

				Bearing I deemad frequirem attached requirem	ROC RUS eilly R Fayet Phon Fax: reactions to comply ents. The Tables (tents) to number	OF & SES oad Ir teville e: (910) less thar with the contract determin	k FL & B adustr , N.C.)) 864 864-4	OOF EAN ial Par 28309 -8787 444	R NS rk e two Code undation
		8. 0.		eactions 15000#. / eetained eaction Fables. A retained reactions Signatur	s greater A register to design that exce A register to design s that exce e	than 3000 the suppled the suppled the suppled the suppled the suppled the suppled 1500 Davi Davi NRT FC ON TABLE ck STUDS	# but no n profess over syste a specific profess over syste D#. d Lai DR JAC (5 R502.5() REQUIRED	t greater ional sha im for and in the ional sha im for all indry CK STU CK STU	than III be y attached II be
	,				3 4 5 6 7 8	HEADER. 2550 5100 7650 10200 15300	2 1 1 1 1 1 1 1 1 1 1	102 136	REQ ⁽
A5GE 1'4"		5. 6	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise All Walls Shown Are Considered Load Bearing	Harnett					
		32'	Roof Area = 1692.08 sq.ft. Ridge Line = 52.07 ft. Hip Line = 0 ft. Horiz. OH = 115.69 ft. Raked OH = 175.3 ft. Decking = 58 sheetsPadded HVAC 2nd Floor Walls Tray Ceiling Drop Beam	. Sanford /	Oleander Lane	Roof	. 01/18/23	V David Landry	. Lenny Norris
			Connector InformationSymProductManufQtySupported MemberHeaderTrussImage: HUS26USP12NA16d/3-1/2"16d/3-1/2"Image: HUS26USP1Varies16d/3-1/2"16d/3-1/2"	CITY / CO	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP
M1 M1GE	BBO	5: 0:	$\begin{tabular}{ c c c c c c } \hline Products & Piles & Net Qty & Fab Type \\ \hline PlotID & Length & Product & Plies & Net Qty & Fab Type \\ \hline BM1 & 12'0" & 1-3/4"x 16" LVL Kerto-S & 2 & 2 & FF \\ \hline BM2 & 15'0" & 1-3/4"x 16" LVL Kerto-S & 2 & 2 & FF \\ \hline BM3 & 12'0" & 2x10 SPF No.2 & 2 & 2 & FF \\ \hline GDH & 20'0" & 1-3/4"x 14" LVL Kerto-S & 2 & 2 & FF \\ \hline \hline \hline \hline Truss Placement Plan \\ \hline \hline \hline Scale: 1/4"=1' & \hline $	Weaver Development	Lot 25 West Preserve	Hickory II "C" / 2GLF, CP	N/A		J0123-0221
۲ ۲ ۲				BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #
			= Indicates Left End of Truss (Reference Engineered Truss Drawing)	These the comport design a See indi identified designe permane for the o support and color designe consult	A TRUSS russes ar nents to b at the spr vividual de do on the ent bracin overall st structure umns is t r. For ge BCSI-B1 elivery pa	e designe e incorpo ecification esign she placemen ong of the ructure. T e includin he respon heral guio and BCS	ed as indi- prated intr of the b ets for ea- nt drawin r tempor roof and 'he desig g header nsibility of lance reg I-B3 prov	vidual bu o the bui uilding d uch truss g. The bu ary and floor sys s, beams of the bui arding bu ided with	uilding Iding esigner. design iilding tem and russ , walls, Iding racing,

	de re att	Re Re searing r semed t quirem tached quirem	RO(RUS eilly R Fayet Phon Fax: reactions to completents to completents) to	OF & SES oad Ir teville e: (910) less thar with the contract determin	& FL & B ndustr , N.C. 0) 864-4 864-4	I to 3000# tive Code refer to th prescriptiv imum fou	f are e ve Code indation
8. 0.	re. 15 re: Ta re: re:	actions 000#. A tained taction f tained tained tained f actions	a greater A register to design that exce A register to design that exce a register to design that exce a register to design that exce a register to design to design that exce a register to design that exce to	than 3000 ed design the supp eds thoss ed design the supp eed 1500 Davi Davi NRT FC ON TABLE	D# but no n profess opt syste specific profess opt syste off. d Lai DR JAC ES R502.5(REQUIRED	uired to s i greater t ional sha em for any di in the a ional shal em for all umdry CK STU CK STU () & (b)) 9 @ EA END	than II be y attached II be
16' 4"	1 3 5 6 8 8 10 11 13		3 4 5 6 7 8	2550 5100 7650 10200 12750	2 0 0 1 1 (3) PLY HEADER (3) PLY HEADER	1360	(†) (†) (†) (†) (†) (†) (†) (†) (†) (†)
	Ridge Line = 52.07 ft. Hip Line = 0 ft. Horiz. OH = 115.69 ft. Raked OH = 175.3 ft. Decking = 58 sheets Drop Beam Sym Product Manuf Oty Supported Header Truss	Ty / CO. Sanford / Harnett	ADDRESS Oleander Lane	MODEL Roof	DATE REV. 01/18/23	DRAWN BY David Landry	SALES REP. Lenny Norris
21.2"	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weaver Development	Lot 25 West Preserve ADC	Hickory II "C" / 2GLF, CP	N/A	DR	J0123-0221 SAL
	= Indicates Left End of Truss (Reference Engineered Truss Drawing)	these tr ompon lesign a lee indi dentifie lesigne ermane or the c upport nd colu lesigne onsult	usses ar ents to b at the spe vidual de d on the r is respo ent bracin overall st structure umns is t r. For ge BCSI-B1	e designe e incorpo ecification esign she placemen ong of the ructure. T e includin he respon heral guio and BCS	ed as ind prated int n of the b ets for ea nt drawin or tempor roof and "he desig g header nsibility of dance reg I-B3 prov	GRAM ON Vidual buo to the buil uilding dd ch truss g. The bu ary and floor syst n of the tu s, beams, of the buil arding br ided with sbcindus	ilding ding esigner. design ilding tem and russ , walls, ding racing, the

RE: J0123-0221 Lot 25 West Preserve Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development	Project Name: J0123-0221
Lot/Block: 25	Model: Hickory II
Address: Oleander Lane City: Sanford	Subdivision: West Preserve State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

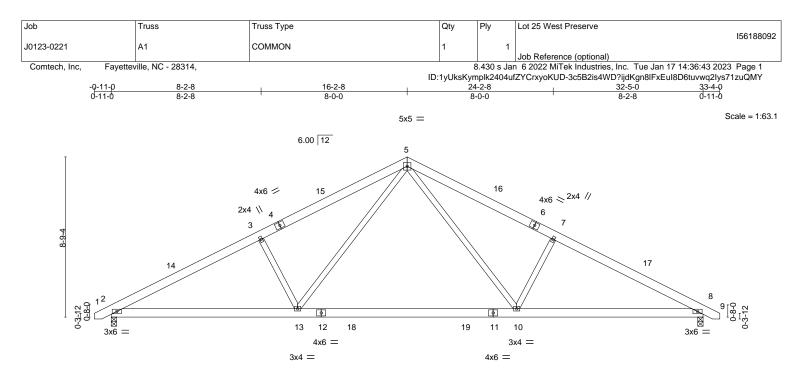
Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	156188092	A1	1/18/2023	21	156188112	M2-GR	1/18/2023
2	156188093	A1GE	1/18/2023	22	156188113	V1GE	1/18/2023
3	156188094	A2	1/18/2023	23	156188114	V2	1/18/2023
4	156188095	A3	1/18/2023	24	156188115	V3	1/18/2023
5	156188096	A4	1/18/2023	25	156188116	V4	1/18/2023
6	156188097	A5	1/18/2023	26	156188117	V5	1/18/2023
7	156188098	A5GE	1/18/2023	27	156188118	V6	1/18/2023
8	156188099	B1	1/18/2023	28	156188119	V7	1/18/2023
9	156188100	B1-GR	1/18/2023				
10	156188101	B1GE	1/18/2023				
11	156188102	B2	1/18/2023				
12	156188103	B2GE	1/18/2023				
13	156188104	C1	1/18/2023				
14	156188105	C1GE	1/18/2023				
15	156188106	D1-GR	1/18/2023				
16	156188107	D1GE	1/18/2023				
17	156188108	G1-GR	1/18/2023				
18	156188109	M1	1/18/2023				
19	156188110	M1GE	1/18/2023				
20	156188111	M2	1/18/2023				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8	<u>22-2-8</u>	<u>32-5-0</u>
	10-2-8	12-0-0	10-2-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.64 Vert(CT) -0.47 10-13 WB 0.27 Horz(CT) 0.05 8	I/defi L/d PLATES GRIP >999 360 MT20 244/190 >824 240 n/a n/a >999 240 Weight: 208 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13)

Max Uplift 2=-89(LC 12), 8=-89(LC 13)Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

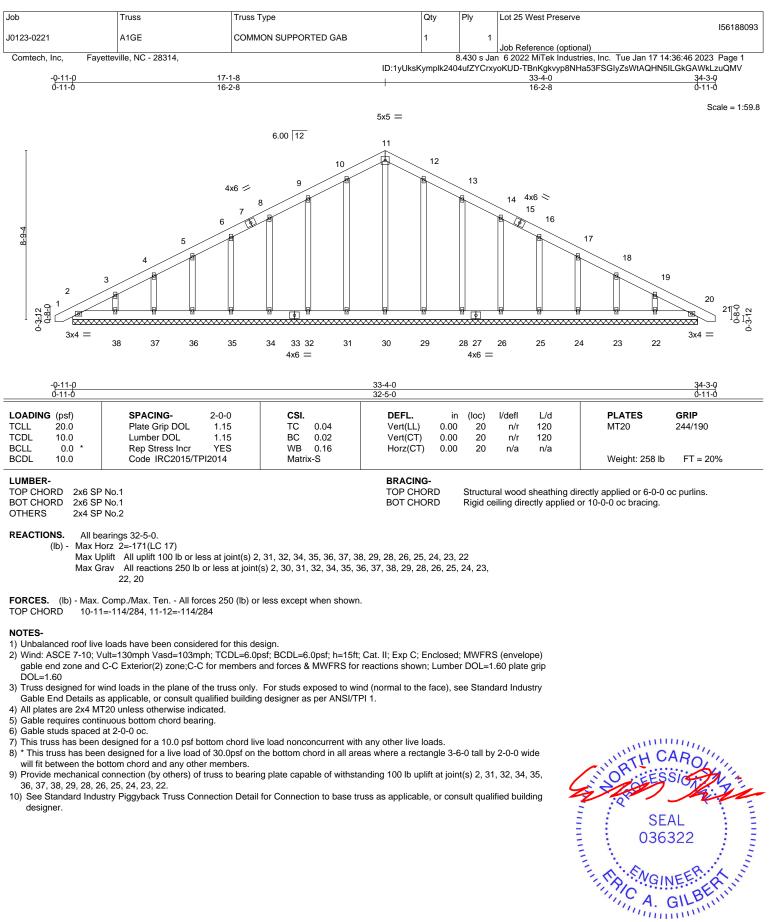
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

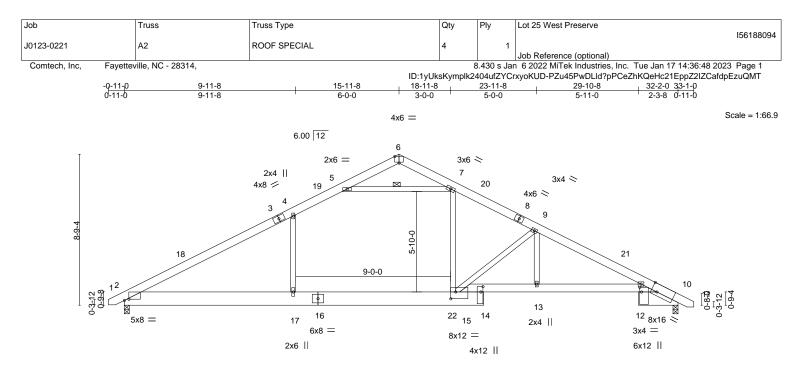
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 2 and 89 lb uplift at joint 8.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-11-7 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

January 18,2023

		9-11-	3		18-1	1-8	20-10-8	-	11-8	29-10-8	32-2-0	
		9-11-	8	I	9-0	-0	' 1-11-0	<u>'</u> 3-'	1-0	5-11-0	2-3-8	
Plate Offse	ts (X,Y)	[2:0-3-2,0-0-14], [6:0-3-0	,Edge], [10:0-	4-0,Edge], [12	2:0-3-4,0-1-4	l], [14:0-3-12,0-1-8], [15:0-:	3-8,0-4-	-12]			
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.72	Vert(LL)	-0.20	17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.35	17	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.71	Horz(CT)	0.09	10	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	(-S	Wind(LL)	0.15	2-17	>999	240	Weight: 245 lb	FT = 20%
LUMBER-						BRACING						

WEBS

TOP CHORD 2x6 SP No.1 BOT CHORD 2x10 SP No.1 *Except* 10-15: 2x6 SP 2400F 2.0E WEBS 2x4 SP No.2

TOP CHORD Structural wood sheathing directly applied or 4-1-2 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 5-7

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=-111(LC 10) Max Uplift 2=-88(LC 12), 10=-90(LC 13)

Max Grav 2=1386(LC 2), 10=1343(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-2191/400, 4-5=-1838/478, 7-9=-2220/513, 9-10=-2864/547

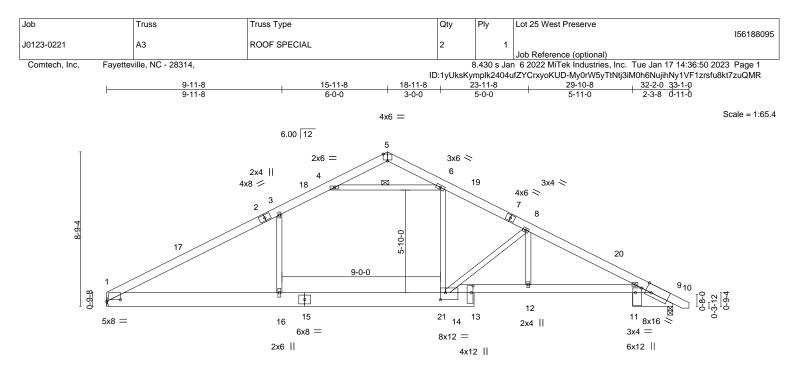
BOT CHORD 2-17=-187/1815, 15-17=-189/1827, 13-15=-368/2503, 10-13=-377/2503

WEBS 7-15=-110/948, 4-17=-17/415, 5-7=-1904/450, 9-15=-1085/235, 9-13=0/625

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

1	9-11-8	18-11-8	20-10-8	23-11-8	29-10-8	32-2-0	
Г	9-11-8	9-0-0	1-11-0	3-1-0	5-11-0	2-3-8	
Plate Offsets (X,Y)	[1:0-9-6,0-1-2], [5:0-3-0,Edge], [9:0-4-0,E	dge], [11:0-3-4,Edge], [13:0-4-12	,0-1-4], [14:0-3-8	8,0-4-12]			

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.76 0.66 0.70 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.36 0.09 0.16	(loc) 16 16 9 1-16	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1					BRACING- TOP CHOF		Structu	ral wood	sheathing d	lirectly applied or 3-10-0	oc purlins.

