Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

Owner:

Sheet: Property ID: Lot #:

File #:

Code:

Schaperts Gossing Lot 23

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

System

2520

2540/500

Available Space (.1945)

System Type(s)

Site LTAR

Applicant: Drifam Giroleus

Locati Water Evalua	ss: sed Facility: on of Site: Supply: ation Method of Wastewate	SFD Auge	Desi Prop	Evaluated: gn Flow (.1949): erty Recorded: Individual V Pit Industrial P	Cut	Othe	er			
P R O F I L E	.1940 Landscape Position/ Slope %	Horizon Depth (In.)	SOIL MORPHOLOGY .1941		OTHER PROFILE FACTORS .1942 Soil .1943 .1956 .1944				Profile	
			Structure/ Texture	Consistence Mineralogy	Wetness/ Color	Soil Depth (IN.)	Sapro Class	Restr Horiz	Class & LTAR	
1,2	2-392	0-10	5	hearson						
		10-14	54	Fre Sous SS						
		14-41	SCIA	Fre SBRS.P	36-38 2.				-3	
									+	\dashv
Descri	ption	I	nitial F	Repair System	Other Factors (.1946):					

Site Classification (.1948): 75

Others Present:

Evaluated By:

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	TEXTURES	. <u>1955 LTAR</u>	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	Ī	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	II	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	Ш	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC

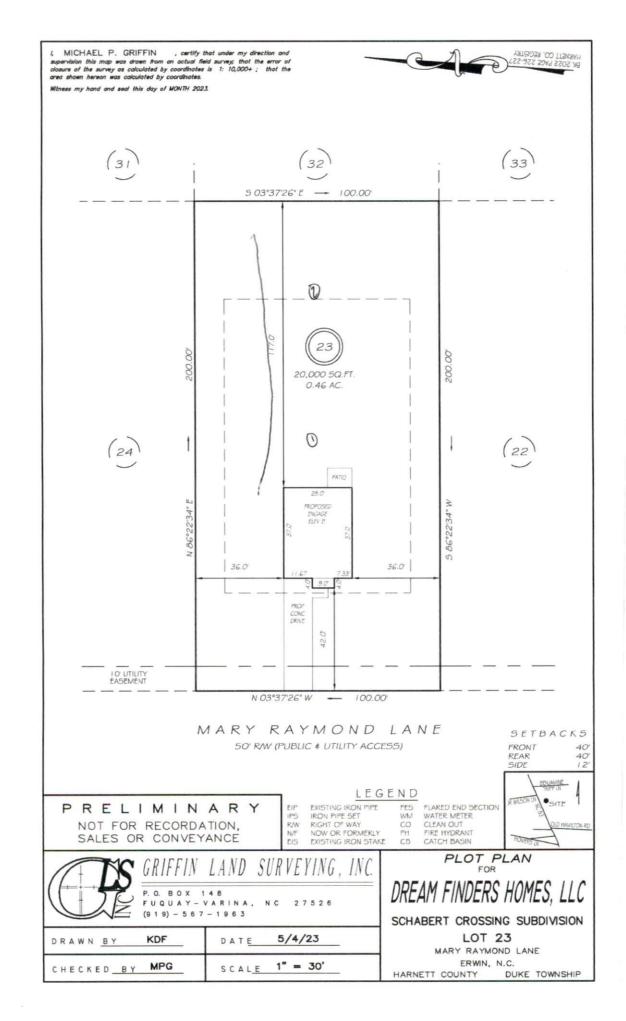
0.4 - 0.1

STRUCTURE SG-SINGLE GRAIN M- MASSIVE CR-CRUMB

MINERALOGY SLIGHTLY EXPANSIVE

EXPANSIVE

SIC-SILTY CLAY C-CLAY SC-SANDY CLAY


IV

GR-GRANULAR SBK-SUBANGULAR BLOCKY

ABK-ANGULAR BLOCKY

PL-PLATY PR-PRISMATIC

Show profile locations and other site features (dimensions, references or benchmark, and North) 100 0 P 100

0-12 S 10-14 SC| 14-41 C Linear 2%