

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

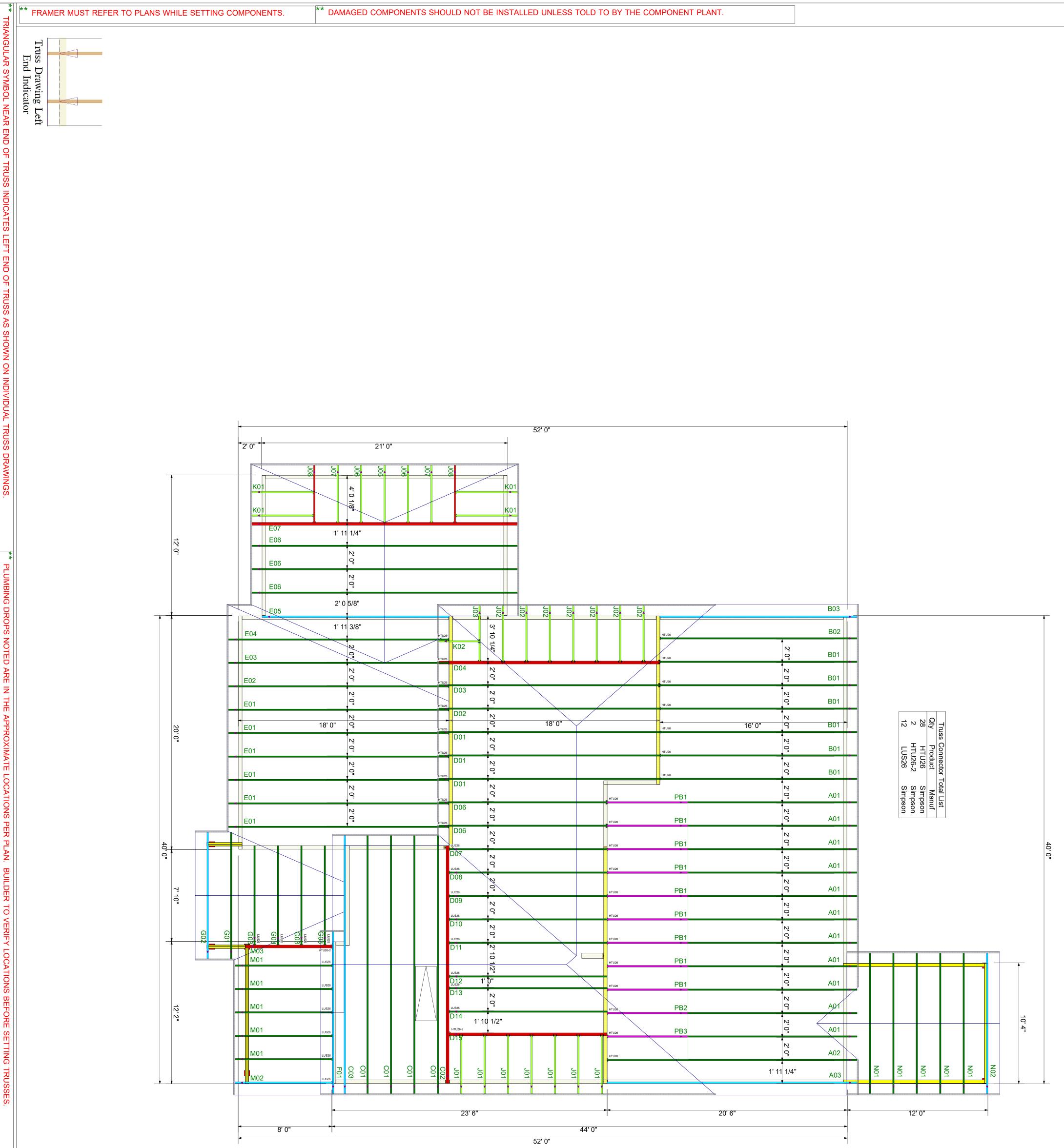
Phone #:919-775-1450

Builder: DRB HOMES Model: 136 FaNC MIDDLETON 10

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.


4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

JMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING

** ALL BEARING POINT

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

00/00/00

Name

00/00/00

Name

Revisions

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23040043 DRB GROUP - 136 FaNC

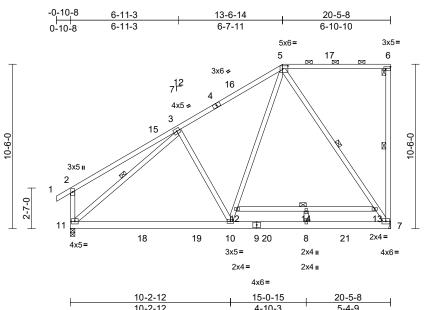
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I57735023 thru I57735073

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

April 13,2023


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	A01	Piggyback Base	11	1	Job Reference (optional)	157735023

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:30 ID:7s9YZp8yTT6bkb8sXP_ligyEN4k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

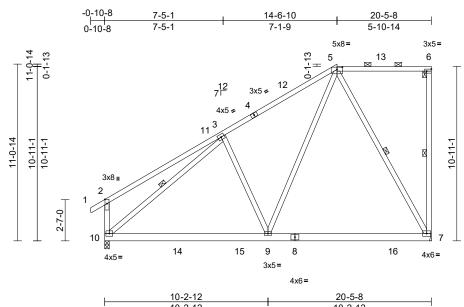
Scale = 1:73.6				10-	2-12		4-10-3		5-4-9	1			
Plate Offsets ((X, Y): [5:0-4-0,0-2-4],	[6:Edge,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.64 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.01	(loc) 10-11 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she 3-11-11 oc purlins, 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	t* 6-7,7-5,10-5:2x4 5 athing directly applie except end verticals, -0 max.): 5-6.	ed or , and C 3)	Vasd=103m Cat. II; Exp zone and C- 2-1-8 to 10-0 Interior (1) 1 20-3-12 zon vertical left a forces & MW DOL=1.60 p TCLL: ASCE Plate DOL= DDL=1.15); Cs=1.00; Ct		BCDL=6 FRS (env -10-8 to 2 10-6-14 , Exterior nd right e ;C-C for r s shown; 60 sf (roof Ll (Lum DC t B; Fully	.0psf; h=25ft elope) exterio -1-8, Interior to 16-6-14, (2E) 17-3-12 :xposed ; enc nembers and Lumber :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	or (1) to i 1.15 e 9;	Inte R80 14) Gra or ti	ernationa)2.10.2 a phical p he orien tom cho	al Resid and ref ourlin re tation o rd.	ferenced standard epresentation doe of the purlin along	ions R502.11.1 and d ANSI/TPI 1. es not depict the size
REACTIONS		11), 11=-35 (LC 14)	4) 5) ; 40)	design. This truss ha load of 12.0	snow loads have as been designed psf or 1.00 times ion-concurrent wit	for great flat roof le	er of min roof bad of 20.0 p	flive					
FORCES	(lb) - Maximum Com Tension		<i>'</i>	200.0lb AC	unit load placed o I, supported at two	n the bot	om chord, 15	5-1-0					
TOP CHORD	1-2=0/31, 2-3=-246/ 5-6=-150/153, 6-7=-		7) 56 8)	Provide ade	quate drainage to as been designed	prevent	water ponding	g.				WHY CA	Politi
BOT CHORD	10-11=-145/953, 8-1 7-8=-102/554	0=-102/554,	9)		ad nonconcurrent has been designe						AN	RIFER	LIN
WEBS	5-13=-867/68, 7-13= 10-12=0/859, 5-12= 12-14=-35/0, 13-14=	0/891, 3-10=-311/27	B/O, O,	on the botto 3-06-00 tall chord and a	m chord in all area by 2-00-00 wide v ny other members ler(s) for truss to t	as where vill fit betv s, with BC	a rectangle veen the bott DL = 10.0ps	om		4	r	SEA	Dar
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	, 1 [.]	 Provide med bearing plate 7. One H2.5A stress of the second s	chanical connection e capable of withs Simpson Strong-T ed to connect trus	on (by oth standing 1 ie conne is to bear	ers) of truss f Ib uplift at jo ctors ing walls due	int to				SEA 0363	22 EER C
					(s) 11. This conne nsider lateral force		or uplift only a	and			111	A. G	ILBERTITI

April 13,2023

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	A02	Half Hip	1	1	Job Reference (optional)	157735024


Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:32 ID:7s9YZp8yTT6bkb8sXP_ligyEN4k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GRIP 244/190

FT = 20%

Scale = 1:72.1						<u>20-5-8</u> 10-2-12	-1					
Plate Offsets (X, Y): [5:0-4-0,0-1-11], [6:Edge,0-1-8]												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.14	7-9	>999	240	MT20	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.22	7-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0				_						Weight: 159 lb	
LUMBER TOP CHORD 2x4	SP No.2		,	CE 7-16; Pr=20.0 p =1.15); Pf=20.0 ps	· ·							

BOT CHORD WEBS	2x6 SP No 2x4 SP No No.3	.2 .2 *Except* 9-3,10-2,10-3:2x4 SP
BRACING		
TOP CHORD	Structural v	wood sheathing directly applied or
	2-2-0 oc pi	urlins, except end verticals, and
	2-0-0 oc pi	urlins (6-0-0 max.): 5-6.
BOT CHORD	Rigid ceilin	g directly applied or 10-0-0 oc
	bracing.	
WEBS	1 Row at m	nidpt 6-7, 5-7, 3-10
REACTIONS	(size)	7= Mechanical, 10=0-3-8
	Max Horiz	10=382 (LC 13)
	Max Uplift	7=-145 (LC 11), 10=-87 (LC 14)

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/30, 2-3=-270/165, 3-5=-963/211,
	5-6=-154/164, 6-7=-252/91, 2-10=-346/158
BOT CHORD	9-10=-206/941, 7-9=-151/451
WEBS	3-9=-363/268, 5-9=-119/909, 5-7=-862/146,
	3-10=-1000/0

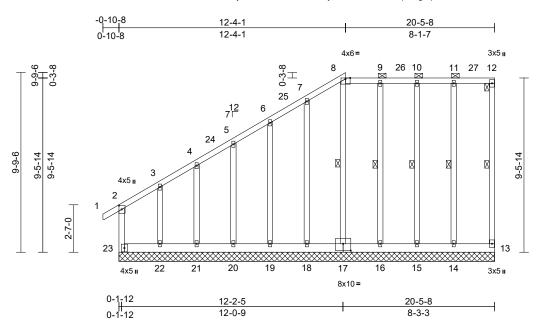
Max Grav 7=950 (LC 39), 10=1075 (LC 40)

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 11-6-10, Exterior(2R) 11-6-10 to 17-3-12, Exterior(2E) 17-3-12 to 20-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 145 lb uplift at joint 7.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	A03	Half Hip Supported Gable	1	1	Job Reference (optional)	157735025

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:33 ID:uyiQOAflaNPen2Lx?DkcPXyEN44-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

га

Scale = 1:62.7 Plate Offsets (X, Y): [2:0-2-8,0-1-12], [17:0-5-0,0-4-8]

	X, 1). [2.0-2-0,0-1-12	2], [17:0-0-0,0-4-0]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-MR	0.55 0.20 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 192 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD		eathing directly applied ccept end verticals, and	BOT CHOI WEBS or NOTES	RD 22-23=-128/140, 2 20-21=-128/140, 1 18-19=-128/140, 1 15-16=-128/140, 1 13-14=-128/140 7-18=-193/77, 6-19 4-21=-146/40, 3-22 10-15=-173/59, 11	9-20=-1 6-18=-1 4-15=-1 9=-172/6 2=-212/2	28/140, 28/140, 28/140, 38, 5-20=-179/79 203, 9-16=-181/9	57,	brac 11) Gab 12) This choi 13) * Th on t 3-06	ced aga ble studs truss h rd live lo is truss he botto 5-00 tall	inst late s space las bee bad not has be om cho by 2-0	eral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh	any other live loads. a live load of 20.0psf
BOT CHORD	Rigid ceiling directly	/ applied or 6-0-0 oc		nced roof live loads hav	e been	considered for		14) Bea	ring at j	oint(s)		allel to grain value mula, Building
WEBS	bracing. 1 Row at midpt	12-13, 9-16, 10-15, 11-14, 8-17	2) Wind:	ASCE 7-16; Vult=130mp 103mph; TCDL=6.0psf;				desi	igner sh	ould ve	erify capacity of t	
	16=20-5- 19=20-5- 22=20-5- 22=320 (Max Uplift 13=-45 (l 15=-35 (l 17=-31 (l 19=-42 (L 23=-213) Max Grav 13=94 (L 15=210 (17=152 (19=211 (21=202 (8, 14=20-5-8, 15=20-5- 8, 17=20-5-8, 18=20-5- 8, 20=20-5-8, 21=20-5- 8, 23=20-5-8 LC 13) LC 11), 14=-60 (LC 10) LC 11), 16=-29 (LC 10) LC 11), 18=-55 (LC 14) C 11), 22=-401 (LC 11) (LC 12) C 35), 14=240 (LC 35), LC 36), 18=232 (LC 36) LC 36), 20=223 (LC 40) LC 42), 22=398 (LC 12)	8, Cat. II; 8, Zone a 8, 2-2-12 15-4-1 cantile right e: for rea DOL= ⁻ 3) Truss only. f see St or con: 1, Plate [1, DOL= ⁻ 1, Cs=1.(Exp B; Enclosed; MWF nd C-C Exterior(2E) -0- to 9-4-1, Exterior(2R) 9 to 17-3-12, Exterior(2R) ver left and right expose cposed;C-C for members ctions shown; Lumber D	RS (env 10-0 to 2 4-1 to 1 17-3-12 d; end s and fo OL=1.60 in the p nd (norm nd Deta signer a f (roof Ll (Lum DC B; Fully	elope) exterior -2-12, Interior (5-4-1, Interior (5-4-1, Interior (2 to 20-3-12 zon vertical left and rcces & MWFRS 0 plate grip lane of the truss al to the face), ills as applicable s per ANSI/TPI .: Lum DOL=1.1 DL=1.15 Plate Exp.; Ce=0.9;	1) ie; e, 1.	bea 13, i uplit 21, i uplit joint 16) This Inte R80	ring pla 213 lb u ft at join 401 lb u ft at join t 17. s truss is rnationa (2.10.2 s	te capa uplift at t 19, 66 uplift at t 15, 60 al Resig al Resid and ref	able of withstandi joint 23, 55 lb up 8 lb uplift at joint 10 lb uplift at joint 0 lb uplift at joint ened in accordanc dential Code sect rerenced standar	ng 45 lb uplift at joint lift at joint 18, 42 lb 20, 2 lb uplift at joint lift at joint 16, 35 lb 14 and 31 lb uplift at see with the 2018 tions R502.11.1 and ANSUTPI 1.
FORCES TOP CHORD	3-4=-175/119, 4-5=-	npression/Maximum =0/29, 2-3=-289/196, -179/120, 5-6=-160/114 -142/148, 12-13=-97/87 =-125/139,	design 6) This tri load of overha ' 7) Provid ' 8) All plat		/e	SEAL 036322						

April 13,2023

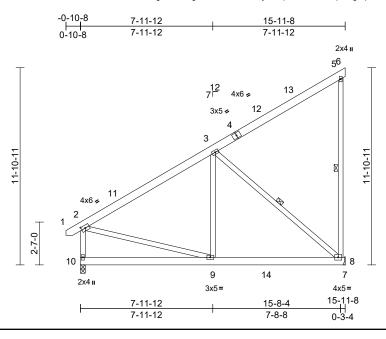
Continued on page 2
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	A03	Half Hip Supported Gable	1	1	Job Reference (optional)	157735025
Carter Components (Sanford), S	Sanford, NC - 27332,	Run: 8.53 S Mar 9 2	2023 Print: 8.	530 S Mar 9	2023 MiTek Industries, Inc. Wed Apr 12 12:23:33	Page: 2

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:33 ID: uyiQOA flaNPen 2 Lx? DkcPXyEN 44-RfC? PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC? flaps for the second statement of the secon

17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	B01	Monopitch	6	1	Job Reference (optional)	157735026

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:33 ID:gfOscPOdgdYC2AMcQTKNEuyEN1q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

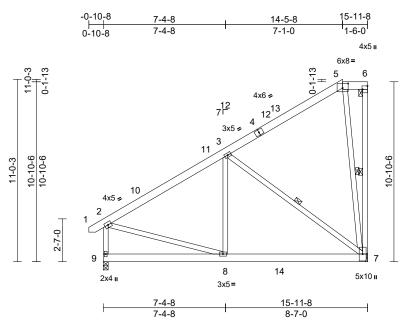
Page: 1

Scale = 1:69.5

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

		1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.32 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 -0.01	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	athing directly applie cept end verticals. applied or 10-0-0 or 5-8, 3-8 anical, 10=0-3-8 _C 14) C 14) C 5), 10=761 (LC 28	; 7) 8) 9)	load of 12.0 overhangs n This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to gird Provide mec bearing plat joint 8. This truss is International R802.10.2 a	as been designed psf or 1.00 times i psf or 1.00 times i son-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to ti chanical connectio e capable of withs designed in accord Residential Code and referenced sta	flat roof I h other li for a 10. with any d for a liv as where rill fit betv , with BC russ coni n (by oth tanding 2 rdance w	bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. in a rectangle veen the bott DL = 10.0ps tections. ers) of truss v47 lb uplift a ith the 2018 c R502.11.1 a	ads. Opsf tom .f. to t					
TOP CHORD BOT CHORD	5-6=-13/0, 5-8=-322	/119, 2-10=-648/4		DAD CASE(S)	Standard								
WEBS	3-9=0/342, 3-8=-762	2/253, 2-9=0/477											
NOTES	05 7 46. \/	(2 second suct)											L'IIII
Vasd=103 Cat. II; Ex zone and 2-3-15 to cantilever for membe Lumber D 2) TCLL: AS Plate DOI DOL=1.15 Cs=1.00;	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B: p; B; Enclosed; MWFR C-C Exterior(2E) -0-8- 12-11-8, Exterior(2E) 1 left exposed; end vert ers and forces & MWFI IOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterio 1 to 2-3-15, Interior (12-11-8 to 15-11-8 zc tical left exposed;C-C RS for reactions sho λ =1.60 (roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	1) one; C wn; .15							M. HILLING	The second secon	SEA 0363	• -

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2) Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	B02	Half Hip	1	1	Job Reference (optional)	157735027

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:34 ID:gfOscPOdgdYC2AMcQTKNEuyEN1q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:69.6

Plate Offsets (X, Y): [5:0-4-0,0-3-5], [6:Edge,0-3-8]

