

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Glades - French Country - 52 PCR - Roof Mattamy; Glades - Lot 52 Providence Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I58637544 thru I58637582

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

May 31,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A01	Piggyback Base	6	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:50 ID:xW4U3oycfk5?UnMst7UmFSzqBvc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.4 Plate Offsets (X, Y): [4:0-5-4,0-2-4]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.93 0.71 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.29 0.02	(loc) 9-11 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 219 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood shea 3-11-11 oc purlins, of 2-0-0 oc purlins (6-0 Divide culture diversiti	t* 2-4:2x4 SP SS t* 8-6,9-3,8-4:2x4 SF athing directly applie except end verticals, -0 max.): 4-6.	3) d or 4) and 5)	** TCLL: ASC DOL=1.15 Pl snow); Ps= v DOL=1.15 Pl Exp B; Fully surface Roof design slope. Unbalanced design.	CE 7-10; Pr=20.0 late DOL=1.00); P varies (min. roof sr late DOL=1.00) se Exp.; Ct=1.10; Un snow load has be snow loads have l	psf (roof f=20.0 p now=15.i ee load c obstruct en reduc been cor	live load: Lu sf (flat roof 3 psf Lumber ases; Catego ed slippery ed to accour asidered for t	mber bry II; ht for						
WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=211 (L Max Uplift 7=-85 (LC Max Grav 7=1327 (L	applied of 10-0-0 oc 5-8, 6-7, 3-9, 4-8 [2=0-3-8 .C 13) : 13), 12=-21 (LC 16) .C 36), 12=1312 (LC	6) 7) 8) 35)	 Provide adequate drainage to prevent water ponding. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 										
FORCES	(lb) - Maximum Com Tension 1-3=-1135/109, 3-4= 5-6=-502/81, 1-12=-	pression/Maximum 917/113, 4-5=-502/ 1251/93	9) 81, 10	Provide mec bearing plate 12 and 85 lb) This truss is	hanical connection capable of withst uplift at joint 7. designed in accor	n (by oth anding 2 dance w	ers) of truss 1 lb uplift at	to joint						
BOT CHORD	11-12=-286/146, 9-1 8-9=-141/715, 7-8=0 3-11=-467/130, 4-9= 6-7=-1248/211, 6-8= 3-9=-392/166, 4-8=-1	1=-263/977, //0 :-24/492, 5-8=-667/1 :-188/1161, 636/134, 1-11=-35/1	19, 11 147	International R802.10.2 ar Graphical pu or the orienta bottom chore	Residential Code nd referenced star rlin representation ation of the purlin a I.	sections ndard AN n does no along the	R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size		6	- Int	NITH CA	ROLIN	2
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=91r II; Exp B; and C C 2	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en	been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon-	LC 1) cat. e	AD CASE(S) Dead + Sno Increase=1 Uniform Loa Vert: 1-4	Standard ow (balanced): Lur .00 ads (lb/ft) =-52, 4-6=-60, 7-1	mber Inc 2=-20	rease=1.15,	Plate		,		SEA 0363	22	THE DAY OF THE

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A01G	Piggyback Base Supported Gable	1	1	I58637545

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:52 ID:fiCij0HYI1VADxw2yIT5r8zqBvB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.8

Plate Offsets (X, Y): [11:0-2-0,0-2-11], [17:Edge,0-3-8], [18:Edge,0-3-8], [26:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	15	(psf) 20.0 5.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.88 0.30 0.50	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(lo	bc) I/ - - 18	defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 295 It	GRIP 244/19 0 FT = 2	90 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No	0.2 0.2 0.3 *Except 0.3	* 17-18:2x4 SP No.2	FC TC	DRCES	b) - Maximum Corr Fension I-32=-1634/1000, 1 2-4=-311/190, 4-5=- 5-7=-203/147, 7-8=- 3-10=-149/137, 10-1 11-12=-130/144, 12	-2=-29 260/16 175/13 11=-13 -13=-1	5/170, 6, 5-6=-235/1 8, 8-9=-154/1 4/142, 30/144,	59, 26,	4) 5)	** TCL DOL=1 snow); DOL=1 Exp B; surface Roof d	L: AS I.15 P Ps= I.15 P Fully e esign	CE 7- Plate D varies Plate D Exp.; snow	10; Pr=20.0 psf OL=1.00); Pf=2 (min. roof snow OL=1.00) see I Ct=1.10; Unobs load has been	(roof live 20.0 psf (fl /=15.8 psf oad cases structed sl reduced t	load: Lumber at roof Lumber s; Category II; lippery o account for
BOT CHORD	6-0-0 oc p 2-0-0 oc p Rigid ceilir bracing, 8-9-11 oc	urlins, exc urlins (6-0- ng directly Except: bracing: 3	aming directly applied ept end verticals, and 0 max.): 11-17. applied or 10-0-0 oc 1-32.	d BC	DT CHORD	13-14=-130/144, 14 15-16=-130/144, 16 17-18=-114/119 31-32=-431/313, 30 29-30=-130/144, 28 27-28=-130/144, 25	-15=-1 -17=-1 -31=-1 -29=-1 -27=-1	30/144, 30/144, 30/144, 30/144, 31/144,		6) 7) 8) 9)	slope. Unbala design Provide Gable Truss t	anced e ade requir	snow quate res co fully sl	loads have been drainage to pre ntinuous bottom	en conside vent wate chord be	ered for this r ponding. aring.
REACTIONS	(size) Max Horiz	18=27-4-8 21=27-4-8 24=27-4-8 27=27-4-8 30=27-4-8 32=354 (L	17-18, 16-19, 15-20, 14-21, 13-22, 12-23, 10-24, 9-25, 8-26, 7-2 , 19=27-4-8, 20=27-4 , 25=27-4-8, 23=27-4 , 25=27-4-8, 26=27-4 , 31=27-4-8, 32=27-4 C 13)	27 I-8, I-8, Wi I-8, I-8, I-8	EBS	24-25=-131/144, 23 22-23=-131/144, 21 20-21=-131/144, 19 18-19=-131/144 16-19=-207/98, 15-2 14-21=-199/39, 13-2 12-23=-196/51, 10-2 >-25=-188/61, 8-26 5-28=-183/58, 5-29=	-24=-1: -22=-1: -20=-20 22=-20 24=-15 -182/6 182/5	31/144, 31/144, 31/144, 1/54, 1/43, 4/78, 1, 7-27=-183, 2, 4-30=-190/	/54, /108,	10) 11) 12)	braced Gable This tru chord I * This to on the 3-06-00 chord a	l agail studs uss ha ive lo truss l bottol 0 tall l and a	nst late space as bee ad nor has be m cho by 2-0 ny oth	eral movement ed at 2-0-0 oc. en designed for nconcurrent witt een designed for rd in all areas w 0-00 wide will fi er members.	(i.e. diago a 10.0 psf n any othe r a live loa /here a re- t between	¹ bottom ² bottom ³ live loads. ad of 20.0psf ctangle ¹ the bottom
	Max Uplift Max Grav	18–18 (LI 20=-24 (LI 22=-14 (LI 24=-27 (LI 28=-24 (LI 28=-24 (LI 28=-24 (LI 28=-24 (LI 18=-92 (LC 20=240 (LI 22=241 (LI 26=222 (LI 26=222 (LI 26=223 (LI 30=233 (LI 32=1149 ($\begin{array}{c} C \ 13), \ 19=-25 \ (LC \ 12 \\ C \ 13), \ 21=-17 \ (LC \ 12 \\ C \ 13), \ 22=-23 \ (LC \ 16 \\ C \ 16), \ 27=-21 \ (LC \ 16 \\ C \ 16), \ 27=-21 \ (LC \ 16 \\ C \ 16), \ 31=-1042 \ (LC \ 16 \\ C \ 16), \ 31=-1042 \ (LC \ 34 \\ C \ 34), \ 19=249 \ (LC \ 34 \\ C \ 34), \ 21=239 \ (LC \ 34 \\ C \ 34), \ 21=239 \ (LC \ 34 \\ C \ 34), \ 22=236 \ (LC \ 34 \\ C \ 35), \ 25=226 \ (LC \ 33 \\ C \ 35), \ 25=224 \ (LC \ 33 \\ C \ 35), \ 31=180 \ (LC \ 33 \\ C \ 35), \ 31=180 \ (LC \ 33 \\ LC \ 13) \end{array}$), NC), NC), 1)), 2) 13), 2) 13), 4), 4), 4), 5), 3) 5), 3)	DTES Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext exposed ; er members an Lumber DOL Truss desig only. For stu see Standard or consult qu	2-31=-133/53, 1-31= roof live loads have 7-10; Vult=115mph n; TCDL=6.0psf; BC closed; MWFRS (er erior (2) zone; cantil d vertical left and ri- d forces & MWFRS =1.60 plate grip DC red for wind loads ii ids exposed to wind d Industry Gable En alified building desi	=-1011, been of DL=6.0 tovelope ever le ght exp for rea DL=1.30 n the p l (norm d Deta gner as	1618 considered for opd gust) Opsf; h=30ft; () exterior zon ft and right osed;C-C for ctions shown ane of the tru al to the face) Is as applicat s per ANSI/TF	Cat. De Ss J, Dole, PI 1.			Mannan		SE/ 0363	ARO STOLE	A Manual And

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	A01G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158637545

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 32, 18 lb uplift at joint 18, 25 lb uplift at joint 19, 24 lb uplift at joint 20, 17 lb uplift at joint 21, 14 lb uplift at joint 22, 23 lb uplift at joint 23, 27 lb uplift at joint 24, 28 lb uplift at joint 25, 24 lb uplift at joint 26, 21 lb uplift at joint 27, 24 lb uplift at joint 28, 20 lb uplift at joint 29, 36 lb uplift at joint 30 and 1042 lb uplift at joint 31.

14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 1-11=-52, 11-17=-60, 18-32=-20 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:52 ID:fiCij0HYI1VADxw2yIT5r8zqBvB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A02	Piggyback Base	6	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:53 ID:H2focE6Og1VJGrp?5VNSc5zFKam-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.8

Plate Offsets (X, Y): [1:0-3-0,0-1-12], [6:Edge,0-3-8], [8:0-3-8,0-1-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.88 0.81 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.33 0.05	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 204 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP SS *Except* 1-3:2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shee except end verticals. (6-0-0 max.): 5-6. Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 7=0-3-8, 1 Max Horiz 12=370 (L Max Uplift 7=-102 (L Max Uplift 7=-102 (L Max Grav 7=1335 (L (lb) - Maximum Com Tension 1-2=-2158/210, 2-4= 4-55=-626/164, 5-6=- 1-12=-1173/164 11-12=-557/515, 9-1 8-9=-315/1382, 7-8= 2-11=-3/246, 2-9=-6l 4-8=-1321/226, 5-8= 5-7=-1379/229, 1-11	5-6:2x4 SP No.2, t* 6-7:2x4 SP No.2 athing directly applie , and 2-0-0 oc purlins applied or 7-9-1 oc 6-7, 2-9, 4-8 5-7 12= Mechanical .C 13), 12=-56 (LC 16, C 35), 12=1256 (LC 16, C 16), 12=-56 (LC 16, C 16), 12=-5	 3) ** TCLL: A DOL=1.15 snow); Ps= DOL=1.15 Exp B; Full surface 4) Roof desig slope. 5) Unbalance design. 6) Provide ad 7) This truss f chord live I 8) * This truss on the bott 3-06-00 tal chord and i 9) Refer to gir 10) Provide me bearing pla joint 7 and 2. 11) This truss i Internation: R802.10.2 12) Graphical p or the orier bottom cho 	SCE 7-10; Pr=20.0 p Plate DOL=1.00); Pf varies (min. roof sm Plate DOL=1.00) set y Exp.; Ct=1.10; Unc n snow load has bee d snow loads have b equate drainage to p has been designed fo bad nonconcurrent w has been designed fo bad nonconcurrent w has been designed for and nonconcurrent w has been designed for ad nonconcurrent w has been designed for and rof in all areas by 2-00-00 wide will any other members, der(s) for truss to tru chanical connection te capable of withsta 56 lb uplift at joint 12 s designed in accord al Residential Code s and referenced stam- purlin representation tation of the purlin a rd.	esf (roof =20.0 p ow=15.2 e load c obstruct obstruct een col orevent o or a 10.2 vith any for a liv s where I fit betw with BC uss conr (by oth anding 1 2. lance w sections dard AL	live load: Lu sf (flat roof 8 psf Lumber ases; Categr ed slippery ed to accour nsidered for t water pondin 0 psf bottom other live loa e load of 20. a rectangle ween the bott DL = 10.0ps nections. ers) of truss 02 lb uplift a s R502.11.1 a s R502.11.1 a s R502.11.1 a	mber r ory II; this ng. ads. .0psf tom sf. to tt and size				OR FESS	ROLU	
NOTES 1) Unbalanc this desig 2) Wind: ASG Vasd=91r II; Exp B; and C-C E exposed ; members Lumber D	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right ght exposed;C-C for for reactions shown; L=1.33	1) Dead + Si Increase= Uniform L Vert: 1-	y osandard how (balanced): Lum 1.00 oads (lb/ft) 5=-52, 5-6=-60, 7-12	nber Inc 2=-20	rease=1.15,	Plate		THUNNY,		SEA 0363	L 22 ILBERT	Willing .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A02G	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:53 ID:u3t6oXSfKe3aFXvNRxIAGWzIYDu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:82.5

Plate Offsets (X, Y):	[16:0-2-0,0-2-11],	[18:Edge,0-3-8]	, [19:Edge,0-3-8],	[27:0-3-0,0-3-0]
-----------------------	--------------------	-----------------	--------------------	------------------

Loading TCLL (roof) Snow (Ps/Pf) TCDL	1:	(psf) 20.0 5.8/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES		CSI TC BC WB	0.63 0.33 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(ŀ	oc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL		0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MR					-			Weight: 243 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing, 1 Row at (size)	lo.2 lo.3 *Excep lo.3 *Excep purlins, exc purlins, exc purlins (6-0 ing directly midpt 19=29-3-(22=29-3-(25=29-3-(25=29-3-(31=29-3-(31=29-3-(34=370))	t* 18-19:2x4 SP No.2 athing directly applie cept end verticals, ar -0 max.): 16-18. applied or 10-0-0 oc 18-19, 17-20, 15-21, 14-22, 13-23, 12-24), 20=29-3-0, 21=29-), 23=29-3-0, 21=29-), 26=29-3-0, 27=29-), 29=29-3-0, 30=29-), 32=29-3-0, 33=29-) (13)	2 d or dd Br 3-0, 3-0, 3-0, W 3-0, 3-0, 3-0,	OP CHORD OT CHORD /EBS	1-34=-376/182, 1-2 3-4=-412/219, 4-5= 6-8=-320/187, 8-9= 10-11=-231/157, 11 12-13=-170/136, 12 14-15=-147/140, 15 16-17=-129/143, 17 18-19=-118/121 33-34=-128/142, 32 29-30=-128/142, 25 22-32=-129/143, 22 22-23=-129/143, 22 22-23=-129/143, 22 22-23=-129/143, 25 12-24=-129/143, 15 17-20=-209/13, 15 14-22=-180/58, 13-12-24=-182/53, 9-2 6-29=-120/56, 5-30	=-543/2 -380/20 -291/17 -12=-20 3-14=-11 5-16=-11 7-18=-11 2-33=-11 3-29=-11 3-29=-11 3-29=-11 3-29=-11 3-24=-11 3-24=-11 2-21=-18 225=-18 7=-186 7=-186 =-120/5	277, 2-3=-434)8, 5-6=-351/1 7, 9-10=-260 00/146, 56/125, 37/146, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 22/143, 23/144, 23/143, 23/144, 23/	/226, 198, /167, 3/53, /59,	4) 5) 6) 7) 8) 9) 10) 11)	** TC DOL= snow DOL= Exp E Roof slope Unba desig Provii Truss brace Gable This t chord * This on tho 3-06- chord	LL: AS =1.15 F); Ps= =1.15 F 3; Fully ce design de ades s to be ad agai e studs russ h l live lo s truss e botto 00 tall I and a	CE 7- Plate E varies Plate C Exp.; snow snow snow snow snow snow snow snow	10; Pr=20.0 psf IOL=1.00); Pf=2 (min. roof snow IOL=1.00) see lo Ct=1.10; Unobs load has been r loads have bee drainage to prev neathed from on eral movement (dat 2-0-0 oc. en designed for a mocncurrent with sen designed for rd in all areas w 0-00 wide will fit er members.	roof live load: Lumbe).0 psf (flat roof =15.8 psf Lumber ad cases; Category I tructed slippery educed to account fo n considered for this vent water ponding. e face or securely i.e. diagonal web). n 10.0 psf bottom any other live loads. a live load of 20.0ps here a rectangle between the bottom	er II; or sf
FORCES	Max Uplift Max Grav (lb) - Max Tension	19=-12 (L 21=-40 (L 25=-23 (L 27=-25 (L 29=-24 (L 31=-30 (L 19=93 (LC 21=181 (L 23=222 (L 25=223 (L 27=226 (L 27=226 (L 31=159 (L 33=137 (L timum Com	C 13), 20=-15 (LC 12 C 13), 22=-32 (LC 16 C 16), 24=-23 (LC 16 C 16), 26=-22 (LC 16 C 16), 26=-20 (LC 16 C 16), 30=-21 (LC 16 C 16), 33=-312 (LC 2 C 34), 20=251 (LC 3 C 35), 24=223 (LC 3 C 35), 24=223 (LC 3 C 35), 26=221 (LC 3 C 35), 28=185 (LC 3 C 35), 28=185 (LC 3 C 35), 28=185 (LC 3 C 2), 30=160 (LC 2) C 2), 32=165 (LC 2) C 2), 32=165 (LC 2) C 2), 32=401 (LC 13 pression/Maximum	22), N 5), 1) 5), 2) 5), 2) 5), 2) 55), 55), 55), 3) 55), 3) 55), 3)	OTES) Unbalanced this design.) Wind: ASCE Vasd=91mp II; Exp B; Er and C-C Ext exposed ; er members ar Lumber DOI) Truss desig only. For stu see Standar or consult qu	a construction of the first of				L EER.KI	1					

