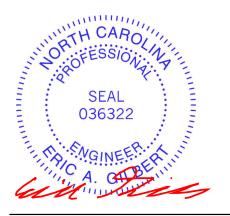


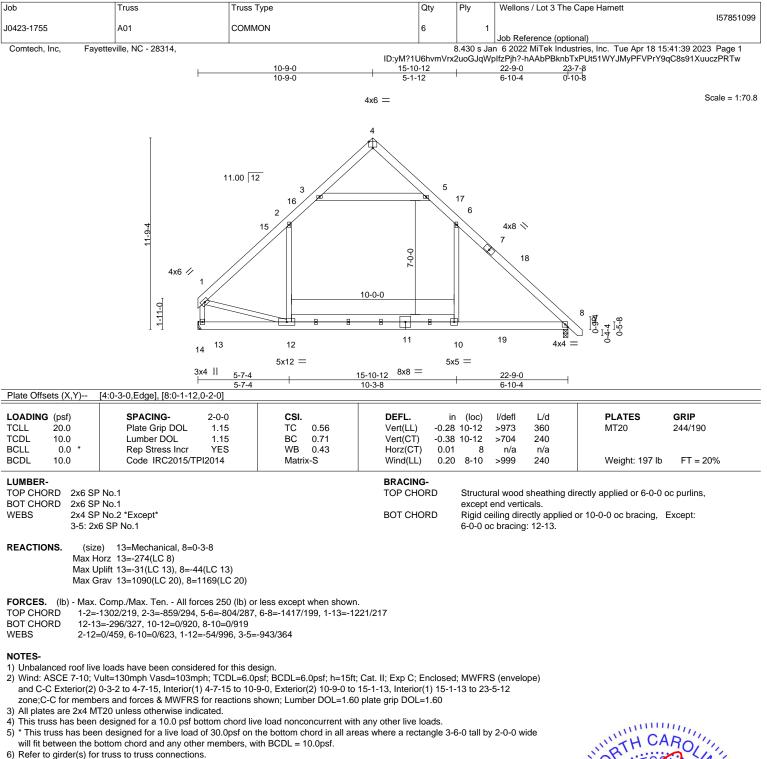
Trenco 818 Soundside Rd Edenton, NC 27932


Re: J0423-1755 Wellons / Lot 3 The Cape Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

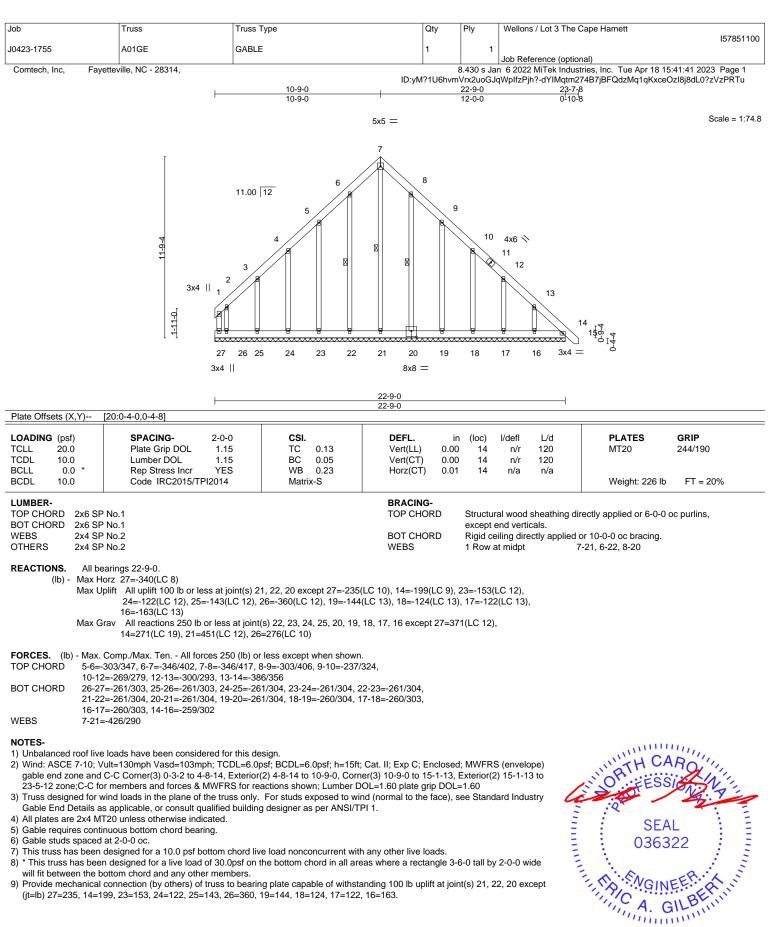
Pages or sheets covered by this seal: I57851099 thru I57851131

My license renewal date for the state of North Carolina is December 31, 2023.

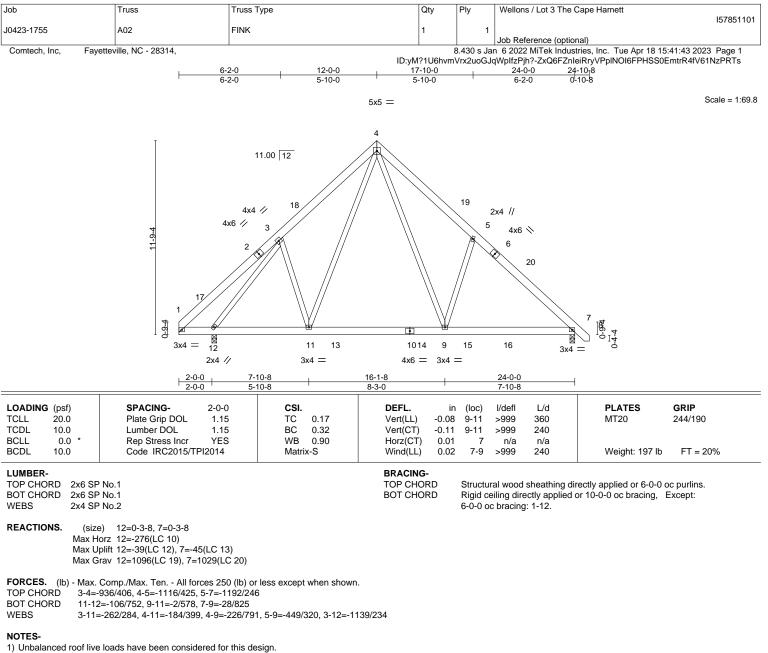

North Carolina COA: C-0844

April 19,2023

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

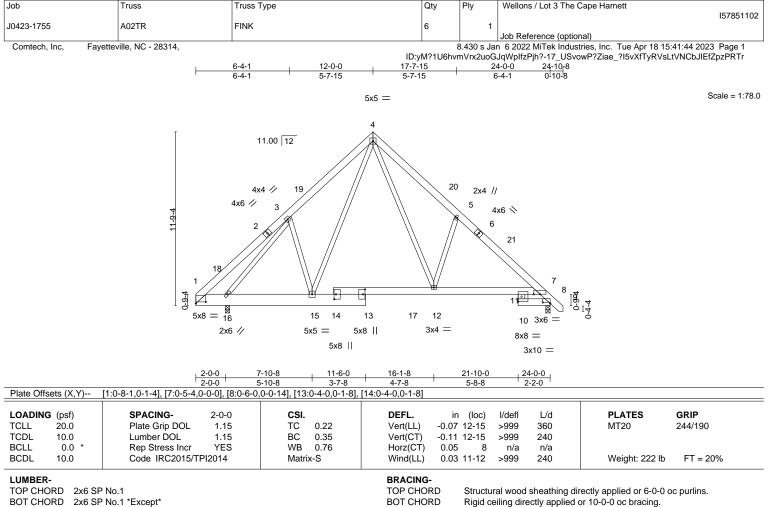
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 13 and 44 lb uplift at joint 8.



April 19,2023



2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 12-0-0, Exterior(2) 12-0-0 to 16-4-13, Interior(1) 16-4-13 to 24-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 7.