BOT CHORD

WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

4-6

 BOT CHORD
 2x6 SP No.1

 BOT CHORD
 2x10 SP No.1 *Except*

 9-14:
 2x6 SP 2400F 2.0E

 WEBS
 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 9=0-3-8 Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 9=-90(LC 13)

Max Grav 1=1345(LC 2), 9=1347(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-3=-2189/401, 3-4=-1853/491, 6-8=-2237/517, 8-9=-2874/549

BOT CHORD 1-16=-198/1827, 14-16=-200/1839, 12-14=-375/2511, 9-12=-384/2511

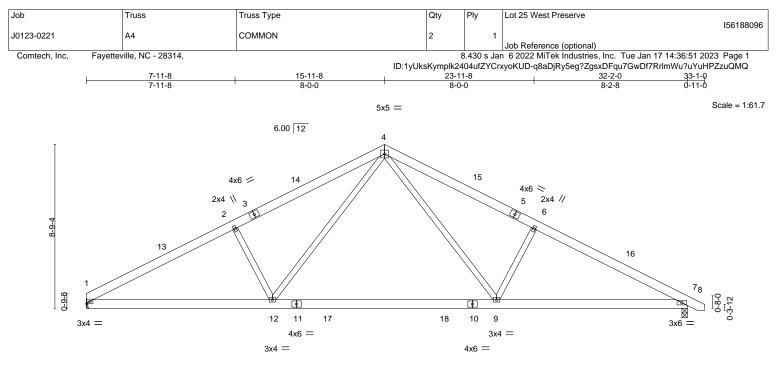
WEBS 6-14=-117/966, 3-16=-53/392, 4-6=-1931/474, 8-14=-1081/228, 8-12=0/620

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

		9-11-8		+		21-11-8					32-2-0	
Plate Offs	sets (X,Y)	9-11-8				12-0-0			·		10-2-8	·
LOADING TCLL	€ (psf) 20.0	SPACING-	2-0-0 1.15	CSI. TC	0.00	DEFL. Vert(LL)	in -0.34	()	l/defl	L/d	PLATES MT20	GRIP 244/190
TCDL	20.0	Plate Grip DOL Lumber DOL	1.15	BC	0.28 0.64	Vert(LL) Vert(CT)	-0.34 -0.47		>999 >822	360 240	INIT 20	244/190
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matrix	k-S	Wind(LL)	0.05	12	>999	240	Weight: 204 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 7=0-3-8 Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13)

Max Grav 1=1278(LC 1), 7=1331(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

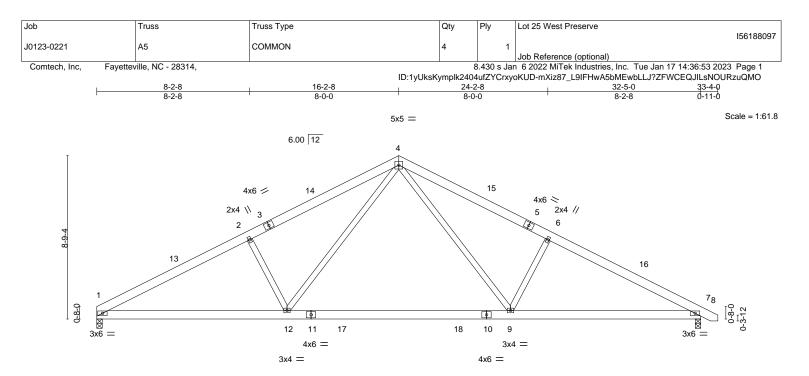
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	10-2-8 10-2-8	+ 22-2-8 12-0-0			32-5-0 10-2-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.29 Vert(LL) BC 0.65 Vert(CT) WB 0.27 Horz(CT) Matrix-S Wind(LL)	in (loc) -0.34 9-12 -0.47 9-12 0.05 7 0.05 12	l/defl L/d >999 360 >822 240 n/a n/a >999 240	PLATES MT20 Weight: 206 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

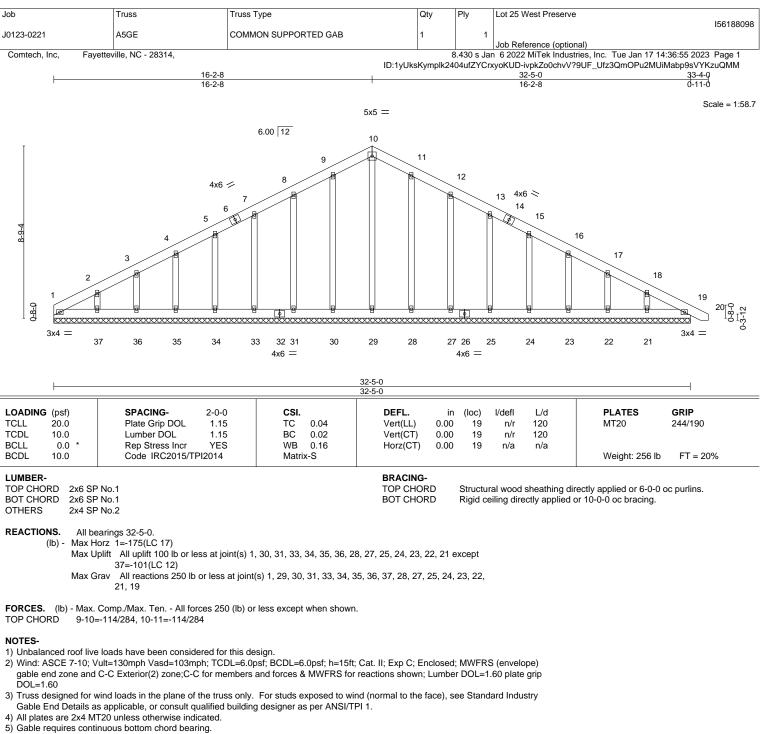
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

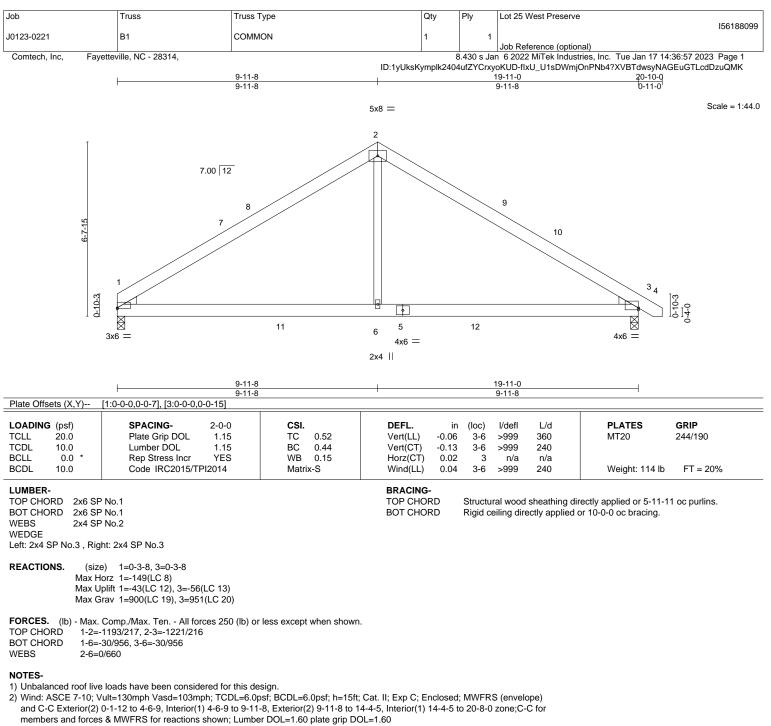
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-10-13 oc purlins.

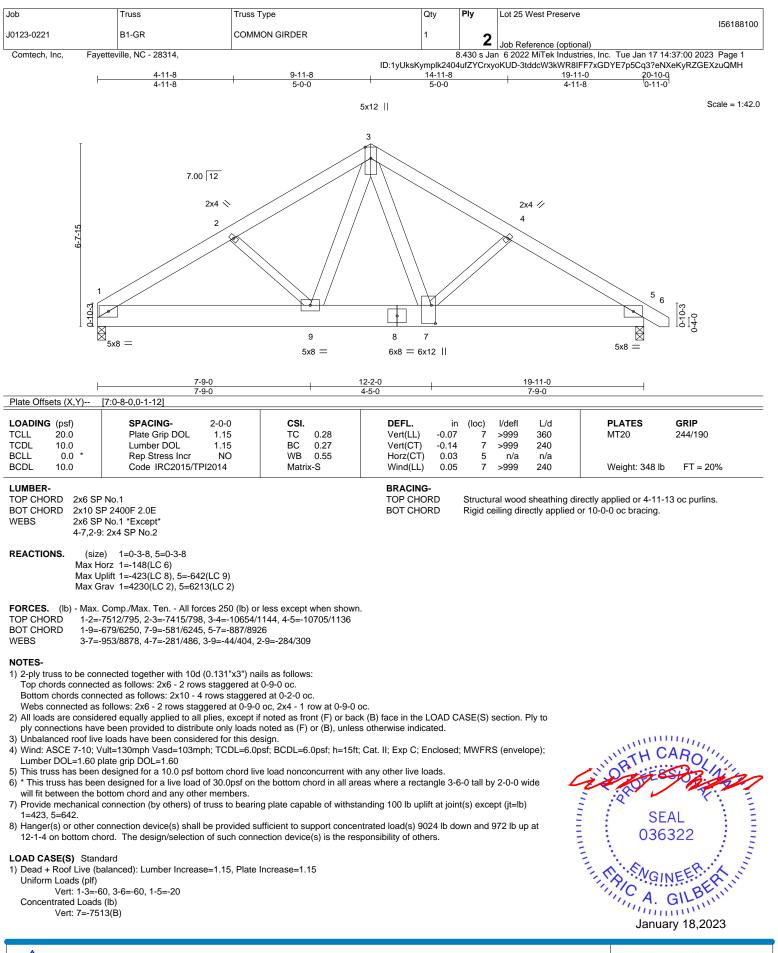
Rigid ceiling directly applied or 10-0-0 oc bracing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

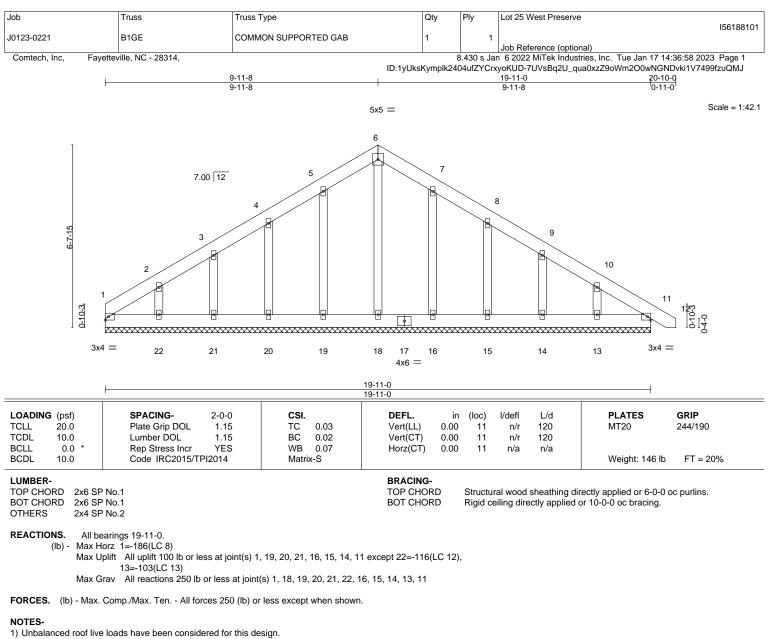
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.




3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

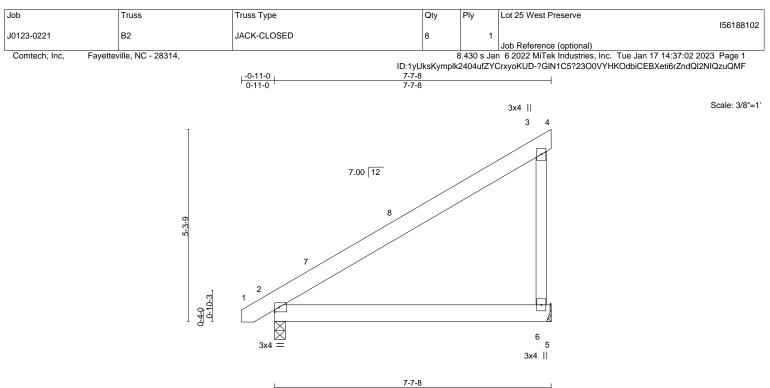


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

				7-7-8			1	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loo	c) l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.33	Vert(LL) -	0.04 2-	-6 >999	360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.21	Vert(CT) -	-0.07 2-	-6 >999	240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	n/a	n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00	2 ****	240	Weight: 48 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

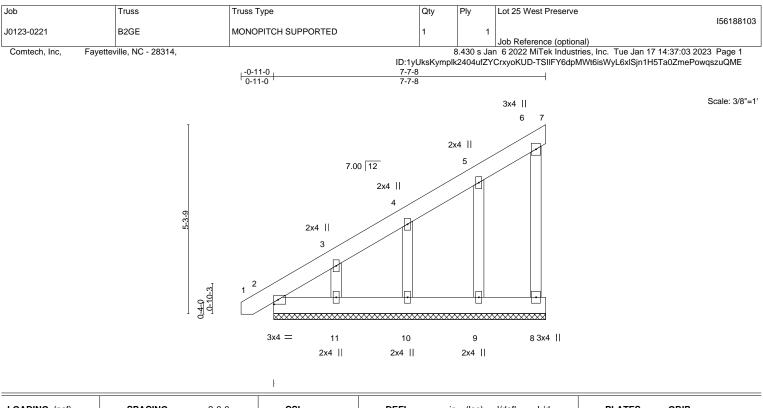
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12) Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	-0.00	1	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	-0.00	1	n/r	120		
BCLL 0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	-0.00	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2	2014	Matrix	-P						Weight: 57 lb	FT = 20%

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-7-8.