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Page: 1

Job	Truss	Truss Type	Qty Ply		Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	A02G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158637547
Builders FirstSource (Apex, NC)	Apex, NC - 27523,	Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Tue May 30 16:11:53	Page: 2

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 19, 15 lb uplift at joint 20, 40 lb uplift at joint 21, 32 lb uplift at joint 22, 21 lb uplift at joint 23, 23 lb uplift at joint 24, 23 lb uplift at joint 25, 22 lb uplift at joint 26, 25 lb uplift at joint 27, 20 lb uplift at joint 28, 24 lb uplift at joint 29, 21 lb uplift at joint 30, 30 lb uplift at joint 31 and 312 lb uplift at joint 33.
- 13) Non Standard bearing condition. Review required. 14) This truss is designed in accordance with the 2015
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00

Uniform Loads (lb/ft) Vert: 1-16=-52, 16-18=-60, 19-34=-20 Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:53 ID:u3t6oXSfKe3aFXvNRxIAGWzIYDu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A03	Piggyback Base	3	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:54 ID:CUR0mdXDVAxnXW8orMpiONzqBsH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-4=-52, 4-6=-60, 6-10=-52, 11-21=-20

Page: 1

TOP CHORD	2x4 SP No.2 *Except* 4-6:2x4 SP SS, 2-4-2x4 SP No.1	2)	this design. Wind: ASCE 7-10: Vult=115mph (3-second gust)	Vert: 1-4=-52, 4-6=-60, 6-10=-52, 11-21=-20
BOT CHORD	2x4 SP No.2	-)	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat.	
WEBS	2x4 SP No.3 *Except* 3-20,16-4:2x4 SP No.2		II; Exp B; Enclosed; MWFRS (envelope) exterior zone	
BRACING			and C-C Exterior (2) zone; cantilever left and right	
TOP CHORD	Structural wood sheathing directly applied,		exposed ; end vertical left and right exposed;U-U for members and forces & MWERS for reactions shown:	
	except end verticals, and 2-0-0 oc purlins		Lumber DOL=1.60 plate grip DOL=1.33	
BOT CHORD	(6-0-0 max.): 4-6. Rigid ceiling directly applied or 10-0-0 oc	3)	** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber	
BOT ONORD	bracing, Except:		DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof	
	2-2-0 oc bracing: 12-14,11-12.		snow); Ps= varies (min. roof snow=15.8 psf Lumber	
WEBS	1 Row at midpt 6-15, 1-21, 3-20, 4-16,		Exp B: Fully Exp : Ct=1 10: Unobstructed slipperv	
WERS	3-18, 7-14, 8-11 2 Powe at 1/2 ptc 5 15		surface	
REACTIONS	(size) 11-0.3.8 15-0.3.8 21-0.3.8	4)	Roof design snow load has been reduced to account for	
REACTIONS	Max Horiz 21=-132 (LC 12)	-	slope.	
	Max Uplift 11=-38 (LC 17), 15=-83 (LC 13),	5)	Unbalanced show loads have been considered for this design	
	21=-63 (LC 16)	6)	Provide adequate drainage to prevent water ponding.	
	Max Grav 11=911 (LC 44), 15=2412 (LC 44),	7)	This truss has been designed for a 10.0 psf bottom	
FORCES	(lb) Maximum Compression/Maximum		chord live load nonconcurrent with any other live loads.	
FURGES	(ib) - Maximum Compression/Maximum Tension	8)	* This truss has been designed for a live load of 20.0psf	WAH CAR
TOP CHORD	1-3=-1019/143, 3-4=-737/184, 4-5=-264/170,		3-06-00 tall by 2-00-00 wide will fit between the bottom	N R
	5-6=0/320, 6-7=-218/151, 7-8=-804/166,		chord and any other members, with $BCDL = 10.0psf$.	CONFESSION IN
	8-10=-111/106, 10-11=-174/92,	9)	Provide mechanical connection (by others) of truss to	MAT SANT
	1-21=-1105/155 20-21111/152 18-2079/853		bearing plate capable of withstanding 83 lb uplift at joint	
BOT CHOILD	16-18=0/586, 15-16=-8/289, 14-15=-40/181,	10	15, 63 lb uplift at joint 21 and 38 lb uplift at joint 11.	= : SEAL : =
	12-14=-5/527, 11-12=-68/675	10,	International Residential Code sections R502.11.1 and	036322
WEBS	4-18=-11/613, 5-16=-9/949, 5-15=-1486/175,		R802.10.2 and referenced standard ANSI/TPI 1.	5 1 000022 j 3
	6-15=-1245/139, 6-14=-48/920,	11)) Graphical purlin representation does not depict the size	- そんし しんき
	4-16=-872/105. 3-18=-507/144.		or the orientation of the purin along the top and/or	I CA WOINFER A
	7-14=-822/172, 7-12=-11/427, 8-11=-927/64,	10	AD CASE(S) Standard	A A A A A A A A A A A A A A A A A A A
	1-20=-88/964	1)	Dead + Snow (balanced): Lumber Increase=1.15. Plate	A. GILD
NOTES			Increase=1.00	THILLING CONTRACT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	A04A	Piggyback Base	2	1	Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:55 ID:MvowjkNDjyp9d85TvOfzBpzrAd7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.3

Plate Offsets (X, Y): [4:0-4-0,0-1-13], [6:0-5-0,0-2-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.82	Vert(LL)	-0.26	11-13	>999	240	MT20	244/190	
Snow (Ps/Pf)	15.8/20.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.45	15-16	>996	180	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	NO		WB	0.90	Horz(CT)	0.07	8	n/a	n/a			
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MS		. ,							
BCDL	10.0											Weight: 287 lb	FT = 20%	
LUMBER			1)	Unbalanced	roof live loads have	been o	considered fo	r	LOAD	CASE(S)	Sta	ndard		
TOP CHORD	2x4 SP SS *Except*	1-2:2x4 SP No.2,	•	this design.		(0			1) De	ead + Sn	ow (ba	alanced): Lumber	Increase=1.15	, Plate
	6-7:2x4 SP No.1		2)	Wind: ASCE	7-10; Vult=115mpr	1 (3-sec	cond gust)	2-1	Inc	rease=	1.00	(6.)		
BOT CHORD	2x4 SP No.1	***		Vasa=91mpr	1; TCDL=6.0pst; BC	DL=6.	Upsi; n=30ft; (Jat.	Ur	Inform Lo	ads (II	D/ft)	0.40.00	
WEBS	2x4 SP No.3 *Excep	ot^ 8-6:2x4 SP SS,	10.0	and C-C Exte	rior (2) zone: canti	lovor lo	ft and right	ie		Vert: 1-4	H=-52,	4-6=-60, 6-7=-52	8-16=-20,	
	10-3,15-4,13-5,11-5	,11-6,19-20:2x4 SP N	NO.2	exposed · en	d vertical left and ri	aht exr	osed C-C for			19-21=-	40 (F),	21-22=-40 (F), 2	0-22=-40 (F)	
	Other strengthere and all a	- the local allocation are a liter		members and	d forces & MWFRS	for rea	ctions shown							
I OP CHORD	Structural wood sne	atning directly applied	a or and	Lumber DOL	=1.60 plate grip DC	DL=1.3	3	,						
	2-0-0 oc purlins, e	3.7 max > 4.6	3)	** TCLL: ASC	CE 7-10; Pr=20.0 p	sf (roof	live load: Lun	nber						
	Rigid ceiling directly	applied or 10-0-0 oc	,	DOL=1.15 PI	ate DOL=1.00); Pf=	=2Ò.0 p	sf (flat roof							
	bracing.			snow); Ps= v	aries (min. roof sno	ow=15.8	3 psf Lumber							
NEBS	1 Row at midpt	7-8. 3-15. 4-15. 4-13	5.	DOL=1.15 PI	ate DOL=1.00) see	e load c	ases; Catego	ry II;						
		5-13, 5-11, 19-20	,	Exp B; Fully	Exp.; Ct=1.10; Uno	bstruct	ed slippery							
NEBS	2 Rows at 1/3 pts	3-16		surface										
NEBS	3 Rows at 1/4 pts	6-8	4)	Roof design :	snow load has bee	n reduc	ed to account	t for						
REACTIONS	(size) 8=0-3-8, *	16=0-3-8	E)	siope.	anow looda have h		aidarad for th	ie						
	Max Horiz 16=260 (I	_C 13)	5)	docian	Show loads have be	een cor		115						
	Max Uplift 8=-86 (LC	C 13), 16=-26 (LC 16)	6)	Provide adec	uate drainage to p	revent	water ponding	1						
	Max Grav 8=1884 (I	LC 37), 16=1794 (LC	44) 7)	All plates are	MT20 plates unles	s other	wise indicate	,. d.						
FORCES	(lb) - Maximum Corr	pression/Maximum	8)	This truss ha	s been designed fo	r a 10.0) psf bottom						11.	
	Tension		,	chord live loa	d nonconcurrent w	ith any	other live loa	ds.				N''LL CA	Dille	
FOP CHORD	1-3=-153/139, 3-4=-	1737/292,	9)	* This truss h	as been designed	for a liv	e load of 20.0)psf			1	THUA	ROIL	
	4-5=-1511/270, 5-6=	=-1184/248,		on the botton	n chord in all areas	where	a rectangle				~	ON JESS	CAN'	
	6-7=-174/182, 7-8=-	301/140, 1-16=-267/	117	3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om			in	10	Niz	2
BOT CHORD	15-16=-357/1448, 1	3-15=-276/1427,		chord and an	y other members, v	with BC	DL = 10.0psf	•					·	1
	11-13=-247/1492, 10	0-11=-176/1014, 176/1014	10) Provide mech	nanical connection	(by oth	ers) of truss to	0		-				-
NEBS	3-10=-170/1014, 0-3	9=-170/1014 1788/230		bearing plate	capable of withsta	nding 2	6 Ib uplift at j	oint		=	:	SEA		1
NLDO	8-20=-1950/221 3-1	1700/200, 16=-2014/201	11	The and 86 lb	uplift at joint 8.		ith the 2015			Ξ.	:	0262	22 :	
	4-15=-226/266 4-17	7=-72/384	11	International	Posidential Code of	ance w	DE02 11 1 0	nd		1		0303	~~ ;	-
	13-17=-73/383, 13-1	18=-145/343.		R802 10 2 ar	nd referenced stand	ard AN	ISI/TPI 1	nu		-				-
	5-18=-145/346, 5-11	I=-805/165,	12) Graphical pu	rlin representation	does no	ot depict the s	ize		S	1	·	air	5
	11-19=-45/1157, 6-1	19=-50/1242, 17-18=0	D/10, 12	or the orienta	tion of the purlin al	ong the	top and/or				25	> VGINE	E. a.	2
	19-21=-120/7, 21-22	2=-120/7, 20-22=-120)/7,	bottom chord	l. · ·	0	•				11	10	BEN	
	10-21=-135/13, 9-22	2=-34/48	13) In the LOAD	CASE(S) section, I	oads a	oplied to the f	ace				11, A. G	ILD'I''	
NOTES				of the truss a	re noted as front (F) or ba	ck (B).					111111	THUE	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A04G	Monopitch Supported Gable	1	1	I58637550 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:55 ID:8f3Is1?AeXy5wrISWLRud9zqBCM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [7:0-1-1,0-2-8], [8:Edge,0-2-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	1	(psf) 20.0 5.8/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.82 0.92 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 61 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x6 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing,	0.2 0.2 *Excep 0.3 I wood shee ourlins, exc ing directly Except:	t* 2-13:2x4 SP No.3 athing directly applie cept end verticals. applied or 10-0-0 oc	1) d or2)	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte exposed ; en members and Lumber DOL Truss design only. For stu see Standard or consult au	7-10; Vult=115mpl ; TCDL=6.0psf; BC closed; MWFRS (e rior (2) zone; canti d vertical left and r d forces & MWFRS =1.60 plate grip DC ted for wind loads i ds exposed to wind I Industry Gable Er alified building des	n (3-sec CDL=6. nvelope ilever le ight exp for rea DL=1.3 in the p d (norm nd Deta igner a	cond gust) Dpsf; h=30ft; i, exterior zor ft and right bosed;C-C for ctions shown all ane of the true all to the face is ser ANSI/TF	Cat. ne ; uss), ble, PI 1.	13) This Inte R80 LOAD C	truss is rnationa 2.10.2 a CASE(S)	desig I Resid Ind ref Sta	ned in accordanc Jential Code sect erenced standard ndard	e with the 2015 ions R502.11.1 and d ANSI/TPI 1.
REACTIONS	2-2-0 oct (size) Max Horiz Max Uplift Max Grav	8=10-3-8, 11=10-3-8 13=157 (L 8=-374 (L 11=-3 (LC 13=-40 (L 8=63 (LC 10=163 (L 12=160 (L	9=10-3-8, 10=10-3- 8, 12=10-3-8, 13=10- C 15) C 13), 10=-113 (LC 16), 12=-23 (LC 16) C 12) 23), 9=499 (LC 13), C 23), 11=160 (LC 2 C 2), 13=187 (LC 2)	8, 3) -3-8 16), 4) -2), 5) 2) 0)	TCLL: ASCE DOL=1.15 Pl snow); Ps=11 DOL=1.00); (Unobstructe Roof design slope. Unbalanced design.	7-10; Pr=20.0 psf ate DOL=1.00); Pf: 5.8 psf (roof snow: Category II; Exp B; I slippery surface snow load has bee snow loads have b	(roof liv =20.0 p Lumbe Fully E n reduc een cor	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; red to accoun nsidered for th	er Plate t for his					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	0)	load of 12.0	osf or 2.00 times fla	at roof l	bad of 20.0 p	sfon				mm	uun.
TOP CHORD	1-2=0/44, 4-5=-42/1 7-8=-172/	2-3=-29/50 19, 5-6=-70 (303	6, 3-4=-33/87, 0/174, 6-7=-63/114,	7) 8)	Gable require Truss to be find	es continuous botto	one fac	d bearing. e or securely				J.M.	ORTH CA	ROLLING
BOT CHORD	12-13=-26 10-11=-26 8-9=-263/	63/159, 11- 63/159, 9-1 /159	12=-263/159, 0=-263/159,	9) 10	Gable studs	spaced at 2-0-0 oc s been designed fo	or a 10.) psf bottom					200	
WEBS NOTES	6-9=-351/ 3-12=-112	/130, 5-10= 2/69, 2-13=	-124/149, 4-11=-122 -170/106	2/61, 11 12	 chord live loa This truss h on the botton 3-06-00 tall b chord and ar 2) Provide mecl bearing plate 13, 374 lb up uplift at joint 	as been designed as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta lift at joint 8, 113 lb 11 and 23 lb upit	for a liv where fit betw (by oth inding 4 uplift a	e load of 20.0 a rectangle veen the botto ers) of truss t 0 lb uplift at j t joint 10, 3 lb	us. Opsf om oont o		TITLE AND A	A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 13, 374 lb uplift at joint 8, 113 lb uplift at joint 10, 3 lb uplift at joint 11 and 23 lb uplift at joint 12.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G 1111111 May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A05A	Piggyback Base	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:56 ID:uStDOJu0HX2Vw7s8kFAD8fzrC27-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.93	Vert(LL)	-0.26	15-17	>999	240	MT20	244/190	
Snow (Ps/Pf)	15.8/20.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.40	13-14	>962	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.96	Horz(CT)	0.05	12	n/a	n/a			
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MS									
BCDL	10.0											Weight: 341 lb	• FT = 20%	
				-50		0.00.07	4005		10) 5					
			VV	=BS 1	5-23=-30/936, 1	0-23=-37/	1005,		10) Prov	vide me	chanic	al connection (b	y others) of tr	USS to
TOP CHORD	2x4 SP No.1 *Except	t* 8-10:2x4 SP SS		1	0-24=-1561/214	, 12-24=-	1711/206,	10/7	bea	ring plat	e capa	able of withstand	ang 88 ib upit	t at joint
BOT CHORD	2x4 SP No.2 *Except	t^ 16-12,19-16:2x4 \$	SP	2	23-23=-112/7,23 15_597/152 9	19_ 706	7,24-20=-11	1 Z/ 7 , 7/01	2 ai			il juiil 12. mod in cocordor	and with the 20	015
		**		c g	2-17-0/61/ 1.22	-10-100/	0, 9-17=-337	/680	Into	rnationa	l Rocid	dential Code se	ctions R502 1	11 and
WEDS	12-11 23-24 8-18 0-1	17-2×4 SP No 2		F	5-20=-619/150 7	-20=-155	3/100 7-18=	0/922	R80	12 10 2 2	and ref	erenced standa	rd ANSI/TPI 1	
	12-11,23-24,0-10,9-1	17.2X4 OF NU.2,		1	4-25=-140/10 1	3-26=-38/	48	0/022,	12) Gra	phical p	urlin re	enced standa	es not depict	the size
SLIDER	Left 2x8 SP DSS 2	2-5-0	NC	TES					or th	ne orient	tation of	of the purlin alor	ng the top and	l/or
	2011 2210 01 2000 2		1)	Unbalanced	roof live loads ba	wa haan d	considered fo	hr.	bott	om chor	d.		5	
	Structural wood she	athing directly applie	u) ad or	this design		ive been (13) In th	ne LOAD	O CASI	E(S) section, loa	ads applied to	the face
	3-10-5 oc purlins	accent end verticals	and 2)	Wind ASCE	7-10. Vult=115m	nph (3-sec	ond aust)		of th	ne truss	are no	ted as front (F)	or back (B).	
	2-0-0 oc purlins (5-5	-0 max): 8-10	unu _/	Vasd=91mph	: TCDL=6.0psf:	BCDL=6.0	Dpsf: h=30ft:	Cat.	LOAD C	ASE(S) Sta	ndard		
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	С	II; Exp B; End	losed; MWFRS	(envelope	exterior zo	ne	1) De	ad + Sr	iow (ba	alanced): Lumbe	er Increase=1.	.15, Plate
	bracing, Except:			and C-C Exte	erior (2) zone; ca	ntilever le	ft and right		Inc	rease=	1.00			
	8-9-11 oc bracing: 2-	-22		exposed ; en	d vertical left and	d right exp	osed;C-C fo	r	Un	iform Lo	oads (I	b/ft)		
	9-11-10 oc bracing: 2	20-22.		members and	d forces & MWFI	RS for rea	ctions showr	ר;		Vert: 1-8	3=-52,	8-10=-60, 10-12	1=-52, 12-27=	-20,
WEBS	1 Row at midpt	11-12, 23-24, 9-15,	8-18,	Lumber DOL	=1.60 plate grip	DOL=1.33	3			23-25=-	40 (F),	, 25-26=-40 (F),	26-42=-40 (F))
		9-17, 7-20	3)	** TCLL: ASC	CE 7-10; Pr=20.0) psf (roof	live load: Lui	mber						
WEBS	3 Rows at 1/4 pts	10-12		DOL=1.15 PI	ate DOL=1.00);	Pf=20.0 p	sf (flat roof							
REACTIONS	(size) 2=0-3-8, 1	2=0-3-8, 20=0-3-8		snow); Ps= v	aries (min. roof s	snow=15.8	3 pst Lumber							
	Max Horiz 2=279 (LC	C 15)		DOL=1.15 PI	ale DOL=1.00) s	nobstruct	ases, Caleyi	JIY II,						
	Max Uplift 2=-88 (LC	: 16), 12=-86 (LC 13	5)	surface	Exp., Cl=1.10, O	nobstructe	eu silppei y					111110	A.D. 111	
	Max Grav 2=745 (LC	C 54), 12=1676 (LC	38), 4)	Roof design :	snow load has b	een reduc	ed to accour	nt for				TH U	ARO M	1
	20=2126 ((LC 45)	.,	slope.							1	ON JES!	in In	10
FORCES	(lb) - Maximum Com	pression/Maximum	5)	Unbalanced	snow loads have	been cor	sidered for t	his		/	52		The	1
		240 4 5 979/207		design.						4	D	121 1		4-
IOF CHORD	5 7_ 107/217 7 9_ 0	210, 4-3=-070/297, 009/227 9 0- 1127	(200 6)	This truss ha	s been designed	for greate	er of min root	f live		-	() j			
	9-101011/257 10-	.11_175/182	/290,	load of 12.0 p	osf or 2.00 times	flat roof lo	oad of 20.0 p	sf on		=		SE/	AL :	: =
	11-12=-302/140	11= 173/102,		overhangs no	on-concurrent wi	th other liv	/e loads.			=	:	0263	222	: =
BOT CHORD	2-22=-509/752, 20-2	2=-343/399.	7)	Provide adec	juate drainage to	prevent v	vater pondin	g.		1		0303	22	
	18-20=-305/570, 17-	18=-251/995.	8)	This truss ha	s been designed	for a 10.0) pst bottom			-		N		-
	15-17=-231/1236, 14	4-15=-168/896,	0)	chord live loa	d nonconcurrent	t with any	other live loa	ads.		5	3	i. A.	air	3
	13-14=-168/896, 12-	13=-168/896	9)	an the better	as been designe		e load of 20.	opsi			25	NGIN	IEE. A	1.5
				3-06-00 tall h		as where will fit hetw	een the hott	om			11	10	DE	5
				chord and an	v other member	s. with BC	DL = 10.0 ns	f.				11. A. (ALPIN	
					,	.,						in the second se	mm	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A05AV	Piggyback Base	2	1	Job Reference (optional)

