

Job	Truss	Truss Type	Qty	Ply	2150 Camp Easter Road
J0223-0575	A1	GABLE	1	1	lek Deference (entionel)
Comtech, Inc., Fayetteville, NC 2	28309, James Naylor	Run:	8.430 s May	12 2021 Pri	t: 8.430 s May 12 2021 MiTek Industries, Inc. Fri Mar 3 08:41:37 2023 Page 2
		I	D:3ZkAT1H	?TWmBdJ	Q8I8CHLxz8j5Y-XW3ep7guUvbMvb9Vtm3iJSrzQzFjKTiR5t4Xoczehxi

NOTES-

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 28, 29, 30, 31, 32, 33, 26, 25, 24, 23, 22 except (jt=lb) 19=244, 20=543.

This Truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	2150 Camp Easter Roa	ad		
J0223-0575	A2	A2 PIGGYBACK BASE			lah Deference (anti-	an all		
Comtech, Inc., Fayetteville, NC	28309, James Naylor		Run: 8.430 s May 1	12 2021 Prin	t: 8.430 s May 12 2021	MiTek Industries, Inc. Fri N	/ar 3 08:41:37 2023 Page 1	
	5-11-12	12-6-11	ID:3ZkAT1H?T\ 20-11-0	WmBdJQ8	88CHLxz8j5Y-XW3ep 28-11-8	o7guUvbMvb9Vtm3iJSr 29-4-12	1bzDSKQVR5t4Xoczehxi	
	5-11-12	6-6-14	8-4-5		8-0-8	0-5-4		
		eve — eve -	_				Scale = 1:69.0	
	7.00 12	000 - 000 -	_					
	T					Ţ		
			\sim					
	4x6 / T1		<u> </u>					
	1		13					
	I			\sim	8x8 📎			
					4			
						0		
	F \	wa wa	/			Ę		
			W4		TA			
				Ŵ	15	4x6 ×		
					Ī	6		
					14/6	1. 		
			¢	le	B2 VV0			
	₁₄ 13	12 ×	10	9)	87		
	14 3x4 ∐	3x4 =	4x6 =	4>	x4 =	3x4		
		3x4 =						
	5-11-12	12-0-12 12 ₁ 6 ₁ 11	20-11-0		28-11-8			
Plate Offsets (X.Y) [4:	<u> </u>	6-0-15 0-5-15	8-4-5		8-0-8			
				<i>4</i>		DI 4750	0.515	
LOADING (pst) TCLL 20.0	Plate Grip DOI 115	CSI. TC 0.27	Vert(II) -0.03	(loc) l	/defl L/d >999 360	PLATES MT20	GRIP 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT) -0.04	8-9 >	>999 240		211/100	
BCLL 0.0 *	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.34 Matrix-S	Horz(CT) 0.01 Wind(LL) 0.01	8 12 >	n/a n/a >999 240	Weight [,] 240 lb	FT = 20%	
					2.0	110.g.m 210 13		
LUMBER-	o 1		BRACING-	Structure	al wood sheathing o	directly applied or 6-0	-0 oc purlins except	
BOT CHORD 2x6 SP N	0.1			end verti	end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-3.			
WEBS 2x4 SP N	0.2		BOT CHORD	Rigid cei	iling directly applied	d or 10-0-0 oc bracing] .	
			WEBS	MiTekr	recommends that S	Stabilizers and require	ed cross bracing	
				be insta	alled during truss e	rection, in accordanc	e with Stabilizer	
REACTIONS (Ib/size)	11=780/0-5-8 (min 0-1-8)	13=695/Mechanical 8=852/Mecha	anical	Installa	tion guide.			
Max Horz	z 13=-249(LC 13)							
Max Uplit	t11=-150(LC 13), 13=-39(L0	2 12) 2 10) 8-875(LC 20)						
	11-302(EC 20), 10-034(EC	(13), 0-073(20 20)						
FORCES. (lb) - Max. Co	omp./Max. Ten All forces 2	250 (lb) or less except when shown.						
3-18=-4	11/161, 4-18=-527/116, 4-19	9=-797/150, 5-19=-962/122, 1-13=-	749/216,					
5-8=-80	2/194 05/427 10 11- 4/777 10 2/	- 4/777 0 21- 4/777						
WEBS 3-11=-3	28/186, 4-11=-689/251, 1-12	2=-81/530, 5-9=0/711						
NOTES								
1) Unbalanced roof live I	oads have been considered	for this design.						
2) Wind: ASCE 7-10; Vu	It=130mph Vasd=103mph;	CDL=6.0psf; BCDL=6.0psf; h=15f	t; Cat. II; Exp C; End	closed; M	WFRS (envelope)	and		
to 18-9-6, Interior(1) 1	8-9-6 to 29-4-12 zone;C-C f	or members and forces & MWFRS	for reactions shown	n; Lumber	DOL=1.60 plate gr	rip		
DOL=1.60	, 							
 a) Provide adequate dra 4) This truss has been d 	mage to prevent water pond esigned for a 10.0 psf bottor	ing. n chord live load nonconcurrent wit	h any other live loa	ds.				
5) * This truss has been	designed for a live load of 3	0.0psf on the bottom chord in all ar	eas where a rectan	gle 3-6-0	tall by 2-0-0 wide w	vill fit		
6) Refer to girder(s) for the	nord and any other member russ to truss connections	s, with BCDL = 10.0psf.						
7) Provide mechanical c	onnection (by others) of trus	s to bearing plate capable of withst	anding 100 lb uplift	at joint(s)) 13 except (jt=lb)			