(lb) - Max Horz 2=228(LC 12)

2-3=-269/227

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

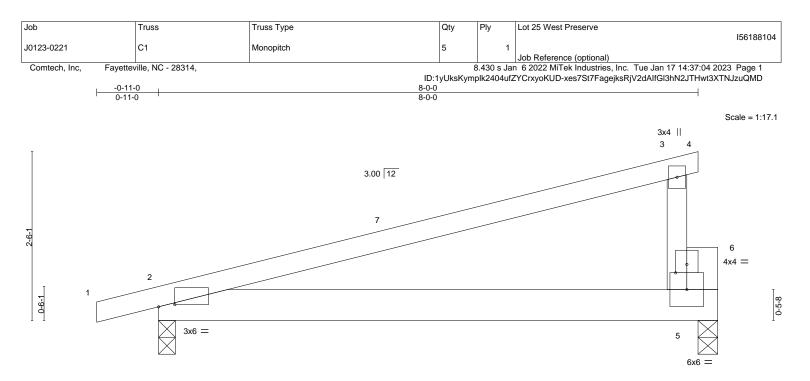
NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (jt=lb) 11=117.

					<u>8-3-8</u> 8-3-8						
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:0-2-	0,0-1-8]								1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/7	2-0-0 1.15 1.15 YES TPI2014	BC	0.84 0.24 0.00 c-P	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.10 0.00 0.10	(loc) 2-5 2-5 5 2-5	l/defl >999 >969 n/a >886	L/d 360 240 n/a 240	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6	SP No.1 SP No.1 SP No.2			·	BRACING- TOP CHOR BOT CHOR	RD	except	end verti	cals.	irectly applied or 5-3-4 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

2x6 SP No.1

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

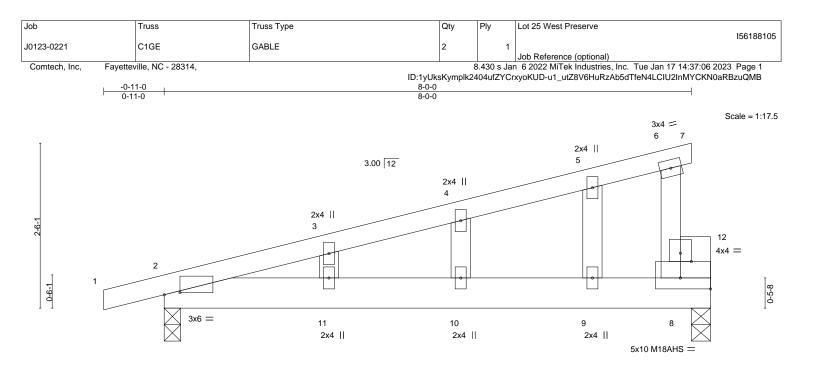
NOTES-

OTHERS

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RENCO

818 Soundside Road Edenton, NC 27932

			8-3-8			
			8-3-8			1
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [8:Edge,0-2-0], [12:0-2	2-0,0-1-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.0	in (loc) I/defl L/d 9 10-11 >999 240 8 10-11 >999 240 0 8 n/a n/a	PLATES MT20 M18AHS Weight: 41 lb	GRIP 244/190 186/179 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP OTHERS 2x4 SP	' No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o		oc purlins,

REACTIONS. (size) 2=0-3-0, 8=0-3-8

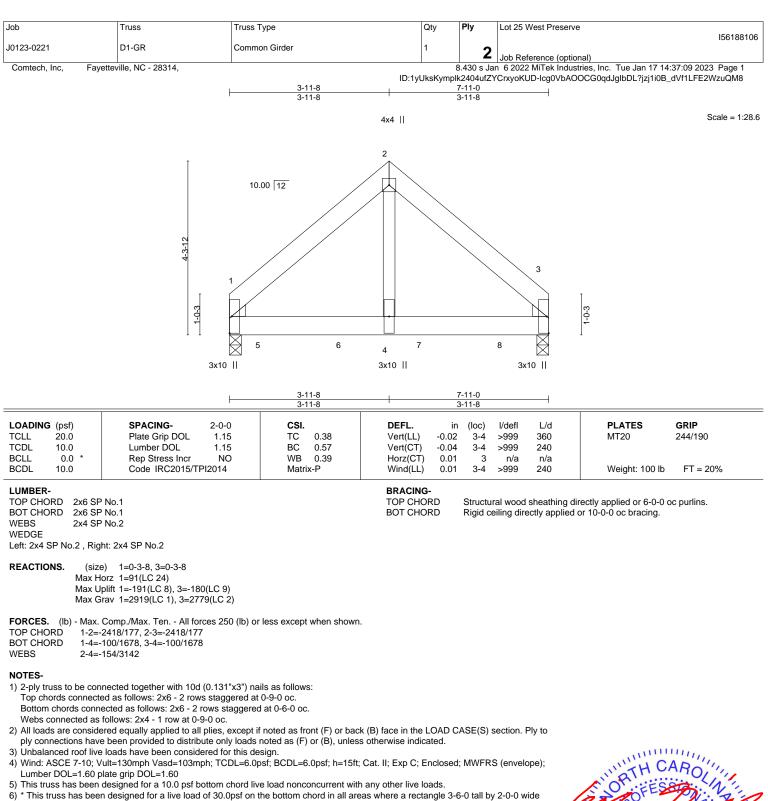
8-12: 2x6 SP No.1

Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8) Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

Continued on page 2

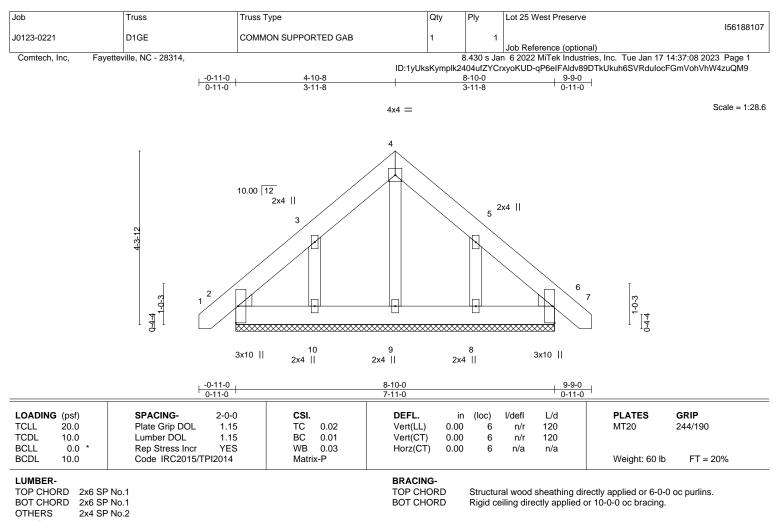
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL

036322

UTITITITI I

A COLOR OF COMPANY



[Job	Truss	Truss Type	Qty	Ply	Lot 25 West Preserve
						156188106
	J0123-0221	D1-GR	Common Girder	1	2	
					_	Job Reference (optional)
	Comtech, Inc, Fayettev	rille, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Tue Jan 17 14:37:09 2023 Page 2
			ID:1y	UksKympl	<2404ufZY	CrxyoKUD-lcg0VbAOOCG0qdJglbDL?jzj1i0B_dVf1LFE2WzuQM8

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

(lb) - Max Horz 2=-118(LC 10)

Max Uplift All uplift 100 b or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

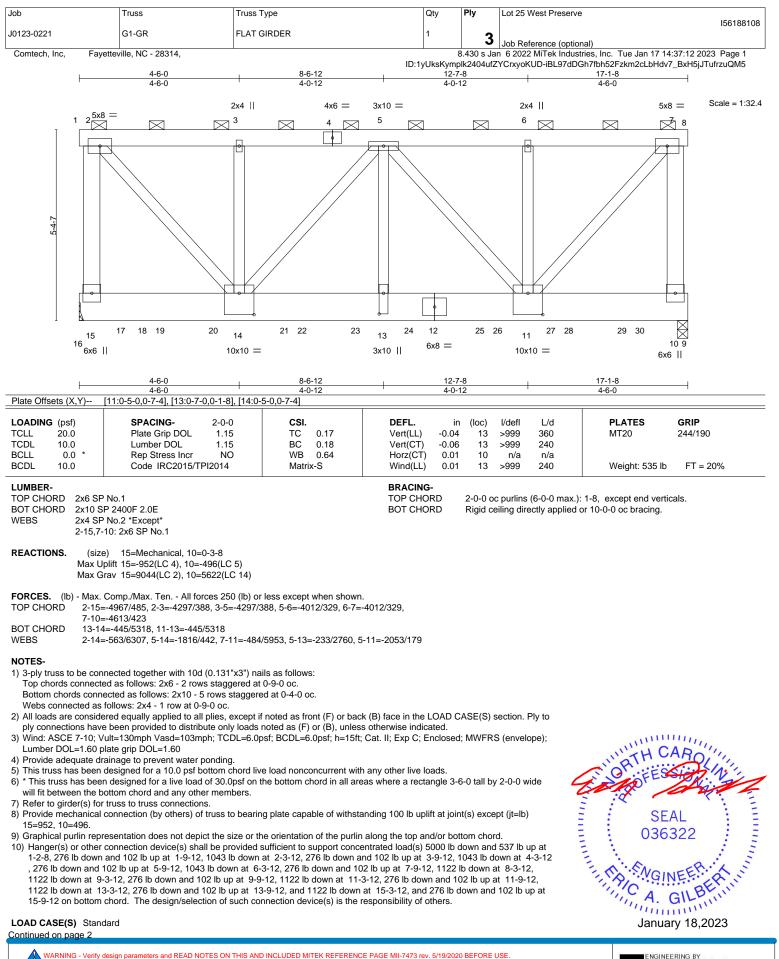
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152, 8=148.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road Edenton, NC 27932

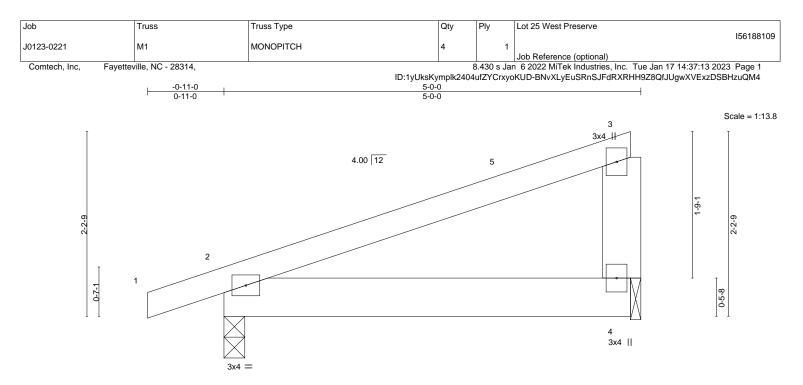
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 25 West Preserve
					156188108
J0123-0221	G1-GR	FLAT GIRDER	1	2	
				3	Job Reference (optional)
Comtech, Inc, Fayettevi	ille, NC - 28314,			8.430 s Jar	6 2022 MiTek Industries, Inc. Tue Jan 17 14:37:12 2023 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-iBL97dDGh7fbh52Fzkm2cLbHdv7_BxH5jJTufrzuQM5

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-255(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-255(B) 20=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F) 29=-291(B) 30=-276(F) 29=-291(B) 30=-276(F) 20=-276(F) 20=-

			5-0-0 5-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.28 BC 0.08	Vert(LL) -0.01 2-4 >99 Vert(CT) -0.01 2-4 >99		PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00 r Wind(LL) 0.01 2-4 >9	n/a n/a 99 240	Weight: 24 lb FT = 20%

BRACING-

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

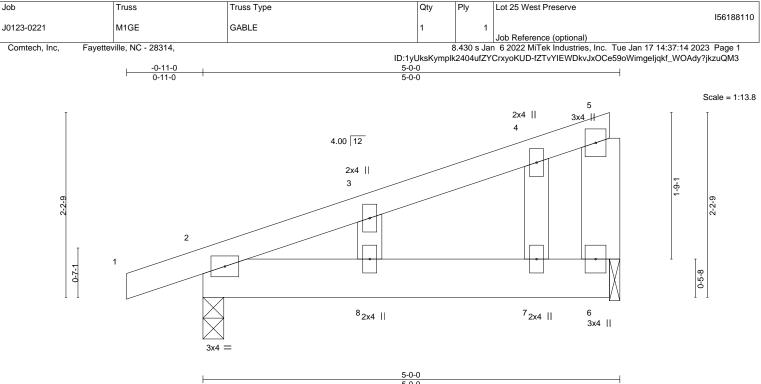
TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8) Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.