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1 *Except*

 1-13: 2x10 SP No.1

 WEBS
 2x4 SP No.2 *Except*

 10-11: 2x6 SP No.1

REACTIONS. (size) 16=0-3-8, 8=0-3-8 Max Horz 16=-276(LC 8) Max Uplift 16=-39(LC 12), 8=-46(LC 13) Max Grav 16=1071(LC 19), 8=945(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

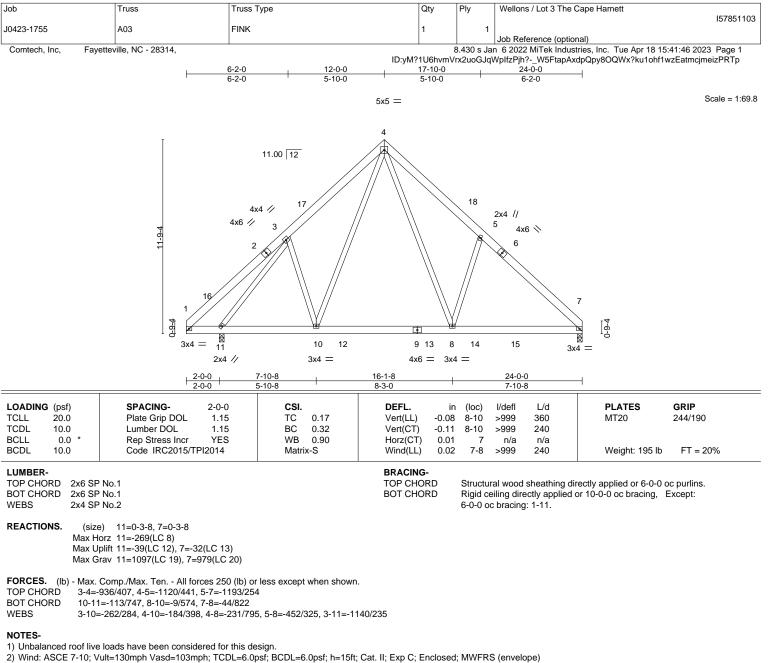
TOP CHORD 3-4=-955/395, 4-5=-1163/418, 5-7=-1203/247, 7-8=-799/202

- BOT CHORD 15-16=-94/779, 12-15=-1/583, 11-12=-21/881, 7-11=-21/881
- WEBS 3-15=-315/302, 4-15=-180/427, 4-12=-228/811, 5-12=-486/309, 3-16=-974/160

NOTES-

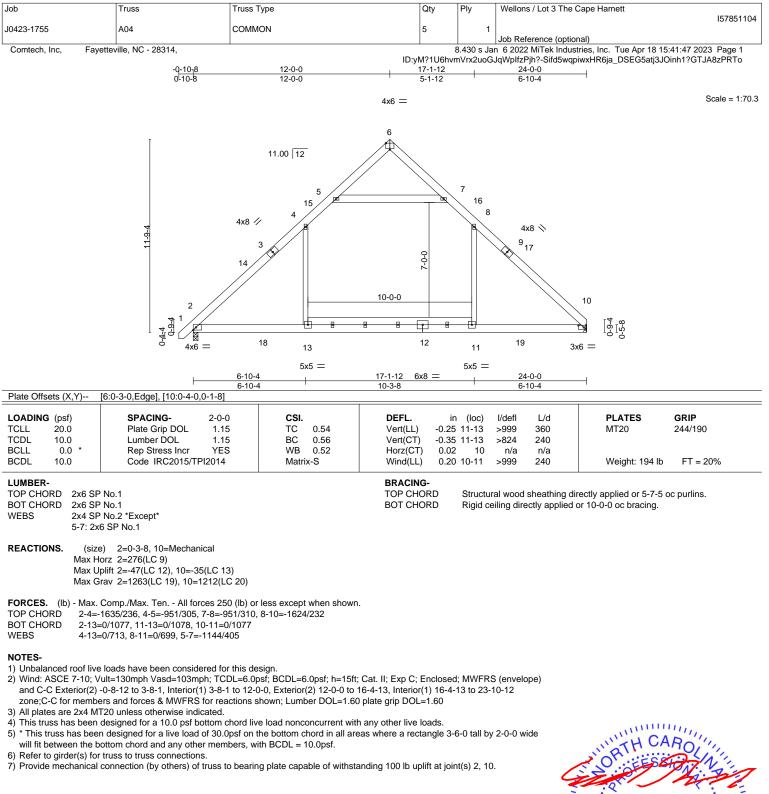
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 12-0-0, Exterior(2) 12-0-0 to 16-4-13, Interior(1) 16-4-13 to 24-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

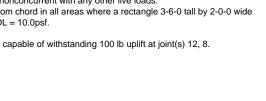

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 8.



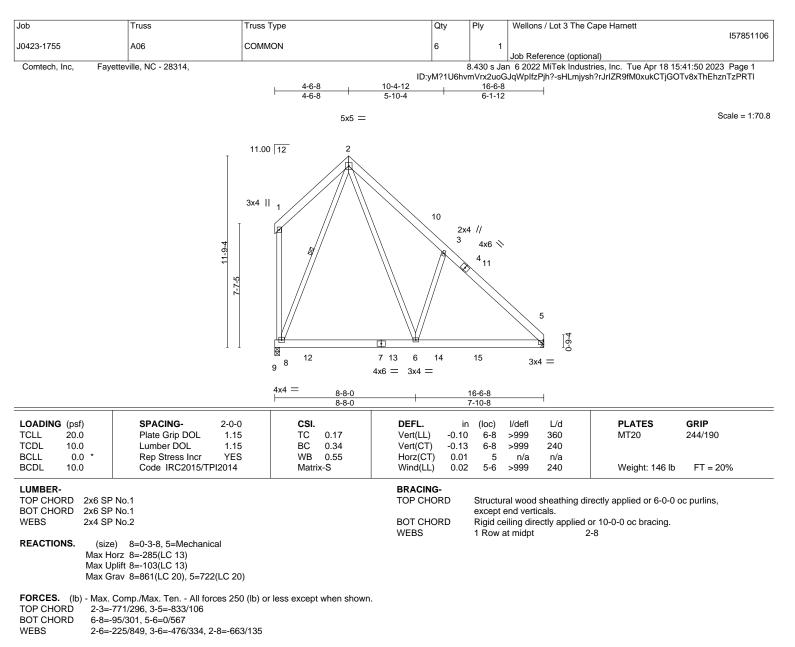
- and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 12-0-0, Exterior(2) 12-0-0 to 16-4-13, Interior(1) 16-4-13 to 23-10-4
- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 7.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	russ Type	Qty	Ply	Wellons / Lot 3 The 0	Cape Harnett	15785110
J0423-1755	A05	COMMON	2	1			15785110
Comtech, Inc, Fay	 etteville, NC - 28314, ⊢	2-9-4 7-11-0 2-9-4 5-1-12	ID:yM?1U6hvmV 13-0-12 5-1-12	rx2uoGJq 1۱	Job Reference (optio an 6 2022 MiTek Indus WplfzPjh?-wuD?IGrRTI 9-11-0 5-10-4	tries, Inc. Tue Apr 18	
		4x6	=				Scale = 1:70
		1.00 12					
	7 4x6 ∥ 1	3 ¹⁵ 14 2 8	5 16		5x8 N		
	46-3	10-0	9- 9- 0		8		
						0-1-9-1 5-1-8-	
	13	12 11	10 9	18	⁸ 3x4 =		
	3x ⊢	$ \begin{array}{r} 6x12 = \\ \frac{4}{2} \underbrace{l_{9-4}}_{2-9-4} & 13-0-\\ \hline 10-3 \end{array} $		19	9-11-0 5-10-4		
Plate Offsets (X,Y)	[4:0-3-0,Edge], [8:0-2-4,0-1-8], [11					T	
-OADING (psf) FCLL 20.0 FCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.52 BC 0.60 WB 0.32	Vert(LL) -0.3 Vert(CT) -0.5 Horz(CT) 0.0) 9-11 1 8	I/defI L/d >727 360 >468 240 n/a n/a	PLATES MT20	GRIP 244/190
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.2	5 8-9	>954 240	Weight: 182	lb FT = 20%
10-13: VEBS 2x4 SP	No.1 No.1 *Except* 2x6 SP 2400F 2.0E No.2 *Except* 6 SP No.1		BRACING- TOP CHORD BOT CHORD	except Rigid c	aral wood sheathing di end verticals. eeiling directly applied oc bracing: 11-12.		•
REACTIONS. (size Max H Max U	 2) 12=0-3-8, 8=Mechanical orz 12=-265(LC 8) plift 12=-55(LC 13), 8=-18(LC 13) rav 12=1059(LC 20), 8=980(LC 2) 	0)					
TOP CHORD 1-2=- BOT CHORD 11-12	Comp./Max. Ten All forces 250 853/161, 2-3=-738/261, 5-6=-616/ 2=-239/268, 9-11=0/698, 8-9=0/69 0/484, 1-11=-165/1385, 3-5=-701/2	245, 6-8=-1110/122, 1-12=-169 3	7/259				
) Wind: ASCE 7-10; V and C-C Exterior(2) zone;C-C for member) All plates are 2x4 M) This truss has been	e loads have been considered for t fult=130mph Vasd=103mph; TCDI 0-3-2 to 4-7-15, Interior(1) 4-7-15 ers and forces & MWFRS for react T20 unless otherwise indicated. designed for a 10.0 psf bottom ch endigine for a 10.0 psf bottom ch	.=6.0psf; BCDL=6.0psf; h=15ft; to 7-11-0, Exterior(2) 7-11-0 to 1 ions shown; Lumber DOL=1.60 ord live load nonconcurrent with	2-3-13, Interior(1) 12-3 plate grip DOL=1.60 any other live loads.	9-13 to 19)-1Ò-4		AD-111
will fit between the b B) Refer to girder(s) for	n designed for a live load of 30.0p ottom chord and any other member truss to truss connections. connection (by others) of truss to	ers, with BCDL = 10.0psf.	-			IN ORTHER	A NIL



