

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q015549-R John-Jennifer Miceli WI

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Load Star - Lavonia, GA.

Pages or sheets covered by this seal: I59118161 thru I59118184

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

June 22,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	C1	Piggyback	23	1	Job Reference (optional)	159118161

2-1-5

-0-8-9

Load Star, Lavonia, GA - 30553.

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:49 ID:O4eU9sjXc5V1cbeT8l1nYNzHxTV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-2-10

4-2-10

4-11-3

Scale = 1:24.1

Plate Offsets (X, Y): [3:0-2-0,Edge]

-			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	6	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=103 II; Exp B; and C-C B exposed ; members Lumber D 3) Truss dee only. For see Stanc or consult	2x4 SP No 2x4 SP No Structural 5-8-8 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/16, 4-5=0/16 2-4=-11/10 ed roof live lo n. CE 7-10; Vul Bmph; TCDL: Enclosed; M Exterior (2) z end vertical and forces & OL=1.60 pla signed for wi studs expos lard Industry qualified bu	o.2 o.2 wood shea purlins. ng directly 2=4-2-10, 10=4-2-10 2=-37 (LC 2=-37 (LC 2=-37 (LC (LC 2), 10 imum Com 2-3=-133/\$ 03 oads have It=130mph =4.2psf; BC IWFRS (en cone; cantilé left and rig & MWFRS (in cone; cantilé left and rig a more cantilé left and	athing directly applied applied or 10-0-0 oc 4=4-2-10, 6=4-2-10, (12), $6=-42$ (LC 12) (14), $10=-33$ (LC 15), (14), $10=-33$ (LC 15), (14), $10=-33$ (LC 15) (2), $4=204$ (LC 2), $6i=204$ (LC 2) pression/Maximum 53, $3-4=-134/51,$ been considered for (3-second gust) CDL=6.0psf; $h=25ft;$ (velope) exterior zone ever left and right fht exposed; C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI	4) d or 5) 6) 7) 8) 9) =197 10 11 12 Cat. 13 5 Cat. 13 5 Cat. 13 5 LC SS Ide, 11.	TCLL: ASCE DOL=1.25 P snow); Pf=6. Plate DOL=1 Ct=1.10 This truss ha load of 12.0 overhangs n Plates check about its cen Gable requir Gable studs This truss ha chord live loa this truss ha chord live loa this truss ha chord and ar 0 One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar Detail for Co consult quali DAD CASE(S)	7-10; Pr=20.0 pr late DOL=1.25); 1 9 psf (flat roof sn .15); Category II; is been designed psf or 2.00 times on-concurrent wite ed for a plus or n ter. es continuous bo spaced at 4-0-0 d is been designed an onconcurrent as been designed in chord in all are: by 2-00-00 wide v by 2-00-00 wide v by 2-00-00 wide v by 2-00-00 wide v by 3 conter members ing walls due to L ion is for uplift or is. designed in accoo Residential Code and referenced sta d Industry Piggyt nnection to base fied building desi Standard	sf (roof liv Pg=10.0 p ow: Lumb ; Exp B; F I for great flat roof k th other liv ninus 20 o ttom chor oc. I for a 10.0 t with any ad for a liv as where will fit betw s. recomme JPLIFT at e sections andard AN boack Truss truss as a gner.	e load: Lumb ssf (ground per DOL=1.15 ully Exp.; er of min roof bad of 6.9 psf ve loads. Jegree rotatio d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle ween the botto inded to conn jt(s) 2 and 4. es not consid ith the 2015 s R502.11.1 a ISI/TPI 1. s Connection applicable, or	er live on n ds.)psf pm ect ler nd				SEA 4584 SEA	L EFF. SOLUTION OHNSTITUTION

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	C2	Piggyback	6	1	Job Reference (optional)	159118162

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:51 ID:IIZ_zwCheu?atVY6r4kd1JzHxRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-2-10

Scale = 1:27.2

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL		(psf) 20.0 6.9/10.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0			Weight: 10 b									FI = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 3-8-8 oc Rigid ceil bracing. (size) Max Horiz Max Horiz	0.2 0.2 I wood shea purlins. ing directly 2=2-2-10, 10=2-2-10 2=-26 (LC 2=-26 (LC	athing directly applie applied or 10-0-0 oc 4=2-2-10, 6=2-2-10,) : 12), 6=-26 (LC 12) : 14), 4=-21 (LC 15)	4) d or 5) 6) 7) 8)	 TCLL: ASCE DOL=1.25 P snow); Pf=6. Plate DOL=1 Ct=1.10 This truss ha load of 12.0 j overhangs n Plates check about its cen Gable requiri Gable studs 	7-10; Pr=20.0 psf late DOL=1.25); Pc 9 psf (flat roof snov .15); Category II; E s been designed for psf or 2.00 times fla on-concurrent with ed for a plus or min ter. es continuous bottor spaced at 2-0-0 oc	(roof liv g=10.0 p w: Lumb Exp B; F or great at roof la other liv nus 20 d om chor	e load: Lumb ssf (ground er DOL=1.15 ully Exp.; er of min roof pad of 6.9 psf re loads. Jegree rotatio d bearing.	er live on n						
Max Uplift 2=-25 (LC 14), 4=-21 (LC 15), 6=-25 (LC 14), 10=-21 (LC 15), Max Grav 80 Gable studs spaced at 2-0-0 oc. Max Grav 2=118 (LC 2), 4=-124 (LC 2), 6=-118 (LC 2), 10=124 (LC 2) 90 Gable studs spaced at 2-0-0 oc. FORCES (lb) - Maximum Compression/Maximum Tension 100 Studs spaced at 2-0-0 oc.															
 TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp 8; and C-C exposed ; members Lumber D 3) Truss des only. For see Stand or consult 	1-2=0/16, 2-4=-1/52 ed roof live I n. CE 7-10; Vu Imph; TCDL Enclosed; M Corner (3) zc end vertica and forces of OL=1.60 pla signed for w studs expos atud hdustry qualified bu	, 2-3=-60/24 loads have ilt=130mph .=4.2psf; BC IWFRS (en one; cantile & MWFRS (en one; cantile I left and rig & MWFRS i ate grip DO ind loads in sed to wind y Gable End uilding desig	4, 3-4=-61/22, 4-5=0, been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zone ver left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	/16 1 [.] Cat. a 1: a 1: L SS I L I L	 One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar See Standar Detail for Co consult quali OAD CASE(S) 	ITek connectors re- ing walls due to UF ion is for uplift only designed in accord Residential Codes and referenced stan d Industry Piggyba nnection to base tr fied building desigr Standard	ecomme PLIFT at y and do dance w sections dard AN ick Trus russ as a ner.	nded to conn jt(s) 2 and 4. es not consid ith the 2015 R502.11.1 a ISI/TPI 1. s Connection applicable, or	ect ler nd		Continues	and the second s	SEA 4584	L EFFR OTINI OHNSIIIII	لو

A MITEK AMULATION AND A CONTRACTOR AND A

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R1	Piggyback Base	5	1	Ich Reference (optional)	159118163

Load Star, Lavonia, GA - 30553

1)

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries. Inc. Thu Jun 22 09:39:52

Page: 1

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

104

mm June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R1G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	159118164

Load Star, Lavonia, GA - 30553

Run: 8.7 E.0 Mar. 9.2023 Print: 8.700 E.Mar. 9.2023 MiTek Industries. Inc. Thu Jun 22.17:27:13 ID:KTIFaYIn8jmlsvorFA3FdozHxTT-iQIklwCrV6CEhb00NvFBz5dRZ0mpLnzfilasJOz3gdC

Scale = 1:65.4

DIALA	OH (V V)	[0.E.I 0.0.40]	0.044551.000000	104 401 144.0 0 0 0 4 401	
Plate	UTISETS (X Y)	12.Fude 0-0-121	210-1-15 Eddel 1910-2-8 ()-1-131 1110-2-8 0-1-131	118 Edde 0-0-121 118 0-1-15 Eddel
	0	[, , , , , , , , , , , , , , , , , , , ,	, [:e:=age;e e :=]; [:e:e : :e;=age]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	11.9/10.0	Lumber DOL	1.25	BC	0.06	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	18	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-SH									
BCDL	10.0										Weight: 253 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2		2) Wind: ASC Vasd=103n	E 7-10; Vult=130 nph; TCDL=4.2ps	mph (3-sec sf; BCDL=6	cond gust) 6.0psf; h=25ft	;	13) Pro bea	vide me ring plat	chanic e capa	al connection (by	others) of trus ng 100 lb uplift	s to at

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 9-11. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 10-27, 9-28, 8-30, 11-26, 12-25 REACTIONS All bearings 33-11-0. (Ib) - Max Horiz 2=-264 (LC 12) Max Uplift All uplift 100 (lb) or less at joint(s) 2, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34 except 20=-113 (LC 15), 35=-117 (LC 14) All reactions 250 (lb) or less at joint Max Grav (s) 2, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34 except

35=254 (LC 26) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 8-9=-235/263

TOP CHORD

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 2-6-3, Interior (1) 2-6-3 to 15-1-4, Exterior (2) 15-1-4 to 23-7-5, Interior (1) 23-7-5 to 34-9-8 zone; cantilever left and right exposed end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=11.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4

This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 6.9 psf on overhands non-concurrent with other live loads. Provide adequate drainage to prevent water ponding.