			1			5-0-0						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.01	8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matrix	k-S						Weight: 27 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

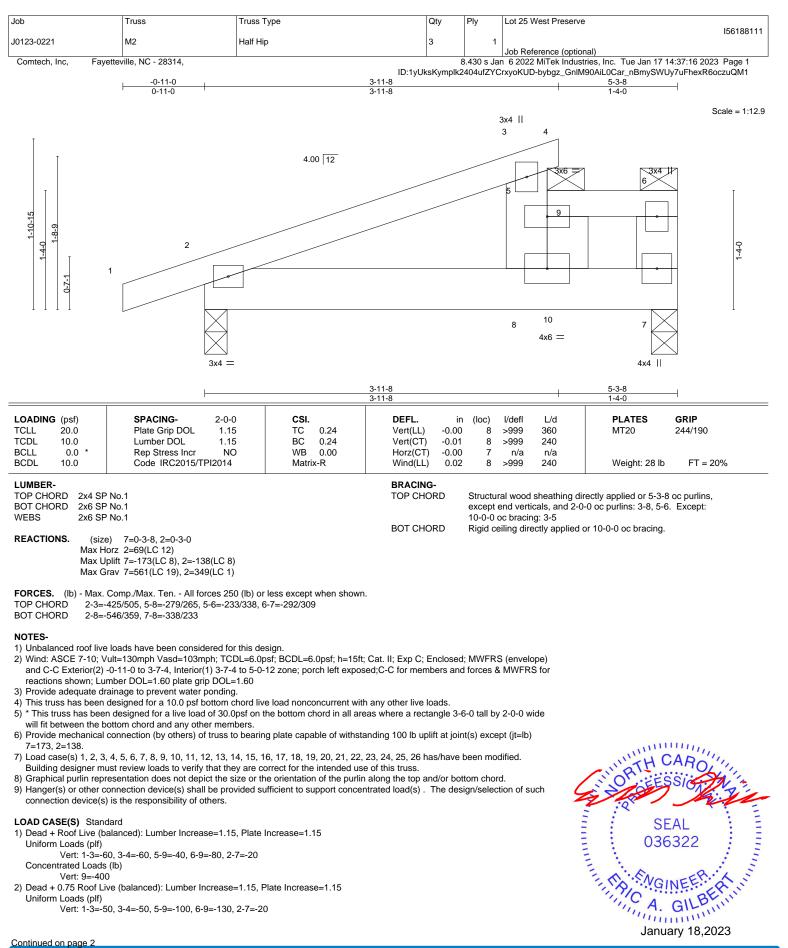
REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8) Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147, 6=115.



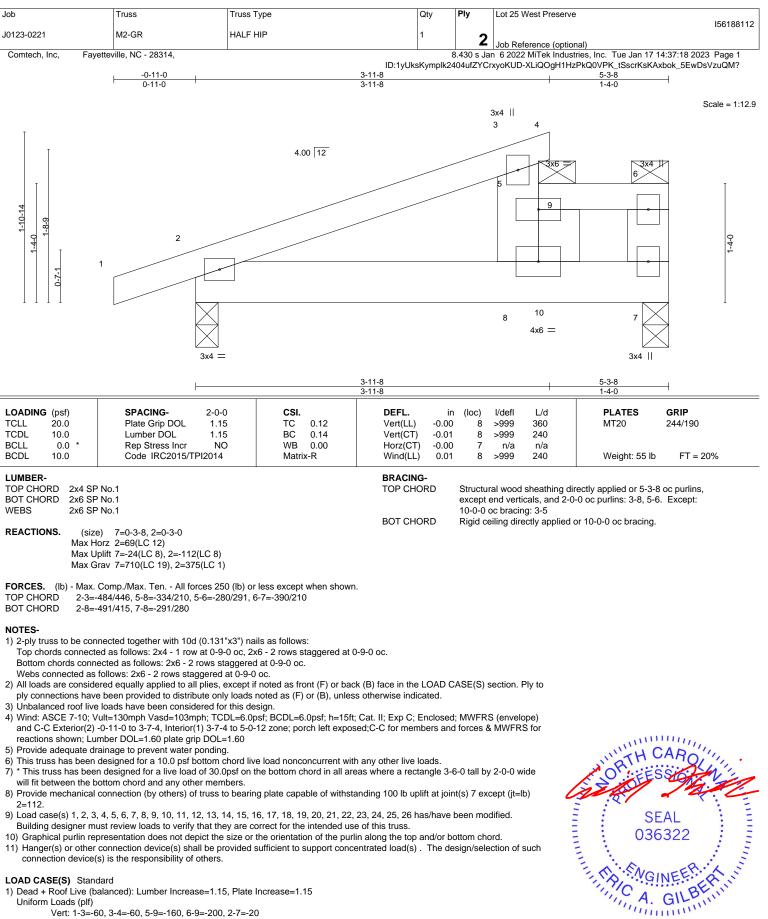
Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


lob	Truss	Truss Type	Q	ty	Ply	Lot 25 West Preserve	156188111
0123-0221	M2	Half Hip	3		1		130100111
Comtech, Inc, Fayettev	ille, NC - 28314,						ue Jan 17 14:37:16 2023 Page 2
			ID:1yUKSP	Cympik24	404ufZYC	rxyoKUD-bybgz_GnlM90AiL0Car_	_nBmySvvUy/uFnexR6oczuQM1
LOAD CASE(S) Standard Concentrated Loads (Ib)							
Vert: 9=-350		har Increase 4 05 Diata Increase	4.05				
Uniform Loads (plf)		ber Increase=1.25, Plate Increase=	1.25				
Vert: 1-3=-20, 3 Concentrated Loads (lb)	-4=-20, 5-6=-40, 2-7=-40						
Vert: 9=-300			4.00				
 Dead + 0.6 C-C Wind (P Uniform Loads (plf) 	os. Internal) Case 1: Lur	ber Increase=1.60, Plate Increase=	:1.60				
	3=58, 3-4=153, 5-6=12, 2 2-3=-70, 3-4=-165, 3-5=-5	2-8=52, 8-10=115, 7-10=52					
Concentrated Loads (lb)	0 - 70, 0 - 100, 0 0 - 0						
Vert: 9=548 5) Dead + 0.6 C-C Wind (P	os. Internal) Case 2: Lurr	ber Increase=1.60, Plate Increase=	:1.60				
Uniform Loads (plf)	,	8=52, 8-10=115, 7-10=52					
Horz: 1-2=-63, 2	2-3=-70, 3-4=-63, 3-5=-55						
Concentrated Loads (lb) Vert: 9=566							
6) Dead + 0.6 C-C Wind (N	eg. Internal) Case 1: Lun	hber Increase=1.60, Plate Increase=	=1.60				
Uniform Loads (plf) Vert: 1-2=-1, 2-3	3=-45, 3-4=17, 5-6=-58, 2	-8=-9, 8-10=2, 7-10=-9					
Horz: 1-2=-19, 2 Concentrated Loads (Ib)	2-3=25, 3-4=-37, 3-5=51						
Vert: 9=-420							
 Dead + 0.6 C-C Wind (N Uniform Loads (plf) 	eg. Internal) Case 2: Lun	ber Increase=1.60, Plate Increase=	=1.60				
Vert: 1-2=-39, 2	-3=-45, 3-4=-39, 5-6=-58 -3=25, 3-4=19, 3-5=51	, 2-8=-9, 8-10=2, 7-10=-9					
Concentrated Loads (lb)	-3=25, 3-4=19, 3-5=51						
Vert: 9=-420 8) Dead + 0 6 MWFRS Win	d (Pos_Internal) Left: Lu	mber Increase=1.60, Plate Increase	=1 60				
Uniform Loads (plf)	, , , , , , , , , , , , , , , , , , ,						
	3=21, 3-4=14, 5-6=-11, 2 2-3=-33, 3-4=-26, 3-5=7	-8=10, 8-10=33, 7-10=10					
Concentrated Loads (lb) Vert: 9=154							
9) Dead + 0.6 MWFRS Win	d (Pos. Internal) Right: L	umber Increase=1.60, Plate Increas	se=1.60				
Uniform Loads (plf) Vert: 1-2=6, 2-3	=12, 3-4=28, 5-6=1, 2-7=	-12					
	2-3=-24, 3-4=-40, 3-5=-27	,					
Concentrated Loads (lb) Vert: 9=43							
 Dead + 0.6 MWFRS W Uniform Loads (plf) 	ind (Neg. Internal) Left: L	umber Increase=1.60, Plate Increas	se=1.60				
Vert: 1-2=6, 2-	3=-1, 3-4=6, 5-6=-33, 2-8						
Horz: 1-2=-26, Concentrated Loads (Ib	2-3=-19, 3-4=-26, 3-5=3)	4					
Vert: 9=-339 11) Dead + 0.6 MWFRS W	ind (Neg. Internal) Right:	Lumber Increase=1.60, Plate Increa	ase=1.60				
Uniform Loads (plf)			1.00				
	-3=-9, 3-4=-2, 5-6=-21, 2 2-3=-11, 3-4=-18, 3-5=-(
Concentrated Loads (lb Vert: 9=-234)						
12) Dead + 0.6 MWFRS W	ind (Pos. Internal) 1st Pa	rallel: Lumber Increase=1.60, Plate	Increase=1.60				
Uniform Loads (plf) Vert: 1-2=14, 2	2-3=21, 3-4=14, 5-6=-11,	2-7=-12					
Horz: 1-2=-26, Concentrated Loads (lb	2-3=-33, 3-4=-26, 3-5=-3	39					
Vert: 9=43	,						
 Dead + 0.6 MWFRS W Uniform Loads (plf) 	ind (Pos. Internal) 2nd Pa	arallel: Lumber Increase=1.60, Plate	Increase=1.60				
	3=9, 3-4=2, 5-6=1, 2-7=- 2-3=-21, 3-4=-14, 3-5=-2						
Concentrated Loads (lb		-1					
Vert: 9=43 14) Dead + 0.6 MWFRS W	ind (Pos. Internal) 3rd Pa	rallel: Lumber Increase=1.60, Plate	Increase=1.60				
Uniform Loads (plf)	, , , , , , , , , , , , , , , , , , ,						
	2-3=21, 3-4=14, 5-6=-11, 2-3=-33, 3-4=-26, 3-5=-3						
Concentrated Loads (lb)						
Vert: 9=43							

Continued on page 3

Job		Truss	Truss Type	Qty	Ply	Lot 25 West Preserve	156188111
J0123-0221		M2	Half Hip	3	1		111001001
Comtech,	nc, Fayett	eville, NC - 28314,					Tue Jan 17 14:37:16 2023 Page 3
				ID:1yUksKympl	<2404ufZY(CrxyoKUD-bybgz_GnlM90AiL0Car	r_nBmySWUy7uFhexR6oczuQM1
	SE(S) Standa	rd					
Unifor	n Loads (plf) Vert: 1-2=2.	2-3=9, 3-4=2, 5-6=1, 2-7	=-12				
	Horz: 1-2=-1	4, 2-3=-21, 3-4=-14, 3-5=					
Conce	ntrated Loads Vert: 9=43	(lb)					
16) Dead		Wind (Neg. Internal) 1st I	Parallel: Lumber Increase=1.60, Plate	Increase=1.60			
Unifor	n Loads (plf)	0 0 1 0 4 C E C 00 1	7 20				
		2-3=-1, 3-4=6, 5-6=-33, 2 6, 2-3=-19, 3-4=-26, 3-5=					
Conce	ntrated Loads	(lb)					
17) Dead	Vert: 9=-234 0 6 MWFRS	Wind (Neg. Internal) 2nd	Parallel: Lumber Increase=1.60, Plat	e Increase=1.60			
,	n Loads (plf)	2.1d					
		2-3=-13, 3-4=-6, 5-6=-2 ⁻ 4, 2-3=-7, 3-4=-14, 3-5=-					
Conce	ntrated Loads		-0				
	Vert: 9=-234						
	Lumber Increa n Loads (plf)	se=0.90, Plate Increase=	=0.90 Pit. metal=0.90				
	Vert: 1-3=-20), 3-4=-20, 5-6=-120, 2-7	=-20				
Conce	ntrated Loads Vert: 9=-200	(lb)					
19) Dead		e (bal.) + 0.75 Attic Floor	r + 0.75(0.6 MWFRS Wind (Neg. Int)	_eft): Lumber Increase=	1.60, Plate	e Increase=1.60	
Unifor	n Loads (plf)			2			
		9, 2-3=-36, 3-4=-31, 3-9=	:-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10 =26	=-3			
Conce	ntrated Loads						
20) Dead	Vert: 9=-454 0.75 Roof Liv	e (bal.) + 0.75 Attic Floor	r + 0.75(0.6 MWFRS Wind (Neg. Int)	Right): Lumber Increase	=1.60. Pla	te Increase=1.60	
,	n Loads (plf)						
		7, 2-3=-42, 3-4=-37, 5-9= 3, 2-3=-8, 3-4=-13, 3-5=-					
Conce	ntrated Loads		•				
21) Dood	Vert: 9=-375		r + 0.75(0.6 MWFRS Wind (Neg. Int)	1st Parallal): Lumbar Ind	rooco-1 6	0 Plata Increase-1.60	
	n Loads (plf)	e (bal.) + 0.75 Allic Floor		rst Parallel). Lumber m	rease=1.0	bu, Plate Increase=1.00	
		I, 2-3=-36, 3-4=-31, 5-9=					
Conce	ntrated Loads	9, 2-3=-14, 3-4=-19, 3-5= (lb)	=-9				
	Vert: 9=-375	()					
,	⊦ 0.75 Roof Liv n Loads (plf)	e (bal.) + 0.75 Attic Floor	r + 0.75(0.6 MWFRS Wind (Neg. Int)	2nd Parallel): Lumber Ir	crease=1.0	60, Plate Increase=1.60	
Child	Vert: 1-2=-40), 2-3=-45, 3-4=-40, 5-9=					
Conce	Horz: 1-2=-1 ntrated Loads	0, 2-3=-5, 3-4=-10, 3-5=-	-0				
Conce	Vert: 9=-375	. ,					
		(unbalanced): Lumber Ir	ncrease=1.15, Plate Increase=1.15				
Unifor	n Loads (plf) Vert: 1-3=-60), 3-4=-60, 5-6=-40, 2-7=	-20				
Conce	ntrated Loads	(lb)					
24) 2nd D	Vert: 9=-400		ncrease=1.15, Plate Increase=1.15				
	n Loads (plf)	. ,					
Canaa	Vert: 1-3=-20 ntrated Loads), 3-4=-20, 5-9=-40, 6-9=	-80, 2-7=-20				
COLCE	Vert: 9=-400						
,		f Live (unbalanced): Lum	ber Increase=1.15, Plate Increase=1.	15			
Unifor	n Loads (plf) Vert: 1-3=-50), 3-4=-50, 5-6=-100, 2-7	=-20				
Conce	ntrated Loads	(lb)					
26) 4th De	Vert: 9=-350 ad + 0.75 Root		ber Increase=1.15, Plate Increase=1.	15			
,	n Loads (plf)						
), 3-4=-20, 5-9=-100, 6-9	=-130, 2-7=-20				
Conce	ntrated Loads	(lh)					