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ΓΩ

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-2 to 8-11-5, Interior(1) 8-11-5 to 16-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=103.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-764/285, 3-5=-830/102

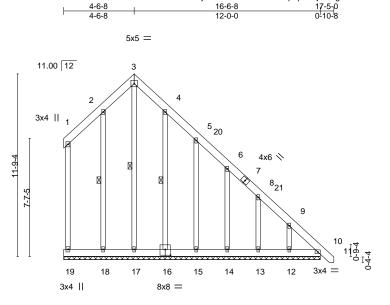
 BOT CHORD
 7-9=-109/308, 5-7=0/567

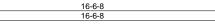
WEBS 2-7=-218/839, 3-7=-470/328, 2-9=-660/135

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-2 to 8-11-5, Interior(1) 8-11-5 to 17-3-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=102.

DADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	тс	0.04	Vert(LL)	0.00	10	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	10	n/r	120		
CLL 0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	10	n/a	n/a		
3CDL 10.0	Code IRC2015/TI	PI2014	Matri	x-S						Weight: 175 lb	FT = 20%
LUMBER-					BRACING-						
TOP CHORD 2x6 SP No.1					TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc p					c purlins,	
BOT CHORD 2x6 SP	' No.1						except	end verti	cals.		•
VEBS 2x4 SP	' No.2				BOT CHOR	D	Rigid c	eiling dire	ctly applied o	or 10-0-0 oc bracing.	
OTHERS 2x4 SP	No 2				WEBS		1 Row	at midpt	3	-17. 2-18. 4-16	

REACTIONS. All bearings 16-6-8.

(lb) - Max Horz 19=-439(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 19, 17 except 10=-159(LC 11), 18=-106(LC 12), 16=-103(LC 13), 15=-134(LC 13), 14=-124(LC 13), 13=-123(LC 13), 12=-178(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 19, 17, 18, 16, 15, 14, 13, 12 except 10=346(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

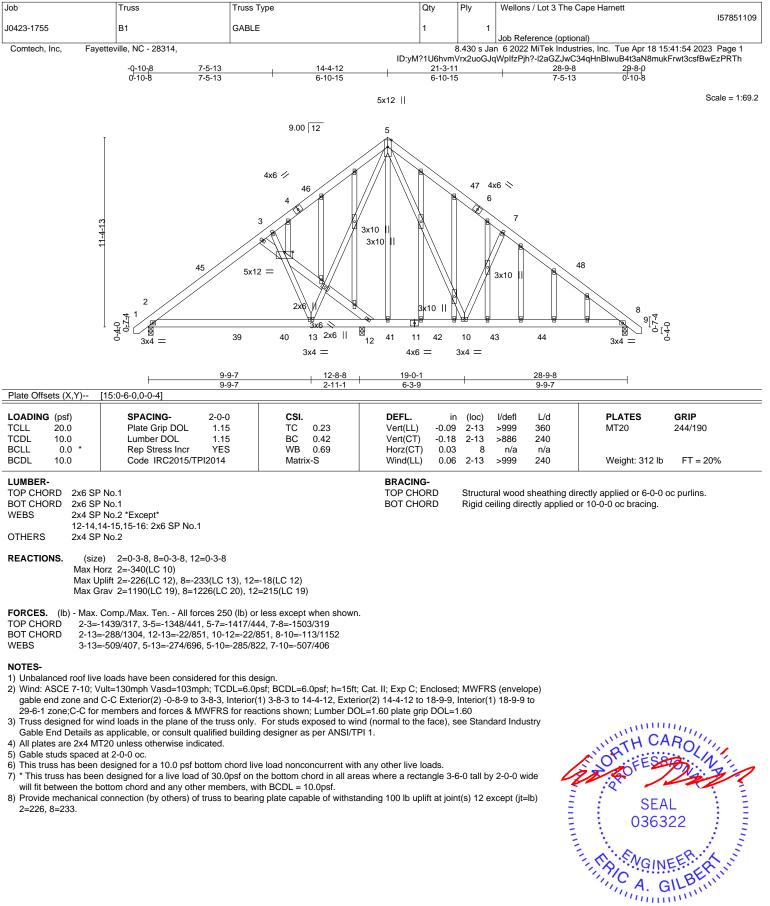
- TOP CHORD 6-8=-273/229, 8-9=-390/271, 9-10=-540/349
- BOT CHORD 18-19=-282/439, 17-18=-282/439, 16-17=-282/439, 15-16=-282/438, 14-15=-282/438,

13-14=-281/438, 12-13=-281/438, 10-12=-280/437

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-3-2 to 8-11-5, Interior(1) 8-11-5 to 17-3-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

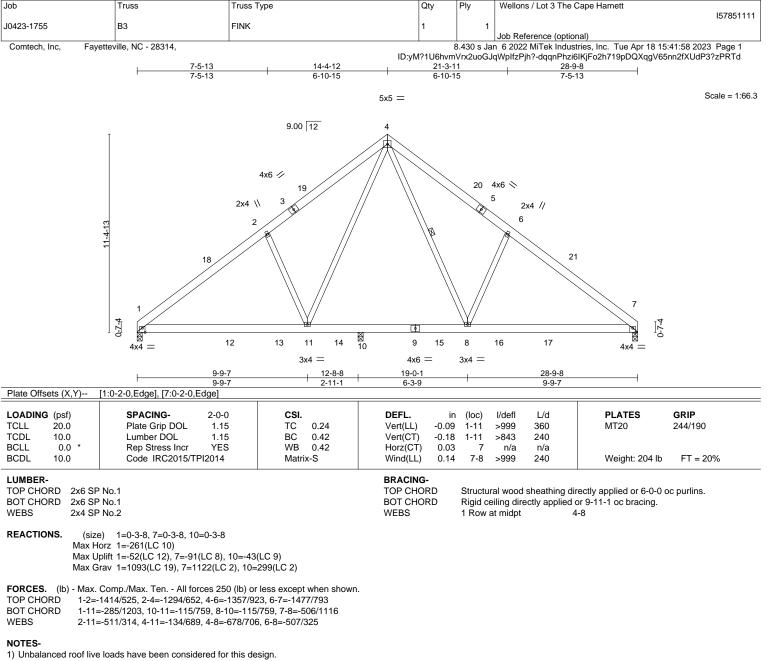
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 17 except (jt=lb) 10=159, 18=106, 16=103, 15=134, 14=124, 13=123, 12=178.

Scale = 1:74.3

April 19,2023

Job	Truss	Truss	Туре	Qt	y	Ply	Wellons	/ Lot 3 The Cape	e Harnett	157851110
J0423-1755	B2	FINK		1		1				137 031110
Comtech, Inc, Faye	teville, NC - 28314					2 420 a la		rence (optional)		:41:56 2023 Page 1
Contech, Inc, Faye	leville, NC - 20312	,		ID:yM?1U						hJuaM4A8I_7zPRTf
	-0-10-8	7-5-13	14-4-12		21-3-1	1		28-9-8	2,9-8-0	
	0-10-8	7-5-13	6-10-15	·	6-10-1	5	·	7-5-13	0-10-8	
				5x5 =						Scale = 1:66.
			9.00 12	5						
Ī			/							
			4x6 1/2 21		\langle	\mathbf{i}	4x6 <> 6			
m		2x4				X	2x4	\$ <i> </i>		
11-4-13					4		19			
		20				1		23		
	/									
	2				/	$\backslash //$			8	
	4 1		¥	T and the second s		¥/			9I. ⁴	
÷ .	40 (X	14	15 13 16	X 11	17	10	18	19		14 14
	5 4x4 =		3x4 =	4x6 =		3x4 =			4x4 =	0
		9-9-7	12-8-8	19-0-1				28-9-8		
		9-9-7	2-11-1	6-3-9				9-9-7		
Plate Offsets (X,Y) [2	2:0-0-11,Edge], [8	::0-0-11,Edge]								
OADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip [TC 0.23	Vert(LL)	-0.09		>999	360	MT20	244/190
TCDL 10.0 BCLL 0.0 *	Lumber DO Rep Stress		BC 0.42 WB 0.42	Vert(CT) Horz(CT)	-0.18 0.03		>859 n/a	240 n/a		
3CDL 10.0		015/TPI2014	Matrix-S	Wind(LL)		8-10	>999	240	Weight: 208 lb	FT = 20%
UMBER-			1	BRACING-						
TOP CHORD 2x6 SP 3OT CHORD 2x6 SP WEBS 2x4 SP	No.1			TOP CHOR BOT CHOR WEBS		Rigid ce			y applied or 6-0-0 o 0-0-0 oc bracing.	oc purlins.
	2=0-3-8, 8=0-3 rz 2=-272(LC 10									
Max Up	lift 2=-67(LC 12),	8=-95(LC 8), 12=-41								
Max Gra	av 2=1141(LC 19), 8=1164(LC 2), 12=	=302(LC 2)							
ORCES. (Ib) - Max. C	omp./Max. Ten.	All forces 250 (lb) o	r less except when showr	۱.						
		87/643, 5-7=-1350/9								
		99/762, 10-12=-99/ 35/684, 5-10=-675/7	762, 8-10=-490/1111 03, 7-10=-505/326							
		0.001, 0 10- 010/1	00, 10-000,020							
IOTES-) Unbalanced roof live	ande have hace	oncidered for this d	sian							
	uaus nave been		səiyiri.							

