

DATE 07/13/23 PAGE 1 Reaction Summary of Order **REQ. QUOTE DATE** 11 ORDER # J0623-3411 ORDER DATE 06/29/23 **QUOTE #** 006359 **DELIVERY DATE** 11 CUSTOMER ACCT # **ROOF & FLOOR** DATE OF INVOICE 11 **CUSTOMER PO #** ComTech **TRUSSES & BEAMS Tommy Collins INVOICE #** ORDERED BY COUNTY Harnett TERMS Reilly Road Industrial Park P.O. Box 40408 Tommy Collins Fayetteville, N.C. 28309 (910) 864-TRUS SUPERINTENDANT SALES REP Neil Baggett David Landry JOBSITE PHONE # (910) 303--5937 SALES AREA McDonald Lumber Company JOB NAME: Lot 108 South Creek LOT # 108 SUBDIV: South Creek SOLD 126 Cedar Creek Road MODEL:Roof JOB CATEGORY: TAG: Royal **DELIVERY INSTRUCTIONS:** Fayetteville, NC 28302 Т (910) 483-0381 S H I P J.W. Sealey SPECIAL INSTRUCTIONS: Т Lillington, NC PLAN SEAL DATE: DATE BY HEEL HEIGHT BUILDING DEPARTMENT OVERHANG INFO 00-06-08 **REQ. LAYOUTS REQ. ENGINEERING** QUOTE DTL 06/29/23 END CUT RETURN LAYOUT DTL 06/29/23 Roof Order 06/29/23 CUTTING DTL PLUMB NO GABLE STUDS 16 IN. OC JOBSITE 1 JOBSITE 1 LOADING TCLL-TCDL-BCLL-BCDL STRESS INCR. ROOF TRUSSES ROOF TRUSS SPACING: 24.0 IN. O.C. (TYP.) INFORMATION 20.0,10.0,0.0,10.0 1.15 PITCH TYPE QTY BASE PROFILE LUMBER **OVERHANG** REACTIONS PLY ID O/A TOP BOT TOP BOT RIGHT LEFT ATTIC 44-11-00 Joint 34 Joint 37 Joint 15 5 4.00 0.00 A1 44-11-00 2 X 4 2 X 6 00-11-00 00-11-00 2578.2 lbs. 809.9 lbs. 2575.6 lbs. 179.0 lbs. -328.4 lbs. -73.0 lbs. ATTIC GIRDER 38-11-00 Joint 13 Joint 18 Joint 20 A1-GR 38-11-00 2 X 6 2 X 12 00-11-00 3 Ply 9.00 0.00 16281.9 lbs. 2890.5 lbs. 10187.2 lbs. 93.3 lbs. -2395.1 lbs. 15.3 lbs. GABLE 44-11-00 Joint 4 Joint 23 Joint 45 Joint 51 A1GE 44-11-00 2 X 4 2 X 6 00-11-00 00-11-00 0.00 1 4.00 455.3 lbs. 2292.0 lbs. 956.2 lbs. 2387.0 lbs. -76.3 lbs -215.8 lbs. -12.5 lbs -314.4 lbs. COMMON 15-02-00 Joint 3 Joint 5 15-02-00 2 X 6 2 X 6 8 9.00 0.00 A2 642.4 lbs. 636.7 lbs. -25.2 lbs. -29.6 lbs. ATTIC 26-11-08 Joint 10 Joint 17 Joint 29 Joint 31 26-11-08 2 X 6 2 X 6 00-11-00 8 0.00 A3 9.00 568.3 lbs. 2285.5 lbs. 675.8 lbs. 501.1 lbs. 99.4 lbs. 110.2 lbs. 131.0 lbs. -135.3 lbs. ATTIC 26-11-08 Joint 10 Joint 13 Joint 15 Joint 18 1 26-11-08 2 X 6 2 X 12 2 Ply A3-GR 00-11-00 9.00 0.00 754.6 lbs. 4431.1 lbs. 1423.9 lbs. 3964.5 lbs. 兦 99.0 lbs -41.1 lbs. -44.9 lbs. -265.7 lbs. GABI F 26-11-08 Joint 16 Joint 24 Joint 36 Joint 38 1 9.00 0.00 A3GE 26-11-08 2 X 6 2 X 6 00-11-00 568.5 lbs. 2261.3 lbs. 677.0 lbs. 499.0 lbs. R. 79.5 lbs. -148.6 lbs. 133.4 lbs. -228.7 lbs. ATTIC 23-07-00 Joint 12 Joint 26 23-07-00 2 X 6 2 X 6 00-11-00 00-11-00 12 00 0.00 B1 4 1739.1 lbs. 1739.1 lbs. 274.3 lbs. 274.3 lbs. GABLE 23-07-00 Joint 17 Joint 33 23-07-00 2 X 6 2 X 6 00-11-00 00-11-00 B1GE 1 12.00 0.00 1739.1 lbs. 1739.1 lbs. 151.3 lbs. 151.3 lbs. ATTIC 23-07-00 Joint 11 Joint 25 0.00 B2 23-07-00 2 X 6 2 X 6 00-11-00 2 12.00 1740.2 lbs. 1687.5 lbs. 277.5 lbs. 285.1 lbs. ATTIC 23-07-00 Joint 10 Joint 24 6 0.00 В3 23-07-00 2 X 6 2 X 6 12 00 1688.6 lbs. 1688.6 lbs. 288.1 lbs. 286.9 lbs.

DATE 07/13/23 PAGE 2 Reaction Summary of Order **REQ. QUOTE DATE** 11 ORDER # J0623-3411 ORDER DATE 06/29/23 **QUOTE #** 006359 **DELIVERY DATE** 11 **CUSTOMER ACCT # ROOF & FLOOR** DATE OF INVOICE 11 **CUSTOMER PO #** ComTech **TRUSSES & BEAMS Tommy Collins INVOICE #** ORDERED BY COUNTY Harnett TERMS Reilly Road Industrial Park P.O. Box 40408 Tommy Collins Fayetteville, N.C. 28309 (910) 864-TRUS SUPERINTENDANT SALES REP Neil Baggett David Landry JOBSITE PHONE # (910) 303--5937 SALES AREA JOB NAME: Lot 108 South Creek LOT # 108 SUBDIV: South Creek McDonald Lumber Company SOLD 126 Cedar Creek Road MODEL:Roof JOB CATEGORY: TAG: Royal **DELIVERY INSTRUCTIONS:** Fayetteville, NC 28302 Т О (910) 483-0381 S H I P J.W. Sealey SPECIAL INSTRUCTIONS: Т Lillington, NC PLAN SEAL DATE: DATE BY BUILDING DEPARTMENT OVERHANG INFO HEEL HEIGHT 00-06-08 **REQ. LAYOUTS REQ. ENGINEERING** QUOTE DTL 06/29/23 LAYOUT DTL 06/29/23 END CUT RETURN Roof Order 06/29/23 CUTTING DTL PLUMB NO GABLE STUDS 16 IN. OC JOBSITE 1 JOBSITE 1 LOADING TCLL-TCDL-BCLL-BCDL STRESS INCR. ROOF TRUSSES ROOF TRUSS SPACING: 24.0 IN. O.C. (TYP.) INFORMATION 20.0,10.0,0.0,10.0 1.15 PITCH TYPE QTY BASE PROFILE LUMBER **OVERHANG** REACTIONS PLY ID O/A TOP BOT TOP BOT LEFT RIGHT COMMON 17-02-00 Joint 4 Joint 2 4 9.00 0.00 C1 17-02-00 2 X 6 2 X 6 00-11-00 00-11-00 824.9 lbs. 824.9 lbs. -45.1 lbs. -45.1 lbs. COMMON 17-02-00 Joint 2 Joint 4 C1-GR 17-02-00 2 X 6 2 X 8 00-11-00 00-11-00 2 Ply 9.00 0.00 3065.5 lbs. 3077.0 lbs -193.8 lbs. -194.5 lbs. GABLE 17-02-00 Joint 2 Joint 10 Joint 12 Joint 13 Joint 14 0.00 C1GE 17-02-00 2 X 6 2 X 6 00-11-00 00-11-00 1 9.00 173.9 lbs. 160.0 lbs. 231.0 lbs. 168.0 lbs. 182.2 lbs. -36.4 lbs. -127.9 lbs. -100.6 lbs. -81.2 lbs. 0.1 lbs. COMMON Joint 2 15-11-00 Joint 4 15-11-00 | 2 X 4 | 2 X 6 | 00-11-00 | 00-11-00 5 4.00 0.00 D1 689.2 lbs. 689.2 lbs. -262.3 lbs. -262.3 lbs GABLE 15-11-00 Joint 2 Joint 8 D1GE 15-11-00 2 X 4 2 X 6 00-11-00 00-11-00 0.00 1 4.00 689.2 lbs. 689.2 lbs -374.4 lbs. -374.4 lbs. FLAT GIRDER 17-02-00 Joint 9 Joint 13 1 17-02-00 2 X 6 2 X 6 G1-GR 2 Ply 0.00 0.00 3164.1 lbs. 3115.5 lbs. -334.3 lbs. -316.5 lbs COMMON 05-11-00 Joint 2 Joint 4 2 9.00 0.00 H1 05-11-00 2 X 6 2 X 6 00-11-00 00-11-00 280.0 lbs. 280.0 lbs. -21.9 lbs. -21.9 lbs. GABLE 05-11-00 Joint 2 Joint 6 05-11-00 2 X 6 2 X 6 00-11-00 00-11-00 9.00 0.00 H1GF 1 280.0 lbs. 280.0 lbs -64.6 lbs. -64.6 lbs. ROOF 18-07-08 Joint 2 Joint 6 Joint 8 18-07-08 2 X 4 2 X 6 00-11-00 1 4.00 0.00 J1 360.2 lbs. 474.1 lbs. 839.8 lbs. -139.2 lbs. -192.4 lbs. -44.8 lbs. ROOF 18-07-08 Joint 2 Joint 9 Joint 11 J2 18-07-08 2 X 4 2 X 6 00-11-00 2 4.00 0.00 343.4 lbs. 875.4 lbs. 418 9 lbs -147.7 lbs. -54.9 lbs. -168.7 lbs. GABLE 18-07-08 Joint 2 Joint 15 Joint 21 0.00 J2SG 18-07-08 2 X 4 2 X 6 00-11-00 4 00 1 334.5 lbs. 865.4 lbs 369.8 lbs. -142.4 lbs. -80.3 lbs. -157.7 lbs.

_		~			~ .	-										DA	TE 07/1:	3/23 PAC	GE 3
Re	eaction	Sun	nma	ry of	Order		REQ.	τους	E DATE	/	/			ORDER	#		JO	623-3411	
	\wedge						ORDE	r dat	ΓE	06/	29/23		(#				
							DELIV	ERY [DATE	1	/		(CUSTON	IER A	CCT #	e 00	6359	
			ROOF	& FLO	OR		DATE	of in	VOICE	1	/			CUSTON	IER P	°O #			
I C	omled	>h∥ 1	TRUSSE	S & BE	AMS		ORDE	REDE	ЗY	Tor	nmy Collins			INVOICE	#				
Reil	ly Road Indu	strial P	ark P.C). Box 4	0408	Ī	COUN	ТΥ		Ha	nett		•	TERMS					
Fay	, etteville, N.C	. 283	09 (91	0) 864-	TRUS	Ī	SUPE	RINTE	NDANT	Tor	nmy Collins		;	SALES F	REP		Ne	il Baggett	
						Ī	JOBSI	TE PH	HONE #	(91	0) 3035937	7	;	SALES A	AREA		Da	vid Landr	у
	McDona	d L u	mbor	Comn			ot 108 9	South	Creek	1.	,		OT #	108 SUBDIV: South Creek					
s				comp			01 100 1	Journ	TAC	Daval				Too SUBDIV: South Cleek					
L D	126 Ceda	ar Cre	екк	bad	MOD	EL:ROOT			TAG:	Royai		J	OB CA	ATEGOR	Y:_				
T	Fayettev	ille, N	IC 28	302	DELIV	ERY INST	RUCTIO	DNS:											
Ľ	(910) 483	3-03 8 [°]	1																
s	JW Sea	lev																	
HI	0.000	loy			SPEC	IAL INSTR	RUCTIONS:												
Т																			
0	Lillingto	n, NC													F		SEAL	DATE:	
																	B١	′ DA	TE
BU	ILDING DE	PART	MENT	OVER	HANG INFO	HEEL HEI	GHT	00-0	06-08	REQ. L	AYOUTS	REQ. E	GINE	RING	QUO	DTE	DTL	06/29	/23
Roo	of Order			END CU	IT RETURN										LAY	′OUT	DTL	06/29	/23
				PLUMB	NO	GABLE S	TUDS	16 I	N. OC		JOBSITE	1	JOB	SITE 1	CUT	TING	DTL	06/29	/23
R		RUS	SES	LC	DADING	TCLL-TCDL	-BCLL-BCD	L STR	ESS INCR.	┨ ⋼			2.24 0)			
INFORMATION 20.0,10.0,0.0,10.0 1.15									.)										
F	ROFILE	QTY	PIT	СН	TYPE	BASE		IBER	OVE	RHANG		TIONS							
		PLY	TOP	BOT		U/A	TOP	BOT	LEFT	RIGH	laint 0	la la la la	0	In list 44					
		1	4 00	0.00	JACK-CLOSEL	19-02-0	8 8 2 X 4	2 X 6	00-11-00		JOINT Z		U O Ibe	JOINT 11 701 8	lbe				
		·	4.00	0.00							-79.4 lbs	s. 340. -147	0 lbs.	-255.7	lbs.				
													0.001	200.1					
					COMMON	07-06-0	0				Joint 2	Joint 4	Ļ						
		3	12.00	0.00	K1	07-06-0	0 2 X 6	2 X 6	00-11-00	00-11-0	0 343.9 lbs	s. 343.	9 lbs.						
											-21.6 lbs	21.0	6 lbs.						
	*				GABLE	07-06-0	0	0.40	00.44.00	00.44.0	Joint 2	Joint 6	6	Joint 8		Joint	9	Joint 10	
		1	12.00	0.00	KIGE	07-06-0	0 2 8 6	2 X 6	00-11-00	00-11-0	0 138.4 lbs	s. 138.	4 lbs.	198.4	lbs.	108	.0 lbs.	200.2	lbs.
											-26.2 IDS	8.6	IDS.	-149.6	IDS.	29.	4 IDS.	-151.2	IDS.
					DICCYBACK	00.07.0	5				loint 2	loint /		loint 6					
	\wedge	14	9.00	0.00	PB	09-07-0	5 5 2 X 4	2 X 4			225.5 lbs	s 225	r 5 lbs	372.0	lhs				
4											-29.2 lbs	38.2	2 lbs.	8.5	bs.				
				I								2.5.							
					PIGGYBACK	02-10-0	6				Joint 2	Joint 4	Ļ	Joint 6					
		13	12.00	0.00	PB2	02-10-0	6 2 X 4	2 X 4			93.5 lbs	. 93.5	5 lbs.	88.1	lbs.				
	-										-31.8 lbs	37.4	4 lbs.	7.0 ll	bs.				
					_														
			0.00	0.00	GABLE	09-07-0	5	2 2 4			Joint 2	Joint 6) _ _	Joint 8		Joint	9	Joint 10	
4		2	9.00	0.00	FBGE	09-07-0	5 2 7 4	2 ~ 4			131.5 lbs	s. 131.	5 IDS. 7 Ibc	267.1	IDS.	111	.1 IDS.	268.2	IDS.
											-20.7 105	-10.	103.	- (41.1	103.	23.	1 103.	-140.0	103.
					VALLEY	13-04-0	3				Joint 1	. loint F	;	Joint 6		Joint	7	Joint 8	
	\wedge	1	9.00	0.00	V1	13-04-0	3 2 X 4	2 X 4			100.3 lbs	s. 83.9) Ibs.	330.1	lbs.	251	.9 lbs.	330.4	lbs.
4											-22.5 lbs	0.7	lbs.	-109.2	lbs.	51.	8 lbs.	-109.3	lbs.
								ĺ											
					VALLEY	09-04-0	3				Joint 1	Joint 3	3	Joint 4					
		1	9.00	0.00	V2	09-04-0	3 2 X 4	2 X 4			176.4 lbs	s. 176.	3 lbs.	331.3	lbs.				
											-20.8 lbs	28.2	2 lbs.	8.2 II	bs.				
			0.00	0.00	VALLEY	05-04-0	3 3 2 ∨ 4	281			Joint 1	Joint 3	3 1 11	Joint 4	llac				
4		1	9.00	0.00	vo	05-04-0	3 2 ~ 4	2 ^ 4			102.2 lbs	s. 102.	1 Ibs. 7 Ibs	159.7	IDS.				
											-15.8 lbs	19.	IDS.	13.9	ios.				

