as applicab<br>gner as per ANSI/TP<br>roof LL: Lum DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9;<br>en considered for thi<br>n chord bearing. | 7)<br>8)<br>9)<br>d or<br>10<br>11<br>LC<br>ght<br>ss<br>le,<br>1.1.<br>.15<br>s | Gable studs 3<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>bchord and an<br>) Provide mecl<br>bearing plate<br>1 and 12 lb u<br>) This truss is o<br>International<br>R802.10.2 ar | spaced at 4-0-0 oc<br>s been designed for<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide will<br>y other members.<br>nanical connection<br>capable of withsta<br>plift at joint 3.<br>Jesigned in accord<br>Residential Code s<br>d referenced stand<br>Standard | or a 10.0<br>vith any<br>for a liv<br>s where<br>I fit betw<br>(by oth<br>anding 1<br>dance w<br>sections<br>dard AN | ) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>2 lb uplift at ju<br>ith the 2018<br>R502.11.1 a<br>ISI/TPI 1. | ds.<br>)psf<br>om<br>oint<br>nd |                      |                             |                          | SEA<br>0363                    | EER. Humin                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                                                                                                                        |                                 |                      |                             |                          | June                           | 9 14,2023                          |