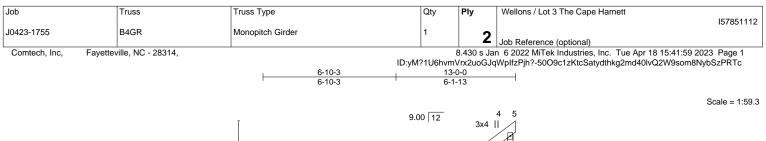
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-9 to 3-8-3, Interior(1) 3-8-3 to 14-4-12, Exterior(2) 14-4-12 to 18-9-9, Interior(1) 18-9-9 to 29-6-1 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

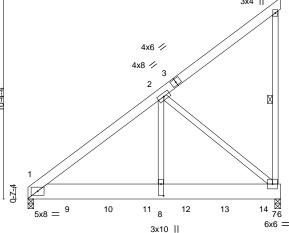

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 12.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 14-4-12, Exterior(2) 14-4-12 to 18-9-9, Interior(1) 18-9-9 to 28-7-12 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10.

late Offsets (X,Y)	[8:0-7-4,0-1-8]	6-10-3	0-1	-13			T.	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.04	1-8	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.50	Vert(CT) -0.07	7 1-8	>999	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.77	Horz(CT) 0.01	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.02	2 1-8	>999	240	Weight: 241 lb	FT = 20%
LUMBER-			BRACING-					
TOP CHORD 2x6 SF	P No.1	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc pu					oc purlins,	
BOT CHORD 2x10 S	P No.1			except	end vertion	als.	, ,,	• •
WEBS 2x4 SF	P No.2		BOT CHORD	Rigid c	eiling dire	ctly applied	or 10-0-0 oc bracing.	
			WEBS	1 Row	at midpt	4	4-7	
REACTIONS. (size	e) 7=0-3-8, 1=0-3-8							
	lorz 1=314(LC 8)							
May I								

13-0-0

6-10-3

Max Uplift 7=-317(LC 8), 1=-51(LC 8) Max Grav 7=3888(LC 2), 1=3255(LC 2)

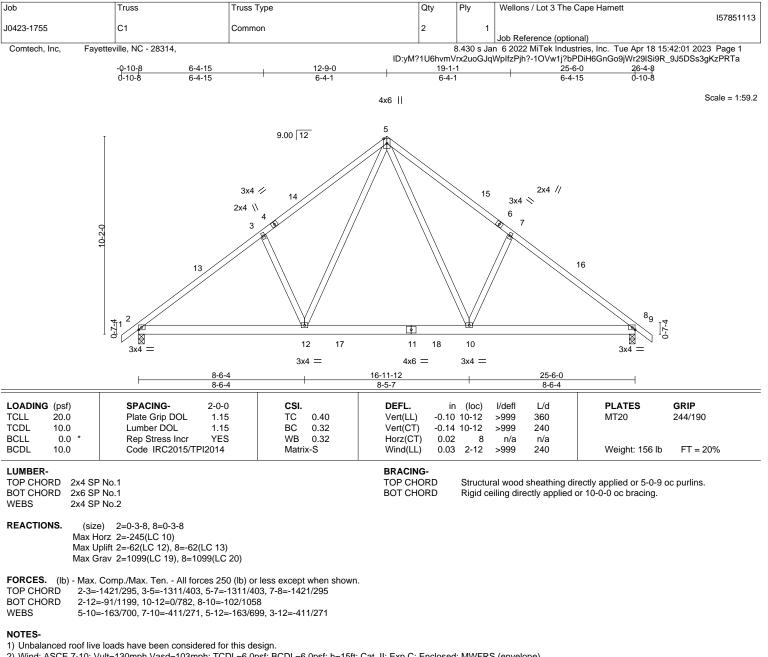
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-3458/14

BOT CHORD 1-8=-230/2715, 7-8=-230/2715

WEBS 2-8=-79/3993, 2-7=-3575/302

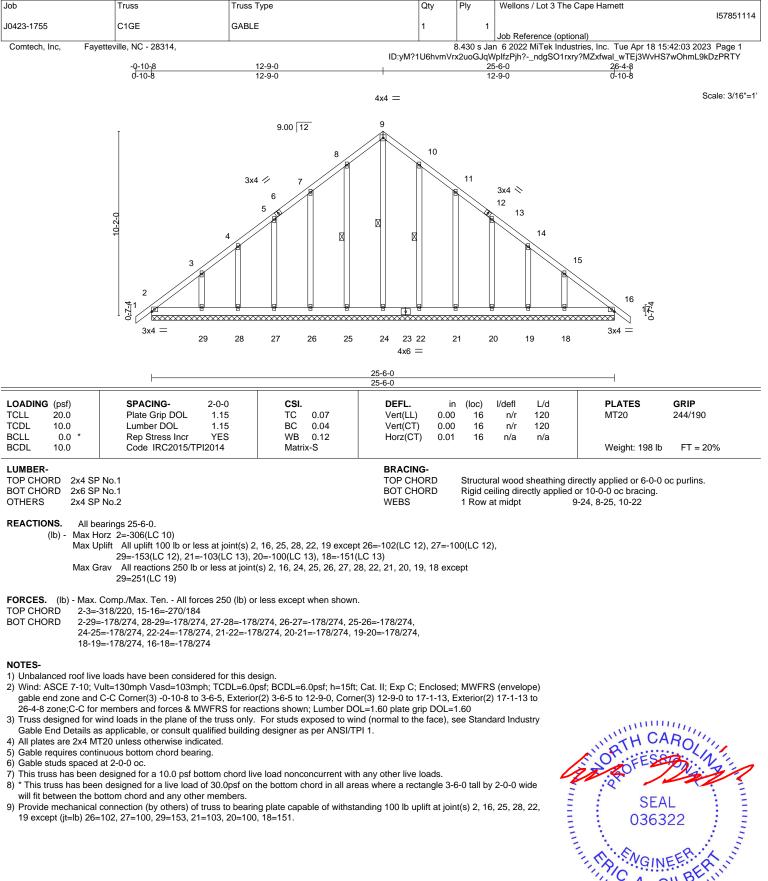
NOTES-


- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 7=317.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1042 lb down and 51 lb up at 2-0-12, 1042 lb down and 51 lb up at 4-0-12, 1042 lb down and 51 lb up at 6-0-12, 1042 lb down and 51 lb up at 8-0-12, and 1042 lb down and 51 lb up at 10-0-12, and 1042 lb down and 51 lb up at 12-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-20, 1-6=-20 Concentrated Loads (lb) Vert: 9=-878(B) 10=-878(B) 11=-878(B) 12=-878(B) 13=-878(B) 14=-879(B)

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 12-9-0, Exterior(2) 12-9-0 to 17-1-13, Interior(1) 17-1-13 to 26-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 25, 28, 22, 19 except (jt=lb) 26=102, 27=100, 29=153, 21=103, 20=100, 18=151.