ITEMS

QTY	ITEM TYPE	SIZE	LENGTH FT-IN-16	PART NUMBER	NOTES
16	Hangers, USP	HUS 26			SIMPSON (HUS26)

_			_											DAT	FE 07/13/23	PAGE 4
Re	eaction Summa	ry of Orc	ler		REQ. Q	UOTE DAT	E	/ /				ORDE	R #		J0623	-3411
					ORDER	DATE		06/29/23				QUOT	E #			
					DELIVE	RY DATE		//				CUST	омі	ER ACCT #	00635	59
	ROOF	= & Floor			DATE C	F INVOICE		//				CUST	омі	ER PO #		
∥C	ComTech∥ trusse	ES & BEAMS			ORDERED BY			Tommy Collins			INVOI	CE ;	#			
Reill	y Road Industrial Park P.C	D. Box 40408			COUNT	Υ		Harnett				TERM	S			
Fay	, etteville, N.C. 28309 (91	0) 864-TRUS			SUPER	INTENDAN	Т	Tommy Colli	าร			SALES	S RI	EP	Neil B	aggett
					JOBSIT	E PHONE #	¥	(910) 30359	937			SALES	s af	REA	David	Landry
	McDonald Lumber	Company	JOB		ot 108 S	outh Creek					L)T # 108	รเ	BDIV:Sout	th Creek	
S O L	126 Cedar Creek Ro	oad	мо	DEL:Roof		TAG	: Roya	d			JC	B CATEGO	DRY	:_		
D HO	Fayetteville, NC 28 (910) 483-0381	302	DELI	IVERY INS	TRUCTIO	NS:										
s	IW Sealey															
HIP	J.W. Sealey		SPE	CIAL INST	RUCTION	S:										
Lillington, NC																
	g,												PLAN S	SEAL DAT		
			CUT	00.00.00								OUNTE	BY			
BO				NEEL HE	GEL	00-00-08	REG	A. LAYOUIS		REG	<u>≀. EN</u>	GINEERING				06/29/23
ROOT Urder PLUMB N			NO	GABLE S	TUDS	16 IN. OC		JOBSITE	1		-	JOBSITE	1	CUTTING	DTL	06/29/23
		. 20110		5, 622 0				1 UODONE	1 '		_	0000112				

ITEMS

QTY	ITEM TYPE	SIZE	LENGTH FT-IN-16	PART NUMBER	NOTES		
2	Hangers, USP	THD26-2			SIMPSON (HHUS26-2)		

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0623-3411 Lot 108 South Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I59478534 thru I59478564

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

July 12,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

20-8-5 18-4-12 6-11-4 <u>18-5-12</u> 22-10-15 25-1-8 27-1-8 29-4-2 31-6-11 33-10-4 0-1-0 2-2-10 2-2-10 2-0-0 2-2-10 2-2-10 2-3-9 40-1-12 6-3-8 <u>44-11-0</u> 4-9-4 6-1-15 0-0-3 11-5-8 5-3-9 6-1-12 Plate Offsets (X,Y)-- [3:0-3-0.0-1-12]. [5:0-2-9.0-2-0]. [33:0-3-4.0-2-8]. [38:0-4-4.0-2-4]. [39:0-4-0.0-2-4]

H

			j; [00:0 : 0;0 = 1]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.60 BC 1.00 WB 0.86 Matrix-S	DEFL. in Vert(LL) -0.25 Vert(CT) -0.48 Horz(CT) 0.06 Wind(LL) 0.05	(loc) l/defl 23-25 >999 23-25 >653 15 n/a 16 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 468 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x6 SF 1-3: 2x BOT CHORD 2x6 SF 19-33: WEBS 2x4 SF 6-34,10	No.1 *Except* 4 SP No.1 No.1 *Except* 2x4 SP No.1 No.2 *Except*)-18,38-40,13-15: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood s except end vertic Rigid ceiling direc 6-0-0 oc bracing: 3-3-0 oc bracing: 1 Row at midpt	heathing dii als, and 2-0 tly applied o 2-37,36-37, 19-33 3	rectly applied or 4-5-9 oc purlins, -0 oc purlins (6-0-0 max.): 7-9. or 10-0-0 oc bracing, Except: .15-16. 33-38, 38-39, 39-40, 12-40, 4-38				
REACTIONS. (size) 37=0-3-8, 34=0-3-8, 15=0-3-8 Max Horz 37=0-3-8, 34=0-3-8, 15=0-3-8 Max Horz JOINTS 1 Brace at Jt(s): 39 Max Horz 37=337(LC 11) Max Uplift 37=-73(LC 8), 34=-328(LC 9) Max Grav 37=2576(LC 2), 34=810(LC 26), 15=2578(LC 21)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-401/819, 3-4=-2027/244, 4-6=-509/179, 6-7=-449/412, 7-8=-995/245,										
8-9=- BOT CHORD 2-37= 28-3(31-3 20 22	8-9=-996/245, 9-10=-869/179, 10-12=-1725/0, 12-13=-2663/0 BOT CHORD 2-37=-721/438, 36-37=-598/429, 34-36=-116/1498, 32-34=0/1323, 30-32=0/4208, 28-30=0/4208, 26-28=0/5132, 24-26=0/4747, 21-24=0/4747, 18-21=0/1810, 16-18=0/2072, 31-33=-722/0, 29-31=-722/0, 27-29=-3172/0, 25-27=-3172/0, 23-25=-3172/0,									
WEBS 3-37= 33-38 39-4(9-39= 4-38= 19-2'	20-23=-1697/0, 19-20=-1697/0 WEBS 3-37=-2353/554, 3-36=-433/2091, 4-36=-837/7, 4-34=0/865, 33-34=-703/106, 33-38=-393/499, 6-38=-412/361, 19-40=-/1207, 10-40=-14/765, 38-39=-2093/32, 39-40=-1642/131, 13-16=0/2351, 7-38=-543/17, 7-39=-46/816, 8-39=-335/207, 9-39=-147/320, 27-28=-280/0, 31-32=-329/0, 20-21=-290/0, 12-40=-1268/347, 4-38=-2076/15, 12-16=-528/123, 29-32=-1662/0, 28-29=0/1007, 32-33=0/1709, 19-21=0/2267, 21-23=-1188/0, 23-26=0/419									
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-6-14, Interior(1) 3-6-14 to 19-11-8, Exterior(2) 19-11-8 to 24-5-6, Interior(1) 24-5-6 to 30-11-8, Exterior(2) 30-11-8 to 35-5-6, Interior(1) 35-5-6 to 45-8-4 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Ceiling dead load (10.0 psf) on member(s). 38-39, 39-40; Wall dead load (5.0psf) on member(s).33-38, 19-40 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 31-33, 29-31, 27-29, 25-27, 23-25, 20-23, 19-20 Continued on page 2 										
WARNING - Verify Design valid for use o a truss system. Before building design. Brac	design parameters and READ NOTES ON THIS ANI nly with MiTek® connectors. This design is based or use, the building designer must verify the applicating ng indicated is to prevent buckling of individual true tebuilty and to prevent collarse with possible pars	D INCLUDED MITEK REFERENC only upon parameters shown, ar bility of design parameters and p ss web and/or chord members o paal injuur, and property damage	CE PAGE MII-7473 rev. 5/19/2020 nd is for an individual building co properly incorporate this design in nly. Additional temporary and pu Eor concertal quidance recarding	BEFORE USE. mponent, not nto the overall ermanent bracing is the			ERING BY ENCO A MiTek Affiliate			

818 Soundside Road Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual russ web and/or corod memoers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek
					159478534
J0623-3411	A1	ATTIC	5	1	
					Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Wed Jul 12 07:48:59 2023 Page 2

ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 37 and 328 lb uplift at joint 34.
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
11) Attic room checked for L/360 deflection.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
					159	478535
J0623-3411	A1-GR	ATTIC GIRDER	1	2		
				3	Job Reference (optional)	
Comtech. Inc. Favet	eville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:10 2023 Pag	ge 2

ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2395 lb uplift at joint 18.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 3088 lb down and 345 lb up at 13-4-0 on top chord, and 364 lb down at 13-5-4, 364 lb down at 14-9-4, 364 lb down at 16-9-4, 1421 lb down at 18-9-4, 1735 lb down at 20-9-4, 1735 lb down at 22-9-4, 1735 lb down at 24-9-4, 1735 lb down at 26-9-4, 1735 lb down at 28-9-4, 1735 lb down at 30-9-4, 1735 lb down at 32-9-4, and 1735 lb down at 34-9-4, and 1735 lb down at 36-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-60, 5-7=-60, 7-11=-60, 11-12=-60, 18-20=-20, 15-18=-40, 13-15=-20, 21-22=-20

Drag: 18-21=-10, 15-22=-10 Concentrated Loads (lb)

Vert: 16=-459(F) 24=-3056(F) 25=-85(F) 26=-85(F) 27=-85(F) 28=-388(F) 29=-459(F) 30=-459(F) 31=-459(F) 32=-459(F) 33=-459(F) 34=-459(F) 35=-459(F) 35=-459 36=-459(F)

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
			-		1594	478536
10623-3411	A1GE	CABLE	1	1		
30023-3411	AIGE	GADLL	'			
					Job Reference (optional)	
Comtech Inc Eavettev	ille NC - 28314		\$	3 430 s. Jar	6 2022 MiTek Industries Inc. Wed Jul 12 07:49:03 2023 Pac	16.2

NOTES-

ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Ceiling dead load (10.0 psf) on member(s). 54-63, 59-63, 59-74, 55-74, 55-61, 57-61, 57-73, 56-73; Wall dead load (5.0psf) on member(s).44-54, 30-56

10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 42-44, 40-42, 38-40, 36-38, 34-36, 31-34, 30-31

Provide mechanical concertion (by others) of truss to bearing plate capable of withstanding 216 lb uplift at joint 51, 314 lb uplift at joint 45 and 76 lb uplift at joint 23.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the pu13) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	150 (70507
J0623-3411	A2	Common	8	1		159478537
					Job Reference (optiona	
Comtech, Inc, Fay	/etteville, NC - 28314,	ID	s C5NWnh8QZZz:	3.430 s Jar zTasfLD?b	t5iz UVZ-RfC?PsB70Hc	s, Inc. Wed Jul 12 07:49:11 2023 Page 1 3NSaPanL8w3uITXbGKWrCDoi7J4zJC?f
	L	6-0-0		15-2-0		⊣
		6-0-0		9-2-0		
		5x5 =				Scale = 1:44.0
		2				
	Ţ					
		9.00 12 8				
	1.0			9 10		
	4 4x0 //			\backslash		
				\sim		
	3-0-4					3
		<u>+</u>				
	5	4	1	11		
	6 ³ 4x4	4 3x4 Ⅲ			3x6	=
		5X4 —				
		<u> </u>		<u>15-2-0</u> 9-2-0		
	0040000			(1)		
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.43 Ve	ert(LL) -0.06	(IOC) 3-4	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.1	5 BC 0.29 Ve	ert(CT) -0.12	3-4	>999 240	
BCLL 0.0 * BCDI 10.0	Rep Stress Incr YE	S WB 0.11 Ho Matrix-S Wi	orz(CT) 0.00 ind(LL) 0.03	3 3-4	n/a n/a	Weight: 105 lb $FT = 20\%$
					210	
	P No 1	BR		Structure	al wood shoothing dire	the applied or 6.0.0 as purling
BOT CHORD 2x6 SF	P No.1			except e	end verticals.	stry applied of 0-0-0 oc putilitis,
WEBS 2x4 SF	P No.2 *Except*	BC	T CHORD	Rigid ce	iling directly applied or	6-0-0 oc bracing.
1-5: 28	(6 SP NO.1					
REACTIONS. (siz	e) 3=Mechanical, 5=Mechani	al				
Max H Max U	10rz 5=-165(LC 8) Jolift 3=-25(LC 13), 5=-30(LC 13)				
Max G	Grav 3=642(LC 20), 5=637(LC 2	, 0)				
FORCES. (lb) - Max	Comp /Max Ten - All forces 2	i0 (lb) or less except when shown				
TOP CHORD 1-2=	-593/178, 2-3=-643/135, 1-5=-6	36/182				
BOT CHORD 3-4=	0/454 0/282 1-431/513					
	0/202, 1 4= 01/010					
NOTES-	a laada haya haan aanaidanad fi	a this design				
2) Wind: ASCE 7-10; \	/ult=130mph Vasd=103mph; TC	DL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; E	xp C; Enclosed	; MWFRS	(envelope)	
and C-C Exterior(2)	0-4-4 to 4-9-1, Interior(1) 4-9-1	to 6-0-0, Exterior(2) 6-0-0 to 10-4-13, Interio	or(1) 10-4-13 to	15-1-4 zo	one;C-C for	
3) This truss has been	s & MWERS for reactions showi designed for a 10.0 psf bottom	; Lumber DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with any othe	er live loads			
4) * This truss has bee	en designed for a live load of 30.	Opsf on the bottom chord in all areas where	a rectangle 3-6	6-0 tall by	2-0-0 wide	
will fit between the b	pottom chord and any other mer	nbers, with $BCDL = 10.0psf.$				SAMULTON
6) Provide mechanical	connection (by others) of truss	to bearing plate capable of withstanding 25	lb uplift at joint	3 and 30	lb uplift at	WH CAP-
joint 5.		-	-			N'ATT OLIV
						NO FESCION V.

