

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3466728 CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE & REAR CVR'D PRCH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T30362368 thru T30362390

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

April 19,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	A1	Hip Supported Gable	2	1	T30362368 Job Reference (optional)

1)

2)

Run: 8 97 S 8 63 Feb. 9 2023 Print: 8 630 S Feb. 9 2023 MiTek Industries. Inc. Wed Apr 19 12:08:45 ID:50grVIMNJV6WdRj9He3QXQzckHt-GgLacEiFb6r1eaSI_hpRUWzOjL7BIN7wO1kp9MzPANn

Page: 1

818 Soundside Road Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	A2	Common	5	1	T30362369 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:17 ID:s5DjKfsjQPOYfuwEkSpGEHzckHD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-1-8,Edge], [1:0-0-5,Edge], [9:0-1-8,Edge], [9:0-0-5,Edge]

		-											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.92 0.82 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.61 0.12	(loc) 10-12 10-12 9	l/defl >999 >840 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 233 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.1 2x4 SP SS *Except* 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2	14-11:2x4 SP No.1	3) 4)	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); (Unobstructed Roof design slope.	7-10; Pr=20.0 psf late DOL=1.00); Pr 4.5 psf (roof snow: Category II; Exp B d slippery surface snow load has bee	(roof liv =20.0 p Lumbe Fully E en reduc	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; æd to accour	per Plate ht for					
TOP CHORD BOT CHORD	Structural wood she Rigid ceiling directly bracing.	athing directly applied applied or 10-0-0 oc	d. 5) 6)	Unbalanced design. All plates are	snow loads have b MT20 plates unle	een cor	nsidered for the	his ed.					
REACTIONS	(size) 1=0-3-8, 9 Max Horiz 1=140 (LC Max Uplift 1=-48 (LC Max Grav 1=1710 (L	9=0-3-8 C 16) S 16), 9=-48 (LC 17) LC 2), 9=1710 (LC 2)	 7) I his truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3.06-00 tall by 2-00-00 wide will fit between the bottom 										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	chord and an	y other members,	with BC	DL = 10.0pst	f.					
TOP CHORD	1-2=-2808/366, 2-4= 4-5=-2279/424, 5-6= 6-8=-2676/419, 8-9=	2676/419, 2279/424, 2808/366	10	bearing plate 1 and 48 lb u) This truss is	capable of withsta plift at joint 9. designed in accord	anding 4	8 lb uplift at j	joint					
BOT CHORD	1-15=-238/2415, 13- 12-13=-14/1637, 10- 9-10=-238/2415	-15=-142/2145, -12=-142/2145,		International R802.10.2 a	Residential Code nd referenced stan Standard	sections dard AN	s R502.11.1 a ISI/TPI 1.	and					11111
WEBS	5-12=-124/905, 6-12 6-10=-62/418, 8-10= 5-13=-124/905, 4-13 4-15=-61/418, 2-15=	2=-620/230, 262/164, 3=-620/230, 262/164	20		Sandad						N.V.	ORTHOR	NY Y
NOTES												· • · /	N 1 E
 Unbalance this design 	ed roof live loads have	been considered for								Ē		SEA	Li
2) Wind AS	CE 7-10: Vult=115mph	(3-second qust)								=		0433	25 : =

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 043325 MGINEERING AND April 19,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	A3	Roof Special	3	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:17 Page: 1 ID:6bj6EcNBjiADCZ2dFSTR1kzck8p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

View State State 0 <t< th=""><th>1-0-12 9-0-8 $10-8-10$ 16-7-8 21-4-8 28-2-4 35-3-5 1-0-12 5-8-4 1-8-2 5-10-14 4-9-0 6-9-12 7-1-1</th><th>42-9-0 7-5-11</th></t<>	1-0-12 9-0-8 $10-8-10$ 16-7-8 21-4-8 28-2-4 35-3-5 1-0-12 5-8-4 1-8-2 5-10-14 4-9-0 6-9-12 7-1-1	42-9-0 7-5-11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	7-5-11 7x10 μ βφτφώ
$ \begin{array}{c} 32.4 \\ 3 \\ 0.112 \\ 0.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>
Plate Offsets (X, Y): [2:0-5-9.0-3-0]; [3:0-9.0-3-4], [1:2:0-1-8.Edge], [1:2:0-0-5.Edge], [1:4:0-5-0.0-3-4], [2:0-9-3-10.0-4-0], [2:0-9-8.0-1-12] Loading (rsf) TCLL (roof) 20.0 Show (Ps/P) 14.52:0.0 TCDL (roof) 10.0 BCL 0.0 BCL 0.0 B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-0 42-9-0
Loading TCLL (roof) (pst) 200 Now (PsP/) Spacing 200 Now (PsP/) Spacing 200 Not (PsP/) Spacing 200 Not (PsP/) Spacing 200 Not (PsP/) Spacing 200 Not (PsP/) PLATES 244/190 CRIP MT20 PLATES 244/190 GRIP MT20 Umber DDL BCLL BCDL 0.00* 11.5 BC 0.78 Ver(CT) 0.27 12 n/a n/a DCDL 10.00 Code IRC2015/TPI2014 WB 0.89 Horz(CT) 0.27 12 n/a n/a DCD CHORD 2x4 SP No.1 IRC2015/TPI2014 WEBS 5:21=0/445, 5:20=-909/185, 9:13=-63357, 11:13=2273/161, 12:44=222-16/780, 4:21=-1383/206, 2:24=2003, 3:24=-1798/218, 2:23=22:22:24 SP S 9) This truss is designed in accordance with the 2015 International Residential Code sections RR02.11.1 and RR02.102 and referenced standard ANS/TP1 1. DCD CHORD Structural wood sheathing directly applied or 10-0 co tracking: 18-20. NTES I) Unbalanced noof live loads have been considered for this design. 9) NTES DCD CHORD 12:40-97-7223/361, 42:24-9209, 52:40 co tracking: 18-20. 11:15 FPI at DCDL=-10.09, FF co20.0pt (Tat) Verd ASCE F-10: VLI=15 FPI at DCDL=-10.09, FF co20.0pt (Tat) Verd ASCE F-10: VLI=15 FPI at DCDL=-10.09, FF co20.0pt (Tat) Verd ASCE F-10: VLI= ASCE F-10: VLI=15 FPI at DCDL=-	Plate Offsets (X, Y): [2:0-5-9,0-3-0], [3:0-0-8,0-3-4], [12:0-1-8,Edge], [12:0-0-5,Edge], [14:0-5-0,0-3-4], [20:0-3-10,0-4-0], [22:0-0-8,0-1-12]	
 LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 WEBS 2x4 SP No.3 WEBS 2x4 SP No.3 WEBS 2x4 SP No.3 BRACINO TOP CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins. BOT CHORD Structural wood sheathing directly applied or 3-00 co bracing: 18-20. WIES 1 Row at might 7-17 REACTIONS (size) 12-0-38, 24-0-3.8 Max Grav 12-1704 (LC 2), 24=1713 (LC 2) 0-100 (LC 2), 24=1704 (LC 2), 24=1713 (LC 2) 0-100 (LC 2), 24=1704 (LC 2), 24=1713 (LC 2) 0-100 (LC 2), 24=1704 (LC 2), 24=1713 (LC 2) 0-24=01/00, 22=40-100; Flore 30, 100 (LE 20 B; Flore 30, 100 (Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLA TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.88 Vert(LL) -0.26 20-21 >999 240 MT Snow (Ps/Pf) 14.5/20.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.52 20-21 >967 180 TCDL 10.0 Rep Stress Incr YES WB 0.89 Horz(CT) 0.27 12 n/a n/a BCDI 10.0 10.0 IRC2015/TPI2014 Matrix-MS We We We	ATES GRIP T20 244/190
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 	 LUMBER TOP CHORD 2x4 SP No.1 TDP CHORD 2x4 SP No.1 TOP CHORD 2x4 SP No.2 EXCEPT 1-23,23-22:2x4 SP No.2, 3-19,14-12:2x4 SP SS WEBS 2x4 SP No.3 WEDGE Right: 2x6 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2:0 oc purinis. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. Except: 9-10-10 oc bracing: 12-22 6-0-0 oc bracing: 12-22 6-0-0 oc bracing: 12-22 6-0-0 oc bracing: 12-23 6-0-0 oc bracing: 12-22 6-0-0 oc bracing: 12-20 7-17 REACTIONS (size) 12-0-3-8, 24-0-3-8 Max Upilit 12=-49 (LC 17), 24=-50 (LC 16) Max Grav 12=1704 (LC 2), 24=1713 (LC 2) (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-85/4, 2-3=-304/32, 3-4=-5108/50, 12-4=0/150, 32-324=-155/108/50, 22-233=-1304/31, 18-20234/0, 17-18==6202(5): 13-17=-232/307, 19-20=-15/113, 18-20234/0, 17-18==6202(5): 13-17=-272/3037, 19-20=-15/113, 18-20234/0, 17-18==6202(5): 13-17=-132/2064, 12-13=-245/2367 WEBS I CHORD 1-2-8-57(13/75 BOT CHORD 1-2-8-57(13/75 BOT CHORD 1-2-8-57(13/75 BOT CHORD 1-2-8-67(142): 0-2-15/13/35 BOT CHORD 1-2-8-67(142): 0-20-15/113 BOT CHORD 1-2-8-67(142): 0-20-15/113 BOT CHORD 1-2-8-67(142): 0-20-15/113 BOT CHORD 1-2-8-67(142): 0-20-15/113 BOT CHORD 1-2-8-67(142)	in accordance with the 2015 tial Code sections R502.11.1 and need standard ANSI/TPI 1. rd