Vert: 1-3=-60, 3-4=-60, 5-9=-160, 6-9=-200, 2-7=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with twe commendations. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

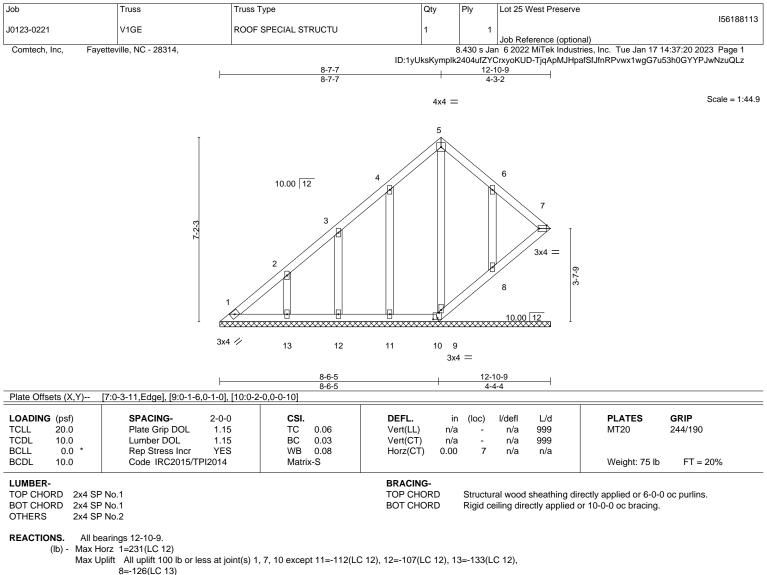
January 18,2023

Job	Truss	Truss Type	Qty	Ply	Lot 25 West Preserve
					156188112
J0123-0221	M2-GR	HALF HIP	1	0	
				Z	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Tue Jan 17 14:37:18 2023 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-XLiQOgH1HzPkQ0VPK_tSscrKsKAxbok_5EwDsVzuQM?

Fayetteville, NC - 28314, Comtech, Inc,

LOAD CASE(S) Standard Concentrated Loads (Ib)
Vert: 9=-400 2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb)
Vert: 9=-350 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
Concentrated Loads (lb) Vert: 9=-300
 Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (lb) Vert: 9=548
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
Concentrated Loads (lb) Vert: 9=566 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (pf) Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51 Concentrated Loads (lb)
Vert: 9=-420 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51 Concentrated Loads (lb)
Vert: 9=-420 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7 Concentrated Loads (lb) Vert: 9=154
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12 Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27
Concentrated Loads (lb) Vert: 9=43
 Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
Concentrated Loads (lb) Vert: 9=-339
 Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb)
Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60


Continued on page 3

[Job	Truss	Truss Type	Qty	Ply	Lot 25 West Preserve
					-	156188112
	J0123-0221	M2-GR	HALF HIP	1	2	
					-	Job Reference (optional)
	Comtech, Inc, Fayetteville, NC - 28314,				3.430 s Jar	6 2022 MiTek Industries, Inc. Tue Jan 17 14:37:18 2023 Page 3

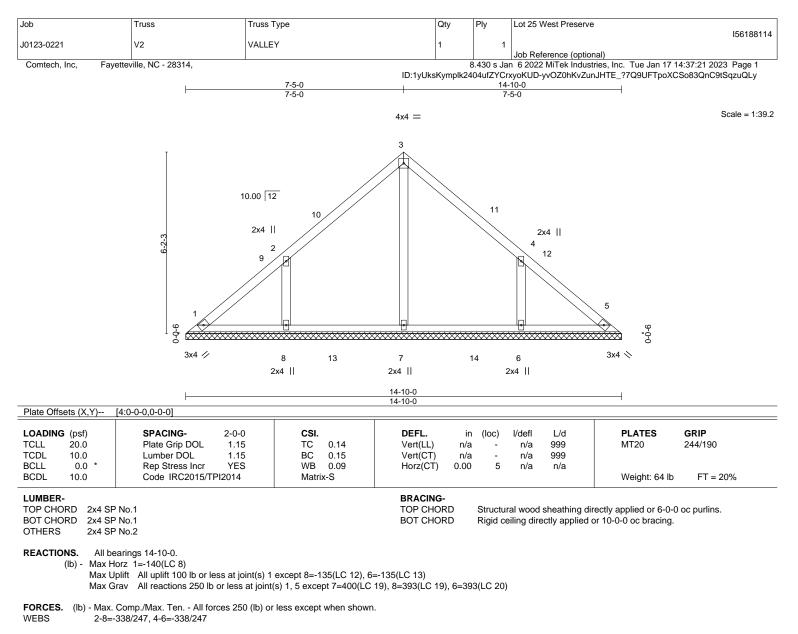
ID:1yUksKymplk2404ufZYCrxyoKUD-XLiQOgH1HzPkQ0VPK_tSscrKsKAxbok_5EwDsVzuQM? LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 9=-234 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20 Concentrated Loads (lb) Vert: 9=-200 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb) Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb) Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350 26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

TOP CHORD


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

1-2=-295/189

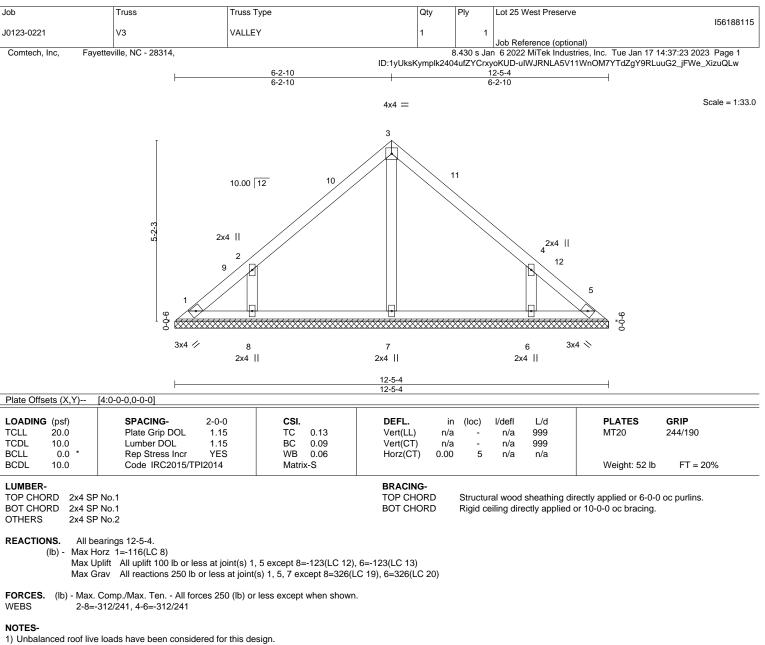
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

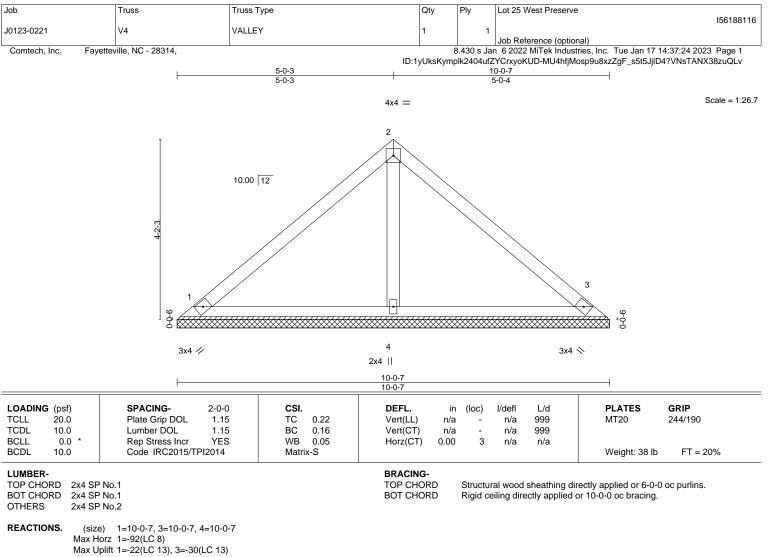

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

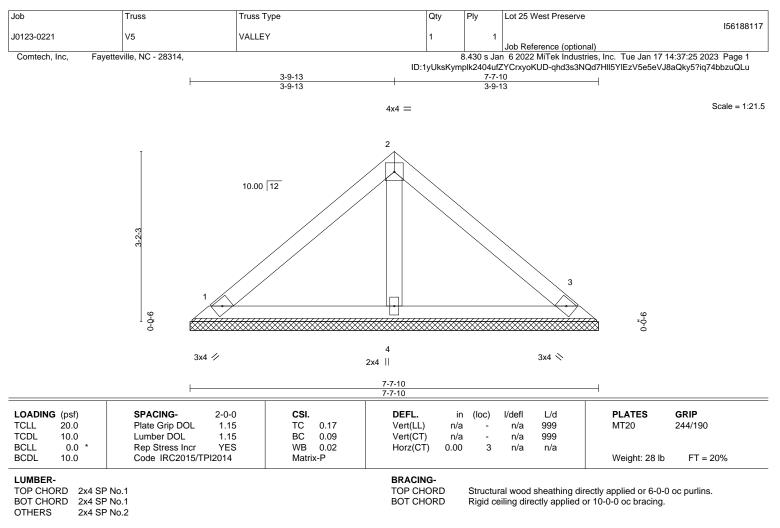
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10 Max Horz 1=68(LC 9) Max Uplift 1=-24(LC 13), 3=-30(LC 13) Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

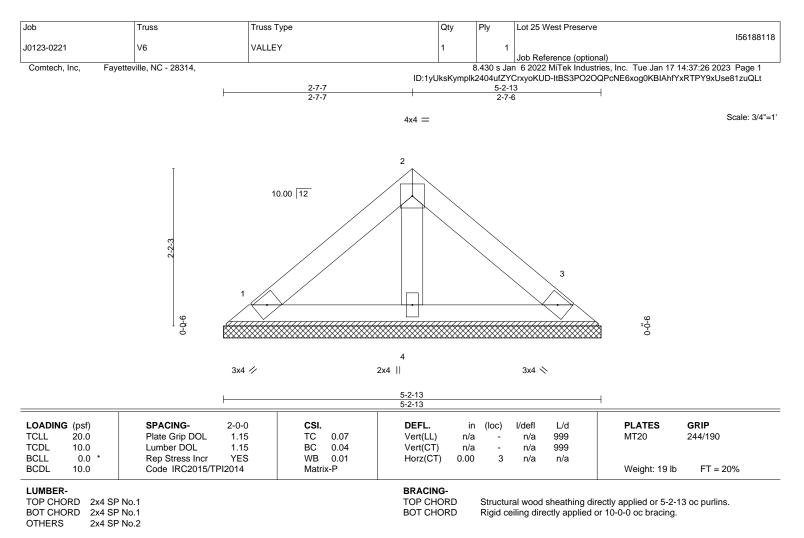
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=-44(LC 8) Max Uplift 1=-15(LC 13), 3=-19(LC 13) Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

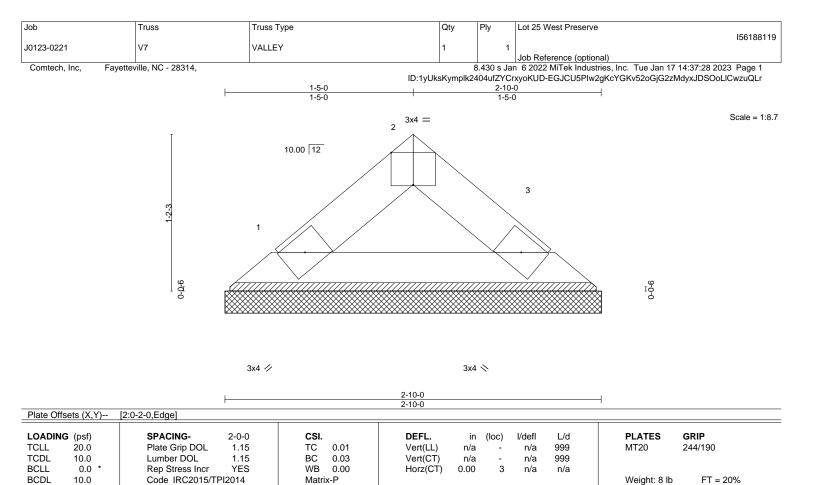
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD

BOT CHORD

	JME		
LU	, 141 6	ᇚ	۲-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0 Max Horz 1=-20(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