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
						59478538
J0623-3411	A3	ATTIC	8	1		
					Job Reference (optional)	
Comtech. Inc. Favettev	/ille, NC - 28314.			3.430 s Jar	6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:13 2023 F	Page 2

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:13 2023 Page 2 ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-2=-60, 2-4=-60, 4-8=-60, 8-9=-60, 10-29=-20, 13-28=-40 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-50, 2-4=-50, 4-8=-50, 8-9=-50, 10-29=-20, 13-28=-100 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2=-20, 2-4=-20, 4-8=-20, 8-9=-20, 10-29=-40, 13-28=-60 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=32, 2-37=36, 4-37=28, 4-38=32, 8-38=25, 8-9=18, 10-29=-12, 13-28=-32 Horz: 1-2=-44, 4-38=44, 8-38=37, 8-9=30 Drag: 3-37=0, 4-37=0 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=32, 2-36=28, 4-36=36, 4-39=25, 8-39=32, 8-9=55, 10-29=-12, 13-28=-32 Horz: 1-2=-44, 4-39=37, 8-39=44, 8-9=67 Drag: 3-4=0 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-57, 2-4=-34, 4-8=-57, 8-9=-50, 10-29=-20, 13-28=-40 Horz: 1-2=37, 4-8=-37, 8-9=-30 Drag: 3-4=-0 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-57, 2-4=-34, 4-8=-57, 8-9=10, 10-29=-20, 13-28=-40 Horz: 1-2=37, 4-8=-37, 8-9=30 Drag: 3-4=-0 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-13, 2-4=21, 4-8=11, 8-9=4, 10-29=-12, 13-28=-32 Horz: 1-2=1, 4-8=23, 8-9=16 Drag: 3-4=0 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-4=21, 4-8=-13, 8-9=2, 10-29=-12, 13-28=-32 Horz: 1-2=-23, 4-8=-1, 8-9=14 Drag: 3-4=0 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-35, 2-4=-1, 4-8=-11, 8-9=-4, 10-29=-20, 13-28=-40 Horz: 1-2=15, 4-8=9, 8-9=16 Drag: 3-4=0 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-11, 2-4=-1, 4-8=-35, 8-9=-28, 10-29=-20, 13-28=-40 Horz: 1-2=-9, 4-8=-15, 8-9=-8 Drag: 3-4=0 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-4=9, 4-8=9, 8-9=2, 10-29=-12, 13-28=-32 Horz: 1-2=-33, 4-8=21, 8-9=14 Drag: 3-4=0 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=9, 2-4=9, 4-8=21, 8-9=14, 10-29=-12, 13-28=-32 Horz: 1-2=-21, 4-8=33, 8-9=26 Drag: 3-4=0 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-4=9, 4-8=9, 8-9=2, 10-29=-12, 13-28=-32 Horz: 1-2=-33, 4-8=21, 8-9=14 Drag: 3-4=0 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=9, 2-4=9, 4-8=21, 8-9=14, 10-29=-12, 13-28=-32 Horz: 1-2=-21, 4-8=33, 8-9=26 Drag: 3-4=0 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

1) Dead + Roof Live (balanced); Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

- Vert: 1-2=-1, 2-4=-13, 4-8=-13, 8-9=-6, 10-29=-20, 13-28=-40 Horz: 1-2=-19, 4-8=7, 8-9=14
- Drag: 3-4=0
- 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Continued on page 3

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	159478538
J0623-3411	A3	ATTIC	8	1		100470000
Comtach Inc Equation	illo NC - 28314			8 430 e lar	Job Reference (option	1al) ries Inc. Wed Iul 12.07:49:13.2023 Page 3
Connech, Inc, Fayellev	/ille, NC - 20314,	ID:C5	NWnh8QZZ	zTasfLD?b	t5jz_UVZ-RfC?PsB70ł	1q3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=-13, Horz: 1-2=-7, Drag: 3-4=0	2-4=-13, 4-8=-1, 8-9=6, 10-2 4-8=19, 8-9=26	9=-20, 13-28=-40				
 Dead: Lumber Increase Uniform Loads (plf) Vert: 1-2=-20, Dead: Lumber Increase 	e=0.90, Plate Increase=0.90 2-4=-20, 4-8=-20, 8-9=-20, 1 e=0.90, Plate Increase=0.90	Pit. metal=0.90 0-29=-20, 13-28=-120 Plt. metal=0.90				
Uniform Loads (plf) Vert: 1-2=-20, 20) Dead + 0.75 Roof Live Uniform Loads (plf) Vert: 1-2=-61	2-4=-20, 4-8=-20, 8-9=-20, 1 (bal.) + 0.75 Attic Floor + 0.7 2-4=-36 4-8=-43 8-9=-38 1	0-29=-20, 13-28=-120 /5(0.6 MWFRS Wind (Neg. Int) Left): Lumber 0-29=-20, 13-28=-100	Increase=1	.60, Plate	Increase=1.60	
Horz: 1-2=11, Drag: 3-4=0 21) Dead + 0.75 Roof Live	(bal.) + 0.75 Attic Floor + 0.7	'5(0.6 MWFRS Wind (Neg. Int) Right): Lumbe	r Increase=	1.60, Plat	e Increase=1.60	
Uniform Loads (plf) Vert: 1-2=-43, Horz: 1-2=-7, 4 Drag: 3-4=0	2-4=-36, 4-8=-61, 8-9=-56, 1 4-8=-11, 8-9=-6	0-29=-20, 13-28=-100				
22) Dead + 0.75 Roof Live Uniform Loads (plf) Vert: 1-2=-36, Horz: 1-2=-14, Drag: 3-4=0	(bal.) + 0.75 Attic Floor + 0.7 2-4=-45, 4-8=-45, 8-9=-40, 1 4-8=5, 8-9=10	'5(0.6 MWFRS Wind (Neg. Int) 1st Parallel): I 0-29=-20, 13-28=-100	umber Incr	ease=1.60), Plate Increase=1.6	3
23) Dead + 0.75 Roof Live Uniform Loads (plf) Vert: 1-2=-45, Horz: 1-2=-5, 4 Drag: 3-4=0	(bal.) + 0.75 Attic Floor + 0.7 2-4=-45, 4-8=-36, 8-9=-31, 1 4-8=14, 8-9=19	'5(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): 0-29=-20, 13-28=-100	Lumber Inc	rease=1.6	0, Plate Increase=1.6	;0
24) 1st Dead + Roof Live (Uniform Loads (plf) Vert: 1-2=-60,	unbalanced): Lumber Increas 2-4=-60, 4-8=-20, 8-9=-20, 1	se=1.15, Plate Increase=1.15 0-29=-20, 13-28=-40				
25) 2nd Dead + Roof Live (Uniform Loads (plf) Vert: 1-2=-20,	(unbalanced): Lumber Increa 2-4=-60, 4-8=-60, 8-9=-60, 1	se=1.15, Plate Increase=1.15 0-29=-20, 13-28=-40				
26) 3rd Dead + 0.75 Roof L Uniform Loads (plf) Vert: 1-2=-50,	Live (unbalanced): Lumber In 2-4=-50, 4-8=-20, 8-9=-20, 1	crease=1.15, Plate Increase=1.15 0-29=-20, 13-28=-100				
27) 4th Dead + 0.75 Roof L Uniform Loads (plf) Vert: 1-2=-20,	ive (unbalanced): Lumber In 2-4=-50, 4-8=-50, 8-9=-50, 1	crease=1.15, Plate Increase=1.15 0-29=-20, 13-28=-100				
28) Reversal: Dead + 0.6 C Uniform Loads (plf) Vert: 1-2=32, 2 Horz: 1-2=-44.	C-C Wind (Pos. Internal) Cas 2-37=36, 4-37=28, 4-38=32, 4 4-38=44, 8-38=37, 8-9=30	e 1: Lumber Increase=1.60, Plate Increase=1 8-38=25, 8-9=18, 10-29=-12, 13-28=-32	.60			
Drag: 3-37=0, 29) Reversal: Dead + 0.6 C Uniform Loads (plf)	4-37=0 C-C Wind (Pos. Internal) Cas	e 2: Lumber Increase=1.60, Plate Increase=1	.60			
Vert: 1-2=32, 2 Horz: 1-2=-44, Drag: 3-4=0	2-36=28, 4-36=36, 4-39=25, 4 4-39=37, 8-39=44, 8-9=67	8-39=32, 8-9=55, 10-29=-12, 13-28=-32	60			
Uniform Loads (plf) Vert: 1-2=-57, Horz: 1-2=37,	2-4=-34, 4-8=-57, 8-9=-50, 1 4-8=-37, 8-9=-30	0-29=-20, 13-28=-40	.00			
Drag: 3-4=-0 31) Reversal: Dead + 0.6 C Uniform Loads (plf)	C-C Wind (Neg. Internal) Cas	e 2: Lumber Increase=1.60, Plate Increase=1	.60			
Vert: 1-2=-57, Horz: 1-2=37, Drag: 3-4=-0 32) Reversal: Dead + 0.6 M	2-4=-34, 4-8=-57, 8-9=10, 10 4-8=-37, 8-9=30 /WERS Wind (Pos. Internal))-29=-20, 13-28=-40	1 60			
Uniform Loads (plf) Vert: 1-2=-13, Horz: 1-2=1, 4	2-4=21, 4-8=11, 8-9=4, 10-2 -8=23, 8-9=16	9=-12, 13-28=-32	1.00			
Drag: 3-4=0 33) Reversal: Dead + 0.6 N Uniform Loads (plf)	/WFRS Wind (Pos. Internal)	Right: Lumber Increase=1.60, Plate Increase	=1.60			
Vert: 1-2=11, 2 Horz: 1-2=-23, Drag: 3-4=0 34) Reversal: Dead + 0.6 M	2-4=21, 4-8=-13, 8-9=2, 10-2 4-8=-1, 8-9=14 /WERS Wind (Neg. Internal)	9=-12, 13-28=-32	1 60			
,	ine mine (neg. internal)					

