Job	Truss	Truss Type	Qty	Ply	
24090120	A01	Attic Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:45 Page: 1 ID:y0v3RPz5hGJ_L51ySpQtgVyaEjJ-arb8s1iwBLTBXCNrUmRc75lP1v?6mN_xsTZfclyZrK9

Scale = 1:100.3

Plate Offsets (2	X, Y): [3:0-5-0,0-3-0],	[12:0-3-0,0-2-12], [15:0-	·3-0,0·	-2-12], [19:0-0)-13,0-4-0], [23:0-2-	-3,Edge	e], [36:0-2-6,Edge]]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC20	2-0-0 1.15 1.15 YES 021/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.53 0.70	DEFL Vert(LL) -0.1 Vert(CT) -0.1 Horz(CT) 0.0	in 08 13 01	(loc) 41-42 41-42 30	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 497 lb	GRIP 244/190 P FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x6 SP No.2 *Excep B4:2x12 SP 2400F 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (5- Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 53, 55, 57, 59, 61, 63 MiTek recommends required cross brac truss erection, in ac Installation guide.	ot* B2,B5:2x4 SP No.3, 2.0E ot* W5:2x4 SP No.2 rathing directly applied or cept end verticals, and -15 max.): 12-15. rapplied or 10-0-0 oc 11-42, 16-41 that Stabilizers and sing be installed during coordance with Stabilizer	WE T 1) 2)	EBS ()) () ()) () ()) () ()) ()) ()) ()) ()) ())) ())) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) () ()) ()) () ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) () (11-42=-574/119, 16 11-54=0/434, 54-62 53-62=-395/1687, 5 55-60=-402/1638, 5 16-56=0/388, 12-54 15-56=-161/351, 14 54-63=-1267/421, 1 3-57=-285/86, 48-5 52-59=-281/37, 58- 52-63=-250/84 roof live loads have roof live loa	-41=-59 =-395/1 i3-60= i5-56=-1 3-63= 59=-292 59=-292 e been h (3-see 3CDL=6 envelop (2N) 3-6 xterior(2 38-1-1 ilever le	20/95, 1687, 402/1638, 402/1638, 355, 277/454, 1354/448, /87, 9/41, considered for this cond gust) 5.0psf; h=25ft; Cat e) and C-C Corne 6-6 to 19-3-3, 2N) 24-8-6 to 3, Exterior(2N) oft and right	s í t. í	10) * Thi on th 3-06 chor 11) Beau usin desi 12) Prov bear (s) 3 exce 13) Grap or th botto 14) Attic _OAD C	is truss ine botto -00 tall id and a ding at jg g ANSI/ gner sho ing plato 0, 47, 3 ppt (jt=lb bhical pu e orient om chor- room ci ASE(S)	has be m choo by 2-0 ny oth inint(s) TPI 1 i bould vichanic e capage cap	een designed foi rd in all areas w 0-00 wide will fi er members, wi 35, 36 consider angle to grain for al connection (b able of withstand 44, 45, 46, 39, 3 101, 43=303, 40 opresentation do of the purlin alor d for L/360 deflet dard	r a live load of 20.0psf here a rectangle between the bottom th BCDL = 10.0psf. s parallel to grain value rmula. Building bearing surface. y others) of truss to ting 100 lb uplift at joint 38, 37, 34, 33, 32, 31 =305. the sont depict the size ing the top and/or action.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		3) 1 nt 4) , 5) , 6) 7) 8) 9) 9	exposed ; er members am Lumber DOI Truss desig only. For stu see Standar or consult qu TCLL: ASCE Plate DOL= ⁻ DOL=1.15 P Exp.; Ce=0.9 roof snow lo exposed sur accordance Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates are Gable studs	nd vertical left and r ad forces & MWFRS =1.60 plate grip Dr ned for wind loads uds exposed to wind d Industry Gable Ei ualified building des 7-16; Pr=20.0 psf 1.15); Pg=20.0 psf 1.15); Pg=20.0 psf tate DOL=1.15); Is 9; Cs=1.00; Ct=1.11 ad governs. Rain s faces with slopes le faces with slopes le faces uith slopes de faces de faces uith slopes de faces de fa	ight exp S for rea OL=1.3 in the p d (norm nd Deta signer a (roof LL Pf=18.9 =1.0; R- 0, Lu=5 surchars ess than been col- or great at roof I other li orevent other we.	posed;C-C for actions shown; 3 lane of the truss hal to the face), sis per ANSI/TPI 1. L: Lum DOL=1.15 9 psf (Lum ough Cat B; Fully 0-0-0; Min. flat ge applied to all n 0.500/12 in nsidered for this ter of min roof live load of 13.9 psf or ive loads. water ponding. ise indicated.	'n						

Job	Truss	Truss Type	Qty	Ply	
24090120	A02	Attic	6	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:46 Page: 1 ID:BRk_utmlmkWGwjG9Sol9Exyaryn-WDjuHjkAjyjvmWWDbBT4DWNhyif8ECmEJn2mhByZrK7

19-3-3 <u>43-11-12</u> 5-9-15 7-9-4 3-9-12 <u>12-8-8</u> 4-11-4 18-0-12 25-10-8 32-5-13 48-11-0 54-3-8 5-4-4 6-7-5 6-7-5 4-11-4 5-4-8 1-2-7 6x8= 4x5∾ 4x5≁ 2x4∎ 6x8= 37 8 38 9 7 10^{12 6} 15,4-0T3 29 10 WH ₩12 30 W10 -8-1 31 6x8= 6x8= 6x8≈ 3x6∎ 3x61 336 391 4x6≈ 5 8-1-14 11-4-4 5x6≈ 12 5x6≠ 124013 4 4x5≈ ^{4x5}≈ 34 W14 41442 5x6= N13 10-11 10-1 339 ٧7 32 5x8≈ **B**5 PT6 2 Ъ ìЬ 1516 28 W1 W2 1416 NA W18 ₩з 1-7-13 -3-<u>q</u> B4 WR5 √19 0-6-14 24 23 22 21 ŝ 27 18 6x8= 3x5∎ 3x5∎ 3x51 4x8= 10x12= 10x12= 4x6= 4x8= 4x8= 3x5∎ 6x8= Special Special <u>3-11-8 | 7-11-0 |</u> 3-11-8 | 3-11-8 | <u>12-6-12</u> 4-7-12 <u>18-2-8</u> 5-7-12 <u>33-6-8</u> 15-4-0 <u>48-11-0</u> 5-1-0 38-3-9 43-10-0 54-3-8 Ł ╉ ł 4-9-1 5-4-8 5-6-7

Scale = 1:100.3

	x, 1). [2.0-2-14,0-2-0	5], [7:0-5-4,0-2-72], [8:0-5	-4,0-2-12], [20.0-0-	4,0-0-0], [24.0-0-	0,0-2-0], [20.0-0-4,0-0	-12], [00	.0-4-0,	0-2-12]			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code I	2-0-0 1.15 1.15 YES RC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.55 0.69 0.94	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.25 -0.37 0.02 -0.20	(loc) 22-23 22-23 17 22-23	l/defl >999 >999 n/a >915	L/d 240 180 n/a 360	PLATES MT20 Weight: 494 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x6 SP No.2 *Exce B3:2x6 SP 2400F 2 2.0E 2x4 SP No.3 *Exce W1:2x4 SP 2400F 2 2.0E Structural wood shi 4-8-6 oc purlins (3- Rigid ceiling directi bracing. 1 Row at midpt 1 Brace at Jt(s): 30 MiTek recommend required cross bra truss erection, in a Installation guide.	pt* B2,B5:2x4 SP No.3, .0E, B4:2x12 SP 2400F pt* W10:2x4 SP No.2, 2.0E, W20:2x8 SP 2400F eathing directly applied or xcept end verticals, and 5-10 max.): 7-9. y applied or 6-0-0 oc 6-30, 10-30 s that Stabilizers and cing be installed during ccordance with Stabilizer	BOT CHORD	2-32=-171/354, 3: 3-33=-140/374, 3: 4-34=-104/783, 4: 5-35=-2450/128, 3: 6-36=-2379/160, 0: 7-37=-3067/325, 9: 9-10=-1563/164, 1: 13-41=-124/631, 1: 12-40=-88/667, 1: 13-41=-124/631, 1: 14-42=-307/258, 1: 15-17=-284/154, 2: 22-23=0/183, 2: 22-23=0/1833, 2: 22-23=0/1833, 2: 22-23=0/1833, 2: 22-23=0/1833, 2: 22-23=0/1833, 2: 22-23=0/1833, 2: 22-23=0/1833, 2: 2-23=0/794, 10-2: 11-21=-1417/50, 5: 5-31=-1108/175, 5:	2-33=-156 -34=-117/ -5=-1640/ 35-36=-22 6-7=-1555 -3-7=-306 9-38=-306 10-39=-22 11-12=-1 3-40=-90/ 14-41=-11 15-42=-32 -22=0/16 12-20=-25 -24=-146 2=0/804, 12-21=-22 30-31=-10	0/371, 755, 131, 135/131, 5/151, 57/325, 37/325, 386/189, 741/161, 661, 77/626, 47/235, 3/218, 1537, 11, 361/177 361/177 361/177 361/177, 371/177,	2 5 7 02, 8	 TCl Pla DO Exp roo exp acc 4) Unit des 5) Thi loa on 3-0 chc 29-0 chc 	LL: ASCE te DOL=: L=1.15 F .; C=0 f snow lo osed sur cordance balanced ba	E 7-16; 1.15); I Plate D 9; Cs= ad gov faces with IE snow as bee psf or loon-col quate m chol by 2-0 ny othe I load (d live I load (5	; Pr=20.0 psf (ro Pg=20.0 psf; Pf- OL=1.15); Is=1. 1.00; Ct=1.10, L verns. Rain surd with slopes less 3C 1608.3.4. loads have bee an designed for g 2.00 times flat r ncurrent with oth drainage to preve een designed for g 2.00 times flat r ncurrent with oth drainage to preve een designed for d in all area so 0-00 wide will fit er members. (10.0 psf) on me load (40.0 psf) a 5.0 psf) applied of	of LL: Lum DOL=1.15 =18.9 psf (Lum 0; Rough Cat B; Fully .u=50-0-0; Min. flat charge applied to all than 0.500/12 in n considered for this greater of min roof live roof load of 13.9 psf on her live loads. vent water ponding. r a live load of 20.0psf here a rectangle to between the bottom ember(s). 6-31, 30-31, and additional bottom ponly to room. 22-23
REACTIONS / (lb) -	All bearings 0-3-8. e: Max Horiz 28=-102 Max Uplift All uplift : (LC 11) Max Grav All reacti (s) excep (LC 75), (LC 2) (lb) - Max. Comp./M (lb) or less except v	xcept 28=0-3-0 (LC 13) 100 (lb) or less at joint(s) 7=-112 (LC 12), 28=-198 ons 250 (lb) or less at join t 17=334 (LC 2), 20=254 25=2517 (LC 74), 28=263 fax. Ten All forces 250 vhen shown.	NOTES 1) Unbalanced design. 2) Wind: ASCE Vasd=103m II; Exp B; Er Exterior(2E) 19-3-3, Exte to 32-5-13, I 38-1-13 to 5 exposed ; el members ar	29-30=-982/140, 2-27=-334/144, 9 5-23=0/455, 7-31: 7-30=-264/1931, 1 18-20=-68/296, 14 roof live loads ha 7-16; Vult=130m ph; TCDL=6.0psf inclosed; MWFRS -1-10-13 to 3-6-6 rrior(2R) 19-3-3 to Exterior(2R) 32-5- 4-11-13 zone; can and vertical left and d forces & MWFF	10-29=-1(29=0/432 =0/444, 8- 3-25=-438 3-25=-438 -20=-565 we been of ph (3-sec BCDL=6 (envelope i, Interior , 24-8-6, 1 13 to 38- tillever le d right exp RS for rea DCL=6	065/137, 2, 9-30=-240/ 30=-564/178 3/104, 5/98 considered for cond gust) .0psf; h=25ft e) and C-C (1) 3-6-6 to nterior (1) 24 1-13, Interior ft and right posed;C-C for consistown	(1926, 1926, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24	10) Pro bea 28 11) Gra or t bot 12) Atti	vide mec aring plat and 112 l aphical pu he orient tom chor c room c CASE(S)	chanica e capa b uplif urlin re ation c d. heckeo Stan	al connection (b ible of withstand it at joint 17. presentation do of the purlin alon d for L/360 defle idard	y others) of truss to ling 197 lb uplift at joint es not depict the size ig the top and/or action.

Job	Truss	Truss Type	Qty	Ply		
24090120	B01	Attic Supported Gable	1	1	Job Reference (optional)	
Carter Components, Sanford, NC, user		Run: 8.73 S Jul 1	1 2024 Print:	8,730 S Jul	11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:47	Page: 1

Run: 8,73 S Jul 11 2024 Print: 8,730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:47

ID:uP1ps5?LDtZiaPBKZETLlwyaEjH-_PHGU3koUGrlOf5Q9u_Jlkwv_61bziLNYQnKDdyZrK6

Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat

roof snow load governs. Rain surcharge applied to all

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on

exposed surfaces with slopes less than 0.500/12 in

overhangs non-concurrent with other live loads.

Provide adequate drainage to prevent water ponding.

All plates are 2x4 MT20 unless otherwise indicated.

accordance with IBC 1608.3.4.

Gable studs spaced at 2-0-0 oc.

5)

7)

8Ì

9)

desian.