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- gable end zone and C-C Exterior(2) -3-2-7 to 1-2-5, Interior(1) 1-2-5 to 13-4-4, Exterior(2) 13-4-4 to 17-9-1, Interior(1) 17-9-1 to 27-1-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=146, 12=488.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 12=176.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

⊢	9-9-8	20-5-12		28-10	-2	37-6-0				
Diata Offacta (X V)	<u>9-9-8</u>	10-8-4		8-4-)	8-7-14				
Plate Olisets (X, Y)			1			1				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.36 WB 0.54 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/de -0.09 24 >99 -0.19 24-25 >99 0.00 15 n/ 0.11 24-25 >99	fl L/d 9 360 9 240 a n/a 9 240	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF OTHERS 2x4 SF	LUMBER- BRACING- TOP CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x6 SP No.1 BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2x4 SP No.2 WEBS 1 Row at midpt 12-19 OTHERS 2x4 SP No.2 JOINTS 1 Brace at Jt(s): 26, 27, 28 MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. PEACTIONS (Ib(pize), 2=644/0.5.8, (min, 0.1.8), 10=1052/0.2.8, (min, 0.2.5), 15=471/0.5.8, (min, 0.1.8) 1 Point									
REACTIONS. (lb/size) 2=644/0-5-8 (min. 0-1-8), 19=1953/0-3-8 (min. 0-2-5), 15=471/0-5-8 (min. 0-1-8) Max Horz 2=257(LC 11) Max Uplift2=-210(LC 8), 19=-468(LC 12), 15=-182(LC 13) Max Grav 2=648(LC 23), 19=1953(LC 1), 15=576(LC 20)										
FORCES. (Ib) - Max. TOP CHORD 2-3=- 7-8=- 12-22 15-3 ⁻	Comp./Max. Ten All forces 250 (lb) 1156/298, 3-4=-1113/325, 4-5=-1092, 1150/401, 8-9=-1120/435, 9-10=-110;)=-167/930, 12-30=-394/287, 13-30=- =-628/201	or less except when sh /339, 5-6=-1074/361, 6- 2/444, 10-11=-1117/471 435/260, 13-14=-488/25	own. 7=-1164/395, , 11-29=-183/789, i1, 14-31=-535/224	, 4,						
BOT CHORD 2-25= 20-21 17-33	327/1072, 24-25=-327/1072, 23-24= =-595/290, 19-20=-595/290, 19-32=-: 3=-251/268_15-17=-78/459	-327/1072, 22-23=-327/ 251/268, 18-32=-251/26	/1072, 21-22=-595 88, 18-33=-251/268	5/290, 8,						
WEBS 6-22= 11-19	467/140, 22-28=-619/1865, 27-28=- 9=-601/338, 12-19=-1305/259, 12-17=	593/1809, 26-27=-600/1 -205/729, 14-17=-435/3	822, 11-26=-633/ [.] 16	1907,						
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; gable end zone and 38-2-11 zone;C-C f 3) Truss designed for Gable End Details 4) All plates are 2x4 M	ve loads have been considered for this Vult=130mph Vasd=103mph; TCDL= d C-C Exterior(2) -0-6-15 to 4-0-0, Inte for members and forces & MWFRS for r wind loads in the plane of the truss c as applicable, or consult qualified buil AT20 unless otherwise indicated.	s design. 6.0psf; BCDL=6.0psf; h: rior(1) 4-0-0 to 24-5-4, l r reactions shown; Luml only. For studs exposed ding designer as per AN	=15ft; Cat. II; Exp Exterior(2) 24-5-4 ber DOL=1.60 plat to wind (normal to NSI/TPI 1.	C; Enclosed; MWf to 28-10-1, Interior te grip DOL=1.60 the face), see St	RS (envelope) (1) 28-10-1 to andard Industry					