Continued on page 4

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	150/78539					
J0623-3411	A3	ATTIC	8	1		15947 0550					
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Jar	6 2022 MiTek Industries, Inc. We	d Jul 12 07:49:13 2023 Page 4					
			ID:C5NWnh8QZZ	z l astLD?b	t5jz_UVZ-RtC?PsB70Hq3NSgPqnLt	3w3u11XbGKWrCDoi7J4zJC?f					
LOAD CASE(S) Standard Uniform Loads (plf)	ł										
Vert: 1-2=-35	, 2-4=-1, 4-8=-11, 8-9=-4, 10-	29=-20, 13-28=-40									
Horz: 1-2=15, Drag: 3-4=0	4-8=9, 8-9=16										
35) Reversal: Dead + 0.6	MWFRS Wind (Neg. Internal)	Right: Lumber Increase=1.60, Plate	Increase=1.60								
Uniform Loads (plf) Vert: 1-2=-11	, 2-4=-1, 4-8=-35, 8-9=-28, 1()-29=-20, 13-28=-40									
Horz: 1-2=-9,	4-8=-15, 8-9=-8										
36) Reversal: Dead + 0.6	MWFRS Wind (Pos. Internal)	1st Parallel: Lumber Increase=1.60,	Plate Increase=1.60)							
Uniform Loads (plf)	Uniform Loads (plf)										
Horz: 1-2=-33	∠-4=9, 4-0=9, 8-9=2, 10-29= 3, 4-8=21, 8-9=14	-12, 13-20=-32									
Drag: 3-4=0	MWERS Wind (Rec. Internal)	2nd Parallel: Lumber Increase-1.60	Plate Increase-1 6	n							
Uniform Loads (plf)	www.co.wind.(ros. internal)	Zhu Falallel. Lumber Increase=1.00	Fiale increase=1.0	0							
Vert: 1-2=9, 2	-4=9, 4-8=21, 8-9=14, 10-29	=-12, 13-28=-32									
Drag: 3-4=0	, 4-0=33, 0-9=20										
38) Reversal: Dead + 0.6	MWFRS Wind (Pos. Internal)	3rd Parallel: Lumber Increase=1.60,	Plate Increase=1.60)							
Vert: 1-2=21,	2-4=9, 4-8=9, 8-9=2, 10-29=	-12, 13-28=-32									
Horz: 1-2=-33 Drag: 3-4=0	, 4-8=21, 8-9=14										
39) Reversal: Dead + 0.6	MWFRS Wind (Pos. Internal)	4th Parallel: Lumber Increase=1.60,	Plate Increase=1.60)							
Uniform Loads (plf) Vert: 1-2=9. 2	2-4=9. 4-8=21. 8-9=14. 10-29 [;]	=-12. 13-28=-32									
Horz: 1-2=-21	, 4-8=33, 8-9=26	,									
40) Reversal: Dead + 0.6	MWFRS Wind (Neg. Internal)	1st Parallel: Lumber Increase=1.60,	Plate Increase=1.60)							
Uniform Loads (plf)		20 20 42 20 40									
Horz: 1-2=-19	2-4=-13, 4-8=-13, 8-9=-6, 10-), 4-8=7, 8-9=14	29=-20, 13-28=-40									
Drag: 3-4=0	MWERS Wind (Neg. Internel'	and Darallely Lymber Increase 1.60	Diata Ingragoa 1 6	0							
Uniform Loads (plf)	wwrR5 wind (Neg. Internal)	2nd Parallel: Lumber Increase=1.60	, Plate increase=1.6	0							
Vert: 1-2=-13	, 2-4=-13, 4-8=-1, 8-9=6, 10-2	29=-20, 13-28=-40									
Drag: 3-4=0	4-0=19, 0-9=20										
42) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg	Int) Left): Lumber Ir	ncrease=1	.60, Plate Increase=1.60						
Vert: 1-2=-61	, 2-4=-36, 4-8=-43, 8-9=-38, 2	10-29=-20, 13-28=-100									
Horz: 1-2=11, Drag: 3-4=0	4-8=7, 8-9=12										
43) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg	. Int) Right): Lumber	Increase=	1.60, Plate Increase=1.60						
Uniform Loads (plf) Vert: 1-2=-43	. 2-4=-36. 4-8=-61. 8-9=-56. ²	10-29=-20, 13-28=-100									
Horz: 1-2=-7,	4-8=-11, 8-9=-6	,									
Drag: 3-4=0 44) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg	. Int) 1st Parallel): Lu	Imber Incr	ease=1.60,						
Plate Increase=1.60	× ,		, ,								
Vert: 1-2=-36	, 2-4=-45, 4-8=-45, 8-9=-40, [.]	10-29=-20, 13-28=-100									
Horz: 1-2=-14	, 4-8=5, 8-9=10										
45) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg	. Int) 2nd Parallel): L	umber Inc	rease=1.60,						
Plate Increase=1.60											
Vert: 1-2=-45	, 2-4=-45, 4-8=-36, 8-9=-31, <i>*</i>	10-29=-20, 13-28=-100									
Horz: 1-2=-5, Drag: 3-4-0	4-8=14, 8-9=19										
Diag. 0 4-0											

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	150479520	
J0623-3411	A3-GR	ATTIC	1	2	Job Reference (optional)	15947 6539	
Comtech, Inc, Fayetteville, NC - 28314, B:430 s Jan 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:18 2023 Page 2 ID:C5NWpb80727Tacfl D2bt5iz LIV7-PfC2PsB70Hc3NSAPage 8w9/UTXb6KWrCDoiz 1//2 / Cf							
NOTES- 12) Hanger(s) or other com 1-5-12, 297 lb down at design/selection of suc 13) Attic room checked for	nection device(s) shall be pro 2-9-12, 297 lb down at 4-9- h connection device(s) is the L/360 deflection.	by b	3137 lb d 8-9-12, ;	lown and and 910 lk	363 lb up at 1-4-8 on top chord, and 297 lb down at o down at 10-9-12 on bottom chord. The	20011	
LOAD CASE(S) Standard 1) Dead + Roof Live (balan Uniform Loads (plf) Vert: 1-2=-60, 2 Concentrated Loads (lb) Vert: 14=-234(B 2) Dead + 0.75 Roof Live (I Uniform Loads (plf) Vert: 1-2=-50, 2 Concentrated I or de (lb)	ced): Lumber Increase=1.15 -4=-60, 4-8=-60, 8-9=-60, 10 -) 22=-3104(B) 23=-67(B) 24: -alanced) + 0.75 Uninhab. A -4=-50, 4-8=-50, 8-9=-50, 10	, Plate Increase=1.15 -15=-20, 5-20=-20 =-67(B) 25=-67(B) 26=-412(B) 27=-234(B) ttic Storage + 0.75 Attic Floor: Lumber Increase= -15=-20, 5-20=-80	⊧1.15, Pla	te Increas	se=1.15		
3) Dead + Uninhabitable At Uniform Loads (plf) Vert: 1-2=-20. 2	22=-3055(B) 23=-240(B) 24 tic Without Storage: Lumber	4=-240(B) 25=-240(B) 26=-1228(B) 27=-741(B) Increase=1.25, Plate Increase=1.25 -15=-40. 5-20=-20					
Concentrated Loads (lb) Vert: 22=-2244(4) Dead + 0.6 MWFRS Wir Uniform Loads (plf)	B) Id (Pos. Internal) Left: Lumbe	er Increase=1.60, Plate Increase=1.60					
Vert: 1-2=-13, 2 Horz: 1-2=1, 4-8 Drag: 3-4=0 Concentrated Loads (Ib) Vert: 22=341(B)	-4=21, 4-8=11, 8-9=4, 10-15 3=23, 8-9=16	=-12, 5-20=-20					
5) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=11, 2- Horz: 1-2=-23, 4 Drag: 3-4=0 Concentrated Loads (lb)	ia (Pos. Internal) Right: Lumi 4=21, 4-8=-13, 8-9=2, 10-15 4-8=-1, 8-9=14	=-12, 5-20=-20					
Vert: 22=322(B) 6) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=-35, 2 Horz: 1-2=15, 4	nd (Neg. Internal) Left: Lumbe -4=-1, 4-8=-11, 8-9=-4, 10-1 -8=9, 8-9=16	er Increase=1.60, Plate Increase=1.60 5=-20, 5-20=-20					
Concentrated Loads (lb) Vert: 22=363(B) 7) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=-11, 2 Horz: 1-2=-9, 4- Drag: 3-4=0	nd (Neg. Internal) Right: Lumi -4=-1, 4-8=-35, 8-9=-28, 10- ⁻ 8=-15, 8-9=-8	ber Increase=1.60, Plate Increase=1.60 15=-20, 5-20=-20					
Concentrated Loads (lb) Vert: 22=343(B) 8) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=21, 2- Horz: 1-2=-33, 4 Drag: 3-4=0	nd (Pos. Internal) 1st Parallel 4=9, 4-8=9, 8-9=2, 10-15=-1 1-8=21, 8-9=14	: Lumber Increase=1.60, Plate Increase=1.60 2, 5-20=-20					
Concentrated Loads (lb) Vert: 22=316(B) 9) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=9, 2-4 Horz: 1-2=-21, 4 Drag: 3-4=0	nd (Pos. Internal) 2nd Paralle =9, 4-8=21, 8-9=14, 10-15=- 4-8=33, 8-9=26	l: Lumber Increase=1.60, Plate Increase=1.60 12, 5-20=-20					
Concentrated Loads (lb) Vert: 22=326(B) 10) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-2=21, 2 Horz: 1-2=-33, Drag: 3-4=0	ind (Pos. Internal) 3rd Parallo 2-4=9, 4-8=9, 8-9=2, 10-15=- 4-8=21, 8-9=14	el: Lumber Increase=1.60, Plate Increase=1.60 12, 5-20=-20					
Concentrated Loads (lk Vert: 22=316(t 11) Dead + 0.6 MWFRS W Uniform Loads (plf) Vert: 1-2=9, 2- Horz: 1-2=-21.	o) 3) ind (Pos. Internal) 4th Paralle 4=9, 4-8=21, 8-9=14, 10-15= 4-8=33, 8-9=26	el: Lumber Increase=1.60, Plate Increase=1.60					
Drag: 3-4=0 Concentrated Loads (lk Vert: 22=326(E	o) 3)						

Continued on page 3

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
						159478539
J0623-3411	A3-GR	ATTIC	1	2		
				–	Job Reference (optional)	
Comtech. Inc. Favettev	ille, NC - 28314.			3.430 s Jar	6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:18 2023	Page 3

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:18 2023 Page 3 ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

```
LOAD CASE(S) Standard
12) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
   Uniform Loads (plf)
            Vert: 1-2=-1, 2-4=-13, 4-8=-13, 8-9=-6, 10-15=-20, 5-20=-20
            Horz: 1-2=-19, 4-8=7, 8-9=14
            Drag: 3-4=0
   Concentrated Loads (lb)
            Vert: 22=337(B)
13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
   Uniform Loads (plf)
            Vert: 1-2=-13, 2-4=-13, 4-8=-1, 8-9=6, 10-15=-20, 5-20=-20
            Horz: 1-2=-7, 4-8=19, 8-9=26
            Drag: 3-4=0
   Concentrated Loads (lb)
            Vert: 22=347(B)
14) Dead + Uninhab. Attic Storage + Attic Floor: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
   Uniform Loads (plf)
            Vert: 1-2=-20, 2-4=-20, 4-8=-20, 8-9=-20, 10-15=-20, 5-20=-100
   Concentrated Loads (lb)
            Vert: 14=-910(B) 22=-1981(B) 23=-297(B) 24=-297(B) 25=-297(B) 26=-1499(B) 27=-910(B)
15) Dead + Uninhabitable Attic Storage: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
   Uniform Loads (plf)
            Vert: 1-2=-20, 2-4=-20, 4-8=-20, 8-9=-20, 10-15=-20, 5-20=-100
   Concentrated Loads (lb)
            Vert: 14=-910(B) 22=-1981(B) 23=-297(B) 24=-297(B) 25=-297(B) 26=-1499(B) 27=-910(B)
16) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
   Uniform Loads (plf)
            Vert: 1-2=-61, 2-4=-36, 4-8=-43, 8-9=-38, 10-15=-20, 5-20=-80
            Horz: 1-2=11, 4-8=7, 8-9=12
            Drag: 3-4=0
   Concentrated Loads (lb)
            Vert: 22=46(B)
17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
   Uniform Loads (plf)
            Vert: 1-2=-43, 2-4=-36, 4-8=-61, 8-9=-56, 10-15=-20, 5-20=-80
            Horz: 1-2=-7, 4-8=-11, 8-9=-6
            Drag: 3-4=0
   Concentrated Loads (lb)
            Vert: 22=32(B)
18) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
   Uniform Loads (plf)
            Vert: 1-2=-36, 2-4=-45, 4-8=-45, 8-9=-40, 10-15=-20, 5-20=-80
            Horz: 1-2=-14, 4-8=5, 8-9=10
            Drag: 3-4=0
   Concentrated Loads (lb)
            Vert: 22=27(B)
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
   Uniform Loads (plf)
            Vert: 1-2=-45, 2-4=-45, 4-8=-36, 8-9=-31, 10-15=-20, 5-20=-80
            Horz: 1-2=-5, 4-8=14, 8-9=19
            Drag: 3-4=0
   Concentrated Loads (lb)
            Vert: 22=35(B)
20) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
   Uniform Loads (plf)
            Vert: 1-2=-60, 2-4=-60, 4-8=-20, 8-9=-20, 10-15=-20, 5-20=-20
   Concentrated Loads (lb)
            Vert: 14=-234(B) 22=-3104(B) 23=-67(B) 24=-67(B) 25=-67(B) 26=-412(B) 27=-234(B)
21) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
   Uniform Loads (plf)
            Vert: 1-2=-20, 2-4=-60, 4-8=-60, 8-9=-60, 10-15=-20, 5-20=-20
   Concentrated Loads (lb)
            Vert: 14=-234(B) 22=-3137(B) 23=-67(B) 24=-67(B) 25=-67(B) 26=-412(B) 27=-234(B)
22) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor: Lumber Increase=1.15, Plate
   Increase=1.15
   Uniform Loads (plf)
            Vert: 1-2=-50, 2-4=-50, 4-8=-20, 8-9=-20, 10-15=-20, 5-20=-80
   Concentrated Loads (lb)
            Vert: 14=-741(B) 22=-3055(B) 23=-240(B) 24=-240(B) 25=-240(B) 26=-1228(B) 27=-741(B)
23) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor: Lumber Increase=1.15, Plate
   Increase=1.15
   Uniform Loads (plf)
            Vert: 1-2=-20, 2-4=-50, 4-8=-50, 8-9=-50, 10-15=-20, 5-20=-80
   Concentrated Loads (lb)
            Vert: 14=-741(B) 22=-3079(B) 23=-240(B) 24=-240(B) 25=-240(B) 26=-1228(B) 27=-741(B)
24) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
```

Continued on page 4

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	150479520
J0623-3411	A3-GR	ATTIC	1	2	Job Reference (optional)	15947 6559

```
Comtech, Inc, Fayetteville, NC - 28314,
```