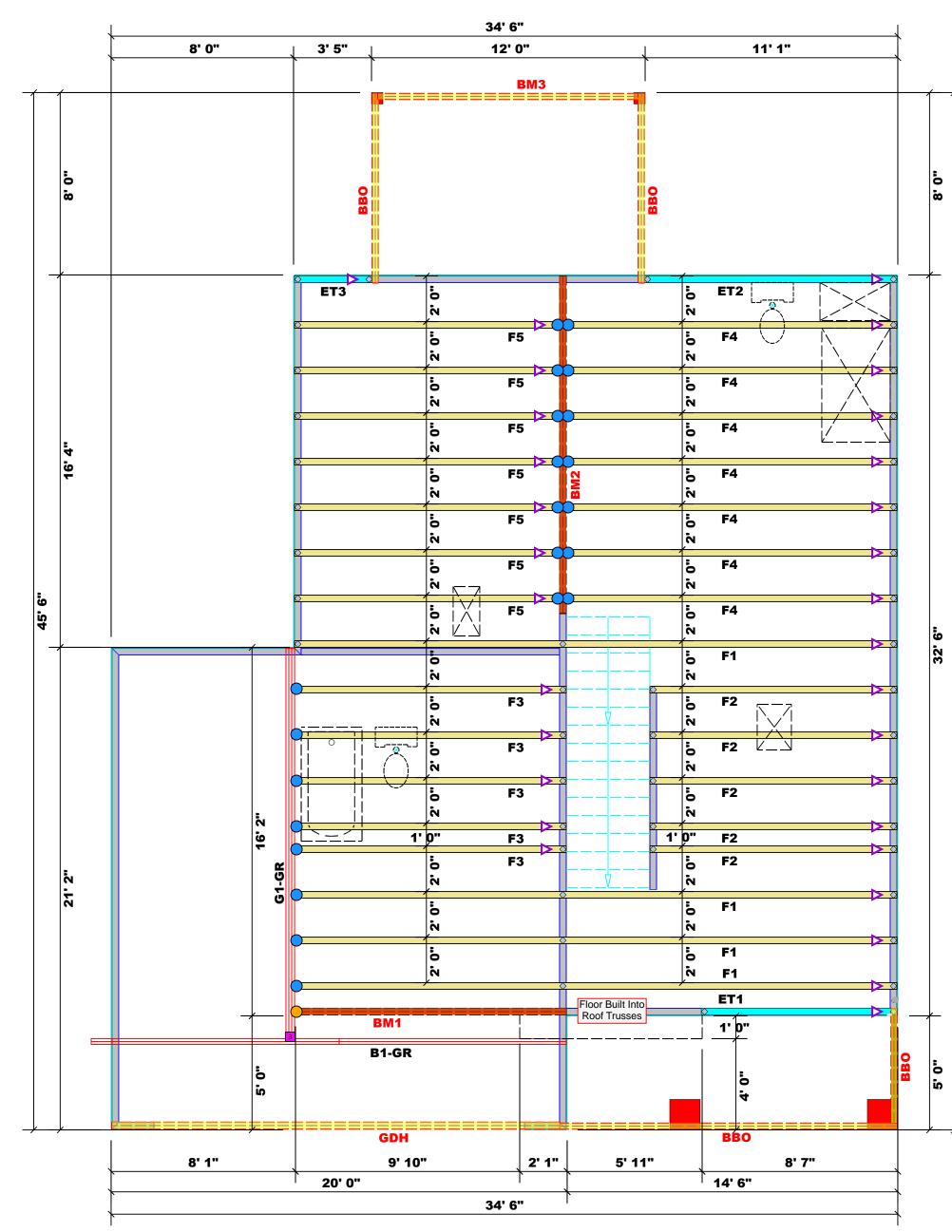
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 2-10-0 oc purlins.

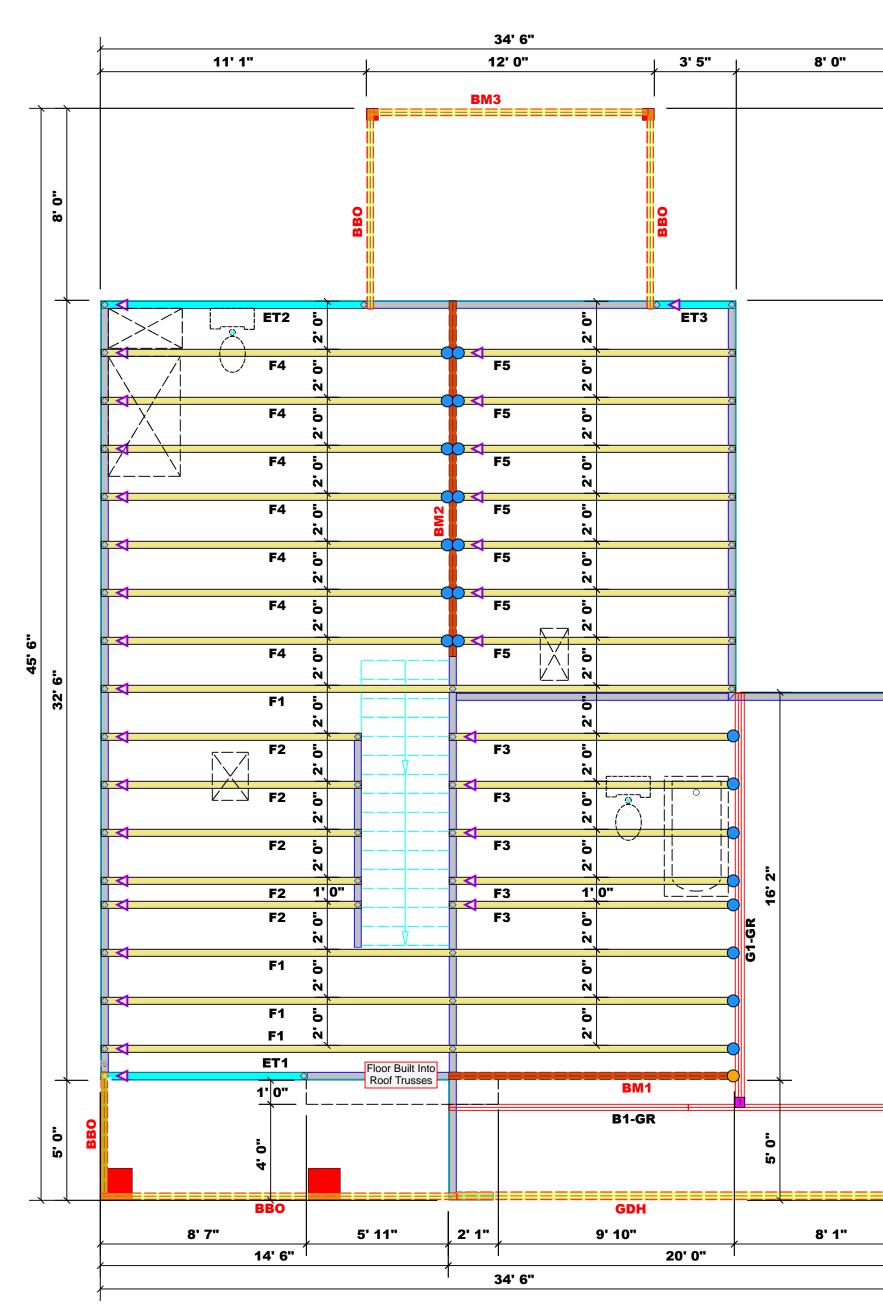
Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BUILDER JOB NAME PLAN SEAL DATE QUOTE # JOB #	Meaver Development CITY / CO. Sandar Control / Harnett / Harnett / Co. Sandar / Harnett / Harnet	Por 25 West Preserve MDCRESS A Logistic and a log	ART FC OON TABLE HEADER HEADER NODER 12750 12750 15300 12750 12	& B dustr , N.C.) 864-4 864-4 b of equa studs require to of equa b poression of shall DATE REV. 1 2 3 4 5 6 01/18/23 1 2 3 4 5 6 0 6 01/18/23 1 2 3 4 5 7 6 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	EAN ial Par 28309 -8787 444 I to 3000 tive Code certification immediate for all or all	SALES REP. Lenny Norris
DATE					QUOTE #	#

All Walls Shown Are Considered Load Bearing

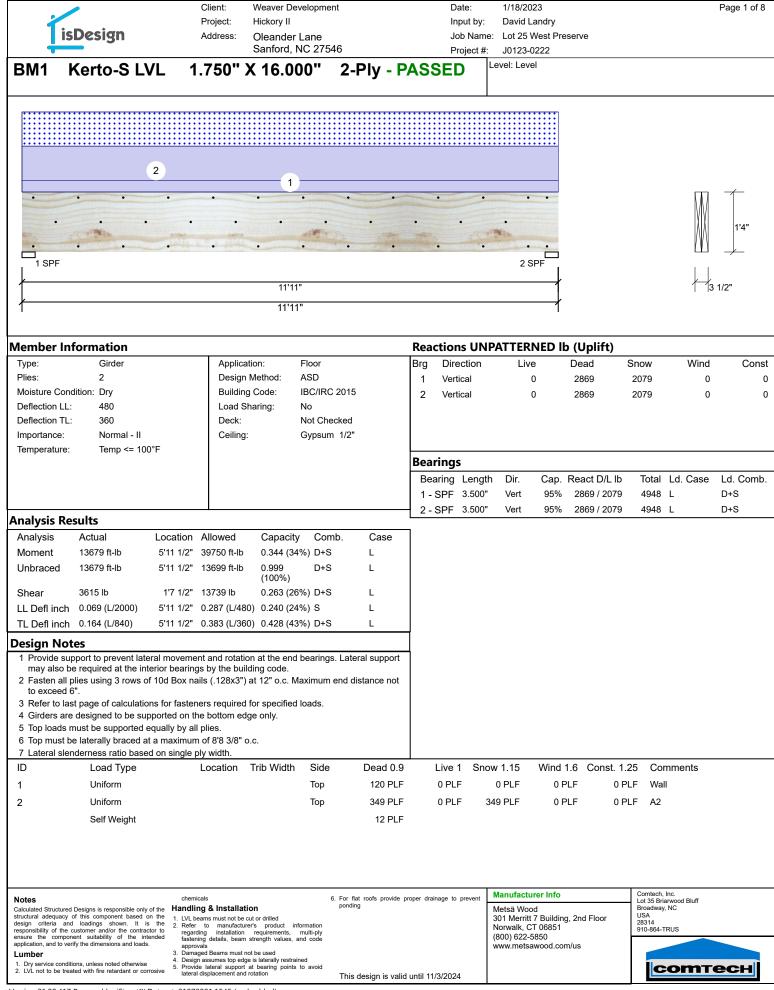
Plumbing Drop Notes
 Plumbing drop locations shown are NOT exact. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. Adjust spacing as needed not to exceed 24"oc.
5. Aujust spacing as needed not to exceed 24 oc.


	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

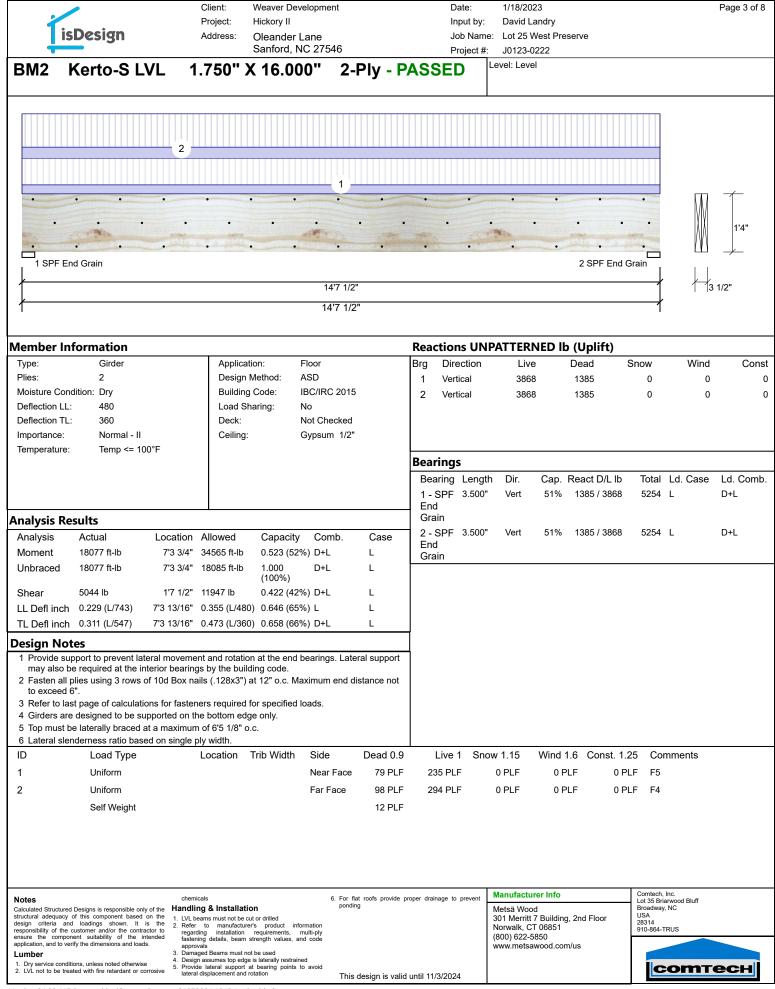
		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

- (1)	Truss Placement Plan	
	Scale: 1/4"=1'	~

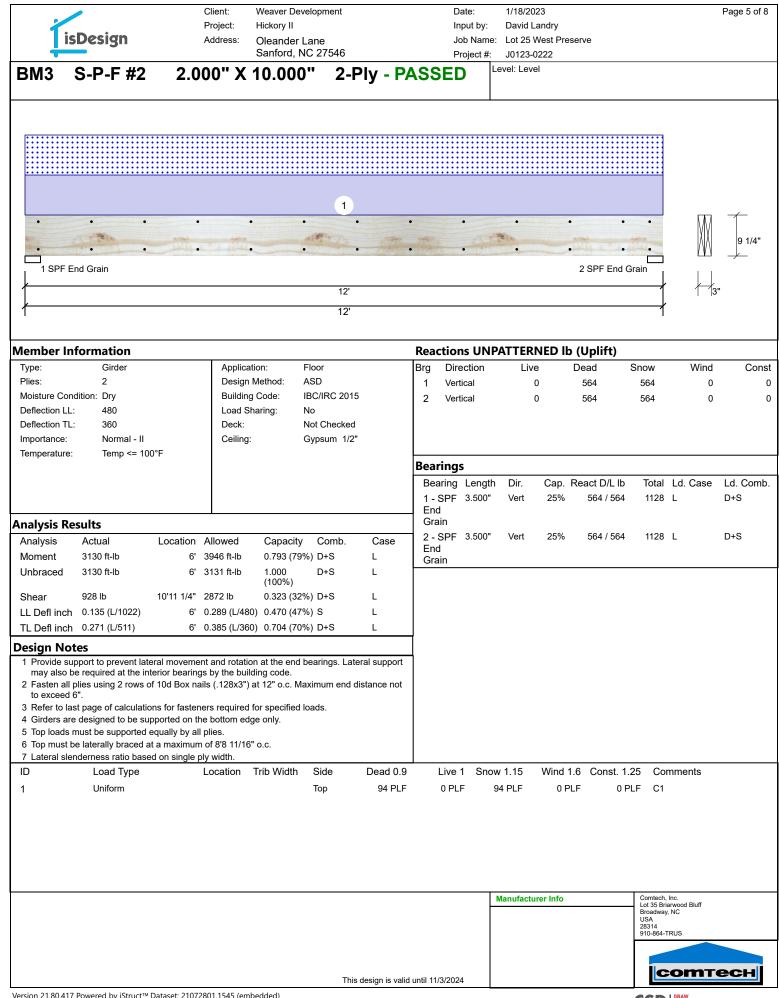
= Indicates Left End of Truss (Reference Engineered Truss Drawin Do NOT Erect Truss Backwards