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

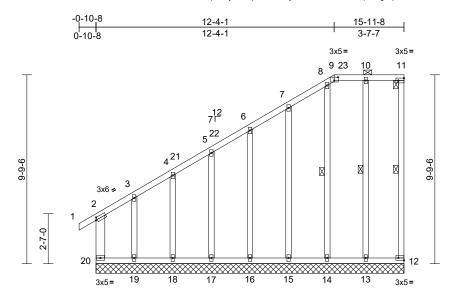
Lumber DOL=1.60 plate grip DOL=1.60

	(,, , ,). [0.0 + 0,0 0 0], [[0:Edg0;0 0 0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.65 0.36 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.2 2x4 SP No.3 *Except	athing directly applie ept end verticals, ar 0 max.): 5-6.	4) dor nd 5)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n	snow loads have b as been designed fo psf or 1.00 times fla on-concurrent with	Lum DO B; Fully een col or great at roof I other li	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo bad of 20.0 p ve loads.	e 9; his f live osf on					
WEBS REACTIONS	bracing. 1 Row at midpt 6	6-7, 3-7, 5-7 hical, 9=0-3-8 ; 11) C 14), 9=-55 (LC 14)	6) 7) 8)	This truss hat chord live los * This truss l on the bottor 3-06-00 tall l	quate drainage to p as been designed for ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will ny other members, '	or a 10. vith any for a liv where I fit betv	0 psf bottom other live loa re load of 20. a rectangle veen the bott	ads. Opsf					
FORCES TOP CHORD	(lb) - Maximum Comp Tension 1-2=0/25, 2-3=-820/1 5-6=-163/176, 6-7=-1	09, 3-5=-298/136,	10	Refer to gird) Provide mec bearing plate	er(s) for truss to tru hanical connection capable of withsta	iss con (by oth	nections. ers) of truss	to					
BOT CHORD WEBS	,	51/721	11	recommende UPLIFT at jt	Simpson Strong-Tie ed to connect truss (s) 9. This connectio	to bear on is fo	ing walls due					ANTH CA	ROUL
this desigr 2) Wind: ASC	ed roof live loads have b n. CE 7-16; Vult=130mph (Cmph: TCDI =6 0pcf; BC	(3-second gust)		2) This truss is International R802.10.2 a	nsider lateral forces designed in accord Residential Code s nd referenced stand urlin representation	lance w sections dard Al	s R502.11.1 a NSI/TPI 1.			4	A.L.	ORIEESS	No the second

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;
Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior
zone and C-C Exterior(2E) -0-8-1 to 2-3-15, Interior (1)
2-3-15 to 10-2-9, Exterior(2R) 10-2-9 to 14-5-8, Exterior
(2E) 14-5-8 to 15-9-12 zone; cantilever left and right
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	B03	Half Hip Supported Gable	1	1	Job Reference (optional)	157735028

Scale = 1:59.7

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:34 ID:2VuldpuPTjAcxEqRhVYSG2yEN?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

Page: 1

15-11-8

Plate Offsets (X, Y): [2:0-0-14,0-1-8], [9:0-2-8,0-2-1], [11:Edge,0-1-8], [12:Edge,0-1-8]

			-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MR	0.63 0.43 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 139 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ep 2-0-0 oc purlins (6- Rigid ceiling directly bracing. 1 Row at midpt (size) 12=15-1° 14=15-1°	/ applied or 10-0-0 oc 11-12, 8-14, 10-13 I-8, 13=15-11-8, I-8, 15=15-11-8,	y dor d N	EBS Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp zone and C-	19-20=-141/172, 18 17-18=-141/172, 17 15-16=-141/172, 12 13-14=-141/172, 12 6-16=-180/89, 5-17 3-19=-254/322, 7-1 10-13=-190/101 roof live loads have 57-16; Vult=130mpl ph; TCDL=6.0psf; E B; Enclosed; MWFF C Corner(3E) -0-10 2 to 9-4-1, Corner(3E)	5-17=-1 4-15=-1 2-13=-1 '=-182/1 5=-189 e been h (3-sec 3CDL=6 RS (env)-8 to 1-	41/172, 41/172, 41/172, 00, 4-18=-142, '99, 8-14=-132 considered for cond gust) .0psf; h=25ft; elope) exterio 11-12, Exteric	9/68, r	12) This cho 13) * Th on 1 3-0 cho 14) Pro bea join lb u join 15) This Inte	s truss h rd live lo his truss the botto 6-00 tall rd and a vide me tring plat t 20, 33 plift at jo t 15, 61 s truss is rnationa	as bee ad nor has be m cho by 2-0 ny oth chanica e capa lb uplif int 17, lb uplif desig I Resid	ed at 2-0-0 oc. n designed for a concurrent with the designed for rd in all areas wh 0-00 wide will far a connection (by ble of withstandi t at joint 12, 45 lk 511 lb uplift at jot t at joint 14 and 3 ned in accordance	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom r others) of truss to ng 281 lb uplift at o uplift at joint 16, 68 bint 19, 61 lb uplift at 37 lb uplift at joint 13. ce with the 2018 tions R502.11.1 and
	18=15-1 ⁻ 20=15-1 Max Horiz 20=346 (Max Uplift 12=-33 (14=-61 (l 16=-45 (l 19=-511 Max Grav 12=84 (L 14=179 (16=220 (LC 13) LC 11), 13=-37 (LC 10 LC 11), 15=-61 (LC 14 LC 14), 17=-68 (LC 14 (LC 11), 20=-281 (LC C 35), 13=232 (LC 35 LC 36), 15=229 (LC 3 LC 36), 17=225 (LC 4 LC 42), 19=450 (LC 1), 3)), 12)), 6), 4) 0),	Corner(3E) right expose for members Lumber DOU Truss desig only. For st see Standar or consult q TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct	12-9-12 to 15-9-12 ad; end vertical left s and forces & MWF L=1.60 plate grip D0 ined for wind loads uds exposed to wini- d Industry Gable Er ualified building des E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (I ls=1.0; Rough Cat =1.10	zone; c: and rig! =RS for OL=1.60 in the p d (norm nd Deta signer a: (roof LI Lum DC B; Fully	antilever left a tt exposed;C reactions sho) lane of the tru al to the face) ils as applicat s per ANSI/TF :: LUM DOL=1 DL=1.15 Plate Exp.; Ce=0.9	C wwn; lss), ole, PI 1. 1.15);	or t bott	com choi CASE(S	ation c d. Star	of the purlin along	ROUTIN
FORCES		npression/Maximum	5)		snow loads have b	een cor	nsidered for th	nis		-		CEA	1 1 1
TOP CHORD	3-4=-194/125, 4-5=	- =0/33, 2-3=-359/233, -202/126, 5-6=-182/12 -159/173, 8-9=-152/18 11=-142/177,	30, 7) 8) 9)	load of 12.0 overhangs r Provide ade All plates ar Gable requi) Truss to be	snow loads have been considered for this as been designed for greater of min roof live psf or 1.00 times flat roof load of 20.0 psf on on-concurrent with other live loads. quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. res continuous bottom chord bearing. fully sheathed from one face or securely nst lateral movement (i.e. diagonal web).				A A A A A A A A A A A A A A A A A A A				EER. R. Human

April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
23040043	C01	Common	4	1	57735029

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

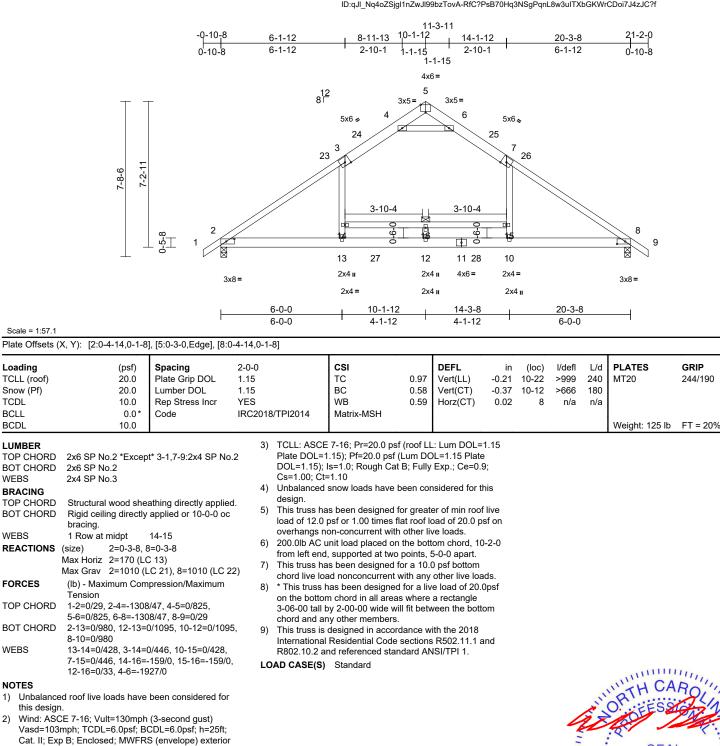
BCDL

WEBS

WEBS

FORCES

WEBS


NOTES

1)

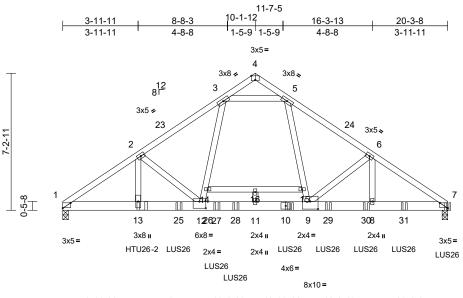
BRACING

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:35 ID:qJI Nq4oZSjgl1nZwJI99bzTovA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-1-12, Exterior(2R) 7-1-12 to 13-1-12, Interior (1) 13-1-12 to 18-2-0, Exterior(2E) 18-2-0 to 21-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

Contraction of the 1111111111 SEAL 36322 G mm April 13,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	C02	Common Girder	1	2	Job Reference (optional)	157735030

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:35 ID:eRCGiNg5ci7Xtg_fpBaohDzToqX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

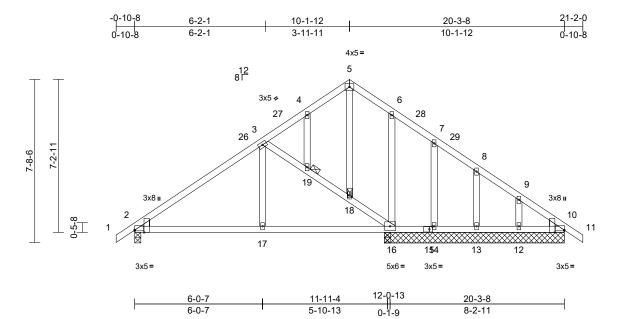
3-11-11	7-4-5	10-1-12	12-10-11	16-3-13	20-3-8	
3-11-11	3-4-9	2-9-7	2-8-15	3-5-1	3-11-11	

Scale = 1:60.7

Plate Offsets (X, Y): [1:0-5-0,Edge], [4:0-2-8,Edge], [7:0-5-0,Edge], [9:0-5-0,0-4-12], [12:0-4-0,0-4-4]

 \vdash

TCLL (roof) Snow (Pf)	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO	3/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.44 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	1102010	0/TF12014	Maurix-INIOT							Weight: 265 lb	FT = 20%
4-9-9 oc pur BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1= FORCES (Ib) - Maximu Tension TOP CHORD 1-2=-6574/5: 4-5=-120/27 BOT CHORD 1-13=-492/5: 11-12=-165// 8-9=-32/537/ WEBS 2-13=-269/8: 12-14=-164// 5-15=-79/28	Dec 2.0E bod shea lins. directly =0-3-8, 7 =-154 (L- 300 (L- =3924 (L um Com 32, 2-3= , 5-6=-5i 432, 12- 4053, 9- 0, 7-8=-5 57, 2-12 2966, 3- 95, 9-15 4-16=-1 01, 11-1 ed toget ws: s follows d as follow	C 10) C 12) .C 18), 7=4679 (LC 1 pression/Maximum -56886/354, 3-4=-78// 619/319, 6-7=-6485/ .13=-492/5432, .11=-165/4053, 32/5370 :=-1014/388, .14=-167/3015, :=-76/2844, 6-9=-986 /50, 15-16=-1/50, 6=-8/122 ther with 10d s: 2x4 - 1 row at 0-9-0 pws: 2x6 - 2 rows	4) 9) 5) 3, 112 6) 7) 8) 70, 9) 10 11	except if note CASE(S) sec provided to d unless othery Unbalanced i this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantiler and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced : design. 200.0lb AC u from left end, This truss ha chord live loa * This truss ha chord of and an 0 One H2.5A S recommende UPLIFT at jt(does not con) This truss is of International R802.10.2 ar Use Simpsor 14-10d Truss	snow loads have b nit load placed on supported at two s been designed f d nonconcurrent v as been designed n chord in all area: y 2-00-00 wide wi y 2-00-00 wide wi y 2-00-00 wide wi y other members. impson Strong-Tii d to connect truss s) 1. This connect sider lateral forces designed in accorr Residential Code d referenced star a Strong-Tie HTU2 , Single Ply Girde and to connect trus	ack (B) nections s noted e been of h (3-sec BCDL=6 RCS (env- xposed L=1.60 µ f (roof LL Lum DC B; Fully been cor the bott points, § or a 10.1 with any for a livs s where l fit betv e conne- to bear ion is for s. dance w sections idard AN (6-2 (20) r) or equ	Face in the LC s have been as (F) or (B), considered fo .ond gust) .0psf; h=25ft; elope) exterior end vertical blate grip .: Lum DOL=* .: Lum DOL=*	r left 1.15); -2-0 ds.)psf om to nd	Tru oc i cor 14) Use Tru left chc 15) Use Tru cor 16) Fill LOAD (1) Do In Un	ss, Sing max. sta inect true e Simpso ss, Sing end to c rd. e Simpso ss) or ec ss) or ec ss) or ec ss) or ec ss) or ec ss) or ec true all nail h CASE(S ead + Sr crease= niform Lo Vort: 1- oncentra Vert: 10 (B), 25= 29=-685	le Ply d rtring a ss(es) on Stroct on St	Girder) or equival t 6-1-8 from the le to back face of bu ng-Tie LUS26 (4 Girder) or equival t truss(es) to back ang-Tie LUS26 (4 and tat 12-0-0 from to back face of bu here hanger is in ndard alanced): Lumber b/ft) 4-7=-58, 17-20=- ads (lb) (B), 13=-1023 (B B), 26=-102, 27= 00=-618 (B), 31=- CA	10d Girder, 4-10d ent at 9-1-8 from the (face of bottom 10d Girder, 3-10d the left end to ottom chord. contact with lumber. Increase=1.15, Plate 19), 9=-100, 20=-602 -767 (B), 28=-937 (B), 623 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	C03	Common Structural Gable	1	1	Job Reference (optional)	157735031

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:36 ID:LvsuxQCiFDgI9RL6OQN7UVzTopr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.4			Ũ	• •	0 10 10
Plate Offsets (X, Y):	[2:Edge,0-0-6],	[2:0-1-5,Edge],	[10:Edge,0-0-6]], [10:0-1-5,Edge],	[15:0-1-12,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TP	CSI TC BC WB 2014 Matrix-MSH	0.37 0.35 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-22 17-22 23	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 18, 19 (size) 2=0-3-8, 13=8-6-0, 23=8-6-0 Max Horiz 2=-167 (L Max Uplift 2=-54 (LC 13=-43 (L 16=-37 (L Max Grav 2=641 (LC 12=174 (L	; 14), 12=-78 (LC 15) C 15), 14=-89 (LC 15 C 14) C 21), 10=194 (LC 1) C 25), 13=169 (LC 2 LC 22), 16=496 (LC 2	thi 2) Wi d or Ca 20 (1) 20 3) Ti on 5), or 4) TC 9), DC 9), DC	5-18=-17/20, 4-19 7-14=-168/87, 8- 3-19=-509/147, 1 16-18=-529/150, balanced roof live loads ha design. nd: ASCE 7-16; Vult=130m sd=103mph; TCDL=6.0psf LI; Exp B; Enclosed; MWI te and C-C Exterior(2E) -0 -8 to 7-1-12, Exterior(2E) -0 -9 to 200-1.60 US designed for wind load y. For studs exposed to w 9 Standard Industry Gable consult qualified building d LL: ASCE 7-16; Pr=20.0 psi L=1.15); Is=1.0; Rough Ca =1.00; Ct=1.10	13=-126/7 8-19=-54 3-17=0/2 ve been ph (3-sec BCDL=6 FRS (env 10-8 to 2 7-1-12 to pr(2E) 18 exposed mbers ar Lumber 1 s in the p ind (norm End Deta esigner a s if (roof L)	77, 9-12=-124 0/154, 57 considered for cond gust) 5.0psf; h=25ft elope) exterior 13-1-12, Interior 13-1-12, Interior 13-12, Interior 13-12	4/82, pr ;; or (1) rior -0 left ate uss e), ible, PI 1. :1.15 e	on 3-0	the botto 6-00 tall	om cho by 2-0	ord in all areas wh	a live load of 20.0psf ere a rectangle between the bottom
FORCES	(lb) - Maximum Com Tension 1-2=0/28, 2-3=-760/ 4-5=-189/72, 5-6=-1	pression/Maximum 46, 3-4=-283/49, 84/77, 6-7=-177/37, 83/52, 9-10=-191/76,	de 6) Th loa ov 7) All 8) Ga	balanced snow loads have sign. s truss has been designed d of 12.0 psf or 1.00 times rrhangs non-concurrent wii plates are 2x4 MT20 unles ble studs spaced at 2-0-0 s truss has been designed	for great flat roof l h other li s otherwi oc.	er of min roo oad of 20.0 p ve loads. ise indicated.	f live sf on				SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D01	Common	3	1	Job Reference (optional)	157735032

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:37 ID:E1kYdsHXIZugK7fD6cT aGzTooS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

Scale = 1:50.1 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUWIDER	
TOP CHORD	2x4 SP No.2 *Except* 4-5:2x4 SP No.1
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-10-10 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 4-6
REACTIONS	(size) 2=0-3-8, 6=0-3-8
	Max Horiz 2=187 (LC 13)
	Max Uplift 2=-91 (LC 14), 6=-50 (LC 15)
	Max Grav 2=870 (LC 24), 6=828 (LC 6)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/26, 2-3=-1200/136, 3-4=-979/131,
	4-5=-274/152, 5-6=-349/135
BOT CHORD	2-8=-147/1057, 6-8=-4/607
WEBS	3-8=-434/189, 4-8=-17/670, 4-6=-691/35
NOTES	
1) Unhalance	d roof live leads have been considered for

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-10-9, Exterior(2R) 7-10-9 to 13-10-9, Interior (1) 13-10-9 to 14-10-4, Exterior(2E) 14-10-4 to 17-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

- design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D02	Hip	1	1	Job Reference (optional)	157735033