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:18 2023 Page 4 ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LO	AD CASE(S) Standard
	Uniform Loads (plf)
	Vert: 1-2=-13, 2-4=21, 4-8=11, 8-9=4, 10-15=-12, 5-20=-20
	Horz: 1-2=1, 4-8=23, 8-9=16
	Drag: 3-4=0
	Concentrated Loads (lb)
	Vert: 22=-1643(B)
25)	Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=11, 2-4=21, 4-8=-13, 8-9=2, 10-15=-12, 5-20=-20
	Horz: 1-2=-23, 4-8=-1, 8-9=14
	Drag: 3-4=0
201	Vert: 22=-1662(B)
20)	Reversal: Dead + 0.0 MWFRS Wind (Neg. Internal) Leit: Lumber increase=1.00, Plate increase=1.00
	Viniti Loads (pii) Viniti 1.2
	Volt. 1-205, 2-41, 4-011, 0-94, 10-1020, 0-2020 Horz: 1-2-15, 4-8-9, 8-9-16
	Concentrated Loads (Ib)
	Vert: 22=-1621(B)
27)	Reversal: Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=-11, 2-4=-1, 4-8=-35, 8-9=-28, 10-15=-20, 5-20=-20
	Horz: 1-2=-9, 4-8=-15, 8-9=-8
	Drag: 3-4=0
	Concentrated Loads (lb)
	Vert: 22=-1641(B)
28)	Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Velt. 1-z=21, z=4=3, 4-6=3, 6-5=2, 10-13=-12, 5-20=-20 Horz: 1-2-33, 4-8-21, 8-0=14
	Concentrated Loads (lb)
	Vert: 22=-1668(B)
29)	Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=9, 2-4=9, 4-8=21, 8-9=14, 10-15=-12, 5-20=-20
	Horz: 1-2=-21, 4-8=33, 8-9=26
	Drag: 3-4=0
	Vort 22-1658(B)
30)	Ven. 22-1000(0) Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60. Plate Increase=1.60
00)	Uniform Loads (plf)
	Vert: 1-2=21, 2-4=9, 4-8=9, 8-9=2, 10-15=-12, 5-20=-20
	Horz: 1-2=-33, 4-8=21, 8-9=14
	Drag: 3-4=0
	Concentrated Loads (lb)
	Vert: 22=-1668(B)
31)	Reversal: Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (pir)
	Velt. 1729, 2-499, 4-0921, 0-3914, 10-13912, 3-209-20 Horr: 1-2-9, 2-493, 8-0-26
	Drac $3.4=0$
	Concentrated Loads (lb)
	Vert: 22=-1658(B)
32)	Reversal: Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-1, 2-4=-13, 4-8=-13, 8-9=-6, 10-15=-20, 5-20=-20
	Horz: 1-2=-19, 4-8=7, 8-9=14
	Drag: 3-4=0
	Concentrated Loads (ib)
33)	ver zz="1040(b) Reversal: Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60. Plate Increase=1.60.
55)	Initian Loads (off)
	Vert: 1-2=-13, 2-4=-13, 4-8=-1, 8-9=6, 10-15=-20, 5-20=-20
	Horz: 1-2=-7, 4-8=19, 8-9=26
	Drag: 3-4=0
	Concentrated Loads (lb)
.	Vert: 22=-1637(B)
34)	Reversal: Dead + 0./5 Root Live (bal.) + 0./5 Attic Floor + 0./5(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate
	11010000-1.00

Continued on page 5

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek
				-	15947853
J0623-3411	A3-GR	ATTIC	1		2
				-	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s	Jan 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:18 2023 Page 5
			ID:C5NWnh8QZ	ZZZTasfLD	0?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
LOAD CASE(S) S	andard				
Uniform Loads	(plf)				
Vert: 1	-2=-61 2-4=-36 4-8=-43	8-9=-38 10-15=-20 5-20=-80			
Horz: 1	-2=11 4-8=7 8-9=12	0 0 0 00, 10 10 20, 0 20 00			
Drag: 3	2-11, 10-1, 00-12 3-4=0				
Concentrated L	oads (lb)				
Vert: 2	2=-2495(B)				
35) Reversal: Dead	+ 0.75 Roof Live (bal.) +	0.75 Attic Floor + 0.75(0.6 MWFRS Wind ((Nea. Int) Right): Lumbe	er Increas	se=1.60. Plate Increase=1.60
Uniform Loads	(plf)				
Vert: 1	-2=-43, 2-4=-36, 4-8=-61,	8-9=-56, 10-15=-20, 5-20=-80			
Horz: 1	-2=-7, 4-8=-11, 8-9=-6				
Drag: 3	3-4=0				
Concentrated L	oads (lb)				
Vert: 2	2=-2510(B)				
36) Reversal: Dead	+ 0.75 Roof Live (bal.) +	0.75 Attic Floor + 0.75(0.6 MWFRS Wind ((Neg. Int) 1st Parallel):	Lumber Ir	ncrease=1.60. Plate Increase=1.60
Uniform Loads	(plf)				
Vert: 1	-2=-36, 2-4=-45, 4-8=-45,	8-9=-40, 10-15=-20, 5-20=-80			

37) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Horz: 1-2=-14, 4-8=5, 8-9=10

Horz: 1-2=-5, 4-8=14, 8-9=19

Vert: 1-2=-45, 2-4=-45, 4-8=-36, 8-9=-31, 10-15=-20, 5-20=-80

Drag: 3-4=0 Concentrated Loads (lb) Vert: 22=-2514(B)

Drag: 3-4=0 Concentrated Loads (lb) Vert: 22=-2507(B)

Uniform Loads (plf)

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
	J0623-3411	A3GE	GABLE	1	1	 	59478540
l						Job Reference (optional)	
	Comtech Inc Eavettev	rille NC - 28314			3 430 s Jar	6 2022 MiTek Industries Inc. Wed Jul 12 07:49:16 2023 P	Page 2

ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 38 and 149 lb uplift at joint 24.

- 10) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
- 45 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-2=-60, 2-6=-60, 6-14=-60, 14-15=-60, 16-36=-20, 20-35=-40 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-2=-50, 2-6=-50, 6-14=-50, 14-15=-50, 16-36=-20, 20-35=-100
- Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
 - Vert: 1-2=-20, 2-6=-20, 6-14=-20, 14-15=-20, 16-36=-40, 20-35=-60
- Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=32, 2-6=36, 6-14=32, 14-15=25, 16-36=-12, 20-35=-32 Horz: 1-2=-44, 6-14=44, 14-15=37
 - Drag: 5-6=0
- Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=32, 2-6=36, 6-14=32, 14-15=55, 16-36=-12, 20-35=-32
 - Horz: 1-2=-44, 6-14=44, 14-15=67
 - Drag: 5-6=0
- 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=-57, 2-6=-34, 6-14=-57, 14-15=-50, 16-36=-20, 20-35=-40 Horz: 1-2=37, 6-14=-37, 14-15=-30
 - Drag: 5-6=-0
- Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=-57, 2-6=-34, 6-14=-57, 14-15=10, 16-36=-20, 20-35=-40
 - Horz: 1-2=37, 6-14=-37, 14-15=30
- Drag: 5-6=-0 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2--15, 2-6=35, 6-14=15, 14-15=8, 16-36=-12, 20-35=-32 Horz: 1-2=3, 6-14=27, 14-15=20
 - Drag: 5-6=0
- Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=15, 2-6=35, 6-14=-15, 14-15=0, 16-36=-12, 20-35=-32
 - Horz: 1-2=-27, 6-14=-3, 14-15=12
 - Drag: 5-6=0
- 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=-37, 2-6=13, 6-14=-7, 14-15=-0, 16-36=-20, 20-35=-40 Horz: 1-2=17, 6-14=13, 14-15=20
 - Drag: 5-6=0
- 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=-7, 2-6=13, 6-14=-37, 14-15=-30, 16-36=-20, 20-35=-40 Horz: 1-2=-13, 6-14=-17, 14-15=-10
 - Drag: 5-6=0
- 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
- Uniform Loads (plf)
 - Vert: 1-2=35, 2-6=15, 6-14=15, 14-15=8, 16-36=-12, 20-35=-32 Horz: 1-2=-47, 6-14=27, 14-15=20
 - Drag: 5-6=0
- Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=15, 2-6=15, 6-14=35, 14-15=28, 16-36=-12, 20-35=-32
 - Horz: 1-2=-27, 6-14=47, 14-15=40
 - Drag: 5-6=0
- 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=35, 2-6=15, 6-14=15, 14-15=8, 16-36=-12, 20-35=-32
 - Horz: 1-2=-47, 6-14=27, 14-15=20
 - Drag: 5-6=0
- 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