All plates are 2x4 MT20 unless otherwise indicated. 7)

8) Plates checked for a plus or minus 20 degree rotation about its center.

- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

joint(s) 2, 18, 27, 28, 30, 31, 32, 33, 34, 25, 24, 23, 22, 21 except (jt=lb) 35=117, 20=113.

Page: 1

- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R2	Piggyback Base	9	1	Job Reference (optional)	159118165

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:52

Page: 1

7-8=0/29 BOT CHORD 2-12=-277/1343, 10-12=-113/757, 9-10=-62/520, 7-9=-428/409 WEBS 3-12=-502/365, 4-12=-334/950, 4-10=-359/218, 5-10=-73/728, 5-9=-1459/380, 6-9=-505/366

NOTES

 Unbalanced roof live loads have been considered for this design. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
9) One RT7A MiTek connectors recommended to connect trust to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider

on the bottom chord in all areas where a rectangle

- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

SEAL 45844 June 22,2023

> ENGINEERING BY **CREENCO** AMITEK Aftiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R2A	Piggyback Base	2	1	Job Reference (optional)	159118166

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:53 ID:hQZ8dFowzFO1yghp2jfQKszHxTO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

39:53 Page: 1

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R2G	Piggyback Base	1	1	Job Reference (ontional)	159118167

10-7-0 11-0-1

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:53 Page: 1 ID:9d7WqbpYjZWuaqF?cRAfs3zHxTN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 20-9-12 36-9-8 7-7-13 15-1-4 18-8-0 35-11-0 0-10-8 2-1-12 7-7-13 7-5-8 3-6-11 15-1-4 0-10-8 7x8= 5x5= 4x8= 4 38 39 6 5 23 8 37 40 12 81 9 3 10 ¹²41 36 13 14 0-6-3 29 15 Ø 17¹⁶ 42 43 21 44 45 20 19 46 18 47 48

Scale = 1:73.8 Plata Offecte (X. V). [2:0-0-4 0-0-8] [4:0-2-12 0-2-0] [5:0-4-0 0-1-12] [6:0-6-4 0-2-4] [14:Edge 0-0-8]

Plate Olisets (A, T). [2.0-0-4,0-0-6],	[4.0-2-12,0-2-0], [5.	0-4-0,0-1-	12], [0.0-0-4,0-	z-4], [14.⊏uge,0-0-	oj								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.87 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.32 0.08	(loc) 18-20 18-20 17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 242	GRIP 244/190 b FT = 20'	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD	2x4 SP No.2 *Excep 2.2E or 2x4 SP M 31 2x4 SP No.2 2x4 SP No.2 *Excep No.3 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea	t* 1-4:2x4 SP 2700F t* 21-3,18-22:2x4 Si athing directly applie	W P ed or	EBS	3-21=-494/361, 4-2 5-20=-71/295, 4-20 18-22=-448/325, 5 5-23=-1684/290, 2 24-25=-1668/284, 2 22-26=-1593/229, 2 27-28=-1729/328, 1 17-29=-1746/360, 2 17-29=-1746/360, 2 10-27=-39/30, 11-2 13-16=-730/381	21=-308/)=-92/30 -18=-25 3-24=-1(22-25=-' 26-27=-' 28-29=-' 28-29=-' 28-29=-' 28-29=-' 28-29=-' 28=-60/3	909, 3, 1/830, 645/267, 1725/325, 1713/315, 1755/341, 1/126, 9-26=-280/2 6, 12-29=-23	204, /47,	 8) Plat abo 9) Gab 10) This cho 11) * Th on t 3-00 cho 12) One trus 	es chec ut its ce ble studs truss h rd live lo is truss he botto 6-00 tall rd and a e RT7A I s to bea	ked for nter. space as bee ad nor has be m cho by 2-0 ny oth WiTek ring w	r a plus or minu ed at 2-0-0 oc. en designed for nconcurrent wi een designed f rd in all areas v 0-00 wide will er members, w connectors rec alls due to UPL	a 10.0 psf b th any other or a live load where a rect fit between th th BCDL = commended JIFT at jt(s) 2	ottom live loads. lof 20.0psf angle he bottom 10.0psf. to connect 2. This
BOT CHORD WEBS JOINTS REACTIONS	 Structural wood sheathing directly applied or 5-1-6 oc purlins, except 2-0-0 oc purlins (5-1-10 max.): 4-6. R Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 5-20, 4-20 1 Brace at Jt(s): 22, 23, 24, 27, 28 NS (size) 2=0-3-8, 17=0-3-8 Max Horiz 2=-264 (LC 12) Max Uplift 2=-219 (LC 14), 17=-235 (LC 15) 			Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En and C-C Ext to 15-1-4, Ex 20-2-3 to 20 Interior (1) 22	r Cat. ne 8-10 nd	 forces. 13) One HTS20 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due UPLIFT at jt(s) 17. This connection is for uplift only a does not consider lateral forces. 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. 								
FORCES TOP CHORD BOT CHORD	Max Grav 2=1477 (L (lb) - Maximum Com Tension 1-2=0/29, 2-3=-2136 4-5=-1252/347, 5-6= 7-8=-525/299, 8-9= 10-11=-349/88, 11-1 12-13=-388/25, 13-1 2-21=-307/1853, 20- 18-20=-44/1232, 17- 16-17=0/246, 14-16=	C 26), 17=1580 (LC pression/Maximum /349, 3-4=-2101/48 -475/313, 6-7=-535 477/238, 9-10=-351, 2=-340/59, 4=-244/59, 14-15=C 21=-76/1275, 18=-160/1658, =-148/246	: 3) 7, 3) (335, (116, /29 ⁴⁾	for members for members Lumber DOL Truss desig only. For stu see Standarr or consult qu TCLL: ASCE DOL=1.25 P snow); Pf=1' Plate DOL=1 Ct=1.10, Lu= This truss ha	a, end ventical fett and forces & MW/ =1.60 plate grip D ned for wind loads ids exposed to wind d Industry Gable E ialified building des 7-10; Pr=20.0 psf late DOL=1.25); Pi 1.9 psf (flat roof sn 1.15); Category II; I =50-0-0 is been designed f	FRS for OL=1.60 in the pl d (norm nd Detai signer as (roof liv g=10.0 p ow: Lum Exp B; F	reactions sho ane of the tru al to the face ils as applical s per ANSI/Tf e load: Lumb osf (ground ber DOL=1.1 ully Exp.; er of min roof	own; hss), ble, Pl 1. er 5 live			Cit	SE 458	AROL SURVER	A Company and the second second

load of 12.0 psf or 2.00 times flat roof load of 6.9 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding.

All plates are 2x4 MT20 unless otherwise indicated.

Continued on page 3 WARNING - Veri

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6)

7)

Job	Truss	Truss Type		Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R2G	Piggyback Base		1	1	Job Reference (optional)	159118167
Load Star, Lavonia, GA - 30553,	Run: 8.71 S May 19	Page: 2					

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:53 ID:9d7WqbpYjZWuaqF?cRAfs3zHxTN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R3	Piggyback Base	5	1	Job Reference (optional)	159118168

Scale = 1:70.3

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:54 ID:dpgu2xqAUseIB_qC98huPHzHxTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[4:0-3-0,0-2-3],	[6:0-1-12,0-2-0],	[8:0-2-15,5-2-14],	[8:0-0-5,1-3-5]
-----------------------	------------------	-------------------	--------------------	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.65 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.02	(loc) 9-15 9-15 7	l/defl >999 >783 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep Structural wood shea 4-9-6 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 7 Max Horiz 2=365 (LC Max Uplift 2=-160 (Li Max Grav 2=1004 (L (lb) - Maximum Com Tension 1-2=0/29, 2-3=-1282 4-5=-427/1428 5-6=	t* 4-5:2x6 SP No.2 t* 10-11:2x8 SP No.2 t* 7-5,9-4:2x4 SP No. athing directly applied cept end verticals, an 0-0 max.): 4-5. applied or 10-0-0 oc 4-12 5-7 (=0-5-8 C 14), 7=-199 (LC 14 C 2), 7=950 (LC 2) pression/Maximum /199, 3-4=-996/197, -669/2108 6-7=-283	3) 2 1 or 4) d 5) 6) 7) 8) 9)	TCLL: ASCE DOL=1.25 PI snow); Pf=11 Plate DOL=1 Ct=1.10, Lu= This truss ha load of 12.0 y overhangs no Provide adeo Plates check about its cen This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar One RT7A M truss to beari This connect	7-10; Pr=20.0 psf ate DOL=1.25); Pg .9 psf (flat roof snc .15); Category II; E 50-0-0 s been designed fo sof or 2.00 times fla on-concurrent with juate drainage to p ed for a plus or mir ter. s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, iTek connectors re ng walls due to UP ion is for uplift only	(roof liv g=10.0 p w: Lum Exp B; F or greate at roof k other lin revent \ hus 20 c or a 10.0 vith any for a liv with BC comme PLIFT at and do	e load: Lumb sf (ground ber DOL=1.' ully Exp.; er of min rool bad of 6.9 ps re loads. water pondin degree rotation 0 psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0ps nded to conr jt(s) 7 and 2 es not consis	ber 15 f live f on g. on uds. Opsf om f. hect Jer						
BOT CHORD WEBS 1) Unbalanci this design 2) Wind: ASI Vasd=103 II; Exp B; and C-C E 15-1-4, E5 to 20-9-12 cantilever members Lumber D	2-9=-402/1033, 7-9= 5-12=-1385/443, 7-1 4-9=-94/744, 3-9=-44 4-12=-1992/660 ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=4.2psf; BK Enclosed; MWFRS (en Exterior (2) -0-10-8 to 2 tetrior (2) -0-10-8 to 2 tetrior (2) 15-1-4 to 19- 2, Exterior (2) 20-9-12 tr left exposed ; end vert and forces & MWFRS OL=1.60 plate grip DO	10 571, 11 Cat. 3 to 3 for) This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chord DAD CASE(S)	designed in accord Residential Code s ad referenced stand fin representation tion of the purlin al Standard	lance w sections dard AN does no long the	ith the 2015 a R502.11.1 a ISI/TPI 1. Ist depict the top and/or	and		Continue		SEAL SEAL 4584	A A ER.SO	and announcement	

Junnin .