42), 37=479 (LC 2) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-37=-478/178, 2-3=-397/104, 3-4=-365/111, 9-49=-229/252, 10-49=-217/260, 10-50=-258/351, 11-50=-227/365, 11-12=-241/421, 12-13=-829/406 13-14=-1841/698, 14-51=-1879/687, 51-52=-1879/687, 15-52=-1879/687, 15-16=-670/314, 16-17=-871/388, 223/256

BOT CHORD 6-34=-259/86

Job	Truss	T	russ Type		Qty	Ply			
24090120	B02	A	Attic		6	1	Job Reference (opt	ional)	
Carter Compone	nts, Sanford, NC, user			Run: 8.73 S Jul	11 2024 Pri	nt: 8.730 S Jul	11 2024 MiTek Industrie	es, Inc. Thu Sep 26 1	8:26:48 Page: 1
		0.4 7.0.4	18- 14-2-13	-0-12 19-3-3 of 4			33-8-4 an a c		
	2-2-4 4	-0-1 7-9-4 -0-1 3-9-3	4-11-4 1-6-5	9-15 1-2-7 6-7	7-5	<u> </u>	$\frac{3}{1-2-7}$	<u>43-10-0</u> 5-3-8	\rightarrow
				6x8=	0	. 4	4x5 ∝		
<u> </u>	_		4.0	4x5¢ 12 8	35369	⁽⁴) 3738 3	6x8= 10		
_			۱۲ 3x8	7 7 W13 W	15	1-0 ^{T3}			
1-4-4	ה 		5x8=	T2 28 3x6µ	3) 6>	(8=	29 3x6µ	4x5 ≈ 39	
4			5 ³³⁶	VA/11		4	VM15	40	
11-4	-	4 ¹² 2×411		with the second se		8-1-1	V	4 42	
11	_ 5x6≠	31 3 T+	W6 W	10			XIII	6 W17 43 5	jx8 ∢
5-1		W3 W4 B2							13 84-4-8 ₹.,,-9
$\downarrow \downarrow$		$\frac{A2}{B1} \frac{B1}{23}$	22 44 18	<u>µ+9-p-µ</u> 17		B5	16	15	™14 <u>1</u> ຕ7 <u>1</u> 70 3x5∎ 000
	2x4ı Special	4x8 = 2x4 II	3x5= 2x4	и 2x4=		35-7-8	MT20HS 10x12 =	5x6 =	→
	Special	5x8	5x10= 4xc	MT20HS 10x12 =					1
		_ 1()- 2 *4"	18-2-8					
	ι 4	8-9-3 8-7-3 ۱ <u>۱ -0-1 ا 1-0 ا</u>	-0 3 <u>↓ 15-2</u> -8 ⊾	7-4-4	33-	6-8	38-6-8	<u>43</u> -10-0	
Scale = 1:94 4	¹ 4	-0-1 ¹ 3-10-15 ¹ 1 0-8-3 0-1-	3 ¹ 5-0-0 ¹ 13	1 1 1-12 0-1-2	15-	4-0	1 5-0-0	¹ 5-3-8	1
Plate Offsets ()	X. Y): [2:0-2-14.0-2-8]		<u>-5-8</u> 5-12.0-3-0]. [10:0-5-4	<u>0-9-2</u> 1.0-2-12]. [16:0-5-4.0)-5-0]. [17:	0-3-12.Edge]. [24:0-4-12.0-3-4]. [30:0-2-8.0-3-01	
Loading	(psf)	Spacing	2-0-0	csi		EFL	in (loc) l/defl		GRIP
TCLL (roof)	20.0 18 9/20 0	Plate Grip DOL	1.15	TC	0.60 V	ert(LL) -().27 16-17 >999	240 MT20	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.90 H	orz(CT) ().05 14 n/a	n/a	
BCDL	10.0	Code	IRG2021/1P12014	Matrix-MSH	A	uic -u).21 10-17 >878	Weight: 4	14 lb FT = 20%
LUMBER	· · · •		BOT CHORD	25-26=-288/0, 4-24=	-374/176,	22-24=0/22	47, 9) * This truss	has been designe	d for a live load of 20.0psf
TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.3 *Except	t* B3:2x4 SP 2400F		22-44=0/3006, 18-44 16-17=0/2149, 15-16	4=0/3006, 5=-26/204	17-18=0/300 3,	06, on the botto 3-06-00 tall	m chord in all area by 2-00-00 wide w	as where a rectangle vill fit between the bottom
	2.0E, B5:2x12 SP 24 2400F 2 0F	100F 2.0E, B6:2x6 SP		14-15=-38/352, 21-2 21-45=-1182/0, 20-4	23=-1182/0 5=-1182/0),)	chord and a 10) Ceiling dead	ny other members I load (10.0 psf) o	, with BCDL = 10.0psf. n member(s). 7-28, 28-30,
WEBS	2x4 SP No.3 *Excep W19:2x6 SP No.2	t* W12,W6:2x4 SP No	.2, WEBS	7-17=0/1032, 11-16= 7-28=-1343/100, 28-	=0/1059, 1 ·30=-1246	2-16=-153/4 /105,	19, 29-30, 11-29 11) Bottom chor) d live load (40.0 p	osf) and additional bottom
BRACING				29-30=-1319/35, 11- 2-26=-306/219, 13-1	29=-1421 5=0/1726	/26, . 12-15=-488	chord dead (0. 12) Refer to gird	load (5.0 psf) appl ler(s) for truss to t	lied only to room. 16-17 russ connections.
TOP CHORD	3-8-13 oc purlins, ex	athing directly applied xcept end verticals, an	or d	8-28=0/504, 10-29=0 3-26=-31/259, 24-26	0/526, 10-)=-96/293.	30=-196/193 3-24=-499/4	6, 13) Provide med	chanical connection	n (by others) of truss to tanding 260 lb uplift at joint
BOT CHORD	2-0-0 oc purlins (3-6 Rigid ceiling directly	-0 max.): 8-10. applied or 3-5-15 oc		23-24=-3803/0, 5-23 6-19=0/473 17-19=0	=-3374/0,	22-23=0/96 0=-565/169	1, 27. 14) Graphical p	Irlin representatio	n does not depict the size
WEBS	bracing. 1 Row at midpt 7	7-30, 11-30	NOTES	8-30=-280/1861, 17-	20=-1323	/0	or the orient	ation of the purlin	along the top and/or
WEBS JOINTS	2 Rows at 1/3 pts 5 1 Brace at Jt(s): 30	5-24	1) Unbalanced	l roof live loads have	been con	sidered for t	nis 15) Attic room c	hecked for L/360	deflection.
	MiTek recommends	that Stabilizers and	2) Wind: ASCE	E 7-16; Vult=130mph	(3-secon	d gust)	LOAD CASE(S)	Standard	
	truss erection, in ac	cordance with Stabilize	er II; Exp B; Ei	nclosed; MWFRS (ei	CDL=6.0p nvelope) a	nd C-C	at.		
REACTIONS	(lb/size) 14=1533/	Mechanical. (min. 0-1-	Exterior(2E) 8). 19-3-3, Exte) -1-10-13 to 2-5-13, erior(2R) 19-3-3 to 23	Interior (1 3-7-13, Int) 2-5-13 to erior (1)			
	24=2285/0 27=200/0-	3-0 (min 0-1-8)	23-7-13 to 3 Interior (1) 3	32-5-13, Exterior(2R) 36-10-6 to 43-7-4 zoi) 32-5-13 t ne; cantile	o 36-10-6, ver left and			
	Max Horiz 27=228 (L	C 12)	right expose for member	ed ; end vertical left a s and forces & MWF	and right e RS for rea	exposed;C-C actions show	n;		
	Max Grav 14=2206 (1	LC 55), 24=3286 (LC	Lumber DO 3) TCLL: ASCI	L=1.60 plate grip DC E 7-16; Pr=20.0 psf (DL=1.33 (roof LL: L	um DOL=1.1	5		
FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces 250	Plate DOL= DOL=1.15 F	1.15); Pg=20.0 psf; l Plate DOL=1.15); ls=	Pf=18.9 ps 1.0; Roua	sf (Lum h Cat B; Full	у		
TOP CHORD	(lb) or less except wh 2-31=-250/295, 3-31	nen shown. =-227/326,	Exp.; Ce=0. roof snow lo	9; Cs=1.00; Ct=1.10 ad governs. Rain s	, Lu=50-0 urcharge a	-0; Min. flat			
	3-32=-194/732, 4-32 4-5=-233/786, 5-33=	=-168/784, -2876/83,	exposed su	rfaces with slopes le with IBC 1608 3 4	ss than 0.	500/12 in			
	6-33=-2819/92, 6-34 7-34=-2762/158, 7-8	=-2775/131, =-1639/142,	4) Unbalanced	I snow loads have be	een consid	dered for this			
	8-35=-3032/350, 35- 9-36=-3032/350, 9-3	36=-3032/350, 7=-3032/350.	5) This truss h	as been designed fo	r greater o	of min roof liv	e		
	37-38=-3032/350, 10 10-11=-1600/176 11)-38=-3032/350, -39=-2762/123	overhangs i	non-concurrent with	other live l	loads.	ווכ		
	39-40=-2819/103, 12 12-41=-2581/124 41	2-40=-2869/94,	from left end	d, supported at two p	points, 5-0	-0 apart.	·u		
	42-43=-2669/101, 13	3-43=-2758/100, 4=-2220/118	 Provide ade All plates ar 	equate drainage to pi e MT20 plates unles	event wat s otherwis	er ponding. se indicated.			
	2-21-210/200, 13-1								

Job	Truss	Truss Type	Qty	Ply		
24090120	C01	Attic Girder	1	2	Job Reference (optional)	
Carter Components, Sanford, N	Run: 8.73 S Jul 1	1 2024 Print:	8.730 S Jul	11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:49	Page: 2	

ID:FMqivo3U2QB?hA3IMn2WSzyaEjC-woO1vkm20t5TdzFoGJ1nq9?E9wkPRbjg?kGQIVyZrK4

Carter Components, Sanford, NC, user

20) Special hanger(s) or other connection device(s) shall be provided at 9-9-4 from the left end sufficient to connect truss(es) I03 (1 ply 2x4 SP) to back face of top chord. The design/selection of such special connection device (s) is the responsibility of others. 21) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

- Vert: 2-3=-296, 3-27=-296, 4-27=-48, 4-6=-48,
- 6-13=-58, 13-31=-48, 14-31=-128, 14-15=-128,
- 15-16=-128, 21-24=-113 (F=-93), 19-21=-20, 18-19=-20, 17-18=-80 (F=-60), 14-36=-80, 3-37=-248
- Concentrated Loads (Ib)
- Vert: 5=-408 (B), 23=-388 (B), 34=-1691 (B), 35=-314 (B), 38=-408 (B)
- Trapezoidal Loads (lb/ft)
- Vert: 1=-319-to-2=-296
- 2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 2-3=-308, 3-27=-308, 4-27=-60, 4-6=-60,
- 6-13=-60, 13-31=-60, 14-31=-140, 14-15=-140, 15-16=-140, 21-24=-113 (F=-93), 19-21=-20,
- 18-19=-20, 17-18=-80 (F=-60), 14-36=-80, 3-37=-248
- Concentrated Loads (lb) Vert: 5=-482 (B), 23=-462 (B), 34=-1805 (B), 35=-346 (B), 38=-482 (B)

Trapezoidal Loads (lb/ft)

Vert: 1=-331-to-2=-308

3) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 2-3=-267, 3-27=-267, 4-27=-50, 4-6=-50,
- 6-13=-50, 13-31=-50, 14-31=-120, 14-15=-120, 15-16=-120, 21-24=-314 (F=-279), 21-33=-50,
- 19-33=-35, 18-19=-35, 17-18=-155 (F=-120),
- 14-36=-70, 3-37=-217 Concentrated Loads (lb)
- Vert: 5=-421 (B), 23=-401 (B), 34=-1573 (B), 35=-302 (B), 38=-421 (B)

Trapezoidal Loads (lb/ft)

Vert: 1=-290-to-2=-267

ID:jZO57846ojJsJKeUwUal?ByaEjB-O_yP74ngmBDKF7q?q1Y0NMYPtK4RA3xpEO0_qyyZrK3

REVIEW REQUIRED

Plate Offsets (X, Y): [2:0-6-8,0-3-8], [4:0-3-12,0-2-8], [6:0-5-4,0-2-8], [14:0-8-8,0-1-2], [15:0-6-8,0-4-0], [18:0-3-8,0-3-0], [19:0-8-0,0-8-4], [21:0-4-0,0-3-8], [23:0-3-8,0-8-0], [25:0-3-12,0-3-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.17	19-21	>999	240	MT20	244/190	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.31	19-21	>999	180			
TCDL	10.0	Rep Stress Incr	NO	WB	0.74	Horz(CT)	0.03	17	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 941 lb	FT = 20%	

LUMBER TOP CHORD

BOT CHORD

WEBS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

WEBS

JOINTS

FORCES

TOP CHORD

BOT CHORD

WEBS

Scale = 1:81.9

NOTES

2x6 SP No.2 *Except* T6:2x10 SP 2400F

2x12 SP 2400F 2.0E *Except* B4:2x8 SP

2x4 SP No.3 *Except* W1:2x6 SP No.2,

Structural wood sheathing directly applied or

5-4-10 oc purlins, except end verticals, and

2-25

17=4093/0-3-8, (min. 0-2-0),

25=6726/0-3-8, (min. 0-3-8)

Max Grav 17=4771 (LC 27), 25=8516 (LC 28)

(lb) - Max. Comp./Max. Ten. - All forces 250

3-27=-7625/0, 4-27=-7477/0, 4-28=-4144/0,

6-28=-4107/0, 6-8=-3470/0, 8-29=-3464/0,

11-12=0/1994, 12-13=0/1439, 13-14=-4863/0,

15-16=-4825/0, 1-25=-935/0, 16-17=-4456/0,

24-25=0/6641, 23-24=0/6641, 22-23=0/6755,

21-22=0/6755, 20-21=0/5701, 20-32=0/5701,

19-32=0/5701, 18-19=0/4418, 14-19=0/3156,

15-18=-4130/0. 16-18=0/5282. 3-23=0/1822.