TCDL

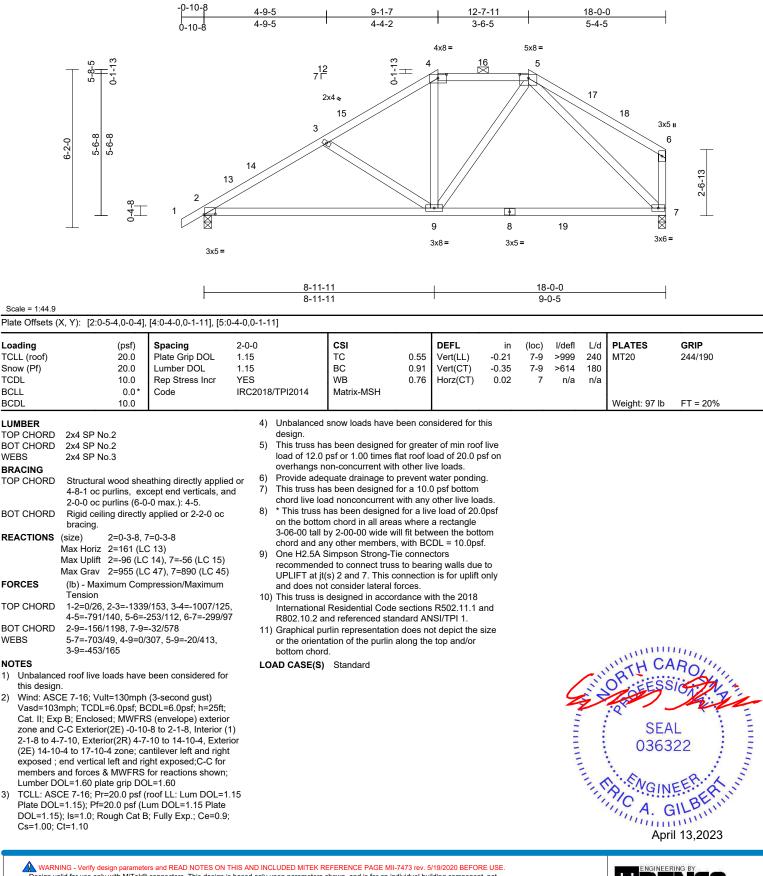
BCLL

BCDL

WEBS

WEBS

NOTES


1)

2)

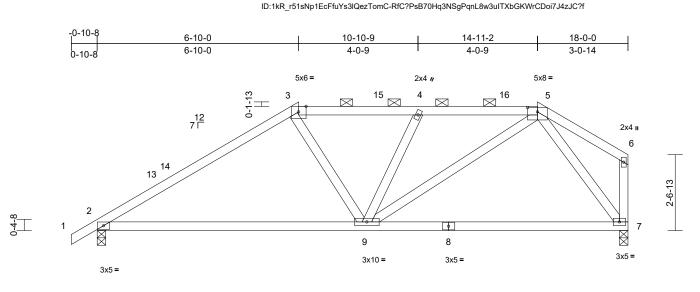
3)

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Apr. 12 12:23:37 ID:Rm3GLVfPhH7dOUowEr?Ug5zTomh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D03	Нір	1	1	Job Reference (optional)	157735034


0-1-13

1-4-5

4-2-8 4-2-8

4-10-0

Scale =

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:38

Page: 1

	9-1-12	18-0-0	
	9-1-12	8-10-4	
= 1:39.1			

Plate Offsets (X, Y): [5:0-4-0,0-1-11]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.80 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.32 0.02	(loc) 9-12 9-12 7	l/defl >999 >672 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 90 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 Structural wood she 3-2-2 oc purlins, ex 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar -5 max.): 3-5. applied or 10-0-0 oc 7=0-3-8 C 13) C 14), 7=-61 (LC 15 C 39), 7=786 (LC 22) pression/Maximum 5/147, 3-4=-939/140, 126/65, 6-7=-159/5 68/489	nd 7) 5 8)) 9)) 10 52	 design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss fance on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International R802.10.2 ar Graphical put 	snow loads have b ssow loads have b as been designed for psf or 1.00 times fil on-concurrent with quate drainage to p is been designed fin ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide will yo other members. Simpson Strong-Tie ed to connect truss (s) 2 and 7. This co t consider lateral for designed in accord Residential Code is nd referenced stan irlin representation ation of the purlin a d.	or great at roof I other Ii orevent or a 10. vith any for a liv or a liv s where I fit betw conne to bear onnectio orces. dance w sections dard AN does n	er of min roo coad of 20.0 p ve loads. water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a sSI/TPI 1. ot depict the	f live ssf on g. ads. 0psf tom ≥ to only and					UUU.
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 				OAD CASE(S)	Standard					4	z	ORTH CA	ROUT

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-7-1, Exterior(2R) 2-7-1 to 14-11-2, Exterior (2E) 14-11-2 to 17-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322 A. GILBERT

> ENGINEERING BY AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
23040043	D04	Hip Girder	1	2	Job Reference (optional)	57735035

TCDL

BCLL

BCDL

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Apr 12 12:23:39 Page: 1 ID:zfcbOPTRvtZ7wnPpfQiCtEzTole-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 18-0-0 4-6-9 8-9-4 12-11-14 17-2-9 4-6-9 4-2-11 4-2-11 4-2-11 0-10-8 NAILED NAILED NAILED NAILED NAILED NAILED NAILED 7 2x4 II 5x6 = 2x4 I 3x5 = 5x6 = NAILED 3 22 18 20 5 21 6 19 \bowtie \bowtie \bowtie Π₽ Ģ 16 3-0-5 ń a 2-6-13 3-6-0 0-4-8 8 ΠΓ ΠΓ ΠΓ ΠΓ ΠΠΦ ΠΓ \bigotimes 2610 23 12 24 25 279 28 11 3x5 = 2x4 II 3x8 = 3x5 = 3x5 = 3x5 = NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 4-4-13 8-9-4 12-11-14 18-0-0 4-4-13 4-4-7 4-2-11 5-0-2 Scale = 1:39.1 Plate Offsets (X, Y): [3:0-3-0,0-1-12], [6:0-3-0,0-1-12] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) -0.05 10-11 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.36 Vert(CT) -0.07 10-11 >999 180 Rep Stress Incr WB 10.0 NO 0.39 Horz(CT) 0.02 8 n/a n/a 0.0 IRC2018/TPI2014 Matrix-MSH Code 10.0 Weight: 191 lb FT = 20% LUMBER 2) All loads are considered equally applied to all plies, 13) Graphical purlin representation does not depict the size except if noted as front (F) or back (B) face in the LOAD or the orientation of the purlin along the top and/or TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 CASE(S) section. Ply to ply connections have been bottom chord. provided to distribute only loads noted as (F) or (B), WEBS 2x4 SP No.3 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d unless otherwise indicated. (0.148"x3.25") toe-nails per NDS guidlines. BRACING Unbalanced roof live loads have been considered for 3) LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or this design. 6-0-0 oc purlins, except end verticals, and 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) 2-0-0 oc purlins (6-0-0 max.): 3-6. Increase=1.15 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Uniform Loads (lb/ft) Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior bracing. Vert: 1-3=-60, 3-6=-60, 6-7=-60, 8-13=-20 zone; cantilever left and right exposed ; end vertical left Concentrated Loads (lb) REACTIONS (size) 2=0-3-8, 8=0-3-8 and right exposed; Lumber DOL=1.60 plate grip Vert: 12=-38 (F), 11=-38 (F), 3=-99 (F), 4=-99 (F), 16=-21 (F), 17=-99 (F), 18=-99 (F), 20=-99 (F), Max Horiz 2=100 (LC 11) DOL=1.60 Max Uplift 2=-214 (LC 12), 8=-213 (LC 9) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) 21=-99 (F), 22=-99 (F), 23=-103 (F), 24=-38 (F), Max Grav 2=1314 (LC 37), 8=1400 (LC 36) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 25=-38 (F), 26=-38 (F), 27=-38 (F), 28=-38 (F) FORCES (Ib) - Maximum Compression/Maximum DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Tension Cs=1.00: Ct=1.10 TOP CHORD 1-2=0/40, 2-3=-2077/329, 3-4=-2382/386, 6) Unbalanced snow loads have been considered for this 4-5=-2382/386, 5-6=-1946/309, 6-7=-66/22, design. 7-8=-65/49 7) This truss has been designed for greater of min roof live BOT CHORD 2-12=-315/1756, 11-12=-318/1744, load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 10-11=-336/1946, 8-10=-87/353 overhangs non-concurrent with other live loads ORTH WEBS 3-12=0/272, 3-11=-163/760, 4-11=-549/196, Provide adequate drainage to prevent water ponding. 5-11=-113/544, 5-10=-842/249, 9) This truss has been designed for a 10.0 psf bottom 6-10=-296/1898, 6-8=-1400/322 chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf NOTES on the bottom chord in all areas where a rectangle 1) 2-ply truss to be connected together with 10d 3-06-00 tall by 2-00-00 wide will fit between the bottom VIIIIIIIIIIII

(0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc

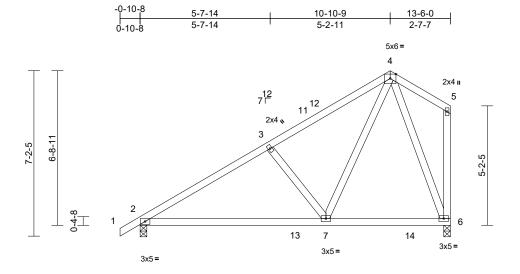
Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- chord and any other members. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

SEAL


036322

G mumm April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D06	Common	2	1	Job Reference (optional)	157735036

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:40 ID:szvyNOwGyYMkUdJ6tON6QEzTol2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8-1-0	13-6-0
8-1-0	5-5-0

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.09	(100) 7-10	>999		MT20	244/190
. ,				-		()				-	WIT20	244/130
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.23	7-10	>712	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 78 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	o.2
BOT CHORD	2x4 SP N	o.2
WEBS	2x4 SP N	o.3
BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-8, 6=0-3-8
	Max Horiz	2=219 (LC 13)
	Max Uplift	2=-10 (LC 14)
	Max Grav	2=674 (LC 21), 6=673 (LC 21)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/26,	2-3=-853/31, 3-4=-668/42,
	4-5=-129	/128, 5-6=-121/88
BOT CHORD	2-7=-40/7	06, 6-7=-20/232
WEBS	3-7=-370	/184, 4-7=0/644, 4-6=-606/0
NOTES		

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-10-9, Exterior(2R) 7-10-9 to 10-10-9, Exterior (2E) 10-10-9 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 9-3-0 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D07	Common	1	1	Job Reference (optional)	157735037

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:40 ID:Pj9spIZSkx?pIIowoowhqKzToqg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-8

13-2-8 13-6-0 2-3-15 0-3-8 4-11-12 8-6-10 10-10-9 4-11-12 3-6-14 2-3-15 3x5 = 4 5x6 👟 2x4 = 12^{13³} 5 712 71 2x4 🛛 6-8-11 2 5-2-5 6 3-10-4 • 0 8 t 11 0-4-8 ьø 6 Ø 8 14 7 15 5x10 🕫 4x5 = 2x4 II 2x4 🛛 2x4 =3x10= 5x6 II 4-11-12 9-2-8 13-6-0

4-2-12

4-11-12

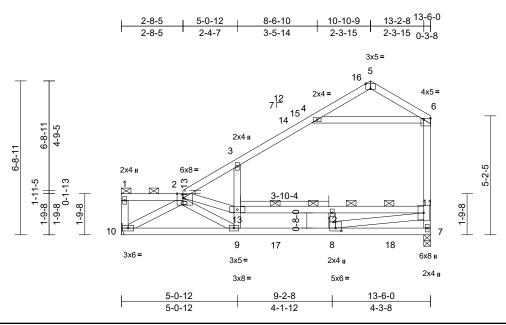
Scale = 1:50.3	Scale	= 1:50.3
----------------	-------	----------

Plate Offsets (X, Y): [1:Edge,0-3-5], [4:0-2-8,Edge], [5:0-3-0,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	8/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.80 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.27 0.03	(loc) 1-8 7-8 6	l/defl >999 >587 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 90 lb	GRIP 244/190 FT = 20%	
		athing directly applic cept end verticals. applied or 10-0-0 or 9-11 nical, 6=0-3-8 C 13) C 20), 6=668 (LC 20 pression/Maximum 8/68, 3-4=-201/78, 282/58, 5-9=-260/87 54/2021, 6-7=-54/20 304/241, -10=-61/335, 7-10=0	4 ed or 5 c 6 7) 8 9 9 221 L)/244,	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. 200.0lb AC of from left end chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to gird This truss is International	snow loads have unit load placed or d, supported at two as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr designed in accor I Residential Code nd referenced stat	(Lum DC t B; Fully been count of the bott opoints, for a 10. with any d for a liv as where rill fit betw curss conit rdance we	DL=1.15 Plate Exp.; Ce=0. Insidered for t com chord, 9- 5-0-0 apart. D psf bottom other live loa e load of 20. a rectangle ween the bott nections. ith the 2018 s R502.11.1 a	e 9; -3-0 ads. 0psf				ORTH CA		
this design 2) Wind: ASC Vasd=103i Cat. II; Exp zone and 0 3-1-11 to 7	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 7-10-9, Exterior(2R) 7- 9 to 13-4 zope; cr	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio 1 to 3-1-11, Interior 10-9 to 10-10-9, Ext	r (1) erior							Grunn		SEA 0363		Rooming

(2E) 10-10-9 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D08	Roof Special	1	1	Job Reference (optional)	157735038

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:40 ID:Pj9spIZSkx?pIIowoowhqKzToqg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.3

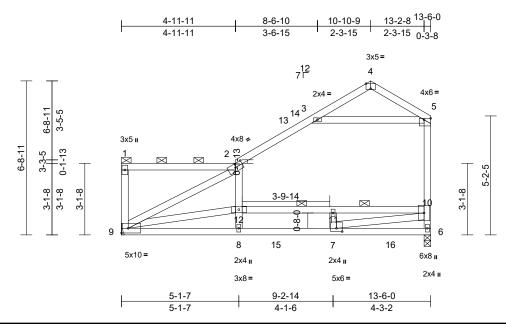
Plate Offsets (X, Y): [2:0-3-1,Edge], [5:0-2-8,Edge], [6:Edge,0-0-12], [8:0-3-0,0-1-8]

		[==========]=]; [===		1, 1									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.98 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.43 0.02	(loc) 9-10 9-10 7	l/defl >571 >369 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1-8-0 oc bracing: 11	athing directly applie cept end verticals, ar -0 max.): 1-2. applied or 2-2-0 oc -13 10= Mechanical .C 11)	4) ed or nd 5) 6) 7) 8)	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. 200.0lb AC uf from left end Provide adee This truss ha chord live loù * This truss lo on the botton 3-06-00 tall li	5 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=20.0 ps 1.10; Rough Cat 1.10 snow loads have l unit load placed on , supported at two quate drainage to j is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members.	(Lum DC B; Fully been cor the bott points, s orevent for a 10. with any l for a liv s where Il fit betw	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t com chord, 9- 5-0-0 apart. water pondin, 0 psf bottom other live loa e load of 20.1 a rectangle	e 9; his 3-0 g. ads. 0psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Refer to gird	er(s) for truss to tr designed in accor	uss conr							
TOP CHORD	3-4=-289/80, 4-5=-1 7-11=-712/55, 6-11=	99/68, 5-6=-276/97, -267/89		Ínternational R802.10.2 a) Graphical ρι	Residential Code nd referenced star rlin representation ation of the purlin a	sections idard AN does no	s R502.11.1 a NSI/TPI 1. ot depict the s						
WEBS	2-10=-859/0, 9-13=- 2-9=0/1326, 4-6=-55 11-12=-1899/0, 8-12 8-11=-14/2369	851/170, 3-13=-440/ 5/95, 12-13=-1899/0,	LC	bottom chord DAD CASE(S)	i						1 m	NITH CA	ROIN
this design 2) Wind: AS(Vasd=103 Cat. II; Ex zone and 2-8-5 to 7- (2E) 10-1(exposed ;	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 2-8-5, Interior (1 0-9 to 10-10-9, Exter tillever left and right ght exposed;C-C for	r l) rior							Contraction of the second seco		SEA 0363	• -

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 2-8-5, Interior (1) 2-8-5 to 7-10-9, Exterior(2R) 7-10-9 to 10-10-9, Exterior (2E) 10-10-9 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G minim


April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D09	Roof Special	1	1	Job Reference (optional)	157735039

Scale = 1:50.3

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:41 ID:tvjE1ea4VF7gwSN6LVRwNXzToqf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

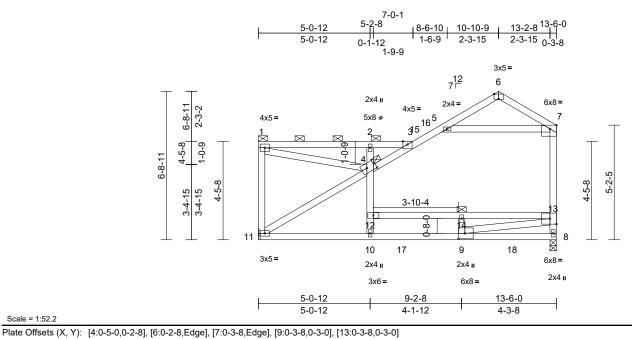
Page: 1

Plate Offsets (X, Y): [2:0-4-0,0-1-15], [4:0-2-8,Edge], [5:Edge,0-0-12], [7:0-3-0,0-1-12]

													-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.80 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.38 0.02	(loc) 8-9 8-9 6	I/defl >763 >422 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.1 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 2 Rows at 1/3 pts (size) 6=0-3-8, 9 Max Horiz 9=207 (LC Max Uplift 9=-6 (LC Max Grav 6=685 (LC (Ib) - Maximum Corr Tension 1-9=-229/65, 1-2=-7 3-4=-198/68, 4-5=-2 5-10=-269/92 8-9=0/1570, 7-8=0/1 2-9=-259/30, 8-12=-	athing directly applied cept end verticals, and -0 max.): 1-2. applied or 6-0-0 oc 10-12 D= Mechanical C 13) 14) C 38), 9=637 (LC 37) pression/Maximum 8/59, 2-3=-306/81, 81/99, 6-10=-666/53,	4) or 5) 6) 7) 8) 9) 10) 11) 5, 12)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. 200.0lb AC u from left end Provide ader This truss ha on the bottor 3-06-00 tall h chord live loa * This truss f on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 9. This truss is International R802.10.2 ar Graphical pu	7-16; Pr=20.0 psf .15); Pf=20.0 psf ls=1.0; Rough Cat =1.10 snow loads have l init load placed on , supported at two quate drainage to ps been designed fad nonconcurrent has been designed in chord in all area by 2-00-00 wide win y other members. er(s) for truss to tri hanical connectior e capable of withst designed in accord Residential Code nd referenced star rlin representation ation of the purlin a	Lum DC B; Fully been col- the bot points, prevent for a 10. with any l for a lin s where ll fit betw uss conn h (by oth anding 6 dance w sections, dard Al	DL=1.15 Plate Exp.; Ce=0. Insidered for t tom chord, 9- 5-0-0 apart. water pondin 0 psf bottom other live loz re load of 20. a rectangle veen the bott nections. ers) of truss 5 lb uplift at jc ith the 2018 s R502.11.1 at USI/TPI 1. ot depict the	e 9; .his .3-0 g. dds. 0psf to on to ont				WITH CA	1111111111 DOI1011
this design 2) Wind: AS(Vasd=103 Cat. II; Ex zone and 3-1-12 to Exterior(2) right expo	7-10=0/2067, 3-5=-5 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B gp B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 7-10-9, Exterior(2R) 7- iE) 10-10-9 to 13-4-4 z ised ; end vertical left ers and forces & MWF	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 3-1-12, Interior (1 10-9 to 10-10-9, one; cantilever left and nd right exposed;C-C	LOA) I	bottom chord		-				Contraction of the second seco	AND	SEA 0363	• -