Continued on page 3

Continued on page 4

lab	Truco		Otv	Dhy	Lat 108 South Crook	
JOD	TTUSS	Truss Type	Qiy	Piy	Lot 106 South Creek	159478540
J0623-3411	A3GE	GABLE	1	1		
Comtech. Inc. Favettev	ille. NC - 28314.			8.430 s Ja	JOD Reference (optional) an 6 2022 MiTek Industries. Inc.	Wed Jul 12 07:49:16 2023 Page 4
· · · · · · · · · · · · · · · · · · ·	-, ,	ID:C5I	Wnh8QZZ	zTasfLD?	bt5jz_UVZ-RfC?PsB70Hq3NSgF	² qnL8w3uITXbGKWrCDoi7J4zJC?f
LOAD CASE(S) Standard						
Uniform Loads (plf)						
Vert: 1-2=-15, 2	2-6=35, 6-14=15, 14-15=8, 1	6-36=-12, 20-35=-32				
Horz: 1-2=3, 6-	-14=27, 14-15=20					
Drag: 5-6=0 33) Reversal: Dead + 0.6 M	WERS Wind (Pos Internal)	Right: Lumber Increase-1.60 Plate Increase	-1 60			
Uniform Loads (plf)		right. Europer morease=1.00, 1 late morease	-1.00			
Vert: 1-2=15, 2	-6=35, 6-14=-15, 14-15=0, 1	6-36=-12, 20-35=-32				
Horz: 1-2=-27,	6-14=-3, 14-15=12					
34) Reversal: Dead + 0.6 M	WERS Wind (Neg Internal)	Left: Lumber Increase=1.60 Plate Increase=	60			
Uniform Loads (plf)	······	,				
Vert: 1-2=-37, 2	2-6=13, 6-14=-7, 14-15=-0, 1	16-36=-20, 20-35=-40				
Horz: 1-2=17, 6	5-14=13, 14-15=20					
35) Reversal: Dead + 0.6 M	WFRS Wind (Neg. Internal)	Right: Lumber Increase=1.60, Plate Increase	=1.60			
Uniform Loads (plf)	(0)					
Vert: 1-2=-7, 2-	-6=13, 6-14=-37, 14-15=-30,	16-36=-20, 20-35=-40				
Horz: 1-2=-13, Drag: 5-6-0	6-14=-17, 14-15=-10					
36) Reversal: Dead + 0.6 M	IWFRS Wind (Pos. Internal)	1st Parallel: Lumber Increase=1.60, Plate Inc	ease=1.60)		
Uniform Loads (plf)						
Vert: 1-2=35, 2	-6=15, 6-14=15, 14-15=8, 10	6-36=-12, 20-35=-32				
Drag: 5-6=0	0-14=27, 14-15=20					
37) Reversal: Dead + 0.6 M	IWFRS Wind (Pos. Internal)	2nd Parallel: Lumber Increase=1.60, Plate Inc	rease=1.6	0		
Uniform Loads (plf)						
Vert: 1-2=15, 2 Horz: 1-2=-27	2-6=15, 6-14=35, 14-15=28, 1 6-14-47, 14-15-40	16-36=-12, 20-35=-32				
Drag: 5-6=0	0-14=47, 14-15=40					
38) Reversal: Dead + 0.6 M	WFRS Wind (Pos. Internal)	3rd Parallel: Lumber Increase=1.60, Plate Inc	rease=1.60	C		
Uniform Loads (plf)						
Vert: 1-2=35, 2 Horz: 1-2=-47	-b=15, b-14=15, 14-15=8, 10 6-14=27 14-15=20	5-36=-12, 20-35=-32				
Drag: 5-6=0	0 14-27, 14 10-20					
39) Reversal: Dead + 0.6 M	IWFRS Wind (Pos. Internal)	4th Parallel: Lumber Increase=1.60, Plate Inc	ease=1.60)		
Uniform Loads (plf)	-6-15 6-14-35 14-15-28	16-3612 20-3532				
Horz: 1-2=-27.	6-14=47. 14-15=40	10-30=-12, 20-33=-32				
Drag: 5-6=0	- ,					
40) Reversal: Dead + 0.6 M	IWFRS Wind (Neg. Internal)	1st Parallel: Lumber Increase=1.60, Plate Inc	rease=1.60	0		
Uniform Loads (pif)	-6=-7 6-14=-7 14-15=-0 16	à-36=-20 20-35=-40				
Horz: 1-2=-33,	6-14=13, 14-15=20					
Drag: 5-6=0						
41) Reversal: Dead + 0.6 M	IWFRS Wind (Neg. Internal)	2nd Parallel: Lumber Increase=1.60, Plate In-	crease=1.6	50		
Vert: 1-2=-7, 2-	-6=-7, 6-14=13, 14-15=20, 1	6-36=-20, 20-35=-40				
Horz: 1-2=-13,	6-14=33, 14-15=40					
Drag: 5-6=0	Roof Live (bol) + 0.75 Attic	Elect + 0.75(0.6 MWERS Wind (Neg. Int) Left)	lumborl		1.60 Dioto	
42) Reversal: Deau + 0.751	$(\text{Dal.}) \neq 0.75 Autori$	1001 + 0.75(0.0 MWFR3 Wind (Neg. III) Leit,		nciease=	1.00, Fidle	
Uniform Loads (plf)						
Vert: 1-2=-63, 2	2-6=-25, 6-14=-40, 14-15=-3	5, 16-36=-20, 20-35=-100				
Horz: 1-2=13, 6 Drag: 5-6=0	5-14=10, 14-15=15					
43) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic I	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Righ	t): Lumber	Increase	=1.60, Plate	
Increase=1.60						
Uniform Loads (pit)	2-625 6-1463 14-155	8 16-3620 20-35100				
Horz: 1-2=-10,	6-14=-13, 14-15=-8	0, 10 00- 20, 20 00- 100				
Drag: 5-6=0						
44) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic I	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st F	Parallel): Li	umber Inc	rease=1.60,	
Uniform Loads (plf)						
Vert: 1-2=-25, 2	2-6=-40, 6-14=-40, 14-15=-3	5, 16-36=-20, 20-35=-100				
Horz: 1-2=-25,	6-14=10, 14-15=15					
Urag: 5-6=0 45) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd	Parallel)· I	umber In	crease=1.60	
Plate Increase=1.60						
Uniform Loads (plf)		a 40.00 00 00 00 00				
Vert: 1-2=-40, 2	2-6=-40, 6-14=-25, 14-15=-2 6-14-25, 14-15-30	0, 16-36=-20, 20-35=-100				
Drag: 5-6=0	0 17-20, 17-10-00					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	150478542	
J0623-3411	B1GE	GABLE	1	1		153476542	
Comtech, Inc, Fayet	teville, NC - 28314,		8	.430 s Jar	6 2022 MiTek Industri	ai) ies, Inc. Wed Jul 12 07:49:21 2023 Page 1	
	-9 <u>-11₁0</u>	4-9-4 7-8-4 9-9-8	ID:C5NWnh8QZZz 11-9-8 13-9-8 15-10-12	TasfLD?b 18-9-12	t5jz_UVZ-RfC?PsB70H <u> 23-7-0 2</u> 4-6	lq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f ≦_ρ	
	0'-11-D	4-9-4 ' 2-11-0 ' 2-1-4 '	2-0-0 2-0-0 2-1-4	2-11-0	' 4-9-4 0 ^L 11	-0	
		4x6 =	6x6 =			Scale = 1:72.7	
	12.00	0 12 6 2 x 6 2 x 6	34 35 2x6 2x6	11	、 12		
	4x8 × 3 4x8 × 3 8 ⁺ F ⁻ 0 33 3 33 3		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21-8-2 21-8-2 4x8 =	13 4x8 14 40 3x6 11 19 18 17		
	4x4	3x6 = 5x12 =	$6x6 = \frac{5x12}{5x12}$	= 3	8x6 = 4x4		
	L	4-9-4 7-9-14 10-9-8	12-9-8 15-9-2	18-9-12	23-7-0		
Plate Offsets (X,Y) [8	3:0-4-2,0-2-0]	4-9-4 ' 3-0-10 ' 2-11-10) '2-0-0 '2-11-10 '	3-0-10	4-9-4		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE	0 CSI. 5 TC 0.77 5 BC 0.91 5 WB 0.71	DEFL. in Vert(LL) -0.18 Vert(CT) -0.35 Horz(CT) 0.03	(loc) 25-27 25-27 17	l/defl L/d >999 360 >803 240 n/a n/a	PLATES GRIP MT20 244/190	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.12	31	>999 240	Weight: 285 lb FT = 20%	
LUMBER- TOP CHORD 2x6 SP M BOT CHORD 2x6 SP M 21-30: 22 WEBS 2x4 SP M 5-31,12- OTHERS 2x4 SP M	LUMBER- TOP CHORD 2x6 SP No.1 BRACING- 2x6 SP No.1 *Except* 21-30: 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 4-3-10 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 8-10. WEBS 2x4 SP No.2 *Except* 5-31,12-19,6-11,2-33,15-17: 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 3-8-0 oc bracing: 21-30 OTHERS 2x4 SP No.2 51.2 JOINTS 1 Brace at Jt(s): 34, 36						
REACTIONS. (size) Max Hor Max Gra	33=0-3-8, 17=0-3-8 z 33=-424(LC 10) w 33=1739(LC 2), 17=1739(L	C 2)					
FORCES. (lb) - Max. C TOP CHORD 2-3=-1: 10-11= 2-33=- BOT CHORD 32-33=	omp./Max. Ten All forces 25 366/0, 3-4=-1541/0, 4-5=-1575 -311/178, 11-12=-1029/188, 1 1407/0, 15-17=-1458/0 -384/504, 31-32=-384/504, 29	0 (lb) or less except when shown 5/15, 5-6=-1031/188, 6-7=-330/17 2-13=-1623/17, 13-14=-1556/0, 1 -31=-378/1272, 27-29=0/3596, 2	n. *4, 14-15=-1385/0, 5-27=0/3596,				
20-25= 22-24= WEBS 5-30=0 34-35= 19-39= 26-29= 3-38=-	0/3596, 19-20=-34/965, 28-30 -1804/18, 21-22=-1804/18 /919, 19-21=-173/306, 12-21= -1077/160, 11-35=-1085/160, 0/941, 39-40=0/1046, 15-40=(-1260/187, 20-24=-1260/165, 32-38=-494/66, 14-40	=-1789/0, 26-28=-1789/0, 24-26= 0/995, 6-36=-1078/160, 34-36=-' 2-38=0/968, 37-38=0/1041, 31-3 0/981, 29-30=0/1959, 28-29=-395 20-22=-395/0, 20-21=0/1952, 7-3 =-334/71, 18-40=-482/65	=-2726/0, 1077/160, 7=0/966, 5/0, 36=-43/265,				
NOTES-		,				TH CARO	
 NOTES- 1) Unbalanced roof live II 2) Wind: ASCE 7-10; Vul gable end zone and C shown; Lumber DOL= 3) Truss designed for win Gable End Details as 4) Provide adequate drai 5) All plates are 2x4 MT2 6) Gable studs spaced a 7) This truss has been du 8) * This truss has been will fit between the boi 9) Ceiling dead load (10. 12-21 10) Pettom chord live loss 	bads have been considered for t=130mph Vasd=103mph; TC -C Exterior(2) zone; end vertion 1.60 plate grip DOL=1.60 nd loads in the plane of the tru applicable, or consult qualified nage to prevent water ponding 20 unless otherwise indicated. t 2-0-0 oc. esigned for a 10.0 psf bottom of designed for a live load of 30.0 tom chord and any other mern 0 psf) on member(s). 5-6, 11-	r this design. DL=6.0psf; BCDL=6.0psf; h=15ft cal left and right exposed;C-C for ss only. For studs exposed to wi I building designer as per ANSI/T g. chord live load nonconcurrent witt Opsf on the bottom chord in all are ibers. 12, 6-36, 34-36, 34-35, 11-35; W	; Cat. II; Exp C; Enclosed members and forces & M ind (normal to the face), s PI 1. h any other live loads. eas where a rectangle 3-6 'all dead load (5.0psf) on	MWFRS WFRS for ee Standa 6-0 tall by member(s	2-0-0 wide (a).5-30,	SEAL 036322	
Contin21ed2on page 2	au (40.0 psi) and additional bo	aom chora dead load (10.0 pst) a	applied only to room. 28-3	υ, ∠ο-28,	24-20, 22-24	July 12,2023	
WARNING - Verify de Design valid for use only a truss system. Before u building design. Bracing is always required for sta fabrication, storage, delli Safety Information ava	sign parameters and READ NOTES ON with MITek® connectors. This design se, the building designer must verify th i indicated is to prevent buckling of ind ability and to prevent collapse with pos very, erection and bracing of trusses a allable from Truss Plate Institute, 2670	THIS AND INCLUDED MITEK REFERENC is based only upon parameters shown, ar e applicability of design parameters and p vidual truss web and/or chord members o sible personal injury and property damage nd truss systems, see <u>ANSI/TPI</u> Crain Highway, Suite 203 Waldorf, MD 20	CE PAGE MII-7473 rev. 5/19/2020 di si for an individual building co properly incorporate this design i nuly. Additional temporary and p e. For general guidance regardin f Quality Criteria, DSB-89 and 601	BEFORE U mponent, no nto the overa ermanent br ig the BCSI Buildi	SE. ot all acing ing Component	TERENCE AMITEK Affiliate 818 Soundside Road Edenton, NC 27932	

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
						159478542
J0623-3411	B1GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, F	ayetteville, NC - 28314,			3.430 s Ja	n 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:22 202	23 Page 2
		ID:C5N	Wnh8QZZ	zTasfLD?b	t5jz UVZ-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDo	7J4zJC?f

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Attic room checked for L/360 deflection.

8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 21-23, 19-21, 17-19, 15-17, 14-15

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Attic room checked for L/360 deflection.

111111111 036322 G mm July 12,2023

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Attic room checked for L/360 deflection.

13-14

G mm July 12,2023

818 Soundside Road

Edenton, NC 27932

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. 4=0-3-8, 2=0-3-8 (size) Max Horz 2=168(LC 11) Max Uplift 4=-45(LC 13), 2=-45(LC 12) Max Grav 4=825(LC 20), 2=825(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-961/184, 3-4=-961/184

BOT CHORD 2-7=0/696, 4-7=0/696

3-7=0/580

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-4 to 3-7-9, Interior(1) 3-7-9 to 8-7-0, Exterior(2) 8-7-0 to 12-11-13, Interior(1) 12-11-13 to 17-11-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

ORT Annua and and a second 1111111111 SEAL 036322 G mm July 12,2023

TRENGINEERING BY RENCO

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
					15947	78546
J0623-3411	C1-GR	COMMON	1	2		
				~	Job Reference (optional)	
Comtech, Inc, Fayetter	ville, NC - 28314,			8.430 s Jar	6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:28 2023 Page	2

ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 8=-570(F) 9=-570(F) 11=-570(F) 12=-570(F) 13=-570(F) 14=-570(F) 16=-570(F) 17=-570(F)

Max Uplift All uplift 100 lb or less at joint(s) 2, 17, 18, 14 except 19=-129(LC 12), 13=-101(LC 13), 12=-128(LC 13)

 $Max\ Grav \quad All\ reactions\ 250\ lb\ or\ less\ at\ joint(s)\ 10,\ 2,\ 16,\ 17,\ 18,\ 19,\ 14,\ 13,\ 12$

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 17, 18, 14 except (jt=lb) 19=129, 13=101, 12=128.

-	7110 7110 7110											
Plate Offsets (X	(,Y)	[2:0-0-11,0-1-8], [4:0-0-11	,0-1-8]							7-11-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0)))) *)	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC BC WB Matrix	0.60 0.32 0.09 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.09 0.01	(loc) 2-6 4-6 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER-BRACING-TOP CHORD2x4 SP No.1TOP CHORDStructural wood sheathing directly applied or 4-6-1 oc purlins.BOT CHORD2x6 SP No.1BOT CHORDRigid ceiling directly applied or 7-5-9 oc bracing.WEBS2x4 SP No.22x4 SP No.2BOT CHORDRigid ceiling directly applied or 7-5-9 oc bracing.							oc purlins.					
REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=-35(LC 13) Max Uplift 2=-262(LC 8), 4=-262(LC 9) Max Grav 2=689(LC 1), 4=689(LC 1)												
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. (2-3=- 2-6=-{ 3-6=-{	Comp./Max. Ten All forc 1155/1151, 3-4=-1155/11! 991/1011, 4-6=-991/1011 502/399	ces 250 (lb) or 53	less except v	when shown.							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 7-11-8, Exterior(2) 7-11-8 to 12-4-5, Interior(1) 12-4-5 to 16-10-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=262, 4=262.

	7-11-8			15-11-0									
	7-11-8		1		7-11-8								
Plate Offsets (X,Y)	[2:0-2-8,0-1-1], [8:0-2-8,0-1-1]												
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.26 BC 0.39 WB 0.12 Matrix-S	DEFL. in Vert(LL) -0.06 Vert(CT) -0.11 Horz(CT) 0.01 Wind(LL) 0.10	(loc) l/defl 14 >999 14 >999 8 n/a 10 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%						
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF OTHERS 2x4 SF	P No.1 P No.1 P No.2 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood s Rigid ceiling dire	sheathing dire ctly applied or	ctly applied or 5-7-2 6-11-9 oc bracing.	oc purlins.						
Plate 7118 15113 Plate Offsets (X,Y)- 12.0-2.6.0-1-11 (J.18.0-2.6.0-1-12 711.8 711.8 711.8 COLD 10.0 Plate Grip DOL 1.15 DC 0.26 Vert(T) -0.06 14.4 >989 240 BCLL 0.0.0 Rep Stress Incr YES WB 0.12 Vert(C) 0.01 8.989 240 BCLL 0.0.0 Rep Stress Incr YES WB 0.12 Vert(C) 0.01 8.989 240 BCLL 0.0.0 Code IRC2015/TP12014 Matrix-S Worl(L) 0.01 8.989 240 Weight: 77 Ib FT = 20% LUMEER- Code IRC2015/TP12014 Matrix-S Worl(L) 0.01 8.989 240 Weight: 77 Ib FT = 20% LUMEER- TOP CHORD Structural wood sheathing directly applied or 5.7.2 oc purlins. BOT CHORD Structural wood sheathing directly applied or 5.7.2 oc purlins. BOT CHORD Structural wood sheathing directly applied or 5.7.2 oc purlins. DOT CHORD 2.44 F 180.2 3.45 - 1029/1281, 5.6 - 1039/1287, 5.6 - 1039/1287, 6.7 - 1102/1258, 7.4 - 1152/1258, 7.4 - 1152/1258, 7.4 - 1152/1258, 7.4 - 1152/1258, 7.4 - 1152/1258, 7.4 - 115													
FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- BOT CHORD 2-14-	Comp./Max. Ten All forces 250 (lb) or -1152/1233, 3-4=-1102/1258, 4-5=-1093/ -1152/1233 -1093/1033, 13-141093/1033, 12-13-	less except when shown. 1287, 5-6=-1093/1287, 6-	-7=-1102/1258, 8/1033										
WEBS 5-12=	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1152/1233, 3-4=-1102/1258, 4-5=-1093/1287, 5-6=-1093/1287, 6-7=-1102/1258, 7-8=-1152/1233 BOT CHORD 2-14=-1093/1033, 13-14=-1093/1033, 12-13=-1093/1033, 11-12=-1093/1033, 11-12=-1093/1033, 11-12=-1093/1033, 12-13=-1093/1033, 11-12=-1003/103, 11-1003/103, 11-1003/103, 11-1003/103, 11-100												
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and Lumber DOL=1.60 p 3) Truss designed for v Gable End Details a 4) All plates are 2x4 M 5) Gable studs spaced 6) This truss has been will fit between the b 8) Provide mechanical 2=374, 8=374. 	a loads have been considered for this de: (ult=130mph Vasd=103mph; TCDL=6.0p C-C Exterior(2) zone; porch left and righ plate grip DOL=1.60 vind loads in the plane of the truss only. s applicable, or consult qualified building T20 unless otherwise indicated. at 2-0-0 oc. designed for a 10.0 psf bottom chord live n designed for a live load of 30.0psf on the vottom chord and any other members. connection (by others) of truss to bearin	sign. sf; BCDL=6.0psf; h=15ft; t exposed;C-C for member For studs exposed to win designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are g plate capable of withsta	Cat. II; Exp C; Enclosed ers and forces & MWFR nd (normal to the face), s Pl 1. a any other live loads. as where a rectangle 3-6 Inding 100 lb uplift at join	; MWFRS (envelo 5 for reactions sho ee Standard Indus 5-0 tall by 2-0-0 wi t(s) except (jt=lb)	pe) wwn; stry de	SE OR SE 036	AL 322 MEER HILIN						