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	A4	Roof Special	4	1	T30362371

Run: 8.97 S 8.63 Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Wed Apr 19 12:10:02 Page: 1 ID:6bj6EcNBjiADCZ2dFSTR1kzck8p-_g33_vfAD3gz_ZQIZ3DkezCYMnaNaTZPKAdxuqzPAMZ

	1-0-12 1-0-12 1-0-12 2-3	4-4 <u>9-0-8</u> 5-8-4 3-8	10-8-10 1-8-2	<u>16-7-8</u> 5-10-14	<u>21-4-8</u> 4-9-0	5x6=	<u>28-2-4</u> 6-9-12	+ <u>35-3</u> + 7-1-	- <u>5</u> 1		<u>41-7-0</u> 6-3-11	
11-0-8	8 8 9 0 0 1 1 2 6 6 8 % 0 0 1 0 1 0 1 1 2 3 6 8 % 0 0 1 0 1 0 1 1 2 3 1 1 2 3 1 1 2 1 1 1 2 1 1 1 1 1	3x6 = 4 24 24 x8 = 4x6 = 4x6 =	6^{12} 3x6 5 22 4x6=	= 29 = 19 = 2x4 8x10=	5x6 = 7 8 1817 31 1817 31 11 4x6= 2x4=	8 4x6= 4	30 30 3216 15 x6= 7x10 4x6=	3x4 = 9 3x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.5 0 14 3x4=	5x6 ≈ 11		3x4 II 12 + 0 13
Scale = 1:86.1	3-2 1-0-12 0-11-0 1-1 0-11-0 0-1-12 2-1	3x6 u 9-0-8 5-10-0	14 5-	1 <u>-10-8 16-5</u> 10-0 1-7 0	8x10= 17-4x8= 6-7-8 -12 -4 -4 -1-12 0-9-0	<u>25-4-8</u> 8-0-0	27-1-8 26-10-6 1 11 1-5-14 0-3-2	3 33-1-5 5-11-13		<u>4</u> 8	<u>1-7-0</u> -5-11	_
Plate Offsets (Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	X, Y): [2:0-5-9,0-3 ⁻ 0], (psf) 20.0 14.5/20.0 10.0 0.0* 10.0	[3:0-0-8,0-3-4], [15:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	, [21:0-3-10,0- /TPI2014	4 ⁴ 0), [23:0-0-8, CSI TC BC WB Matrix-MS	0-1-12] 0.79 0.81 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 21-22 -0.49 21-22 0.28 13	l/defl >999 >982 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 293	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.1 *Excep 2x4 SP No.2 *Excep 21-19,19-15,17-16:2 2x4 SP No.3 *Excep Structural wood shea 2-2-0 oc purlins, exx Rigid ceiling directly bracing, Except: 9-3-4 oc bracing: 29 6-0-0 oc bracing: 19 1 Row at midpt (lb/size) 13=1391/ 25=1464/(Max Uplift 13=-41 (L Max Grav 13=1614 ((lb) - Max. Comp./Ma (lb) or less except wl 2-3=-275/29, 3-4=-51 5-6=-2587/348, 6-29 7-29=-2389/384, 7-8 8-30=-2139/463, 9-3 9-10=-2443/393, 10- 11-12=-453/95, 12-1 24-25=-167/1364, 22 3-23=-479/4212, 22- 21-22=-306/3000, 11 16-32=-46/1525, 31- 16-32=-46/1525, 31- 14-15=-157/2001, 13	t* 10-12,6-1:2x4 SP t* 3-20:2x4 SP SS, x6 SP No.2 t* 12-13:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc -23 -21. 7-18, 11-13 Mechanical,)-3-8 .C 20) C 17), 25=-51 (LC 16 (LC 2), 25=1698 (LC ax. Ten All forces 2 hen shown. 073/578, 4-5=-3391/ =-2484/382, =-2221/465, 0=-2243/430, 11=-2535/373, 3=-338/91 3-24=-146/1334, 23=-519/4390, -7-18=-46/1525, 16=-49/1521, 3-14=-265/2267	WE No.2 2 d or 2 2 (d or 2 (1) 2) (2) (2) (3) (4) (4) (5) (6) (7) (6) (7) (8) (9)	BS 5- 4 2- 3- 4 2- 3- 2- 3- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2	$^{-22=0/447}$, 5-2 ⁻ $^{-22=0/447}$, 5-2 ⁻ $^{-22=-15/766}$, 4- $^{-25=-487/92}$, 3- $^{-24=-1613/191}$, $^{-15=-626/238}$, $^{-20=-1607/291}$, $^{-20=-1607/291}$, $^{-21=-56/1943}$, $^{-113=-2267/283}$ oof live loads h $^{7-10}$; Vult=115r ; TCDL=6.0psf; losed; MWFRS rior (2) zone; ca d vertical left an l forces & MWF $^{-1.60}$ plate grip $^{7-10}$; Pr=20.0 t d vertical left an l forces & MWF $^{-1.60}$ plate grip $^{7-10}$; Pr=20.0 t d vertical left an l forces & MWF $^{-1.60}$ plate grip $^{7-10}$; Pr=20.0 t d vertical left an l forces & MWF $^{-1.60}$ plate grip $^{7-10}$; Pr=20.0 t d vertical left an l forces & MWF $^{-1.60}$ plate grip $^{7-10}$; Pr=20.0 t d vertical left an been designer d nonconcurrer as been designer d nonconcurrer as been designer (s) for truss to anical connecti capable of with uplift at joint 13.	1=-903/18 22=-1401 25=-1757 8-15=-16 18-20=-15 8-18=-16 7-21=-11 5 ave been mph (3-see BCDL=6. (envelop antilever led dright exp. RS for rea DOL=1.3: bsf (roof lin Pf=20.0 p w: Lumbe B; Fully E e been reduce been redu	9, 9-14=-47/369 (2/15, (2/20, 3/856, 67/296, 7/987, 3/1398, considered for cond gust) 0psf; h=30ft; Ca a) exterior zone eft and right oosed; C-C for actions shown; 3 re load: Lumber sf (flat roof r DOL=1.15 Pla xp.; Ct=1.10; ced to account f nsidered for this 0 psf bottom other live loads re load of 20.0p a rectangle ween the bottom OL = 10.0psf. nections. nections.	at. 10) This Inte R80 LOAD (at. at. at. at. at. at. at. at.	a truss is o rnational 12.10.2 ar CASE(S)	design Resid Id refe Stan	And in accords ential Code s prenced stance dard	AL 325 NEFREGULIU Dril 19,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	A5	Common	2	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:18 Page: 1 ID:o6fTuwnWHxcITD60vCwA95zcjzz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 27-11-9 34-9-13 41-7-0 7-5-11 14-5-2 21-4-8 6-11-6 7-5-11 6-11-6 6-7-1 6-10-4 6-9-3 5x6 =5 3x4 🞜 3x4 👟 22 12 61 23 6 3x6 🞜 3x6 👟 3 11-0-8 5x6. 2x4 8 2 10x12 =7x10 ı 9 ______ 10_______ 4-4 ⊥ • 16 1514 24 25 1312 11 4x6 =5x6= 7x10= 4x6= 4x6= 7x10= 3x4= 5x8= 4x6 =4x6 =17-4-8 26-0-0 16-11-13 0-2-13 0-4-11 25-9-3 ||| 0-4-11 0-2-13 0-11-0 8-8-12 16-9-0 25-4-8 33-4-1 41-7-0 7-9-12 8-2-15 0-11-0 8-0-4 8-0-0 7-4-1 Scale = 1:77.1 Plate Offsets (X, Y): [1:0-1-8,Edge], [1:0-0-5,Edge], [9:Edge,0-3-8], [12:0-5-0,0-3-4], [15:0-5-0,0-3-4], [16:0-3-0,0-3-0] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.89 Vert(LL) -0.21 15-16 >999 240 MT20 244/190 Snow (Ps/Pf) 14.5/20.0 Lumber DOL 1.15 BC 0.86 Vert(CT) -0.46 15-16 >999 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.77 0.11 10 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 265 lb BCDL 10.0 FT = 20% LUMBER 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof TOP CHORD 2x4 SP No.1 *Except* 7-9:2x4 SP No.2 snow); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate 2x6 SP No.2 *Except* 1-16:2x4 SP SS, BOT CHORD DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; 12-10,16-15:2x4 SP No.2 WEBS 2x4 SP No.3 Unobstructed slippery surface Roof design snow load has been reduced to account for WEDGE Left: 2x6 SP No.2 4) slope. BRACING 5) Unbalanced snow loads have been considered for this TOP CHORD Structural wood sheathing directly applied or design. 2-2-0 oc purlins, except end verticals. 6) This truss has been designed for a 10.0 psf bottom BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord live load nonconcurrent with any other live loads. bracing. 7) * This truss has been designed for a live load of 20.0psf WEBS 1 Row at midpt 8-10 on the bottom chord in all areas where a rectangle 1=0-3-8, 10= Mechanical REACTIONS (size) 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Horiz 1=141 (LC 20) chord and any other members, with BCDL = 10.0psf. Max Uplift 1=-49 (LC 16), 10=-41 (LC 17) Refer to girder(s) for truss to truss connections. 8) Max Grav 1=1695 (LC 2), 10=1620 (LC 2) 9) Provide mechanical connection (by others) of truss to FORCES (Ib) - Maximum Compression/Maximum bearing plate capable of withstanding 41 lb uplift at joint Tension 10 and 49 lb uplift at joint 1. TOP CHORD 1-2=-2751/362, 2-4=-2623/421, 10) This truss is designed in accordance with the 2015 4-5=-2192/431, 5-6=-2157/434, International Residential Code sections R502.11.1 and and the second s 6-8=-2572/412, 8-9=-484/121, 9-10=-365/108 R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 1-11=-264/2357, 10-11=-256/2286 NORT LOAD CASE(S) Standard WEBS 2-16=-265/165, 4-16=-69/415, 4-15=-618/235, 5-15=-130/861 5-12=-134/811, 6-12=-606/225, 6-11=-66/427, 8-11=-210/168, Manual Internet 8-10=-2255/252 NOTES SEAL Unbalanced roof live loads have been considered for 043325 this design. Wind: ASCE 7-10; Vult=115mph (3-second gust)