June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R3A	Piggyback Base	1	1	Job Reference (optional)	159118169

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:54

ID:dpgu2xqAUseIB_qC98huPHzHxTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 7-7-13 15-1-4 20-9-12 23-11-0 7-7-13 7-5-8 3-1-4 5-8-8 6x6= 5x5= 18 _19 3 17 4 4x4、 5 8¹² 16 1\1 4x 2x4, 2 10-7-0 8-6-3 15 0-6-3 0-5-8 ∏ Ð. • ¢ 6 ₿ 7 20 21 8 3x6 II 4x5= 3x4= 3x6 II 3x6 II 3x4 🦽 4x6 =13-11-8 16-0-0 23-11-0 12-0-0 21-11-8 1-11-8 2-0-8 12-0-0 5-11-8 1-11-8

Scale = 1:70.2 Plate Offsets (X, Y): [1:0-1-3,0-1-8], [3:0-3-0,0-2-3], [5:0-1-12,0-2-0], [7:0-2-14,5-3-4], [7:0-0-6,1-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MSH	0.70 0.65 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.37 0.02	(loc) 8-14 8-14 6	l/defl >999 >771 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%	
TOP CHORD SOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD SOT CHORD WEBS	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x0 oc purlins, exi 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 1=0-3-8, 6 Max Horiz 1=346 (LC Max Uplift 1=-138 (L- Max Grav 1=951 (LC (lb) - Maximum Com Tension 1-2=-1285/201, 2-3= 3-4=-429/1431, 4-5= 1-8=-404/1035, 6-8= 4-11=-1388/445, 6-1	t* 3-4:2x6 SP No.2 t* 9-10:2x8 SP No.2 t* 6-4,8-3:2x4 SP No athing directly applied cept end verticals, an 0-0 max.): 3-4. applied or 10-0-0 oc 3-11 4-6 =-0-5-8 2 14) C 14), 6=-199 (LC 14 2 2), 6=951 (LC 2) pression/Maximum -999/198, -672/2113, 5-6=-294 -166/521 1=-1763/575, 2000 C 4, 4727/	(9) 5) 5 (1) 07 4) F (1) 07 4) 7 (2) 7 (1) 07 (2) 10 (2)	DOL=1.25 Pl now); Pf=11 Plate DOL=1 Ct=1.10, Lu= Provide adeq Plates checkubout its cent his truss hathord live loa this truss hathord live loa this truss hathord live loa this truss hathord and an Dre RT7A M russ to beari This connecti tateral forces this truss is of the trust is of the trust is of t	ate DOL=1.25); Pg .9 psf (flat roof snc .15); Category II; E 50-0-0 uate drainage to p ed for a plus or mir ter. s been designed fc d nonconcurrent w as been designed fc d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, ' iTek connectors re ng walls due to UP on is for uplift only designed in accord Residential Code s d referenced stand- tin representation tion of the purlin all	in the second se	sisf (ground ber DOL=1.' ully Exp.; water pondin degree rotation 0 psf bottom other live loa e load of 20. a rectangle ween the bott DL = 10.0ps ended to com it, it(s) 1 and 6 es not consisi ith the 2015 is R502.11.1 a SIS/TP1 1. bt depict the is top and/or	g. on dds. Opsf om f. der der size					"""" Ro	
NOTES 1) Unbalanci this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C E 15-1-4, E5 to 20-9-12 members Lumber D	3-8=-96/747, 2-8=-4 3-11=-1997/663 ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=4.2psf; B(Enclosed; MWFRS (en Exterior (2) 0-0-0 to 3-0 tterior (2) 15-1-4 to 19- tterior (2) 20-9-12 t and forces & MWFRS OL=1.60 plate grip DO	69/323, 5-11=-1727/5 been considered for (3-second gust) CDL=6.0psf; h=25ff; (velope) exterior zone -0, Interior (1) 3-0-0 t 4-3, Interior (1) 19-4- o 23-9-4 zone;C-C fo for reactions shown; L=1.60	;73, b LOAI Cat. e o 3 r	ottom chord	Standard	J				Contraction of the second seco	A MARINE AND A MAR	SEAL SEAL SEAL	4 EPROTIN	amminut

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

minim June 22,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R3B	Piggyback Base	4	1	Job Reference (optional)	159118170

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:54 ID:dpgu2xqAUselB_qC98huPHzHxTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.2 Plate Offsets (X, Y): [4:0-2-8,0-1-12], [6:0-2-0,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.68 0.71 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.39 0.01	(loc) 6-8 6-8 6	l/defl >999 >729 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 173 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Except 2x6 SP No.2 2x4 SP No.2 *Except Structural wood shea 4-6-4 oc purlins, exc 2-0-0 oc purlins (6-0	* 3-4:2x6 SP No.2 * 6-5,8-2:2x4 SP No athing directly applie xept end verticals, a -0 max.): 3-4.	o.3 ed or 4	 TCLL: ASCE DOL=1.25 F snow); Pf=1 Plate DOL= Ct=1.10, Lu: Provide ade Plates check about its cer 	7-10; Pr=20.0 psf late DOL=1.25); Pt 1.9 psf (flat roof snd 1.15); Category II; I =50-0-0 quate drainage to p ted for a plus or mi iter.	(roof liv g=10.0 p ow: Lum Exp B; F prevent v nus 20 c	e load: Lumb osf (ground iber DOL=1.1 fully Exp.; water ponding degree rotatio	ber 15 g. on					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 1= Mechai Max Horiz 1=346 (LC Max Uplift 1=-138 (LC Max Grav 1=983 (LC (b) Maximum Com	applied or 10-0-0 or 5-6, 4-6, 4-8 nical, 6=0-5-8 ; 14) C 14), 6=-199 (LC 1 ; 25), 6=1023 (LC 3 proceing/Maximum	 This truss has chord live lo rot li rot live lo rot li rot live l	This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to									
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	(iii) - Maximum Com Tension 1-2=-1312/203, 2-3= 3-4=-740/269, 4-5=-6 1-8=-405/1120, 6-8= 4-6=-810/241, 3-8=0, 4-8=-244/810 ed roof live loads have b. CE 7-10; Vult=130mph mph; TCDL=4.2psf; BC	-1062/201, 57/52, 5-6=-102/59 -65/232 /288, 2-8=-456/320, been considered for (3-second gust) 2DL=6.0psf: h=25ft;	r Cat.	 bearing plate 1. One RT7A N truss to bear connection i forces. This truss is Internationar R802.10.2 a Graphical pu or the orient bottom chor 	a capable of withsta ATTEk connectors re- ing walls due to UF s for uplift only and designed in accord Residential Code nd referenced stan urlin representation ation of the purlin a d.	anding 1 ecomme PLIFT at does no dance w sections dard AN does no long the	38 to uplift at inded to conr jt(s) 6. This of consider la ith the 2015 R502,11.1 <i>a</i> ISI/TPI 1. of depict the s to p and/or	t joint nect ateral and size		(A CA	WHTH CA	ROLINA

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 15-1-4, Exterior (2) 15-1-4 to 19-4-3, Interior (1) 19-4-3

to 20-9-12, Exterior (2) 20-9-12 to 23-9-4 zone;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R3G	Piggyback Base Structural Gable	1	1	Job Reference (optional)	159118171

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:55 ID:dpgu2xqAUseIB_qC98huPHzHxTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.7