BRACING

WEBS

WEBS

FORCES

TOP CHORD

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:56 ID:uStDOJu0HX2Vw7s8kFAD8fzrC27-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied or NOTES 1)

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (5-6-9 max.): 9-11. this design BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 2) bracing. 1 Row at midpt 9-20, 10-16, 12-13, 10-17, 28-29, 7-23, 8-21 3 Rows at 1/4 pts 11-13 **REACTIONS** (size) 2=0-3-8, 13=0-3-8, 23=0-3-8 2=279 (LC 15) Max Horiz Max Uplift 13=-52 (LC 12), 23=-190 (LC 16) 3) 2=255 (LC 31), 13=1536 (LC 38), Max Grav 23=2768 (LC 39) (lb) - Maximum Compression/Maximum Tension surface TOP CHORD 1-2=0/38, 2-3=-362/208, 3-4=-431/475, 4) 4-6=-497/1066, 6-7=-427/1069, slope. 7-8=-570/112, 8-9=-843/183 5) 9-10=-1058/223, 10-11=-888/212, design. 11-12=-176/182, 12-13=-302/140 6) BOT CHORD 2-27=-199/133, 3-27=-61/66, 3-26=-295/90, 25-26=-291/88, 24-25=-50/23, 6-25=-372/126, 23-24=-33/1, 7) 22-23=-507/170. 21-22=-507/171.

20-21=-39/503. 17-20=-60/779.

16-17=-94/1058, 15-16=-103/761, 14-15=-103/761, 13-14=-103/761

8-20=-126/833, 14-30=-38/45, 15-31=-81/25

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=15.8 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery
- Roof design snow load has been reduced to account for
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

bottom chord 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 1-3=-52, 3-9=-52, 9-11=-60, 11-12=-52

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1

1)

12) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or

Page: 1

27-32=-20, 3-25=-20, 13-24=-20, 28-31=-40 (F), 30-31=-40 (F), 29-30=-40'(F)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A06	Piggyback Base	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:57 ID:q8wEr8HTJbxNGsKzepNLK?zqBEb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

TOP CHORD Structural wood sheathing directly applied or 3-1-0 oc purlins, except end verticals, and 2-0-0 oc purlins (2-2-0 max.): 7-9 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing Except

	braoing,	=//00p1		
	8-10-12 c	oc bracing	j: 2-20	
	9-2-7 oc l	bracing: 1	18-20.	
WEBS	1 Row at	midpt	6-18, 7-15, 7-13, 9-12, 10-11	8-13,
REACTIONS	(size)	2=0-3-8	, 11=0-3-8, 18=0-3-	8
	Max Horiz	2=279 (LC 15)	
	Max Uplift	2=-84 (l 18=-46	LC 16), 11=-64 (LC (LC 16)	13),
	Max Grav	2=711 (18=209	LC 54), 11=1470 (L 4 (LC 39)	C 44),
FORCES	(lb) - Max	imum Co	mpression/Maximu	m
	Tension			
TOP CHORD	1-2=0/38,	2-4=-75	9/203, 4-6=-183/192	2,
	6-7=-105	7/278, 7-	8=-1150/282,	
	8-9=-1150	0/282, 9-	10=-831/222,	
	10-11=-13	344/208		
BOT CHORD	2-20=-502	2/701, 18	-20=-407/701,	
	16-18=-30	00/388, 1	5-16=-276/430,	
	13-15=-23	34/929, 1	2-13=-143/732,	
	11-12=-89	9/102		
WEBS	4-20=0/32	23, 4-18=	-750/169, 6-18=-16	23/148
	6-16=0/2	10, 6-15=	0/794, 7-15=-400/6	7,
	7-13=-18/	417, 8-1	3=-869/155,	
	9-13=-12	1/795, 9-	12=-793/216,	
	10-12=-14	45/1208		

Lumber DOL=1.60 plate grip DOL=1.33 ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=15.8 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

members and forces & MWFRS for reactions shown;

- 4) Roof design snow load has been reduced to account for slope.
- 5) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 2, 46 lb uplift at joint 18 and 64 lb uplift at joint 11.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Vert: 1-7=-52, 7-9=-60, 9-10=-52, 11-21=-20

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A06G	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:58 ID:oP9Sw8SDPCzNmo9r2hecFhzrASh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

47-5-0

Scale = 1:90 Plate Offsets (X, Y): [3:0-4-0,0-2-4], [9:0-2-1,0-1-8], [17:0-3-0,0-2-4], [25:0-3-0,0-2-4]

Laading TCLL (roof) (psf) 20.0 Now (Ps/Pf) Spacing 20.0 10.0 20-0 Plate Grip DOL 1.15 1.00 1.15 CSI BC 0.62 Vert(L1) Vert(L1) n/a 999 Vert(CT) MT20 244/190 Show (Ps/Pf) 15.8/20.0 10.0 1.00 1.05 BC 0.17 Vert(CT) n/a 999 MT20 244/190 BCLL 0.0* 0.0* Vert(CT) n/a 999 n/a 999 BCLL 0.0* 0.0* Vert(CT) n/a 999 n/a BCLL 0.0* 0.0* Vert(CT) n/a 999 n/a 999 Matrix-MS Matrix-MS Matrix-MS Vert(CT) n/a 999 n/a 999 LUMBER 10.0 Vert(CT) 1.2 Vert(CT) n/a 1.2=V38.2-3=176/101, 3-4=-334/17 TOP CHORD 2x4 SP No.2 SS2 Vert(CT) 33=15 (LC 12), 32=-1(LC 13), 32=-13 (LC 12), 32=-120(12) 1-2=V38.2-3=-176/101, 3-4=-334/17 SUBER Left 2x8 SP DSS - 1-0-15 Matrix 33=15 (LC 13), 34=-14 (LC 12), 7			
LUMBER Max Uplift $29=-26$ (LC 12), $30=-22$ (LC 17), 31=-29 (LC 17), $32=-2$ (LC 13), BOT CHORD TOP CHORD $1-2=0/38, 2-3=-176/101, 3-4=-334/17.$ 4-5=-301/162, 5-6=-272/151, 6-7=-24 BOT CHORD $2x4$ SP No.2 $31=-29$ (LC 17), $32=-2$ (LC 13), BOT CHORD $31=-29$ (LC 17), $32=-2$ (LC 13), 33=-15 (LC 13), $34=-14$ (LC 12), WEBS $7-8=-212/130, 8-10=-181/120,$ 35=-13 (LC 13), $36=-13$ (LC 12), 10-11=-151/109, 11-12=-123/99, 35=-13 (LC 13), $39=-18$ (LC 12), 10-11=-151/109, 11-12=-123/99, 35=-13 (LC 13), $39=-18$ (LC 12), 10-11=-151/109, 11-12=-123/99, 35=-13 (LC 16), $47=-23$ (LC 16), 14-15=-132/153, 15-16=-135/186, 45=-23 (LC 16), $47=-23$ (LC 16), 16-17=-133/193, 17-18=-125/193, 1-7=-124/165, 27=-212/193, 20-0 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, (e ² -0 - max.): 17-25. $45=-23$ (LC 16), $47=-23$ (LC 16), 45=-23 (LC 16), $47=-23$ (LC 16), 20-21=-125/193, 21-22=-125/193, 52=-22 (LC 16), $53=-25$ (LC 16), 22-23=-125/193, 22-24=-125/193, 52=-22 (LC 16), $53=-25$ (LC 16), 24-25=-125/193, 22-26=-139/199, 54=-167 (LC 16) $24-25=-125/193, 22-26=-139/199,54=-167$ (LC 16) $24-25=-125/193, 25-26=-139/199,23-34, 22-35, 21-36,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 10-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 10-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18-40,20-38, 19-39, 18$	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	4/190	
WEBS 1 Row at midpt 28-29, 25-32, 24-33, 23-34, 22-35, 21-36, 20-38, 19-39, 18-40, Max Grav 2=235 (LC 13), 29=108 (LC 39), 30=263 (LC 39), 31=225 (LC 39), 32=159 (LC 38), 33=252 (LC 38), 32=159 (LC 38), 35=240 (LC 38), 34=239 (LC 38), 35=240 (LC 38), 28-29=-120/117	LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	4=-334/174, 1, 6-7=-242/14 [,] 20, 13/99, 1/123, 15/186, 15/193, 25/193, 25/193, 25/193, 30/199, 31/153,	1,
$\begin{array}{c} 16-41, 15-42, 14-43, \\ 13-44, 26-31, 27-30 \\ \hline 13-44, 26-31, 27-30 \\ \hline 13-44, 26-31, 27-30 \\ \hline 31-47-5-0, 29-47-5-0, 30-47-5-0, \\ 31=47-5-0, 32=47-5-0, 33=47-5-0, \\ 34=47-5-0, 35=47-5-0, 36=47-5-0, \\ 38=47-5-0, 39=47-5-0, 40=47-5-0, \\ 41=209 (LC 38), 84=222 (LC 39), \\ 43=222 (LC 39), 44=223 (LC 39), \\ 43=222 (LC 39), 47=223 (LC 39), \\ 45=223 (LC 39), 47=223 (LC 39), \\ 45=222 (LC 39), 47=223 (LC 39), \\ 45=222 (LC 39), 47=223 (LC 39), \\ 41=47-5-0, 45=47-5-0, 47=47-5-0, \\ 48=47-5-0, 49=47-5-0, 50=47-5-0, \\ 51=47-5-0, 52=47-5-0, 55=47-5-0, \\ 51=47-5-0, 55=47-5-0, \\ 54=47-5-0, 55=47-5-0, \\ 54=47-5-0, 55=47-5-0, \\ 54=47-5-0, 55=47-5-0, \\ 54=47-5-0, 55=47-5-0, \\ 54=109 (LC 54), 55=235 (LC 13) \\ \hline \end{array}$	WEBS		7

818 Soundside Road Edenton, NC 27932

SEAL 036322 Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	A06G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158637554

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:11:58 ID:oP9Sw8SDPCzNmo9r2hecFhzrASh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Increase=1.00

1)

Uniform Loads (lb/ft) Vert: 1-17=-52, 17-25=-60, 25-28=-52, 29-55=-20

52-53=-95/106, 51-52=-95/106, 50-51=-95/106, 49-50=-95/106, 48-49=-95/106, 47-48=-95/106, 45-47=-95/106, 44-45=-95/106, 43-44=-95/106, 42-43=-95/106, 41-42=-95/106, 40-41=-95/106, 39-40=-95/106, 38-39=-95/106, 36-38=-95/106, 35-36=-95/106, 34-35=-95/106, 33-34=-95/106, 32-33=-95/106, 31-32=-95/106, 30-31=-95/106, 29-30=-95/106 WEBS 25-32=-118/31, 24-33=-212/39, 23-34=-199/40, 22-35=-200/38, 21-36=-200/38, 20-38=-199/38, 19-39=-203/46, 18-40=-184/35, 16-41=-169/45, 15-42=-186/64, 14-43=-182/54, 13-44=-183/54, 12-45=-183/54, 11-47=-183/54, 10-48=-182/54, 8-49=-120/54, 7-50=-120/54, 6-51=-120/55, 5-52=-119/53, 4-53=-123/60, 3-54=-138/243, 26-31=-187/63, 27-30=-215/95

2-54=-95/106. 53-54=-95/106.