minin April 19,2023

> 818 Soundside Road Edenton, NC 27932

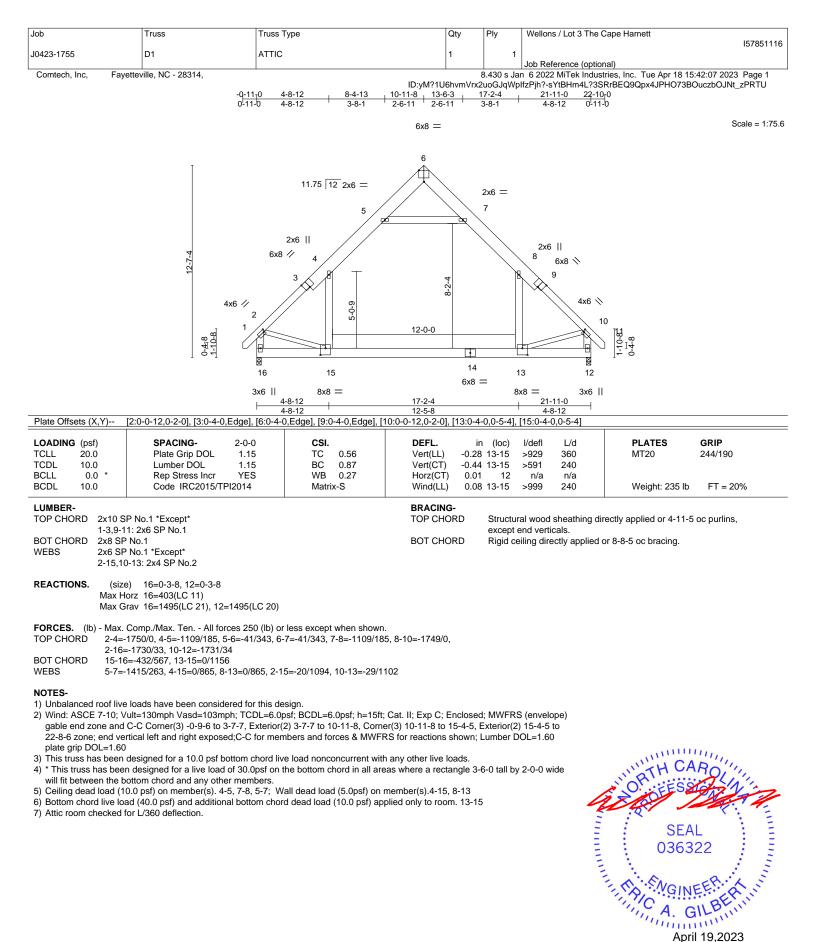
GI

SEAL

036322

Job	Truss	Truss Type	Qty	Ply	Wellons / Lot 3 The Cape F	larnett
J0423-1755	C2GR	Common Girder	1	- -		157851115
Comtech, Inc, Fay	retteville, NC - 28314,			2	Job Reference (optional) 6 2022 MiTek Industries Ir	nc. Tue Apr 18 15:42:05 2023 Page 1
	6-8-12	12-9-0				11?nT?uK_bJVkwskg84qGp6zPRTW
	6-8-12		6-0-4		6-8-12	
			5x8			Scale = 1:60.0
		9.00 12				
	Ī	9.00 12	4			
		4x6 1/2		4		
		4x8 1/ 3		5	3 📎	
		2		×	4x8 ≫ 、 6	
	10-2-0					
	10					
	1					7
	0-7-0					4
	[⊠] 12 13	¹⁴ 15 16 17	10 18 91	9 20	8 21 22 23	5x8 =
	5x8 =	3x10	8x8 8x12		x10	
	6-8-12 6-8-12		<u>18-9-4</u> 6-0-4		25-6-0 6-8-12	
Plate Offsets (X,Y)	[8:0-7-12,0-1-8], [10:0-7-8,0-4					
OADING (psf)		0-0 CSI.		(loc)	l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0		.15 TC 0.32 .15 BC 0.36			>999 360 >999 240	MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/TPI20	NO WB 0.81	Horz(CT) 0.04	7	n/a n/a >999 240	Weight: 448 lb FT = 20%
			. ,		2000 240	
LUMBER- TOP CHORD 2x6 SF	' No.1		BRACING- TOP CHORD	Structura	al wood sheathing directly a	applied or 5-3-9 oc purlins.
BOT CHORD 2x10 S WEBS 2x4 SF	P 2400F 2.0E P No.2		BOT CHORD	Rigid ce	iling directly applied or 10-0	0-0 oc bracing.
	e) 1=0-3-8, 7=0-3-8					
Max H	lorz 1=228(LC 26)					
	lplift 1=-54(LC 8) srav 1=7178(LC 2), 7=5677(L	C 2)				
FORCES. (lb) - Max.	Comp./Max. Ten All forces	250 (lb) or less except when shown.				
TOP CHORD 1-2=	9167/2, 2-4=-5832/0, 4-6=-58	33/0, 6-7=-7830/0				
	=-23/7258, 10-11=-23/7258, 8 =0/6564, 6-10=-2064/0, 6-8=0	/2234, 2-10=-3454/326, 2-11=-114/3921	l			
NOTES-						
	nected together with 10d (0.1 ed as follows: 2x6 - 2 rows sta					
Bottom chords conn	ected as follows: 2x10 - 2 row	s staggered at 0-7-0 oc.				
	follows: 2x4 - 1 row at 0-9-0 o ered equally applied to all plie	s, except if noted as front (F) or back (B) face in the LOAD C	ASE(S) s	ection. Ply to	
	e been provided to distribute of loads have been considered	only loads noted as (F) or (B), unless oth for this design.	nerwise indicated.			
	/ult=130mph Vasd=103mph; ⁻	CDL=6.0psf; BCDL=6.0psf; h=15ft; Cat	. II; Exp C; Enclosed	I; MWFRS	(envelope);	WHILL CAP
This truss has been	designed for a 10.0 psf botto	n chord live load nonconcurrent with any			A.	R
	n designed for a live load of 3 oottom chord and any other m	0.0psf on the bottom chord in all areas v embers.	where a rectangle 3-0	5-0 tall by	2-0-0 wide	DI Man
		s to bearing plate capable of withstandin provided sufficient to support concentrate			5 lb up at	
1-6-12, 1163 lb dow	n and 55 lb up at 3-6-12, 116	3 lb down and 55 lb up at 5-6-12, 1163	lb down and 55 lb u	oat 7-6-1	2, 1163 lb	SEAL
		Ib up at 11-6-12, 934 lb down and 38 l and 682 lb down at 21-6-12, and 682 ll			at 15-6-12, chord. The	036322
design/selection of s	such connection device(s) is the	ne responsibility of others.			5 lb up at 2, 1163 lb at 15-6-12, chord. The	NA ALS
LOAD CASE(S) Stan		45 Diata Increases 4.45				& NGINEER A
 Dead + Roof Live (b Uniform Loads (plf) 	alanced): Lumber Increase=1	. 13, Plate increase=1.15				A. GILBE
Vert: 1-4=-6	60, 4-7=-60, 1-7=-20					
						April 19,2023
continued on page 2						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

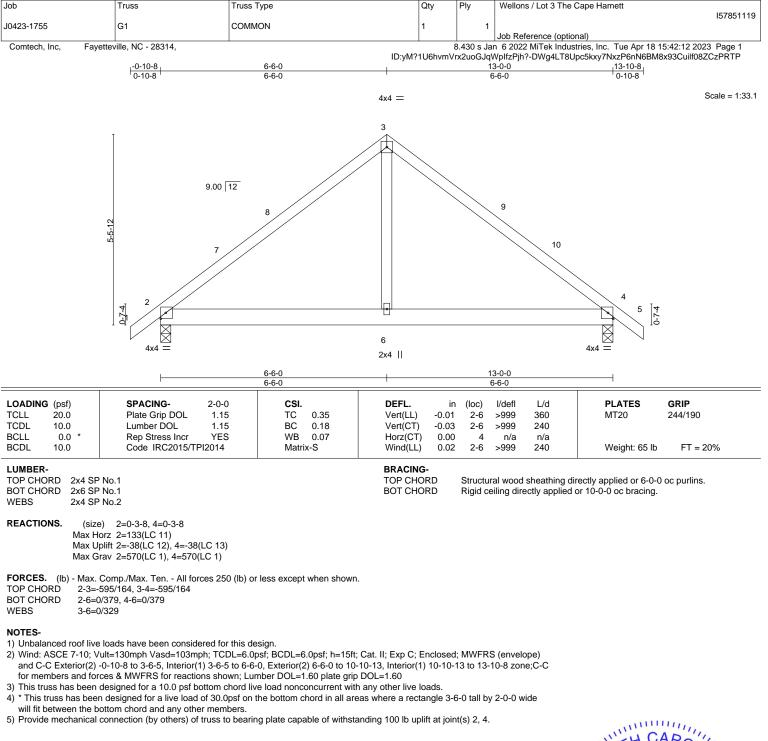

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wellons / Lot 3 The Cape Harnett
					157851115
J0423-1755	C2GR	Common Girder	1	2	
				-	Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		8	3.430 s Jai	n 6 2022 MiTek Industries, Inc. Tue Apr 18 15:42:05 2023 Page 2
		ID:yM?	21U6hvmV	'rx2uoGJq'	WplfzPjh?-wAlQt425TSCjbt511?nT?uK_bJVkwskg84qGp6zPRTW