Plate Offsets (X, Y): [5:0-4-0,0-1-9], [8:0-4-0,0-1-9], [10:0-1-12,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	11.9/	(psf) 20.0 /10.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.60 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.26 0.03	(loc) 23-35 23-35 30	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0											Weight: 297 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wo 4-7-12 oc pur 2-0-0 oc purl Rigid ceiling	*Except *Except ood shea rrlins, exc lins (6-0- directly a	* 5-8:2x6 SP No.2 * 4-21:2x4 SP No.2 thing directly applied cept 0 max.): 5-8. applied or 10-0-0 oc	BC We	DT CHORD 2 1 EBS 4 2 7 7	2-23=-312/1159, 21- 20-21=-103/282, 19- 18-19=-104/281, 17- 16-17=-104/281, 15- 1-28=-776/245, 24-2 24-29=-824/259, 25- 25-26=-951/292, 26- 21-27=-1034/306, 6- 7-25=-110/63, 8-26= 10-20=-105/21, 11-1	23=-22 20=-10 18=-10 16=-10 29=-8 27=-9 24=-1 -18/6, 9=-122	25/971,)4/281,)4/281,)4/281)/245,)1/274, 49/282, 16/68, 9-27=-140/88 2/77,)0.027	8,	 5) Th loa ov. 6) Pro 7) All 8) Pla ab 9) Ga 10) Th chu 	is truss h d of 12.0 erhangs r ovide ade plates ar tes chec out its ce ble studs is truss h ord live lo	as bee psf or non-co equate re 2x4 ked fo nter. s space as bee pad no	en designed for g 2.00 times flat r incurrent with oth drainage to prev MT20 unless oth r a plus or minus ed at 2-0-0 oc. en designed for a nconcurrent with	reater of min pof load of 6. ler live loads ent water po erwise indica 20 degree r a 10.0 psf bo' any other liv	n roof live .9 psf on nding. ated. rotation ttom <i>re</i> loads.
JOINTS	bracing. 1 Brace at Jt	t(s): 24,			1	12-18=-135/101, 13- 14-16=-160/116, 5-2	·17=-12 8=-32/	20/87, 28,		11) ^ I on	his truss the botto	has be	een designed for ord in all areas wi	a live load o here a rectar	if 20.0pst igle
REACTIONS	(size) 2= 25, 26, 28 (size) 2= 17 20 Max Horiz 2= Max Uplift 2= 16 18 20 30 Max Grav 2= 16 18 20 30 0 40 30 0 30 0 30 30 30 30 30 30 30 30 30 3	=0-3-8, 1: 7=12-5-8 =258 (LC =-190 (LC 3=-86 (LC)=-349 (L)=-349 (L =-25 (LC 3=257 (L0 3=171 (L1)=-95 (LC)=249 (L1	5=12-5-8, 16=12-5-8, 18=12-5-8, 18=12-5-8, 30=12-4, 21=12-5-8, 30=12-4, 11) 2 14), 15=-25 (LC 11) C 15), 17=-49 (LC 15), 17=-49 (LC 15), 19=-31 (LC 15), 19=-31 (LC 15), 21=, 40 (LC 14), 21) C 2), 21=-40 (LC 29), 27), 17=-141 (LC 2), 27), 17=-141 (LC 2), 27), 19=195 (LC 5), 23), 21=1066 (LC 4), 29)	3, NC 5-8, NC 5-8 1)), 2) 5),),), 7), 5), 3) 3)	TES Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Exter to 20-9-12, E 24-10-12 to 3 exposed ; en members and Lumber DOL Truss design	10-21=-74/100, 4-23 23-29=-177/95, 3-23 roof live loads have 7-10; Vult=130mph bh; TCDL=4.2psf; Bi closed; MWFRS (er erior (2) -0-10-8 to 2 ior (2) 15-1-4 to 19- xterior (2) 20-9-12 t 85-11-0 zone; cantili d vertical left and rig d forces & MWFRS =1.60 plate grip DO ned for wind loads if	=-10/6 =-376/ been ((3-sec CDL=6 velope -1-8, Ir 4-3, In o 24-1 ever le ght exp for rea L=1.60	04, 253 considered for ond gust) .0psf; h=25ft; exterior zon tterior (1) 2-1- terior (1) 19-4 0-12, Interior (ft and right iosed;C-C for ctions shown;) ane of the tru:	Cat. e -8 to -3 (1) ; ss	3-(chi 12) Or tru 20 an 13) Th Int R8	16-00 tall ord and a e RT7A l ss to bea 19, 18, ' d does no d does no s truss is ernationa 02.10.2 a	by 2-0 any oth MiTek uring wa 17, and ot cons desig al Resid and ref	10-00 wide will fit ler members. connectors reco alls due to UPLII d 16. This conne sider lateral force ined in accordan dential Code sec ferenced standar	between the mmended to ^T T at jt(s) 15, ction is for up s. ce with the 2 tions R502.1 d ANSI/TPI	bottom connect , 2, 21, plift only :015 1.1 and 1.
FORCES	(lb) - Maximu Tension 1-2=0/29, 2-3 4-5=-303/152 7-8=-190/143 10-11=-257/3 12-13=-267/8 14-15=-344/3	um Comp 3=-1420/ 2, 5-6=-1 3, 8-9=-2 79, 11-12 84, 13-14 106	oression/Maximum 279, 3-4=-1104/207 90/143, 6-7=-190/14 64/151, 9-10=-252/1 2=-259/77, 4=-301/87,	, 13, 4) 106, ⁴)	only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.25 PI snow); Pf=11 Plate DOL=1 Ct=1.10, Lu=	ds exposed to wind I Industry Gable En alified building desi 7-10; Pr=20.0 psf (ate DOL=1.25); Pg- .9 psf (flat roof snov .15); Category II; E: 50-0-0	(norm d Deta gner as roof liv =10.0 p w: Lum kp B; F	al to the face) ils as applicab s per ANSI/TP e load: Lumbe sf (ground ber DOL=1.1 ully Exp.;	ble, ble, Pl 1. er 5		1111111	N. N	SEA 4584 NOREW J	L 44 E.E.P OHNS	Annun an

June 22,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R3G	Piggyback Base Structural Gable	1	1	Job Reference (optional)	159118171
Load Star, Lavonia, GA - 30553,		Run: 8.71 S May 19 2	Page: 2			

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:55 ID:dpgu2xqAUseIB_qC98huPHzHxTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R4G	Common Supported Gable	1	1	Job Reference (optional)	159118172

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:55 ID:ofJdnulQv0ucT3N2ptaUA0zHxTS-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

23-11-0

Scale = 1:58.3 Plate Offsets (X, Y): [8:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 6.9/10.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.09 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 151 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=23-11 18=23-1 20=23-11 23=23-11 23=23-11 23=23-11 27=23-1 27=23-1 27=23-1 23=23-1 27=23-1 23=23-23 23=23-1 23=23-23 23=23-23 23=23-23 23=23-23 23=23-23 23=23-23 23=23-23 23=23-23 23=23=23-23 23=23=23=23-23 23=23=23=23=23=23=23=23=23=23=23=23=23=2	eathing directly applied y applied or 10-0-0 oc -0, 14=23-11-0, 1-0, 17=23-11-0, 1-0, 21=23-11-0, 1-0, 24=23-11-0, 1-0, 26=23-11-0, 1-0, 30=23-11-0, C 13), 27=212 (LC 13) C 10), 16=-122 (LC 15) LC 15), 21=-5 (LC 11), LC 14), 24=-72 (LC 14) LC 14), 26=-126 (LC 1- LC 14), 26=-126 (LC 14), 26=-126 (LC 14), 26=-126 (LC 14),	or W 1) 2)), 4), 3)	OT CHORD TEBS OTES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Co 11-11-8, Co 14-11-8 to 2 exposed ; e members ar Lumber DO Truss desig	L 2-26=-127/201, 25- 24-25=-125/201, 20 21-23=-125/201, 20 19-20=-125/201, 16 17-18=-125/201, 16 14-16=-125/201 7-21=-115/29, 9-20 5-24=-133/94, 4-25 10-19=-149/117, 11 12-17=-115/84, 13- I roof live loads have 5 7-10; Vult=130mpl ph; TCDL=4.2psf; E colosed; MWFRS (e rner (3) -0-10-8 to 2 rner (3) 11-11-8 to 2 4-9-8 zone; cantilev nd vertical left and r d forces & MWFRS L=1.60 plate grip D0 pned for wind loads	26=-12 -24=-1 -21=-1 -19=-11 -19=-11 -17=-1 -17=-1 -18=-18	5/201, 25/201, 25/201, 25/201, 25/201, 6-23=-149/11 3, 3-26=-184 32/93, 4/131 considered fo cond gust) .0psf; h=25ft; exterior zor (terior zor (terior zor (terior 2) 2-1 , Exterior 2) exterior 2) terior zor (terior 2) 2-1 , Exterior 2) exterior 2	12, /132, r Cat. ie -8 to ; ;	 9) Gat 10) This cho 11) * Th on t 3-00 cho 12) Proa 2, 5 at jc 93 I join 13) This Inte R80 LOAD (ble studs s truss h rd live lc iis truss he botto 6-00 tall rd and a vide me ring plat lb uplift bint 24, § b uplift bint 24, § b uplift s truss is rnationa j2.10.2 a CASE(S)	s space as bee bad noo has be m choo by 2-0 ny oth chanic 2 lb u at joint 2 lb u at joint 2 lb u t tjoint 2 lb u a desig I Resi and ref) Sta	ed at 2-0-0 oc. an designed for nconcurrent with een designed fo ord in all areas w 00-00 wide will fi er members. al connection (b able of withstand t 21, 88 lb uplift plift at joint 25, 19, 71 lb uplift al ift at joint 16 an need in accordar dential Code se ierenced standa ndard	a 10.0 psf bottom any other live loa a live load of 20. here a rectangle between the bott y others) of truss ling 28 lb uplift at at joint 23, 72 lb u 26 lb uplift at join t joint 18, 53 lb uy d 28 lb uplift at join ce with the 2015 stions R502.11.1 a rd ANSI/TPI 1.	ads. .0psf tom to joint uplift tt 26, plift at int 2. and
FORCES TOP CHORD	Max Grav 2=191 (L 16=250 (18=175 (20=138 (23=171 (25=141 (27=191 ((lb) - Maximum Cor Tension 1-2=0/29, 2-3=-214 4-5=-118/83, 5-6=- 7-8=-120/115, 8-9= 10-11=-70/52, 11-1 13-14=-181/126, 14	C 27), 14=180 (LC 2), LC 27), 17=143 (LC 27) LC 27), 19=177 (LC 27) LC 26), 21=155 (LC 26) LC 26), 24=177 (LC 26) LC 26), 26=254 (LC 26) LC 27), 30=180 (LC 2) npression/Maximum /141, 3-4=-135/99, 106/84, 6-7=-130/130, -120/115, 9-10=-130/12 2=81/34, 12-13=-110/ I-15=0/29	7), 7), 4) 3), 5), 22, 6) 50, 7) 8)	see Standar or consult q TCLL: ASCI DOL=1.25 F snow); Pf=6 Plate DOL= Ct=1.10 This truss h load of 12.0 overhangs r All plates ar Plates chec about its cel	dus exposed where the owner of the owner of the owner of the owner	igner as (roof liv j=10.0 p v: Lumb xp B; F or greate at roof le other liv other win nus 20 c	Is as applical s per ANSI/TF e load: Lumb osf (ground er DOL=1.15 ully Exp.; er of min roof oad of 6.9 psf ve loads. se indicated. Jegree rotatio d bearing	,, ble, Pl 1. er live on		Comme		SE/ 458 VOREW	IL 44 IEERSON	2. Annunun