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2) zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 7-10-9, Exterior(2R) 7-10-9 to 10-10-9, Exterior(2E) 10-10-9 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


G mumm

April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D10	Roof Special	1	1	Job Reference (optional)	157735040

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:42 ID:DsW74MeDKnlz0DF482154bzToqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

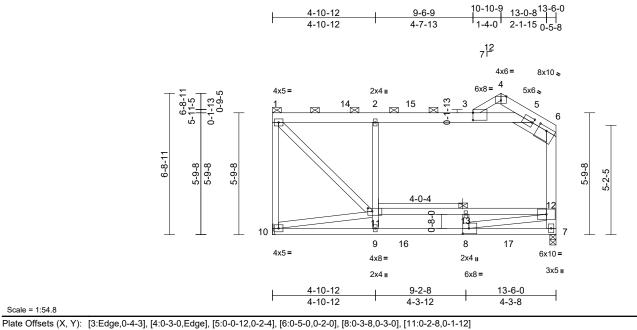
Page: 1

Scale = 1:52.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.85 0.77 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.45 0.01	(loc) 10-11 10-11 8	l/defl >604 >350 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	2.0E athing directly applied cept end verticals, and -0 max.): 1-3, 3-4.	3)	Vasd=103mp Cat. II; Exp E zone and C-1 3-1-12 to 7-1 Exterior(2E) right exposer for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=		CDL=6 RS (env 12 to 3- '-10-9 to zone; ca and righ FRS for OL=1.60 (roof LL Lum DC B; Fully	.0psf; h=25ft elope) exterior 1-12, Interior 10-10-9, intilever left a at exposed;C- reactions sho) :: Lum DOL= =DL=1.15 Plate Exp.; Ce=0.9	or (1) -C own; 1.15 9;				Weight: 105 lb	FT = 20%
	4 (size) 8=0-3-8, 1 Max Horiz 11=206 (L Max Uplift 11=-19 (L Max Grav 8=664 (LC	C 14)	6)	design. 200.0lb AC u from left end Provide adeo	snow loads have b init load placed on , supported at two quate drainage to p is been designed fi	the bott points, {	om chord, 9- 5-0-0 apart. vater ponding	0-0					
FORCES	3-4=-160/272, 3-5=-	pression/Maximum 141/260, 2-3=-425/20, 231/79, 5-6=-180/71, 638/54, 7-13=-284/84	8)	* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wil ny other members.	for a liv where	e load of 20.0 a rectangle	Opsf				TH CA	RO
BOT CHORD WEBS	10-11=0/696, 9-10=(10-12=-59/204, 4-12 5-7=-115/37, 12-14= 9-14=-1/41, 4-11=-7	0/1442, 8-9=-477/44 =-82/223, 2-4=-519/12 -1272/0, 13-14=-1272/	27, 10 70,	Refer to gird) Provide mec bearing plate 11.	er(s) for truss to tru hanical connection capable of withsta	(by oth anding 1	ers) of truss t 9 lb uplift at j			4	il	ORFESE	No. 1. Start
NOTES 1) Unbalance this design	9-13=0/1955 ed roof live loads have n.	been considered for		Ínternational R802.10.2 ai	designed in accord Residential Code nd referenced stan rlin representation	sections dard AN	R502.11.1 a ISI/TPI 1.			111111		SEA 0363	• • –

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D11	Roof Special	1	1	Job Reference (optional)	157735041

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:42 ID:DsW74MeDKnlz0DF482154bzToqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:54.8

	,x, i): [0:Edg0;0 i 0];	[1.0 0 0,Edg0]; [0.0	0 12,0 2	ij, [0:0 0 0,0 2	oj, [0:0 0 0,0 0 0],	[11.0 2	0,0112]						
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-6-0 1.15		CSI TC	0.68	DEFL Vert(LL)	in -0.17	(loc) 9-10	l/defl >925	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.77	Vert(CT)	-0.26	9-10	>617	180		211/100
TCDL	10.0	Rep Stress Incr	NO		WB	0.74	Horz(CT)	0.01	7	n/a	n/a	1	
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH		(0)						
BCDL	10.0											Weight: 124 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)						
TOP CHORD	2x6 SP No.2 *Excep	t* 3-4:2x4 SP No.2	,		oh; TCDL=6.0psf; E								
BOT CHORD					B; Enclosed; MWFF								
WEBS	2x4 SP No.3 *Excep	t* 7-6:2x6 SP 2400F			C Exterior(2E) 0-1-								
	2.0E, 5-6:2x6 SP No	0.2			5-9, Exterior(2R) 9-								
BRACING				· · ·	to 13-3-4 zone; ca								
TOP CHORD	Structural wood she	athing directly applie	d or		nd vertical left and r d forces & MWFRS								
		cept end verticals, ar	nd		=1.60 plate grip D			1,					
	2-0-0 oc purlins (6-0		3)		7-16; Pr=20.0 psf			1 15					
BOT CHORD		applied or 4-11-7 oc	0)		1.15); Pf=20.0 psf (i								
	bracing.				Is=1.0; Rough Cat								
WEBS		11-12		Cs=1.00; Ct		, ,	,	- ,					
REACTIONS	()	10= Mechanical	4)	Unbalanced	snow loads have b	een cor	nsidered for t	his					
	Max Horiz 10=-263 (design.									
	Max Uplift 10=-77 (L		. 5)		init load placed on		,	9-0					
	Max Grav 7=829 (LC		·		, supported at two								
FORCES	(Ib) - Maximum Com	pression/Maximum	6)		quate drainage to p			g.					
TODOLODO	Tension	100/101 0 0 150/	7)		is been designed for								
TOP CHORD	1-10=-722/119, 1-2=	,	,		ad nonconcurrent w								
		62/356, 4-5=-102/128 769/59, 6-12=-461/ ⁻			nas been designed m chord in all areas			Upst					
BOT CHORD	9-10=0/737, 8-9=0/7	,	144		by 2-00-00 wide wil		5	om					in the
WEBS	,	=0/294, 2-11=-504/23	7		by 2-00-00 wide will by other members.			UIII				IN THUA	Roill
WEBS		3=-528/0, 8-13=-26/5			er(s) for truss to tru	iss conr	nections				X	OH FOR	DUN'S
	8-12=0/1795, 1-11=-				hanical connection			to		/	52	·······································	PN. Sin
NOTES	,				e capable of withsta					4	12		N'A
	ed roof live loads have	been considered for		10.		5	. ,				0	:*	
this design		Deen considered for	11) This truss is	designed in accord	lance w	ith the 2018			=		SEA	L 🚯 E .
and design				Internetional	Desidential Code		DE00 11 1	ام مر د			·	OLA	

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D12	Half Hip	1	1	Job Reference (optional)	157735042

Scale = 1:53.2

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:43 ID:DsW74MeDKnlz0DF482154bzToqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

anninna an

SEAL

036322

GI mumm April 13,2023

13-6-0 13-0-8 4-10-12 11-3-2 1-9-6 0-5-8 4-10-12 6-4-6 12 77 4x5= 2x4 u 8x10= 8x10= 0-1-13 3 🖰 2 13 12 1 Ŕ 4 6-6-0 6-4-3 6-4-3 6-4-3 5-2-5 3-10-4 3-10-4 C ф ſ ф Ľ, 8 5 Ø 7 14 6 15 4x5= 3x10= 4x8= 2x4 🛛 3x8= 2x4 u 2x4 II 4-10-12 9-0-8 13-6-0 4-10-12 4-1-12 4-5-8

Plate Offsets (X, Y): [3:0-6-15,Edge], [4:Edge,0-2-0], [5:Edge,0-1-8], [11:0-2-8,0-1-12]

	,, ,, ,, [0.0 0 10,Eugo], [1.Edg0,0 E 0], [0.Ed	90,0 1 0], [1	1.0 2 0,0	· · · 2 j				-				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-6-0 1.15 1.15 NO IRC2018/TP	12014	CSI TC BC WB Matrix-MSH	0.83 0.84 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.53 0.00	(loc) 6-7 6-7 5	l/defl >595 >297 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.1 2x4 SP No.3 *Excep 2.0E, 3-4:2x6 SP No	ot* 5-4:2x6 SP 2400F 0.2	Pla DC Cs 4) Ur	ate DOL=1 DL=1.15); s=1.00; Ct= nbalanced	7-16; Pr=20.0 psf .15); Pf=20.0 psf (L ls=1.0; Rough Cat I =1.10 snow loads have b	ùm DC 3; Fully	DL=1.15 Plate Exp.; Ce=0.9	9;					
BRACING TOP CHORD		athing directly applied of cept end verticals, and I-0 max.): 1-3.	or 5) 20 fro 6) Pr	om left end ovide adeo	nit load placed on t , supported at two p quate drainage to p	ooints, s revent	5-0-0 apart. water ponding						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	, ch	ord live loa	s been designed fo ad nonconcurrent w	ith any	other live loa						
REACTIONS	(size) 5=0-3-8, 8 Max Horiz 8=-258 (L Max Uplift 8=-95 (LC Max Grav 5=906 (LC	C 10)	on 3-0 ch	the bottor 06-00 tall b ord and ar	has been designed n chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru	where fit betw	a rectangle veen the botte						
FORCES	(lb) - Maximum Com Tension		10) Pr	ovide mec	hanical connection capable of withsta	(by oth	ers) of truss t						
TOP CHORD	1-8=-923/87, 1-2=-5	09/123, 2-3=-513/125, 653/96, 4-9=-625/117	8.	01	designed in accord	Ū	, ,	ont					
BOT CHORD WEBS	7-8=-239/194, 6-7=- 7-11=0/379, 2-11=-3 9-10=-350/775, 6-10 1-11=-128/725	263/208, 5-6=-263/208 324/326, 10-11=-351/77)=0/73, 8-11=-376/313,	Ínt 75, Rê 12) Gr or bo	ernational 802.10.2 ar aphical pu the orienta ttom choro	Residential Code s nd referenced stand rlin representation ation of the purlin al l.	ections dard AN does no	R502.11.1 a SI/TPI 1. ot depict the s					ORTH CA	ROUT
1) Unbalance	ed roof live loads have	been considered for	LOAD	CASE(S)	Standard						>>		Rill

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2) Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 7-0-4, Exterior(2R) 7-0-4 to 11-3-2, Exterior (2E) 11-3-2 to 13-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

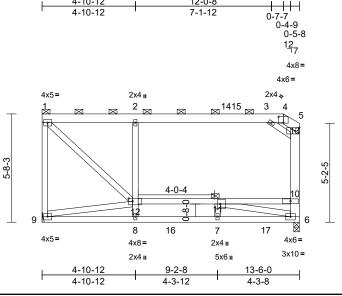
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D13	Half Hip	1	1	Job Reference (optional)	157735043

12-0-8

4-10-12


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:43 ID:DsW74MeDKnlz0DF482154bzToqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-6-0 13-0-8 12-7-15

Page: 1

Scale = 1:60.5

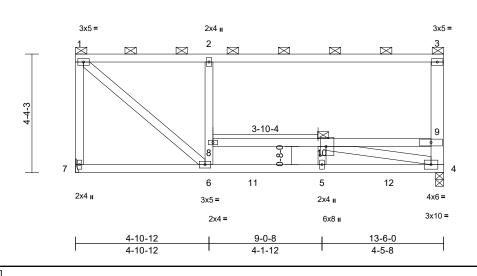
Plate Offsets (X, Y): [4:0-3-0,0-3-12], [11:0-3-0,0-1-12], [12:0-2-8,0-1-12]

		1/L · · · //· 1/1		·									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.52 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.18 0.01	(loc) 8-9 8-9 6	l/defl >999 >893 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 115 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 10-0-0 oc purlins, e 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 6=0-3-8, 9 Max Horiz 9=-183 (L Max Uplift 9=-59 (LC Max Grav 6=830 (LC (lb) - Maximum Com Tension 1-9=-624/102, 1-2=- 3-4=-305/1074, 6-10 10-13=-495/120, 5-1 4-5=-329/1218 8-9=0/636, 7-8=0/66 8-12=0/248, 2-12=-4	athing directly applie xcept end verticals, a -0 max.): 1-4. applied or 10-0-0 oc 10-12 9= Mechanical C 12) C 10) C 34), 9=786 (LC 34) pression/Maximum 435/109, 2-3=-432/1)=-481/109, (3=-136/563, 56, 6-7=0/666 133/201, 11-12=-468 -11=0/260, 9-12=-63	3) d or and 4) 5) 6) 7) 8) 9) 11, 10) (0, 8/0,	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. 200.0lb AC u from left end Provide adec This truss ha on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 9. This truss is International R802.10.2 au Graphical pu	snow loads have I init load placed on , supported at two quate drainage to j is been designed the ad nonconcurrent the has been designed in chord in all area by 2-00-00 wide with y other members. er(s) for truss to tri- hanical connection e capable of withst designed in accor Residential Code and referenced star rinin representation ation of the purlin a d.	(Lum DC B; Fully been col the bot: points, prevent for a 10. with any f for a lii s where ill fit betw uss conn h (by oth anding s dance w sections dard AN	DL=1.15 Plate Exp.; Ce=0. Insidered for t com chord, 9- 5-0-0 apart. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss is B bu plift at scala scala s	e 9; 3-0 g. ads. 0psf com to joint				ORTH CA	ROLIN
Vasd=103 Cat. II; Ex zone and 3-1-12 to Exterior(2 right expo for member	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br pp B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 9-7-15, Exterior(2R) 9- -7-15, Exterior(2R) 9- (E) 12-7-15 to 13-3-4 zr sed; end vertical left a ers and forces & MWFI OL = 1.60 plate aris DC	CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 3-1-12, Interior (7-15 to 12-7-15, one; cantilever left ar ind right exposed;C-(RS for reactions sho	(1) nd C								A A A A A A A A A A A A A A A A A A A	SEA 0363	•

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-7-15, Exterior(2R) 9-7-15 to 12-7-15, Exterior(2E) 12-7-15 to 13-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

munnin April 13,2023

B GI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D14	Flat	1	1	Job Reference (optional)	157735044

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:44 ID:DsW74MeDKnlz0DF482154bzToqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.3

Plate Offsets (X, Y): [10:0-4-0,0-2-8]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.83 Vert(LL) 0.22 6-7 >731 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.68 Vert(CT) -0.30 6-7 >523 180 MT20 244/190 BCLL 0.0* Code IRC2018/TPI2014 WB 0.72 Matrix-MSH N/a n/a n/a n/a BCDL 10.0 Vertice Vertice														
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.83 Vert(LL) 0.22 6-7 >731 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.68 Vert(LT) -0.30 6-7 >523 180 MT20 244/190 TCDL 10.0 Rep Stress Incr YES WB 0.72 Matrix-MSH N/a n/a n/a n/a n/a BCL 0.0* Code IRC2018/TPI2014 Matrix-MSH Weight: 88 lb FT = 20% LUMBER 3) 200.0lb AC unit load placed on the bottom chord, 9-0-0 50 50 50 50 50	Loading	(psf)	Spacing 2	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0 Rep Stress Incr YES WB 0.72 Horz(CT) 0.01 4 n/a n/a BCLL 0.0* 0.0 IRC2018/TPI2014 Matrix-MSH Matrix-MSH Weight: 88 lb FT = 20% LUMBER 3) 200.0lb AC unit load placed on the bottom chord, 9-0-0 4 n/a n/a N/a	TCLL (roof)		Plate Grip DOL 1	1.15		тс	0.83	Vert(LL)	0.22		>731	240	MT20	244/190
BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH Weight: 88 lb FT = 20% LUMBER 3) 200.0lb AC unit load placed on the bottom chord, 9-0-0 3) 200.0lb AC unit load placed on the bottom chord, 9-0-0 4	()							Vert(CT)	-0.30	6-7		180		
BCDL 10.0 Weight: 88 lb FT = 20% LUMBER 3) 200.0lb AC unit load placed on the bottom chord, 9-0-0 FT = 20%						WB	0.72	Horz(CT)	0.01	4	n/a	n/a		
LUMBER 3) 200.0lb AC unit load placed on the bottom chord, 9-0-0		0.0*	Code II	RC2018/TP	PI2014	Matrix-MSH								
	BCDL	10.0											Weight: 88 lb	FT = 20%
		2x4 SP No.2							0-0					
BOT CHORD 2x4 SP No.2 4) Provide adequate drainage to prevent water ponding.	BOT CHORD	2x4 SP No.2							j .					
WEBS 2x4 SP No.3 *Except* 3-4:2x6 SP 2400F 5) This truss has been designed for a 10.0 psf bottom 2.0E, 8-9:2x4 SP No.2 chord live load nonconcurrent with any other live loads.	WEBS								ds.					
BRACING 6) * This truss has been designed for a live load of 20.0psf	BRACING								Opsf					
TOP CHORD 2-0-0 oc purlins (5-10-15 max.): 1-3, except end verticals. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom			0-15 max.): 1-3, excep	3-0	06-00 tall b	y 2-00-00 wide will			om					
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. chord and any other members. 7) Refer to girder(s) for truss to truss connections.		bracing.		7) Re	efer to girde	er(s) for truss to tru			_					
WEBS 1 Row at midpt 8-9 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint	WEBS	1 Row at midpt	8-9											
REACTIONS (size) 4=0-3-8, /= Mechanical 7		· · · ·					nung 4	o ib upint at j	UIII					
Max Horiz 7=-139 (LC 10) 9) This truss is designed in accordance with the 2018		,	,	9) Th	nis truss is o									
Max Opin 7-40 (LC 10) International Residential Code sections R502.11.1 and Max Grav 4=660 (LC 1), 7=590 (LC 1) R802.10.2 and referenced standard ANSI/TPI 1.			/						nd					
FORCES (lb) - Maximum Compression/Maximum 10) Graphical purlin representation does not depict the size Tension or the orientation of the purlin along the top and/or	FORCES		pression/Maximum						size					
TOP CHORD 1-7=-495/233, 1-2=-471/232, 2-3=-421/222, 4-9=-246/230, 3-9=-269/268 bottom chord. LOAD CASE(S) Standard	TOP CHORD			bo	ottom chord									
BOT CHORD 6-/=-120/10/, 5-6=-131/632, 4-5=-131/632	BOT CHORD	,	,			otandara								
WEBS 1-6=-197/593, 6-8=-385/413, 2-8=-409/452,	WEBS			,									munn	11111
8-10=-211/45, 9-10=-445/1403, 5-10=-34/318, 4-10=-1654/503													"TH CA	Roilin
NOTES	NOTES	2.0 0.000, 110										1 And	ONCESS	DAN'
1) Wind: ASCE 7-16; Vult=130mph (3-second gust)		CE 7-16; Vult=130mph	(3-second gust)									SE	in	Ni Sit
Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=25ft:	Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;										.0	- C. L.
Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior											-		OFA	1 1 1
zone and C-C Corner (3) zone; cantilever left and right SEAL													SEA	• -
exposed ; end vertical left and right exposed;C-C for 036322											=	:	0363	22 : =
members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60											-			
2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15				5								-		- 1 - E
Plate DOL=1.15): Pf=20.0 psf (Lum DOL=1.15 Plate				,								10	N.S.NOW	EFR. A S
DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;												1	PIO GIN	E. E. F. N
Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10	Cs=1.00; (Ct=1.10											A G	ILBUIN

annun mitt GILB C 100000 April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	D15	Flat Girder	1	2	Job Reference (optional)	157735045