2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.33

1)

818 Soundside Road Edenton, NC 27932

O'

mmm

April 19,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	A6	Roof Special	1	1	T30362373 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:19 ID:IyZxRGkuTXTKIyQ3ya698TzckG5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	B1	Hip Supported Gable	1	1	T30362374 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:19 ID:ej?uM83Zu88h_HuWzjQG2dzcxrt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-4-4,0-2-0], [6:0-4-4,0-2-0], [7:0-2-1,0-1-0], [8:0-2-1,0-1-0]

Scale = 1:40.9

					-	-								
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	1	0.1/20.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	10	n/a	n/a		
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL		10.0											Weight: 79 lb	FT = 20%
LUMBER				2)	Wind: ASCE	7-10; Vult=115m	ph (3-sec	cond gust)		14) Gra	phical p	urlin re	epresentation doe	es not depict the size
TOP CHORD	2x4 SP N	0.2		,	Vasd=91mpł	n; TCDL=6.0psf; E	BCDL=6.	Opsf; h=30ft; C	Cat.	or t	ne orien	tation	of the purlin alon	g the top and/or
BOT CHORD	2x4 SP N	lo.2			II; Exp B; En	closed; MWFRS (envelope	exterior zon	е	bott	om choi	rd.		
OTHERS	2x4 SP N	lo.3			and C-C Exte	erior (2) zone; car	ntilever le	ft and right		LOAD	CASE(S) Sta	Indard	
BRACING					exposed ; en	d vertical left and	right exp	osed;C-C for		1) De	ad + Sr	now (b	alanced): Lumbe	r Increase=1.15, Plate
TOP CHORD	Structura	al wood she	athing directly applie	ed or	members an	d forces & MWFR	S for rea	ctions shown;		Ind	crease=	1.00		
	10-0-0 oc	c purlins, ex	cept	0)	Lumber DOL	.=1.60 plate grip L	OOL=1.3	3		Ur	hiform Lo	oads (lb/ft)	
	2-0-0 oc	purlins (10-	0-0 max.): 4-6.	3)	i russ desigi	ned for wind loads	s in the p	ane of the tru	SS		Vert: 1-	4=-40,	4-6=-60, 6-9=-40), 17-20=-20
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 6-0-0 oc		see Standard	d Industry Gable E	End Deta	ils as applicat	, ole,					
REACTIONS	(size)	10=12-11	-0, 11=12-11-0,	4)		CE 7 10: Dr 20 0	signer as	s per ANSI/TP	11. bor					
		12=12-11	-0, 13=12-11-0,	4)		5E 7-10, PI=20.0	psi (1001 2f=20.0 n	sf (flat roof	ibei					
		14=12-11	-0, 15=12-11-0,		snow): Ps= v	aries (min roof si	1-20.0 p now=10	1 psf Lumber						
		16=12-11	-0		DOL=1.15 P	late DOL=1.00) se	e load c	ases: Categor	v II:					
	Max Horiz	16=-87 (L	C 12)		Exp B; Fully	Exp.; Ct=1.10; Un	obstruct	ed slippery	,					
	Max Uplift	10=-36 (L	C 16), 11=-87 (LC 1	7), C)	surface									
		13=-17 (L 16=-40 (L	C 13), 15=-89 (LC 1 C 17)	^{6),} 5)	Roof design	snow load has be	en reduc	ed to account	for					
	Max Grav	10-239 (1	C 38) 11–259 (I C.	48)	slope.									
		12=199 (L	_C 38), 13=310 (LC	37). 6)	Unbalanced	snow loads have	been cor	nsidered for th	is					
		14=199 (L	_C 38), 15=261 (LC	46). –	design.									
		16=240 (L	_C 38)	-// /)	Provide adec	quate drainage to	prevent	water ponding					minin	11111
FORCES	(lb) - Max	kimum Com	pression/Maximum	o) 0)	This trues ha	spaceu al 2-0-0 0	U. for a 10 () nef hottom					"TH CA	ROUL
	Tension			3)	chord live loa	ad nonconcurrent	with any	other live load	le			5	R'AL	A line
TOP CHORD	1-2=-41/1	126, 2-3=-3	9/139, 3-4=-80/142,	1()) * This truss h	has been designed	d for a liv	e load of 20.0	psf			3.		ON
	4-5=-69/9	94, 5-6=-69	/94, 6-7=-80/140,		on the bottor	n chord in all area	s where	a rectangle				5 5		A. Y -
	7-8=-34/1	136, 8-9=-4	1/123		3-06-00 tall b	y 2-00-00 wide w	ill fit betv	veen the botto	m				:21	S :
BOT CHORD	1-16=-74	/46, 15-16=	=-71/43, 14-15=-71/4	13,	chord and ar	y other members					-		SEA	. : =
	13-14=-7	2/43, 12-13	3=-72/43, 11-12=-72/	^{/43,} 1′) Provide mec	hanical connection	n (by oth	ers) of truss to)		=		JLA	· : =
WERS	6 12- 15	2/43, 9-10= 6/1 5 12_	-12/43 271/11 1 11- 156/2	,	bearing plate	capable of withst	tanding 1	7 lb uplift at jo	pint		=		0433	25 -
WEB3	3-15=-21	0/1, 3-13=-	=-177/70 7-11=-209), /97	13, 89 lb upli	ft at joint 15, 40 lb	o uplift at	joint 16, 87 lb					•	1 3
	8-10=-17	6/70	- 111/10, 1 11- 200/	.01,	uplift at joint	11 and 36 lb uplifi	t at joint	10.				- 1	N. A	0123
NOTES	5.0 11			12	() Non Standar	u pearing conditio	n. Kevie	w required.				2	K. SNGIN	FERRAS
1) Unhalance	ed roof live	loads have	been considered for	r Is	International	Residential Code	sections	R502 11 1 2	hd			11	11 MIN	E. CO'N
this desig	n.				R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.					TP 1 C	2'RE, "
													111111	in the second se
													Apr	il 19.2023