NOTES

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=15.8 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 29, 2 lb uplift at joint 32, 15 lb uplift at joint 33, 14 lb uplift at joint 34, 13 lb uplift at joint 35, 13 lb uplift at joint 36, 12 lb uplift at joint 38, 18 lb uplift at joint 39, 11 lb uplift at joint 40, 29 lb uplift at joint 42, 22 lb uplift at joint 43, 23 lb uplift at joint 44, 23 lb uplift at joint 45, 23 lb uplift at joint 47, 23 lb uplift at joint 48, 23 lb uplift at joint 49, 23 lb uplift at joint 50, 23 lb uplift at joint 51, 22 lb uplift at joint 50, 23 lb uplift at joint 51, 22 lb uplift at joint 54, 29 lb uplift at joint 31 and 22 lb uplift at joint 30.
- 13) Non Standard bearing condition. Review required.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A06V	Piggyback Base	4	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:00 ID:g8wEr8HTJbxNGsKzepNLK?zqBEb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A07	Roof Special	10	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:01 ID:6xt2FPT38iCwxRVi6F6G1gzqBAT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.5

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

Show (Ps/Pf) TCDL 3CLL 3CDL LUMBER TOP CHORD 3OT CHORD WEBS 3RACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	Lumber DOL Rep Stress Incr Code	4) Unbalan design. 5) All plate 6) This tru chord li	BC WB Matrix-MS need snow loads have s are MT20 plates un ss has been designed re load nonconcurren use has poor designed	e been cor hless other d for a 10.0 tt with any	Vert(CT) Horz(CT) Isidered for t wise indicate 0 psf bottom other live log	-0.51 0.02 this ed.	6-8 5	>448 n/a	180 n/a	MT20HS Weight: 113 lb	187/143 FT = 20%	
TOP CHORD BOT CHORD WEBS REACTIONS FORCES	Structural wood shea 5-6-6 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 5= Mecha Max Horiz 8=-281 (LI Max Uplift 5=-28 (LC Max Grav 5=757 (LC (Ib) - Maximum Com Tension 1-8=-220/89, 1-2=-10 4-5=-252/80	athing directly applie cept end verticals. applied or 2-2-0 oc 1-8, 2-8 inical, 8=0-3-8 C 12) (17), 8=-90 (LC 17) C 2), 8=826 (LC 23) ipression/Maximum 66/101, 2-4=-898/13	d or 7) a This tr on the t 3-06-00 chord a 8) Refer to 9) Provide bearing 8 and 2 10) This tru Internat R802.1 LOAD CAS	uss has been design oottom chord in all are tall by 2-00-00 wide in girder(s) for truss to mechanical connecti plate capable of with 8 lb uplift at joint 5. ss is designed in accc ional Residential Cod 0.2 and referenced st E(S) Standard	ed for a liv eas where will fit betw rs, with BC truss conr ton (by oth- standing 9 ordance wi de sections andard AN	e rota of 20. a rectangle veen the bott DL = 10.0ps rections. ers) of truss 0 lb uplift at th the 2015 R502.11.1 a SI/TPI 1.	tom if. joint and						
BOT CHORD WEBS NOTES I) Wind: ASC	6-8=0/571, 5-6=-102 3-5=-870/110, 2-8=- 3-6=-275/186 XE 7-10; Vult=115mph	2/947 747/199, 2-6=-1/544, (3-second gust)								L.	TH CA	Rojin	

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	A07G	Roof Special Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:01 ID:nIS794IDHIZsOFpUGhouzpzqB6q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffinal and a standard stand

Page: 1

May 31,2023

818 Soundside Road Edenton, NC 27932

Scale = 1:59.5

Plate Offsets (X, Y): [13:Edge,0-2-0]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	15 2x4 SP No 2x4 SP No	(psf) 20.0 5.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014 BOT CHORD	CSI TC BC WB Matrix-MR 223-24=-203/366, 21 20-21=-203/366, 19 18-19=-203/366, 19	0.70 0.43 0.19 -23=-20 -20=-20 -18=-20	DEFL Vert(LL) Vert(TL) Horiz(TL) 03/366, 03/366, 03/366,	in n/a 0.01	(loc) - - 13 10) * Th on ti 3-06	l/defl n/a n/a n/a is truss ne botto 5-00 tall	L/d 999 999 n/a has be m cho by 2-0	PLATES MT20 Weight: 140 lb een designed for rd in all areas w 0-00 wide will fit	GRIP 244/190 FT = 20% a live load of 2 here a rectangl between the b	20.0psf le pottom	
WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili	o.3 o.3 I wood shea purlins, exc ing directly	athing directly applie sept end verticals. applied or 10-0-0 oc	۷ dor ک	VEBS	10-1/=-203/366, 13-16=-203/366 chord and any other members. 14-15=-203/366, 13-14=-203/366 11) Provide mechanical connection (by others) of true bearing plate capable of withstanding 27 lb uplift 5-19=-120/55, 6-18=-120/55, 7-17=-120/54, 8-16=-119/59, 10-15=-124/47, 11-14=-197/307 11-14=-197/307 10 uplift at joint 20, 22 lb uplift at joint 19, 24 lb uplift at joint 19, 24 lb uplift at joint 16 an lb uplift at joint 17, 30 lb uplift at joint 16 an lb uplift at joint 14.									ss to at joint 4 lb at joint nd 335	
WEBS REACTIONS	Max Horiz Max Uplift	midpt 13=19-2-8 16=19-2-8 23=19-2-8 24=-264 (l 14=-335 (l 17=-21 (Ll 19=-22 (Ll 21=-21 (Ll 13=389 (L 15=165 (L 17=160 (L 21=208 (L 24=79 (LC	1-24, 2-23 ;, 14=19-2-8, 15=19; ;, 17=19-2-8, 18=19; ;, 20=19-2-8, 21=19; ;, 24=19-2-8 LC 12) LC 12), 16=-30 (LC C 17), 18=-24 (LC 1 C 17), 20=-24 (LC 1 C 17), 23=-20 (LC 1 C 12), 14=137 (LC 2 C 2), 16=159 (LC 2) C 2), 16=159 (LC 2) C 2), 18=160 (LC 2) C 2), 21=175 (LC 2) C 2), 20=175 (LC 2) C 2), 22=215 (LC 2) C 2), 23=215 (LC 2) C 2)	1 -2-8, -2-8, -2-8, 7), 2 7), 2 7), 2 7), 3), 3), 3 3), 2 2), 4	 Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext exposed; en members an Lumber DOL Truss desig only. For st see Standar or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); ' Unobstructed Noof design 	E 7-10; Vult=115mph (3-second gust) iph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. Enclosed; MWFRS (envelope) interior zone xterior (2) zone; cantilever left and right end vertical left and right exposed;C-C for and forces & MWFRS for reactions shown; DL=1.60 plate grip DOL=1.33 igned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. CE 7-10; Pr=20.0 psf (roof live load: Lumber Plate DOL=1.00); Pf=20.0 psf (flat roof =15.8 psf (roof snow: Lumber DOL=1.15 Plate); Category II; Exp B; Fully Exp.; Ct=1.10; ted slippery surface gn snow load has been reduced to account for					International Residential Code sections R502.11.1 at R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard					
FORCES TOP CHORD	(lb) - Max Tension 1-24=-63/ 3-4=-151/ 6-7=-241/ 10-11=-32 12-13=-37	imum Com (42, 1-2=-99 (119, 4-5=- (151, 7-8=-2 (151, 7-8=-2 (151, 7-8) (151,	pression/Maximum 9/96, 2-3=-123/112, 181/130, 5-6=-211/1 271/161, 8-10=-303/ 12=-448/239,	40, 6 (172, 7 8 9	 siope. Unbalanced design. Gable requir Truss to be f braced agair Gable studs This truss ha chord live load 	snow loads have be es continuous botto ully sheathed from o ist lateral movemen spaced at 2-0-0 oc. is been designed fo ad nonconcurrent w	een cor m chor one fac t (i.e. d r a 10.0 th any	usidered for th d bearing. e or securely iagonal web).) psf bottom other live load	nis ds.		THE AVE		SEA 0363	L 22 EER.AX	annun annun	

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek		
Glades - French	B01G	Common Supported Gable	1	1	Job Reference (optional)		

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:01 ID:B7TLvfVG4hiCZ1?J8AvEOnzIadT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.6	;			1										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	13.	(psf) 20.0 .2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	5/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.05 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 D Structural wood sheathing directly applied o 6-0-0 oc purlins, except end verticals. D Rigid ceiling directly applied or 6-0-0 oc bracing. S (size) 12=14-0-0, 13=14-0-0, 14=14-0-0 18=14-0-0, 16=14-0-0, 17=14-0-0 18=14-0-0, 19=14-0-0, 20=14-0-0 Max Horiz 20=117 (LC 15) Max Uplift 12=-57 (LC 13), 13=-57 (LC 17), 14=-32 (LC 17), 15=-34 (LC 17), 17=-35 (LC 13), 20=-75 (LC 12), 19=-70 (LC 13), 20=-75 (LC 12), 14=166 (LC 35), 15=169 (LC 31), 14=166 (LC 33), 17=170 (LC 30), 18=166 (LC 34), 19=151 (LC 30), 20=164 (LC 22) (lb) - Maximum Compression/Maximum Tension 				 Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Exti exposed ; en members an Lumber DOL Truss design only. For stu- see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructer Roof design slope. Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir 	 d: ASCE 7-10; Vult=115mph (3-second gust) d=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. xp B; Enclosed; MWFRS (envelope) exterior zone I C-C Exterior (2) zone; cantilever left and right osed ; end vertical left and right exposed; C-C for mbers and forces & MWFRS for reactions shown; ber DOL=1.60 plate grip DOL=1.33 iss designed for wind loads in the plane of the truss /. For studs exposed to wind (normal to the face), Standard Industry Gable End Details as applicable, onsult qualified building designer as per ANSI/TPI 1. L: ASCE 7-10; Pr=20.0 psf (flat roof w); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate L=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; bstructed slippery surface of design snow load has been reduced to account for pe. palanced snow loads have been considered for this ign. s truss has been designed for greater of min roof live d of 12.0 psf or 2.00 times flat roof load of 20.0 psf on rhangs non-concurrent with other live loads. 							ee with the 2015 ions R502.11.1 and d ANSI/TPI 1.	
FORCES	(lb) - Maxir Tension	mum Com	pression/Maximum	9	 Gable require Truss to be f braced agair 	es continuous both ully sheathed from ist lateral moveme	n one fac ent (i.e. d	d bearing. e or securely liagonal web)				A.L.	WITH CA	ROUL
TOP CHORD	2-20=-162/ 3-4=-46/64 6-7=-98/12 9-10=-52/5	/64, 1-2=0 1, 4-5=-65/ 25, 7-8=-6 57, 10-11=	//58, 2-3=-69/71, /86, 5-6=-98/125, 5/86, 8-9=-36/61, :0/58, 10-12=-162/6	1 1 1	0) Gable studs 1) This truss ha chord live loa 2) * This truss h	spaced at 2-0-0 or is been designed f ad nonconcurrent	c. for a 10.0 with any d for a liv) psf bottom other live loa	ds. Insf		4	i)	REESS	Roll
BOT CHORD	ORD 19-20=-59/55, 18-19=-59/55, 17-18=-59/55, 16-17=-59/55, 15-16=-59/55, 12-13=-59/55, 12-13=-59/55, 12-13=-59/55 on the bottom chord and ave other members SEAL 0.000 0.000 1.000 0.000 1.000 0.0										L 22			
WEBS	6-16=-121/ 3-19=-92/5 9-13=-87/5	/5, 5-17=- 58, 7-15=- 56	129/58, 4-18=-124/5 129/58, 8-14=-125/5	 Provide mec bearing plate 20, 57 lb upli 	mechanical connection (by others) of truss to plate capable of withstanding 75 lb uplift at joint b uplift at joint 12, 35 lb uplift at joint 17, 32 lb									
NOTES 1) Unbalanc this desig	ed roof live lo n.	oads have	been considered fo	r	uplift at joint 15, 32 lb upli	18, 70 lb uplift at j ift at joint 14 and 5	joint 19, 3 57 lb upli	34 lb uplift at it at joint 13.	joint			11	С <u>А.</u> С Мау	1LBERTIN

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	B01GR	Common Girder	1	3	Job Reference (optional)

Scale = 1:39.9

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:02

ID:74kiTg68zguFMOimBNNwGmzIbG?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 7-0-0 14-0-0 7-0-0 7-0-0 4x6 II 3 12 7 [15 16 5x6 👟 5x6 💋 5-3-0 2 4 5 1 1-2-0 \boxtimes 17 18 19 6 20 21 22 4x12 u 4x12 🛚 4x12 🛚 7-0-0 14-0-0 7-0-0 7-0-0 Plate Offsets (X, Y): [1:0-5-0.0-0-2], [5:0-9-7.0-0-2]

iale Oliseis (X, 1). [1.0-5-0,0-0-2],	[5.0-3-7,0-0-2]												
L oading TCLL (roof) Snow (Ps/Pf) TCDL 3CLL 3CDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.39 0.44 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 6-9 6-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 236 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD 30T CHORD 30T CHORD 30T CHORD WEBS NOTES 1) 3-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn CASE(S) s provided th unless oth 3) Unbalance this design	2x4 SP No.2 2x6 SP DSS 2x4 SP No.3 Left 2x8 SP DSS 2 2-5-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, § Max Horiz 1=-79 (LC Max Uplift 1=-215 (L Max Grav 1=4205 (I (lb) - Maximum Com Tension 1-3=-4584/283, 3-5= 3-6=-192/4352 to be connected toge) nails as follows: s connected as follows: ords c	2-5-0, Right 2x8 SP E athing directly applied applied or 10-0-0 oc 5=0-3-8 (2 10) C 12), 5=-212 (LC 13 .C 1), 5=4140 (LC 1) pression/Maximum a-4585/283 a-188/3895 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, nections have been noted as (F) or (B), been considered for	4) DSS 5) d or 6) 7) 3) 8) 9) 10 11 0 12 AD LC 1)	Wind: ASCE Vasd=91mpf II; Exp B; En- cantilever lef right exposed TCLL: ASCE DOL=1.15 Pl snow); Ps=13 DOL=1.00); (Unobstructed Roof design slope. Unbalanced design. This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar) Provide mecl bearing plate joint 1 and 2 ⁻) This truss is International R802.10.2 ar) Hanger(s) or provided suff Ib down and up at 3-11-4 1236 lb dowr and 68 lb up at 11-11-4 o such connec DEC ASE(S) Dead + Snc Increase=11.	7-10; Vult=115mp 7-10; Vult=115mp r; TCDL=6.0psf; Bi closed; MWFRS (¢ t and right exposed ; Lumber DOL=1. 7-10; Pr=20.0 psf ate DOL=1.00); Pf 3.2 psf (roof snow: Category II; Exp B; d slippery surface snow load has been snow loads have b s been designed for d nonconcurrent v has been designed for d nonconcurrent v to a pable of withsta 12 lb uplift at joint for d designed in accore Residential Code = has d referenced stan other connection of a 1 -111-4, 1 -236 lb down and n and 68 lb up at 7 at 9-11-4, and 12: n bottom chord. T tion device(s) is the Standard w (balanced): Lum 00 ads (lb/ft)	h (3-sec CDL=6.1 enveloped ; end \ 60 plate (roof liv =20.0 p Lumbe Fully E en reduc peen cor or a 10.0 vith any for a liv s where I fit betw (by oth anding 2 5. dance w sections dard AN device(s oncentra , 1236 ll b do he desig e respoi	bond gust) oppsf; h=30ft; () exterior zor rertical left an grip DOL=1. e load: Lumbb sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accoun usidered for th) psf bottom other live loa e load of 20.0 a rectangle veen the bottor ers) of truss t 15 lb uplift at 15 down and 68 lb up at 5-11-4, nd 1236 lb d wn and 68 lb dwn and 68 lb trease=1.15, f	Cat. he; d 33 er Plate t for his ds. Dpsf om o nd 236 8 lb own up of ers. Plate	Cc	Vert: 1-5 Discentra Vert: 17 20=-123	3=-46, ted Loa -1236 66 (F), :	3-5=-46, 7-11=-21 ads (lb) 21=-1236 (F), 22: CH CA CH	0), 19=-1236 (F), =-1236 (F) 22 E.P.F.R. (1)	· Namman

May 31,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	C01	Roof Special	2	1	I58637560 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:02 ID:6xt2FPT38iCwxRVi6F6G1gzqBAT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.4

Plate Offsets (X, Y): [3:0-8-3,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCLL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.95 0.70 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 -0.35 -0.11	(loc) 5-8 5-8 3	l/defl >558 >263 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Right 2x8 SP DSS Structural wood she 1-7-8 oc purlins, exi Rigid ceiling directly bracing. (size) 3=0-3-0, § Max Horiz 5=-112 (L Max Uplift 3=-22 (LC Max Grav 3=370 (LC (lb) - Maximum Com Tension 1-5=-211/134, 1-3=-	 2-5-0 athing directly applied cept end verticals. applied or 10-0-0 or 5=0-3-8 C 14) C 17), 5=-25 (LC 17) C 2), 5=308 (LC 24) pression/Maximum 434/91, 3-4=0/38 	5) 6) 7) ed or 8) 9) LC	This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 5 and 22 lb u This truss is International R802.10.2 at	s been designed f psf or 2.00 times f on-concurrent with is been designed f ad nonconcurrent i has been designed in chord in all area by 2-00-00 wide wi by other members. hanical connection capable of withst iplift at joint 3. designed in accor Residential Code nd referenced star Standard	for great lat roof lo o ther lin for a 10.0 with any s where a liv s where ill fit betw n (by oth anding 2 dance w sections ndard AN	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 25 lb uplift at ith the 2015 5 R502.11.1 a JSI/TPI 1.	f live ads. Opsf to joint					
BOT CHORD	3-5=-161/223												
 Wind: ASC Vasd=91n II; Exp B; and C-C E exposed ; members Lumber D 	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	(3-second gust) DL=6.0psf; h=30ft; (ivelope) interior zone ever left and right ght exposed;C-C for for reactions shown iL=1.33	Cat. e							4	in the second seco	MITH CA	ROLINI