8-11-7

4-4-13

4-6-9

4-6-9

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:45 ID:AFeuV1gTrO?gGXPSGT3Z90zToqY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-6-0

4-6-9

Page: 1

GRIP

244/190

NAILED NAILED NAILED NAILED NAILED NAILED NAILED 2x4 II 3x5 = 3x8 = 2x4 ı 13 下<u>~</u> 10 2 11 12 3 g 144 ∇ \bigtriangledown ∇ Ш ШП Ш Ш Шг 3-2-0 8 ۴ľ ΠΠ ┟┼╋ 5 15 16 7 17 18 6 19 20 2x4 II 3x8 = 2x4 II 3x5 = NAILED NAILED NAILED NAILED NAILED NAILED NAILED 4-6-9 8-11-7 13-6-0 4-6-9 4-4-13 4-6-9 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (loc) Plate Grip DOL 1.15 TC 0.26 Vert(LL) -0.02 6-7 >999 240 MT20 BC Lumber DOL 1 15 0.26 Vert(CT) -0.03 6-7 >999 180 Rep Stress Incr NO WB 0.31 Horz(CT) 0.01 5 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 154 lb FT = 20% Wind: ASCE 7-16; Vult=130mph (3-second gust) Vert: 1-4=-60, 5-8=-20 3) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Concentrated Loads (lb) Vert: 6=-42 (B), 3=-110 (B), 9=-113 (B), 10=-110 (B), Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left 11=-110 (B), 12=-110 (B), 13=-110 (B), 14=-131 (B), and right exposed; Lumber DOL=1.60 plate grip 15=-43 (B), 16=-42 (B), 17=-42 (B), 18=-42 (B), DOL=1.60 19=-42 (B), 20=-49 (B) 2-0-0 oc purlins (6-0-0 max.): 1-4, except TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Rigid ceiling directly applied or 10-0-0 oc DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5=0-3-8 8= Mechanical Unbalanced snow loads have been considered for this 5) design. Max Uplift 5=-206 (LC 9), 8=-192 (LC 8) 6) Provide adequate drainage to prevent water ponding. Max Grav 5=1110 (LC 1), 8=1042 (LC 1) This truss has been designed for a 10.0 psf bottom 7) (lb) - Maximum Compression/Maximum chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) 1-8=-954/224, 1-2=-1146/212, on the bottom chord in all areas where a rectangle 2-3=-1146/212, 3-4=-60/34, 4-5=-281/110 3-06-00 tall by 2-00-00 wide will fit between the bottom 7-8=-78/91, 6-7=-239/1145, 5-6=-239/1145 chord and any other members. 1-7=-250/1322, 2-7=-538/215, 3-7=-19/25, Refer to girder(s) for truss to truss connections. 3-6=0/266, 3-5=-1323/252

WFBS NOTES

Scale = 1:42.2 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

BRACING

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

end verticals.

Max Horiz 8=99 (LC 9)

bracing.

Tension

(size)

- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- joint 8. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 5. This connection is for uplift only and does not consider lateral forces.

10) Provide mechanical connection (by others) of truss to

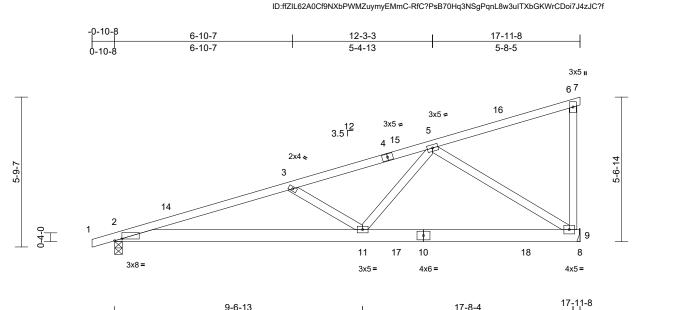
bearing plate capable of withstanding 192 lb uplift at

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)

Paris and and the state anninna ann SEAL 36322 GI minim April 13,2023


TH CAD

ORTH

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E01	Monopitch	6	1	I577350 Job Reference (optional))46

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:45

Scale = 1:44.5 Plate Offsets (X, Y): [2:0-3-5.0-0-13]

Plate Offsets	(X, Y): [2:0-3-5,0-0-13	3]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.63 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE BOT CHORE BRACING TOP CHORE BOT CHORE BOT CHORE BOT CHORE BOT CHORE BOT CHORE UEBS NOTES 1) Wind: AS Vasd=10 Cat. II; E zone and 2-1-12 to cantileve for memt Lumber I 2) TCLL: AS	 2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 3-9-12 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-8, 9 Max Horiz 2=204 (LC Max Grav 2=847 (LC (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-1926 5-6=-104/28, 6-7=-7 	except end verticals. y applied or 10-0-0 or 9= Mechanical C 10) C 21), 9=1027 (LC 2 hpression/Maximum 9/2, 3-5=-1575/0, /0, 6-9=-28/97 11=-73/1016, 8-9=0/ 1=0/800, 5-9=-1176/ n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior J-4 to 2-1-12, Interior 14-11-8 to 17-11-8 zi tical feft exposed; C-1 RS for reactions sho D_=1.60 (roof LL: Lum DOL=*	(1) (1) (1) (1) (1) (1) (1) (1)	from left end This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Refer to gird One H2.5A S recommende UPLIFT at jt(does not com 0) This truss is International	Init load placed on , supported at two as been designed f ad nonconcurrent to has been designed n chord in all area by 2-00-00 wide wi y other members. er(s) for truss to tr Bimpson Strong-Ti ed to connect truss (s) 2. This connect sider lateral forces designed in accord Residential Code nd referenced star Standard	points, for a 10. with any f for a liv s where ill fit betw uss conne s to bear ion is fo s. dance w sections	5-0-0 apart. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott nections. ctors ing walls due r uplift only an ith the 2018 \$ R502.11.1 a	ads. 0psf om to nd		4	0	Weight: 98 lb	
DOL=1.1 Cs=1.00;	(5); Is=1.0; Rough Cat E ; Ct=1.10 ced snow loads have be	3; Fully Exp.; Ce=0.9);									SIC A	EERA
4) This trus load of 1	s has been designed fo 2.0 psf or 1.00 times fla gs non-concurrent with o	t roof load of 20.0 ps									11	A. C	ILBE

This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

A. GILBER April 13,2023

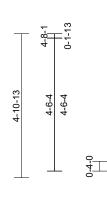
Page: 1

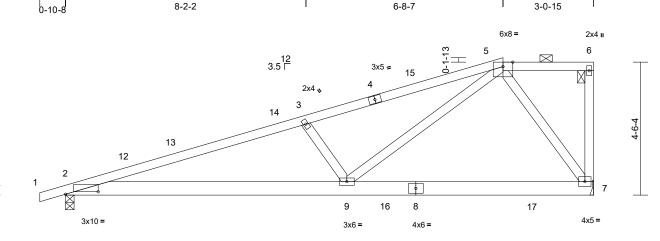
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E02	Half Hip	1	1	Job Reference (optional)	157735047

8-2-2

Carter Components (Sanford), Sanford, NC - 27332,


-0-10-8


Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:45 ID:ffZIL62A0Cf9NXbPWMZuymyEMmC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-10-9

Page: 1

17-11-8

	9-6-13	17-11-8	
Γ	9-6-13	8-4-11	
Scale = 1:39.2			

Plate Offsets (X, Y): [2:1-1-5,0-1-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.80 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.22 0.02	(loc) 9-11 9-11 7	l/defl >999 >966 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 3-0-14 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	xcept end verticals, -0 max.): 5-6.	and 7	design.) This truss ha load of 12.0 overhangs r) 200.0lb AC from left end) Provide ade) This truss ha chord live lo	snow loads have l as been designed psf or 1.00 times f non-concurrent with unit load placed or d, supported at two quate drainage to as been designed ad nonconcurrent	for great lat roof I n other li n the bot points, prevent for a 10. with any	er of min roo oad of 20.0 p ve loads. tom chord, 13 5-0-0 apart. water pondin 0 psf bottom other live loa	f live osf on 3-4-8 ig. ads.					
	(size) 2=0-3-8, 7 Max Horiz 2=167 (LC Max Uplift 2=-83 (LC Max Grav 2=929 (LC	: 10)	9	on the botto 3-06-00 tall chord and a	has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr	s where ill fit betv	a rectangle veen the bott						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-2108 5-6=-21/0, 6-7=-111 2-9=-133/1972, 7-9= 3-9=-597/213, 5-9=0 ed roof live loads have	3/32, 3-5=-1802/0, /40 85/532 //1427, 5-7=-910/16;	1 1 7	 One H2.5A recommend UPLIFT at jt does not col This truss is Internationa R802.10.2 a Graphical put 	ed to connect truss (s) 2. This connect nsider lateral force designed in accor I Residential Code and referenced star urlin representation ation of the purlin a	ie conne s to bear tion is fo s. dance w sections ndard Al n does n	ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a NSI/TPI 1. ot depict the	nd and				NITH CA	ROIN
2) Wind: ASC	CE 7-16; Vult=130mph			bottom chor	d.	a.og un					i	Chines	Divin

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-10-9, Exterior(2R) 11-10-9 to 14-10-9, Exterior(2E) 14-10-9 to 17-9-12 zone; cantilever left exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

Edentor, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E03	Half Hip	1	1	Job Reference (optional)	157735048

Page: 1

44

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:46 ID:K1JWRFjHa?OyU0jJJkYwsJzRTqM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-10-8 5-7-4 10-3-11 17-11-8 5-7-4 7-7-13 4-8-7 0-10-8 4x8 3x5 = 12 3.5 Г 4 16 17 5 \square 3x5 = 15 3 14 2 13 • 7 9 8 3x5 = 2x4 II 3x5 = 3x5 = 3x5 = 5-7-4 10-1-15 17-11-8 5-7-4 4-6-11 7-9-9 Scale = 1:37.9 Plate Offsets (X, Y): [5:Edge,0-1-8] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.92 Vert(LL) -0.11 6-8 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.72 Vert(CT) -0.23 6-8 >921 180 10.0 Rep Stress Incr WB 0.42 Horz(CT) YES 0.04 6 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 84 lb 10.0 FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 *Except* 4-5:2x4 SP No.1

TOP CHORD BOT CHORD 2x4 SP No 2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 3-7-6 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. BOT CHORD Rigid ceiling directly applied or 8-8-14 oc bracing. WEBS 1 Row at midpt 4-6 REACTIONS (size) 2=0-3-8, 6= Mechanical Max Horiz 2=124 (LC 13) Max Uplift 2=-142 (LC 10), 6=-117 (LC 10) Max Grav 2=900 (LC 36), 6=757 (LC 35) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/20, 2-3=-2038/475, 3-4=-1197/353, 4-5=-89/73. 5-6=-310/152 2-9=-443/1925, 8-9=-443/1925, BOT CHORD 6-8=-270/1077 WEBS 3-9=0/169, 3-8=-887/185, 4-8=0/443, 4-6=-1109/319

NOTES

3-6-13

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

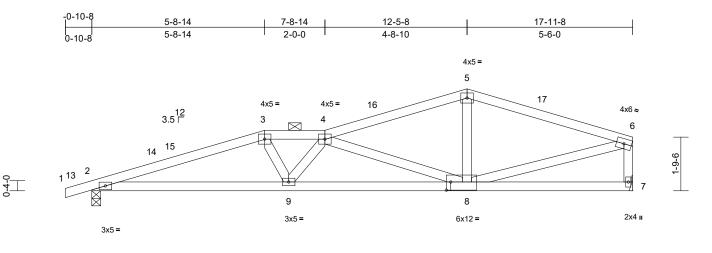
BCDL

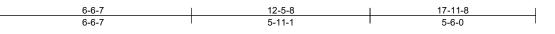
3-4-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-0-13, Exterior(2R) 6-0-13 to 14-9-12, Exterior (2E) 14-9-12 to 17-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 4) Unbalanced snow loads have been considered for this desian. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

- overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 6
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E04	Roof Special	1	1	Job Reference (optional)	157735049

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:46 ID:Z1uLv81aS?gGb0jJqC?1vozRTpy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.2

3-4-10

2-0-1

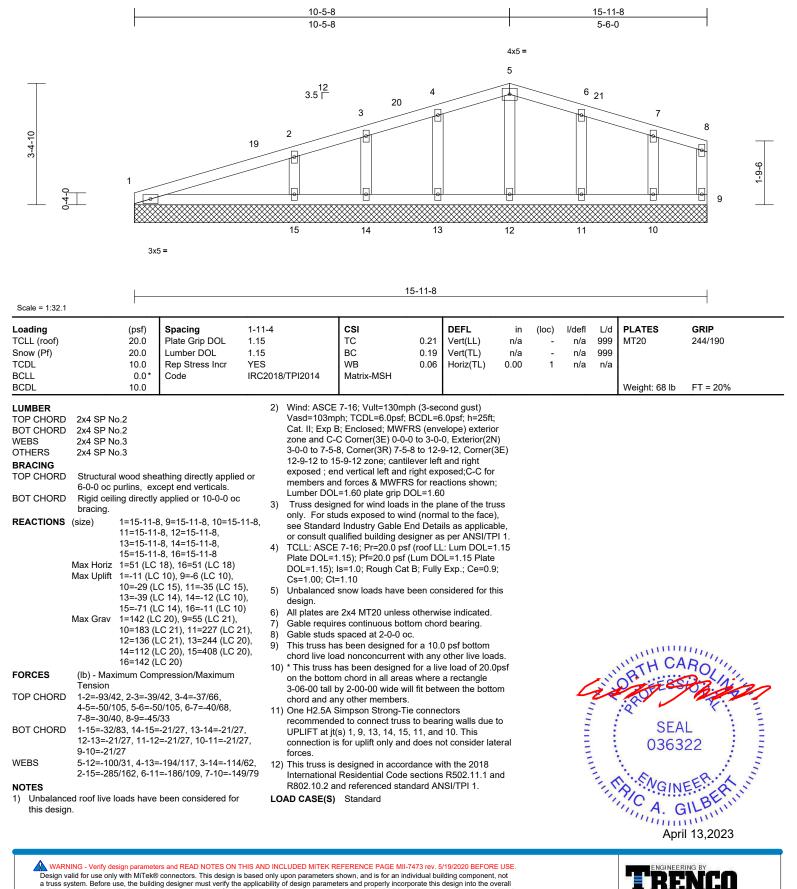
3-7-5

1-4-8

Plate Offsets (X, Y): [8:0-1-12,0-3-4]

	X, Y): [8:0-1-12,0-3-4]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.77 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.20 0.04	(loc) 9-12 9-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=103 Cat. II; Ex, zone and 2-1-8 to 2- (2E) 5-8-1	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 3-2-6 oc purlins, exu 2-0-0 oc purlins, exu (size) 2=0-3-8, 7 Max Horiz 2=60 (LC Max Uplift 2=-133 (L Max Grav 2=877 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-3=-1975 4-5=-1071/329, 5-6= 2-9=-471/1868, 7-9= 6-8=-211/965, 3-9=- 4-8=-1214/332, 5-8= ed roof live loads have 1. CE 7-16; Vult=130mph mph; TCDL=6.0psf; BK	applied or 8-1-10 oc 7= Mechanical 18) C 10), 7=-60 (LC 10) C 42), 7=746 (LC 46) pression/Maximum 5/536, 3-4=-2007/546, 1037/325, 6-7=-695/2 526/2115 12/329, 4-9=-202/86, -0/297 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1) -14 to 5-8-14, Exterior) 7-8-14 to 9-5-8,	4) or 5) 6) 7) 8) 8) 2255 11] 12] 12] 13]	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Refer to gird) Provide mec bearing plate 7.) One H2.5A S recommende UPLIFT at jt(does not cor) This truss is International R802.10.2 ar	snow loads have b as been designed fip port of 1.00 times fit on-concurrent with quate drainage to p is been designed fit ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide with y other members. er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 2. This connection isider lateral forces designed in accord Residential Code ind referenced stan rin representation ation of the purlin a d.	Lum DC B; Fully peen col or great at roof l other li orevent or a 10. vith any for a liv s where ll fit betw uss conne to bear on is fo s. dance w sections dard AL	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool bad of 20.0 p ve loads. water pondin; 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss 1 60 lb uplift at j ctors ing walls due r uplift only at s R502.11.1 a s R502.11.1 a s SIJ/TP1 1.	e 9; his f live ssf on g. ads. 0psf to joint to nd and		4.1111		Weight: 82 lb ORTH CA ORTHESS SEA 0363	ROWIN	
vertical lef forces & N	one; cantilever left and t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60	C for members and										11111	EER. X	

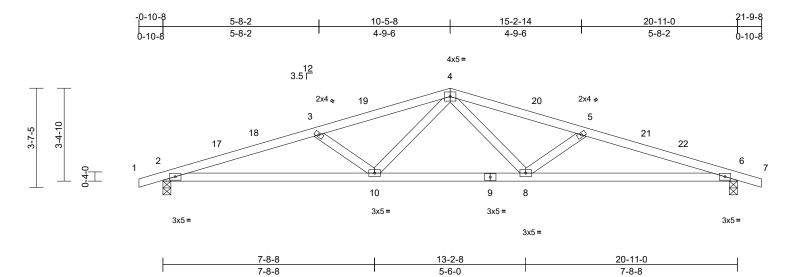
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E05	Common Supported Gable	1	1	Job Reference (optional)	157735050

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:47 ID:wGDfWgIOGIR8EOOX7pPBoRzRTpc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


818 Soundside Road Edenton, NC 27932

Design valid for use only design parameters anneared not be of the applicability open parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E06	Common	3	1	Job Reference (optional)	157735051