June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R5	Attic	4	1	Job Reference (optional)	159118173

Scale = 1:71.2

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:56 ID:ofJdnulQv0ucT3N2ptaUA0zHxTS-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:Edge,0-1-9], [5:0-2-8,Edge], [8:Edge,0-1-9]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.69 0.25	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.22 -0.32 0.02 -0.17	(loc) 12-15 10-12 8 10-12	l/defl >999 >812 n/a >608	L/d 240 180 n/a 360	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP 1650F 1.7E 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea	athing directly applie	3) 4) ed or 5)	TCLL: ASCE DOL=1.25 Pl snow); Pf=6. Plate DOL=1 Ct=1.10 This truss ha load of 12.0 j overhangs n	7-10; Pr=20.0 psf (ate DOL=1.25); Pg 9 psf (flat roof snow .15); Category II; E s been designed fo osf or 2.00 times fla on-concurrent with o d for a plus or min	(roof liv =10.0 p v: Lumb xp B; F r greate t roof lo other liv us 20 c	e load: Lumb osf (ground er DOL=1.15 ully Exp.; er of min roof oad of 6.9 ps ve loads.	per 5 f live f on					
BOT CHORD	5-8-5 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=-244 (L Max Uplift 2=-67 (LC Max Grav 2=1166 (L	applied or 10-0-0 or 3=0-3-8 C 12) : 14), 8=-67 (LC 15) .C 27), 8=1166 (LC 2	2 6) 7) 28)	about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	ter. s been designed fo ad nonconcurrent w has been designed fon chord in all areas by 2-00-00 wide will	r a 10.0 ith any for a liv where fit betw) psf bottom other live loa e load of 20. a rectangle veen the bott	nds. Opsf om					
FORCES	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-1509 4-5=-55/129, 5-6=-5: 7-8=-1509/91, 8-9=0	pression/Maximum)/91, 3-4=-945/141, 5/129, 6-7=-945/141)/34	8) 9) , 10	Ceiling dead Bottom chord chord dead le) One RT7A M truss to bear	load (5.0 psf) on m d live load (20.0 psf) oad (10.0 psf) appli liTek connectors re-	ember() and a ed only comme	s). 3-4, 6-7, 4 dditional bott to room. 10- nded to conr it(s) 2 and 8	4-6 om ·12 nect					
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103	2-12=-321/1075, 10- 8-10=-174/1075 3-12=0/551, 7-10=0/ ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=4.2psf; B0	12=0/1075, 551, 4-6=-1131/166 been considered for (3-second gust) CDL=6.0psf; h=25ft;	11 12 Cat. LC	This connect lateral forces) This truss is International R802.10.2 ar) ATTIC SPAC UNINHABITA	ion is for uplift only designed in accord Residential Code s do referenced stanc E SHOWN IS DES ABLE. Standard	and do ance wi ections lard AN IGNED	th the 2015 R502.11.1 a ISI/TPI 1. AS	der and		C	e.	OR LESS	ROLLIN

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 10-11-8, Exterior (2) 10-11-8 to 14-0-2, Interior (1) 14-0-2 to 22-9-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R5A	Attic	6	1	Job Reference (optional)	159118174

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:56 ID:Hrt?_Em2gK0S5DyENb6jiDzHxTR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.1 Plate Offsets (X, Y): [4:0-2-8,Edge], [7:Edge, 0-0-1]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.69 0.25	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.22 -0.33 0.03 -0.17	(loc) 8-13 8-10 1 8-10	l/defl >999 >784 n/a >595	L/d 240 180 n/a 360	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
LUMBER FOP CHORD BOT CHORD WEBS WEDGE	2x4 SP 1650F 1.7E 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3		3) 4)	DOL=1.25 Pl snow); Pf=6.9 Plate DOL=1 Ct=1.10 Plates check	7-10; Pr=20.0 psr ate DOL=1.25); Pg 9 psf (flat roof snov .15); Category II; E ed for a plus or mir ter	(roof liv j=10.0 g v: Lumb Exp B; F nus 20 d	e load: Lumb osf (ground er DOL=1.15 ully Exp.; degree rotatio	er 5 on					
BRACING FOP CHORD BOT CHORD REACTIONS	Structural wood shea 5-8-1 oc purlins. Rigid ceiling directly bracing. (size) 1=0-1-12, Max Horiz 1=-226 (LC Max Uplift 1=-43 (LC Max Grav 1=1112 (L	athing directly applied applied or 10-0-0 oc 7=0-3-8 C 10) 14), 7=-45 (LC 15) C 26), 7=1109 (LC 2	d or 5) 6) 7) 8)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Ceiling dead Bottom chord chord dead lo	s been designed for a nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members, load (5.0 psf) on m d live load (20.0 psf) pad (10.0 psf) appl	or a 10.0 vith any for a liv where I fit betw with BC member f) and a ied only	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf s). 2-3, 5-6, 3 dditional botto to room. 8-10	ds. Dpsf 5. 3-5 om 0					
FORCES FOP CHORD BOT CHORD WEBS NOTES I) Unbalance this design	(lb) - Maximum Com Tension 1-2=-1490/95, 2-3=-5 4-5=-60/123, 5-6=-93 1-10=-167/1054, 8-1 7-8=-186/1054 2-10=0/554, 6-8=0/5 d roof live loads have	pression/Maximum 936/143, 3-4=-59/12: 36/145, 6-7=-1492/3 0=0/1054, 40, 3-5=-1112/171 been considered for	9) 3, 10) 15 11) 12)	Provide mech bearing plate One RT7A M truss to beari This connecti lateral forces This truss is of International R802.10.2 ar	nanical connection at joint(s) 1. iTek connectors re ng walls due to UF ion is for uplift only designed in accord Residential Code s ad referenced stan.	(by oth comme PLIFT at and do lance w sections dard AN SIGNED	ers) of truss t inded to conn jt(s) 7 and 1. es not consid th the 2015 R502.11.1 a ISI/TPI 1.	o lect ler nd		(and the second sec	WTH CA	ROLIN

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-9-12, Exterior (2) 10-9-12 to 13-10-6, Interior (1) 13-10-6 to 21-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

UNINHABITABLE.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R5G	Common Supported Gable	1	1	Job Reference (optional)	159118175

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:57 ID:Hrt?_Em2gK0S5DyENb6jiDzHxTR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62

Plate Offsets (X, Y): [8:0-2-8,Edge], [14:0-3-12,0-1-8], [28:0-3-12,0-1-8]