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit
- between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=210, 19=468, 15=182.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	<u>9-9-8</u> <u>9-9-8</u>	<u>20-5-12</u> 10-8-4		<u>28-10-2</u> 8-4-6	37-6-0 8-7-14	
Plate Offsets (X,Y)	[2:0-5-4,Edge]	· · · · · · · · · · · · · · · · · · ·				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DE TC 0.37 Ve BC 0.32 Ve WB 0.73 Ho Matrix-S Wi Wi	FL. in rt(LL) -0.08 rt(CT) -0.16 rz(CT) 0.00 nd(LL) 0.06	(loc) l/defl L/d 11-13 >999 360 2-15 >999 240 9 n/a n/a 2-15 >999 240	PLATES G MT20 2 Weight: 245 lb	RIP 44/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2			EACING- OP CHORD OT CHORD	Structural wood sheathing o Rigid ceiling directly applied 10-0-0 oc bracing: 2-15. 1 Row at midpt 6-	irectly applied or 6-0-0 or 6-0-0 oc bracing, E 13	oc purlins. Except:
				MiTek recommends that S be installed during truss en Installation guide.	tabilizers and required rection, in accordance v	cross bracing vith Stabilizer

REACTIONS. (lb/size) 2=628/0-5-8 (min. 0-1-8), 13=1989/0-3-8 (min. 0-2-6), 9=452/0-5-8 (min. 0-1-8) Max Horz 2=193(LC 11) Max Uplift2=-95(LC 8), 13=-161(LC 12), 9=-80(LC 13)

Max Grav 2=632(LC 23), 13=1989(LC 1), 9=565(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-16=-1130/176, 3-16=-1068/194, 3-4=-1142/270, 4-5=-1066/295, 5-17=-57/844,

- TOP CHORD 2-16=-1130/176, 3-16=-1068/194, 3-4=-1142/270, 4-5=-1066/295, 5-17=-57/844 6-17=-40/985, 6-18=-360/183, 7-18=-394/157, 7-8=-446/148, 8-19=-502/130, 9-19=-595/107
- BOT CHORD
 2-15=-116/1034, 14-15=-647/224, 13-14=-647/224, 13-20=-285/186, 12-20=-285/186, 12-21=-285/186, 9-11=-62/443

 WEBS
 3-15=-634/297, 5-15=-375/1873, 5-13=-605/275, 6-13=-1350/242, 6-11=-137/720,
- VVEDS 5-15--034/297, 5-15--375/1673, 5-15--005/275, 0-15--1550/242, 0-11--157/720 8-11=-437/248

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-15 to 3-9-14, Interior(1) 3-9-14 to 24-5-4, Exterior(2) 24-5-4 to 28-10-1, Interior(1) 28-10-1 to 38-2-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb)

13=161.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ŀ	9-9-8	20-5-12 10-8-4	<u>28-10-2</u> 8-4-6	37-6-0
Plate Offsets (X,Y)-	- [2:0-5-4,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.37 Vert(LL) BC 0.32 Vert(CT) WB 0.73 Horz(CT) Matrix-S Wind(LL)	in (loc) l/defl L/d -0.08 10-12 >999 360 -0.16 2-14 >999 240 0.00 9 n/a n/a 0.06 2-14 >999 240	PLATES GRIP MT20 244/190 Weight: 243 lb FT = 20%
LUMBER- TOP CHORD 2x6 5 BOT CHORD 2x6 5 WEBS 2x4 5	SP No.1 SP No.1 SP No.2	BRACING- TOP CHOR BOT CHOR WEBS	D Structural wood sheathing di D Rigid ceiling directly applied 10-0-0 oc bracing: 2-14. 1 Row at midpt 6-7 MiTek recommends that Si be installed during truss ere Installation guide.	rectly applied or 6-0-0 oc purlins. or 6-0-0 oc bracing, Except: 12 abilizers and required cross bracing ection, in accordance with Stabilizer