- Max Uplift 13=-317(LC 4), 9=-334(LC 5) Max Grav 13=3116(LC 1), 9=3164(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-13=-2361/307, 2-3=-5284/576, 3-5=-5284/576, 5-6=-5350/618, 6-9=-2387/327
- BOT CHORD 12-13=-35/430, 10-12=-618/5350, 9-10=-35/439
- WEBS 2-12=-589/5286, 6-10=-635/5346

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=317, 9=334.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 590 lb down and 50 lb up at 1-7-4, 590 lb down and 50 lb up at 3-7-4, 590 lb down and 50 lb up at 5-7-4, 590 lb down and 50 lb up at 9-5-4, 590 lb down and 50 lb up at 9-7-4, 590 lb down and 50 lb up at 11-7-4, and 590 lb down and 50 lb up at 13-7-4, and 590 lb down and 50 lb up at 13-7-4, and 590 lb down and 50 lb up at 15-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
						159478550
J0623-3411	G1-GR	Flat Girder	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayetter	rille, NC - 28314,			8.430 s Jar	6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:31 2023	Page 2

ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-6=-60, 6-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 12=-577(B) 15=-577(B) 16=-577(B) 17=-577(B) 18=-866(F=-289, B=-577) 19=-577(B) 20=-577(B) 21=-577(B)

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 4=0-3

(size) 2=0-3-8, 4=0-3-8 Max Horz 2=67(LC 11) Max Uplift 2=-22(LC 12), 4=-22(LC 13) Max Grav 2=280(LC 1), 4=280(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-11-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		2-11-8	-	2-11-8		
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.03	DEFL. Vert(LL) 0	in (loc)).00 10	l/defl L/d >999 240	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.03 WB 0.02 Matrix-S	Vert(CT) -0 Horz(CT) 0	0.00 10 0.00 6	>999 240 n/a n/a	Weight: 44 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

 OTHERS
 2x4 SP No.2

 WEDGE
 X4 SP No.2

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=84(LC 11)

Max Uplift 2=-65(LC 12), 6=-65(LC 13) Max Grav 2=280(LC 1), 6=280(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-11-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		1	8-7-12	1	9-11-12		
LOADING	i (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/	/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL) -0	0.11 6-8 >9	999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.33	Vert(CT) -0	.16 6-8 >	743 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.36	Horz(CT) 0	0.00 6	n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0).10 2-8 >9	984 240	Weight: 145 lb FT = 20%

LUMBER-	
---------	--

TOP CHORD	2x4 SP No.1 *Except*
	3-5: 2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	5-6: 2x6 SP No 1

WEBS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 5-6, 4-6

REACTIONS. (size) 6=0-3-8, 8=0-3-8, 2=0-3-0 Max Horz 2=370(LC 12) Max Uplift 6=-192(LC 12), 8=-45(LC 9), 2=-139(LC 8) Max Grav 6=474(LC 19), 8=840(LC 2), 2=360(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-268/93
- BOT CHORD 2-8=-230/284

WEBS 3-8=-331/153, 4-8=-406/89, 4-6=-322/240

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 18-4-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 6=192, 2=139.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

				8-7-1Z			9-11-12					
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.11	7-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.16	7-9	>746	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.01	11	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	12014	Matrix	(-S	Wind(LL)	0.10	2-9	>984	240	Weight: 159 lb	FT = 20%

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x4 SP No.1 *Except*
3-5: 2x6 SP No.1
2x6 SP No.1
2x4 SP No.2
2x6 SP No.1

REACTIONS. (size) 9=0-3-8, 2=0-3-0, 11=0-3-8 Max Horz 2=361(LC 12) Max Uplift 9=-55(LC 9), 2=-148(LC 8), 11=-169(LC 12) Max Grav 9=875(LC 2), 2=343(LC 1), 11=419(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 3-4=-238/306

7-10=-82/279, 5-10=-82/279, 3-9=-320/152, 4-9=-451/118, 4-7=-273/214, 5-11=-454/218

NOTES-

WFBS

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 18-0-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=148, 11=169.

SEAL 036322 July 12,2023

Structural wood sheathing directly applied or 6-0-0 oc purlins.

4-7, 5-11

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

Max Horz 2=361(LC 12) Max Uplift 15=-80(LC 9), 2=-142(LC 8), 21=-158(LC 12) Max Grav 15=865(LC 1), 2=334(LC 1), 21=370(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-263/350

WEBS 9-20=-113/298, 7-20=-113/298, 3-15=-312/147, 15-16=-504/76, 4-16=-515/74, 17-18=-289/145, 18-19=-257/137, 9-19=-282/144, 7-21=-444/193

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 18-0-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Bearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 2=142, 21=158.

		8-7-12 8 8-7-12 0	8-9-8 16-8-9)-1-12 7-11-1	<u>19-2-8</u> 2-5-15	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL) -0.05	2-11 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.10	2-11 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.04	10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.04	6 >999 240	Weight: 116 lb FT = 20%

BOT CHORD

LUMBER-

2x10 SP No.1 *Except 1-3: 2x4 SP No.1
2x6 SP No.1
2x4 SP No.2

REACTIONS. (size) 10=Mechanical, 2=0-3-0, 11=0-3-8 Max Horz 2=382(LC 12) Max Uplift 10=-147(LC 12), 2=-79(LC 8), 11=-256(LC 12) Max Grav 10=340(LC 19), 2=325(LC 1), 11=792(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-629/560. 3-4=-552/545. 4-6=-253/167. 7-10=-318/211

 TOP CHORD
 2-3=-629/560, 3-4=-552/545, 4-6=-253/167, 7-10=-318/211

 BOT CHORD
 4-11=-818/499

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 19-2-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=147, 11=256.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.

6-0-0 oc bracing: 4-11.

LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.10	Vert(LL)	-0.00	6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(CT)	-0.00	2-6	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	-0.00	6	>999	240	Weight: 55 lb	FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEBS 2x4 SP No.2 **REACTIONS.** (size) 2=0-3-8, 4=0-3-8 May Harr 2, 100(10,10)

(size) 2=0-3-8, 4=0-3-8 Max Horz 2=-109(LC 10) Max Uplift 2=-22(LC 12), 4=-22(LC 13) Max Grav 2=344(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-280/65, 3-4=-280/65

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-6-0. (Ib) - Max Horz 2=-136(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-151(LC 12), 8=-150(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=151, 8=150.

REACTIONS. (size) 2=9-7-5, 4=9-7-5, 6=9-7-5 Max Horz 2=-95(LC 10) Max Uplift 2=-29(LC 12), 4=-38(LC 13) Max Grav 2=226(LC 1), 4=226(LC 1), 6=372(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-15 to 4-7-11, Interior(1) 4-7-11 to 5-6-0, Exterior(2) 5-6-0 to 9-10-13, Interior(1) 9-10-13 to 10-9-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 2=2-10-6, 4=2-10-6, 6=2-10-6

Max Horz 2=-54(LC 10) Max Uplift 2=-32(LC 12), 4=-37(LC 13)

Max Grav 2=94(LC 1), 4=94(LC 1), 6=88(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

¹⁾ Unbalanced roof live loads have been considered for this design.

- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=148, 8=147.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-109(LC 12), 6=-109(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=252(LC 1), 8=330(LC 19), 6=330(LC 20)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 6-8-10, Exterior(2) 6-8-10 to 11-1-6, Interior(1) 11-1-6 to 12-11-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=109.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-298/217, 4-6=-298/217

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=9-4-3, 3=9-4-3, 4=9-4-3 Max Horz 1=-77(LC 8) Max Uplift 1=-21(LC 12), 3=-28(LC 13) Max Grav 1=176(LC 1), 3=176(LC 1), 4=331(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-5-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=5-4-3, 3=5-4-3, 4=5-4-3 Max Horz 1=-41(LC 8) Max Uplift 1=-16(LC 12), 3=-20(LC 13) Max Grav 1=102(LC 1), 3=102(LC 1), 4=160(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

		•															DA	TE 07/	13/23	PAGE 1
Reacti	ION	Sum	nmai	ry of O	rder	•	REC	a. QUO	re da	TE	/ /				OF	RDER #	ŧ	J	0623-34	12
							ORI	DER DA	TE		06/2	29/23			QL	JOTE #	ŧ			
							DEL	IVERY	DATE		/ /				CL	ISTOM	ER ACCT	# 0	06359	
Í	T .		ROOF	& FLOOR	-		DAT	E OF I	VOIC	E	/ /				CL	JSTOM	ER PO #			
Com	Iec	cn∥⊺	RUSSE	S & BEAM	S		ORI	DERED	BY		Ton	nmy Collins			IN	VOICE	#			
Reilly Road	d Indu	strial Pa	ırk P.C). Box 4040	8		COL	JNTY			Har	nett			TE	RMS				
Fayetteville	e, N.C	. 2830	9 (91)	0) 864-TRU	S		SUF	PERINTI	ENDA	NT	Ton	nmy Collins			SA	LES R	EP	N	eil Bagç	gett
							JOE	SITE P	HONE	#	(910) 3035937			SA	LES A	REA	D	avid Lar	ndry
	ona	ld L un	nhor (Company	, 1		F.I of 10	8 South	Cree	k				10	T # 10	8 51		ith Cre	ek	
S 12C	Code			company			loor	0 0000	т.	C. Do				10	D CATI		/.			
L 120	Ceda	ar Cre						TIONO	IA	G. RU	yai			10	B CAII	LOOK	· _			
T Faye	ettev	ille, N	C 28	302	יי	ELIVERY	INSTRUC	HONS:												
<u> </u>) 483	8-0381																		
s J.W.	Sea	lev																		
I		,			s	PECIAL I	NSTRUCT	IONS:												
T I III.	ato																			
Ľ	igto	n, NC															PLAN	SEAL	DATE:	
			-															В	Y	DATE
BUILDIN	G DE	PARTI	<u>IENT</u>	OVERHAN	IG INF	FO HEEL	HEIGHT	00-	06-08	R	EQ. L/	AYOUTS	REQ.	ENG	SINEERI	NG	QUOTE	DTL	06	6/29/23
Floor Ord	er		-	END CUT	RETUR	RN											LAYOUT	DTL	06	6/29/23
			L	PLUMB	NO	GAB	E STUDS	16	IN. OC			JOBSITE 1			JOBSIT	E 1	CUTTING	DIL	06	5/29/23
FI OC)R	TRU	SSF	S LOAD	ING	TCL	-TCDL-BCLL	BCDL ST	RESS IN	ICR.	FL	OOR TRUSS	SPA	CING	3: 24.0	N. O.C	. (TYP.)			
. 200				- INFO	RMAT	1 ON 40	.0,10.0,0.0	,5.0	1.00				2.70			2.3	· · · ·/			
FLOO	R	QTY	DEF		BASE			TYPE	INT	BEAR	ING	REACTIO	NS							
PROFI	LE	PLY		U	SPAN	58/	AN LEFT	RIGHT	SIZE	LOCA	TION									
				I		1														
		1	01-0	04-00	7 02 0			I <u>Т</u>				Joint 16	Joint	17 0.lbc	Joi	nt 18 49 6 lbc	Joint 19	lbc	Joint 20) Ibc
		1	L	. 11 1	7-02-0	17-02	-00					39.3 105.	140	.9 105	. 1	40.0 105	. 140.2	105.	140.0	105.
		I I				1			I	I	1	1					1			
ΠИ		1	01-0	04-00	06-03-0			: I _ L				Joint 9	Joint 128	10 8 lbs	Joi	nt 11 50 6 lbs	Joint 12	lhe	Joint 13	} Ibe
		•	L		0-03-0	00-00						20.4 103.	120	.0 103	. 1	50.0 103	. 143.0	103.	104.0	103.
			04.0			1			1	1	1	loint 12	loint	14	loi	nt 01	loint 24	r		
		9	01-C	54-00 F1 1	7-02-0	0 17-02	2-00					930.4 lbs.	1023	14 3.9 lbs	JOI 5. 17	ni ∠ i 755.4 lbs	3. 30int 24) lbs.		
		-	-									449.7 lbs.	498	6 lbs	. 7	32.2 lbs	. 514.2	lbs.		
			01-0	04-00								Joint 14	Joint 2	22						
		1	F	1A 1	7-02-0	0 17-02	2-00	- – – –				1519.4 lbs.	1441	.1 lbs	3.					
												1090.3 lbs.	1025	5.5 lbs	3.					
				I		1	I		I	I	1									
			01-0	04-00	17_06 0		-00 I					Joint 7	Joint	12 Q lbc						
		3	r		0-00-0	0 01-06		-				207.2 lbs.	210	.9 ibs .2 lbs						
													-							
	115.11		01-0	04-00				-				Joint 1	Joint	7						
		3	F	F3 00	6-03-0	8 06-03	8-08	<u> </u>				317.4 lbs.	317	.4 lbs						
				I				-				149.8 lbs.	216	.7 lbs				-		
			01-0	01-00			Π	-				Joint 6	Joint 9	Э						
	<u></u>	1	F	G1 C	06-00-0	0 06-00	-00 💾	-				650.3 lbs.	849	4 lbs	-					
												04U.3 IDS.	810	.∠ IDS	-					
				I		1	1 —		I											
		4	01-0	01-00	16-00 0							Joint 7	Joint	10 1 lbc						
		I	г		0-00-0	00-00						536.6 lbs.	623	.+ 108 .5 lbs						
ITEM	S																			
	<u> </u>																			
QTY		ТЕМ Т	YPE		SIZE		LI	ENGTH		1	PART	NUMBER					NOTES	3		
							F	T-IN-16												