- 1) Unbalanced roof live loads have been considered for this design.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	B2	Common	2	1	T30362375 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:20 ID:LBgXbAb9XghSG2FzYzDbqvzcxrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-1-12,0-1-8], [5:0-1-12,0-1-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.40 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=-119 (LI Max Uplift 6=-6 (LC / Max Grav 6=605 (LC	athing directly applie applied or 10-0-0 or 3=0-3-8 C 10) 15), 8=-6 (LC 14) C 26), 8=605 (LC 25	5) 6) c 7) 8)) LC	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate and 6 lb uplif This truss is International R802.10.2 ar DAD CASE(S)	is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, hanical connection e capable of withsta it at joint 6. designed in accord Residential Codes and referenced stand Standard	or a 10.0 vith any for a liv where l fit betw with BC (by oth anding 6 ance w sections dard AN	D psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss i lb uplift at jc ith the 2015 c R502.11.1 a ISI/TPI 1.	ids. Opsf om f. io int 8					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-343/11, 2-3=-55 4-5=-343/11	53/78, 3-4=-553/78,											
BOT CHORD	1-8=-2/360, 7-8=0/36 5-6=-2/360	60, 6-7=0/360,											
WEBS	3-7=0/295, 2-8=-548	3/308, 4-6=-548/308											
NOTES													LL
1) Unbalance	ed roof live loads have	been considered fo	r									""TH CA	RO
this design	ו. רב 7-10י \/ult−115mph	(3-second quet)									Nº.	RA	· · · · · ·

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	B3	Common Girder	1	2	T30362376 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:20 ID:zq3Ch3gw83WQxJ_fa2AwXHzcjtf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46

Plate Offsets (X, Y): [5:0-0-0,Edge], [7:Edge,0-0-0], [7:0-0-0,0-0-0], [8:0-5-0,0-6-0], [9:0-5-0,0-6-0]

Loading TCLL (roof) Snow (Ps/Pf)	(psf) 20.0 10.1/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.60 0.35	DEFL Vert(LL) Vert(CT)	in -0.06 -0.12	(loc) 8-9 8-9 7	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2015	5/TPI2014	Matrix-MS	0.77	11012(01)	0.02	,	n/a	n/a	Weight: 211 lb	FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS SLIDER BRACING TOP CHORE BOT CHORE FORCES TOP CHORE BOT CHORE WEBS	 2x4 SP No.2 2x8 SP DSS 2x4 SP No.3 Left 2x6 SP No.2 2-5-0 Structural wood she 4-5-11 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=-104 (I Max Uplift 1=-168 (I Max Grav 1=5557 ((Ib) - Maximum Con Tension 0 1.3=-5666/211, 3-4: 4-5=-5226/285, 5-7: 1-9=-151/4222, 8-9: 4-9=-226/3706, 3-9: 5-8=-57/324 	2-5-0, Right 2x6 SP I athing directly applie applied or 10-0-0 oc 7=0-3-8 C 29) C 10), 7=-151 (LC 1 LC 2), 7=5052 (LC 2) pression/Maximum =-5442/292, =-5456/203 =-70/2891, 7-8=-108/ =-57/313, 4-8=-210/3	3) 4) No.2 d or 5) 5 (1) 7) 8) (4056 9) 245, 10	Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp B; En cantilever lef right exposed TCLL: ASCE DOL=1.15 PI snow); Ps=10 DOL=1.00); (Unobstructed Roof design slope. This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate joint 1 and 15	roof live loads hav 7-10; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (it t and right expose d; Lumber DOL=1 7-10; Pr=20.0 psi late DOL=1.00); P 0.1 psf (roof snow Category II; Exp B d slippery surface snow load has been ad nonconcurrent thas been designed n chord in all area by 2-00-00 wide with y other members. hanical connection c capable of withst 51 lb uplift at joint designed in accon	ve been of con (3-sec CCDL=6.0 CCDL=0.0	considered for cond gust) psf; h=30ft; e) exterior zon ertical left an grip DOL=1. e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accoun 0 psf bottom other live loa e load of 20.0 a rectangle ween the bottw ers) of truss t 68 lb uplift at ith the 2015	or Cat. ne; dd 33 Jer Plate Plate dt for uds. Dpsf om to t	Co	Vert: 1-4 oncentra Vert: 8= 20=-138	4=-40, ted Lo. -1391 36 (B),	4-7=-40, 10-14=- ads (lb) (B), 18=-1386 (B 21=-1386 (B), 22	20 , 19=-1386 (B), =-1391 (B)	,
 2-ply trus (0.131*x: Top choi oc. Bottom c staggere Web con Except n All loads except if CASE(S) provided unless of 	s to be connected toge 3") nails as follows: ds connected as follow hords connected as follow d at 0-7-0 oc. nected as follows: 2x4 member 5-8 2x4 - 2 rows are considered equally noted as front (F) or ba section. Ply to ply con to distribute only loads herwise indicated.	ther with 10d s: 2x4 - 1 row at 0-9- ows: 2x8 - 3 rows - 1 row at 0-9-0 oc, s staggered at 0-9-0 oc applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	0 11, oc. AD 1)	International R802.10.2 ar Hanger(s) or provided suff Ib down and up at 3-0-11 1594 Ib dowr and 53 Ib up at 11-0-11 o such connec DAD CASE(S) Dead + Snc Increase=1. Uniform Loa	Residential Code nd referenced star other connection icient to support of 53 lb up at 1-7-12 , 1594 lb down an n and 53 lb up at at 9-0-11, and 16 n bottom chord. T tion device(s) is th Standard w (balanced): Lur .00 ads (lb/ft)	sections ndard AN device(s concentra 2, 1594 II d 53 Ib u 7-0-11, a 500 Ib do The desig ne respon-	R 502.11.1 a ISI/TPI 1.) shall be ated load(s) 1 o down and 5 Ip at 5-0-11, and 1600 lb d wn and 53 lb gn/selection c hsibility of oth rease=1.15, l	and 594 53 lb own oup of ners. Plate			N. P. P.	SEA 0433	L 25 PREGATION	And

April 19,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	D1	Monopitch Structural Gable	1	1	T30362377 Job Reference (optional)

Scale = 1:33.1

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

WEDGE

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

DOL=1.33

WEBS

NOTES 1)

Tension

2-12=-27/51

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for

reactions shown; Lumber DOL=1.60 plate grip

(Ib) - Maximum Compression/Maximum

1-2=-109/59, 2-3=-108/70, 3-4=-71/48,

1-12=-131/102, 11-12=-36/40, 10-11=-36/40,

4-5=-57/36, 5-6=-45/41, 6-7=-73/34

9-10=-36/40, 8-9=-36/40, 7-8=-36/40

5-8=-93/29, 4-9=-206/92, 3-11=-217/128,

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:20 ID:E7FL3vvfi3JtDBg3mJMH?Vzcy3?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 6 lb uplift at joint 7, 68 lb uplift at joint 1, 11 lb uplift at joint 8, 278 lb uplift at joint 9 and 227 lb uplift at joint 10. 10) This truss is designed in accordance with the 2015