LOAD CASE(S) Standard Concentrated Loads (Ib)

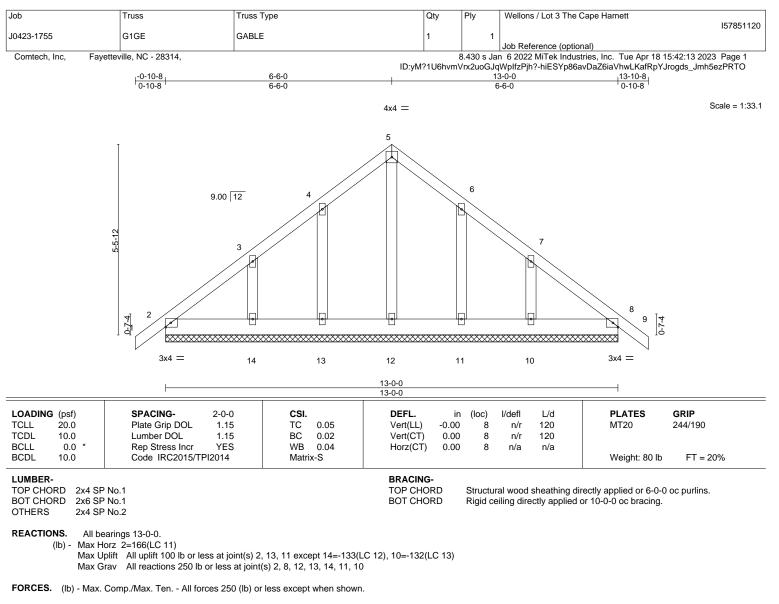
Vert: 12=-929(F) 13=-929(F) 14=-929(F) 15=-929(F) 16=-929(F) 17=-763(F) 18=-763(F) 19=-627(F) 20=-627(F) 21=-627(F) 22=-627(F) 23=-627(F) 23=-627(F) 20=-627(F) 20=-6

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

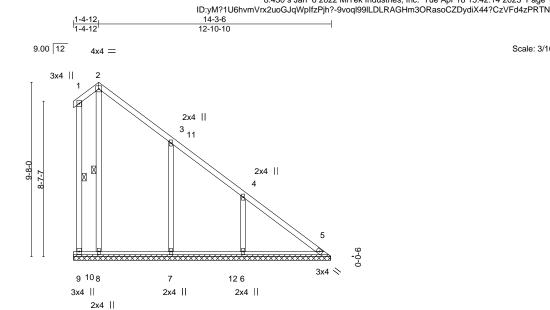

818 Soundside Road Edenton, NC 27932

April 19,2023

Job	Truss	Truss Type	Qty	Ply	Wellons / Lot 3 The C	ana Harnatt	
					Weildris / Lot 3 The C	аре пашец	157851118
J0423-1755	D3	ATTIC	1	2	Job Reference (option	al)	
Comtech, Inc, Faye	etteville, NC - 28314,				n 6 2022 MiTek Indust VplfzPjh?-H7YJwo6EH		
	-0-11- 0-11-0	0 4-8-12 8-4-13 0 4-8-12 3-8-1	10-11-8 13-6-3	17-2-4 3-8-1	<u>21-11-0</u> 22-10 4-8-12 0-11-	-0	
	0-11-0	9 4-0-12 5-0-1	2-0-11 2-0-11	3-0-1	4-6-12 0-11-6	0	
			6x8 =				Scale = 1:75.6
			<u>,</u>				
	I		6 A				
		11.75 12 2x6 =		2x6 =			
		- 4		2xo — 7			
		5 \$		\.			
		2x6 18 5		* 19	2x6		
	2-7-4	6x8 // 4_		/#	8 6x8 📎		
	5	3	4	h	9 ²⁰		
		#X	8-2-4				
	4x6 1/ 2	2-0-9			4x6 ℕ		
	- 1\$		12-0-0				
	0-4-8			f		0-1-0-81 0-4-8	
	B	, ₹	14	L		<u> </u> - 0	
		16 15	6x8		13 12		
	3>	K6 8x8 = 4-8-12 ↓	17-2-4	8	x8 = 3x6 21-11-0		
Plate Offsets (X,Y)	[2:0-0-12,0-2-0], [3:0-4-0,Edge], [4-8-12 6:0-4-0 Edge] [9:0-4-0 Edge] [1(12-5-8)·0-0-12 0-2-01 [13·0-4	-0 0-5-41	4-8-12		
						51.4750	
LOADING (psf) TCLL 20.0	SPACING- 4-0-0 Plate Grip DOL 1.15	CSI. TC 0.65		n (loc) 3 13-15	l/defl L/d >929 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.96 WB 0.23	Vert(CT) -0.44 Horz(CT) 0.01	4 13-15 1 12	>591 240 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	. ,	5 13-15	n/a n/a >999 240	Weight: 471 I	b FT = 20%
LUMBER-			BRACING-				
	P No.1 *Except* 1: 2x6 SP No.1		TOP CHORD		c purlins (6-0-0 max.), ed from sheeted: Spac		S
BOT CHORD 2x8 SP	No.1		BOT CHORD		eiling directly applied o	or 10-0-0 oc bracing.	
	No.1 *Except*)-13: 2x4 SP No.2					or 10-0-0 oc bracing.	uun
,						WITH C	ARO
	e) 16=0-3-8, 12=0-3-8 orz 16=623(LC 11)					NOR	Stan 1
Max G	rav 16=3001(LC 21), 12=3000(LC	2 20)			4	The second	The
	Comp./Max. Ten All forces 250						
	3479/0, 4-5=-2203/301, 5-6=-43/6 3448/3, 10-12=-3447/0	363, 6-7=-46/663, 7-8=-2200/294,	, 8-10=-3472/0,		=	SE	AL E
	6=-637/906, 13-15=0/2253, 12-13 2847/365, 4-15=0/1730, 8-13=0/1		h		E	036	322 <u> </u>
	2047/303, 4-13-0/1730, 0-13-0/1	730, 2-13-0/2033, 10-13-0/2110	<u>)</u>		-	1. A.	AL 322 NEER.R.
NOTES- 1) 2-ply truss to be con	nected together with 10d (0.131">	(3") nails as follows:			,	- SNGI	NEEL
Top chords connected	ed as follows: 2x6 - 2 rows stagge	ered at 0-9-0 oc, 2x10 - 2 rows sta	aggered at 0-9-0 oc.			CA	GILBE
Webs connected as	ected as follows: 2x8 - 2 rows stag follows: 2x6 - 2 rows staggered a	t 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc				A.	(IIIIII)
/	ered equally applied to all plies, ex e been provided to distribute only		()	CASE(S) s	section. Ply to		
3) Unbalanced roof live	loads have been considered for	this design.			24		
	ult=130mph Vasd=103mph; TCD -0-9-6 to 3-7-7, Interior(1) 3-7-7 to						
• .	d;C-C for members and forces & I designed for a 10.0 psf bottom ch			Jrip DOL=	1.60		
6) * This truss has been	n designed for a live load of 30.0p	osf on the bottom chord in all area	•	6-0 tall by	2-0-0 wide		
	ottom chord and any other memb 0.0 psf) on member(s). 4-5, 7-8, 5		ember(s).4-15, 8-13				
8) Bottom chord live loa	ad (40.0 psf) and additional bottor esentation does not depict the size	n chord dead load (10.0 psf) appl	lied only to room. 13-18		d		
10) Attic room checked		e or the onertation of the pullin a	מוטוט נוופ נטף מווט/טר 00	COLL CHOR	u.		


April 19,2023

NOTES-


- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 6-6-0, Corner(3) 6-6-0 to 10-10-13, Exterior(2) 10-10-13 to 13-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13, 11 except (jt=lb) 14=133, 10=132.

¹⁾ Unbalanced roof live loads have been considered for this design.

	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.17 WB 0.22	Vert(CT) r	in (loc) /a - /a - 01 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
					51 5	n/a	11/a	Weight: 87 lb	FT = 20%
LUMBER- BRACING-	TOP CHORD 2x4 SF BOT CHORD 2x4 SF			TOP CHORD		ural wood t end vert		rectly applied or 6-0-0	oc purlins,

BOT CHORD

WFBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

1-9.2-8

1 Row at midpt

14-3-6

BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2

REACTIONS. All bearings 14-2-14.