DATE 07/13/23 PAGE 2 **Reaction Summary of Order REQ. QUOTE DATE** 11 ORDER # J0623-3412 06/29/23 ORDER DATE **QUOTE #** 006359 DELIVERY DATE 11 CUSTOMER ACCT # **ROOF & FLOOR** DATE OF INVOICE 11 CUSTOMER PO # ComTech || TRUSSES & BEAMS **Tommy Collins** ORDERED BY **INVOICE #** COUNTY Harnett TERMS Reilly Road Industrial Park P.O. Box 40408 Fayetteville, N.C. 28309 (910) 864-TRUS **Tommy Collins** Neil Baggett SUPERINTENDANT SALES REP (910) 303--5937 David Landry JOBSITE PHONE # SALES AREA JOB NAME: Lot 108 South Creek LOT # 108 SUBDIV: South Creek McDonald Lumber Company SOLD D 126 Cedar Creek Road MODEL:Floor TAG: Royal JOB CATEGORY: _ DELIVERY INSTRUCTIONS: Fayetteville, NC 28302 Т О (910) 483-0381 S H I P J.W. Sealey SPECIAL INSTRUCTIONS: Т Lillington, NC PLAN SEAL DATE: DATE RY

BUILDING DEPARTMENT	OVERHA	ANG INFO	HEEL HEIGHT	00-06-08	R	EQ. I	LAYOUTS		REQ.	EN	GINEERING		QUOTE	DTL	06/29/23
Floor Order	END CUT	RETURN											LAYOUT	DTL	06/29/23
	PLUMB	NO	GABLE STUDS	16 IN. OC			JOBSITE	1			JOBSITE	1	CUTTING	DTL	06/29/23

ITEMS

QTY	ITEM TYPE	SIZE	LENGTH FT-IN-16	PART NUMBER	NOTES
			1	I	
1	Hangers, USP	HD410IF			SIMPSON (HUC410)
19	Hangers, USP	HUS 410			SIMPSON (HUS410)
2	LVL Beams (Sized)	LVL, 1-3/4" x 14" (S)	24-00-00		GDH
2	Hangers, USP	MSH422			SIMPSON (THA422)

	Client: J.W. Sealey	0	Date: 7/13/2023	Page 2 of
TisDesign	Project:	lı I	nput by: David Landry	
Ispesign	Address.	F	Project #: J0623-3412	
GDH Kerto-S	LVL 1.750" X 14.00	0" 2-Ply - PASSE	D Level: Level	
				=
• • • •	• • • • •	• • • •	• • • • •	
				·
1 SPF End Grain 0-3-8			2 SPF End Grai	n 0-3-8
<u>,</u>		10/10"		
<u>,</u>		18 10		3 1/2
1		18'10"		1
ulti-Ply Analysis				
sten all plies using 3 ro	bws of 10d Box nails (.128x3") at	12" o.c Maximum end dista	nce not to exceed 6".	
ad	0.0 % 0.0 PLF			
ld Limit per Foot	245.6 PLF			
Id Limit per Fastener	81.9 lb. 1			
ld Mode	IV			
ge Distance	1 1/2"			
ad Combination	3			
iration Factor	1.00			
otes	chemicals	6. For flat roofs provide proper drainage tr	Manufacturer Info	Comtech, Inc.
alculated Structured Designs is responsible	mily of the Handling & Installation	ponding	Metsä Wood	1001 S Reilly Rd., NC
uctural adequacy of this component bas sign criteria and loadings shown. I sponsibility of the customer and/or the co	is the 2. Refer to manufacturer's product inform tractor to concepting installation of the second s	nation	301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 (910) 864-8787
sure the component suitability of the plication, and to verify the dimensions and le	intended fastening details, beam strength values, and ads.	code	(800) 622-5850 www.metsawood.com/us	
	 Damaged Beams must not be used 			
LUMDER	4. Design assumes top edge is laterally restrained	L		

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0623-3412 Lot 108 South Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I59478565 thru I59478572

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

July 12,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the

designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 108 South Creek	
10000 0440	FT4				15	9478565
JU023-3412			1	1	Job Reference (optional)	
Comtech. Inc. Favette	ville. NC - 28314.			3.430 s Jar	6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:32 2023 Pa	ade 1

Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Jul 12 07:49:32 2023 Page 1 ID:C5NWnh8QZZzTasfLD?bt5jz_UVZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-<u>1-</u>8

Scale = 1:28.5

	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	0-8-0	12-0	0-0	13-4-0	14-8-0	16-0-0	17-2-0
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4	I-0	1-4-0	1-4-0	1-4-0	1-2-0
Plate Off	fsets (X,Y)	[1:Edge,0-1-	8], [6:0-1-8,E	dge], [23:0-1-	8,Edge], [30:	Edge,0-1-8]								
LOADIN TCLL TCDL BCLL BCDL	G (psf) 40.0 10.0 0.0 5.0	SPAC Plate Lumbo Rep S Code	CING- Grip DOL er DOL Stress Incr IRC2015/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matrix	0.06 0.01 0.03 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLAT MT20 Weig	r ES) ht: 79 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CH BOT CH WEBS	R- ORD 2x4 SI ORD 2x4 SI 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)					BRACING TOP CHOP BOT CHOP	۲D ک	Structur except e Rigid ce	al wood end vertie eiling dire	sheathing di cals. ctly applied	rectly applied or 10-0-0 oc	l or 6-0-0 bracing.	oc purlins,

2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 17-2-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

REACTIONS. All bearings 6-3-8

FIONS. All bearings 6-3-8.
(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 9, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

 		1	7-2-0			
Plate Offsets (X,Y)	[1:Edge.0-1-8], [5:0-1-8.Edge], [16:0-1-8	.Edael	7-2-0			· · ·
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.87 BC 0.65 WB 0.45 Matrix-S	DEFL. ir Vert(LL) -0.23 Vert(CT) -0.31 Horz(CT) 0.04	n (loc) l/defl L/d 3 15-16 >885 480 15-16 >665 360 4 13 n/a n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	SP No.1(flat) SP 2400F 2.0E(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheath except end verticals. Rigid ceiling directly ap	ing directly applied or 6-0-0 plied or 10-0-0 oc bracing.	oc purlins,
Max	c Grav 21=1755(LC 1), 13=930(LC 1)					
FORCES. (Ib) - Ma TOP CHORD 1-: 7-!	ax. Comp./Max. Ten All forces 250 (lb) or 21=-864/0, 2-3=-1681/0, 3-4=-2744/0, 4-5= 9=-2775/0, 9-10=-2775/0, 10-11=-1676/0	less except when shown. 2744/0, 5-6=-3197/0, 6-7=-3	3197/0,			
BOT CHORD 20	-21=0/1002, 18-20=0/2324, 17-18=0/3197, 3-14=0/1000	16-17=0/3197, 15-16=0/307	73, 14-15=0/2329,			
WEBS 2-10	21=-1334/0, 2-20=0/945, 3-20=-895/0, 3-18 -14=-908/0, 10-15=0/606, 7-15=-406/0, 7-1	=0/571, 11-13=-1331/0, 11- 6=-116/506, 6-16=-255/0, 5-	14=0/940, -18=-858/0			
NOTES- 1) Unbalanced floor 2) All plates are 3x6 3) Plates checked for	live loads have been considered for this de MT20 unless otherwise indicated. or a plus or minus 1 degree rotation about it	sign. s center.				

Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 13-21=-10, 1-12=-100 Concentrated Loads (lb)

Vert: 1=-825

			<u>17-2-0</u> 17-2-0							
Plate Offsets (X,Y)	[6:0-3-0,Edge], [7:0-3-0,0-0-0], [14:Edge	e,0-1-8], [17:0-1-8,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.69 BC 0.78 WB 0.87 Matrix-S	DEFL. ir Vert(LL) -0.28 Vert(CT) -0.39 Horz(CT) 0.08	n (loc) l/defl L/d 17 >730 480 16-17 >520 360 14 n/a n/a	H PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 114 lb FT = 20%F, 11%E					
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	LUMBER- BRACING- TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. 30T CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.									
REACTIONS. (siz Max (ze) 22=Mechanical, 14=Mechanical Grav 22=1441(LC 1), 14=1519(LC 1)									
FORCES. (lb) - Max TOP CHORD 2-3= 10-1 10-1 BOT CHORD 21-2 14- WEBS 2-22 11-1 7-17	Comp./Max. Ten All forces 250 (lb) or -2922/0, 3-4=-5150/0, 4-6=-5150/0, 6-7= 1=-5600/0, 11-12=-3093/0 2=0/1654, 19-21=0/4155, 18-19=0/6450, 15=0/1750 =-2154/0, 2-21=0/1719, 3-21=-1673/0, 3 5=-1785/0, 11-16=0/1580, 10-16=-341/0 =-254/73, 4-19=0/409, 6-19=-1959/0	less except when shown -6450/0, 7-9=-6450/0, 9-1 , 17-18=0/6450, 16-17=0/ -19=0/1321, 12-14=-2278 , 9-16=-998/0, 9-17=-176/	0=-5600/0, 6351, 15-16=0/4409, /0, 12-15=0/1822, 415,							
NOTES- 1) Unbalanced floor lii 2) All plates are MT2C 3) Plates checked for 4) Refer to girder(s) for 5) Recommend 2x6 si Strongbacks to be : 6) Hanger(s) or other Ib down at 11-0-4 7) In the LOAD CASE LOAD CASE(S) Star 1) Dead + Floor Live (Uniform Loads (plf)	ve loads have been considered for this de plates unless otherwise indicated. a plus or minus 1 degree rotation about i r truss to truss connections. rongbacks, on edge, spaced at 10-0-0 o attached to walls at their outer ends or re connection device(s) shall be provided si on top chord. The design/selection of suc (S) section, loads applied to the face of the dard balanced): Lumber Increase=1.00, Plate	esign. ts center. cc and fastened to each tri strained by other means. Ifficient to support concer ch connection device(s) is he truss are noted as fron Increase=1.00	uss with 3-10d (0.131" X htrated load(s) 564 lb dov the responsibility of othe t (F) or back (B).	3") nails. wn at 7-4-4, and 629 ers.	SEAL					

Vert: 14-22=-10, 1-13=-100 Concentrated Loads (lb)

Vert: 23=-550(F) 24=-549(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

		7-2-0)				7-6	<u>-0</u>
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [11:0-1-8	3,Edge])				0-4	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.16 WB 0.23 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.02 11-12 -0.02 11-12 0.00 7	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHOR BOT CHOR	D Structu except D Rigid c	ural wood end vertic ceiling dire	sheathing dire cals. ctly applied o	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (siz Max C	e) 12=Mechanical, 7=0-3-8 Grav 12=384(LC 1), 7=384(LC 1)							
FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 11-1 WEBS 7-9=	Comp./Max. Ten All forces 250 (lb) or -541/0, 3-4=-541/0, 4-6=-374/0, 6-7=-37 2=0/360, 10-11=0/541, 9-10=0/541 0/483, 2-12=-479/0, 2-11=0/278, 4-9=-28	less except when shown. 1/0 37/0						
NOTES								

NOTE

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

)-4-0 		<u>6-3-8</u> 5-11-8					
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge]		0110					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.21 WB 0.19 Matrix-S	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) -0.01	n (loc) 2 9 3 9 7	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) REACTIONS. (size) 7=Mechanical, 1=0-3-8 Max Grav 7=317(LC 1), 1=317(LC 1)			BRACING- TOP CHORD BOT CHORD	Struct excep Rigid	ural wood t end vert ceiling dir	sheathing dir icals. ectly applied c	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
FORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 9-10= WEBS 1-10=	Comp./Max. Ten All forces 250 (lb) or 312/0, 2-4=-329/0, 4-5=-345/0 =0/345, 8-9=0/345, 7-8=0/345 =0/406, 5-7=-451/0	less except when shown.						
NOTES- 1) Unbalanced floor live 2) Plates checked for a	e loads have been considered for this de	esign. ts center						

Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

			6-0-0			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [7:0-1-8,	Edge]	6-0-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.61 BC 0.40 WB 0.31 Matrix-S	DEFL. ir Vert(LL) -0.04 Vert(CT) -0.06 Horz(CT) 0.01	n (loc) l/defi L/d 6-7 >999 480 6-7 >999 360 6 n/a n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size Max G	e) 9=Mechanical, 6=Mechanical irav 9=849(LC 1), 6=650(LC 1)					
FORCES. (lb) - Max. TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) or 1097/0, 3-4=-1097/0	less except when shown.				

BOT CHORD 8-9=0/1097, 7-8=0/1097, 6-7=0/850

WEBS 4-6=-1036/0, 2-9=-1319/0, 4-7=0/336

NOTES-1) Unbalanced floor live loads have been considered for this design.

Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 6-9=-10, 1-5=-100

Concentrated Loads (lb) Vert: 10=-299 11=-284 12=-284

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

F			6-8-0				
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge], [11:0-1-	8,0-1-8]	6-8-0				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.28 BC 0.30 WB 0.26 Matrix-S	DEFL. in Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.01	(loc) l/defl 9-10 >999 9-10 >999 7 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz	 No.1(flat) No.1(flat) No.3(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood except end vertio Rigid ceiling dire	sheathing dire cals. ctly applied or	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 9-10: WEBS 5-7=-	Comp./Max. Ten All forces 250 (lb) of -1244/0, 3-4=-1244/0, 4-5=-1244/0 =0/914, 8-9=0/1244, 7-8=0/852 -1039/0, 2-10=-1110/0, 5-8=0/500, 2-9=1	less except when shown. 0/431, 3-9=-253/0					
NOTES- 1) Unbalanced floor liv 2) Plates checked for a 3) Refer to girder(s) for 4) Recommend 2x6 str Strongbacks to be a 5) CAUTION, Do not e	e loads have been considered for this d a plus or minus 1 degree rotation about i r truss to truss connections. rongbacks, on edge, spaced at 10-0-0 c ttached to walls at their outer ends or re rect truss backwards.	esign. ts center. oc and fastened to each tru strained by other means.	ss with 3-10d (0.131" X :	3") nails.			
LOAD CASE(S) Stan 1) Dead + Floor Live (b Uniform Loads (plf)	dard palanced): Lumber Increase=1.00, Plate	Increase=1.00					

Vert: 7-10=-10, 1-6=-100 Concentrated Loads (lb)

Vert: 2=-217 3=-217 12=-217