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	C01G	Roof Special Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:02 ID:JIMJNw4xWmIQDUR1CvTgF0zqB76-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.6

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC 0.22 BC 0.16 WB 0.04 Matrix-MR	DEFL Vert(LL) Vert(TL) Horiz(TL) (in (loc) n/a - n/a - 0.00 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=7-5-0, 1 9=7-5-0, 1 Max Horiz 10=-110 (Max Uplit 7=-80 (LC 9=-21 (LC 8=163 (LC 10=66 (LC (lb) - Maximum Com 	athing directly applie cept end verticals. applied or 10-0-0 oc 7=7-5-0, 8=7-5-0, 10=7-5-0 (LC 12) 2 17), 8=-16 (LC 17), 2 17), 10=-12 (LC 12) C 12), 7=144 (LC 2), C 2), 9=169 (LC 23), C 23) Diression/Maximum	 3) TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00; Unobstructer 4) Roof design 6) Gable requir 7) Truss to be f braced agair 8) Gable studs 9) This truss ha chord live los 10) * This truss ha chord live los on the bottor 3-06-00 tall h chord and ar 	E 7-10; Pr=20.0 psf (roof lin late DOL=1.00); Pf=20.0 p 5.8 psf (roof snow: Lumbe Category II; Exp B; Fully E d slippery surface snow load has been redu snow loads have been co res continuous bottom cho fully sheathed from one fa nst lateral movement (i.e. spaced at 2-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a lin m chord in all areas where by 2-00-00 wide will fit bet ny other members.	ve load: Lumber vsf (flat roof ar DOL=1.15 Plate far, Ct=1.10; ced to account for insidered for this rd bearing. ce or securely diagonal web). 0 psf bottom o ther live loads. ve load of 20.0ps7 a rectangle ween the bottom	e r				
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=911 II; Exp B; and C-C exposed members Lumber D 2) Truss de only. For see Stann or consul	Tension 1-10=-50/40, 1-2=-5 3-4=-128/80, 4-5=-1 9-10=-107/184, 8-9= 6-7=-107/184 2-9=-128/83, 3-8=-1 3CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and ri, ; and forces & MWFRS OOL=1.60 plate grip DC signed for wind loads in r studs exposed to wind dard Industry Gable En t qualified building desi	7/48, 2-3=-94/69, 90/108, 5-6=-119/57 =-107/184, 7-8=-107/ 22/77, 4-7=-112/146 (3-second gust) :DL=6.0psf; h=30ft; C royelope) interior zone lever left and right ght exposed; C-C for for reactions shown; DL=1.33 I the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TPI	 11) Florida Integration (19) Florida Integrati (19) Florida Integration (19) Florida Integration (19) Florid	e capable of with standing ift at joint 9, 16 lb uplift at j 7. designed in accordance v Residential Code section nd referenced standard Al Standard	It is up if it is a form oint 8 and 80 lb vith the 2015 s R502.11.1 and NSI/TPI 1.	t	1.		SEA 0363	

GI minim May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	D01	Common	1	1	I58637562 Job Reference (optional)

7-0-9

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:03

ID:UkwQxsnJQ3koRjrwYCLsNrzlad5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-Q 5-2-4 10-1-0 14-11-12 20-2-0 1-0-0 5-2-4 4-10-12 4-10-12 5-2-4 1-0-0 4x6 u 4 12 7 13 14 4x6 💋 4x6 3 5 3x4 II 3x4 II 2 6 1-2-0 12 8 Ø ě 11 10 15 16 9 3x6 = 3x6 = 3x4= 3x4 = 3x4 = 6-9-13 13-4-3 20-2-0 6-9-13 6-9-13 6-6-5 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.00 тс 0.31 Vert(LL) -0.08 9-10 >999 240 MT20 244/190 BC 13 2/20 0 1 15 Vert(CT) 180 Lumber DOL 0.44 -0.11 9-10 >999

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-10-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 8=0-3-8, 12=0-3-8
	Max Horiz 12=-152 (LC 14)
	Max Uplift 8=-32 (LC 17), 12=-32 (LC 16)
	Max Grav 8=864 (LC 2), 12=864 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/58, 2-3=-232/94, 3-4=-919/142,
	4-5=-919/142, 5-6=-232/94, 6-7=0/58,
	2-12=-294/103, 6-8=-294/103
BOT CHORD	10-12=-42/855, 9-10=0/616, 8-9=-16/791
WEBS	4-9=-51/379, 5-9=-189/142, 4-10=-50/379,
	3-10=-189/142, 3-12=-827/26, 5-8=-827/26

10.0

0.0

10.0

Rep Stress Incr

Code

YES

IRC2015/TPI2014

NOTES

Scale = 1:50.1

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Ps/Pf)

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.

5) Unbalanced snow loads have been considered for this design.

0.62

Horz(CT)

0.02

8

n/a n/a

Weight: 121 lb

FT = 20%

WB

Matrix-MS

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 12 and 32 lb uplift at joint 8.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

SEAL 036322 MGINEER A. GILBER

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	D01G	Common Supported Gable	1	1	Job Reference (optional)	58637563

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:03 ID:MV9wnEqqTHEDwK8in2PoXhzlad1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:49.4
---------	--------

Plate Offsets (X, Y): [22:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.06 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	eathing directly applie ccept end verticals. v applied or 6-0-0 oc	l ed or 2	VEBS 7 4 SOTES) Unbalanced I this design. 2) Wind: ASCE Vasd=91mpf II; Exp B; Enn and C Extr	-19=-137/52, 6-2 -22=-122/53, 3-2 I-17=-121/60, 10- roof live loads ha 7-10; Vult=115m I; TCDL=6.0psf; E Iolsed; MWFRS (20=-149/5 23=-132/7 -16=-123/ we been of ph (3-sec BCDL=6.0 (envelope	5, 5-21=-120 5, 8-18=-149 53, 11-15=-1 considered fo cond gust) Dpsf; h=30ft; (c) exterior zor	/59, /55, 30/74 r Cat.	12) Prob bea 24, uplit 23, uplit 13) Nor 14) This Inte R80	vide me ring plat 33 lb up it at joint 31 lb up it at joint Standa struss is rnationa (2,10,2 a	chanica e capa lift at jo 21, 24 lift at jo 16 an rd bea desig I Resid	al connection (b able of withstanc oint 14, 31 lb upi 4 lb uplift at joint int 18, 37 lb upi d 65 lb uplift at j uring condition. I ned in accordan dential Code sec cerenced standa	/ others) of truss to ing 47 lb uplift at joi ift at joint 20, 37 lb 22, 66 lb uplift at joi ift at joint 17, 25 lb oint 15. Review required. ce with the 2015 tions R502.11.1 an if ANSI/TPI 1.	nt int d
REACTIONS	bracing. (size) 14=20-2- 17=20-2- 20=20-2- 23=20-2- Max Horiz 24=-152 Max Uplift 14=-33 (I 16=-25 (I 18=-31 (I 21=-37 (I 23=-66 (I Max Grav 14=157 (16=163 (18=189 (20=189 (22=162 (24=170 (0, 15=20-2-0, 16=20 0, 18=20-2-0, 19=20 0, 21=20-2-0, 22=20 0, 24=20-2-0 (LC 14) LC 13), 15=-65 (LC 1 LC 17), 17=-37 (LC 1 LC 16), 22=-24 (LC 1 LC 16), 24=-47 (LC 1 LC 22), 15=188 (LC 2 LC 23), 17=162 (LC 2 LC 24), 19=177 (LC 2 LC 24), 23=193 (LC 2 LC 34), 23=193 (LC 2 LC 31)	-2-0, -2-0, -2-0, 7), 7), 6), 2) 31), 31), 33), 30), 6), 2)	 and C-C Exté exposed ; en members and Lumber DOL Truss desigr only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 PI snow); Ps=13 DOL=1.00); (Unobstructed Neof design : slope. Unbalanced : design. 	rior (2) zone; can d vertical left and d forces & MWFR =1.60 plate grip I led for wind load ds exposed to wi I Industry Gable I alified building de 7-10; Pr=20.0 ps ate DOL=1.00); F 3.2 psf (roof snow Category II; Exp E I slippery surface snow load has be	trilever let tright exp S for rea DOL=1.33 s in the pi ind (norm End Deta assigner as s f (roof liv Pf=20.0 p v: Lumber B; Fully E seen reduc been cor	The and right loosed; C-C for ctions shown ane of the tru- al to the face is as applical sper ANSI/TF e load: Lumb sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accoun asidered for th	R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard					2	
FORCES	(lb) - Maximum Con Tension	npression/Maximum	-	This truss ha load of 12.0 p	s been designed osf or 2.00 times	for greate flat roof lo	er of min roof ad of 20.0 ps	live sf on						
TOP CHORD	2-24=-141/64, 1-2= 3-4=-64/81, 4-5=-82 6-7=-147/173, 7-8= 9-10=-82/97, 10-11 12-13=0/58, 12-14=	0/58, 2-3=-92/87, 2/104, 5-6=-115/137, -147/173, 8-9=-115/1 =-51/73, 11-12=-73/7 -140/60	8 137, 70,	 overnangs no Truss to be fu braced again Gable studs : This truss ha 	on-concurrent wit ully sheathed fror st lateral movem spaced at 2-0-0 c s been designed	m other liv m one fac ent (i.e. d oc. for a 10.0	e or securely e or securely iagonal web)) psf bottom			THUR .		0363	L 122	
BOT CHORD	23-24=-71/74, 21-2 19-20=-72/74, 18-1 16-17=-72/74, 15-1	3=-72/74, 20-21=-72/ 9=-72/74, 17-18=-72/ 6=-72/74, 14-15=-72/	/74, , /74, /74	chord live loa 1) * This truss h on the botton 3-06-00 tall b chord and an	d nonconcurrent as been designe n chord in all area y 2-00-00 wide w y other members	with any d for a liv as where vill fit betv 5.	other live loa e load of 20.0 a rectangle veen the botto	ds.)psf om			in the	AC A. C		

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	D01GR	Common Girder	1	3	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:03 ID:7pCHvsuTzSlgpnuVhJZx4AzlbGG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.3

Plate Offsets (X, Y): [1:0-5-0,0-0-6], [7:0-9-7,0-0-6], [8:0-4-0,0-4-8], [10:0-4-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.61	Vert(LL)	-0.10	8-10	>999	240	MT20	244/190
Snow (Ps/Pf)	13.2/20.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.19	8-10	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.38	Horz(CT)	0.04	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 388 lb	FT = 20%
			3)	Unbalanced	roof live loads have	e been (considered fo	or	12) Har	nder(s) c	r othe	r connection devi	ice(s) shall be
TOP CHORD	2x4 SP No 2		0)	this design.					prov	vided su	fficien	t to support conc	entrated load(s) 741
BOT CHORD	2x6 SP No 2		4)	Wind: ASCE	7-10: Vult=115mpl	h (3-seo	ond aust)		lb d	own and	38 lb	up at 0-7-3. 737	/ Ib down and 40 lb up
WEBS	2x4 SP No 3		,	Vasd=91mph	: TCDL=6.0psf: BC	CDL=6.	Opsf: h=30ft: (Cat.	at 2	2-7-2, 73	37 lb d	own and 40 lb up	at 4-7-3, 737 lb
SLIDER	Left 2x8 SP DSS 2	-5-0 Right 2x8 SP [oss	II; Exp B; End	losed; MWFRS (e	nvelope	e) exterior zor	ne;	dov	n and 4	0 lb up	at 6-10-3, 737	Ib down and 40 lb up
02.02.1	2-5-0	1 0 0, 1 igin 2/0 01 2		cantilever left	and right exposed	d;endv	ertical left an	nd	at a	8-7-2, 73	37 lb d	own and 40 lb up	at 10-7-3, 737 lb
BRACING				right exposed	I; Lumber DOL=1.6	60 plate	grip DOL=1.	33	dov	n and 4	0 lb up	o at 12-7-3, 737	lb down and 40 lb up
TOP CHORD	Structural wood shea	athing directly applie	dor ⁵⁾	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumb	er	at	14-7-2, a	and 73	7 lb down and 40) Ib up at 16-7-2, and
	6-0-0 oc purlins.			DOL=1.15 PI	ate DOL=1.00); Pf	=20.0 p	st (flat roof	Diata	737 The		and 4	ion of queb conn	3 on bottom chord.
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	:	DOI = 1.00	Siz psi (1001 siluw.	Eully E	DOL=1.15 F	late	resi	nonsihili	select	ton of Such conne	ection device(s) is the
	bracing.			Unobstructed	l slipperv surface	i uliy L	xp., 0t=1.10,					ndord	
REACTIONS	(size) 1=0-3-8, 7	/=0-3-8	6)	Roof design :	snow load has bee	n reduc	ed to accoun	t for	1) De	AOE(O)	ow (h:	alanced). Lumbe	r Increase-1 15 Plate
	Max Horiz 1=114 (LC	C 9)	-,	slope.									111016436-1.13, 1146
	Max Uplift 1=-224 (L	C 12), 7=-208 (LC 13	³⁾ 7)	Unbalanced :	snow loads have b	een cor	nsidered for th	his	Ur	hiform I o	hads (I	b/ft)	
	Max Grav 1=4665 (L	.C 2), 7=4319 (LC 2)	,	design.					0.	Vert: 1-4	4=-46.	4-7=-46. 11-15=	-20
FORCES	(lb) - Maximum Com	pression/Maximum	8)	This truss ha	s been designed fo	or a 10.0) psf bottom		Co	oncentra	ted Lo	ads (lb)	
	Tension	5004/000		chord live loa	d nonconcurrent w	vith any	other live loa	ids.		Vert: 10	=-683	(F), 13=-687 (F),	, 21=-683 (F), 22=-683
TOP CHORD	1-3=-5348/285, 3-4=	-5231/328,	9)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf		(F), 23=	-683 (F), 24=-683 (F), 2	26=-683 (F), 27=-683
	4-5=-5241/329, 5-7=	-0308/280 0- 100/2212		on the botton	n chord in all areas	where	a rectangle			(F), 28=	-683 (F), 29=-683 (F)	
	7-8=-184/4503	0=129/3312,		3-06-00 tall b	y 2-00-00 wide will	with BC	DI – 10 Oper	om F					
WEBS	4-8=-185/2729. 5-8=	-73/232.	10)	Provide mech	y other members,	(by oth	DL = 10.0psi	n					1111
	4-10=-184/2709, 3-1	0=-73/232	10,	bearing plate	capable of withsta	andina 2	24 lb uplift at	t				WITH CA	Rollin
NOTES	,			joint 1 and 20	8 lb uplift at joint 7	7.					1	A	Size Inter
1) 3-plv trus	s to be connected toget	her with 10d	11)	This truss is	designed in accord	lance w	ith the 2015				12	U. FESS	Marin
(0.131"x3	") nails as follows:			International	Residential Code s	sections	R502.11.1 a	nd			1)		
Top chore	ds connected as follows	: 2x4 - 1 row at 0-9-0	0	R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.			2		Re /	1 :
oc.										=		SEA	J - E
Bottom cl	hords connected as follo	ows: 2x6 - 2 rows								Ξ.		000	E E
staggered	d at 0-8-0 oc.									1		0363	22 : :
Web con	nected as follows: 2x4 -	1 row at 0-9-0 oc.									0		1 - Z
2) All loads	are considered equally	applied to all plies,	A D								5		all S
	contion Ply to ply conn	octions have hear	AD								2.5	NGIN	FERMAN
provided	to distribute only loads	noted as (F) or (R)									11	710	THE ALL AND A
unless ot	herwise indicated.											11. A. G	illerin
												"IIIIII	mm
													11. Contraction of the second s

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	PB01	Piggyback	6	1	I58637565 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:04

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	PB01G	Piggyback	1	1	I58637566 Job Reference (optional)

6-4-11

6-4-11

Builders FirstSource (Apex, NC), Apex, NC - 27523,

3-0-0

0-4-1

3-1-4

-1-<u>0-2</u>

1-0-2

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:04 ID: bRgwzDPd2LGmcovuoYZa1WzIayE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