11-13=-3426/0, 2-25=-8918/0, 2-23=-34/455

3-21=-2148/0, 6-7=0/2529, 15-19=0/1871, 8-9=-476/69. 6-9=-1148/108. 9-11=0/1482

4-7=-2531/0, 7-9=-2402/0, 9-10=-4766/0,

1-2=-593/0, 2-26=-8689/0, 3-26=-8424/0,

Rigid ceiling directly applied or 10-0-0 oc

2-0-0 oc purlins (6-0-0 max.): 6-12, 4-13, 3-5.

2 0F T4-2x6 SP 2400F 2 0F

2400F 2.0E. B3:2x6 SP No.2

W12.W2:2x4 SP No.2

bracing.

9, 10

1 Row at midpt

10-13=-4766/0

1 Brace at Jt(s): 5,

Max Horiz 25=-181 (LC 64)

(lb) or less except when shown.

29-30=-3464/0, 11-30=-3464/0,

14-31=-6762/0, 15-31=-6874/0,

5-21=0/2182, 4-5=0/2810

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows

Top chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x12 - 4 rows

staggered at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Special connection required to distribute web loads equally between all plies.
- 4) 2x12 SP 2400F 2.0E bearing block 12" long at jt. 25 attached to each face with 6 rows of 10d (0.131"x3") nails spaced 3" o.c. 24 Total fasteners per block. Bearing is assumed to be SP 2400F 2.0E 5)
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 6) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 7) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

- 8 Unbalanced snow loads have been considered for this design
- 9) Provide adequate drainage to prevent water ponding.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2409 . Ib down at 25-9-0 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 14) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

1)	Dead + Snow (balanced): Lumber Increase=1.15, Plate
	Increase=1.15

- Uniform Loads (lb/ft)
 - Vert: 2-3=-296, 3-27=-296, 4-27=-48, 4-6=-48,
 - 6-12=-58, 12-13=-48, 13-15=-48, 15-16=-48,
 - 21-25=-113 (F=-93), 19-21=-20, 17-19=-20,
 - 3-33=-248
 - Concentrated Loads (lb)
 - Vert: 5=-408 (F), 23=-408 (F), 7=-2116 (F), 32=-2167 (F), 34=-408 (F)
 - Trapezoidal Loads (lb/ft)
 - Vert: 1=-319-to-2=-296
- 2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 2-3=-308, 3-27=-308, 4-27=-60, 4-6=-60,
- 6-12=-60, 12-13=-60, 13-15=-60, 15-16=-60,
- 21-25=-113 (F=-93), 19-21=-20, 17-19=-20,
- 3-33=-248
- Concentrated Loads (lb)
- Vert: 5=-482 (F), 23=-482 (F), 7=-2310 (F), 32=-2409 (F), 34=-482 (F)

Job	Truss	Truss Type	Qty	Ply		
24090120	C02	Attic Girder	1	2	Job Reference (optional)	
Carter Components, Sanford, No	Run: 8.73 S Jul 1	1 2024 Print:	8.730 S Jul	11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:50	Page: 2	

ID:jZO57846ojJsJKeUwUal?ByaEjB-O_yP74ngmBDKF7q?q1Y0NMYPtK4RA3xpEO0_qyyZrK3

Trapezoidal Loads (lb/ft) Vert: 1=-331-to-2=-308 3) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor: Lumber Increase=1.15, Plate

Increase=1.15 Uniform Loads (lb/ft)

- Vert: 2-3=-267, 3-27=-267, 4-27=-50, 4-6=-50, 6-12=-50, 12-13=-50, 13-15=-50, 15-16=-50, 21-25=-314 (F=-279), 21-32=-50, 19-32=-35, 17-19=-35, 3-33=-217

Concentrated Loads (lb) Vert: 5=-421 (F), 23=-421 (F), 7=-2014 (F), 32=-2174 (F), 34=-421 (F) Trapezoidal Loads (lb/ft) Vert: 1=-290-to-2=-267

24090120 D01 Carter Components, Sanford, NC, user	Common Suppo	orted Gable	1	1					I
Carter Components, Sanford, NC, user					Job Referen	nce (onti	onal)		
		Run: 8.73 S Jul 11	2024 Print: 8	8.730 S Jul ⁻	11 2024 MiTek	Industrie	s, Inc. T	hu Sep 26 18:26:5	1 Page: 1
			ID:mvkv7e	erBHuwYXP	hql?klkAyaEjl	J-O_yP74	ngmBD	KF7q?q1Y0NMYS	6K9_ACxpEO0_qyyZrK3
	<u>1-5-4</u>	8-11-8	ļ	17	-11-0		19-4	1-4	
	1-5-4	8-11-8	l	8-	11-8		1-5-	-4	
		2	4x5=						
8-1-9 1-9	$\begin{array}{c} & & & & & \\ & & & & & \\ 1 - 7 - 15 & 1 & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & $	10 ¹² 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 5T5 3 ST 20 1	8 1 5 5 6 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	9 3 5 7 10 3 5 7 2 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 7 8 8 7 8	27 1 ST1 15	1 12 12 14	13	
Scale = 1:59.1		17-	-11-0				\rightarrow		
Loading (psf) Sr TCLL (roof) 20.0 PI Snow (Pf/Pg) 13.9/20.0 Lu TCDL 10.0 Ri BCLL 0.0* C BCDL 10.0 Ri	pacing 2-0 late Grip DOL 1. umber DOL 1. tep Stress Incr YE code IRC2021/TPI20	D-0 CSI 15 TC 0. 15 BC 0. ES WB 0. 14 Matrix-MR	DEF 22 Vert(12 Vert(16 Horz	L (LL) (CT) (CT) 0.	in (loc) n/a - n/a - .00 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheath 6-0-0 oc purlins, excep BOT CHORD Rigid ceiling directly ap bracing. WEBS 1 Row at midpt 7-2 MiTek recommends that required cross bracing truss erection, in accord Installation guide. REACTIONS All bearings 17-11-0. (lb) - Max Horiz 25-201 (LC - Max Uplift All uplift 100 16, 17, 19, 22 14196 (LC Max Grav All reactions (s) 15, 16, 17 except 14-22 (LC 11), 25=2 FORCES (lb) - Max. Comp./Max. (lb) or less except wher TOP CHORD 5-6=-119/294 WEBS 7-20=-397/108 NOTES 1) Unbalanced roof live loads have be design. 2) Wind: ASCE 7-16; Vult=130mph (3 Vasd=103mph; TCDL=6.0psf; BCD I; Exp B; Enclosed; MWFRS (envec (3E) -1-4-10 to 1-7-6, Exterior(2N)	 3) Truss de only. Foi see Stan or consul 4) TCLL: AS Plate DO DOL=1.1 5) This truss load of 1: overhang 20 at Stabilizers and gb installed during rdance with Stabilizer 12) (lb) or less at joint(s) 1, 22, 23 except 10), 25=-218 (LC 9) 250 (lb) or less at joint, 10), 25=-218 (LC 9) 250 (lb) or less at joint, 7, 19, 20, 21, 22, 23 67 (LC 29), 24=258 285 (LC 30) Ten All forces 250 n shown. 0/372, 7-8=-160/372, een considered for this bescond gust) 01=6.0psf; h=25ft; Cat. elope) and C-C Corner 1-7-6 to 8-11-8, (a) CAD CASE 	seigned for wind loads in th r studs exposed to wind (n diard Industry Gable End I It qualified building design SCE 7-16; Pr=20.0 psf; Pf= 15 Plate DOL=1.15); Is=1.0; 0.9; Cs=1.00; Ct=1.10 s has been designed for g 2.0 psf or 2.00 times flat re gs non-concurrent with oth s are 2x4 MT20 unless oth quires continuous bottom be fully sheathed from one igainst lateral movement (i uds spaced at 2-0-0 oc. Iss has been designed for ottom chord in all areas wh tall by 2-00-00 wide will fit id any other members. mechanical connection (by polate capable of withstandi 2, 23, 19, 17, 16 except (jt 15=179. :(S) Standard	he plane o normal to th Details as : ler as per A of LL: Lum =13.9 psf (I 0; Rough C greater of n oof load of her live load herwise ind chord beai e face or s i.e. diagon: a live load here a rect between ti y others) of ing 100 lb =lb) 25=21	f the truss he face), applicable, ANSI/TPI 1 DOL=1.1! Lum Cat B; Fully nin roof live 13.9 psf o ds. iicated. ring. ecurely al web). I of 20.0ps angle he bottom f truss to uplift at join 18, 14=196	f nt				

Job	Truss	Truss Type	Qty	Ply		
24090120	D02	Common	5	1	Job Reference (optional)	
Carter Components, Sanford, N	Run: 8.73 S Jul 1	2024 Print:	8.730 S Jul	11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:51	Page: 1	

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:51 ID:mvkv7erBHuwYXPhql?klkAyaEjU-sBWnKQoJXVMBtHPBOk3Fwa4c3jOpvZZzT2lXMOyZrK2

-1-5-4 1-5-4 4-7-8 8-11-8 13-3-8 17-11-0 4-7-8 4-4-0 4-4-0 4-7-8 4x5= 4 10¹² $^{\uparrow}$ 4x5 🖌 10 11 4x5💊 3 5 9-1-9 8-10-1 9-1-9 2x4 II 2x4 II 2 6 1-7-15 1 W 0-3-8 0-3-8 9 Ę 7 **B**1 **B**1 ₿ 8 3x5= 3x5= 5x8= 8-11-8 17-11-0 8-11-8 8-11-8

1

Scale = 1:56.8

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.53 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.13 0.01	(loc) 8 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. MiTek recommends required cross brack truss erection, in ac	athing directly applied cept end verticals. ' applied or 10-0-0 oc s that Stabilizers and ing be installed during scordance with Stabilize	5) * This truss I on the botto 3-06-00 tail I chord and au LOAD CASE(S) or	nas been designed n chord in all areas y 2-00-00 wide wi ny other members. Standard	for a liv s where Il fit betv	e load of 20. a rectangle veen the bott	0psf tom					
REACTIONS	(lb/size) 7=594/0-3 9=673/0-3 Max Horiz 9=194 (LC Max Grav 7=701 (LC	3-8, (min. 0-1-8), 3-8, (min. 0-1-8) C 12) C 2), 9=801 (LC 2)										
FORCES TOP CHORD 3OT CHORD WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E T7-9-4 zon vertical left forces & M DOL=1.05 Exp.; Ce=(4) This truss load of 12. overhangs	(lb) - Max. Comp./M. (lb) or less except w 3-10=-646/118, 4-10 4-11=-569/150, 5-11 8-9=-75/498, 7-86 4-8=-86/464, 3-9=-6 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (ei E) -1-4-10 to 1-7-6, Ini R) 8-11-8 to 11-17-8, I e; cantilever left and and right exposed; C WFRS for reactions s plate grip DOL=1.33 E 7-16; Pr=20.0 psf; Plate DOL=1.19; Is= .9; Cs=1.00; Ct=1.10 has been designed fo 0 psf or 2.00 times fla non-concurrent with	ax. Ten All forces 250 hen shown.)=-569/149, =-648/119, 2-9=-307/13 0/501 11/30, 5-7=-622/76 e been considered for th a (3-second gust) CDL=6.0psf; h=25ft; Ca nvelope) and C-C terior (1) 1-7-6 to 8-11-6 nterior (1) 11-11-8 to right exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.1 Pf=13.9 psf (Lum =1.0; Rough Cat B; Full;) or greater of min roof liv t roof load of 13.9 psf o other live loads.	95 iis at. 3, 5 / enn									

Job	Truss	Truss Type	Qty	Ply	
24090120	D03	Common Girder	1	3	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:51 Page: 1 ID:BIyTKU4kZ1RjwUDgTC5_YOyaEjA-sBWnKQoJXVMBtHPBOk3Fwa4avjRevVRzT2IXMOyZrK2

HTU26 HTU26 HTU26 HTU26 HTU26 HTU26

			HGU	S28-2
	4-1-8	, 8-11-8	13-9-8	17-11-0
Scale = 1:63.5	1 4-1-8 1	4-10-0	4-10-0	1 4-1-8

Plate Offsets (X, Y): [3:0-0-0,0-0-0], [8:0-3-8,0-6-4], [10:0-6-0,0-6-0], [11:0-3-8,0-6-4]