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:47 ID:ol_bwrYZKC49FcVaskH69tzRTpH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.46	Vert(LL)	-0.11	10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.25	10-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.27	Horz(CT)	0.06	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								FT 000/
BCDL	10.0		-									Weight: 86 lb	FT = 20%
LUMBER			4)	Unbalanced	snow loads have	been cor	nsidered for t	this					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2		5)		as been designed								
WEBS	2x4 SP No.3				psf or 1.00 times f			osf on					
BRACING				0	on-concurrent with								
TOP CHORD		athing directly applied	dor 6)		as been designed								
	3-5-3 oc purlins.		7)		ad nonconcurrent has been designed								
BOT CHORD	Rigid ceiling directly	applied or 9-4-4 oc	()		m chord in all area			opsi					
	bracing.				by 2-00-00 wide w		0	tom					
REACTIONS	(size) 2=0-3-8, 6				ny other members								
	Max Horiz 2=52 (LC Max Uplift 2=-130 (Le	,	, 8)	One H2.5A	Simpson Strong-Ti	ie conne	ctors						
	Max Opint 2=-130 (LC Max Grav 2=943 (LC)		ed to connect trus		0						
	•	, , , ,			(s) 2 and 6. This c		n is for uplift	only					
FORCES	(lb) - Maximum Com Tension	pression/waximum			t consider lateral f								
TOP CHORD	1-2=0/15, 2-3=-2390	/481 3-4=-1965/396	9)		designed in accor Residential Code			and					
	4-5=-1965/396, 5-6=				nd referenced star			anu					
BOT CHORD	2-10=-395/2275, 8-1	,		DAD CASE(S)		Idai'u Al	10 //11/11.						
	6-8=-395/2275	,		DAD CASE(S)	Stanuard								
WEBS	4-8=-44/641, 5-8=-56	68/172, 4-10=-43/641	I,										
	3-10=-568/172												
NOTES													1111
1) Unbalance	ed roof live loads have	been considered for										IN CA	D'11

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-5-8, Exterior(2R) 7-5-8 to 13-5-8, Interior (1) 13-5-8 to 18-9-8, Exterior(2E) 18-9-8 to 21-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322

April 13,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	E07	Common Girder	1	2	Job Reference (optional)	157735052

3-7-5

TCDL

BCLL

BCDL

WEBS

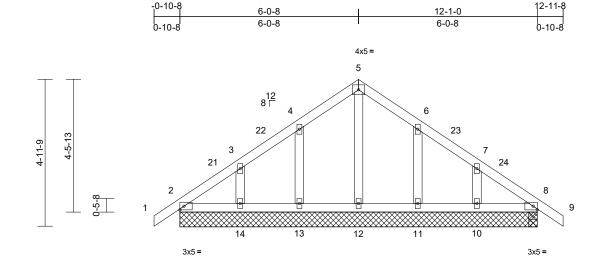
WEBS

ос

1)

2)

3)


Carter Components (Sanford), Sanford, NC - 27332 Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:48 Page: 1 ID:iVzytXS1LSstbl?IYCbw0 zRTmq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 21-9-8 5-8-1 10-5-8 15-2-14 20-11-0 5-8-1 4-9-7 4-9-6 5-8-2 0-10-8 d-10-8 NAILED 12 3.5 Г NAILED NAILED 4x5: NAILED NAILED NAILED NAILED 4 2x4 👟 2x4 🛪 20 21 19 22 3 5 18 ìn 23 3-4-10 24 -4-1-0-ПГ пп ΠΓ ПП ПП 25 10 27 9 29 30 31 26 28 8 3x5 = 3x5 = 3x5 = 3x5 = NAILED NAILED NAILED NAILED NAILED 3x5 = NAILED NAILED 7-8-8 13-2-8 20-11-0 7-8-8 5-6-0 7-8-8 Scale = 1:42.1 1-11-4 CSI DEFL l/defl L/d PLATES GRIP Loading (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.41 Vert(LL) -0.14 8-16 >999 240 MT20 244/190 20.0 BC -0 27 Snow (Pf) Lumber DOL 1 15 0.96 Vert(CT) 8-16 >933 180 10.0 Rep Stress Incr NO WB 0.24 Horz(CT) 0.05 6 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 172 lb FT = 20% 10.0 Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER 4) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2x4 SP No.3 zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip BRACING DOL=1.60 TOP CHORD Structural wood sheathing directly applied or TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) 5-8-3 oc purlins. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate BOT CHORD Rigid ceiling directly applied or 10-0-0 oc DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; bracing. Cs=1.00; Ct=1.10 **REACTIONS** (size) 2=0-3-8 6=0-3-8 Unbalanced snow loads have been considered for this 6) Max Horiz 2=51 (LC 12) design. Max Uplift 2=-204 (LC 8), 6=-204 (LC 9) This truss has been designed for greater of min roof live 7) Max Grav 2=1512 (LC 19), 6=1512 (LC 20) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on FORCES (Ib) - Maximum Compression/Maximum overhangs non-concurrent with other live loads. Tension This truss has been designed for a 10.0 psf bottom 8) TOP CHORD 1-2=0/14, 2-3=-4171/552, 3-4=-3647/461, chord live load nonconcurrent with any other live loads. 4-5=-3647/462, 5-6=-4170/552, 6-7=0/14 * This truss has been designed for a live load of 20.0psf 9) BOT CHORD 2-10=-523/3986, 8-10=-315/2659, on the bottom chord in all areas where a rectangle 6-8=-479/3984 3-06-00 tall by 2-00-00 wide will fit between the bottom 4-10=-105/1168. 3-10=-687/177. chord and any other members. 4-8=-105/1168, 5-8=-686/177 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to NOTES UPLIFT at jt(s) 2 and 6. This connection is for uplift only 2-ply truss to be connected together with 10d ORTH and does not consider lateral forces. (0.131"x3") nails as follows: 11) This truss is designed in accordance with the 2018 Top chords connected as follows: 2x4 - 1 row at 0-9-0 International Residential Code sections R502.11.1 and Vanananan Bottom chords connected as follows: 2x4 - 1 row at R802.10.2 and referenced standard ANSI/TPI 1. 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d 0-9-0 oc. MUTUIT (0.148"x3.25") toe-nails per NDS guidlines. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. SEAL All loads are considered equally applied to all plies, LOAD CASE(S) Standard 036322 except if noted as front (F) or back (B) face in the LOAD Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) CASE(S) section. Ply to ply connections have been Increase=1.15 provided to distribute only loads noted as (F) or (B), Uniform Loads (lb/ft) unless otherwise indicated. Vert: 1-4=-58, 4-7=-58, 11-14=-19 Unbalanced roof live loads have been considered for Concentrated Loads (lb) this design. Vert: 4=-107 (F), 18=-129 (F), 19=-24 (F), 22=-24 G (F), 23=-129 (F), 25=-165 (F), 26=-85 (F), 27=-135 minim (F), 28=-44 (F), 29=-135 (F), 30=-85 (F), 31=-165 (F) April 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	F01	Common Supported Gable	1	1	Job Reference (optional)	157735053

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:48 ID:FdpL?0LDvz515zVH9NUfJOzTo7m-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

			L			1	2-1-0						
Scale = 1:39			1									 	
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	0.00	14-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	0.00	14-17	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 61 lb	FT = 20%
	11=12-1-0	applied or 10-0-0 or 8=0-3-8, 10=12-1-0 0, 12=12-1-0, 13=12 0, 15=12-1-0 C 13), 15=105 (LC 1	c , 3) -1-0, ³⁾	Vasd=103m Cat. II; Exp E zone and C-1 2-0-8 to 3-0- 9-0-8 to 9-11 cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu see Standar or consult qu	7-16; Vult=130m ob; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) -0- 8, Exterior(2E) 9- 4, Exterior(2E) 9 t and right expose d;C-C for membel shown; Lumber I ned for wind loads ds exposed to wi d Industry Gable f alified building fe alified building fe	BCDL=6 FRS (env. -10-8 to 2- 0-8 to 9-0 -11-8 to ed; end v rs and foi DOL=1.60 s in the p ind (norm End Deta esigner as	.0psf, h=25ft; elope) exterio -0-8, Interior ()-8, Interior (12-11-8 zone; eretical left an ces & MWFR) plate grip lane of the tru al to the face) ills as applicat s per ANSI/TF	r (1)) d S S ss), ole, PI 1.					

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, 14, 11, 10, and 8. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

AMITEK AN AMITEK AN 18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10=-63 (LC 15), 11=-58 (LC 15),

13=-58 (LC 14), 14=-65 (LC 14),

10=218 (LC 22), 11=251 (LC 22), 12=130 (LC 27), 13=251 (LC 21),

14=218 (LC 21), 15=142 (LC 21)

15=-12 (LC 15)

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

Max Grav 2=142 (LC 21), 8=142 (LC 22),

(lb) - Maximum Compression/Maximum

4-5=-85/102, 5-6=-85/102, 6-7=-75/39,

2-14=-38/79, 13-14=-30/79, 12-13=-30/79,

11-12=-30/79, 10-11=-30/79, 8-10=-30/79

5-12=-91/0, 4-13=-214/91, 3-14=-175/80,

1-2=0/28, 2-3=-87/68, 3-4=-80/60,

7-8=-61/32, 8-9=0/28

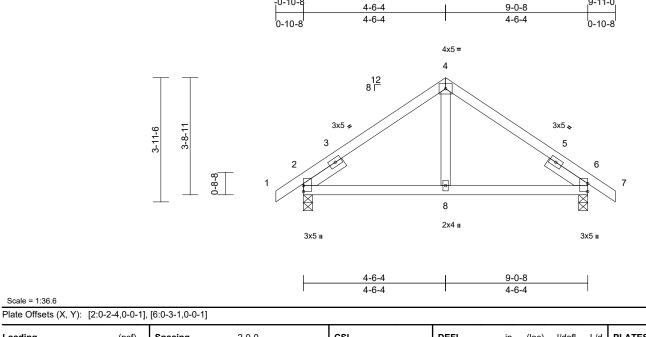
6-11=-214/91, 7-10=-175/80

1) Unbalanced roof live loads have been considered for

Tension

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	G01	Common	1	1	Job Reference (optional)	157735054

-0-10-8


Carter Components (Sanford), Sanford, NC - 27332,

Scale = 1:36.6

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:49 ID:eaKwEA96DZd4jIRFs5CRoWzTo9J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-11-0

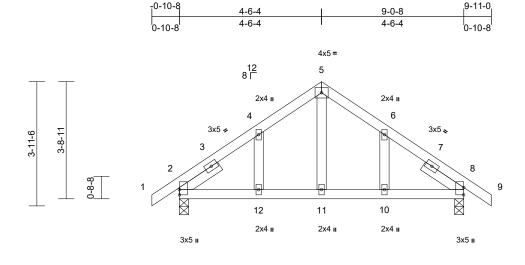
Page: 1

Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC		DEFL	in	(loc)	l/defl	L/d	PLATES	CDID
* Code I		3/TPI2014	BC WB Matrix-MSH	0.34 0.28 0.07	Vert(LL) Vert(CT) Horz(CT)	-0.02 -0.03 0.01	8-11 8-11 2	>999 >999 n/a	240 180 n/a	MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
neathing directly applied of tly applied or 10-0-0 oc 6, 6=0-3-8 LC 12) LC 12) LC 14), 6=-47 (LC 15) LC 21), 6=523 (LC 22)	6) or 7) 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does not This truss is	s been designed for part of 1.00 times fla on-concurrent with is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will yo other members. Simpson Strong-Tie d to connect truss s) 2 and 6. This co t consider lateral for designed in accord	or great at roof k other liv or a 10.0 vith any for a liv where l fit betv conne to bear nnectio rces. lance w	er of min roof pad of 20.0 p (e loads.) psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ng walls due n is for uplift	live sf on ds. Dpsf om to only					
	LO	R802.10.2 aı	nd referenced stand								
ve been considered for oh (3-second gust)								4	ren la	OR FESS	ROLIN
sh c 8(((() () ;;F	1-6-0, Right 2x4 SP No. sheathing directly applied of ctly applied or 10-0-0 oc 8, 6=0-3-8 (LC 12) (LC 14), 6=-47 (LC 15) (LC 21), 6=523 (LC 22) iompression/Maximum 48/392, 4-6=-348/392, 8=-205/290 ave been considered for the formula of the the the the the the the the the second gust) ; BCDL=6.0psf; h=25ft; FRS (envelope) exterior	4) 5) 1-6-0, Right 2x4 SP No.3 6) sheathing directly applied or 7) ctly applied or 10-0-0 oc 8, 6=0-3-8 (LC 12) (LC 14), 6=-47 (LC 15) (LC 21), 6=523 (LC 22) 9) iompression/Maximum 48/392, 4-6=-348/392, LC 8=-205/290 ave been considered for nph (3-second gust) ; BCDL=6.0psf; h=25ft; FRS (envelope) exterior	 4) Unbalanced design. 5) This truss ha load of 12.0 goverhangs n. 6) This truss ha chord live loa sheathing directly applied or 7) * This truss ha chord live loa sheathing directly applied or 7) * This truss ha chord live loa 3-06-00 tall to chord and ar 8, 6=0-3-8 (LC 12) (LC 14), 6=-47 (LC 15) (LC 21), 6=523 (LC 22) compression/Maximum 48/392, 4-6=-348/392, 8=-205/290 ave been considered for nph (3-second gust) ; BCDL=6.0psf, h=25ft; 	 4) Unbalanced snow loads have b design. 5) This truss has been designed for load of 12.0 psf or 1.00 times fla overhangs non-concurrent with 6) This truss has been designed for chord live load nonconcurrent w 7) * This truss has been designed or on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. 8) Gne H2.5A Simpson Strong-Tie recommended to connect truss UPLIFT at jt(s) 2 and 6. This co and does not consider lateral for the struss is designed in accord International Residential Code s R802.10.2 and referenced stant 48/392, 4-6=-348/392, 8=-205/290 4) Unbalanced snow loads have b design. 5) This truss has been designed for the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. 8) One H2.5A Simpson Strong-Tie recommended to connect truss UPLIFT at jt(s) 2 and 6. This co and does not consider lateral for the for the formation of the strust is designed in accord International Residential Code s R802.10.2 and referenced stant LOAD CASE(S) Standard 8=-205/290 	 4) Unbalanced snow loads have been cordesign. 5) This truss has been designed for greater load of 12.0 psf or 1.00 times flat roof looverhangs non-concurrent with other live overhangs non-concurrent with other live (or hord live load nonconcurrent with any 7) * This truss has been designed for a live on the bottom chord in all areas where 3-06-00 tall by 2-00-00 wide will fit betwee chord and any other members. 8) 6=0-3-8 (LC 12) (LC 14), 6=-47 (LC 15) (LC 21), 6=523 (LC 22) (CC 21), 6=523 (LC 22) (CC 14), 6=-47 (LC 15) (LC 21), 6=523 (LC 22) (CC 14), 6=-348/392, 4-6=-34	 4) Unbalanced snow loads have been considered for the design. 5) This truss has been designed for greater of min roof load of 12.0 psf or 1.00 times flat roof load of 20.0 p overhangs non-concurrent with other live loads. 6) This truss has been designed for a live load of 20.1 p overhangs non-concurrent with any other live loads. 6) This truss has been designed for a live load of 20.1 p overhangs non-concurrent with any other live load of 20.1 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the botto chord and any other members. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due UPLIFT at jt(s) 2 and 6. This connection is for uplift and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 	 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0 psf on overhangs non-concurrent with other live loads. 7) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 	 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a live load of 20.0 psf on overhangs non-concurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 	 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect trus to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 	 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fibetween the bottom chord and any other members. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 	 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) 6e-3-8 (LC 12) (LC 14), 6=-47 (LC 15) (LC 21), 6=523 (LC 22) (LC 14), 6=-348/392, 48/392, 4-6=-348/392, LOAD CASE(S) Standard 8=-205/290

zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 6-11-0, Exterior(2E) 6-11-0 to 9-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	G02	Common	1	1	Job Reference (optional)	157735055

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:49 ID:uJNK7FGm5Klol8d_tUtYfPzTo9A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

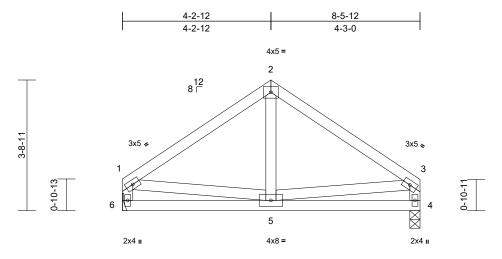
Page: 1

Plate Offsets (X, Y): [2:0-2-0,0-0-1], [8:0-2-13,0-0-1]

Scale = 1:36.6

	-0,0-0-1],	, [0.0-2-13,0-0-1]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	912014	CSI TC BC WB Matrix-MSH	0.18 0.33 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.01	(loc) 12-15 12-15 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
1-6-0 BRACING TOP CHORD Structural M 6-0-0 oc pu BOT CHORD Rigid ceilin bracing. REACTIONS (size) 2 Max Horiz 2 Max Horiz 2 Max Grav 2 FORCES (lb) - Maxin Tension TOP CHORD 1-2=0/29, 2 5-6=-370/4 BOT CHORD 2-12=-209/ 10-11=-209	2 3 3 vood she Irlins. g directly 2=0-3-8, { 2=84 (LC 2=-47 (LC 2=-47 (LC 2=-523 (LC num Corr 2-4=-376/ 01, 6-8=- 295, 11-1 0/295, 8-1 182, 4-12 ads have =130mph 6.0psf; B 1; MWFRS 2) -0-10 r(2E) 6-1 exposed t and rig! MWFRS	13) C 14), 8=-47 (LC 15) C 21), 8=523 (LC 22) ppression/Maximum 372, 4-5=-370/401, .376/372, 8-9=0/29 12=-209/295, 10=-209/295 2=-109/67, 6-10=-109 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 0-8 to 2-1-8, Exterior(2 1-0 to 9-11-0 zone; ; end vertical left and th exposed;C-C for for reactions shown;	/on se or 4) TC ko.3 Pli DC Cs cs d or 6) Th loa ov 7) Ga 8) Th ch 9) * T on 3-1 ch 10) Or rea Uf 10) Or rea Uf 11) Th Int R8 LOAD	nly. For stu ee Standard consult qu CLL: ASCE late DOL=1 OL=1.15); s=1.00; Ct= nbalanced esign. nis truss ha ad of 12.0 /erhangs n able studs nis truss ha nord live loa This truss ha nord live loa This truss ha nord live loa This truss ha nord live loa Chis truss ha nord live loa this truss ha nord live loa this truss ha nord and ar ne H2.5A S commende PLIFT at jt(non is truss is ternational 802.10.2 at	hed for wind loads ids exposed to wird d Industry Gable E lalified building de 7-16; Pr=20.0 psf 15); Pf=20.0 psf15); Pf=20.	nd (norm ind Deta signer a: f (roof LL (Lum DC t B; Fully been con for great lat roof lu n other lif c. for a 10. with any d for a liv s where ill fit betv. ie conne s to bear conces. dance w sections	al to the face) ils as applicat s per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 ps ve loads. D psf bottom other live loar e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift of ith the 2018 s R502.11.1 a), ole, ole, 1.15 i.15 iis iis live of on ds. om to only				SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