> 4x6 = 5 16 2x4 II ⁶ 17 2x4 II ø 7 6 1-4-10 0 0 0 8

10-3-3

3-10-8

Page: 1

10-3-3

Scale = 1:30.1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.04 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) $1=11-4-8$, 9=11-4-8, 1=2-11-4-5 Max Horiz $1=53$ (LC Max Uplift $1=-18$ (LC (LC 17), 9 16), $12=-22$ Max Grav $1=22$ (LC (LC 2), 9= 2), $11=16$ 13=177 (L (lb) - Maximum Com Tension 1-2=-80/60, 2-3=-43, 4-5=-45/71, 5-6=-45, 7-8=-45/30 2-12=-12/17, 11-12= 9-10=-12/17, 8-9=-11 5-10=-104/19, 4-11= 6-9=-130/72 ed roof live loads have n.	athing directly applie cept end verticals. applied or 10-0-0 or 2=11-4-8, 8=11-4-8 10=11-4-8, 11=11-4 3, 13=11-4-8 16) 57), 2=-9 (LC 16), 8: =-28 (LC 17), 11=-2 26 (LC 16), 13=-9 (L 16), 2=177 (LC 2), 8 =170 (LC 24), 10=14 1 (LC 34), 12=186 (I .C 2) pression/Maximum /26, 3-4=-37/35, /71, 6-7=-30/34, -12/17, 10-11=-12/1 2/17 -127/70, 3-12=-129/ been considered for	2) ed or 3) c -3 (-8, 4) =-3 -4 (LC 5) 5 (LC 6) 5 (LC 6) 5 (LC 7) 8) 9) 10 7, 11 (67, 11	 Wind: ASCE Vasd=91mph II; Exp B; End and C-C Extte exposed ; en members and Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl Snow); Ps=11 DOL=1.00); (Unobstructed Roof design : slope. Unbalanced : design. Gable require Gable studs : This truss ha chord live loa this truss ha chord live loa this truss ha chord and an Provide mech bearing plate this truss is a International R802.10.2 ar See Standard Detail for Con consult qualifier 	7-10; Vult=115mp ; TCDL=6.0psf; Bi closed; MWFRS (e rior (2) zone; cant d vertical left and rd d forces & MWFRS =1.60 plate grip Di ted for wind loads ds exposed to win l Industry Gable Ei alified building dese 7-10; Pr=20.0 psf ate DOL=1.00); Pf 5.8 psf (roof snow: Category II; Exp B; I slippery surface snow load has bee snow loads have b es continuous bottl spaced at 2-0-0 oc s been designed fu d nonconcurrent v as been d nonconcurrent v as been d nonconcurent v as been d nonconcurrent v as been d nonconcurent v as bee	h (3-sec CDL=6.0 envelope ilever le right exp S for read OL=1.33 in the pid d (norm and Deta signer as (roof liv =20.0 p Lumbel Fully E en reduc or a 10.0 vith any for a liv s where I fit betw (by oth anding 9 ft at join 28 lb upl dance w sections dard AN ck Trust uss as a her.	cond gust) Dpsf; h=30ft; G exterior zon ff and right posed;C-C for ctions shown alane of the tru al to the face) ils as applicat s per ANSI/TF e load: Lumbu sf (flat roof r DOL=1.15 P xp.; Ct=1.10; red to account nsidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botto ers) of truss to l b uplift at joint 9 ar ith the 2015 is R502.11.1 a ISI/TPI 1. s Connection applicable, or	Cat. Je ss ss ble, pl11. er late t for ds. psf ont t at 9 nd	LOAD	ASE(S)	Star	NUTH CA ORTHERS SEA 0363	L L L L L L L L L L L L L L L L L L L	A Manual and

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	PB02	Piggyback	6	1	I58637567 Job Reference (optional)

2-9-11

2-9-11

12 5 Г

-1-0-2

1-0-2

2

A

Builders FirstSource (Apex, NC), Apex, NC - 27523,

1-7-5

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:04 ID:LgX2BY588QFc1Xfc_4L_XgzFKao-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

3 9

ø

4

2x4 🛚

1-6-1

4 3x4 = 2-9-11

Scale = 1:22.6

2)

3)

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss

or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;

Lumber DOL=1.60 plate grip DOL=1.33

Unobstructed slippery surface

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.12	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Ps/Pf)	15	5.8/20.0	Lumber DOL	1.15		вс	0.05	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC20	15/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 12 lb	FT = 20%
) Roof design	snow load has bee	n reduc	ed to accoun	t for					
TOP CHORD	2x4 SP N	0.2			slope.									
BOT CHORD	2x4 SP N	0.2		:	i) Unbalanced	snow loads have b	een cor	sidered for th	his					
WEBS	2x4 SP N	0.3			design.									
BRACING					Gable requir	es continuous botto	om choi	d bearing.						
TOP CHORD	Structural	wood shea	athing directly applie	ed or	 Gable studs 	spaced at 2-0-0 oc								
	3-11-0 oc	purlins, e	cept end verticals.	;	 I his truss has a line line line. 	is been designed to	ora 10.) pst bottom	da					
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 o	ic ,	Chord live loa		for a liv	other live loa	lus. Joct					
	bracing.				on the bottor	n chord in all areas	where	e loau ol 20.0	opsi					
REACTIONS	(size)	1=3-11-0,	2=3-11-0, 4=3-11-0	Э,	3-06-00 tall b	ov 2-00-00 wide wil	l fit betv	veen the bott	om					
	Max Llaria	5=3-11-0	40)		chord and ar	y other members.								
	Max Liplift	1=42 (LC	13)	4 7	0) Bearing at jo	int(s) 2, 1, 2 consid	lers par	allel to grain						
	Max Uplin	(LC 16), 5	=-19 (LC 16),	4=-7	value using /	ANSI/TPI 1 angle to	o grain f	ormula. Buile	ding					
	Max Grav	1=16 (LC	16), 2=246 (LC 2), 4	4=91	designer sho	ould verify capacity	of bear	ng surface.						
		(LC 2), 5=	246 (LC 2)		1) Provide mec	hanical connection	(by oth	ers) of truss t	i0 oint					
FORCES	(lb) - Max	imum Com	pression/Maximum		2 7 lb unlift	tioint 4 54 lb unlit	that ioin	t 1 and 19 lb	om					
	Tension				uplift at joint	2	t at join							
TOP CHORD	1-2=-98/7	8, 2-3=-36	/28, 3-4=-59/41		2) This truss is	designed in accord	lance w	ith the 2015						
BOT CHORD	2-4=-18/1	8			International	Residential Code	sections	R502.11.1 a	and					
NOTES					R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
1) Wind: ASC	CE 7-10; Vu	lt=115mph	(3-second gust)		3) See Standar	d Industry Piggyba	ck Trus	s Connection						11 C
Vasd=91n	nph; TCDL=	6.0psf; BC	DL=6.0psf; h=30ft; (Cat.	Detail for Co	nnection to base tr	uss as a	applicable, or					1111 CA	
II; Exp B;	Enclosed; N	IWFRS (en	velope) exterior zor	ne	consult quali	fied building desigr	ner.						TH UA	HOY
and C-C E	Exterior (2) z	one; cantil	ever left and right		OAD CASE(S)	Standard						1	1.200	····

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	PB02G	Piggyback	1	1	I58637568 Job Reference (optional)

1-5-14

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:05 ID:3qP8GEYElvk4NAF86OQpGvzIYF2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

2x4 II

2-6-3

Scale = 1:22.7

Plate Offsets (X, Y): [2:0-3-6,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015,	/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=91n II; Exp B; I and C-C E exposed ; members Lumber D 2) Truss des only. For see Stand or consult 3) TCLL: ASI DOL=1.15 snow); Ps; DOL=1.00 Unobstruct	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-7-8 oc purlins, exx Rigid ceiling directly bracing. (size) 1=3-7-8, 2 Max Horiz 1=38 (LC (LC 16), 5 Max Grav 1=13 (LC (LC 2), 5= (Ib) - Maximum Com Tension 1-2=-87/67, 2-3=-31/ 2-4=-16/16 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & for the constant of the source of the constant of the constant of the constant of the constant the constant of the constant of the constant of the constant the constant of the	athing directly applied applied or 10-0-0 oc 2=3-7-8, 4=3-7-8, 5=3 13) 2), 2=-15 (LC 16), 4= =-15 (LC 16) 13), 2=211 (LC 2), 4= 211 (LC 2) pression/Maximum (25, 3-4=-53/36 (3-second gust) DL=6.0psf; h=30ft; Ca velope) exterior zone ever left and right the exposed; C-C for for reactions shown; L=1.33 the plane of the trus: (normal to the face), d Details as applicable pner as per ANS/TPI roof live load: Lumber 20.0 psf (flat roof lumber DOL=1.15 Pla Fully Exp.; Ct=1.10;	4) 5) -7-8 =-6 10) -83 11) 12) at. 13) LO. s e, 1.	Roof design s slope. Unbalanced s design. Gable require Gable studs s This truss has chord live loa * This truss has chord and an Bearing at joi value using A designer sho Provide mech bearing plate 2, 6 lb uplift at uplift at joint 2 This truss is of International R802.10.2 an See Standard Detail for Cor consult qualif AD CASE(S)	snow load has been snow loads have be so continuous botto paced at 2-0-0 oc. been designed for d nonconcurrent w as been designed o chord in all areas y 2-00-00 wide will y other members. nt(s) 2, 1, 2 consid NSI/TPI 1 angle to ald verify capacity of annical connection capable of withsta t joint 4, 34 lb uplif 2. designed in accord Residential Code s d refreenced stand Industry Piggybaa inection to base tru ed building design Standard	n reduce een cor m chor in a 10.0 ith any for a liv where fit betw ers par of bearin (by oth nding 1 t at join ance w ections dard AN ck Trus: uss as a er.	ed to accoun isidered for th d bearing.) psf bottom other live loa e load of 20.0 a rectangle reen the botto allel to grain of surface. ers) of truss t 5 lb uplift at j t 1 and 15 lb th the 2015 R502P11.1 a ISI/TP11. s Connection pplicable, or	t for his ds.)psf om ding o oint nd		Manufacture		SEAL OSCAL	

818 Soundside Road Edenton, NC 27932

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	PB03	Piggyback	13	1	Job Reference (optional)	158637569

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:05 ID:7eIJVz1PPMa6p77vMSA_oJzIZQb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

May 31,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek	
Glades - French	PB03G	Piggyback	1	1	Job Reference (optional)	158637570

3-1-4

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	1	(psf) 20.0 5.8/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES	5/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.04 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0			, 11 12011								Weight: 54 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 cc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 I wood she purlins. ing directly 1=15-0-0 12=15-0- 15=15-0- 1=38 (LC (LC 17), \$ 17), 11=- 18=8 (LC 1=16 (LC (LC 2), 9: 2), 11=16 13=162 (1 15=179 (1)	eathing directly applie y applied or 10-0-0 oc , 2=15-0-0, 8=15-0-0 , 10=15-0-0, 11=15-0 0, 13=15-0-0, 14=15-0 0, 13=15-0-0 16) C 33), 2=-7 (LC 16), 8 9=-16 (LC 7), 10=-27 25 (LC 17), 13=-25 (I 25 (LC 16), 15=-7 (LC 25 (LC 17), 13=-25 (I 25 (LC 17), 13=-25 (I 25 (LC 17), 13=-25 (I 25 (LC 17), 10=-27 25 (LC 17), 10=-27 26 (LC 17), 10=-27 27 (LC 24), 12=-143 (I LC 23), 14=186 (LC 25 LC 2), 18=164 (LC 25) 26 (LC 24), 12=-146 (LC 25) 27 (LC 24), 12=-148 (LC 25) 27 (LC 24), 12=-148 (LC 25) 27 (LC 24), 13=-164 (LC 25) 27 (LC 24), 14=-186 (LC 25) 27 (LC 24), 15=-148 (LC 25) 27 (LC 24), 15=-148 (LC 25) 27 (LC 24), 15=-148 (LC 25) 27 (LC 25), 15=-148 (LC 2	2) d or $3^{-0}, 3^{-0}, 4^{-0}, 4^{-0}, 4^{-0}, 4^{-0}, 4^{-0}, 5^{-$	Wind: ASCE Vasd=91mph II; Exp B; En- and C-C Exte exposed ; en members and Lumber DOL Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Ps=19 DOL=1.15 Pl snow); Ps=19 DOL=1.15 Pl snow); Ps=19 DOL=1.00); (Unobstructed Roof design slope. Unbalanced design. Gable requirt Gable studs : This truss ha chord live loa	7-10; Vult=115m ; TCDL=6.0psf; Il closed; MWFRS i erior (2) zone; cai d vertical left and d forces & MWFR =1.60 plate grip I end for wind load: ds exposed to wi l Industry Gable I alified building de 7-10; Pr=20.0 ps ate DOL=1.00); F 5.8 psf (roof snow Category II; Exp E d slippery surface snow load has be snow loads have as continuous boi spaced at 2-0-0 c s been designed d nonconcurrent	ph (3-sec 3CDL=6.1 (envelopentilever le right exp 2S for rea OOL=1.3: s in the p nd (norm End Deta essigner as of (roof liv Pf=20.0 p v: Lumbe 3; Fully E en reduc been cor too chor too chor to	orond gust) Opsf; h=30ft; () exterior zor ft and right oosed;C-C for ctions shown ane of the tru al to the face) is as applicat as per ANSI/TF e load: Lumb sf (flat roof DOL=1.15 P xp.; Ct=1.10; ed to account isidered for th d bearing.) psf bottom other live load	Cat. e ss ss sle, er late for is	13) See Det con LOAD (e Standa iail for C ssult qua CASE(S	ard Indi onnect lified b :) Sta	ustry Piggyback ion to base trus uilding designer ndard	Truss Connection s as applicable, or
FORCES	(lb) - Max Tension	timum Con	npression/Maximum	10	on the botton	n chord in all area	as where	a rectangle	psi m			- UN	OR ESS	an Inter
TOP CHORD BOT CHORD WEBS	1-2=-41/5 4-5=-37/6 7-8=-24/1 2-14=-7/3 11-12=-7/ 5-12=-10 6-11=-12	54, 2-3=-36 58, 5-6=-37 18, 8-9=-1/2 35, 13-14=- /35, 10-11= 1/0, 4-13=- 7/64, 7-10=	5/29, 3-4=-35/40, 7/68, 6-7=-35/34, 26 -7/35, 12-13=-7/35, -7/35, 8-10=-7/35 -127/64, 3-14=-129/6 =-128/62	11 2,	 chord and an Provide mecl bearing plate 2, 8 lb uplift a joint 9, 25 lb uplift at joint and 8 lb uplif 	y other members nanical connectio capable of withs at joint 8, 24 lb up uplift at joint 13, 2 11, 27 lb uplift at t at joint 8.	in (by oth tanding 7 lift at join 25 lb uplif joint 10, 3	ers) of truss t lb uplift at joi t 1, 16 lb uplif t at joint 14, 2 lb uplift at jo	nt t at 5 lb int 2		Grander		SE/ 0363	AL 322
NOTES 1) Unbalance this desigr	ed roof live n.	loads have	been considered for	12) This truss is International R802.10.2 ar	designed in acco Residential Code nd referenced sta	rdance w e sections ndard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	nd			In the second se	MGIN A. (NEER AND

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	SP01	Monopitch	11	1	I58637571 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:05

10<u>-3-8</u>

5-1-12

MT20HS 3x10 #

5-1-12

5-1-12

Scale = 1:40.8

Plate Offsets (X, Y): [2:Edge,0-0-0]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.35 0.25 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 60 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=911 II; Exp B; and C-C I exposed 3; Lumber D 2) TCLL: AS DOL=1.11 snow); Ps DOL=1.00 Unobstruu 3) Roof desi slope.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x8 SP DSS 2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-0,6 Max Horiz 2=158 (LC Max Uplift 2=-28 (LC Max Uplift 2=-28 (LC Max Grav 2=469 (LC (Ib) - Maximum Com Tension 1-2=0/38, 2-4=-408/S 5-6=-156/82 2-7=-237/413, 6-7=-7 4-7=0/208, 4-6=-461 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces & MWFRS for DL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (rig 5 Plate DOL=1.00); Pf=: i=15.8 psf (roof snow: L D); Category II; Exp B; Fi cted slippery surface gn snow load has been ed snow loads have be	2-5-0 athing directly applied cept end verticals. applied or 10-0-0 oc 5=0-3-8 2 15) 16), 6=-49 (LC 16) 2 2), 6=423 (LC 23) pression/Maximum 96, 4-5=-112/69, 192/413 /169 (3-second gust) DL=6.0psf; h=30ft; Cr velope) exterior zone ever left and right pht exposed; C- C for for reactions shown; L=1.33 roof live load: Lumber 20.0 psf (flat roof .umber DOL=1.15 Pla Fully Exp.; Ct=1.10; I reduced to account fl en considered for this	5) 6) 7) 1 or 8) 9) 10 LC at. at. for s	This truss hat load of 12.0 p overhangs no All plates are This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate 2 and 49 lb u) This truss is of International R802.10.2 ar DAD CASE(S)	s been designed fo sof or 2.00 times fla on-concurrent with M MT20 plates unless s been designed fo o chord in all areas y 2-00-00 wide will y 2-00-00 wide will y 2-00-00 wide will g other members. hanical connection capable of withsta plift at joint 6. designed in accord. Residential Code s id referenced stand Standard	r greate ti roof lo other liv so other liv so other liv so other fit hany for a liv where fit betw (by oth- nding 2 ance wise constant AN	er of min roo and of 20.0 p ve loads. wise indicate 0 psf bottom other live loze e load of 20. a rectangle veen the bott ers) of truss 8 lb uplift at th the 2015 R502.11.1 a SI/TPI 1.	f live sf on ads. Opsf to joint and		y		SEA 0363	
-												Мау	31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	SP01G	Monopitch Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:06 ID:7GvXYLE6vwEiUcTqxWixyxzIYYq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-0-0