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	D2	Monopitch	4	1	T30362378 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:21 ID:N3H5vgvnc3DK7iMzUAKDjVzcy0P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-0-12 12-10-8 8-0-12 4-9-12

Page: 1

Scale = 1:37.4

Plate Offsets (X, Y): [1:0-4-7,Edge], [1:0-0-0,1-8-12]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014 Unbalanced	CSI TC BC WB Matrix-MS	0.51 0.42 0.09 been cor	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.13 0.00	(loc) 5-10 5-10 1	l/defl >819 >733 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Max Horiz 1=102 (LC Max Uplift 1=-70 (LC 5=-133 (L Max Grav 1=323 (LC 5=620 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-1-8, 5=0-3-8 C 15) C 12), 4=-4 (LC 16), C 12) C 2), 4=149 (LC 23), C 23)	5) 6) d or : 7) 8) 9)	design. This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearing at jo using ANSI/T designer sho Provide mecl bearing plate Provide mecl bearing plate point 5, 70 lb This truss is	s been designed f ad nonconcurrent has been designed in chord in all area by 2-00-00 wide wi y other members. int(s) 4 considers TPI 1 angle to grai uld verify capacity hanical connection e at joint(s) 4. hanical connection e capable of withst uplift at joint 1 and designed in accor	for a 10.0 with any d for a liv is where ill fit betv parallel t n formula v of beari n (by oth canding 1 d 4 lb upl dance w) psf bottom other live loa e load of 20.1 a rectangle ween the bott o grain value a. Building ng surface. ers) of truss f a3 lb uplift at ift at joint 4.	ids. Opsf om to to t					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-120/71, 2-3=-7 1-5=-132/105, 4-5=- 2-5=-447/208	pression/Maximum 4/35, 3-4=-127/42 34/49	LC	International R802.10.2 ar	Residential Code nd referenced star Standard	sections	ISI/TPI 1.	and				amuu	900.
NOTES 1) Wind: AS(Vasd=91n II; Exp B; and C-C E exposed; reactions DOL=1.33 2) TCLL: AS DOL=1.15 snow); Ps DOL=1.00 Unobstruc 3) Roof desig slope.	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig C-C for members and for shown; Lumber DOL=' CE 7-10; Pr=20.0 psf (5 Plate DOL=1.00); Pf= =18.7 psf (roof snow: L b); Category II; Exp B; for the slippery surface gn snow load has been	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed; porch le orces & MWFRS for 1.60 plate grip roof live load: Lumbe 20.0 psf (flat roof Lumber DOL=1.15 Pl Fully Exp.; Ct=1.10; n reduced to account	Cat. e eft er late for								Philippine Philippine	SEA 0433	EEREGATION

- DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

mmm

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	D3	Monopitch	10	1	T30362379 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:21 ID:JF_81oY17Lup_rv95oneNgzcy?a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-4-8 6-11-0 1-4-8 5-6-8 2x4 🛛 12 3 Г 2 0 8 1-9-2 2-0-10 0-8-0 0-3-8 3 2x4 II 3x4 =

> 0.19 ∟ 12

Scale = 1:29.1

Plate Offsets (X, Y): [1:0-6-3,0-0-3]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.54 0.34 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.10 0.00	(loc) 3-7 3-7 1	l/defl >999 >851 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; I and C-C E exposed ; members : Lumber 0 2) TCLL: ASC DOL=1.15 snow); Ps: DOL=1.00 Unobstruc 3) Roof desig slope. 4) Unbalance design. 5) This truss chord live	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=0-5-8, 3 Max Horiz 1=54 (LC Max Uplift 1=-22 (LC Max Grav 1=326 (LC (Ib) - Maximum Com Tension 1-2=-59/39, 2-3=-16 1-3=-45/90 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (or ixterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf () Plate DOL=1.00); Pf= =18.7 psf (roof snow: L); Category II; Exp B; f ted slippery surface gn snow load has been ed snow loads have been has been designed for load nonconcurrent with	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-1-8 15) (12), 3=-21 (LC 16) (2), 3=-28 (LC 23) pression/Maximum 5/87 (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed; C-C for for reactions shown; uL=1.33 roof live load: Lumbe :20.0 psf (flat roof umber DOL=1.15 PI Fully Exp.; Ct=1.10; a reduced to account en considered for thi r a 10.0 psf bottom th any other live load:	 6) * This truss on the botto: 3-06-00 tall chord and a 7) Bearing at j using ANSL designer sh 8) Provide me bearing plat 9) Provide me bearing plat 1 and 21 lb 10) Beveled pla surface with 11) This truss is Internationa R802.10.2 a LOAD CASE(S) tat. ee for s sis. 	has been designe om chord in all area by 2-00-00 wide v iny other members oint(s) 1, 3 conside TPI 1 angle to gra ould verify capacit chanical connectic te at joint(s) 3. chanical connectic te capable of withs uplift at joint 3. te or shim require to truss chord at join s designed in acco il Residential Code and referenced sta) Standard	d for a liv as where will fit betw s. ers paralle in formula ty of bearion (by oth- bon (by oth- standing 2 d to provio nt(s) 1. ordance w e sections andard AN	e load of 20.0 a rectangle veen the bott el to grain val a. Building ng surface. ers) of truss i ers) of truss i 2 lb uplift at j de full bearin th the 2015 R502.11.1 a SI/TPI 1.	Upsf om lue to to joint g and			Part Part Part Part Part Part Part Part	SEA 0433	ROLUNIUM L 25 PREGAMINI	

April 19,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	D4	Monopitch	1	1	T30362380 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:21 ID:SqNI1UXq3E6JClcjLJke9lzcy_J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 6-11-0 2x4 II 12 3 Г 2x4 II 3 2 b 9 e 2-0-10 2-0-10 0 <u>4</u> 4 5 2x4 u 2x4 II 3x4 =

6-11-0

|--|

Plate Offsets (X, Y): [1:0-6-3,0-0-4]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 1	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=91r II; Exp 8; and C-C E exposed ; members Lumber D Lumber D 2) Truss de: only. For see Stanc or consult	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=6-0-0, 4 Max Horiz 1=54 (LC Max Uplift 1=-10 (LC 8=-10 (LC Max Grav 1=227 (LC (LC 22), 8 (lb) - Maximum Com Tension 1-2=-66/45, 2-3=-33, 1-5=-25/26, 4-5=-24, 2-5=-220/121 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Enclosed; MWFRS (or Enclosed; MWFRS (can and forces & MWFRS OL=1.60 plate grip DO signed for wind loads in studs exposed to wind lard Industry Gable En- qualified building design	athing directly applie cept end verticals. applied or 10-0-0 oc 4=6-0-0, 5=6-0-0, 8= 15), 8=54 (LC 15) 12), 5=-35 (LC 16), 12), 5=-35 (LC 22), 5 =227 (LC 2) pression/Maximum /23, 3-4=-26/15 /26 (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.33 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	3) d or 5) 6-0-0 7) 8) =301 9) 10 11 cat. e ss le, 11.	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00;; Unobstructer Roof design slope. Unbalanced design. Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 35 lb upliff)) N/A) This truss is International R802.10.2 at	7-10; Pr=20.0 p: late DOL=1.00); 8.7 psf (roof snot Category II; Exp d slippery surface snow load has be snow loads have spaced at 2-0-0 d s been designed at nonconcurrent nas been designed n chord in all are by 2-00-00 wide v y other members hanical connection capable of withs at joint 5 and 10 designed in accoor Residential Code nd referenced sta Standard	sf (roof liv Pf=20.0 p w: Lumber B; Fully E e en reduc e been cor oc. f for a 10.0 t with any ad for a liv d for a liv as where will fit betw s. on (by oth standing 1 0 b uplift a ordance wi e sections andard AN	e load: Lumb of (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accoun isidered for th 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 0 lb uplift at ji t joint 1. th the 2015 R502.11.1 a ISI/TPI 1.	er 'late t for his ds. psf om o pint			Print	SEA 0433	ROUNNEL 25 EERCANI	