REACTIONS. (lb/size) 2=627/0-5-8 (min. 0-1-8), 12=1997/0-3-8 (min. 0-2-6), 9=400/Mechanical Max Horz 2=191(LC 9) Max Uplift2=-94(LC 8), 12=-161(LC 12), 9=-66(LC 13) Max Grav 2=631(LC 23), 12=1997(LC 1), 9=512(LC 24)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-15=-1129/173, 3-15=-1067/191, 3-4=-1141/267, 4-5=-1065/291, 5-16=-58/849, 6-16=-41/990, 6-17=-367/185, 7-17=-404/157, 7-8=-457/149, 8-18=-452/131, 9-18=-603/107
- BOT CHORD 2-14=-117/1033, 13-14=-652/222, 12-13=-652/222, 12-19=-285/184, 11-19=-285/184, 11-20=-285/184, 10-20=-285/184, 9-10=-59/459 WEBS 3-14=-634/297, 5-14=-374/1874, 5-12=-604/274, 6-12=-1360/245, 6-10=-141/737,
- 8-10=-446/254

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-15 to 3-9-14, Interior(1) 3-9-14 to 24-5-4, Exterior(2) 24-5-4 to 28-10-1, Interior(1) 28-10-1 to 37-5-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb) 12=161.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	9-9-8	20-5-12		28-10-2	37-6-0				
Plate Offsets (X.Y) [2:0-5-4.Edge]	10-8-4		8-4-0	8-7-14				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.36 WB 0.54 Matrix-S	DEFL. in Vert(LL) -0.09 Vert(CT) -0.19 Horz(CT) 0.01 Wind(LL) 0.11	(loc) l/defl L/d 23 >999 360 23-24 >999 240 15 n/a n/a 23-24 >999 240	PLATES GRIP MT20 244/190 Weight: 255 lb FT = 20%				
LUMBER- TOP CHORD 2x6 BOT CHORD 2x6 WEBS 2x4 OTHERS 2x4	5 SP No.1 5 SP No.1 4 SP No.2 4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathing Rigid ceiling directly applie 1 Row at midpt 1 Brace at Jt(s): 25, 26, 27 MiTek recommends that	directly applied or 6-0-0 oc purlins. d or 6-0-0 oc bracing. l2-18 Stabilizers and required cross bracing				
REACTIONS. (lb/size) 2=643/0-5-8 (min. 0-1-8), 18=1961/0-3-8 (min. 0-2-5), 15=419/Mechanical Max Horz 2=255(LC 11) Max Uplift2=-210(LC 8), 18=-469(LC 12), 15=-155(LC 13) Max Grav 2=648(LC 23), 18=1961(LC 1), 15=525(LC 20)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1154/296, 3-4=-1111/323, 4-5=-1091/338, 5-6=-1073/360, 6-7=-1163/393, 7-8=-1149/399, 8-9=-1119/434, 9-10=-1101/442, 10-11=-1116/470, 11-28=-185/794, 12-28=-168/935, 12-29=-404/289, 13-29=-446/262, 13-14=-499/254, 14-30=-487/227,									
BOT CHORD 2 11 WEBS 6	-30624/203 -24=-328/1070, 23-24=-328/1070, 22-23= 9-20=-599/288, 18-19=-599/288, 18-31=- 6-32=-251/266, 15-16=-91/475 -21=-467/140 21-27=-619/1866 26-27=-	-328/1070, 21-22=-328/1070 251/266, 17-31=-251/266, 17- 593/1809, 25-26=-599/1823	, 20-21=-599/288, -32=-251/266, 11-25=-633/1907						
1	1-18=-601/338, 12-18=-1316/260, 12-16=	-211/748, 14-16=-444/326							
 WEBS 6-21=-467/140, 21-27=-619/1866, 26-27=-593/1809, 25-26=-599/1823, 11-25=-633/1907, 11-18=-601/338, 12-18=-1316/260, 12-16=-211/748, 14-16=-444/326 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; below for the start of the s									

18=469, 15=155.
10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 10=175.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 1 except (jt=lb) 12=199.
- 8) Following joints to be plated by qualified designer: Joint(s) 18, 19, not plated.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

TOP CHORD	2x6 SP No.1 *Except T1: 2x10 SP No 1
BOT CHORD	2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 26-5-0.