G minim April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	G03	Common	4	1	Job Reference (optional)	157735056

Scale = 1:32.8

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:50 ID: yHuiXdGqYqC0luTxFPs0XwzTo7t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

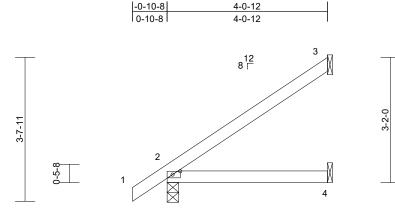
Page: 1

4-2-12	8-5-12
4-2-12	4-3-0

Scale = 1.52.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.55 0.17 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=103 Cat. II; Ext zone and 0 3-5-4 to 5- cantilever right expos members : Lumber DOL DOL=1.15 Cs=1.00; 0	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=0-3-8, 6 Max Horiz 6=85 (LC Max Uplift 4=-26 (LC Max Grav 4=414 (LC (lb) - Maximum Com Tension 1-2=-352/328, 2-3=- 1-6=-382/278 5-6=-83/81, 4-5=-11 2-5=-208/147, 3-5=- ed roof live loads have h. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior(2E) 5-7-6 left and right exposed sed; porch left and righ and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L :=1.15); Pf=20.0 psf (L :); Is=1.0; Rough Cat E Ct=1.10	cept end verticals. applied or 10-0-0 oc 3= Mechanical 11) 15), 6=-26 (LC 14) C 21), 6=413 (LC 20) pression/Maximum 353/327, 3-4=-382/2 /12 190/223, 1-5=-190/2 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) interior to 3-5-4, Exterior(2F 8 to 8-7-8 zone; ; end vertical left and t exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9	6) ed or 7) 8) 9) 10) 78, LO 23 23 15 ;	chord live loa * This truss I on the bottoo 3-06-00 tall I chord and ar Refer to gird Provide mec bearing platte 6. One H2.5A S recommende UPLIFT at jtt does not cor) This truss is International	Is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members ref(s) for truss to tr hanical connectio e capable of withs! Simpson Strong-T ed to connect trus; s) 4. This connect designed in accor Residential Code nd referenced star Standard	with any d for a liv as where vill fit betw as rruss common n (by oth tanding 2 rie conne s to bear vition is for s. rdance we a sections	other live loa e load of 20. a rectangle ween the bott nections. ers) of truss : 26 lb uplift at j ctors ing walls due r uplift only at ith the 2018 s R502.11.1 a	0psf ∞m to joint e to nd				SEA 0363	
 Unbalance design. 	ed snow loads have be	en considered for th	IS									11, A. C	ILBUTT

4) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932


GILB

A. GIL April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J01	Jack-Open	7	1	Job Reference (optional)	157735057

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:50 ID: DsW74 MeDKnlz0DF482154 bzToqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

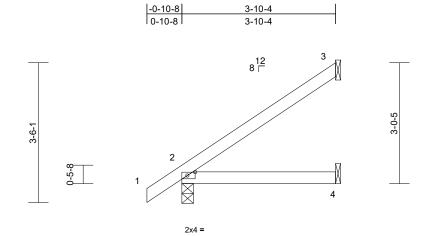
2x4 =

4-0-12

Scale = 1:29.2

Plate Offsets (X, Y): [2:0-2-6,0-1-0]

	(71, 1): [2:0 2 0,0 1 0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) TCLL: AS Plate DOI DOL=1.1{ Cs=1.00; 3) Unbalanc design. 4) This truss load of 12	2x4 SP No.2 Structural wood she 4-0-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=116 (LC Max Uplift 2=-9 (LC (Max Uplift 2=-9 (LC (Ib) - Maximum Com Tension 1-2=0/49, 2-3=-144/ 2-4=-80/80 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B yp B; Enclosed; MWFR C-C Exterior(2E) zone 5 end vertical left and ri, and forces & MWFRS DOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1-15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat	applied or 10-0-0 oc 3= Mechanical, 4= al C 14) 14), 3=-66 (LC 14) C 21), 3=170 (LC 21) 7) apression/Maximum 89 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior; cantilever left and r ght exposed;C-C for for reactions shown; 0L=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 seen considered for th r greater of min roof t roof load of 20.0 ps	6) ed or 5 7) 8) 9)), 10) LO/ right .15 ; is	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One H2.5A S recommende UPLIFT at jt(does not cor This truss is International	as been designed f ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide wi ny other members. er(s) for truss to t hanical connectior capable of withst Simpson Strong-Ti ed to connect truss (s) 2. This connect isider lateral force designed in accor Residential Code nd referenced star Standard	with any I for a liv s where ill fit betw russ con h (by oth anding 6 e conne to bear ion is for s. dance w sections	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 6 lb uplift at j ctors ing walls due uplift only an ith the 2018 s R502.11.1 a	0psf om to joint to nd		4	ès	SEA 0363	L 22 E.E.R. KIN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI A. GILL April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J02	Jack-Open	7	1	Job Reference (optional)	157735058

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:50 ID:Z4xSmNQYcyBY3JhE_H8VGbzTolh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-10-4

Scale = 1:28.9

Plate Offsets ()	X, Y):	[2:0-2-6,0-1-0]
------------------	--------	-----------------

	·). [2.0 2 0,0 1 0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
BOT CHORD 22 BRACING TOP CHORD S 3 BOT CHORD R b REACTIONS (siz REACTIONS (siz FORCES (II T. TOP CHORD 1-	-10-4 oc purlins. ligid ceiling directly racing. ze) 2=0-3-8, : Mechanic ix Horiz 2=111 (LC ix Grav 2=325 (LC 4=71 (LC	C 14) 14), 3=-62 (LC 14) C 21), 3=159 (LC 21 7) npression/Maximum	ed or c	 chord live lo * This truss on the botto 3-06-00 tall chord and a 7) Refer to gird 8) Provide mee bearing plate 3. 9) One H2.5A secommend UPLIFT at jt does not col 10) This truss is International 	as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v ny other members ler(s) for truss to chanical connectid e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connect sider lateral force designed in acco I Residential Code nd referenced sta Standard	t with any ed for a liv as where will fit betv s. truss con on (by oth standing 6 Fie conne es to bear ction is for es. ordance w e sections	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 2 lb uplift at ctors ng walls due uplift only a ith the 2018 R502.11.1 a	0psf tom to joint ∋ to nd					
Vasd=103mpl Cat. II; Exp B; zone and C-C exposed ; enc members and Lumber DOL= 2) TCLL: ASCE Plate DOL=1. DOL=1.15); tl= Cs=1.00; Ct=	Enclosed; MWFR Exterior(2E) zone vertical left and ri forces & MWFRS 1.60 plate grip DC 7-16; Pr=20.0 psf (1 15); Pf=20.0 psf (L =1.0; Rough Cat E 1.10	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and i ght exposed;C-C for for reactions shown	or right ; 1.15 9;							La como		SEA 0363	• -

- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 Arrill 13,2023

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J03	Jack-Open	1	1	Job Reference (optional)	157735059

2-1-4

2-1-4

-0-10-8

0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

2-4-1

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:51 ID:1HVq_jRANFJPhTGQX?gkopzTolg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-4

1-9-0

Page: 1

NAILED 4x5 = 8 F 4 3 10 1 1-10-5 1-10-5 2 0-5-8 X 19 Ø 6 5 2x4 u 2x4 =

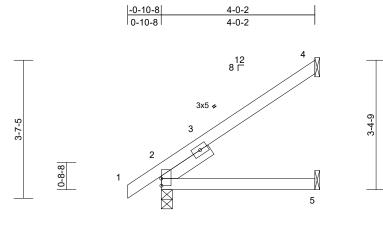
2-3-0 3-10-4 2-3-0 1-7-4

NAILED

Scale = 1:32.2

Plate Offsets	(X, Y): [2:0-4-0,0-0-10)], [3:0-2-8,0-1-13]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/T	PI2014	CSI TC BC WB Matrix-MP	0.14 0.43 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.03	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE WEBS NOTES	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-10-4 oc purlins; e: 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing. (size) 2=0-3-8, . Mechanic Max Horiz 2=71 (LC Max Uplift 2=-34 (LC	4. 2 applied or 10-0-0 oc 4= Mechanical, 5= 21) 212), 4=-21 (LC 8), 5 C 34), 4=78 (LC 33), C 34) appression/Maximum 2, 3-4=0/0	d or 6) F 8) 7 5;=-15 10) F 11) 0 12) 7 13) 0	design. This truss ha oad of 12.0 j voerhangs ni Provide adec This truss ha chord live loa ' This truss ha chord live loa ' This truss ha chord and ar Refer to girde Provide mec bearing plate 4 and 15 lb u Dne H2.5A S recommende JPLIFT at jt(does not con This truss is nternational R802.10.2 ar Graphical pu	snow loads have s been designed psf or 1.00 times: on-concurrent wit quate drainage to s been designed ad nonconcurrent ias been designed n chord in all area y 2-00-00 wide w ny other members er(s) for truss to i capable of withs pilif at joint 5. Simpson Strong-T ed to connect trus s) 2. This connect sider lateral force designed in accoo Residential Code nd referenced sta rlin representation tion of the purlin	for great flat roof la h other lin prevent v for a 10.0 with any d for a liv as where vill fit betv : truss con n (by oth tanding 2 ie conne- s to bear tion is for s. rdance w e sections ndard AN n does nd	er of min roo pad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 11 b uplift at ctors ing walls due uplift only a stors 11.1 a stors 11	f live ssf on g. ads. Opsf to joint to nd and				Weight: 16 lb	FT = 20%
Vasd=10 Cat. II; E zone; cal and right DOL=1.6 3) TCLL: AS Plate DO	SCE 7-16; Vult=130mph I3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR ntilever left and right ex : exposed; Lumber DOL :0 SCE 7-16; Pr=20.0 psf DL=1.15); Pf=20.0 psf (L 15); Is=1.0; Rough Cat B	CDL=6.0psf; h=25ft; S (envelope) exterior posed ; end vertical I =1.60 plate grip (roof LL: Lum DOL=1 .um DOL=1.15 Plate	14) " (15) I eft c LOA 1)	0.148"x3.25 n the LOAD of the truss a D CASE(S) Dead + Sno Increase=1 Uniform Loa Vert: 1-3 Concentrate	dicates 3-10d (0.1 ") toe-nails per NI CASE(S) section re noted as front Standard bw (balanced): Lu 15	DS guidli , loads a (F) or ba mber Inc	nes. oplied to the ck (B).			Within		SEA 0363	22 EERCHUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J05	Jack-Open	1	1	Job Reference (optional)	157735060

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:51 ID:p6ZtdHAYJtWwtSuNLxh3jdzRToU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 II

4-0-2	

Scale = 1:30.1

Plate Offsets (X, Y): [2	:0-2-4,0-0-1]
--------------------------	---------------

April 13,2023

À WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J06	Jack-Open	2	1	Job Reference (optional)	157735061

3-1-5

3-1-5

8 Г

3x5 🛩

3

-0-10-8

0-10-8

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:33.4

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

2)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

bracing.

Max Grav

Tension

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Apr 12 12:23:51 ID: Ek1x2ISjFuMh8EUUIOegxzRToJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-2

0-10-13

5

4x5 =

4

Page: 1

2-9-6 3-0-1 0-8-8 7 6 2x4 II 3x5 i 3-3-1 4-0-2 0-9-1 3-3-1 Plate Offsets (X, Y): [2:0-2-13,0-0-1], [4:0-2-8,0-1-13] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.22 Vert(LL) -0.02 7-10 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.25 Vert(CT) -0.04 7-10 >999 180 10.0 Rep Stress Incr WB 0.03 Horz(CT) YES 0.02 5 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP Weight: 20 lb 10.0 FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2x4 SP No.2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 2x4 SP No.3 Left 2x4 SP No.3 -- 1-6-0 4) Unbalanced snow loads have been considered for this desian. 5) This truss has been designed for greater of min roof live Structural wood sheathing directly applied or load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4-0-2 oc purlins, except overhangs non-concurrent with other live loads 2-0-0 oc purlins: 4-5 Provide adequate drainage to prevent water ponding. Rigid ceiling directly applied or 10-0-0 oc This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads. 2=0-3-8, 5= Mechanical, 6= 8) * This truss has been designed for a live load of 20.0psf Mechanical on the bottom chord in all areas where a rectangle Max Horiz 2=95 (LC 14) 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Uplift 2=-14 (LC 14), 5=-10 (LC 10), chord and any other members. 6=-36 (LC 14) Refer to girder(s) for truss to truss connections. 2=307 (LC 36), 5=39 (LC 35), 10) Provide mechanical connection (by others) of truss to 6=155 (LC 36) bearing plate capable of withstanding 10 lb uplift at joint (Ib) - Maximum Compression/Maximum 5 and 36 lb uplift at joint 6. 11) One H2.5A Simpson Strong-Tie connectors 1-2=0/45, 2-4=-148/51, 4-5=0/0 recommended to connect truss to bearing walls due to 2-7=-99/59. 6-7=0/0 UPLIFT at jt(s) 2. This connection is for uplift only and 4-7=-138/104 does not consider lateral forces. 0 12) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and 1) Unbalanced roof live loads have been considered for R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size 111111111 Wind: ASCE 7-16; Vult=130mph (3-second gust) or the orientation of the purlin along the top and/or EAL Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior bottom chord. 36322 zone and C-C Exterior(2E) zone; cantilever left and right LOAD CASE(S) Standard exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 G mm April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J07	Jack-Open	2	1	Job Reference (optional)	157735062

2-2-13

2-2-13

8 ⊏

3x5 🛪

-0-10-8

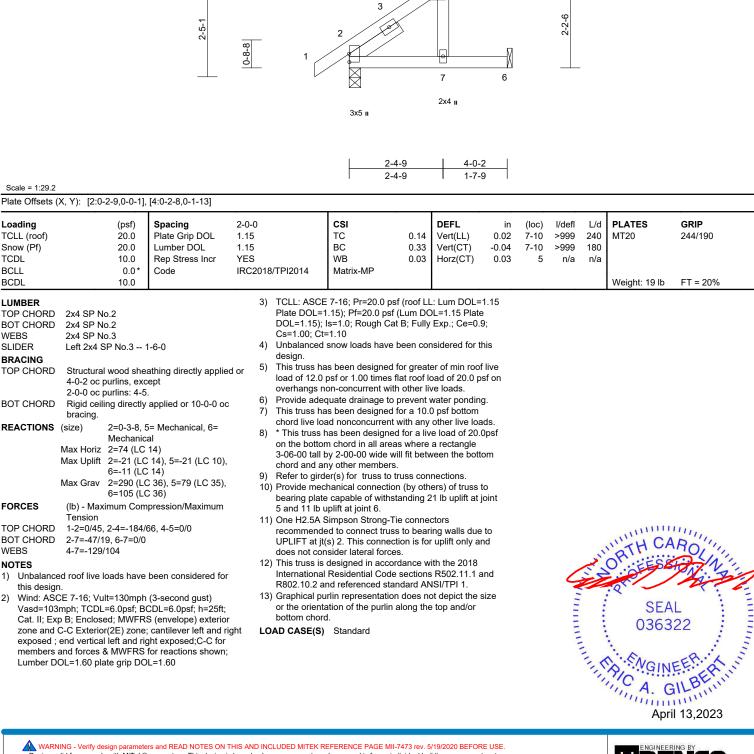
0-10-8

Carter Components (Sanford), Sanford, NC - 27332

2)

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Apr 12 12:23:52 ID:aB6lReguQnozvv6SomSwQUzRTnq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5


4-0-2

1-9-5

4x5 =

4

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	J08	Jack-Open Girder	2	1	Job Reference (optional)	157735063

-0-10-8 | 1-4-5 0-10-8

8 F

NAILED

4x6 💋 3x5 🛩

4

ПĤ

7 2x4 II

3 Ð

X

3x6 II

1-10-1

0-8-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:52 ID:6p7fxIHFe85tvbx3kGLeS1zRTn2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

NAILED

4-0-2 2-7-13

 \bowtie

NAILED

ΠП

n Ø

13 6

NAILED

5 12

1-7-6

4-0-2 1-6-1 1-6-1 2-6-1

Scale = 1:40.9

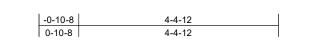
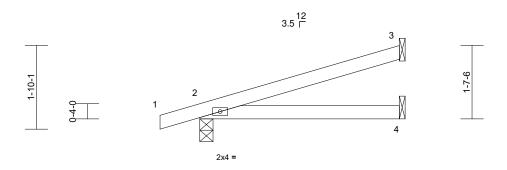

Plate Offsets (X_Y); [2:0-2-9.0-0-1], [2:0-11-8.0-1-8], [4:0-3-8.0-1-8]

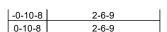
Plate Offsets (X, Y): [2:0-2-9,0)-0-1], [2:0-11-8,0-1-8], [4:0-3-	-8,0-1-8]						
TCLL (roof)2Snow (Pf)2TCDL1BCLL	0.0 Plate Grip DOL 1 0.0 Lumber DOL 1 0.0 Rep Stress Incr N	2-0-0 1.15 1.15 NO RC2018/TPI2014	CSI TC 0.27 BC 0.76 WB 0.07 Matrix-MP	DEFLinVert(LL)-0.05Vert(CT)-0.08Horz(CT)0.07	(loc) l/da 6-7 >99 6-7 >5 5 n	92 240	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
4-0-2 oc purlir 2-0-0 oc purlir BOT CHORD Rigid ceiling d bracing. REACTIONS (size) 2=0 Max dray Max Horiz 2=5 Max Uplift 2=0 Max Gray Max Horiz 2=5 Max Uplift 2=0 Max Gray Max Gray 2=3 Max Gray 6=1 FORCES (lb) - Maximur Tension 6=1 TOP CHORD 1-2=0/45, 2-3 BOT CHORD 2-7=-35/101, 6 WEBS 3-7=-359/81 1 NOTES 1) Unbalanced roof live loads this design. 2) Wind: ASCE 7-16; Vult=13 Vasd=103mph; TCDL=6.0 Cat. II; Exp B; Enclosed; N zone; cantilever left and rig and right exposed; Lumbe DOL=1.60 3) 3) TCLL: ASCE 7-16; Pr=20.0 Plate DOL=1.15); Pf=20.0	ad sheathing directly applied o Is, except Is: 4-5. irectly applied or 10-0-0 oc I-3-8, 5= Mechanical, 6= chanical I3 (LC 12) I35 (LC 12), 5=-51 (LC 8) I82 (LC 34), 5=187 (LC 33), 84 (LC 33) In Compression/Maximum =-271/21, 3-4=-127/33, 4-5=0/ S-7=0/0 I have been considered for Somph (3-second gust) psf; BCDL=6.0psf; h=25ft; IWFRS (envelope) exterior ght exposed ; end vertical left r DOL=1.60 plate grip 0 psf (roof LL: Lum DOL=1.15	 design. 5) This truss he load of 12.0 overhangs n 6) Provide ader 7) This truss ha chord live load of the load of 12.0 on the botton 3-06-00 tall is chord and an 9) Refer to gird 10) Provide mea 10) Provide mea 11) One H2.5A S recommended UPLIFT at jt does not cor 12) This truss is International R802.10.2 a 13) Graphical pu or the orient bottom chord 14) "NAILED" in (0.148"x3.25 15) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Sm Increase=1 Uniform Lo Vert: 1-4 Concentrat 	dicates 3-10d (0.148"x3") c s") toe-nails per NDS guidli (CASE(S) section, loads a are noted as front (F) or ba Standard ow (balanced): Lumber Inc .15	er of min roof live pad of 20.0 psf on veloads. vater ponding. 0 psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom nections. ers) of truss to 1 lb uplift at joint ctors ng walls due to uplift only and ith the 2018 R502.11.1 and ISI/TPI 1. ot depict the size to pand/or or 3-12d nes. oplied to the face ck (B). rease=1.15, Plate		The second se	111111	EER AL