Loading TCLL (ro Snow (F TCDL BCLL BCDL	l oof) f/Pg)	(F 2 13.9/2 1 1 1	osf) 0.0 0.0 0.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC20	2-0-0 1.15 1.15 NO 21/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.35 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.01	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 457 lb	GRIP 244/190 FT = 20%
LUMBE TOP CH BOT CH WEBS BRACIN TOP CH BOT CH REACTI FORCES TOP CH BOT CH WEBS NOTES 1) 3-ply Top follo at 0- Bott Scre Web follo 2) All k (exce CAS prov unle	R ORD ORD ORD ORD ORD ORD ORD ORD ORD OR	2x4 SP No.2 2x8 SP 2400F 2x4 SP No.3 * W2,W5:2x4 S Structural woo 6-0-0 oc purlin Rigid ceiling c b/size) 7=7 12= 4ax Grav 7=8 (lb) - Max. Con (lb) or less ex 2-3=-9191/0, 1 5-6=-9693/0, 2 12-13=0/795, 9-16=0/7399, 2-11=0/6711, 1 5-8=0/2996, 3 4-10=0/9179 o be connected connected wit - 1 row at 0-9 rds connected wit - 1 row at 0-9	2.0E Excep P No.2 Dod shere ins, exic irrectly 3301/0- 77829/(0 1911 (L 1940 (L 1940 (L 1940 (L 1940 (L 1940 (L 11-13= , 10-16 8-9=0/ -11=0/; d toge h 10d (-0 oc, ; with S P rows s th 10d (-0 oc,) or ba ly conr loads d	t* W1:2x6 SP No.2, athing directly applied or cept end verticals. applied or 10-0 oc 3-8, (min. 0-2-7), b-3-8, (min. 0-2-10) C 6) C 22), 12=9558 (LC 17) ax. Ten All forces 250 nen shown. 417/0, 4-5=-7418/0, 3241/0, 6-7=-8700/0 40/795, 11-14=0/7088, i=0/7088, 10-16=0/7399 7399, 7-8=0/447 7364, 5-10=-2500/0, 2297, 3-10=-1905/0, ther as follows: 0.131"x3") nails as 2x6 - 2 rows staggered impson SDS 1/4 x 4-1/2 staggered at 0-5-0 oc. (0.131"x3") nails as applied to all plies, ck (B) face in the LOAD nections have been noted as (F) or (B),	4) 5) 6) 7) 8) 10) LO2 1)	Wind: ASCE Vasd=103m II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n * This truss lo overhangs n * This truss lo overhangs n * This truss lo overhangs n the bottom chore Use Simpso 6-16d Truss; connect trus bottom chore Fill all nail ho AD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-2: Concentrat Vert: 9=- 13=-1744 (B)	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (bosed ; end vertica =1.60 plate grip D i 7-16; Pr=20.0 psf late DOL=1.15); ls cs=1.00; Ct=1.1 sbeen designed 1 psf or 2.00 times f on-concurrent with has been designed n chord in all area by 2-00-00 wide win y other members. n Strong-Tie HTU2 2 Trus) or equival g at 2-0-0 from the s(es) B02 (1 ply 2) d. n Strong-Tie HGU3 or equivalent at 1 s(es) C01 (2 ply 2) d. ples where hanger Standard bw (balanced): Lur .15 ads (lb/ft) =-48, 2-4=-48, 4-6 ed Loads (lb) 1746 (B), 11=-1746 (B	wh (3-sec BCDL=6 BCDL=6 BCDL=6 envelope (I left and OL=1.3; f (roof LI; F=13.9; F=13.9; f (roof I f or a liv f or great lat roof I a other li f for a liv s where ill fit betw 26 (20-11 ent spac left end c6 SP) to S28-2 (3 3-8-0 fro c(12 SP) is in con nber Inc =-48, 7 6 (B), 8=), 15=-1	cond gust) cond gust) .0psf; h=25f (anitievei d right expose control and the control of psf (Lum ough Cat B; e load of 13.9 y ve loads. e load of 20 a rectangle veen the bol of Girder, ed at 2-0-0 to to 12-0-0 to b back face to back face to back face to back face to back face tact with lur rease=1.15, 12=-20 -3396 (B), 746 (B), 16=	t; Cat. r left sed; =1.15 Fully of live pof on .0psf tom oc of r, nd to o of nber. Plate					
 Unb desi 	alanced gn.	l roof live load	s have	been considered for this	S										