- and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0 mmm April 19,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	D5	Monopitch	1	1	T30362381 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:21 ID:Xia7QZzYUIYfRL2YAkM?LMzcxx9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 1-4-8
 3-6-4
 5-6-4

 1-4-8
 2-1-12
 2-0-0

Scale = 1:36.2

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.08 0.11 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 5=5-6-4 8=5-6-4 Max Horiz 9=80 (Li Max Uplift 5=-3 (Li (LC 16), Max Grav 5=63 (Li 7=132 ((LC 15))	pt* 1-9:2x4 SP No.2 eathing directly applied xcept end verticals. y applied or 10-0-0 oc 6=5-6-4, 7=5-6-4, 9=5-6-4 C 13) : 16), 6=-18 (LC 16), 7: 8=-34 (LC 13) C 22), 6=181 (LC 22), .C 2), 8=26 (LC 7), 9=4	3) d or 4) 5) 6) 7) =-28 8) 9) 36 10	TCLL: ASCE DOL=1.15 P snow); Ps=1: DOL=1.00); 0 Unobstructer Roof design slope. Unbalanced design. Gable require Truss to be f braced again Gable studs This truss ha chord live loa) * This truss f on the bottor	7-10; Pr=20.0 psf ate DOL=1.00); Pf= 8.7 psf (roof snow: Category II; Exp B; d slippery surface snow loads have be snow loads have be es continuous botto ully sheathed from st lateral movemer spaced at 2-0-0 oc. s been designed fo ad nonconcurrent w has been designed in chord in all areas w 2-00-00 wide will	(roof liv =20.0 p Lumber Fully E n reduc een cor one fac it (i.e. d r a 10.0 ith any for a liv where it bet	e load: Lumb sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accour isidered for th d bearing. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle	her Plate his his his his his his his his his his					
FORCES	(lb) - Maximum Co	mpression/Maximum		3-06-00 tall t chord and ar	y 2-00-00 wide will y other members.	fit betv	een the bott	om					
TOP CHORD	1 ension 1-2=-30/19, 2-3=-4 4-5=-48/32, 1-9=-5	8/33, 3-4=-31/25, 7/33	11) Bearing at jo using ANSI/1 designer sho	int(s) 7 considers p PI 1 angle to grain uld verify capacity	arallel t formula of beari	o grain value a. Building ng surface.	•					

- BOT CHORD 8-9=-81/60, 7-8=0/0, 2-7=-113/117, 6-7=-30/30, 5-6=-30/30 WEBS 3-6=-134/82
- NOTES
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 5, 34 lb uplift at joint 8, 28 lb uplift at joint 7 and 18 lb uplift at joint 6.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 5, 6.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	D6	Monopitch	4	1	T30362382 Job Reference (optional)

5-6-4

12 3 □

3x4 =

1

5

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Scale = 1:29.7 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WEBS

NOTES

1)

TOP CHORD

BOT CHORD

BRACING

Snow (Ps/Pf)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:22 ID:Tk3I?AzU1o5Q_aCbppNYTszcxyS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

2

0

3-3-0 3-6-8 1-10-7 -3-8 4 3 2x4 II 3x4 = 0-1-8 5-6 5-4-12 0-1-8 5-3-4 0-1-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.54 Vert(LL) -0.04 3-4 >999 240 MT20 BC 0.34 Vert(CT) 18.7/20.0 1 15 Lumber DOL -0.09 3-4 >700 180 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 3 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 Weight: 31 lb * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 2x4 SP No.2 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 2x4 SP No.3 *Except* 1-4:2x4 SP No.2 7) Bearing at joint(s) 4, 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building Structural wood sheathing directly applied or designer should verify capacity of bearing surface. 6-0-0 oc purlins, except end verticals. Provide mechanical connection (by others) of truss to 8) Rigid ceiling directly applied or 10-0-0 oc bearing plate at joint(s) 4, 3. bracing. Provide mechanical connection (by others) of truss to 9) (size) 3=0-1-8, 4=0-1-8 bearing plate capable of withstanding 17 lb uplift at joint Max Horiz 4=95 (LC 13) 4 and 18 lb uplift at joint 3. Max Uplift 3=-18 (LC 13), 4=-17 (LC 12) 10) This truss is designed in accordance with the 2015 Max Grav 3=212 (LC 23), 4=209 (LC 2) International Residential Code sections R502.11.1 and (Ib) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. Tension LOAD CASE(S) Standard 1-2=-69/58, 2-3=-160/101, 1-4=-157/95 3-4=-151/119 1-3=-89/127 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for JOR members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope
- 4) Unbalanced snow loads have been considered for this design
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

GRIP

244/190

FT = 20%

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	E1	Common Supported Gable	1	1	T30362383 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:22 ID:Phvo0_u8dFAozTXWx2n926zPBJq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40

Plate Offsets (X, Y): [1:0-5-11,0-0-0], [9:0-5-11,0-0-0]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	18	(psf) 20.0 3.7/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.14 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 25	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 87 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilin	0.2 0.2 0.3 wood shea urlins. ng directly	athing directly applied	d or	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpt II; Exp B; En and C-C Extt exposed ; en members an	roof live loads have 7-10; Vult=115mpl n; TCDL=6.0psf; BC closed; MWFRS (e erior (2) zone; canti d vertical left and r d forces & MWFRS	e been o h (3-sec CDL=6.0 nvelope ilever le ight exp 5 for rea	considered for cond gust) Dpsf; h=30ft; C e) exterior zon ft and right oosed;C-C for ctions shown	Cat. lie	12) This Inte R80 LOAD C	truss is rnationa 2.10.2 a CASE(S)	desig I Resid and ref Sta	ined in accordani dential Code sec ierenced standar ndard	ce with the 2015 tions R502.11.1 and d ANSI/TPI 1.
REACTIONS	ACTIONS (size) 1=20-11-0, 9=20-11-0, 10=20-11-0 11=20-11-0, 12=20-11-0, 10=20-11-0 11=20-11-0, 12=20-11-0, 13=20-11-0, 13=20-11-0, 15=20-11-0, 16=20-11-0, 17=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-11-0, 20=20-12, 10=20, 10				 Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Ps=1: DOL=1.00); Punobstructee Roof design slope. 	Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for								
		10=343 (L 12=219 (L 15=219 (L 17=343 (L 25=257 (L	C 35), 11=101 (LC 2), C 35), 13=90 (LC 2), C 22), 16=101 (LC 2), C 22), 16=101 (LC 2), C 34), 20=257 (LC 2), C 2)	23), , 22), 2),	 Unbalanced design. Gable studs This truss ha chord live loa * This trusc has the study of the st	snow loads have b spaced at 2-0-0 oc s been designed fo ad nonconcurrent w	een cor c. or a 10.0 vith any	D psf bottom other live load	lis ds.			A.C.	ORTH CA	ROLIN
FORCES	(lb) - Maxi	mum Com	pression/Maximum		on the bottor	n chord in all areas	where	a rectangle	ipsi		-		1	K: 3
TOP CHORD	Tension 1-2=-134/5 4-5=-122/5 7-8=-130/5	52, 2-3=-13 84, 5-6=-12 53, 8-9=-13	30/53, 3-4=-114/66, 22/84, 6-7=-114/66, 34/52		3-06-00 tall b chord and an 10) Provide med	y 2-00-00 wide will y other members. hanical connection	l fit betv (by oth	veen the botto ers) of truss to	om D		THE P		SEA 0433	L 25
BOT CHORD	1-17=-49/ [*] 13-15=0/1 10-11=0/1	102, 16-17 02, 12-13= 02 9-10=-	=0/102, 15-16=0/102 0/102, 11-12=0/102, 31/102	<u>2,</u>	1, 15 lb uplift at joint 16, 4	at joint 9, 21 lb up l lb uplift at joint 17	lift at joi 7, 21 lb i	nt 15, 5 lb upl uplift at joint 1	ift 2, 6			T. K		EFR Z
WEBS	5-13=-54/3 2-17=-240 8-10=-240	3, 4-15=-17 //87, 6-12= //87	70/53, 3-16=-91/30, -170/53, 7-11=-91/30	0,	joint 1 and 1 N/A	5 lb uplift at joint 9.	i joint 10	, ו∠ סו µlift a	al			11	KIP J. (D'REGUIN