LUMBER TOP CHORD SCT SCT SCT SCT SCT SCT SCT SCT SCT SCT	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL		(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MR	0.20 0.13 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(lc	oc) l/def - n/a - n/a 16 n/a	L/c 999 999 n/a	H PL MT	ATES 20 eight: 150 lb	GRIP 244/190 FT = 20 ⁶	%
 Solution (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. 1 Row at (size)	lo.2 lo.3 lo.3 *Excep l wood shea purlins, exa ing directly midpt 16=21-11: 18=21-11	t* 23-7,21-9:2x4 SP athing directly applie cept end verticals. applied or 10-0-0 or 7-23, 9-21 -0, 17=21-11-0, -0, 10=21-11-0	No.2 ed or	TOP CHORD 1 7 1 BOT CHORD 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 WEBS 7	-2=0/39, 2-3=-353/ +5=-164/102, 5-6=- '-8=-99/86, 8-9=-99 0-11=-101/48, 11-' 2-13=-231/154, 13 4-15=0/39, 14-16= 7-28=-200/274, 24 2-26=-200/274, 24 2-24=-200/274, 19 8-19=-200/274, 17 6-17=-200/274 '-23=-140/40, 9-21=	(234, 3- -117/72) (86, 9- 12=-15) -14=-3: -209/14 -27=-20 -25=-20 -25=-20 -20=-20 -18=-20 =-124/2	4=-244/156, , 6-7=-100/86 10=-86/70,)/91, 37/241, 49, 2-28=-218 00/274, 00/274, 00/274, 00/274, 00/274, 00/274, 8, 6-24=-167	6, 3/144 7/137,	5) 6) 7) 8) 9) 10) 11) 12)	This truss load of 12 overhang: All plates Plates cho about its o Gable req Truss to b braced ag Gable stu This truss chord live * This trus	has be 0 psf (a non-c are 2x- ccked f enter. uires c e fully ainst la ds spa has be load n s has b	een de or 2.00 concur 4 MT2 for a pl continu sheath ateral n ced at een de oncon been c	esigned for g) times flat ro rent with oth 0 unless oth lus or minus nous bottom (hed from one movement (i .2-0-0 oc. esigned for a ccurrent with designed for	reater of m bof load of er live load erwise indi 20 degree chord bear e face or so e face or so e. diagona 10.0 psf b any other a live load	in roof live 6.9 psf on ls. cated. rotation ing. ecurely al web). ottom live loads. of 20.0psf
DOI =1.25 Plata DOI =1.25): Pa=10.0 pcf (around	FORCES	Max Horiz Max Uplift Max Grav (Ib) - Max Tension	18=21-11: 20=21-11: 23=21-11: 25=21-11: 27=21-11: 28=-261 (L 18=-76 (L 20=-119 (24=-115 (26=-75 (L 28=-79 (L 18=177 (L 28=-79 (L 18=177 (L 23=245 (L 23=245 (L 25=180 (L 27=171 (L cimum Com	-0, 19=21-11-0, -0, 21=21-11-0, -0, 24=21-11-0, -0, 28=21-11-0, LC 12) C 13), 17=-189 (LC C 15), 13=-88 (LC 1 LC 15), 23=-9 (LC 1 LC 14), 25=-89 (LC C 14), 25=-89 (LC C 12) .C 15), 17=165 (LC : .C 27), 19=179 (LC : .C 27), 21=229 (LC : .C 26), 24=157 (LC : .C 26), 26=176 (LC : .C 26), 28=267 (LC pression/Maximum	15), 5), 4), 14), 14), 27), 27), 26), 26), 14)	 NOTES 1) Unbalanced I this design. 2) Wind: ASCE Vasd=103mp II; Exp B; End and C-C Con 10-11-8, Corr 13-11-8 to 22 exposed; en members and Lumber DOL 3) Truss desigr only. For stu see Standard or consult qu 4) TCLL: ASCE DOL 12 SPI 	5-25=-139/111, 4-26 5-27=-174/158, 10-2 1-19=-139/110, 12 3-17=-175/155 roof live loads have 7-10; Vult=130mph b; TCDL=4.2psf; B closed; MWFRS (er her (3) -0-10-8 to 2- her (3) 10-11-8 to 12 2-9-8 zone; cantilev d vertical left and ri d forces & MWFRS =1.60 plate grip DC hed for wind loads in ds exposed to wind l hdustry Gable En alified building desi 7-10; VI=-20, psf (25) PC	5=-142/ 20=-16 -18=-14 been of of (3-sec CDL=6 ovelope -1-8, E) 3-11-8 3-11-8 ght exp for rea DL=1.60 n the pi d (norm d Deta gner as (roof liv	109, 7/141, 43/110, considered fo ond gust) (opsf; h=25ft; exterior zor terior (2) 2-1 Exterior (2) and right osed;C-C for ctions shown) ane of the tru al to the face is as applical s per ANSI/TF e load; Lumb	r ne -8 to ; uss), ble, PI 1. er		on the boi 3-06-00 ta chord and	tom ch II by 2 any o	ord in 00000 ther m	all areas wh wide will fit lembers, with KH CA SEA 4584	ere a recta between th h BCDL =	angle ie bottom I0.0psf.

June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R5G	Common Supported Gable	1	1	Job Reference (optional)	159118175

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 28, 56 lb uplift at joint 16, 9 lb uplift at joint 23, 115 lb uplift at joint 24, 89 lb uplift at joint 25, 75 lb uplift at joint 26, 194 lb uplift at joint 27, 119 lb uplift at joint 20, 88 lb uplift at joint 19, 76 lb uplift at joint 18 and 189 lb uplift at joint 17.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:57 ID:Hrt?_Em2gK0S5DyENb6jiDzHxTR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R6	Common	5	1	Job Reference (optional)	159118176

Load Star, Lavonia, GA - 30553

	6-7-8	13-3-0	
	6-7-8	6-7-8	
Scale = 1:36.4			
Plate Offsets (X, Y): [2:0-2-0,Edge], [3:0-2-0,0-2-4], [4:0-2-	-0,Edge]		

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.49 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 -0.13 0.01	(loc) 6-12 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 209
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-9-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=63 (LC Max Uplift 2=-126 (L) Max Grav 2=583 (LC	athing directly applie applied or 8-2-9 oc 4=0-3-8 16) C 13), 4=-126 (LC 12 C 2), 4=582 (LC 2)	4) 5) d or 6) 7) 8) 2)	Unbalanced design. This truss ha load of 12.0 j overhangs n Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	snow loads have s been designed on-concurrent witt ed for a plus or m ter. s been designed d nonconcurrent has been designed n chord in all area y 2-00-00 wide w y other members	been cor for greate lat roof lo n other liv inus 20 c for a 10.0 with any d for a liv s where ill fit betv	nsidered for t er of min roo bad of 6.9 ps ve loads. degree rotatio 0 psf bottom other live loa e load of 20. a rectangle veen the bott	his f live f on on ads. Opsf rom					
FORCES	(lb) - Maximum Com Tension 1-2=0/23, 2-3=-756/6	pression/Maximum	9)	truss to bear This connect	ing walls due to U ion is for uplift on	PLIFT at y and do	it(s) 2 and 4 ies not consider	der					
BOT CHORD WEBS	4-5=0/23 2-6=-452/608, 4-6=-4 3-6=-322/314	452/608	10) L C) This truss is International R802.10.2 at	designed in accor Residential Code nd referenced sta Standard	dance w sections ndard AN	ith the 2015 8 R502.11.1 a NSI/TPI 1.	and					

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-8, Exterior (2) 6-7-8 to 9-7-8, Interior (1) 9-7-8 to 14-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=6.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

LOAD CASE(S) Standard

Page: 1

= 20%

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R6B	Common Supported Gable	1	1	Job Reference (optional)	159118177

Scale = 1:36.4

	() L = -, -3-1,	1,1	.,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	/TPI2014 Truss desig	CSI TC BC WB Matrix-MSH	0.49 0.43 0.07 in the p	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20 ^c	%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-3-0, 7=13-3-0, Max Horiz 2=63 (LC Max Uplift 2=-92 (LC 6=-33 (LC 11=-104 (Max Grav 2=339 (LC (LC 2), 7= 2)	athing directly applied applied or 10-0-0 oc 4=13-3-0, 6=13-3-0, 11=13-3-0 16), 7=63 (LC 16) 16), 7=63 (LC 16), 16), 7=-92 (LC 16), LC 17) 22), 4=339 (LC 2), 6= -339 (LC 2), 11=339 (4) d or 5) 6) , 7) =487 8) 9) 1(D 9) 10)	only. For stu see Standar, or consult qu TCLL: ASCE DOL=1.25 P snow); Pf=6. Plate DOL=1 Ct=1.10 Uhbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cer Gable requir Gable studs This truss ha	ads exposed to wir d Industry Gable E valified building de 57-10; Pr=20.0 ps late DOL=1.25); P 9 psf (flat roof sno 1.15); Category II; snow loads have I psf or 2.00 times f on-concurrent with ted for a plus or m ter. es continuous bott spaced at 0-0-0 o is been designed	nd (norm ind Deta signer a f (roof liv g=10.0 j w: Lumb Exp B; F been col for great lat roof l n other li inus 20 f com choic c. for a 10.	al to the face, ils as applicat s per ANSI/TF e load: Lumb ssf (ground per DOL=1.15 'ully Exp.; nsidered for th er of min roof poad of 6.9 psf we loads. degree rotatio d bearing.), ble, 21 1. er bis live on n						
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C 6-7-8, Ext 14-1-8 zor vertical lef forces & M DOL=1.60	Tension 1-2=0/23, 2-3=-224/ 4-5=0/23 2-6=-36/132, 4-6=-11 3-6=-259/94 ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=4.2psf; BC Enclosed; MWFRS (en Exterior (2) -0-10-8 to 2 erior (2) 6-7-8 to 9-7-8, ne; cantilever left and r it and right exposed;C- MWFRS for reactions si 0 plate grip DOL=1.60	108, 3-4=-224/113, 8/132 been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone 2-1-8, Interior (1) 2-1-8 (Interior (1) 9-7-8 to ight exposed ; end C for members and hown; Lumber	11) 12) Cat. 3 to LO	chord live loc * This truss I on the bottor 3-06-00 tall I chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 a AD CASE(S)	ad nonconcurrent i has been designed in chord in all area by 2-00-00 wide wi hy other members. fiTek connectors r ing walls due to U tion is for uplift onl s. designed in accor Residential Code nd referenced star Standard	With any I for a liv s where ecomme PLIFT a y and do dance w sections ndard AN	e load of 20.0 a rectangle veen the botto anded to conn : jt(s) 2, 4, and es not consid ith the 2015 ; R502.11.1 a JSI/TPI 1.	as.)psf om ect d 6. er nd		, number	A A A A A A A A A A A A A A A A A A A	SEA 4584 SEA	L H4 EEFR	A CHINA COLOR