2x4 SP No.2

(lb) -Max Horz 10=-288(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 8 except 9=-184(LC 18), 7=-112(LC 13), 6=-129(LC 13) Max Grav All reactions 250 lb or less at joint(s) 9, 5, 10 except 8=401(LC 20), 7=546(LC 20), 6=474(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 4-5=-371/361

BOT CHORD 9-10=-318/343, 8-9=-318/342, 7-8=-318/342, 6-7=-318/342, 5-6=-318/342 WFBS 3-7=-322/227, 4-6=-363/248

NOTES-

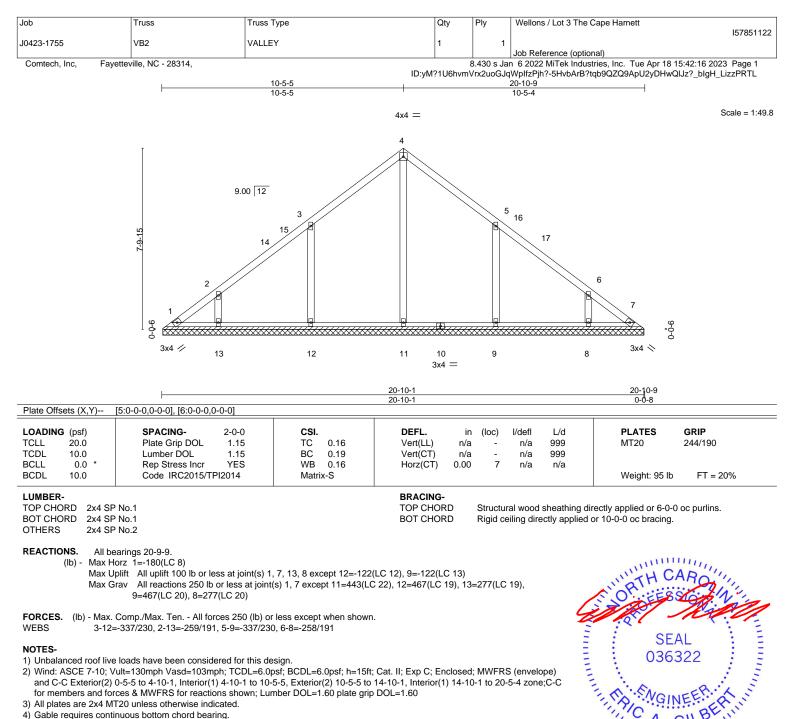
OTHERS

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-12 to 5-9-9, Interior(1) 5-9-9 to 13-10-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 9=184, 7=112, 6=129.

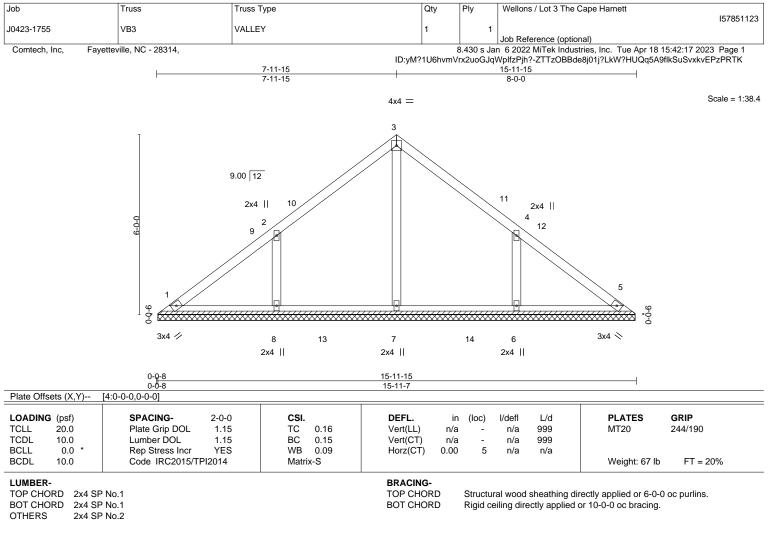
Scale: 3/16"=1"

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES-

1) Unbalanced roof live loads have been considered for this design

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 10-5-5, Exterior(2) 10-5-5 to 14-10-1, Interior(1) 14-10-1 to 20-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 13, 8 except (jt=lb) 12=122, 9=122.


April 19,2023

036322

111111

С Α. G

REACTIONS. All bearings 15-10-15.

(lb) - Max Horz 1=-136(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-125(LC 12), 6=-125(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=404(LC 19), 8=415(LC 19), 6=415(LC 20)

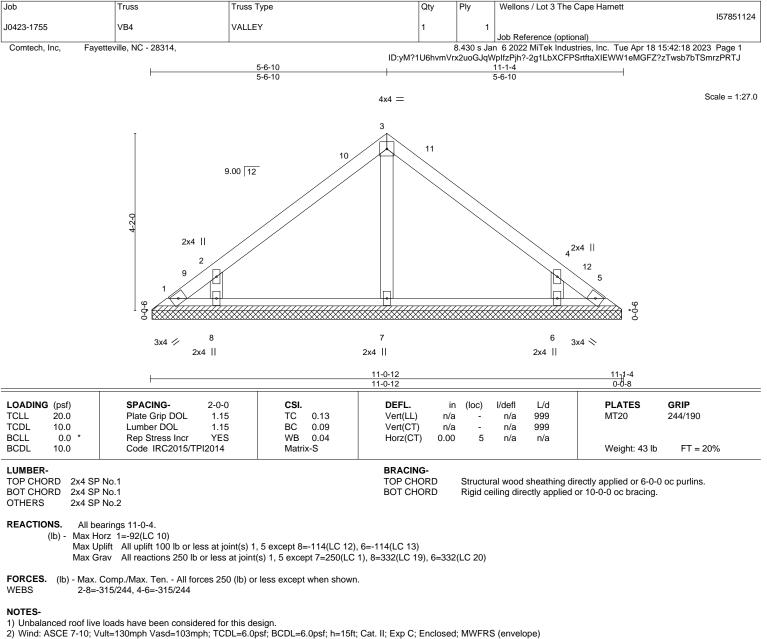
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-339/232, 4-6=-339/232

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-11-15, Exterior(2) 7-11-15 to 12-4-12, Interior(1) 12-4-12 to 15-6-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

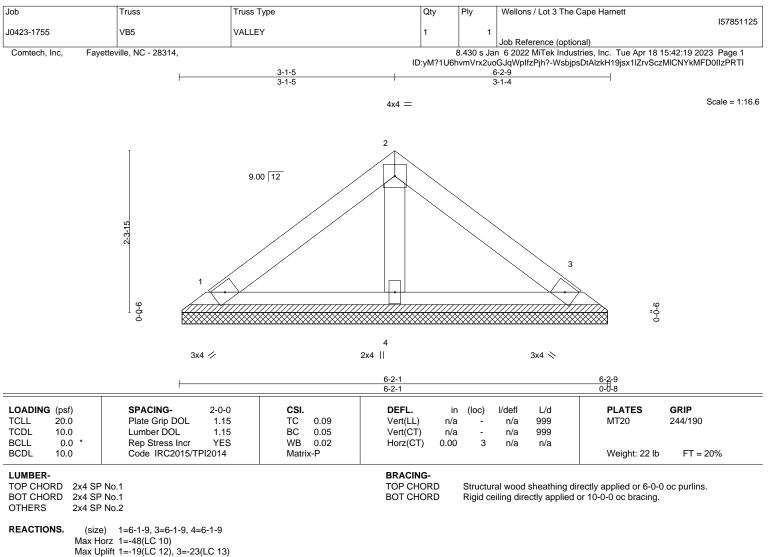

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=125, 6=125.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-6-10, Exterior(2) 5-6-10 to 9-11-7, Interior(1) 9-11-7 to 10-7-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=114, 6=114.