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Plate Offsets (X, Y): [1:0-3-8,0-2-8]

```	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code I	2-0-0 1.15 1.15 NO RC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.34 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 6-9 6-9 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss nails as fol Top chords oc. Bottom chu- staggered Web connue 2) All loads a except if n CASE(S) s provided to unless oth 3) Unbalance design. 4) Wind: ASC Vasd=1031 II; Exp B; E and right e Lumber DO	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 1=733/0-7 Mechanic Max Horiz 1=145 (L0 Max Grav 1=848 (L0 (lb) - Max. Comp./M (lb) or less except w 1-2=-720/0, 2-3=-56 4-5=-587/0 1-10=-36/574, 6-10: 3-6=0/353, 2-6=-267 to be connected toge lows: a connected as follows: ords connected as follows ords connected as follows: a connected as follows: 2x4 re considered equally oted as front (F) or base cettor as follows: 2x4 re considered equally oted as for (F) or base erwise indicated. ad roof live loads have E 7-16; Vult=130mpf mph; TCDL=6.0psf; E Enclosed; MWFRS (e xposed ; end vertical DL=1.60 plate grip D0	eathing directly applied or tecpt end verticals. / applied or 10-0-0 oc 3-0, (min. 0-1-8), 5=515/ (a), (min. 0-1-8) C 2), 5=605 (LC 2) ax. Ten All forces 250 then shown. 5/16, 3-4=-596/18, =-8/574 2/80, 4-6=0/348 ether with 10d (0.131"x3" s: 2x4 - 1 row at 0-9-0 llows: 2x6 - 2 rows - 1 row at 0-9-0 oc. / applied to all plies, ack (B) face in the LOAD inections have been a noted as (F) or (B), e been considered for this in (3-second gust) CDL=6.0psf; h=25ft; Cat nvelope); cantilever left left and right exposed; DL=1.33	<ul> <li>5) TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5</li> <li>6) * This truss f on the bottor 3-06-00 tall t chord and ar</li> <li>7) Refer to girdl</li> <li>8) Use Simpson 14-10d Truss from the left to back face</li> <li>9) Fill all nail hoi</li> <li>LOAD CASE(S)</li> <li>1) Dead + Snc Increase=1. Uniform Loa Vert: 1-3 Concentrate Vert: 10=</li> </ul>	7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is: b; Cs=1.00; Ct=1.11; las been designed n chord in all areas y2-00-00 wide will y0 other members. er(s) for truss to tru- n Strong-Tie HTU2 s, Single Ply Girder end to connect trus of bottom chord. les where hanger Standard w (balanced): Lum 15 ads (lb/ft) -48, 3-4=-48, 5-7= ad Loads (lb) -315 (B)	(roof LL Pf=13.9 =1.0; Rc o for a liv s where I fit betv iss conn 6-2 (20- ) or equ ss(es) C is in cor ber Inc 20	:: Lum DOL= 9 psf (Lum ough Cat B; I re load of 20. a rectangle veen the both nections. 10d Girder, nivalent at 2- 101 (2 ply 2xi ntact with lum rease=1.15,	1.15 Fully Opsf tom 1-8 6 SP) nber. Plate					

Job	Truss	Truss Type	Qty	Ply		
24090120	E03	Common	1	1	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.73 S Jul 1	1 2024 Print:	8.730 S Jul	11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:51	Page: 1





2x4 II

5-8-0

5-8-0

Scale = 1:45.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	0.00	5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.03	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 73 lb	FT = 20%

3x8=

11-8-0

6-0-0

2x4 II

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2

WEBS 2x4 SP No.3

BRACING

TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

- REACTIONS (lb/size) 4=385/ Mechanical, (min. 0-1-8), 6=385/ Mechanical, (min. 0-1-8) Max Horiz 6=-148 (LC 11) Max Grav 4=455 (LC 2), 6=455 (LC 2)
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
- TOP CHORD 1-7=-415/105, 2-7=-331/128, 2-8=-328/129, 3-8=-420/106, 1-6=-461/136, 3-4=-455/136

#### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Vind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 1-5-6 to 4-5-6, Interior (1) 4-5-6 to 6-11-10, Exterior(2R) 6-11-10 to 9-11-10, Interior (1) 9-11-10 to 12-9-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	
24090120	G01	Common Supported Gable	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:52 Page: 1 ID:qo8aHm0clVpQqiLjheVprLyaEjF-sBWnKQoJXVMBtHPB0k3Fwa4edjWlvhuzT2lXM0yZrK2



Scale = 1:50

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.17 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 118 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD (b) - FORCES NOTES 1) Unbalanc design. 2) Wind: ASI Vasd=103 II; Exp B; (3E) -11-4 Corner(3F 26-4-7 zo vertical le forces & M DOL=1.6( 3) Truss des only. For see Stanc or consult 4) TCLL: AS Plate DOI DOL=1.11	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brack truss erection, in at Installation guide. All bearings 24-11-8. Max Horiz 2=-43 (LC Max Uplift All uplift 1 2, 14, 16, 25, 26, 27 Max Grav All reaction (s) 2, 14, 24, 25, 26 (lb) - Max. Comp./M (lb) or less except w ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (e 15 to 1-7-1, Exterior(2 R) 12-5-12, to 15-5-12, ne; cantilever left and ft and right exposed; C MWFRS for reactions s 0 plate grip DOL=1.33 signed for wind loads i studs exposed to wind lard Industry Gable Er qualified building des CE 7-16; Pr=20.0 psf; 5 Plate DOL=1.15); Is=	eathing directly applied applied or 6-0-0 oc is that Stabilizers and sing be installed during cordance with Stabiliz cordance with Stabiliz cord (L) or 12, 23, 24, cordance with Stabiliz cordance with Stabiliz cordance with Stabilizers cordance with S	5) Unbalanced design. 6) This truss ha load of 12.0 overhangs n 8) Gable requir 9) Gable studs 10) * This truss l on the bottoo 3-06-00 tall 1 chord and at 11) Provide mec bearing plate (s) 14, 23, 2 12) Beveled plat surface with LOAD CASE(S) 0 his cat. her	snow loads have as been designed psf or 2.00 times on-concurrent wi a 2x4 MT20 unles es continuous bo spaced at 2-0-0 nas been designe n chord in all are yoy 2-00-00 wide v yo other members hanical connectio e capable of withs 4, 25, 26, 27, 20, e or shim require truss chord at joi Standard	e been cor I for great flat roof I th other In- ss otherwi- titom choro oc. ad for a liv as where will fit betv s. on (by oth standing 1 19, 18, 11 d to provi nt(s) 2, 3 ⁻	nsidered for t er of min rool bad of 13.9 p ve loads. se indicated. d bearing. e load of 20. a rectangle veen the bott ers) of truss 00 lb uplift a 7, 16, 2, 14, 2 de full bearin 1.	his f live sf on 0psf om t joint 2. g					

Job	Truss	Truss Type	Qty	Ply	
24090120	G02	Common	12	1	Job Reference (optional)

 Run: 8.73 S
 Jul 11 2024 Print: 8.730 S
 Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:52
 Page: 1

 ID:WCnN4zTep5z_n6qep9bzXYyab1w-LN49XmoxIoU2UR_NySaUSndf07hle4t6hiV5uqyZrK1



Scale = 1:49.9

4-11-3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.74 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.33 0.07	(loc) 8-10 8-10 6	l/defl >999 >913 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ac Installation guide. (lb/size) 2=913/0-3	athing directly applied of applied or 10-0-0 oc that Stabilizers and ing be installed during cordance with Stabilize	<ul> <li>3) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0</li> <li>4) Unbalanced design.</li> <li>5) This truss h load of 12.C overhangs</li> <li>6) * This truss on the botto 3-06-00 tall chord and a</li> <li>7) Provide me bearing pla</li> </ul>	E 7-16; Pr=20.0 p 1.15); Pg=20.0 p Plate DOL=1.15); 9; Cs=1.00; Ct=1 d snow loads have as been designed psf or 2.00 times non-concurrent wi has been designed by 2-00-00 wide v iny other member chanical connective capable of with uplift of ion 2	sf (roof LI sf; Pf=13.3 Is=1.0; Ri to been con flat roof I th other li d for a liv as where will fit betw s. on (by oth standing 3	L: Lum DOL= 9 psf (Lum ough Cat B;   nsidered for 1 er of min roo oad of 13.9 p ve loads. re load of 20. a rectangle ween the bot uers) of truss 34 lb uplift at	=1.15 Fully this of live osf on .0psf tom to joint					
	6=913/0-3 Max Horiz 2=-43 (LC Max Uplift 2=-34 (LC Max Grav 2=1083 (L	-8, (min. 0-1-8) -16) -11), 6=-34 (LC 12) .C 2), 6=1083 (LC 2)	6 and 34 lb LOAD CASE(S	uplift at joint 2. ) Standard								
FORCES TOP CHORD	(lb) - Max. Comp./Ma (lb) or less except wl 2-17=-2286/359, 3-1 3-18=-2027/305, 18- 4-19=-1976/328, 4-2 20-21=-2019/317, 5- 5-22=-2239/379, 6-2	ax. Ten All forces 250 hen shown. 7=-2239/379, 19=-2019/317, 0=-1976/328, -21=-2027/305, 2=-2286/359	)									
BOT CHORD WEBS	2-10=-286/2111, 9-10 8-9=-147/1431, 6-8= 4-8=-40/620, 5-8=-40	0=-147/1431, 296/2115 03/178, 4-10=-40/620,										
NOTES 1) Unbalanc design. 2) Wind: AS Vasd=103 II; Exp B; Exterior(2 12-5-12, t exposed ; members Lumber D	3-10=-403/178 ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er E) -14-15 to 1-7-1, Int Exterior(2R) 12-5-12 to 2 66-4-7 zone; cantilev end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC	been considered for th (3-second gust) CDL=6.0psf; h=25ft; Ca twelope) and C-C terior (1) 1-7-1 to 15-5-12, Interior (1) er left and right ght exposed;C-C for for reactions shown; DL=1.33	nis at.									

Job	Truss	Truss Type	Qty	Ply	
24090120	101	Roof Special Supported Gable	1	1	Job Reference (optional)

Page: 1

Carter Components, Sanford, NC, user



Scale = 1:47.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.09 0.07 0.06	<b>DEFL</b> Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	<b>PLATES</b> MT20	<b>GRIP</b> 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-MR							Weight: 64 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (lb) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. MiTek recommend: required cross brack truss erection, in ac Installation guide. All bearings 12-4-0. Max Horiz 19=126 (I Max Uplift All uplift 1 11, 12, 15 19=-101 (I Max Grav All reaction (s) 11, 12 19	eathing directly applied or ccept end verticals. y applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilizer LC 12) 100 (lb) or less at joint(s) 3, 14, 16, 17, 18 except (LC 9) ons 250 (lb) or less at joir , 13, 14, 15, 16, 17, 18,	<ul> <li>4) TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.</li> <li>5) All plates are</li> <li>6) Truss to be t braced again</li> <li>7) Gable studs</li> <li>8) * This truss I on the botton 3-06-00 tall I chord and ai</li> <li>9) Provide mec bearing plate (s) 17, 13, 11</li> <li>10) Non Standai</li> <li>11) Beveled plat surface with 14, 12, 11.</li> <li>LOAD CASE(S)</li> </ul>	5 7-16; Pr=20.0 psf ( 1.15); Pg=20.0 psf ( 1ate DOL=1.15); Is= 9; Cs=1.00; Ct=1.10 e 2x4 MT20 unless f fully sheathed from ( st lateral movemen spaced at 2-0-0 oc. has been designed f m chord in all areas by 2-00-00 wide will ny other members. chanical connection e capable of withsta 6, 18, 14, 12, 11 exc d bearing condition truss chord at joint( Standard	(roof L1) Pf=13.3 (roof L1) (roof L1); R ) otherwone factor for a living for a livi	L: Lum DOL= 3 psf (Lum bugh Cat B; I ise indicated. the or securely idagonal web re load of 20. a rectangle ween the bott ters) of truss 100 lb uplift a elb) 19=100. de full bearin 13, 15, 16, 18	1.15 Fully 0psf com t joint 19 3, 19,					
<ul> <li>FORCES</li> <li>TOP CHORD</li> <li>WEBS</li> <li>NOTES</li> <li>1) Unbalance</li> <li>design.</li> <li>2) Wind: ASC</li> <li>Vasd=103</li> <li>II; Exp B;</li> <li>(3E) 0-1-1</li> <li>Corner(3F</li> <li>zone; can</li> <li>and right e</li> <li>MWFRS f</li> <li>drip DOL=</li> </ul>	(Ib) - Max. Comp./M (Ib) or less except w 4-5=-151/287, 5-6=- 5-15=-289/94 ed roof live loads have CE 7-16; Vult=130mpl mph; TCDL=6.0ps; E Enclosed; MWFRS (e 2 to 3-1-12, Exterior(; 8) 6-5-8 to 9-5-8, Exter tilever left and right ex exposed;C-C for mem or reactions shown; L :1.33	lax. 1en All forces 250 when shown. -151/287 e been considered for this h (3-second gust) 3CDL=6.0psf; h=25ft; Cat invelope) and C-C Corne 2N) 3-1-12 to 6-5-8, rior(2N) 9-5-8 to 12-9-4 whether and forces & umber DOL=1.60 plate	S  r									

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss		Truss Type		Qty	Ply				]
24090120	102		Roof Special		3	1	Job Refere	nce (optional)		
Carter Compone	nts, Sanford, NC, user		1	Run: 8.73 S Ju	I 11 2024 Prin	t: 8.730 S Ju	11 2024 MiTek	Industries, Inc.	Thu Sep 26 18:26:5	i2 Page: 1
					ID:x>	(RdpSzTj_7B	sjAiOu2VeYyas	Wg-LN49Xmox	loU2UR_NySaUSno	dnL7n9e0K6hiV5uqyZrK1
			4-1-13	<u> </u>	<u>8-9-3</u>	1	<u>12-11-0</u> 4-1-13			
				2011	4×5=		1110	I		
					3					
				10						
			1	0 ¹ ∠ 3x5 ¢	w5	3x5 💊				
				2			2			
		۳	/	W3 W4	W4	W3	-			
		9-9	xtz	9	8	7		_	1	
			4x5 ¢ 81	5x6=	3x8=	5x6=	BY	4x5 🗙	4	
		<u> </u>	1					5 7	- b	
		1-1-10	W1				10∟ 12			
		<b>`</b> ```						×	`	
			2x4 II					2x4 II		
			0-3-8  ,  ,	, 6-5-8	, 8-10-1	15	12-7-8	12-11-0		
0			0-3-8 0-3-8	2-5-7	2-5-7	7 1	3-8-9	11 0-3-8		
Scale = 1:46.2		-								
Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI TC		EFL	in (loc)	l/defl L/d >999 240	PLATES	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.33 Ve	rt(CT) -	0.15 8-9	>984 180	WI ZO	244/130
BCLL	10.0 0.0*	Code	YES IRC2021/TPI2014	WB Matrix-MSH	0.55 Ho	orz(CT)	0.26 6	n/a n/a		
BCDL	10.0							-	Weight: 79 lb	FT = 20%
	2x4 SP No 2		4) * This truss	has been designed	for a live lo	ad of 20.0p	sf			
BOT CHORD	2x4 SP No.2 2x4 SP No.2		3-06-00 tall	by 2-00-00 wide wil	I fit betweer	n the botton	ı			
WEBS BRACING	2x4 SP No.3		5) Bearing at j	pint(s) 10, 6 conside	ers parallel t	o grain valu	le			
TOP CHORD	Structural wood she 4-0-0 oc purlins, ex	eathing directly applie cept end verticals.	ed or designer sh	ould verify capacity	of bearing s	surface.				
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	LOAD CASE(S)	Standard						
	MiTek recommend	s that Stabilizers and								
	truss erection, in a	cing be installed durir ccordance with Stabi	ng lizer							
DEACTIONS	(lb/size) 6=407/0	3.8 (min 0.1.0)	]							
NEACTIONS	10=427/0 10=427/0	)-3-8, (min. 0-1-8)								
	Max Horiz 10=126 (l Max Grav 6=505 (L	C 2), 10=505 (LC 2)								
FORCES	<ul><li>(lb) - Max. Comp./N</li><li>(lb) or less except w</li></ul>	lax. Ten All forces 2 vhen shown.	250							
TOP CHORD	1-10=-616/171, 1-1 2-11=-1786/332, 2-3	1=-1892/316, 3=-815/177,								
	3-4=-815/184, 4-12	=-1774/296, 6=-601/147								
BOT CHORD	9-10=-165/256, 8-9 7-8=-173/1277	=-211/1284,								
WEBS	4-7=-68/836, 5-7=-1	160/1434, 2-9=-103/8 =-182/842, 4-8=-821/	47,							
NOTES	2-8=-829/245	102/042, 4-002 1/	202,							
1) Unbalance	d roof live loads have	e been considered fo	r this							
design. 2) Wind: ASC	E 7-16; Vult=130mpl	h (3-second gust)								
Vasd=103r II; Exp B; E	nph; TCDL=6.0psf; E Enclosed; MWFRS (e	BCDL=6.0psf; h=25ft; envelope) and C-C	Cat.							
Exterior(2E Exterior(2F	E) 0-1-12 to 3-1-12, Ir R) 6-5-8 to 9-5-8. Inte	nterior (1) 3-1-12 to 6 prior (1) 9-5-8 to 12-9-	-5-8, -4							
zone; cant	ilever left and right exposed C-C for mem	xposed ; end vertical	left							
MWFRS fo	or reactions shown; L	umber DOL=1.60 pla	te							
3) TCLL: ASC	CE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1	1.15							
DOL=1.15	Plate DOL=1.15); Is:	=1.0; Rough Cat B; F	ully							
Exp.; Ce=0	).9; Cs=1.00; Ct=1.10	U								

Job	Tr	lss	Truss Type		Qty	Ply		
24090120	10	3	Roof Special		3	1	Job Reference (optional)	
Carter Componer	nts, Sanford, NC, us	ser	•	Run: 8.73 S Jul 1	1 2024 Print	t: 8.730 S Jul	11 2024 MiTek Industries, Inc. T	Thu Sep 26 18:26:52 Page: 1
			1		ID:xX	RdpSz1j_7B	sjAiOu2VeYyasWg-LN49XmoxIc	0U2UR_NySaUSndoB7ode1H6hiV5uqyZrK1
			<u> </u>	6-2-0	8-5-11 2-3-11	, 12 3-	<u>-4-0</u> 10-5	
			3-10-5	2-0-11	2-0-11	I 3-	10-5	
		С С О 1-1-9	10 ¹² 11 4x5 • W2 1 W1	4x5 u 3 3x5 + W5 9 8 5x6 = 3x8 =	3x W6	4 4 12 7 5x6 = B1 10	4x5 x 5 0 0 0 1	2-10-2
		1	0 🗹 🖉			1		
			2x4 II				2x4 <b>n</b>	
			0-3-10				12-4-0	
			3-8-9	6-0-4	8-7-7 2-7-3	/ 12· 3-4	-0-6 -15	
Scale = 1:45.3			0-3-10	1 1		1	0-3-10	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(ps 20. 13.9/20. 10. 0.	f) Spacing Plate Grip DOL Lumber DOL Rep Stress Incr 0* Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.25 Ver 0.30 Ver 0.49 Ho	FL rt(LL) -( rt(CT) -( rz(CT) (	in (loc) l/defl L/d 0.06 7-8 >999 240 0.12 7-8 >999 180 0.20 6 n/a n/a	PLATES         GRIP           MT20         244/190
BCDL	10.	0						Weight: 76 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 4-3-7 oc purlins Rigid ceiling dir bracing. MiTek recomm required cross truss erection, Installation guid	sheathing directly appl , except end verticals. ectly applied or 10-0 o ends that Stabilizers an bracing be installed dur in accordance with Stat	4) * This truss on the botto 3-06-00 tall chord and a 5) Refer to gir LOAD CASE(S d ing jilizer	has been designed for om chord in all areas y by 2-00-00 wide will a any other members. der(s) for truss to trus ) Standard	or a live loa where a re ît between s connecti	ad of 20.0p: ctangle i the bottom ons.	Sf 1	
REACTIONS (	(lb/size) 6=40	8/ Mechanical, (min. 0-1 08/ Mechanical, (min. 0-	-8), 1-8)					
1	Max Horiz 10=1	21 (LC 12)	/					
FORCES	(lb) - Max. Com	p./Max. Ten All forces	250					
TOP CHORD	(lb) or less exce 1-10=-582/170, 2-11=-1608/332 3-4=-729/181, 4	pt when shown. 1-11=-1705/317, , 2-3=-776/185, -12=-1597/295,						
BOT CHORD WEBS	5-12=-1694/280 8-9=-214/1160, 4-7=-67/731, 5- 1-9=-164/1269,	1, 5-6=-568/146 7-8=-176/1152 7=-165/1284, 2-9=-104/ 3-8=-178/760, 4-8=-742	736, 2/199,					
NOTES	2-0130/238							
<ol> <li>Unbalanced design.</li> <li>Wind: ASC Vasd=103n II; Exp B; E Exterior(2E Exterior(2E Exterior(2R zone; canti and right ex MWFRS for grip DOL=1</li> <li>TCLL: ASC Plate DOL=</li> </ol>	d roof live loads E 7-16; Vult=130 mph; TCDL=6.0p inclosed; MWFR ) 0-1-12 to 3-1-1 d) 6-2-0 to 9-2-0, lever left and rigit posed; C-C for r r reactions show I.33 E 7-16; Pr=20.0 =1.15); Pg=20.0	have been considered for string the second gust) string the second gust) string the second gust) string the second gust string the second gust s	or this t; Cat. 6-2-0, 2-4 I left ate =1.15					
DOL=1.15 Exp.; Ce=0	Plate DOL=1.15 .9; Cs=1.00; Ct=	); Is=1.0; Rough Cat B; 1.10	Fully					

Job	Truss	Truss Type	Qty	Ply	
24090120	104	Roof Special Girder	1	2	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:52 Page: 1 ID:xXRdpSzTj_7BsjAiOu2VeYyasWg-LN49XmoxIoU2UR_NySaUSndIA7mJezE6hiV5uqyZrK1





 4-6-14
 6-2-0
 7-9-2
 12-4-0

 4-6-14
 1-7-2
 1-7-2
 4-6-14

Scale = 1:53.5

## Plate Offsets (X, Y): [2:0-5-4,0-1-8], [4:0-5-4,0-1-8], [7:0-3-8,0-2-0], [9:0-3-8,0-2-0]

Load	ding	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLI	L (roof)	20.0	Plate Grip DOL	1.15	тс	0.44	Vert(LL)	-0.06	8	>999	240	MT20	244/190
Snov	w (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.12	8	>999	180		
TCD	L	10.0	Rep Stress Incr	NO	WB	0.75	Horz(CT)	0.01	6	n/a	n/a		
BCL	L	0.0*	Code II	RC2021/TPI2014	Matrix-MSH								
BCD	L	10.0			Weight: 159 lb								
LUM TOP BOT WEE	BER CHORD CHORD S	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3		4) Wind: ASCE Vasd=103m II; Exp B; En and right exp	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e posed ; end vertica	h (3-seo BCDL=6 envelop	cond gust) i.0psf; h=25f e); cantilever right expos	t; Cat. · left sed;					
BRA TOP	<ul> <li>ACING</li> <li>P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-2, 4-5.</li> <li>TCL: ASCE 7-16; Pr=20.0 psf; Pf=18.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; Fully</li> </ul>												
вот	CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 oc	Exp.; Ce=0.9 roof snow lo exposed sur	roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in								
REA	CTIONS	(lb/size) 6=1565/ M 10=1990/ Max Horiz 10=-70 (L Max Gray 6=1805 (l	Mechanical, (min. 0-1-8), / Mechanical, (min. 0-1-8) .C 9)	<ul> <li>accordance with IBC 1608.3.4.</li> <li>6) Unbalanced snow loads have been considered for this design.</li> <li>7) Provide adequate drainage to prevent water ponding.</li> </ul>									
	CES	(lb) - Max Comp /M	Lo 2), 10-2010 (Lo 2)	8) * This trust has been designed for a live load of 20.0psf									
	010	(lb) or less except w	/hen shown	on the botto	m chord in all areas	s where	a rectangle						
тор	CHORD	1-10=-1391/0. 1-11=	=-3587/0. 11-12=-3587/0.	3-06-00 tall I	by 2-00-00 wide wil	II fit betv	veen the bot	tom					
		2-12=-3587/0, 2-3=-	-2673/0, 3-4=-2673/0,	chord and a	ny other members.								
		4-13=-3595/0, 13-14	4=-3595/0, 5-14=-3595/0,	9) Refer to gird	er(s) for truss to tru	uss con	nections.						
		5-6=-1392/0		10) Graphical pl	Irlin representation	does n	ot depict the	size					
BOT	CHORD	8-9=0/3549, 7-8=0/3	3557	bottom chore	alion of the putilit a	liong in	e top anu/or						
WEB	IS	1-9=0/3616, 2-9=-42	27/1, 4-7=-419/2,	11) Use Simpso	u. n Strong-Tie I US2	6 (4-10)	Girder 3-1	Ъ					
		5-7=0/3618, $3-8=0/3$	3152, 2-8=-1998/0,	Truss. Sinal	e Plv Girder) or eau	uivalent	spaced at 4-	0-0					
NOT		4-02010/0		oc max. star	ting at 0-3-12 from	the left	end to 10-3-	12 to					
1) 2	EO ) ply truce	to be connected tog	othor with 10d (0 131"v3")	connect trus	s(es) E01 (1 ply 2x	4 SP), I	E03 (1 ply 2>	(4 SP)					
1) 2 r	ails as fo	llows.		to back face	of bottom chord.								
i	fop chords	s connected as follow	vs: 2x4 - 1 row at 0-9-0	12) Use Simpso	n Strong-Tie HTU2	6-2 (20	10d Girder,						
c	DC.			14-10d Irus	s, Single Ply Girder	r) or equ	livalent at 8-	4-8					
E	Bottom ch	ords connected as fol	llows: 2x6 - 2 rows	to back face	of bottom chord	ss(es) E	02 (2 piy 2x	0 SP)					
s	staggered	at 0-9-0 oc.		13) Fill all nail h	les where hanger	is in col	ntact with lur	nher					
V	Neb conn	ected as follows: 2x4	- 1 row at 0-9-0 oc.		Standard	13 11 001							
2) A	All loads a	re considered equally	applied to all plies,	1) Dead + Sn	w (balanced). Lum	her Inc	rease=1 15	Plate					
e		ored as Iront (F) of ba	aux (D) lace in the LUAD	Increase=1	.15			. 1410					
r	provided to	o distribute only loads	s noted as (F) or (B)	Uniform Lo	ads (lb/ft)								
۲ ۱	inless oth	erwise indicated.		Vert: 1-2	=-58, 2-3=-48, 3-4=	-48, 4-	5=-58, 6-10=	-20					
3) L	Jnbalance	ed roof live loads have	e been considered for this	Concentrat	ed Loads (lb)								
, c	lesign.			Vert: 10= (B), 16=-	-455 (B), 9=-446 (B 495 (B), 17=-365 (B	B), 8=-4 B)	46 (B), 15=-	446					

24090120       Num       Part Clinic       1       2       Jos Reference (optional)       Part 2001         Table Characourte, Basted, Mo, Los       Ru: ASTA & L41320 Prof. 157.018.014.100.000.004.004.004.004.004.004.004	Job	Truce	Тт	uss Type		Qtv	Plv	1				
Locating Compression. Solido, L.C., used       Fan. K13 5 Jill 1222 Minor (20.5 a) 11 222 Jill 122	24090120	K01		at Girder		1	2					
Differ Current Unit Provide grant and the provide and the prov	Carter Componer	nts, Sanford, NC. user	[''		Run: 8.73 S Jul	11 2024 Print:	- 8.730 S Jul	Job Refe 11 2024 MiT	ence (op ek Industrie	tional) es, Inc.	Thu Sep 26 18:26:5	i3 Page ^{, 1}
Provide adoption drainings to prove water ponding.     Provide adoption draining both provide adoption dr				+	4-3-0	ID:FuHI <u>8-6-0</u> 4-3-0		In4S6lEyv7fy	asb6-pZe≯	(l6pZ36	cv6aZZV95j??Av1X	AaNVGGwMEeRHyZrK0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					5= 2x41 7 2	B1_11 B1_11 10 ■	4x5= 3 W1 X X 2x4 II					
Loading         (ps) (ps)         Pacing (ps)         2-0-0 (ps)         CSI         UPL (ps)         in (ps)         Use (ps)         Use (ps)         Pilate Ging DOL (ps)         Pila	Scale = 1:61.1		•	LUS2	26 LUS26 LUS26 4-3-0 4-3-0	5 LUS26 <u>8-6-0</u> 4-3-0					1	
BCDL       10.0       Weight: 207 Ib       FT = 20%         LUMBER TOP CHORD       2x6 SP No.2 BOT CHORD       2x6 SP No.2 2x4 SP No.3       5)       Provide adequate drainage to prevent weter ponding.       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord in all areas where a rectangle 3x4 SP No.3       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord in all areas where a rectangle 3x4 SP No.3       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord.       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord.       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord.       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord.       6)       * This trues has been designed for a live load of 20.0sf on the bottom chord.       6)       * This trues has denerating the prevent weter photon       * Field 10, dired, 3, 100         WEBS       1 FR wat might 1-6, 3-4       * Field 10, dired, 3, 100       * Single PIV Girder) or equivalent spaced at 2-0.0         Max Horiz Ze / Loc 0-3, dired, 223 (LC 2)       Max Horiz Ze / Thom Max. This - All from 2325 (B, 110, 243 SP) to back face of bottom chord.       10 Field anall holes where hanger is in contact with lumber.         DOP CHORD 0-2, e35, 302, 0.3-e-3202, 0.3-e-3202, 0.3-e-3202, 0.3-e-3202, 0.3-e-3202, 0.3-e-3202, 0.3-e-320, 0.3-e-704, 7=409, 8=-409, 9=-325 (B), 10=-325 (B)<	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.50         Vert           0.19         Vert           0.44         Horz	: <b>L</b> (LL) -( (CT) -( z(CT) (	in (loc 0.01 4-{ 0.03 4-{ 0.00 4	) l/defl 5 >999 5 >999 4 n/a	L/d 240 180 n/a	PLATES MT20	<b>GRIP</b> 244/190
LUMBER TOP CHORD DOT CHORD BRACINO BRACINO BRACINO TOP CHORD AC 428 SP No.2       5)       Provide adequate drainage to prevent water ponding.         VEES       2x6 SP No.2         BATCHORD BRACINO TOP CHORD AC 4000 curring (6-0 max): 1.3, excert end verticals       6)       This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom on the ottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom on the ottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom on the ottom chord.         REACTORD WEBS       1 Row at midpt 1 - 6, 3-4       1-6, 3-4         REACTORS Max Fortz 6=237 (LC 6) 6=2128 (Mechanical (min.0-1-8)) 6=2128 (Mechanical (min.0-1-8)) 7 Max Fortz 6=-320 (Mechanical (min.0-1-8)) 7 Methode (Mechanical (Mechanical (Mechanical (Mechanical (Mechanical (Mechanical (Mechanical (Mechanical (Mechanical (Mecha	BCDL	10.0									Weight: 207 lb	FT = 20%
4) TOLL AGUE 7-10, PT=20.0 pst (root LL: Lum DOL=1.15) Plate DOL=1.15): Pg=20.0 psf: Pf=18.9 psf (Lum	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (( M FORCES TOP CHORD WEBS NOTES 1) 2-ply truss 1 nails as foll Top chords OC 2x6 2 BOttom cho staggered a Web conne 2) All loads ar except if no CASE(S) si provided to unless othe 3) Wind: ASC Vasd=103n II; Exp B; E and right ey Lumber DC	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 2-0-0 oc purlins (6- end verticals. Rigid ceiling directl bracing. 1 Row at midpt Ib/size) 4=2126/( 6=2182/ Max Grav 4=2393 ( (Ib) - Max. Comp./N (Ib) or less except v 1-6=-1906/0, 1-7=- 2.8=-532/0, 3-8=-53 1-5=-38/1289, 2-5= to be connected tog ows: connected as follows: 2x4 e considered equall ted as front (F) or b ection. Ply to ply cor distribute only loads rwise indicated. E 7-16; Vult=130mp nph; TCDL=6.0psf; F, nclosed; MWFRS (c coposed; end vertica DL=1.60 plate grip D E 7-16; Pr=20.0 psf =1,15): Pa=20 0 nef	0-0 max.): 1-3, except y applied or 10-0-0 oc 1-6, 3-4 0-5-8, (min. 0-1-8), Mechanical, (min. 0-1-8), C 6) LC 2), 6=2429 (LC 2) Max. Ten All forces 250 when shown. 532/0, 2-7=-532/0, 32/0, 3-4=-2225/0 -1420/0, 3-5=-38/1289 ether with 10d (0.131"x3' vs: 2x4 - 1 row at 0-9-0 l-9-0 oc. Nows: 2x6 - 2 rows L- 1 row at 0-9-0 oc. y applied to all plies, ack (B) face in the LOAD nnections have been s noted as (F) or (B), h (3-second gust) BCDL=6.0psf; h=25ft; Ca envelope); cantilever left I left and right exposed; OL=1.33 Contell: Lum DOL=1.155 Pf=18.9 psf (Lum	<ul> <li>5) Provide adeq</li> <li>6) * This truss h on the botton 3-06-00 tall b chord and an</li> <li>7) Refer to girde</li> <li>8) Graphical pu or the orienta bottom chord</li> <li>9) Use Simpsor Truss, Single oc max. start connect truss bottom chord</li> <li>10) Fill all nail hoo LOAD CASE(S)</li> <li>1) Dead + Sno Increase=1. Uniform Loa Vert: 1-3= Concentrate</li> <li>") Vert: 6=-3 3=-704, 7</li> </ul>	puate drainage to pr has been designed f n chord in all areas by 2-00-00 wide will yo other members, w er(s) for truss to trus rlin representation of the purlin ald l. n Strong-Tie LUS26 Ply Girder) or equir ing at 0-2-8 from the s(es) M02 (1 ply 2x4 l. les where hanger is Standard w (balanced): Lumb 15 eds (lb/ft) =-58, 4-6=-20 ed Loads (lb) 334 (B), 5=-325 (B), =-409, 8=-409, 9=-3	event water or a live load where a rec fit between vith BCDL = is connectio loes not dep ong the top a (4-10d Gird valent space e left end to 4 SP) to bac is in contact w ber Increase 1=-433, 2=- 325 (B), 10=	ponding. d of 20.0p: tangle the bottom 10.0psf. ns. wict the siz and/or er, 3-10d ed at 2-0-0 6-2-8 to k face of vith lumbe =1.15, Pla 409, -325 (B)	sf e r. te				

Job	Truss	Truss Type	Qty	Ply	
24090120	L01	Common	5	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:53 Page: 1 ID:fg_Qz0uiL6Q_?0?cXroEu0yaEjQ-pZeXl6pZ36cv6aZZV95j??A_7XAbNbAGwMEeRHyZrK0



Scale = 1:32

Plate Offsets	(X,	Y):	[3:0-2-8,Edge]
---------------	-----	-----	----------------

	(, : ): [0:0 ± 0,±ugo]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code I	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.04 0.00	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	<b>GRIP</b> 244/190 FT = 20%
ECDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD STOP CHORD NOTES 1) Unbalance design. 2) Wind: ASC Vasd=1037 II; Exp B; E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E) Top CHORD NOTES 1) Unbalance design. 3) TCLL: ASC Plate DOL DOL=1.15 Exp; Ce=( 4) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommend: required cross brack truss erection, in at Installation guide. (lb/size) 2=254/0-3 4=254/0-3 Max Horiz 2=-14 (LC Max Uplift 2=-23 (LC Max Uplift 2=-23 (LC Max Uplift 2=-23 (LC Max Grav 2=310 (LC (lb) - Max. Comp./M (lb) or less except w 2-3=-329/237, 3-4=- 2-4=-157/291 d roof live loads have E 7-16; Vult=130mpf mph; TCDL=6.0psf; E inclosed; MWFRS (or reactions s plate grip DOL=1.33 2E 7-16; Pr=20.0 psf =1.15); Pg=20.0 p	eathing directly applied or y applied or 10-0-0 oc is that Stabilizers and cordance with Stabilizer 3-0, (min. 0-1-8), 3-0, (min. 0-1-8), 3-0, (min. 0-1-8), 2 (12) 2 (12), 4=23 (LC 12) 2 (11), 4=-23 (LC 12) 2 (11), 4=-23 (LC 12) 2 (11), 4=-23 (LC 12) 2 (11), 4=-23 (LC 12) 2 (12), 4=310 (LC 23) (ax. Ten All forces 250 then shown. -330/237 be been considered for this n (3-second gust) 3 (CDL=6.0psf; h=25ft; Cat nvelope) and C-C nterior (1) 2-1-5 to 3-1-8, nterior (1) 2-1-5 to 3-1-8, nterior (1) 2-1-5 to 3-1-8, nterior (1) 5-10-13 to right exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.15 Pf=13.9 psf (Lum =1.0; Rough Cat B; Fully ) een considered for this arguments of min roof line	6) * This truss I on the botton 3-06-00 tall I chord and an 7) Provide mec bearing platt 2 and 23 lb t LOAD CASE(S)	has been designed f in chord in all areas by 2-00-00 wide will by other members. hanical connection e capable of withsta uplift at joint 4. Standard	for a liv where fit betv (by oth nding 2	re load of 20. a rectangle ween the bott ers) of truss 23 lb uplift at	0psf om to joint				Weight. 22 ib	
load of 12. overhangs	0 psf or 2.00 times fla non-concurrent with	at roof load of 13.9 psf on other live loads.	1									

Job	Truss	Truss Type	Qty	Ply	
24090120	M01	Monopitch	7	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:53 Page: 1 ID:fg_Qz0uiL6Q_?0?cXroEu0yaEjQ-pZeXl6pZ36cv6aZZV95j??AvSX4HNacGwMEeRHyZrK0





Scale = 1:46.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.47 0.53 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.19 0.00	(loc) - 5-6 5	l/defl n/a >477 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 53 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ers) of truss 66 lb uplift at	Opsf tom e to joint										
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(	Installation guide.         Installation guide.         Installation guide.         Image: Second Secon											
<ul> <li>Vasd=103 II; Exp B; Exterior(2 zone; can and right ( MWFRS f grip DOL=</li> <li>TCLL: AS Plate DOI DOL=1.15 Exp.; Ce=</li> <li>Unbalanc design.</li> <li>This truss load of 12 overhangs</li> </ul>	mph; TCDL=6.0psf; B Enclosed; MWFRS (e E) -2-1-15 to 0-10-1, I tillever left and right ex exposed;C-C for mem or reactions shown; Lt :1.33 CE 7-16; Pr=20.0 psf; = Plate DCL=1.15); Is= 0.9; Cs=1.00; Ct=1.10; ed snow loads have be has been designed fo .0 psf or 2.00 times flats a non-concurrent with	CDL=6.0psf; h=25ft; Ca nvelope) and C-C nterior (1) 0-10-1 to 7-7 ;posed ; end vertical lef bers and forces & umber DOL=1.60 plate (roof LL: Lum DOL=1.1 Pf=13.9 psf (Lum =1.0; Rough Cat B; Full; ) een considered for this or greater of min roof liv at roof load of 13.9 psf of other live loads.	at. -8 t 5 y e									

Job	Truss	Truss Type	Qty	Ply	
24090120	M02	Monopitch	4	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:53 Page: 1 ID:1HBQOKAb?iBVb1asu74ygQyaqVJ-pZeXl6pZ36cv6aZZV95j??AtFX8JNXEGwMEeRHyZrK0



	5-4-8	L 10-5-8 I	L 16-3-7	20-6-0	
Scale = 1:67.6	5-4-8	5-1-0 1	5-9-15	4-2-9 1	

Plate Offsets	(X,	Y):	[10:0-5-8,0-3-12	2]
---------------	-----	-----	------------------	----

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 13.9/20.0	Spacing Plate Grip DOL Lumber DOL Pop Stross Incr	2-0-0 1.15 1.15	CSI TC BC WB	0.61	DEFL Vert(LL) Vert(CT)	in 0.02 -0.04	(loc) 8-9 9-10	l/defl >999 >999	L/d 240 180	PLATES MT20	<b>GRIP</b> 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-MSH	0.52	11012(01)	-0.01	0	n/a	n/a	Weight: 141 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt MiTek recommende required cross brac truss erection, in ar Installation guide.	ot* B2:2x4 SP No.3 ot* W9:2x4 SP No.2 eathing directly applied o coept end verticals. / applied or 6-0-0 oc 7-8 s that Stabilizers and cing be installed during ccordance with Stabilizer	<ol> <li>Unbalanced design.</li> <li>This truss ha load of 12.0 overhangs n</li> <li>* This truss on the botto 3-06-00 tall chord and a</li> <li>Refer to gird</li> <li>Provide mec bearing plate 8, 41 lb uplif</li> <li>LOAD CASE(S)</li> </ol>	snow loads have as been designed psf or 2.00 times to ion-concurrent with has been designed m chord in all area by 2-00-00 wide w ny other members by 2-00-00 wide w ny other members to a consection e capable of withs t at joint 13 and 12 Standard	been col for great flat roof I h other I liu as where ill fit betv uss con n (by oth tanding { 2 Ib uplift	nsidered for er of min roc oad of 13.9   ve loads. ve load of 20 a rectangle veen the bot nections. ners) of truss 54 lb uplift at at joint 10.	this of live psf on .0psf ttom : joint					
REACTIONS	(lb/size) 8=301/ M 10=758/0 13=361/0 Max Horiz 13=288 (l Max Uplift 8=-54 (LC 13=-41 (L Max Grav 8=357 (LC 13=432 (l	echanical, (min. 0-1-8), -3-8, (min. 0-1-8), -3-8, (min. 0-1-8) LC 12) C 12), 10=-12 (LC 11), .C 11) C 2), 10=893 (LC 2), LC 2)	_									
FORCES	(lb) - Max. Comp./M (lb) or less except w	ax. Ten All forces 250 /hen shown.										
TOP CHORD	2-14=-467/61, 3-14= 2-13=-409/149	=-425/73, 5-6=-326/111,										
BOT CHORD WEBS	12-13=-557/438, 5- 10-12=-299/470, 3- 6-8=-326/139, 2-12=	10=-602/149 10=-483/106, 5-9=0/285, =-23/285										
NOTES	5 5 020/100, E-12-	20,200										
<ol> <li>Wind: ASG Vasd=103 II; Exp B; Exterior(2 zone; can and right 6 MWFRS f grip DOL=</li> <li>TCLL: AS Plate DOI DOL=1.15 Exp.; Ce=</li> </ol>	CE 7-16; Vult=130mpł imph; TCDL=6.0psf; E Enclosed; MWFRS (e E) -0-11-7 to 2-0-9, In tilever left and right ex- exposed;C-C for mem- for reactions shown; L =1.33 CE 7-16; Pr=20.0 psf; =1.15); Pg=20.0 psf; 5 Plate DOL=1.15); Is= :0.9; Cs=1.00; Ct=1.10;	n (3-second gust) GDL=6.0psf; h=25ft; Cai invelope) and C-C terior (1) 2-0-9 to 20-4-4 yopsed; end vertical left bers and forces & umber DOL=1.60 plate (roof LL: Lum DOL=1.15 Pf=13.9 psf (Lum =1.0; Rough Cat B; Fully )	i.									

Job	Truss	Truss Type	Qty	Ply		
24090120	N01	Roof Special Girder	1	2	Job Reference (optional)	
Carter Components, Sanford, No	C, user	Run: 8.73 S Jul	1 2024 Print:	8.730 S Jul	11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:53	Page: 1

ID:7sYoBMvK5QYrdAao5YKTREyaEjP-pZeXl6pZ36cv6aZZV95j??AvqXBrNamGwMEeRHyZrK0 5-8-3 10-0-8 5-8-3 4-4-5 6 _12 10Γ 5 オウ Æ 5x6 = 12 4Γ 4 3 9-8-15 3x5 II 2 9-8-15 T1 ST Х 1 st 6-1-5 ST s 4-2-9 7 12 B  $\otimes$ *** 11 10 9 8 4x5 II 10-0-8

Scale = 1:50.2

Plate Offsets (X, Y): [4:0-0-13,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	NO	WB	0.09	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code I	RC2021/TPI2014	Matrix-MR								
BCDL	10.0	-									Weight: 203 lb	FT = 20%
											•	
LUMBER			4) Truss desig	ned for wind loa	ads in the p	ane of the tr	uss					
TOP CHORD	2x6 SP No 2		only. For stu	ids exposed to	wind (norm	al to the face	e),					
BOT CHORD	2x6 SP No.2		see Standar	d Industry Gabl	e End Deta	ils as applica	able,					
WEBS	2x4 SP No.3		or consult qu	alified building	designer a	s per ANSI/T	ΡI 1.					
OTHERS	2x4 SP No.3		<ol><li>TCLL: ASCE</li></ol>	7-16; Pr=20.0	psf (roof Ll	.: Lum DOL=	:1.15					
BRACING			Plate DOL=	1.15); Pg=20.0	psf; Pf=13.9	9 psf (Lum						
TOP CHORD	Structural wood she	athing directly applied or	DOL=1.15 F	late DOL=1.15)	); Is=1.0; R	ough Cat B;	Fully					
	6-0-0 oc purlins ex	cept end verticals	Exp.; Ce=0.	9; Cs=1.00; Ct=	1.10							
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	<ul> <li>o) Unbalanced</li> </ul>	snow loads hav	ve been col	isidered for	INIS					
	bracing.		aesign.	- 0x4 MT00!		aa indiaat!						
WEBS	1 Row at midpt	6-7	<ol> <li>All plates are</li> <li>Coble require</li> </ol>	e 2x4 ivi i 20 uni	ess otherw	se indicated	•					
	All bearings 10.0.0		0) Gable lequi	es conunuous i	choin choi	u bearing.						
REACTIONS	All bearings 10-0-8.	C(10)	9) Truss to be	any sheathed in	mont (i.o. c		y N					
(u) -	Max Honz 12=200 (L	$_{\rm LC}$ 10)	10) Gable studs	snaced at 2-0-0	ווופות (ו.פ. ט הר	liagoriai web	).					
		100 (ID)  or less at joint(s)	11) * This truss	has been design	ned for a liv	e load of 20	Onsf					
		-462(10.8) 12-102	on the botto	m chord in all a	reas where	a rectangle	.0051					
	(LC 0), 11	=-403 (EC 8), 12=-105	3-06-00 tall	by 2-00-00 wide	will fit bety	veen the bot	tom					
	Max Grav All reaction	ons 250 (lb) or less at join	t chord and a	ny other member	ers.							
	(s) 7 exce	ent 8=521 (I C 25) 9=361	12) Provide med	hanical connec	tion (by oth	ers) of truss	to					
	(LC 24), 1	0=565 (LC 25), 11=411	bearing plate	e capable of wit	hstanding 1	00 lb uplift a	it joint					
	(LC 24), 1	2=440 (LC 8)	(s) 10 excep	t (jt=lb) 12=103	, 7=153, 9=	299, 11=462	2.					
FORCES	(lb) - Max Comp /M	ax Ten - All forces 250	13) Load case(s	) 1, 2 has/have	been modi	fied. Building	1					
	(lb) or less except w	hen shown.	designer mu	st review loads	to verify th	at they are c	orrect					
WEBS	5-8=-381/0. 4-9=-31	0/285. 3-10=-477/76.	for the inten	ded use of this t	truss.							
	2-11=-298/242		LOAD CASE(S)	Standard								
NOTES			1) Dead + Sno	ow (balanced): I	Lumber Inc	rease=1.15,	Plate					
1) 2-ply trus	s to be connected toge	ether as follows:	Increase=1	.15								
Top chore	ds connected with 10d	(0.131"x3") nails as	Uniform Lo	ads (lb/ft)								
follows: 2	x4 - 1 row at 0-9-0 oc,	2x6 - 2 rows staggered	Vert: 1-4	=-128, 4-6=-128	3, 7-12=-20							
at 0-9-0 c	DC.		2) Dead + Ro	of Live (balance	ed): Lumber	Increase=1.	.15,					
Bottom cl	hords connected with 1	10d (0.131"x3") nails as	Plate Increa	ase=1.15								
follows: 2	x6 - 2 rows staggered	at 0-9-0 oc.	Uniform Lo	ads (lb/ft)								
2) All loads	are considered equally	applied to all plies,	Vert: 1-4	=-140, 4-6=-140	), 7-12=-20							
except if	noted as front (F) or ba	ack (B) face in the LOAD										
CASE(S)	section. Ply to ply con	nections have been										
provided	to distribute only loads	s noted as (⊢) or (B),										
		(2 accord cust)										
Josed=10	$C \equiv 1 - 10$ ; $Vuit = 130 mpr$	CDI =6 Opef: b=25#: Cot										
II. Eve D.	Enclosed: MWERS (a	nvolono): cantilovor loft										
ii, Exp B;	exposed : end vertical	left and right exposed:										
Lumber F	OI = 1.60  plate grin  DC											
		JE 1.00										

Job	Truss	Truss Type	Qty	Ply	
24090120	PB1	Piggyback	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:53 Page: 1

ID:ms2rGrkQUp8i3GYangCScJyaryq-pZeXl6pZ36cv6aZZV95j??A0?XC?NbZGwMEeRHyZrK0





#### Scale = 1:41.3

#### Plate Offsets (X, Y): [2:0-3-1,0-1-8], [8:0-3-1,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.05 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	<b>GRIP</b> 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applied or v applied or 10-0-0 oc	<ol> <li>This truss h load of 12.0 overhangs</li> <li>All plates and The second second second second B (able study B) (able study B)</li></ol>	as been designe psf or 2.00 time non-concurrent w re 2x4 MT20 unle irres continuous s spaced at 2-0-0 has been design om chord in all ar by 2-00-00 wide	ed for great s flat roof I with other li ess otherwi bottom chor ) oc. ned for a liv reas where will fit betw	er of min roc oad of 13.9 y ve loads. se indicated rd bearing. re load of 20 a rectangle veen the bot	of live psf on I. .0psf ttom						
	MiTek recommends required cross brac truss erection, in ac	s that Stabilizers and sing be installed during scordance with Stabilizer	10) Provide me bearing pla	chanical connect te capable of with	tion (by oth	ers) of truss 100 lb uplift a	to at joint						

(s) 2, 13, 14, 11, 10, 2. 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or (lb) - Max Horiz 2=-100 (LC 11), 15=-100 (LC 11) Max Uplift All uplift 100 (lb) or less at joint(s) 2, 10, 11, 13, 14, 15 Max Grav All reactions 250 (lb) or less at joint consult qualified building designer.

LOAD CASE(S) Standard

FORCES NOTES

1) Unbalanced roof live loads have been considered for this design.

(s) 2, 8, 10, 11, 12, 13, 14, 15, 19

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Installation guide.

REACTIONS All bearings 11-11-3.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 6-7-5, Exterior(2R) 6-7-5 to 9-7-5, Interior (1) 9-7-5 to 12-11-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 4) Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	
24090120	PB2	Piggyback	12	1	Job Reference (optional)

3

2

3x5=

1

st.

e

10

2x4 II

Carter Components, Sanford, NC, user

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:54 Page 1

5

6

3x5=

7

ST1

0

8

2x4 II



0

9

2x4 II

11-11-3

B1



#### Plate Offsets (X, Y): [2:0-3-1,0-1-8], [6:0-3-1,0-1-8]

5-6-1

5-4-7

0-1-10

5-4-7

9-1-10

0-4-<u>13</u>