Plate Offeets (X	V١٠	[2.0-2-12 0-0-4]	[3·0-1

Scale = 1:39.2

Plate Offsets	(X, Y): [2:0-2-12	2,0-0-4]	, [3:0-4-0,0-2-4]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(15.8/2	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.45 0.17 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 55 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x8 SP D Structural wo 6-0-0 oc purli Rigid ceiling of bracing. (size) 2=: 11: Max Horiz 2=: Max Uplift 9=: 11: Max Grav 2=: 10: 10: 11: 10: 10: 11: 11: 11: 12: 11: 12: 11: 11: 12: 11: 11	DSS 2- pod shea ins. directly a =10-0-0, 133 (LC -36 (LC =-23 (LC 161 (LC =57 (LC =150 (L0	-1-15 thing directly applie applied or 10-0-0 oc 9=10-0-0, 10=10-0- , 12=10-0-0, 13=10- 16), 13=133 (LC 11 13), 10=-94 (LC 22 C 16), 12=-69 (LC 22) 2), 11=187 (LC 2), C 2), 13=161 (LC 22)	2 3 3 4 0, 5 -0-0 5 6) 6), 6 6) 7 2) 8	 Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P Snow); Ps=1 DOL=1.00); Unobstructe Roof design. Unbalanced design. This truss ha load of 12.0 overhangs n All plates ard Gable requiri Cable stude 	ned for wind load Jds exposed to w d Industry Gable Jalified building d E 7-10; Pr=20.0 p Iate DOL=1.00; 5.8 psf (roof snor Category II; Exp d slippery surface snow load has b snow loads have as been designed psf or 2.00 times on-concurrent wi e MT20 plates un es continuous bd	Is in the p ind (norm End Deta esigner a: sf (roof liv Pf=20.0 p w: Lumbe B; Fully E een reduc been con been con l for great flat roof l th other li less other too	lane of the tri al to the face ils as applica s per ANSI/T e load: Lumb f (flat roof r DOL=1.15 F xp.; Ct=1.10; wed to accour nsidered for t er of min rool bad of 20.0 p re loads. wise indicate d bearing.	uss a), ble, Pl 1. cor Plate f live his f live sof on ed.					
FORCES	(lb) - Maximu Tension 1-2=0/38, 2-3	ım Comp 3=-32/39	oression/Maximum	1	0) This truss ha chord live lo									
BOT CHORD	4-5=-101/31, 2-12=0/0, 11- 8-9=0/0	5-6=-92 -12=0/0,	2/57, 6-7=-77/0 10-11=0/0, 9-10=0	/0,	 11) * This truss has been designed for a live load of 20.0psr on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom object and any other members. 							and and a second	TH CA	ROUL
 WEBS 0-9=-339/190, 5-10=-66/107, 4-11=-140/85, 3-12=-111/116 NOTES 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 12) Provide m bearing pla 9, 94 lb up uplift at join 13) This truss Internation R802.10.2 LOAD CASE(\$ 						hanical connections a capable of withs t at joint 10, 23 lb 12. designed in accor Residential Cod nd referenced sta Standard	on (by oth standing 3 ouplift at ju ordance w e sections andard AN	ers) of truss i6 lb uplift at j oint 11 and 6 ith the 2015 i R502.11.1 a ISI/TPI 1.	to joint 9 Ib and		Contraction of the second seco		SEA 0363	L 22 EER.H ILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 31,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V01	Valley	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:06 ID:FNZ0uCo8CNdbIJdoTVcJfZzIawS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V02	Valley	1	1	Job Reference (optional)

2-6-6

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:06 ID:?Gqc9iZ1fXTLHySTVQ0ee2zIadN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-7-5

3x4 🍬

Scale = $1:27.1$	Scale	=	1:27.1
------------------	-------	---	--------

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.22 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-7-5 oc purlins. Rigid ceiling directly bracing. (size) 1=8-8-2, 3 Max Horiz 1=-46 (LC Max Uplift 1=-17 (LC 4=-19 (LC Max Grav 1=70 (LC (LC 2)	athing directly applie applied or 6-0-0 oc 3=8-8-2, 4=8-8-2 : 12) : 34), 3=-17 (LC 33), : 16) 33), 3=70 (LC 34), 4	4) ed or 5) 6) 7) 8) 9) 4=624	DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructer Roof design slope. Unbalanced design. Gable requir Gable studs This truss ha chord live loa) * This truss ha on the bottor	: /-10; PF=20.0 ps late DOL=1.00); P 3.2 psf (roof snow Category II; Exp B d slippery surface snow loads have l es continuous bott spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	f (roor liv f=20.0 p : Lumbe ; Fully E en reduc been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betw	e load cumb s (flat roof r DOL=1.15 F xp.; Ct=1.10; wed to accoun nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle	er Plate t for his ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-62/306, 2-3=-6 1-4=-232/81, 3-4=-2 2-4=-456/92	pression/Maximum 2/306 32/81	11 12) Provide mec bearing plate 1, 17 lb uplifi) Beveled plat surface with 	by 2-00-00 while w hay other members, hanical connection e capable of withst t at joint 3 and 19 e or shim required truss chord at join	n (by oth anding 1 b uplift a to provi t(s) 1, 3.	ers) of truss t 7 lb uplift at j it joint 4. de full bearing	o oint g					

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V03	Valley	1	1	I58637575 Job Reference (optional)

1-8-6

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:06 ID:?Gqc9iZ1fXTLHySTVQ0ee2zIadN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-9-0

Page: 1

2x4 🍃

5-9-0

2x4 👟

Scale = 1:23.7

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.10 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-0 oc purlins. Rigid ceiling directly bracing. (size) 1=5-9-14, Max Horiz 1=-30 (LC Max Uplift 1=-3 (LC	athing directly applie applied or 6-0-0 oc 3=5-9-14, 4=5-9-14 2 12) 16), 3=-8 (LC 17), 4=	4) ed or 5) 6) 7) =-5	 TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructer Roof design Slope. Unbalanced design. Gable requir Gable studs This truss has chord live log 	7-10; Pr=20.0 psf late DOL=1.00); Pf= 3.2 psf (roof snow: Category II; Exp B; d slippery surface snow load has been snow loads have be es continuous botto spaced at 4-0-0 oc. s been designed fo d nonconcurrent w	(roof liv =20.0 p Lumbe Fully E n reduc een cor m chor r a 10.1 ith any	e load: Lumbin sf (flat roof DOL=1.15 P xp.; Ct=1.10; ed to account usidered for th d bearing.) psf bottom other live loar	er Plate t for his					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n	(LC 16) Max Grav 1=69 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-70/140, 2-3=-7 1-4=-106/57, 3-4=-1 2-4=-231/43 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC	i=358 ¹ 1 1 1 1 1 1 1 1 1 2 αt. L	 This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 8 lb uplift a Beveled plat surface with This truss is International R802.10.2 ai 	has been designed in n chord in all areas by 2-00-00 wide will by other members. hanical connection capable of withsta at joint 3 and 5 lb up e or shim required to truss chord at joint (designed in accord Residential Code s not referenced stance Standard	for a liv where fit betv (by oth nding 3 blift at ju o provi s) 1, 3. ance w ections lard AN	e load of 20.0 a rectangle veen the bottc ers) of truss tu lb uplift at joi bint 4. de full bearing th the 2015 R502.11.1 a SI/TPI 1.	opsf om o int g nd				WHTH CA	ROUM	

2 30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI minim May 31,2023

SEAL 036322

Annun minnen

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V04	Valley	1	1	I58637576 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:07 ID:?Gqc9iZ1fXTLHySTVQ0ee2zIadN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-11

2x4 🍃

2x4 💊

Scale = 1:24.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

-													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	13.2/20.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MP								
BCDL	10.0			Weight: 8 lb FT = 20									FT = 20%
LUMBER				6) Unbalanced	snow loads have b	been cor	nsidered for t	his					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2			Gable require	es continuous bott	om chor	d bearing.						
BRACING				B) Gable studs	spaced at 4-0-0 or	o.							
TOP CHORD	Structural wood shea	athing directly applie	ed or	This truss hat	s been designed f	or a 10.	0 psf bottom						
	2-10-11 oc purlins.			chord live loa	ad nonconcurrent v	with any	other live loa	ads.					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	с	10) * This truss f on the bottor	nas been designed n chord in all area	for a liv s where	e load of 20. a rectangle	Opst					
REACTIONS	(size) 1=2-11-9,	3=2-11-9		3-06-00 tall b	y 2-00-00 wide wi	ll fit betv	veen the bott	om					
	Max Horiz 1=-13 (LC	: 12)		chord and ar	ly other members.	. /h., ath		4.0					
Max Uplift 1=-3 (LC 16), 3=-3 (LC 17) 11) Provide mechanical connection (by others) of truss to													
	Max Grav 1=119 (LC	C 2), 3=119 (LC 2)		and 3 lb unlif	t at joint 3	anung	o ib upint at jo						
FORCES	(lb) - Maximum Com	pression/Maximum		12) Beveled plat	e or shim required	to provi	de full bearin	a					
	Tension	•		surface with	truss chord at joint	t(s) 1. 3.		.9					
TOP CHORD	1-2=-180/23, 2-3=-18	80/23		13) This truss is designed in accordance with the 2015									
BOT CHORD	1-3=-12/152			International Residential Code sections R502.11.1 and									
NOTES				R802.10.2 and referenced standard ANSI/TPI 1.									
1) Unbalance	ed roof live loads have	been considered fo	r	LOAD CASE(S)	Standard								
2) Wind AS	∩. ∩E 7-10: \/ult–115mpb	(3-second quet)											
Vasd=91n	mph: TCDI =6 0 nsf: BC	DI = 6 Onsf h = 30 ft	Cat										111.
II: Exp B:	Enclosed: MWERS (en	velope) exterior zor	ne.									N''IL CI	ND 111
and C-C E	Exterior (2) zone: cantil	ever left and right									1	THUT	ROM
exposed ;	end vertical left and rig	ght exposed;C-C for									-	ONVESS	A ALLA
members	and forces & MWFRS	for reactions shown	;							/	5 2		These
Lumber D	OL=1.60 plate grip DO	L=1.33								4			A. H.
3) Truss des	signed for wind loads ir	n the plane of the tru	ISS							-	() j		
only. For	studs exposed to wind	(normal to the face)),							=	:	SEA	∖L : =
see Stand	lard Industry Gable End	d Details as applical	ble,							=	:	0262	: =
or consult	qualified building desig	gner as per ANSI/TF	-11.							1		0303	22 : 2
4) TULL: AS	CE 7-10; Pr=20.0 pst (root live load: Lumb	er								1		1 S S
DOL=1.15	12.2 pof (roof on sure l	20.0 psi (ilat 1001	Noto							5	-	·	airs
SHOW); PS): Category II: Exp P: E	Lumber DOL=1.15 P	riale								15	NGIN	EELAN
Unobstruc	ted slipperv surface	uny Lxp., Ct=1.10,									11	710	OF N

- or consult qualified building designer as per ANG/ IT TO TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.

mmm May 31,2023

G

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V05	Valley	1	1	I58637577 Job Reference (optional)

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

2)

3)

TOP CHORD

BOT CHORD

this design.

Max Uplift 6=-86 (LC 17), 9=-87 (LC 16)

(Ib) - Maximum Compression/Maximum

1-9=-160/119, 7-9=-160/66, 6-7=-160/66,

3-7=-355/1, 2-9=-297/127, 4-6=-296/127

1-2=-130/250, 2-3=0/206, 3-4=0/206,

9=422 (LC 29)

1=103 (LC 33), 5=103 (LC 34),

6=422 (LC 34), 7=409 (LC 2),

Max Grav

Tension

4-5=-130/231

5-6=-160/109

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

Lumber DOL=1.60 plate grip DOL=1.33

TCLL (roof)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:07 ID:jTzpqxuzlqsW061fab?zEkzlacy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 8-9-13 17-1-10 8-9-13 8-3-14 4x6 = 3 14 15 2x4 II 2x4 II 2 4-10-4 4 5-1-15 12 7 Г 0-0-4 9 8 6 7 3x4 🍃 2x4 u 2x4 u 2x4 u 3x4 👟 3x4 = 17-7-9 Scale = 1:42.2 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.30 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Ps/Pf) BC 13 2/20 0 Lumber DOL 1 15 0.19 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 9 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS 10.0 Weight: 68 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof TOP CHORD 2x4 SP No.2 snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate BOT CHORD 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) TOP CHORD Structural wood sheathing directly applied or slope. 10-0-0 oc purlins. Unbalanced snow loads have been considered for this 6) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc design. bracing. Gable requires continuous bottom chord bearing. 7) REACTIONS (size) 1=17-8-7, 5=17-8-7, 6=17-8-7, 8) Gable studs spaced at 4-0-0 oc. 7=17-8-7, 9=17-8-7 This truss has been designed for a 10.0 psf bottom 9) Max Horiz 1=-97 (LC 14)

chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 9 and 86 lb uplift at joint 6.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V06	Valley	1	1	I58637578 Job Reference (optional)

7-4-10

7-4-10

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:07 ID:jTzpqxuzIqsW061fab?zEkzIacy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-9-5 14-3-6 6-10-11 4x6 =3 13 14

14-9-5

Scale = 1:36.1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.11 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applied applied or 6-0-0 oc	 4) TCLL: AS(DOL=1.15 snow); Ps: DOL=1.00 Unobstruc 5) Roof desig slope. 6) Unbalance design. 7) Gable regi 	CE 7-10; Pr=20.0 p Plate DOL=1.00); =13.2 psf (roof sno); Category II; Exp ted slippery surfac In snow load has b d snow loads have	esf (roof liv Pf=20.0 p w: Lumbe B; Fully E e een reduc e been cor ottom chor	ve load: Lumb ssf (flat roof r DOL=1.15 I ixp.; Ct=1.10; ced to accour nsidered for t	per Plate ; ht for his						
REACTIONS	(size) 1=14-10-2 7=14-10-2 Max Horiz 1=-81 (LC Max Uplift 1=-3 (LC (LC 16) Max Grav 1=90 (LC (LC 34), 7 33)	2, 5=14-10-2, 6=14-10- 2, 8=14-10-2 12) 17), 6=-71 (LC 17), 8= 33), 5=90 (LC 34), 6=4 =326 (LC 2), 8=348 (L	2, 8) Gable stud 9) This truss 72 10) * This trus 48 3-06-00 ta chord and 11) Pervide ar	is spaced at 4-0-0 has been designe load nonconcurrer s has been design om chord in all are I by 2-00-00 wide any other member	oc. d for a 10.4 t with any ed for a liv eas where will fit betw s.								
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11) Provide m bearing pla	echanical connecti ate capable of with	on (by oth standing 3	B lb uplift at jo	to pint						
TOP CHORD	1-2=-125/121, 2-3=-4 4-5=-115/96	48/106, 3-4=-42/96,	1, 72 lb up 12) Beveled p	 1, 72 lb uplift at joint 8 and 71 lb uplift at joint 6. 12) Beveled plate or shim required to provide full bearing 									
BOT CHORD	1-8=-60/114, 7-8=-60 5-6=-60/94 3-7=-251/6, 2-8=-25	0/47, 6-7=-60/47, 5/112, 4-6=-255/112	surrace wi 13) This truss Internatior R802.10.2	int(s) 1, 5. ordance w le sections andard AN	ith the 2015 s R502.11.1 a NSI/TPI 1.	and				TH CA	Ro		
NOTES			LOAD CASE(Standard 						15	A Stee	· An	

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V07	Valley	1	1	Job Reference (optional)

5-11-8

5-11-8

Builders FirstSource (Apex, NC), Apex, NC - 27523,

3-5-15

Scale = 1:32.4 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

1)

2)

3)

NOTES

TOP CHORD

BOT CHORD

this design

REACTIONS (size)

bracing.