(lb) - Max Horz 2=275(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 25, 27, 21, 19, 18, 17 except 2=-135(LC 12), 26=-102(LC 12), 16=-134(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 15, 22, 23, 24, 25, 26, 27, 21, 19, 18, 17 except 2=525(LC 1), 16=274(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -3-2-7 to 1-2-5, Exterior(2) 1-2-5 to 13-4-4, Corner(3) 13-4-4 to 17-9-1, Exterior(2) 17-9-1 to 26-5-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 25, 27, 21, 19, 18, 17 except (jt=lb) 2=135, 26=102, 16=134.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	2150 Camp Easter Road
J0223-0575	C2	COMMON GIRDER	1	2	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	28309, James Naylor	Run: 8.4 ID:3Zk	i30 s May 1 AT1H?TW	2 2021 Pri mBdJQ81	nt: 8.430 s May 12 2021 MiTek Industries, Inc. Fri Mar 3 08:41:45 2023 Page 2 8CHLxz8j5Y-I3YgUsmvbNcDsqm1LSCae8APxCp4C2ocx70z48zehxa

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb) Vert: 7=-553(F) 6=-553(F) 9=-499(F) 10=-499(F) 12=-499(F) 14=-499(F) 15=-499(F) 16=-499(F) 17=-510(F) 18=-510(F)

Max Uplift All uplift 100 lb or less at joint(s) 2, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-8-15 to 3-8-0, Exterior(2) 3-8-0 to 5-8-0, Corner(3) 5-8-0 to 10-0-13, Exterior(2) 10-0-13 to 12-0-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13, 14, 11, 10.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=-192(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 21, 22, 23, 19, 18, 17 except 24=-143(LC 12), 16=-128(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 14, 2, 20, 21, 22, 23, 24, 19, 18, 17, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-5 to 3-7-8, Exterior(2) 3-7-8 to 9-11-8, Corner(3) 9-11-8 to 14-4-5, Exterior(2) 14-4-5 to 20-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 21, 22, 23, 19, 18, 17 except (jt=lb) 24=143, 16=128.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. All bearings 11-7-8.

(lb) - Max Horz 16=240(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 10, 11, 12, 13, 15 except 14=-202(LC 12) Max Grav All reactions 250 lb or less at joint(s) 16, 10, 11, 12, 13, 14, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-313/247, 4-5=-253/198

BOT CHORD 15-16=-293/224, 14-15=-293/224

WEBS 3-15=-318/184, 3-14=-298/392

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 3-8-0, Exterior(2) 3-8-0 to 12-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 11, 12, 13, 15 except (jt=lb) 14=202.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (lb/size) 6=496/Mechanical, 2=495/0-3-8 (min. 0-1-8) Max Horz 2=240(LC 12) Max Uplift6=-137(LC 12)

Max Grav 6=708(LC 19), 2=527(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-437/288

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-1 to 3-9-12, Interior(1) 3-9-12 to 12-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=137.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (lb/size) 6=597/Mechanical, 2=557/0-3-8 (min. 0-1-8) Max Horz 2=233(LC 12) Max Grav 6=793(LC 19), 2=575(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-407/265

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-1 to 3-9-12, Interior(1) 3-9-12 to 11-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) 200.0lb AC unit load placed on the bottom chord, 8-0-0 from left end, supported at two points, 5-0-0 apart.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (lb/size) 6=148/Mechanical, 2=193/0-3-8 (min. 0-1-8) Max Horz 2=87(LC 12)

Max Uplift6=-51(LC 12) Max Grav 6=163(LC 19), 2=193(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 6) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Horz 1=238(LC 12) Max Upitf5=-126(LC 12) Max Upitf5=-126(LC 12)

Max Grav 5=675(LC 19), 1=485(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-411/272

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-4 to 4-7-1, Interior(1) 4-7-1 to 11-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=126.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. All bearings 11-7-8.