```												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 55 lb	FT = 20%
			5) This truss ha	as been designe	d for great	er of min roo	f live					
TOP CHORD	2x4 SP No 2		load of 12.0	psf or 2.00 times	s flat roof l	oad of 13.9 p	osf on					
BOT CHORD	2x4 SP No.2		overhangs r	ion-concurrent w	ith other li	ve loads.						
OTHERS	2x4 SP No.3		Gable require	es continuous be	ottom cho	rd bearing.						
BRACING			Gable studs	spaced at 4-0-0	OC.							
	Structural wood she	athing directly applied	8) * This truss	has been design	ed for a liv	e load of 20.	.0psf					
	6-0-0 oc purlins	saaning uncoury applied	on the botto	m chord in all are	eas where	a rectangle						
BOT CHORD	Rigid ceiling directly	v applied or 10-0-0 oc	3-06-00 tall	by 2-00-00 wide	will fit bety	veen the bot	tom					
	bracing.		chord and a	ny other member	rs.							
	MiTek recommende	s that Stabilizers and	9) Provide med	chanical connecti	ion (by oth	ers) of truss	to					
	required cross brac	ring he installed during	bearing plat	e capable of with	istanding	i upiift a	it joint					
	truss erection in a	ccordance with Stabilize	(S) 2, 6, 10,	8, 2, 0. d Inductry Diago	hook Truo	a Connoction						
	Installation guide.		Dotail for Co	a mation to base	back itus	s connection	r					
	5			ified building des	ianer	applicable, 0	1					
REACTIONS	All bearings 11-11-3.			Standard	igner.							
(lb) -	Max Horiz 2=-100 (L	_C 11), 11=-100 (LC 11)	LOAD CASE(3)	Stanuaru								
	Max Uplift All uplift 1	100 (lb) or less at joint(s)									
	2, 6, 8, 10	0, 11, 15										
	Max Grav All reaction	ons 250 (lb) or less at jo	int									
	(s) 2, 6, 9	9, 11, 15 except 8=309 (LC									
	30), 10=3	S10 (LC 29)										
FURCES	(ID) - Max. Comp./M	iax. ien All forces 250)									
NEDS	(ID) or less except w	vnen snown.										
	3-10=-303/219, 5-8	303/219										
NOTES												
i) Unbalance	ed root live loads have	e been considered for th	lis									
aesign.	C 7 16. Vult-120mp	h (3 socond quist)										
Vaed=102	r = 10, $vuit = 130 mpf$	11 (3-3000110 yusi) SCDI =6 0nef: h=25#: Cr	ət									
II: Eyn R. I	Enclosed: MW/ERS (a	envelope) and C-C	al.									
Exterior/2	E) 0-2-14 to 3-2-14 lr	nterior (1) 3-2-14 to 6-7-	5									
Exterior(2)	R) 6-7-5 to 9-7-5 Inte	rior (1) 9-7-5 to 12-11-1	с, 1									
zone: cant	tilever left and right ex	xposed : end vertical lef	t									
and right e	exposed:C-C for mem	bers and forces &	-									
MWFRS fo	or reactions shown: L	umber DOL=1.60 plate										
grip DOL=	1.33	piato										
3) Truss des	igned for wind loads i	in the plane of the truss										