Max Horiz

Max Grav

Tension

Snow (Ps/Pf)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:07 ID:jTzpqxuzIqsW061fab?zEkzIacy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-5-1

5-5-9

Page: 1

11-11-0

0-5-15

4x6 = 2 9 10 3-2-7 12 7 [3 XXX 4 3x4 🍬 2x4 II 3x4 🔊 11-11-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.43 Vert(LL) n/a n/a 999 MT20 244/190 BC 13 2/20 0 Lumber DOL 1 15 0.37 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.20 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS 10.0 Weight: 41 lb FT = 20%TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2x4 SP No.2 snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied or slope. 10-0-0 oc purlins. Unbalanced snow loads have been considered for this 6) Rigid ceiling directly applied or 6-0-0 oc design. Gable requires continuous bottom chord bearing. 7) 1=11-11-14, 3=11-11-14, 8) Gable studs spaced at 4-0-0 oc. 4=11-11-14 This truss has been designed for a 10.0 psf bottom 9) 1=-64 (LC 12) chord live load nonconcurrent with any other live loads. Max Uplift 1=-56 (LC 34), 3=-56 (LC 33), 10) * This truss has been designed for a live load of 20.0psf 4=-33 (LC 16) on the bottom chord in all areas where a rectangle 1=63 (LC 33), 3=64 (LC 34), 4=950 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 2) chord and any other members. (lb) - Maximum Compression/Maximum 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 1-2=-73/508, 2-3=-73/508 1, 56 lb uplift at joint 3 and 33 lb uplift at joint 4. 1-4=-369/108, 3-4=-369/108 12) Beveled plate or shim required to provide full bearing 2-4=-752/146 surface with truss chord at joint(s) 1, 3. 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and Unbalanced roof live loads have been considered for R802.10.2 and referenced standard ANSI/TPI 1. Wind: ASCE 7-10; Vult=115mph (3-second gust) LOAD CASE(S) Standard \cap Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right the second exposed ; end vertical left and right exposed;C-C for SEAL members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 036322 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. G mmm May 31,2023

818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Componer Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601	4	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Quality Criteria, DSB-89 and BCSI Building Componer Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601		Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componen Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601		a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH1 Quality Criteria, DSB-89 and BCSI Building Componer Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601		building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componer Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601		is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601		fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
		Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V08	Valley	1	1	Job Reference (optional)

2-7-15

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:08 ID:BfXC1Hvb37?NeFbr8JWCnyzlacx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-0-11

3x4 🧔

		1									
(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.23 0.22 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-0-11 oc purlins. Rigid ceiling directly bracing. (size) $1=9-1-9, 3$ Max Horiz $1=-48$ (LC Max Uplift $1=-13$ (LC 4=-16 (LC Max Grav $1=78$ (LC (LC 2) (lb) - Maximum Com Tension $1-2=-77/305, 2-3=-7$	athing directly applie applied or 6-0-0 oc 3=9-1-9, 4=9-1-9 2 12) 34), 3=-13 (LC 33), 36) 33), 3=78 (LC 34), 4 opression/Maximum 7/305	 4) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 Unobstruct d or 5) Roof design slope. 6) Unbalanced design. 7) Gable reque 8) Gable stud 9) This truss h chord live h 40) * This truss h chord live h 3-06-00 tall chord and a 11) Provide me bearing pla 	E 7-10; Pr=20.0 Plate DOL=1.00; 13.2 psf (roof sn ; Category II; Ex, ed slippery surfa h snow loads hav ires continuous t s spaced at 4-0-1 has been designe has been designe bad nonconcurre has been designe bad nonconcurre has been designe bad porton in all al by 2-00-00 wide any other membe chanical connec	psf (roof liv ; Pf=20.0 p ow: Lumbe o B; Fully E ce been reduc ve been con oottom chor o oc. ed for a 10. nt with any ned for a 110. nt with any ned for a 110. the with the two will fit betw rs.	e load: Lumk sf (flat roof r DOL=1.15 l xp.; Ct=1.10; eed to accour nsidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 3 lb uplift at	per Plate this his ads. Opsf com					
1-4=-212/70, 3-4=-2 2-4=-485/96	12/70	1, 13 lb upl 1, 13 lb upl 12) Beveled pla surface wit	ift at joint 3 and 2 ate or shim requi	6 lb uplift a ed to provi	t joint 4. de full bearin	ig					
	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-0-11 oc purlins. Rigid ceiling directly bracing. (size) 1=9-1-9, 3 (size) 1=9-1-9, 3 ((psf) 20.0 13.2/20.0 13.2/20.0 13.2/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. (size) 1=9-1-9, 3=9-1-9, 4=9-1-9 Max Horiz 1=-48 (LC 12) Max Uplift 1=-13 (LC 34), 3=-13 (LC 34), 4=-16 (LC 16) Max Grav 1=78 (LC 33), 3=78 (LC 34), 4=(LC 24), 4=(LC 24) (lb) - Maximum Compression/Maximum Tension 1-2=-77/305, 2-3=-77/305 1-4=-212/70, 3-4=-212/70 2-4=-485/96	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) 20.0Spacing Plate Grip DOL 1.002-0-0 TC TC TC TC BC WB Matrix-MS $13.2/20.0$ 10.0 Lumber DOL Rep Stress Incr Code1.15 IRC2015/TPI2014BC WB Matrix-MS 0.0^* 10.0 CodeIRC2015/TPI2014Matrix-MS $2x4$ SP No.2 $2x4$ SP No.24)TCLL: ASCE 7-10; Pr=20.0 DOL=1.15 Plate DOL=1.00) snow); Ps=13.2 psf (roof sm DOL=1.00); Category II; Ex Unobstructed slippery surfar Some continuous to slope.4)Structural wood sheathing directly applied or 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)TCLL: ASCE 7-10; Pr=20.0 DOL=1.15 Plate DOL=1.00) snow); Ps=13.2 psf (roof sm DOL=1.00); Category II; Ex Unobstructed slippery surfar 5)Max Horiz 4=-16 (LC 12)1=9-1-9, 3=9-1-9, 4=9-1-9 Max Horiz 1=-48 (LC 12)4)Max Uplift 1=13 (LC 33), 3=78 (LC 34), 4=644 (LC 2)7)Gable requires continuous to 8)Max Grav 1=78 (LC 33), 3=78 (LC 34), 4=644 (LC 2)10) * This truss has been design 0 * This truss has been design 1	(psf) 20.0Spacing Plate Grip DOL 1.002-0-0 TC TC TC 0.2313.2/20.0 10.0Lumber DOL Rep Stress Incr Code1.15 IRC2015/TPI2014BC D.22 WB WB0.11 Matrix-MS 0.0^* 10.0CodeIRC2015/TPI2014Matrix-MS $2x4$ SP No.2 2x4 SP No.2 4 TCLL: ASCE 7-10; Pr=20.0 ps (roof liv DOL=1.15 Plate DOL=1.00); Pf=20.0 ps snow); Ps=13.2 psf (roof snow: Lumbe DOL=1.00); Category II; Exp B; Fully E Unobstructed slippery surfaceStructural wood sheathing directly applied or 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)TCLL: ASCE 7-10; Pr=20.0 ps (roof liv DOL=1.00); Category II; Exp B; Fully E Unobstructed slippery surfaceStructural wood sheathing directly applied or 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)TCLL: ASCE 7-10; Pr=20.0 ps (roof liv DOL=1.00); Category II; Exp B; Fully E Unobstructed slippery surfaceStructural wood sheathing directly applied or 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)TCLL: ASCE 7-10; Pr=20.0 ps (roof liv DOL=1.00); Category II; Exp B; Fully E Unobstructed slippery surface(size)1=9-1-9, 3=9-1-9, 4=9-1-9 Max Grav (LC 2)7)Gable requires continuous bottom chor 8)Max Grav1=78 (LC 33), 3=78 (LC 34), 4=644 (LC 2)7)6able studs spaced at 4-0-0 oc. 9)(b) - Maximum Compression/Maximum Tension1-72=77/305, 2-3=-77/305 1.4=-212/70, 3-4=-212/701-30 2-4=-485/962-4=-485/962-4=-485/9622-8eveled plate or shim required to provi	(psf) 20.0Spacing Plate Grip DOL 1.002-0-0 1.00CSI TCDEFL Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Vert(LL) Horiz(TL)10.0Rep Stress Incr CodeYES CodeWB0.11 Matrix-MS2x4 SP No.2 2x4 SP No.2 2x4 SP No.3TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumb DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow;) Ps=13.2 psf (roof snow: Lumber DOL=1.15 I DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10 Unobstructed slippery surfaceStructural wood sheathing directly applied or 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumb DOL=1.15 Plate DOL=1.00); Cf=20.0 psf (flat roof snow;) Ps=13.2 psf (roof snow: Lumber DOL=1.15 I DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10 Unobstructed slippery surface5)Roof design snow load has been reduced to accour slope.6)Unbalanced snow loads have been considered for t design.7)Gable studs spaced at 4-0-0 oc.9)This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bott chord and any other members.10)* This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bott chord and any other members.10)* This truss has been designed for a 10.0 psf bottom chord live	(psf) 20.0 13.2/20.0 10.0 0.0^* Spacing Plate Grip DOL Lumber DOL Lumber DOL 1.152-0-0 1.00 TC WB WB WB 0.11DEFL Vert(LL) n/a Vert(TL) Horiz(TL) 0.0010.0 0.0.* 10.0Rep Stress Incr CodeYES IRC2015/TPI2014WB Matrix-MS0.11 Matrix-MS2x4 SP No.2 2x4 SP No.2 2x4 SP No.2	(psf) 20.0 13.2/20.0 10.0 10.0 0.0^* Spacing Plate Grip DOL 1.00 Lumber DOL 1.15 Rep Stress Incr VES CodeCSI TC 0.22 WB WB 0.11 Matrix-MSDEFL in (loc) Vert(LL) N/a Horiz(TL)in o (loc)2x4 SP No.2 2x4 SP No.2 2x4 SP No.24)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pr=20.0 psf (that roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Pr=20.0 psf (that roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Crategory II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surfaceStructural wood sheathing directly applied or 9-0-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.00); Pr=20.0 psf (that roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Crategory II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface5)Roof design snow loads have been considered for this design.6)Inbalanced snow loads have been considered for this design.7)Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 4-0-0 oc. 98)Gable studs spaced for a 10:0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.10)* This trus has been designed for a 10:0 py of bottom chord and any other members.11)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 4. 1.3 lb uplift at joint 4. 1.3 lb uplift at joint 4.1-24=-242/70 2	(psf) 20.0 13.2/20.0 13.2/20.0 10.0 $13.2/20.0$ $1.32/20.0$ $1.32/20.0$ $1.32/20.0$ 1.00 Spacing Plate Grip DOL 1.00 2-0.0 1.5 Rep Stress Incr VES CodeCSI TC 0.22 WB 0.11 DEFL 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.25 1.15 1.15 1.25 1.15 1.25 1.15 	(psf) 20.0 13.2/20.0 10.0 0.0^* 0.0^* 10.0 Spacing Plate Grip DOL 1.00 2-0-0 1.00 CSI TC C DEFL $1C$ in(loc) $Vert(LL)$ n/a n/a 999 10.0 0.0^* 10.0 Rep Stress Incr CodeYES $Code$ WB 0.11 0.11 $Matrix-MS$ Vert(LL) n/a n/a n/a n/a n/a 2x4 SP No.2 $2x4 SP No.2$ $2x4 SP No.3$ $TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: LumberDOL=1.00; PI=20.0 psf (flat roofsnow); PS=13.2 psf (roof snow: Lumber DOL=1.15 PlateDOL=1.00; PI=20.0 psf (flat roofsnow); PS=13.2 psf (roof snow: Lumber DOL=1.15 PlateDOL=1.00; PI=20.0 psf (flat roofsnow); PS=13.2 psf (roof snow: Lumber DOL=1.15 PlateDOL=1.00; PI=20.0 psf (flat roofsnow); PS=13.2 psf (roof snow: Lumber DOL=1.15 PlateDOL=1.00; PI=20.0 psf (lat roofsnow); PS=13.2 psf (roof snow: Lumber DOL=1.15 PlateDOL=1.00; Category II; Exp B; Fully Exp.; CI=1.10;Unobstructed slippery surfaceStructural wood sheathing directly applied or9-0.11 oc purlins.(size)1=9-1-9, 3=9-1-9, 4=9-1-9Max Horiz 1=-48 (LC 12)Max Uplift 1=-13 (LC 34), 3=-13 (LC 33),4=-16 (LC 16)1-30(C 2)Max Grav1=78 (LC 32),4=-16 (LC 16)1-30(roof and any other members.(b) - Maximum Compression/MaximumTension1-2e-77/305, 2-3e-77/3051-2e-77/305, 2-3e-77/3051-4e-212/70, 3-4=-212/70(b) - Maximum Compression/MaximumTension1-2e-77/305, 2-3e-77/3051-4e-212/70, 3-4=-212/701-2e-77/305, 2-3e-77/3051-4e-212/70, 3-4=-212/701-30(the provide mechanical connection (by others) of truss tobearing plate capable$	(psf) 20.0 13.2/20.0 13.2/20.0 10.0 0.0* 10.0Spacing Plate Grip DOL 1.002-0-0 1.00 TC 0.02 Vert(TL) Matrix-MSDEFL in (loc)in (loc)I/deft I Ld Vert(TL) Vert(TL) Vert(TL) Vert(TL) Vert(TL) Vert(TL) 0.00PLATES MT2010.0 0.0* 10.0Rc2015/TPI2014BC 0.22 WB WB0.11DEFL vert(TL) Vert(TL) N/a No.0in a 999 MT202x4 SP No.2 2x4 SP No.2 2x4 SP No.3TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=13.2 psf (roof snow); Lexp B; Fully Exp.; Ct=1.10; Unobstructed slippery surfaceWeight: 30 lb3tructural wood sheathing directly applied or 9-01 to cpurins. Rigid ceiling directly applied or 6-0-0 c bracing. (size) 4=-16 (LC 12)TCL1: ASCE 7-10; Pr=20.0 psf (froof snow); Lexp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface5Roof design snow load has been reduced to account for slope.6Unbalanced snow loads have been considered for this design. 7) Gable requires continuous botom chord bearing. 8 Gable studs spaced at 4-0-0 oc.7Gable studs spaced at 4-0-0 oc. 9 1-15 This truss has been designed for a 10.0 psf bottom chord alve oncorrent with any other live loads. 10* This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will the schward at joint 1. 1.3 lb uplift at j

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

ORTH MANDER IN THE SEAL 036322 G mmm May 31,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V09	Valley	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:08 ID:BfXC1Hvb37?NeFbr8JWCnyzlacx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Lumber DOL=1.60 plate grip DOL=1.33

3)

6-2-7

Scale = 1.24.3

00010 - 1.24.0														
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.12 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-2-7 oc purlins. Rigid ceiling directly bracing. (size) 1=6-3-5, 3 Max Horiz 1=32 (LC Max Uplift 1=-3 (LC (LC 16) Max Grav 1=71 (LC (LC 2)	eathing directly applie v applied or 6-0-0 oc 3=6-3-5, 4=6-3-5 15) 16), 3=-8 (LC 17), 4= 33), 3=71 (LC 34), 4	4) ed or 5) 6) 7) 8) 9) 7 9) 4=396	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); ' Unobstructer Roof design slope. Unbalanced design. Gable requir Gable studs This truss ha chord live loa D) * This truss h	57-10; Pr=20.0 ps late DOL=1.00); F 3.2 psf (roof snow Category II; Exp E d slippery surface snow load has be snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed in chord in all area w 2 0.00 wido	f (roof liv ¹ f=20.0 p : Lumbe 3; Fully E en reduc been cor tom chor c. for a 10.1 with any d for a liv is where iii fit baby	e load: Lumb sf (flat roof r DOL=1.15 P xp.; Ct=1.10; ed to accoun usidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle	er /late t for nis ds. psf						
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-72/162, 2-3=-72/162 BOT CHORD 1-4=-123/58, 3-4=-123/58 WEBS 2-4=-262/51 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)			1* 12 r 13	 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 1, 8 lb uplift at joint 3 and 7 lb uplift at joint 4. 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3. 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									NRO MAR	

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Glades - Lot 52 Providence Creek
Glades - French	V10	Valley	1	1	I58637582 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue May 30 16:12:08 ID:BfXC1Hvb37?NeFbr8JWCnyzlacx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-3

1-2-2

3x4 =

2

3-4-2

1-8-1

3-4-2

3

2x4 👟

Page: 1

1-8-1 12 7 Г 0-8-4 0-11-15 0-0-4 2x4 🍬

Scale = 1:23.9

5)

slope.

Plate Offsets (X, Y): [2:0-2-0,Edge]

DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;

Roof design snow load has been reduced to account for

Unobstructed slippery surface

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2019	5/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-4-2 oc purlins. Rigid ceiling directly bracing. (size) 1=3-5-0, 3 Max Horiz 1=16 (LC Max Uplift 1=-4 (LC Max Grav 1=137 (LC (Ib) - Maximum Com Tension 1-2=-215/26, 2-3=-2 1-3=-15/182	athing directly applie applied or 10-0-0 or 3=3-5-0 13) 16), 3=-4 (LC 17) C 2), 3=137 (LC 2) apression/Maximum 15/26	6) 7) 8) 9) 5 10 5 11 11 12 13	Unbalanced design. Gable requir Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall h chord and ar) Provide mec bearing plate and 4 lb uplif 2) Beveled plat surface with h) This truss is International R802.10.2 a	snow loads have es continuous bo spaced at 4-0-0 d s been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w by other members hanical connectic e capable of withs it at joint 3. e or shim require truss chord at join designed in acco Residential Code nd referenced sta	been cor ttom chor oc. for a 10.0 with any d for a liv d for a liv d for a liv sa where vill fit betw s. on (by oth standing 4 d to provi nt(s) 1, 3. rrdance w a sections andard AN	nsidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botthers) of truss of use full bearin ith the 2015 FS02.11.1 a ISI/TPI 1.	nis ds.)psf om int 1 g nd					
 Unbalance this design 2) Wind: AS Vasd=91r II; Exp B; and C-C I exposed ; members Lumber D Truss de only. For see Stanc or consuli TCLL: AS DOL=1.1! snow: Ps 	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC signed for wind loads ir studs exposed to wind dard Industry Gable En t qualified building desig SCE 7-10; Pr=20.0 psf 5 Plate DOL=1.00); Pf= =13.2 psf (roof snow: 1	been considered for (3-second gust) DL=6.0psf; h=30ft; (velope) exterior zon lever left and right ght exposed;C-C for for reactions shown DL=1.33 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumbe =20.0 psf (flat roof Lumber DOL=1.15 P	Cat. e ss , ole, 11. er late	DAD CASE(S)	Standard					N. 1111111	The	SEA 0363	ROW L

818 Soundside Road Edenton, NC 27932