(lb) - Max Horz 15=218(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 15, 8, 9, 10, 11, 12, 13 except 14=-227(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 9, 10, 11, 12, 13, 14 except 15=279(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-15=-263/197, 1-2=-401/332, 2-3=-280/233

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-2-4 to 4-7-1, Exterior(2) 4-7-1 to 11-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 8, 9, 10, 11, 12, 13 except (jt=lb) 14=227.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (lb/size) 5=40/5-0-0 (min. 0-1-8), 2=161/5-0-0 (min. 0-1-8), 6=237/5-0-0 (min. 0-1-8) Max Horz 2=55(LC 12) Max Uplift5=-7(LC 8), 2=-32(LC 8), 6=-39(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-6=-173/325

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 4-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.19 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.01 Vert(CT) -0.01 Horz(CT) 0.00 Wind(LL) 0.00	(loc) l/defi L/d 2-4 >999 360 2-4 >999 240 4 n/a n/a 2 **** 240	PLATES GRIP MT20 244/190 Weight: 28 lb FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x6 SI	P No.1 P No.1		BRACING- TOP CHORD	Structural wood sheathing end verticals.	directly applied or 5-0-0 oc purlins, except
WEBS 2x4 SI	² No.2		BOLCHORD	Rigid ceiling directly applie	d or 10-0-0 oc bracınd.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Installation guide.

REACTIONS. (lb/size) 2=239/0-3-8 (min. 0-1-8), 4=182/0-1-8 (min. 0-1-8) Max Horz 2=53(LC 12) Max Uplift2=-40(LC 8), 4=-29(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 4-9-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.0	0 2 **** 240	Weight: 35 lb FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x6 SI	2 No.1 2 No.1		BRACING- TOP CHORD	Structural wood sheathing end verticals.	directly applied or 6-0-0 oc purlins, except
WEBS 2x4 SF	P No.2		BOT CHORD	Rigid ceiling directly applie	ed or 10-0-0 oc bracing.
				MiTek recommends that be installed during truss	Stabilizers and required cross bracing erection, in accordance with Stabilizer

Installation guide.

REACTIONS. (lb/size) 2=298/0-3-8 (min. 0-1-8), 4=243/0-1-8 (min. 0-1-8) Max Horz 2=67(LC 12) Max Uplift2=-44(LC 8), 4=-38(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 6-3-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-8=-150/266

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-7-9 to 3-9-4, Exterior(2) 3-9-4 to 6-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

⁽lb) - Max Horz 2=96(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7, 8 Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7, 8

Plate Offsets (X,Y)-- [4:Edge.0-2-0]

1 1460 0110060 (76,17)	[1:Edg0,0 E 0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.04 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00	(loc) l/defl L/d 1 n/r 120 1 n/r 120 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 20 lb FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie MiTek recommends that S be installed during truss e Installation guide.	directly applied or 3-6-0 oc purlins, except d or 10-0-0 oc bracing. Stabilizers and required cross bracing rection, in accordance with Stabilizer

REACTIONS. (lb/size) 4=128/3-6-0 (min. 0-1-8), 2=175/3-6-0 (min. 0-1-8) Max Horz 2=39(LC 12) Max Uplift4=-21(LC 12), 2=-31(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and

C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y)-- [4:Edge,0-2-0]

	<u> </u>												
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI . TC BC WB Matrix	0.08 0.12 0.00 <-P	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.00 0.00 0.00	(loc) 2-4 2-4 4 2	l/defl >999 >999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x6 SP No. 2x6 SP No. 2x4 SP No.	1 1 2				BRACING TOP CHO BOT CHO	RD RD	Structu end ve Rigid o MiTe	ural wood erticals. ceiling dii k recomi	d sheathing o rectly applied mends that S	directly applied or 3-6 d or 10-0-0 oc bracing Stabilizers and requir	3-0 oc purlins, exce g. ed cross bracing	əpt

be installed during truss erection, in accordance with Stabilizer

Installation guide.

REACTIONS. (lb/size) 2=183/0-5-4 (min. 0-1-8), 4=116/0-1-8 (min. 0-1-8) Max Horz 2=39(LC 12) Max Uplift2=-39(LC 8), 4=-20(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 3-4-0, Exterior(2) 3-4-0 to 5-4-0, Corner(3) 5-4-0 to 9-8-13, Exterior(2) 9-8-13 to 11-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-4-0, Exterior(2) 5-4-0 to 9-8-13, Interior(1) 9-8-13 to 11-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 2=-123(LC 12), 4=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pDL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 2=123, 4=112.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.