- only. For studs exposed to wind normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss		Truss Type		Qty Ply				
24090120	PB3		Piggyback	2	2	Job Reference	ce (ontional)		
Carter Compone	ents, Sanford, NC, user			Run: 8.73 S Jul 11 2	024 Print: 8.730 S Jul	11 2024 MiTek Ir	ndustries, Inc.	Thu Sep 26 18:26:5	4 Page: 1
					ID:I_iyU61EWoxHRs	wvEM02NYyaEjE	E-HmCwySqB	qQkmkk7m3scyXCi	A0xX762wP90_BzjyZrK?
			0-7-7	670	ĺ	10.6.0	`	13-2-0	
				5-11-9	1	<u>12-6-9</u> 5-11-9)		
			0-7-7					0-7-7	
					4x5=				
	<u> </u>	<u> </u>			4				
	N	×		10 ¹² 2×4∎			2x4 II		
	÷	~ ~		18 71	ST2	1 1 19	9		
	20	5-4		3			5		
							P		
			2	ST1			ST1	6	
		₽ <u></u> ₽ 0-4- <u>13</u>		l_	<u>в</u> 1			7	
	<u> </u>	♀ 。 └────────		10	9		8	<u>`</u>	
			3x5=	2x4 II	2x4 II		2x4 II	3x5=	
$S_{000} = 1.41.2$,		11-11-3				
			-					 	
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 13.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC 0.1 BC 0.0	0 DEFL Vert(LL) Vert(TL)	in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2021/TPI2014	WB 0.0 Matrix-MSH)3 Horiz(TL) (0.00 7	n/a n/a		
BCDL	10.0						-	Weight: 109 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (lb) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. All bearings 13-2-10 Max Horiz 1=-100 (Max Uplift All uplift 1, 8, 10 Max Grav All react	eathing directly applie y applied or 10-0-0 oc LC 9) 100 (lb) or less at join ons 250 (lb) or less at	 5) Truss desig only. For st see Standar or consult q 6) TCLL: ASCE Plate DOL= DOL=1.15 F 6) Gable requi 8) Gable studs 9) * This truss on the botto 3-06-00 tall chord and a joint 10) Provide met 	Ined for wind loads in the uds exposed to wind (nc rd Industry Gable End D ualified building designe E 7-16; Pr=20.0 psf (roof 1.15); Pg=20.0 psf; Pf=1 Plate DOL=1.15); Is=1.0; 9; Cs=1.00; Ct=1.10 res continuous bottom c is spaced at 4-0-0 oc. has been designed for a m chord in all areas whe by 2-00-00 wide will fit b ny other members. chanical connection (by	e plane of the truss rmal to the face), etails as applicable r as per ANSI/TPI - f LL: Lum DOL=1.1 3.9 psf (Lum Rough Cat B; Full hord bearing. a live load of 20.0ps ere a rectangle retween the bottom others) of truss to a 400 lb wulft at in wulft at i	s , 1. 15 5 y sf			
	(s) 1, 2, 30), 9=2	53 (LC 2), 10=318 (LC	(s) 1, 10, 8.	rd Industry Diggybook T		in te			
FURCES	(ID) - Max. Comp./N (Ib) or less except v	viax. ien All forces 2 when shown.	Detail for Co	onnection to base truss a	as applicable, or				
WEBS NOTES	3-10=-305/221, 5-8	8=-308/215	LOAD CASE(S)	Standard					
 2-ply truss Top chord follows: 22 Bottom ch follows: 22 All loads a except if n CASE(S) provided t unless oth Unbalance design. Wind: ASC Vasd=103 	s to be connected tog s connected with 10c k4 - 1 row at 0-9-0 oc ords connected with k4 - 1 row at 0-9-0 oc are considered equal oted as front (F) or b section. Ply to ply co o distribute only load nerwise indicated. ed roof live loads hav CE 7-16; Vult=130mp imph; TCDL=6.0psf; I	ether as follows: 1 (0.131"x3") nails as 1 od (0.131"x3") nails 1 od (0.131	as AD this Cat.						
II; Exp B; Exterior(2 Exterior(2 zone; can and right e MWFRS f grip DOL=	Enclosed; MWFRS (E) 0-2-14 to 3-2-14, I R) 6-7-5 to 9-7-5, Intr tilever left and right e exposed;C-C for men or reactions shown; I =1.33	envelope) and C-C nterior (1) 3-2-14 to 6 erior (1) 9-7-5 to 12-11 xposed ; end vertical nbers and forces & .umber DOL=1.60 pla	7-5, -11 eft						