45' 6" 6 **3**2

			T F		DF & SES	& FL & B dustr , N.C.	OOF EAN ial Par 28309 -8787	k k
 .0 .8			deemed requiren attachee requiren size and reaction 15000#. retained reaction Tables. retained reaction		y with the contract derived fi determine of wood s than 3000 red design the supp eed thosis ed design the supp eed 1500 Davi	prescrip or shall r for the p e the mini- tuds req # but no n profess boort syste e specifie n profess oort syste oort syste a profess 0 #. d La	tive Code refer to the orescriptivi imum fou uired to si tional shal em for any di in the a ional shal em for all more a	e Code ndation upport han I be / ttached I be
16' 4"		Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise	NUA	ABER OF JA NDER OF JA 1 2 3 4 5 6 7 8	ON TABLE	IS R502.5(1) REQUIRED GIRDER WDJ SGNCB AU MOJ SGNCB AU MO	(b) & (b)) (c) & (c)) (c) & (c) (c) & (c)	REQ'D STUDS FOR (4) PLY HEADER
	45. 6"	3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise All Walls Shown Are Considered Load Bearing Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. 2. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc.	Sanford / Harnett	Oleander Lane	Floor	01/18/23	David Landry	Lenny Norris
2"		Sym Product Manuli City Member Header Huss HUS410 USP 22 NA 16d/3-1/2" 16d/3-1/2" THDH412 USP 1 NA 16d /3-1/2" 16d /3-1/2"	CITY / CO .	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
21.3		BM1 12'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM2 15'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM3 12'0" 2x10 SPF No.2 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF	Weaver Development	Lot 25 West Preserve	Hickory II "C" / 2GLF, CP	N/A		J0123-0222
			BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #
		= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards	These compo design See ind identifi design permar for the suppor and co design consult	A TRUSS trusses ar nents to b at the spe dividual dd ed on the er is respe nent bracii overall st rt structur lumns is t er. For ge t BCSI-B1 lelivery pa	e designe e incorpo ecification esign she placemer onsible fo ng of the ructure. T e includin he respon neral guic and BCS	ed as indi prated int of the b ets for ea at drawing r tempor roof and he desig g header nsibility c lance reg I-B3 prov	ividual bu o the build uilding de the truss of g. The build ary and floor syst n of the trus s, beams, of the build arding br ided with	ilding ding signer. design lding em and uss walls, ding acing, the


Do NOT Erect Truss Backwards

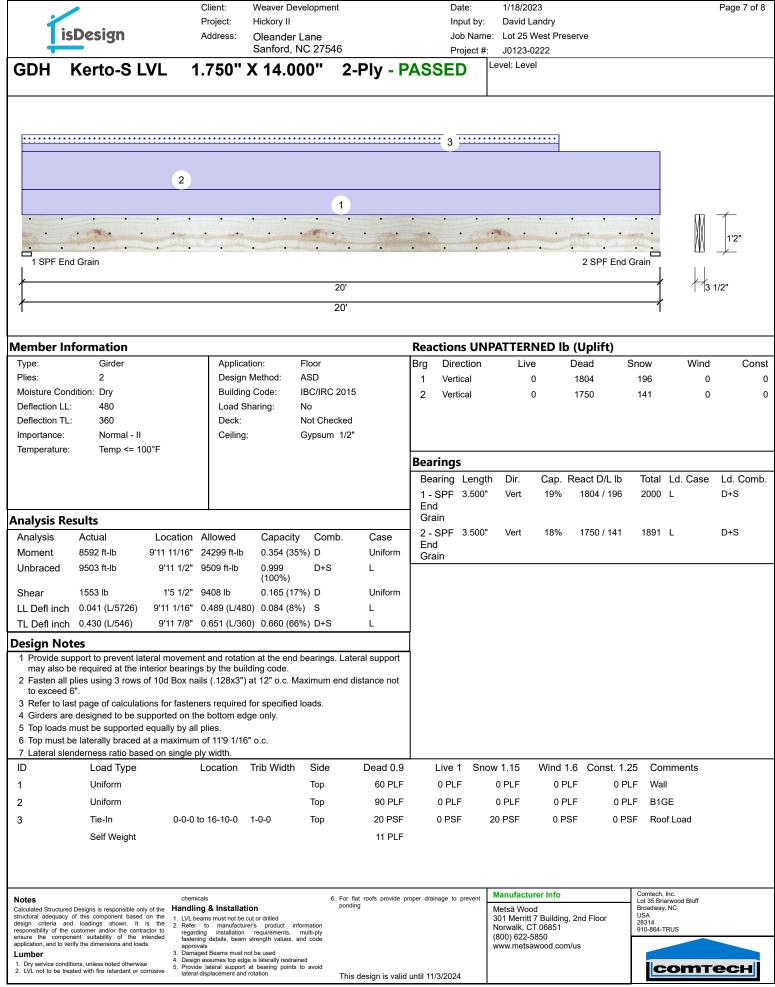
truss delivery package or online @ sbcindustry.com



Version 21.80.417 Powered by iStruct™ Dataset: 21072801.1545 (embedded)

		Client: Weaver Developm Project: Hickory II		e: 1/18/2023 It by: David Landry	Page 2 of 8
1	isDesign	Address: Oleander Lane		Name: Lot 25 West Preserve	
		Sanford, NC 27		ect #: J0123-0222	
BM1	Kerto-S LVL	1.750" X 16.000"			
		1.750 × 10.000	2-FIY - FASSED		
•	• •	• • • •	• • •	• • •	
				. 1/2	WW
					1'4"
•	• •	• • • •	• • •	· · · · + + + + + + + + + + + + + + + +	
1 SP	PF			2 SPF	
/		441441			2 1/2"
		11'11"			3 1/2"
1		11'11"		1	
Multi-Pl	ly Analysis				
Fasten al	Il plies using 3 rows o	f 10d Box nails (.128x3") at 12"	o.c., Maximum end distan	ce not to exceed 6".	
Capacity		0 %			
Load	0.	0 PLF			
Yield Limit p		45.6 PLF			
		1.9 lb.			
Yield Mode					
Edge Distar Min. End Di		1/2"			
Load Comb					
		00			
Duration Fa	actor 1.	00			
1					
Notes		chemicals	6. For flat roofs provide proper drainage to pro	A Manufacturer Info	Comtech, Inc.
Notes Calculated Stru	uctured Designs is responsible only of the	Handling & Installation	 For flat roots provide proper drainage to propording 	Metsä Wood	Lot 35 Briarwood Bluff Broadway, NC
structural adeo design criteria	equacy of this component based on the ia and loadings shown. It is the	1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 010 864 TRUS
ensure the c	of the customer and/or the contractor to component suitability of the intended and to verify the dimensions and loads.	regarding installation requirements, multi-ply fastening details, beam strength values, and code		(800) 622-5850	910-864-TRUS
Lumber		approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained		www.metsawood.com/us	
	e conditions, unless noted otherwise be treated with fire retardant or corrosive	5 Provide lateral support at bearing points to avoid	This design is well to all Allococci		соттесн
		,	This design is valid until 11/3/2024		

		Client:	Weaver Developm	ent	Date:	1/18/2023	Page 4 of 8
1	isDesign	Project: Address:	Hickory II Oleander Lane		Input by Job Nan		
	ISDESIGN	Address.	Sanford, NC 27	546	Project #		
BM2	Kerto-S LV	1 1 750"				Level: Level	
DIVIZ	Rerio-5 LV	L 1.750	X 16.000"	2-Piy -	PASSED		
•	• •	• •	• •	• •	• •	• • •	
							• ["] \"
							Σ M 1'4"
•	• •	• •	• •	• •	• •	• • •	↓
1 SF	PF End Grain					2 SPF End	Grain //
/ <u>/</u>			1	4'7 1/2"			3 1/2"
I			I	4'7 1/2"			I
Multi-P	ly Analysis						
Fasten a	Il plies using 3 rows	of 10d Box nails	(.128x3") at 12"	o.c Maximu	um end distance r	not to exceed 6".	
Capacity		79.8 %					
Load		196.0 PLF					
Yield Limit		245.6 PLF 81.9 lb.					
Yield Limit		IV					
Edge Dista		1 1/2"					
Min. End D		3"					
Load Comb		D+L					
Duration Fa	actor	1.00					
						1	I
Notes		chemicals		6. For flat roofs prov	ide proper drainage to prevent	Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff
Calculated Str structural ade	uctured Designs is responsible only of a quacy of this component based on a	the 1 IVI beams must not be		ponding		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Broadway, NC USA
design criteri responsibility	a and loadings shown. It is to of the customer and/or the contractor	the 2. Refer to manufact to regarding installation	e cut or drilled turer's product information n requirements, multi-ply			Norwalk, CT 06851	28314 910-864-TRUS
ensure the	component suitability of the intend d to verify the dimensions and loads.		m strength values, and code			(800) 622-5850 www.metsawood.com/us	
Lumber		 Damaged Beams must 4. Design assumes top et 	dge is laterally restrained				
 Dry service LVL not to 	e conditions, unless noted otherwise be treated with fire retardant or corros	6 Provide lateral curpes	rt at bearing points to avoid	This design is v	/alid until 11/3/2024		соттесн
<u> </u>							



1	isDesign		Client: Project: Addres:	Hickor S: Olear Sanfo	nder Lane ord, NC 2	e 7546		Date: Input by: Job Name Project #:		t Preserve		Pa	ge 6 of 8
BM3	S-P-F	#2	2.000"	X 10.0	000"	2-Ply -	PAS	SED					
													<i></i>
•	•	•	•	•	•	•	•	•	•	•	•••		9 1/4"
•	•	•	•	•	•	•	•	•	•	•	• • -	—¥ ////	9 1/4
1 SP	F End Grain									2 SPF	End Grain	——————————————————————————————————————	<i>,</i>
1						12'					,	1 3"	
/						12'						,	
Multi-Ply	y Analysis												

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

Capacity	0.0 %	
Load	0.0 PLF	
Yield Limit per Foot	157.4 PLF	
Yield Limit per Fastener	78.7 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination		
Duration Factor	1.00	

Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC USA 28314 910-864-TRUS
	соттесн

Version 21.80.417 Powered by iStruct[™] Dataset: 21072801.1545 (embedded)

7.		Client: Project:	Weaver Development Hickory II	Date: Input by:	1/18/2023 David Landry	Page 8 d
	sDesign	Address:	Oleander Lane Sanford, NC 27546	Job Name: Project #:	Lot 25 West Preserve J0123-0222	
GDH	Kerto-S LV	L 1.750"	X 14.000" 2-Ply	- PASSED	evel: Level	
· · ·	· · ·	• •	<u></u>	· · ·	· · · · ·	
 1 SPF Er	nd Grain		· · · · ·	· · · · ·	2 SPF End Gra	
			20'			3 1/2"
/			20'			
ulti_Dlv	Analysis					
	olies using 3 rows		(.128x3") at 12" o.c Maxim	ium end distance not	to exceed 6".	
pacity ad		0.0 % 0.0 PLF				
ld Limit per	Foot 2	245.6 PLF				
ld Limit per Id Mode		81.9 lb. IV				
ge Distance		1 1/2"				
n. End Dista	ince :	3"				
ad Combina ration Facto		1.00				
	л —	1.00				
otes		chemicals		by the proper drainage to prevent	Manufacturer Info	omtech, Inc.

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information	ponding This design is valid until 11/3/2024	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Broadway, NC USA 28314 910-864-TRUS

RE: J0123-0222 Lot 25 West Preserve Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development
Lot/Block: 25Project Name: J0123-0222
Model: Hickory IIAddress: Oleander Lane
City: SanfordSubdivision: West Preserve
State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

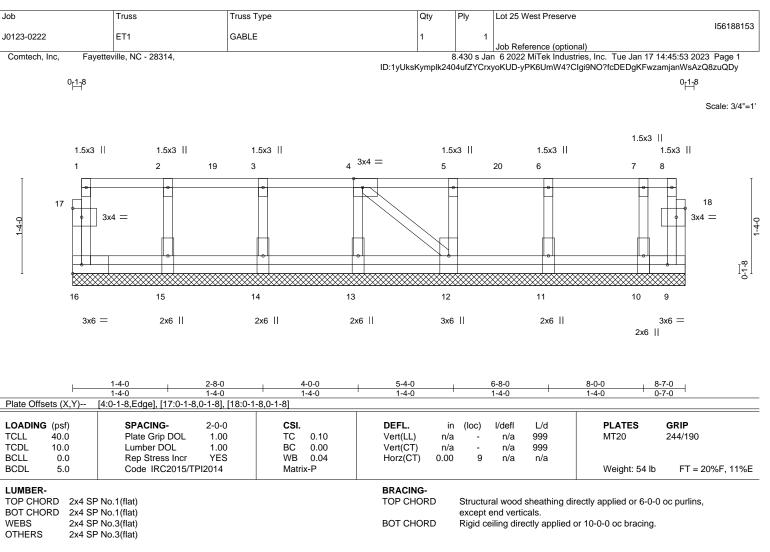
This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7	Seal# I56188153 I56188154 I56188155 I56188156 I56188157 I56188158 I56188159	Truss Name ET1 ET2 ET3 F1 F2 F3 F4	Date 1/18/2023 1/18/2023 1/18/2023 1/18/2023 1/18/2023 1/18/2023 1/18/2023
'			
8	156188160	F5	1/18/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 9-16=-10. 1-8=-100

Concentrated Loads (lb)