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R6C	Common	1	1	Job Reference (optional)	159118178

Load Star, Lavonia, GA - 30553

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:57

Page: 1

	6-7-8	13-3-0	
	6-7-8	6-7-8	
Scale = 1:36.4			

Plate Offsets (X, Y):	[2:0-2-0,Edge],	[3:0-2-0,0-2-4],	[4:0-2-0,Edge]
	[z.0-z-0,Luge],	[0.0-2-0,0-2-4],	[4.0-2-0,Luge]

			., .9.1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) \$ 20.0 F 6.9/10.0 L 10.0 F 0.0* (10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.49 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.13 0.01	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheath 5-9-15 oc purlins. Rigid ceiling directly ap bracing. (size) 2=0-3-8, 4=(Max Horiz 2=63 (LC 16 Max Uplift 2=-108 (LC Max Grav 2=583 (LC 2 (lb) - Maximum Compr Tension 1-2=0/23, 2-3=-756/16 4-5=0/23 2-6=-51/608, 4-6=-51/6 3-6=0/314	hing directly applied pplied or 10-0-0 oc -0-3-8 6) 16), 4=-108 (LC 17 2), 4=582 (LC 2) ression/Maximum 58, 3-4=-756/168, 608	4) 5) d or 6) 7) 8) 7) 9)	Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One RT7A M truss to bear This connect lateral forces) This truss is International R802.10.2 at	snow loads have b is been designed for psf or 2.00 times fla on-concurrent with ed for a plus or mir ter. is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by 0ther members. ITEk connectors re- ing walls due to UF ion is for uplift only i. designed in accord Residential Code s and referenced stam	or great at roof le other li nus 20 o or a 10.0 vith any for a liv s where I fit betw ecomme PLIFT at and do dance w sections dard AN	nsidered for the er of min roof bad of 6.9 psf ve loads. degree rotatic D psf bottom other live loa e load of 20.0 a rectangle veen the botto unded to conn jt(s) 2 and 4. es not consic ith the 2015 i R502.11.1 a ISI/TPI 1.	his live fon ds. Dpsf Dom lect der					
 NOTES Unbalance this design Wind: ASO Vasd=103 	ed roof live loads have be n. CE 7-10; Vult=130mph (3 smph: TCDL=4.2psf: BCD	een considered for 3-second gust) DL=6.0psf: h=25ft: (LC Cat.	OAD CASE(S)	Standard					(and the second	WITH CA	ROLIN

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-8, Exterior (2) 6-7-8 to 9-7-8, Interior (1) 9-7-8 to 14-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=6.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	R6X	Common Girder	1	2	Job Reference (optional)	159118179

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:58 ID:ZCoeSdsR0UuTRI_aHZkMUizHxTK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-7-8	13-3-0	
	6-7-8	6-7-8	
Scale = 1:37.9			
Plate Offsets (X, Y): [1:0-1-0,0-0-1], [2:0-2-0,0-1-12], [3:0)-1-0,0-0-1], [4:0-5-12,0-1-8]		

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.36 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.02	(loc) 4-6 4-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided t unless oth 3) Unbalance this design	2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 Structural wood shea 5-2-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 3 Max Horiz 1=-54 (LC Max Uplift 1=-650 (LI Max Grav 1=3647 (L (Ib) - Maximum Com Tension 1-2=-4867/821, 2-3= 1-4=-687/821, 2-3= 2-4=-599/4021 to be connected toget) nails as follows: s connected as follows: ords connected as follows ords as front (F) or bac section. Ply to ply conn o distribute only loads to erwise indicated. ad roof live loads have h.	athing directly applied applied or 10-0-0 oc 3=0-3-8 13) C 12), 3=-519 (LC 13 .C 25), 3=3150 (LC 2 pression/Maximum -4869/823 -687/4339 ther with 10d c: 2x4 - 1 row at 0-9-0 cows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, lections have been noted as (F) or (B), been considered for	4) d or 5) 3) 6) 7) 8) 9) 9) 10 11 AD 12 13	Wind: ASCE Vasd=103mp II; Exp B; Enn cantilever lef right exposed TCLL: ASCE DOL=1.25 PI snow); Pfe6. Plate DOL=1 Ct=1.10 Unbalanced design. Plates check about its cen This truss ha chord live loa * This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Two RT7A M truss to bear connection is forces.) One RT7A M truss to bear connection is forces.) One RT7A M truss to bear connection is forces.) This truss is International R802.10.2 ar) Use MiTek H 6-16d nails ir max. starting connect truss	7-10; Vult=130mp ph; TCDL=4.2psf; closed; MWFRS (it and right expose d; Lumber DOL=1. 7-10; Pr=20.0 psi late DOL=1.25); P 9 psf (flat roof sno .15); Category II; snow loads have I ed for a plus or mi- ter. s been designed fa d nonconcurrent as been designed n chord in all area by 2-00-00 wide wi by 3 connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star IUS26 (With 14-16 to Truss) or equiv at 1-2-4 from the s(es) to back face	ch (3-sec BCDL=6 envelope d; end v. 60 plate f (roof liv g=10.0 p w: Lumb Exp B; F been cor inus 20 c or a 10.0 with any f for a liv s where Il fit betw ecomme PLIFT at I does no dance wi sections adard AN id nails in aleft end of bottor	ond gust) .0psf; h=25ft;) exterior zor ertical left an grip DOL=1.1 e load: Lumb sf (ground er DOL=1.15 ully Exp.; sidered for th legree rotatio 0 psf bottom other live load e load of 20.0 a rectangle reen the bottor inded to conn it(s) 1. This ot consider lat th the 2015 R502.11.1 a SI/TPI 1. to Girder & aced at 20-0 to 9-2-4 to n chord.	c Cat. ne; d 60 er ; nis on ds. opsf om teral teral teral nd	14) Use 6-1 left chc 15) Fill 16) Dou ties nail LOAD (1) Dr In Un Ca	A MiTek 6d nails end to cord. all nail huble insta to be in interfere CASE(S ead + Sr crease= niform Lo Vert: 1- oncentra Vert: 6], 14=	HUS26 into Tr onnect oles w allation stalled nce in) Sta ads (II =-34, ted Lo. -634 (I	6 (With 14-16d na uss) or equivaler t truss(es) to bac here hanger is in is of RT7A requir on opposite side n single ply truss. ndard alanced): Lumber b/ft) 2-3=-34, 1-3=-20 ads (Ib) B), 11=-673 (B), B), 15=-634 (B) H CA SEA 4584	ails into Girder & it at 11-2-4 from the k face of bottom contact with lumber. e the two hurricane is of top plate to avoid r Increase=1.15, Plate) 12=-634 (B), 13=-634 KOU L L L

- Unbalanced roof live loads have been considered for 3) this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

.10 ununun . June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	V1	Valley	1	1	Job Reference (optional)	159118180

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:58 ID:I2RNCZngRe8JjNXQwIdyFRzHxTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.7

												1	
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 6.9/10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25		CSI TC BC	0.26 0.14	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 1=7-7-14, Max Horiz 1=232 (LC Max Uplift 5=-160 (L Max Grav 1=140 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 5=7-7-14, 6=7-7-14 C 14) C 14), 6=-120 (LC 14 C 28), 5=284 (LC 26)	4) 5) d or 7) 8) 9) 4) 1(This truss ha load of 12.0 p overhangs nd Plates check about its cen Gable require Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar D) Provide mecl bearing plate	s been designed for optimes for 2.00 times flat on-concurrent with ed for a plus or mir ter. as continuous botto spaced at 4-0-0 oc. s been designed for d nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta	or great at roof le other limus 20 of or a 10. for a liv where fit betw (by oth nding 1	er of min roof pad of 6.9 psl ve loads. Jegree rotatic d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 60 lb uplift at	live f on on ds. Dpsf om t joint					
FORCES	6=347 (LC	26)		5 and 120 lb	uplift at joint 6.			,					
FORCES	Tension	pression/maximum	11	I his truss is International	designed in accord	ance w	R502 11 1 a	and					
TOP CHORD	1-2=-253/211, 2-3=-	180/122, 3-4=-67/0,		R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.						
BOT CHORD	1-6=-93/147.5-6=0/0	0	L	OAD CASE(S)	Standard								
WEBS	2-6=-311/160	-											
NOTES													
 Wind: ASC Vasd=103 II; Exp B; I; and C-C E 9-6-12 zor reactions s DOL=1.60 Truss des only. For see Stand or consult TCLL: ASC DOL=1.25 snow); Pf= Plate DOL Ct=1 10 	CE 7-10; Vult=130mph smph; TCDL=4.2psf; BG Enclosed; MWFRS (en Exterior (2) 0-0-6 to 3-0 ne;C-C for members ar shown; Lumber DOL=1 signed for wind loads ir studs exposed to wind lard Industry Gable End qualified building desig CE 7-10; Pr=20.0 psf (for For Participation of the participation of the participation participation of the participation of the pa	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zone- 6, Interior (1) 3-0-6 in hd forces & MWFRS 1.60 plate grip h the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe =10.0 psf (ground : Lumber DOL=1.15 sp B; Fully Exp.;	Cat. e to for ss le, l 1. er							Gunner	A CONTRACTOR OF THE PARTY OF TH	SEA 4584	ROCKING CONTRACTOR