Job	Truss	Truss Type	Qty	Ply		
24090120	Q01	Flat Girder	1	2	Job Reference (optional)	
Carter Components, Sanford, NC, user Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 Print: 8.730 S Jul 12 2024 Print: 8.730 S			11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:54	Page: 1		

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:54 ID:b35AOhwyskgiFK9_fFrizRyaEjO-HmCwySqBqQkmkk7m3scyXCi9SxTh62MP90_BzjyZrK? 3-10-0 2x4 II 3x5 = 1 Ż \bowtie т°

4x5 =

2x4 II

2-3-1

Scale = 1:30.2

		· · · ·										<u>.</u>
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	-0.01	3-4	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.01	3-4	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 49 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2-0-0 oc purlins: 1-2 Rigid ceiling directly bracing.	2, except end verticals. y applied or 10-0-0 oc	 This truss on the botto 3-06-00 tall chord and a Refer to gird Graphical pu or the orient bottom chore Use Simpso 	has been designed m chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr Irlin representation ation of the purlin d. n Strong-Tie LUS2	d for a liv as where vill fit betv russ con n does n along the 26 (4-100	re load of 20 a rectangle ween the bot nections. ot depict the e top and/or d Girder, 3-10	.0psf tom size 0d					
REACTIONS	(lb/size) 3=309/ M	lechanical, (min. 0-1-8),	Truss, Single	e Ply Girder) or eq	quivalent	at 1-9-12 fro	m the					
 Hard Constant Carlos (1997) Hard Car			face of botto 11) Fill all nail ho LOAD CASE(S) 1) Dead + Sno Increase=1 3") Uniform Lo Vert: 1-2 Concentrat Vert: 5=-	m chord. bles where hanger Standard bw (balanced): Lui 15 ads (lb/ft) =-58, 3-4=-20 ed Loads (lb) 365 (F)	r is in coi	ntact with lur	nber. Plate					
 All loads a except if n CASE(S) s provided to unless oth Wind: ASC 	re considered equally oted as front (F) or ba section. Ply to ply cor o distribute only loads erwise indicated. DE 7-16; Vult=130mpl	y applied to all plies, ack (B) face in the LOAI nections have been s noted as (F) or (B), h (3-second gust)	2									
Vasd=103 II; Exp B; I and right e Lumber D 4) TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce=	mph; TCDL=6.0psf; E Enclosed; MWFRS (e exposed ; end vertical OL=1.60 plate grip Di CE 7-16; Pr=20.0 psf; =1.15); Pg=20.0 psf; Plate DOL=1.15); Is: 0.9; Cs=1.00; Ct=1.11	3CDL=6.0psf; h=25ft; C: nvelope); cantilever left I left and right exposed; OL=1.33 (roof LL: Lum DOL=1.1 Pf=18.9 psf (Lum =1.0; Rough Cat B; Full; 0, Lu=50-0-0; Min. flat	5 Y									
root snow exposed s accordanc	urfaces with slopes le with IBC 1608.3.4.	surcharge applied to all ess than 0.500/12 in										

5) Unbalanced snow loads have been considered for this design.

6) Provide adequate drainage to prevent water ponding.

Job	Truss	Truss Type	Qty	Ply	
24090120	VL1	Valley	1	1	Job Reference (optional)

 Run: 8.73 S
 Jul 11 2024 Print: 8.730 S
 Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:54
 Page: 1

 ID:7sYoBMvK5QYrdAao5YKTREyaEjP-HmCwySqBqQkmkk7m3scyXCi8PxUX61GP90_BzjyZrK?

3

Scale = 1:33.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0	1									Weight: 30 lb	FT = 20%
			6) Dravida mar	haniaal aannaati	ion (h) (oth	ara) of truca	to.					-
	0		 boaring plat 	connection connecti	ion (by oth estanding 1	ers) or truss	10 ioint					
TOP CHORD	2X4 SP No.2		1 and 7 lb u	lift at joint 4	Istanuing	i i i upilit at	joint					
	2X4 SP NO.2			Standard								
	2X4 OF NU.3		LOAD GAGE(0)	Otanuaru								
BRACING	Otom - the medicine is all a large	41- (
TOP CHORD	7 11 6 oc purling	eatring directly applied	0I									
	Rigid ceiling directly	vapplied or 6-0-0 oc										
Der enerte	bracing.											
	MiTek recommends	s that Stabilizers and										
	required cross brac	cing be installed during										
	truss erection, in ad	ccordance with Stabiliz	er									
	Installation guide.											
DEACTIONS	(lb/oizo) 1=51/7 11	$1.6 \ (min \ 0.1.9)$										
REACTIONS	(ID/SIZE) 1-51/7-11 3=70/7-11	1-0, (11111. 0-1-0), 1-6 (min 0-1-8)										
	4=392/7-1	11-6. (min. 0-1-8)										
	Max Horiz 1=-59 (LC	C 9)										
	Max Uplift 1=-17 (LC	C 35), 4=-7 (LC 14)										
	Max Grav 1=106 (L0	C 34), 3=84 (LC 2), 4=4	461									
	(LC 2)											
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250	0									
WEBS	(ID) or less except w $2_{-}1 = -353/163$	nen snown.										
NOTES	2-4000/100											
1) Unbalanc	ed roof live loads have	a been considered for t	hie									
design.			110									
2) Wind: AS	CE 7-16; Vult=130mph	n (3-second gust)										
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft; C	at.									
II; Exp B;	Enclosed; MWFRS (e	nvelope) and C-C										
Exterior(2	E) 0-4-13 to 3-4-13, lr	nterior (1) 3-4-13 to 4-0	-0,									
Exterior(2	r(2R) 4-0-0 to 7-2-5, Interior (1) 7-2-5 to 7-11-11											
zone; can	zanineven leit anno right exposed ; end vertical leit											
MWFRS 1	s texposed, u-c to internuets and torces a Signature Signatu											
arip DOI =) DOL=1.33											
3) TCLL: AS	CE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1.1										
Plate DOI	L=1.15); Pg=20.0 psf;	Pf=13.9 psf (Lum										
DOL=1.1	5 Plate DOL=1.15); ls=	=1.0; Rough Cat B; Full	y									
Exp.; Ce=	0.9; Cs=1.00; Ct=1.10)										
4) Gable rec	uires continuous botto	om chord bearing.	,									
5) * This true	s has been designed for a live load of 20.0psf											

5) Inis truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	
24090120	VL2	Valley	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Thu Sep 26 18:26:54 Page: 1 ID:7sYoBMvK5QYrdAao5YKTREyaEjP-HmCwySqBqQkmkk7m3scyXCiA6xWb62QP90_BzjyZrK?

3-11-6

3

Scale = 1:32

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.09 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2

BOT CHORD	2x4 SP No.2
DDACINC	

BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2 11 C as numbers

3-11-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and
required cross bracing be installed during
truss erection, in accordance with Stabilizer
Installation guide.

- REACTIONS
 (lb/size)
 1=121/3-11-6, (min. 0-1-8), 3=121/3-11-6, (min. 0-1-8)

 Max Horiz
 1=-28 (LC 9)

 Max Grav
 1=143 (LC 2), 3=143 (LC 2)
- FORCES (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

LOAD CASE(S) Standard