Vert: 4=-71 7=-77 19=-71 20=-71

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Job	Truss	Truss Type	Qty	Ply	Lot 25 West Preserve		156100454
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J0123-0222	ET2	GABLE	1	1			I56188154
$0 \downarrow 1 \\ 0 \downarrow $								
Scale = 1:18.2	Comtech, Inc, Fayette	eville, NC - 28314,	ID:1yUksK					
$1 \qquad 2 \qquad 3 \qquad 4^{3\times4} = 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \ 10$	0 ¹¹ 8							0 _[1] 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Scale = 1:18.2
Image: state	1 2	3	4 ^{3x4} = 5	6		7	8	9 10
3x4 = 3x6 =		• • • • • • 3 17		e e e e e e e e e e e e e e e e e e e		13	•	

	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-	-8-0 ₁ 11-1-0
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4	4-0 0-5-0
Plate	Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8	,Edge]						
LOAD TCLL TCDL BCLL BCDL	- 10.0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.00 1.00 YES Pl2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL.iVert(LL)n/iVert(CT)n/iHorz(CT)0.00	a - n/a	999 MT 999 n/a	ATES 20 ight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
LUME	BER- CHORD 2x4 SP CHORD 2x4 SP	P No.1 (flat) P No.1 (flat) P No.3 (flat)			BRACING- TOP CHORD BOT CHORD	except end vertic	heathing directly appli	ed or 6-0-0	

REACTIONS. All bearings 11-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

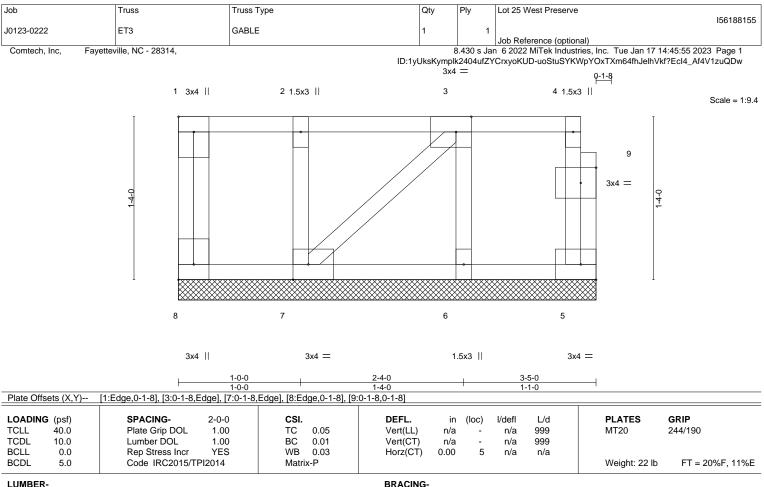
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

TOP CHORD Structural wood sheathing directly applied or 3-5-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

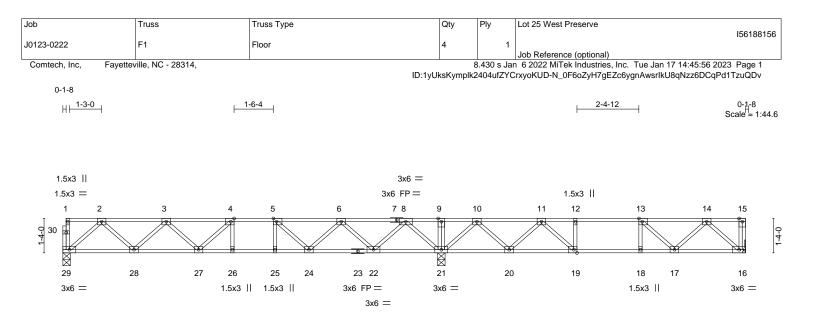
1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

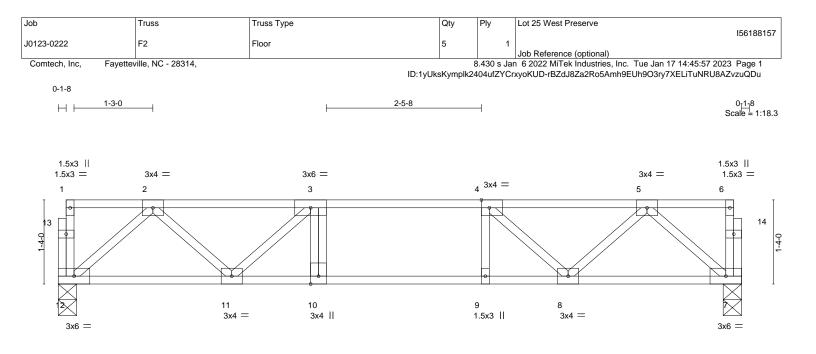
5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932



	<u> </u>					<u>26-5-0</u> 11-9-4	
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [13:0-1-8	3,Edge], [19:0-1-8,Edge]				11-3-4	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.76 WB 0.44 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.10 26-27 -0.13 26-27 0.03 16	l/defl L/d >999 480 >999 360 n/a n/a	PLATES MT20 Weight: 136	GRIP 244/190 b FT = 20%F, 11%E
BOT CHORD 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHOR BOT CHOR	D Struct excep	t end verticals.	ing directly applied or 6-0- plied or 6-0-0 oc bracing.	0 oc purlins,
(e) 29=0-3-8, 16=Mechanical, 21=0-3-8 Frav 29=727(LC 10), 16=1063(LC 4), 21						
TOP CHORD 15-16 8-9=0	Comp./Max. Ten All forces 250 (lb) or 6=-537/0, 2-3=-1257/0, 3-4=-1883/0, 4-5 0/1401, 9-10=0/1401, 10-11=-468/367, 1 4=-884/0	=-2002/0, 5-6=-1658/0, 6	-8=-756/225,				
BOT CHORD 28-29 22-24 17-18	9=0/771, 27-28=0/1717, 26-27=0/2002, 3 4=-34/1340, 21-22=-444/147, 20-21=-63 8=0/1158, 16-17=0/586	7/19, 19-20=-175/900, 18	3-19=0/1158,				
13-17	=-1023/0, 2-28=0/677, 3-28=-640/0, 8-2 ⁻ 7=-372/90, 10-21=-1064/0, 8-22=0/923, D=0/687, 11-20=-690/0, 11-19=0/582, 12	6-22=-882/0, 6-24=0/527	,				
 2) All plates are 3x4 M 3) Plates checked for a 4) Refer to girder(s) for 5) Recommend 2x6 str 5) Strongbacks to be a 6) CAUTION, Do not e LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 16-29: 	dard balanced): Lumber Increase=1.00, Plate =-10, 1-15=-100	ts center. Inc and fastened to each tr strained by other means.	(131" X 3") nail		Carlon S	EAL
Concentrated Loads Vert: 15=-50						A A A A A A A A A A A A A A A A A A A	INEER. KINN

January 18,2023

ENGINEERING BY EREPLICATION AMITEK AMILIA B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H			10-10-0			
			10-10-0			·
Plate Offsets (X,Y)	[4:0-1-8,Edge]					
LOADING (psf)	SPACING- 2-0-0		DEFL. ir	(,	PLATES	GRIP
TCLL 40.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	TC 0.36 BC 0.46 WB 0.21	Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01	10 >999 360	MT20	244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 57 lb	FT = 20%F, 11%E
BOT CHORD 2x4 SP	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	,) oc purlins,
WEBS 2x4 SP	PNo.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
REACTIONS. (size Max G	e) 12=0-3-8, 7=0-3-8 irav 12=576(LC 1), 7=576(LC 1)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

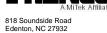
TOP CHORD 2-3=-923/0, 3-4=-1242/0, 4-5=-925/0

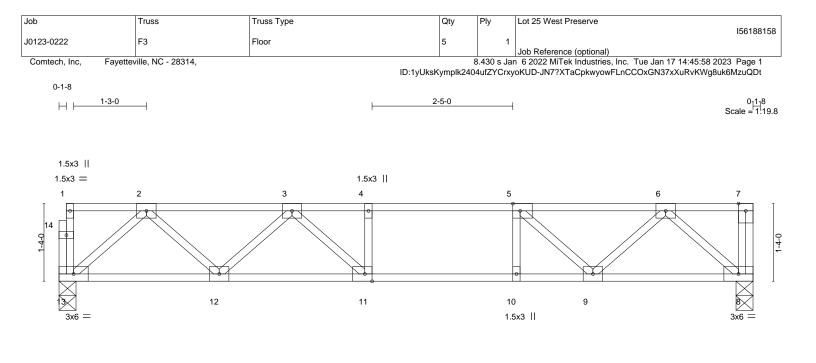
BOT CHORD 11-12=0/606, 10-11=0/1242, 9-10=0/1242, 8-9=0/1242, 7-8=0/603

WEBS 2-12=-805/0, 2-11=0/441, 3-11=-469/0, 5-7=-800/0, 5-8=0/449, 4-8=-475/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) Plates checked for a plus or minus 1 degree rotation about its center.


3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			11-11-0 11-11-0			
Plate Offsets (X,Y)	[5:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.60 BC 0.70 WB 0.27 Matrix-S	Vert(LL) -0.13	n (loc) l/defl L/d 3 11-12 >999 480 5 11-12 >894 360 2 8 n/a n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end verticals.	ng directly applied or 6-0-0 lied or 10-0-0 oc bracing.) oc purlins,

REACTIONS.	(size)	13=0-3-8, 8=0-3-8
	Max Grav	13=635(LC 1), 8=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-548/0, 2-3=-1060/0, 3-4=-1495/0, 4-5=-1495/0, 5-6=-1059/0

BOT CHORD 12-13=0/676, 11-12=0/1395, 10-11=0/1495, 9-10=0/1495, 8-9=0/659

WEBS 2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/557,

5-9=-616/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

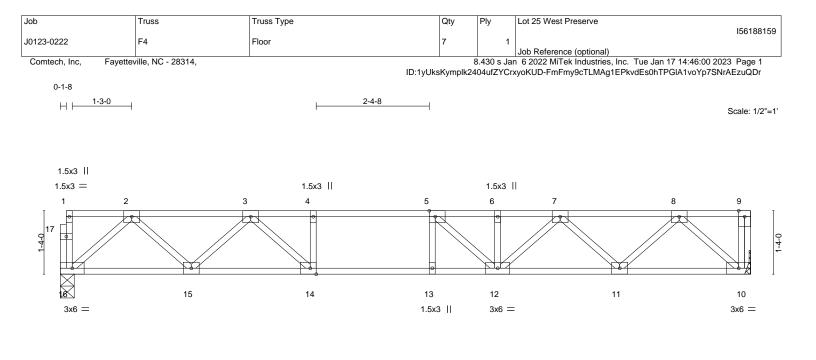
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)


Vert: 8-13=-10, 1-7=-100

Concentrated Loads (lb) Vert: 7=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[5:0-1-8,Edge], [14:0-1-8,Edge]		14-6-0 14-6-0			
	[5:5 + 6,24g6], [+1:5 + 6,24g6]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.62	Vert(LL) -0.1	7 12-13 >999 480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.78	Vert(CT) -0.2	2 12-13 >790 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.35	Horz(CT) 0.0	3 10 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 76 lb	FT = 20%F, 11%E
LUMBER-			BRACING-			
	P No.1(flat)		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0	oc purlins,
	P No.1(flat) P No.3(flat)		BOT CHORD	except end verticals. Rigid ceiling directly applied o	r 10-0-0 oc bracing.	

REACTIONS. (size) 16=0-3-8, 10=Mechanical

Max Grav 16=778(LC 1), 10=784(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1348/0, 3-4=-2244/0, 4-5=-2244/0, 5-6=-2152/0, 6-7=-2152/0, 7-8=-1359/0

BOT CHORD 15-16=0/834, 14-15=0/1856, 13-14=0/2244, 12-13=0/2244, 11-12=0/1857, 10-11=0/835 WEBS

2-16=-1109/0, 2-15=0/714, 3-15=-707/0, 3-14=0/697, 4-14=-339/0, 8-10=-1111/0,

8-11=0/729, 7-11=-693/0, 7-12=0/401, 5-12=-438/123

NOTES-

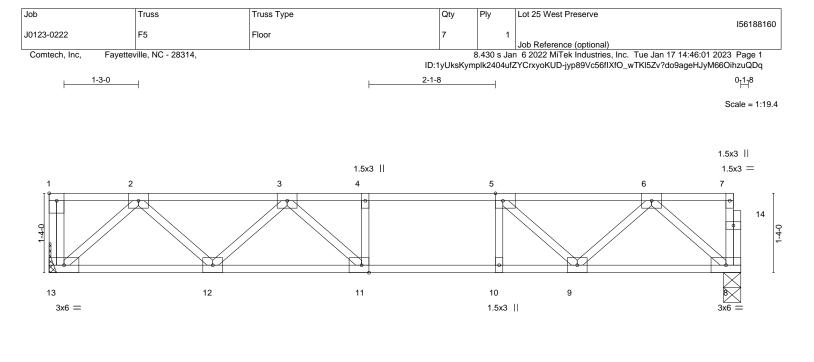
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L				11-7-8			J
1				11-7-8			
Plate Offset	ts (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [11:0-1	-8,Edge]				
	(psf) 40.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00	CSI. TC 0.44 BC 0.56	Vert(LL) -0.10	n (loc) I/defl L/d) 11-12 >999 480 3 11-12 >999 360	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.25 Matrix-S	Horz(CT) 0.02		Weight: 61 lb	FT = 20%F, 11%E
LUMBER-		PNo.1(flat)		BRACING- TOP CHORD	Structural wood sheathing	directly applied or 6.0.0	
BOT CHOR WEBS	RD 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BOT CHORD	except end verticals. Rigid ceiling directly applie	, ,,	oc putins,

REACTIONS. (size) 13=Mechanical, 8=0-3-8 Max Grav 13=626(LC 1), 8=619(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1025/0, 3-4=-1427/0, 4-5=-1427/0, 5-6=-1022/0

BOT CHORD 12-13=0/658, 11-12=0/1345, 10-11=0/1427, 9-10=0/1427, 8-9=0/644

WEBS 2-13=-876/0, 2-12=0/510, 3-12=-446/0, 3-11=-41/323, 6-8=-854/0, 6-9=0/526,

5-9=-570/0 5-9=-570/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