Max Grav 1=120(LC 1), 3=120(LC 1), 4=187(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

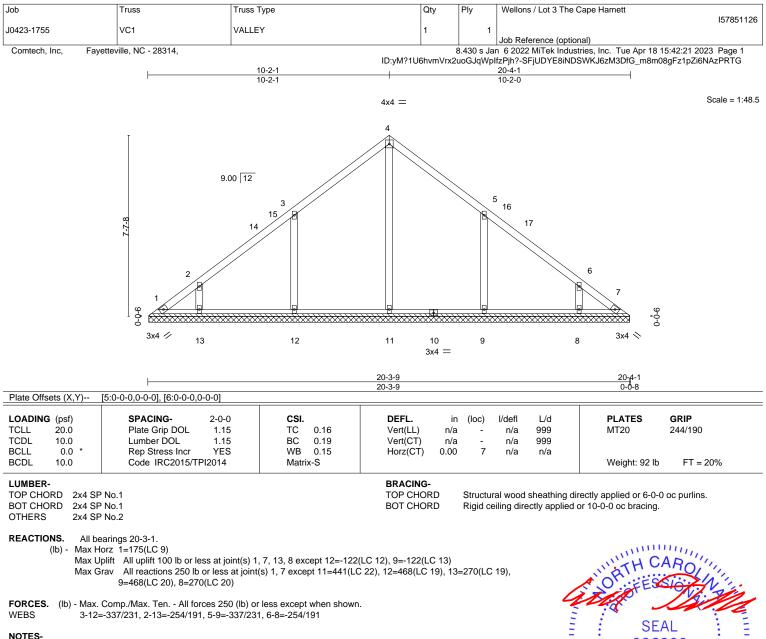
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

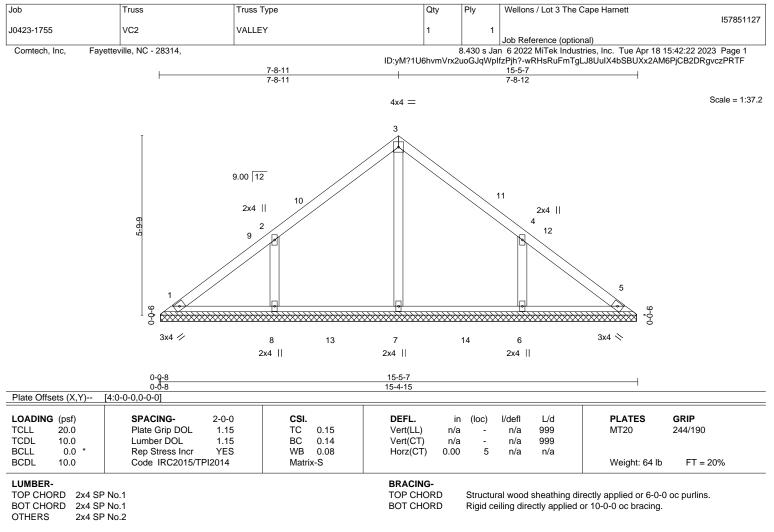
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 10-2-1, Exterior(2) 10-2-1 to 14-6-13, Interior(1) 14-6-13 to 19-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 13, 8 except (jt=lb) 12=122, 9=122.

April 19,2023

REACTIONS. All bearings 15-4-7.

(lb) - Max Horz 1=131(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-121(LC 12), 6=-121(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=396(LC 19), 8=394(LC 19), 6=394(LC 20)

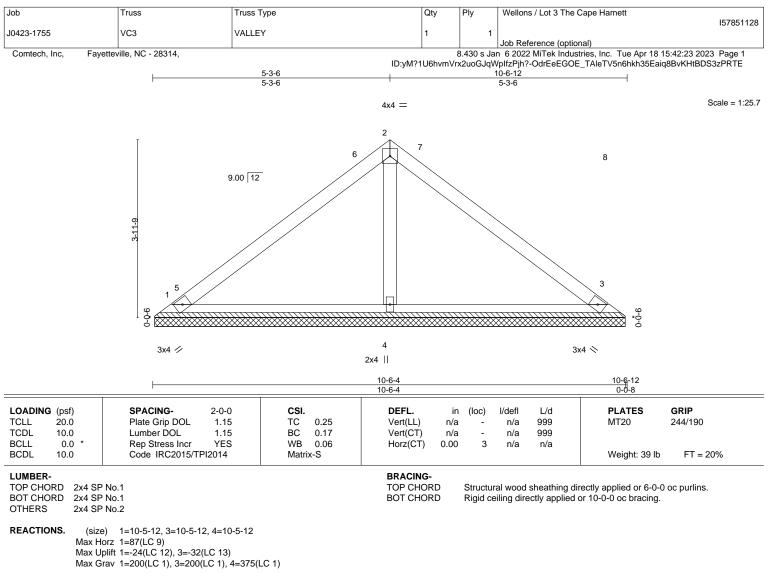
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-329/228, 4-6=-329/228

NOTES-

1) Unbalanced roof live loads have been considered for this design.

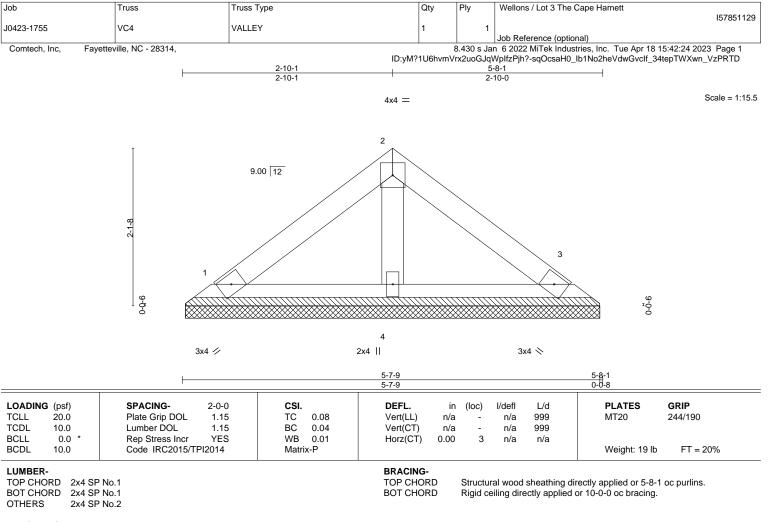
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-8-11, Exterior(2) 7-8-11 to 12-1-8, Interior(1) 12-1-8 to 15-0-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=121, 6=121.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-3-6, Exterior(2) 5-3-6 to 9-8-3, Interior(1) 9-8-3 to 10-1-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 1=5-7-1, 3=5-7-1, 4=5-7-1

Max Horz 1=-43(LC 10)

Max Uplift 1=-17(LC 12), 3=-21(LC 13)

Max Grav 1=108(LC 1), 3=108(LC 1), 4=168(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

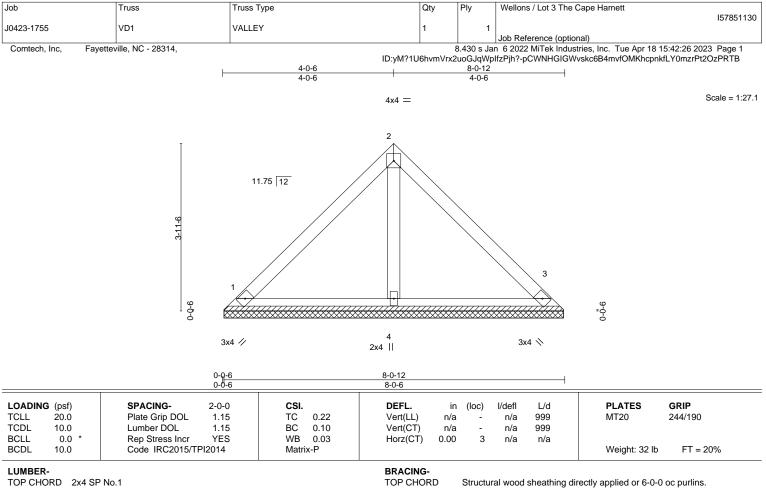
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=8-0-0, 3=8-0-0, 4=8-0-0

Max Horz 1=86(LC 9)

Max Uplift 1=-31(LC 13), 3=-32(LC 13)

Max Grav 1=178(LC 1), 3=178(LC 1), 4=232(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

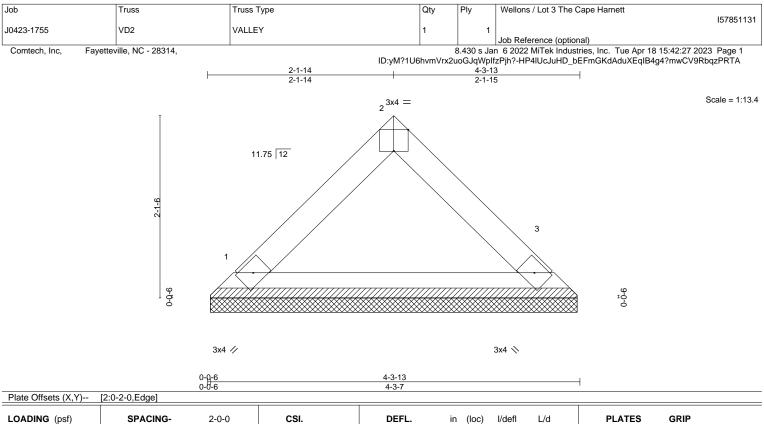
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

L OADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.05	DEFL. Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999	-	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix	ĸ-P						Weight: 14 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=4-3-1, 3=4-3-1

Max Horz 1=42(LC 9) Max Uplift 1=-5(LC 12), 3=-5(LC 13)

Max Grav 1=144(LC 1), 3=144(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