April 19,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	E2	Common	6	1	T30362384 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:22 ID:xgm86CGWsGcAkTZXu7rzx8zPBKe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

Plate Offsets	(X, Y): [1:0-3-7,0-0-2],	[1:0-0-4,Edge], [5:0-	-3-7,0-0-2],	, [5:0-0-4,Edge	e]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.59 0.64 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.30 0.06	(loc) 6-8 6-8 5	l/defl >999 >893 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp B; and C-C E exposed ; members Lumber D	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 3-4-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 5 Max Horiz 1=-37 (LC Max Uplift 1=-41 (LC Max Grav 1=907 (LC (lb) - Maximum Com Tension 1-2=-2220/298, 2-3= 3-4=-1988/238, 4-5= 1-8=-249/2122, 6-8= 5-6=-249/2122 3-6=0/527, 4-6=-349 2-8=-349/128 ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantile end vertical left and rig and forces & MWFRS ' VOL=1.60 plate grip DO	athing directly applie applied or 10-0-0 oc i=0-3-8 21) 12), 5=-41 (LC 13) 2), 5=907 (LC 2) pression/Maximum -1988/238, -2220/298 -151/1525, /128, 3-8=0/527, been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right the exposed; C-C for for reactions shown; L=1.33	3) ed or 5) 5 6) 7) 8) 9) LC Cat. e	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructe Roof design slope. Unbalanced design. This truss ha chord live lo: * This truss Is on the botton 3-06-00 tall I chord and an Provide mec bearing plate 1 and 41 lb u This truss is International R802.10.2 a DAD CASE(S)	7-10; Pr=20.0 psi late DOL=1.00); P 8.7 psf (roof snow Category II; Exp B d slippery surface snow load has bee snow loads have I as been designed f ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide win y other members. chanical connection e capable of withst uplift at joint 5. designed in accom Residential Code nd referenced star Standard	f (roof liv f=20.0 p : Lumbe ; Fully E en reduc been cor for a 10.0 with any f for a liv s where and for a liv s where ill fit betw h (by oth anding 4 dance w sections indard AN	e load: Lumk sf (flat roof DOL=1.15 xp.; Ct=1.10 ed to accour isidered for t) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 1 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1.	per Plate ; nt for his ads. Opsf to joint and			North States and State	SEA 0433	ROWAR 25 EEERCA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	S1	Common Supported Gable	1	1	T30362385 Job Reference (optional)

Run: 8.97 S 8.63 Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Wed Apr 19 12:13:43 ID:SDiDsSdNABLqqSdIVZYB_zZ5?9-0BvcMTKoAzWc?Xpm?_gZ6ZsUltALserx82f79WzPAJ6

Page: 1

0-10-8	12-10-8	13-9-0
0-10-8	12-0-0	0-10-8

Scale = 1:30.1

Loading FCLL (roof) Snow (Ps/Pf) FCDL	(psf) 20.0 5.5/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES		CSI TC BC WB	0.08 0.09 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
3CLL BCDL	0.0* 10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 53 lb	FT = 20%
CUMBER TOP CHORD 30T CHORD DTHERS 3RACING TOP CHORD 30T CHORD COP CHORD (Ib) - FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. All bearings 12-0-0. e Max Horiz 13=-30 (L Max Uplift All uplift 1 8, 9, 10, 1 Max Grav All reactio (s) 8, 9, 11 (lb) - Max. Comp./Mi (lb) or less except w	athing directly appli applied or 6-0-0 oc xcept 8=0-3-8, 14=(C 17) 00 (lb) or less at joi 2, 13, 14 ns 250 (lb) or less a 0, 11, 12, 13, 14 ax. Ten All forces hen shown.	6) 7) 8) ed or 9) 0-3-8 10 nt(s) 11 at joint 250 LC	Unbalanced design. Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate joint(s) 12, 11) This truss is International R802.10.2 ar DAD CASE(S)	snow loads have to spaced at 2-0-0 or is been designed ad nonconcurrent has been designed in chord in all areas by 2-00-00 wide wi by other members. hanical connectior o capable of withsta 3, 10, 9, 8, 14. designed in accord Residential Code ind referenced star Standard	been cor c. or a 10.0 with any I for a liv s where II fit betv h (by oth anding 1 dance w sections idard AN	sidered for t o psf bottom other live loze e load of 20.1 a rectangle veen the bott ers) of truss i 00 lb uplift a th the 2015 R502.11.1 a SI/TPI 1.	his ads. Opsf om t t and					
 Unbalance this design Wind: ASC 	d roof live loads have E 7-10; Vult=115mph	been considered fo (3-second gust)	or Oct										

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=5.5 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

 Roof design snow load has been reduced to account for slope.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	S2	Common	5	1	T30362386 Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:23 ID:dXH5Tn8IbuJV1Iac9AqpMYzZ5?n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	0-10-8	6-10-8	12-10-8	13-9-0
	0-10-8	6-0-0	6-0-0	0-10-8

Scale = 1:30.1

Plate Offsets (X, Y): [1:Edge,0-0-14], [1:0-2-5,Edge], [3:Edge,0-0-14], [3:0-2-5,Edge]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GR TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.35 Vert(LL) -0.04 4-14 >999 240 MT20 244 Snow (Ps/Pf) 17.2/20.0 Lumber DOL 1.15 BC 0.28 Vert(CT) -0.05 4-14 >999 180 MT20HS 187 TCDL 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.01 3 n/a n/a BCDL 10.0 IRC2015/TPI2014 Matrix-MS Weight: 52 lb FT	IP 4/190 7/143
TCDL 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.01 3 n/a n/a BCLL 0.0* Code IRC2015/TPI2014 Matrix-MS Matrix-MS Weight: 52 lb ET	
Weight 02 ib 11	= 20%
 LUMBER TOP CHORD 2x4 SP No.2 A Roof design snow load has been reduced to account for slope. Unbalanced anow loads have been considered for this design. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a loo get bottom chord live load on concurrent with any other live loads. This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 ce purifis. This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. This truss is designed in accordance with the 2015 Intermational Residential code sections R502.11.1 and R802.10.2 and referenced standard ANS//TP11. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Yult=115mph (3-second gust) Vasd=91 mph; TCDL=6.0psf; h=30ft; Cat. II; Exp B: Enclosed: MWFRS for sections and forces & MWFRS for reactions show; Lumber DDL=1.60 plate gip DDL=1.33 TCLL: ASCE 7-10; Yult=115mph (3-second gust) Vasd=91 mph; TCDL=6.0psf; h=200 psf (fid troof sonow); Ese 7-12, psf (roof show; Lumber DDL=1.60 plate gip DDL=1.33 TCLL: ASCE 7-10; Yult=115mph (3-second gust) Yunobstrucked slippery surface 	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 19,2023

in J. Chin O'F

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	VB1	Valley	1	1	T30362387 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:23 ID:arbED?u8QXFqhzEdb4flxTzcxs6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-1-13