- 2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 3) DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=6.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

100000

June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	V2	Valley	1	1	Job Reference (optional)	159118181

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:59 ID:I2RNCZngRe8JjNXQwIdyFRzHxTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-1-14

	Scale	= 1:31	.3
--	-------	--------	----

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.29 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-2-4 oc purlins, exc Rigid ceiling directly bracing. size) 1=5-1-14, Max Horiz 1=160 (LC Max Uplift 4=-157 (L Max Grav 1=176 (LC (lb) - Maximum Com	athing directly applied cept end verticals. applied or 10-0-0 oc 4=5-1-14 C 14) C 14) C 14) C 2), 4=355 (LC 26) pression/Maximum	 5) Plates chec about its cei about its cei 6) Gable requi 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mer bearing plat 4. 11) This truss is Internationa 	ked for a plus or m nter. res continuous boi spaced at 4-0-0 c as been designed ad nonconcurrent has been designed m chord in all aree by 2-00-00 wide w ny other members chanical connectio e capable of withs designed in accoo I Residential Code	ttom chor bc. for a 10.0 d for a liv as where vill fit betw s. n (by oth tanding 1 rdance w e sections	degree rotation d bearing.) psf bottom other live loac e load of 20.0 a rectangle veen the botto ers) of truss to 57 lb uplift at j ith the 2015 R502,11.1 ar	ls. psf m joint					
TOP CHORD BOT CHORD	1-2=-248/143, 2-3=-0 1-4=-96/268	67/0, 2-4=-299/295	R802.10.2 a LOAD CASE(S)	Standard	Indard AN	ISI/TPI 1.						
1) Wind: ASCI Vasd=103m II; Exp B; Ei and C-C Ex 7-0-12 zone	E 7-10; Vult=130mph ph; TCDL=4.2psf; B(nclosed; MWFRS (en terior (2) 0-0-6 to 3-0 :C-C for members ar	Cat. e io for								mmm	9999.	

and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 7-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) Truss designed for wind loads in the plane of the truss

 For studies exposed to wind includes in the plane of the trades only. For studies exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=6.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 6.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	V3	Valley	1	1	Job Reference (optional)	159118182

6-11-12

6-11-12

Load Star, Lavonia, GA - 30553

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries. Inc. Thu Jun 22 09:39:59 ID:DE?IPvoICxGAKX6dU08BnezHxTP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x3 II

8-10-4

1-10-8

4

Page: 1

3 10 9 1.5x3 u 4-8-2 5 6 1.5x3 II 1.5x3 u 2x4 🦽 6-11-12 CSI DEFL l/defl L/d PLATES GRIP in (loc) тс 0.27 Vert(LL) n/a n/a 999 MT20 244/190 BC Vert(CT) 0.13 n/a n/a 999 WB 0.05 Horz(CT) 0.00 5 n/a n/a IRC2015/TPI2014 Matrix-MP Weight: 34 lb FT = 20%4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 6.9 psf on overhangs non-concurrent with other live loads. Plates checked for a plus or minus 20 degree rotation about its center. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 131 lb uplift at joint 5 and 117 lb uplift at joint 6. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

5-11-1 12 8 Г -0-0 Spacing 2-0-0 (psf) Plate Grip DOL 20.0 1.25 6 9/10 0 Lumber DOL 1 25 10.0 Rep Stress Incr YES

5)

6)

7)

8)

9)

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing **REACTIONS** (size) 1=6-11-12, 5=6-11-12, 6=6-11-12 Max Horiz 1=192 (LC 14) Max Uplift 5=-131 (LC 11), 6=-117 (LC 14) Max Grav 1=111 (LC 28), 5=290 (LC 26), 6=312 (LC 26) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-246/201, 2-3=-183/125, 3-4=-67/0, 3-5=-266/281 BOT CHORD 1-6=-83/109.5-6=0/0 WEBS 2-6=-299/163

0.0

10.0

Code

NOTES

Scale = 1:36.7 Loading

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-6 to 3-0-2, Interior (1) 3-0-2 to 8-10-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=6.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	V4	Valley	1	1	Job Reference (optional)	159118183

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:59 ID:DE?IPvoICxGAKX6dU08BnezHxTP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🖌

29.4

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	20.0 6.9/10.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.25 1.25 YES IRC2015/TPI2014 5) Plates c	TC BC WB Matrix-MP	0.27 0.23 0.00	Vert(LL) Vert(CT) Horz(CT) degree rotatio	n/a n/a 0.00	- 4	n/a n/a n/a	999 999 n/a	MT20 Weight: 21 lb	244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-6-2 oc purlins, exc Rigid ceiling directly bracing. (size) 1=4-5-12,	athing directly applie sept end verticals. applied or 10-0-0 oc 4=4-5-12	about its 6) Gable re 7) Gable si 8) This true chord lii 9) * This tru on the b 3-06-00 chord ar 10) Provide	center. quires continuous bot uds spaced at 4-0-0 d s has been designed load nonconcurrent iss has been designe ottom chord in all area tall by 2-00-00 wide w d any other members mechanical connection	ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv s. n (by oth	d bearing. O psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ids. Opsf om						
FORCES TOP CHORD BOT CHORD	Max Horiz 1=147 (LC Max Uplift 4=-161 (LI Max Grav 1=145 (LC (lb) - Maximum Com Tension 1-2=-220/135, 2-3=-0 1-4=-74/230	: 14) C 14) : 2), 4=330 (LC 26) pression/Maximum 67/0, 2-4=-285/293	4. 11) This trus Internati R802.10	s is designed in acco onal Residential Code 2 and referenced sta (S) Standard	tanding 1 rdance w sections ndard AN	61 lb uplift at ith the 2015 s R502.11.1 a ISI/TPI 1.	i joint						
NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E 6-4-10 zor	CE 7-10; Vult=130mph mph; TCDL=4.2psf; B0 Enclosed; MWFRS (en Exterior (2) 0-0-6 to 3-0 ne;C-C for members ar	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon -6, Interior (1) 3-0-6 nd forces & MWFRS	Cat. e to for									11111	

6-4-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) Truss designed for wind loads in the plane of the truss only. For study expected to wind (normal to the face)

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber Details and the face).

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (ground snow); Pf=6.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 6.9 psf on overhangs non-concurrent with other live loads.

SEAL 45844 June 22,2023

Job	Truss	Truss Type	Qty	Ply	John-Jennifer Miceli WI	
Q015549-R	V5	Valley	1	1	Job Reference (optional)	159118184

Run: 8.71 S May 19 2023 Print: 8.710 S May 19 2023 MiTek Industries, Inc. Thu Jun 22 09:39:59 ID:I2RNCZngRe8JjNXQwIdyFRzHxTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-2-0

Page: 1

3x4 ≠

Scale = 1:24.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

1-9-12

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 6.9/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.29 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T	2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-0, 3 Max Horiz 1=28 (LC Max Uplift 1=-47 (LC Max Grav 1=287 (LC (lb) - Maximum Com Tension 1-2=-549/216, 2-3=- 1-3=-181/480 ed roof live loads have be conflive loads have conflive loads have conflite loads have conflive loads have conflive loads have conflive	athing directly applie applied or 10-0-0 oc 3=7-2-0 16) 2 16), 3=-47 (LC 17) C 2), 3=-47 (LC 2) pression/Maximum 549/216 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone -8, Interior (1) 3-0-8 ft; Interior (1) 6-7-8 to pht exposed ; end C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe =10.0 psf (ground : Lumber DOL=1.15 xp B; Fully Exp.;	5) Unbalanced design. 6) Plates chec about its ce 3) Gable stud: 9) This truss f chord live la 10) * This truss on the botto 3-06-00 tall chord and a 11) Provide me bearing pla 1 and 47 lb 12) This truss is Internationa R802.10.2 LOAD CASE(S	d snow loads have be ked for a plus or min nter. ires continuous botto s spaced at 4-0-0 oc. as been designed fo pad nonconcurrent w has been designed fo m chord in all areas by 2-00-00 wide will any other members. chanical connection te capable of withsta uplift at joint 3. a designed in accorda al Residential Code s and referenced stance) Standard	een cor aus 20 c am chor it a 10.0 ith any for a liv where fit betw (by oth nding 4 ance w sections dard AN	asidered for the degree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t .7 lb uplift at ju ith the 2015 IR 502.11.1 a USI/TPI 1.	nis on ds.)psf om oint ind		Continue.	La	SEA 4582 SEA 4582	ROC 14 14 0HN9011111 222,2023	
	IING - Verify design paramete	ers and READ NOTES ON T	THIS AND INCLUDED MITEK	REFERENCE PAGE MII-74	173 rev. 5	/19/2020 BEFOR	E USE.				ENGINEER	ING BY	