			-
Scale	= '	1.40	2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	20.0	Plate Grip DOL	1.00		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	10.1/2	20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	1	0.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC20	5/TPI2014	Matrix-MS								
BCDL	1	0.0											Weight: 45 lb	FT = 20%
LUMBER				4) TCLL: ASCE	7-10; Pr=20.0	psf (roof liv	e load: Lumb	ber					
TOP CHORD	2x4 SP No.2				DOL=1.15 F	late DOL=1.00)	; Pf=20.0 p	sf (flat roof						
BOT CHORD	2x4 SP No.2				snow); Ps=1	0.1 psf (roof sno	ow: Lumbe	r DOL=1.15 F	Plate					
OTHERS	2x4 SP No.3				DOL=1.00);	Category II; Exp	B; Fully E	xp.; Ct=1.10;						
BRACING				_	Unobstructe	d slippery surfac	ce .							
TOP CHORD	Structural woo	od shea	thing directly applie	dor ⁵) Roof design	snow load has l	been reduc	ed to accour	nt for					
	6-0-0 oc purlir	ns.		6	Siope.	os continuous h	ottom chor	d booring						
BOT CHORD	Rigid ceiling d	directly a	applied or 10-0-0 oc	; 0 7	Gable requir	spaced at 4-0-0		u bearing.						
	bracing.			, 8	This truss ha	s heen designe	d for a 10	0 nsf hottom						
REACTIONS	(size) 1=1	11-1-13,	5=11-1-13, 6=11-1	-13, °	chord live lo	ad nonconcurre	nt with any	other live loa	ids.					
	/=1 Max Hariz 1	11-1-13, 97/10	8=11-1-13	9) * This truss	has been desigr	ned for a liv	e load of 20.	0psf					
	Max Unlift 1-	22 (LC	10) 12) 5 - 11 (1 C 12)		on the botto	m chord in all ar	eas where	a rectangle						
	6=-	96 (LC	15) 8=-99 (I C 14)		3-06-00 tall	by 2-00-00 wide	will fit betw	veen the bott	om					
	Max Grav 1=6	52 (LC 2	26), 5=48 (LC 28), 6	i=310 .	chord and a	ny other membe	rs.							
	(LC	26), 7=	=231 (LC 2), 8=313	(LC 1	 Provide med booring plat 	hanical connect	ion (by oth	ers) of truss	t0 ioint					
	25)				1 11 lb unlif	t at joint 5 00 lb	uplift at ioi	int 8 and 96 l	b					
FORCES	(lb) - Maximur	n Comp	pression/Maximum		uplift at joint	6.	upint at joi		0					
	Tension			1	1) This truss is	designed in acc	ordance w	ith the 2015						
TOP CHORD	1-2=-106/85, 2	2-3=-14	6/82, 3-4=-145/78,		International	Residential Co	de sections	R502.11.1 a	and					
	4-5=-87/56				R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
BOT CHORD	1-8=-29/68, 7-	-8=-17/6	68, 6-7=-17/68,	L	OAD CASE(S)	Standard								r.,
WEDO	5-6=-32/68	0 777	172 4 6 275/172										11111 00	1111
WED3	3-7=-143/0, Z-	-0=-277	/1/3, 4-0=-2/3/1/2									4	"TH UA	50,11
NOTES													n	1 SIA

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	VB2	Valley	1	1	T30362388 Job Reference (optional)

4-4-8

4-4-8

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Scale = 1:31.7 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

1)

2)

3)

NOTES

TOP CHORD

BOT CHORD

this design

Snow (Ps/Pf)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:23 ID:pI7CXGn7I4Eykld57OWtcnzcxsE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x6 =

8-4-14

4-0-6

Page: 1

2 3-8-0 12 10 Г 3 4 3x4 🍫 2x4 ı 3x4 💊 8-9-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.26 Vert(LL) n/a n/a 999 MT20 244/190 BC 1 15 0.23 10 1/20 0 Lumber DOL Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.13 Horiz(TL) 0.00 3 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 Weight: 33 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2x4 SP No.2 snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied or slope. 8-9-0 oc purlins. Gable requires continuous bottom chord bearing. 6) Rigid ceiling directly applied or 6-0-0 oc 7) Gable studs spaced at 4-0-0 oc. bracing. 8) This truss has been designed for a 10.0 psf bottom (size) 1=8-9-0, 3=8-9-0, 4=8-9-0 chord live load nonconcurrent with any other live loads. Max Horiz 1=-67 (LC 10) 9) * This truss has been designed for a live load of 20.0psf Max Uplift 1=-27 (LC 30), 3=-27 (LC 29), on the bottom chord in all areas where a rectangle 4=-55 (LC 14) 3-06-00 tall by 2-00-00 wide will fit between the bottom 1=61 (LC 29), 3=61 (LC 30), 4=655 Max Grav chord and any other members. (LC 2) 10) Provide mechanical connection (by others) of truss to (lb) - Maximum Compression/Maximum bearing plate capable of withstanding 27 lb uplift at joint Tension 1, 27 lb uplift at joint 3 and 55 lb uplift at joint 4. 1-2=-71/275, 2-3=-71/275 11) This truss is designed in accordance with the 2015 1-4=-213/112, 3-4=-213/112 International Residential Code sections R502.11.1 and 2-4=-485/129R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for The American American NORT Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; SEAL Lumber DOL=1.60 plate grip DOL=1.33 043325 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1. O mm April 19,2023

Martin IIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	VB3	Valley	1	1	T30362389 Job Reference (optional)

2-8-0

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:23 ID:SKJJUZk?UYcgd_I7KrwivkzcxsJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-4-3

Scale = 1:27.6

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.13 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-4-3 oc purlins. Rigid ceiling directly bracing. (size) 1=6-4-3, Max Horiz 1=48 (LC Max Uplift 4=-25 (LC Max Grav 1=67 (LC (LC 2)	athing directly applied applied or 6-0-0 oc 3=6-4-3, 4=6-4-3 11) 2 14) 29), 3=67 (LC 30), 4:	5) 6) 7) 8) 1 or 9) 10 =414 11	Roof design s slope. Gable require Gable studs s This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an D) Provide mech bearing plate 4.	snow load has be as continuous bot spaced at 4-0-0 o s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members nanical connectio capable of withsi designed in accord	en reduc tom chor c. for a 10.0 with any d for a liv s where ill fit betw n (by oth anding 2 dance wi	ed to account d bearing.) psf bottom other live loac e load of 20.0 a rectangle veen the botto ers) of truss to 5 lb uplift at jo ith the 2015	for Is. psf m o int					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; i members a Lumber DO 3) Truss desi only. For s see Stand or consult (4) TCLL: ASC DOL=1.05 SNOW; Pse DOL=1.00 Unbstruct	(Ib) - Maximum Com Tension 1-2=-56/147, 2-3=-5 1-4=-116/68, 3-4=-1 2-4=-281/68 droof live loads have the comparison of live loads have have loads have loads have loads have have loads have loads have loads have loads have have loads have loads have loads have loads have have loads have loads have loads have loads have loads have loads have have loads have loads	hpression/Maximum 6/147 16/68 been considered for (3-second gust) DL=6.0psf; h=30ft; C troelope) exterior zone lever left and right ght exposed;C-C for for reactions shown; DL=1.33 In the plane of the trust (normal to the face), d Details as applicable gner as per ANSI/TPI roof live load: Lumbe =20.0 psf (flat roof Lumber DOL=1.15 Pla Fully Exp.; Ct=1.10;	R802.10.2 ar	d referenced star Standard	ndard AN	ISI/TPI 1.				AND	SEA 0433	L 25 REGAMIN	

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - 2343 A w/ 3rd GARAGE &
3466728	VB4	Valley	1	1	T30362390 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Apr 19 10:33:24 ID:p1bnzSaTJs5NB8qqdKiuQCzcxsV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-6

Scale =	1:24.7
---------	--------

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-11-6 oc purlins. Rigid ceiling directly bracing. (size) 1=3-11-6, Max Horiz 1=-29 (LC Max Uplift 1=-2 (LC 1 Max Grav 1=158 (LC (lb) - Maximum Com Tension 1-2=-212/26, 2-3=-2*	athing directly applied applied or 10-0-0 oc 3=3-11-6 10) 14), 3=-2 (LC 15) 2 2), 3=158 (LC 2) pression/Maximum 12/26	 6) Gable req 7) Gable stur 8) This truss chord live 9) * This truss on the bot 3-06-00 ta chord and 10) Provide m bearing pl and 2 lb u 11) This truss Internation R802.10.2 LOAD CASE(tires continuous bott s spaced at 4-0-0 or has been designed f oad nonconcurrent to s has been designed om chord in all area: l by 2-00-00 wide wi any other members. echanical connectior the capable of withst lift at joint 3. s designed in accord al Residential Code and referenced star 5) Standard	om chor c. or a 10.0 with any I for a liv s where II fit betv n (by oth anding 2 dance w sections ndard AN	d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to lb uplift at joi ith the 2015 R502.11.1 at ISI/TPI 1.	ds. psf om nt 1 nd					
NOTES	1-5=-15/159											
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 I) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 												
 4) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00) Unobstruct 5) Roof design slope. 	SEAL or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for											EER. ANIT

April 19,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