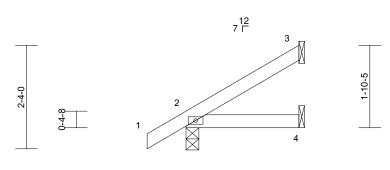

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	K01	Jack-Open	4	1	Job Reference (optional)	157735064

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:53 ID:aTdB0StYQ?xYSWvjIqFvc3zRTnZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-4-12

Scale =	1:25.4
---------	--------


Scale = 1:25.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.34 0.30 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
	4-4-12 oc purlins. Rigid ceiling directly bracing.	: 10) C 10), 3=-42 (LC 14) C 21), 3=155 (LC 21)	on the bott 3-06-00 tal chord and 7) Refer to giu 8) Provide me bearing pla 3. 9) One H2.5A recommen UPLIFT at does not co 10) This truss i Internation	has been designed for om chord in all areas y by 2-00-00 wide will f any other members. der(s) for truss to trus chanical connection () te capable of withstan Simpson Strong-Tie of ded to connect truss to ti(s) 2. This connection onsider lateral forces. s designed in accorda al Residential Code se and referenced standa	where fit betw ss con by oth iding 4 connec o beari n is for ince w ections	a rectangle veen the bottc nections. ers) of truss te /2 lb uplift at jo ctors ing walls due · uplift only an ith the 2018 s R502.11.1 a	o o pint to id					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	LOAD CASE(S									
TOP CHORD BOT CHORD	1-2=0/21, 2-3=-116/ 2-4=-59/98	/35										
NOTES	2-400/00											
1) Wind: ASC Vasd=103r Cat. II; Exp zone and C exposed ; o members a	E 7-16; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR 2-C Exterior(2E) zone end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed;C-C for for reactions shown;	r ight							and a	OR FESS	NROLINI,
Plate DOL:	CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10	um DOL=1.15 Plate							4		SEA	• -
	d snow loads have be	een considered for th	is						E	:	0363	22 <u>;</u> <u>;</u>
load of 12.	has been designed fo 0 psf or 1.00 times fla non-concurrent with o	it roof load of 20.0 ps										EERA
5) This truss I	has been designed fo oad nonconcurrent w	r a 10.0 psf bottom	ds.							11	CA. C	ILBETT


A. GILLIN April 13,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	K02	Jack-Open	1	1	Job Reference (optional)	157735065

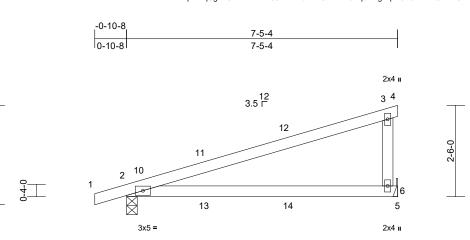
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:53 ID:Z4xSmNQYcyBY3JhE_H8VGbzTolh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

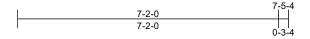
2x4 =

2-6-9

Scale = 1:26

Scale = 1:26												
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0				-						Weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-6-9 oc purlins. Rigid ceiling directly		ed or 8) Provide m boots and 8) Provide m boots and 8) Provide m boots and 8) Provide m	is has been design tom chord in all are il by 2-00-00 wide any other membeu irder(s) for truss to techanical connecti ate capable of with	eas where will fit betw rs. o truss con ion (by oth	a rectangle veen the botto nections. ers) of truss t	om					
	bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=69 (LC Max Uplift 2=-20 (LC Max Grav 2=233 (LC (LC 7)	14) 2 14), 3=-33 (LC 14)	9) One H2.5 recomme UPLIFT a does not 10) This truss Internatio	A Simpson Strong- nded to connect tru t jt(s) 2. This conne consider lateral forc is designed in acc nal Residential Coc	ection is for ection is for ces. ordance w le sections	ing walls due r uplift only ar ith the 2018 s R502.11.1 a	nd					
FORCES	(lb) - Maximum Com	pression/Maximum	LOAD CASE	2 and referenced st S) Standard	andard Ar	NSI/TPT1.						
TOP CHORD	Tension 1-2=0/40, 2-3=-54/3	6										
BOT CHORD	2-4=-16/38											
NOTES												
Vasd=103 Cat. II; Exp zone and 0 exposed ; members a Lumber D0	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and i ght exposed;C-C for for reactions shown iL=1.60	pr right ;								ORTH CA	ROLIN
Plate DOL	CE 7-16; Pr=20.0 psf (.=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10	um DOL=1.15 Plate	•								SEA	
3) Unbalance	ed snow loads have be	en considered for th	nis						Ξ		0363	22 <u>;</u> E
load of 12.	has been designed for .0 psf or 1.00 times fla s non-concurrent with c	t roof load of 20.0 ps									SEA 0363	EER. A.
5) This truss	has been designed for load nonconcurrent wi	r a 10.0 psf bottom	ds.							11	111111	ILBE


April 13,2023


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	M01	Monopitch	5	1	Job Reference (optional)	157735066

2-8-12

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:53 ID:ptwoqUg1eGalwcNZWhU3A4zTo9x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

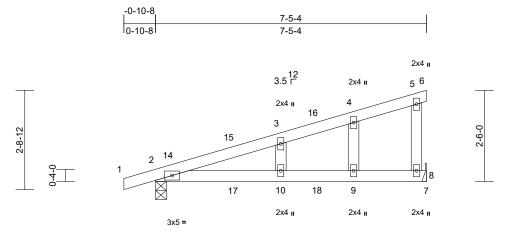
Page: 1

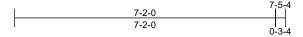
Scale = 1:31.6

ocale = 1.51.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.78	Vert(LL)	0.33	6-9	>264	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15 YES		BC WB	0.45	Vert(CT)	-0.28	6-9	>311	180		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	IRC2018/T		vvь Matrix-MP	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRG2010/1									Weight: 27 lb	FT = 20%
			5) T	his truss has	been designed f	for a 10) psf bottom						
TOP CHORD	2x4 SP No.1				nonconcurrent			ads.					
BOT CHORD	2x4 SP 2400F 2.0E				s been designed			0psf					
WEBS	2x4 SP No.3				chord in all area								
BRACING	.		-		2-00-00 wide wi other members.		veen the bott	om					
TOP CHORD	Structural wood she				(s) for truss to tr		nections.						
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		0, 0		inical connectior			to					
bor onord	bracing.		b		apable of withst	anding 1	14 lb uplift a	t joint					
REACTIONS	(size) 2=0-3-8, 0	6= Mechanical	6				-4						
	Max Horiz 2=89 (LC		, re		npson Strong-Ti to connect truss			to					
	Max Uplift 2=-136 (L		10) U		2. This connect								
	Max Grav 2=427 (L0		, u		der lateral forces								
FORCES	(lb) - Maximum Com Tension	pression/Maximum			signed in accord								
TOP CHORD	1-2=0/15, 2-3=-212/	261 3-4=-7/0			esidential Code referenced star			and					
	3-6=-286/211	201, 0 1 1/0,	-	D CASE(S)			NOI/1111.						
BOT CHORD	2-6=-298/231, 5-6=0	0/0	LOAI	0 0 A 0 L (0)	otandara								
NOTES													
	CE 7-16; Vult=130mph												
	8mph; TCDL=6.0psf; B p B; Enclosed; MWFR												10 • 10 201717 W
	C-C Exterior(2E) -0-10												11111
	-5-4, Exterior(2E) 4-5-4		(1)									"TH UA	ROUL
	left and right exposed		nd									CALESS	an Inin
	sed; porch left and rig										20	COL	Mine
	and forces & MWFRS OL=1.60 plate grip DC		1;							4		:25	4: -
	CE 7-16; Pr=20.0 psf (1 15							-		SEA	a 1 E
	_=1.15); Pf=20.0 psf (L									=	:		
	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	9;							=		0363	22 : 5
Cs=1.00; 0			L							-	1	N (1997)	1 - E
 Unbalance design. 	ed snow loads have be	en considered for t	nis									N.A.	airs
0	has been designed fo	r greater of min root	live								15	S. VGIN	EFICAN
	.0 psf or 1.00 times fla										11	C	BEIN
overhangs	s non-concurrent with o	other live loads.									C.	11, A. C	illuin

- 3) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4)

April 13,2023


818 Soundside Road Edenton, NC 27932


GI A. GIL

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	M02	Monopitch	1	1	Job Reference (optional)	157735067

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:54 ID:A6F7S0xqS1LdZ_3ooJuD3jzTo9b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.53 0.48 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.33 -0.32 0.00	(loc) 9-10 9-10 2	l/defl >259 >265 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
	2x4 SP No.1 2x4 SP 2400F 2.0E 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, { Max Horiz 2=89 (LC Max Uplift 2=-136 (L Max Grav 2=427 (LC (lb) - Maximum Corr	cept end verticals. applied or 10-0-0 oc 3= Mechanical 13) C 10), 8=-114 (LC 10 C 21), 8=410 (LC 21)	: 6) 7) 0) 8)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss he load of 12.0 overhangs n Gable studs This truss he chord live lo * This truss on the botto 3-06-00 tall	snow loads have as been designed psf or 1.00 times f ion-concurrent with spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w	(Lum DC t B; Fully been coo for great dat roof I n other li c. for a 10. with any d for a liv is where ill fit betv	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle	e 9; his f live sf on ads. 0psf					
TOP CHORD BOT CHORD	(b) - Maximum Con Tension 1-2=0/15, 2-3=-245/ 4-5=-36/50, 5-6=-7/(2-10=-299/239, 9-1(7-8=0/0	266, 3-4=-45/30,), 5-8=-217/200	3	Refer to gird Provide med bearing plate 8.	ny other members ler(s) for truss to tr chanical connection e capable of withst	uss con n (by oth anding f	ers) of truss 14 lb uplift a						
Vasd=103 Cat. II; Exp zone and (4-9=-80/41, 3-10=-9 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10 5-4. Exterior(2E) 4-5-4	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (12 - 1)	recommend UPLIFT at jt does not coi This truss is Internationa	Simpson Strong-Ti ed to connect truss (s) 2. This connect sider lateral force designed in accor l Residential Code nd referenced star Standard	s to bear tion is fo s. dance w sections	ing walls due r uplift only a ith the 2018 s R502.11.1 a	nd		4	ALL AND	OPTESS	BOJ'III

- 2-1-8 to 4-5-4, Exterior(2E) 4-5-4 to 7-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

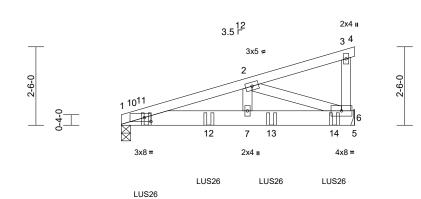
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	M03	Monopitch Girder	1	2	Job Reference (optional)	157735068

4-0-4

4-0-4


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:54 ID:gMjuBY1PAhcIGKd?o4UFRizTo5b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-5-4

3-5-0

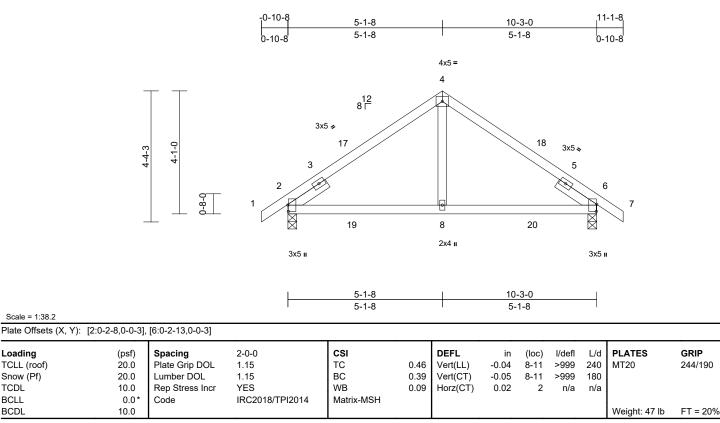
Page: 1

Scale = 1:36.7

Plate Offsets (X, Y): [1:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.15	Vert(LL)	-0.02	7-9 7-9	>999	240	MT20	244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 NO		BC WB	0.36 0.21	Vert(CT) Horz(CT)	-0.04 0.01	7-9 6	>999 n/a	180 n/a		
BCLL	0.0*	Code		B/TPI2014	Matrix-MP	0.21	11012(01)	0.01	0	n/a	n/a		
BCDL	10.0	oode	11(0201	5/11 12014	Width X-IWI							Weight: 74 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-8, 6 Max Horiz 1=82 (LC Max Uplift 1=-139 (L	cept end verticals. applied or 10-0-0 oc 6= Mechanical 9) C 8), 6=-157 (LC 8)	4) ; 5) 6)	Vasd=103mj Cat. II; Exp E zone; cantile and right exp DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design.	7-16; Vult=130m h; TCDL=6.0psf b; Enclosed; MW ver left and right osed; porch left ate grip DOL=1. 7-16; Pr=20.0 ps s=1.0; Rough Ci :1.10 snow loads have s been designed	BCDL=6 FRS (env exposed and right of sf (roof LL (Lum DC at B; Fully been cor	.0psf; h=25ft elope) exteric end vertical exposed; Lun :: Lum DOL= UL=1.15 Plate Exp.; Ce=0.9	or left hber 1.15 0;	Co	oncentra	3=-60, ated Lo	3-4=-60, 1-5=-2 ads (lb)	0 , 13=-393 (F), 14=-3
	Max Grav 1=1127 (L		18) [^]	chord live loa	ad nonconcurren	with any	other live loa						
FORCES	(lb) - Maximum Com Tension	pression/waximum	7)		as been designe n chord in all are)psf					
TOP CHORD		-51/25, 3-4=-7/0,		3-06-00 tall b	by 2-00-00 wide v by other member	vill fit betv		om					
BOT CHORD	,		8)	Refer to gird	er(s) for truss to	russ conr							
WEBS	2-7=-70/854, 2-6=-1	932/278	9)		hanical connection								
 (0.131"x3' Top chord oc. Bottom ch staggered Web conn All loads a except if n CASE(S) provided t 	s to be connected toge ") nails as follows: Is connected as follows hords connected as follows at a 0-9-0 oc. hected as follows: 2x4 - are considered equally noted as front (F) or ba section. Ply to ply conr to distribute only loads herwise indicated.	:: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO vections have been	0 11 AD 12	joint 6.) One H2.5A S recommende UPLIFT at jtt does not cor) This truss is International R802.10.2 a) Use Simpsou Truss, Single oc max. star connect trus:) Fill all nail ho DAD CASE(S)	w (balanced): Lu	Tie conneuss to bear stion is for ss. rdance we e sections indard AN 26 (4-100 cquivalent the left e e of bottor r is in cor	tors ng walls due uplift only ar ith the 2018 R502.11.1 a ISI/TPI 1. Girder, 3-10 spaced at 2-C n d to 6-9-8 to n chord. tact with lum	to Id d J-0 ber.			E. M. MILLING	SEA 0363	EER. Au

April 13,2023


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	N01	Common	5	1	Job Reference (optional)	157735069

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:54 ID:j77WHPh0KnjPqQoLXdQr9UzRTIE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP N 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied 6-0-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 6=0-3-8
REACTIONS	(size) 2=0-3-8, 6=0-3-8 Max Horiz 2=94 (LC 13)
REACTIONS	
REACTIONS	Max Horiz 2=94 (LC 13)
REACTIONS	Max Horiz 2=94 (LC 13) Max Uplift 2=-51 (LC 14), 6=-51 (LC 15)
	Max Horiz 2=94 (LC 13) Max Uplift 2=-51 (LC 14), 6=-51 (LC 15) Max Grav 2=566 (LC 21), 6=566 (LC 22) (Ib) - Maximum Compression/Maximum
FORCES	Max Horiz 2=94 (LC 13) Max Uplift 2=-51 (LC 14), 6=-51 (LC 15) Max Grav 2=566 (LC 21), 6=566 (LC 22) (Ib) - Maximum Compression/Maximum Tension 1-2=0/29, 2-4=-453/425, 4-6=-453/425, 6-7=0/29
FORCES TOP CHORD	Max Horiz 2=94 (LC 13) Max Uplift 2=-51 (LC 14), 6=-51 (LC 15) Max Grav 2=566 (LC 21), 6=566 (LC 22) (Ib) - Maximum Compression/Maximum Tension 1-2=0/29, 2-4=-453/425, 4-6=-453/425, 6-7=0/29

NOTES

Scale = 1:38.2

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 8-1-8, Exterior(2E) 8-1-8 to 11-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

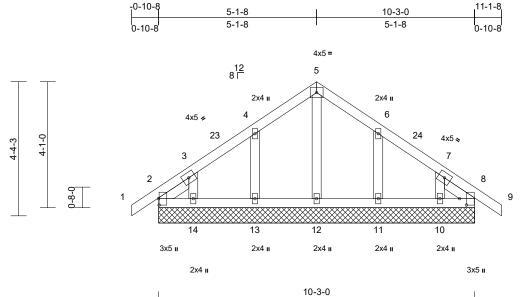
4) Unbalanced snow loads have been considered for this

- design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors 8) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

No.3

ed or



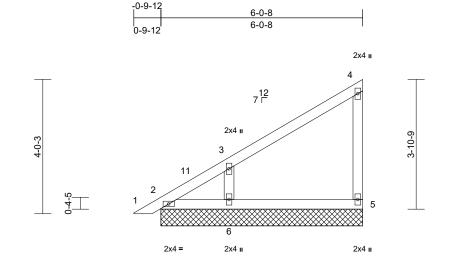
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	N02	Common Supported Gable	1	1	Job Reference (optional)	157735070

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:55 ID:rdQQ0srAGnMZuQIms9uAEzRTI1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

								10-3-0						
Scale = 1:37.4					I									
Plate Offsets ((X, Y): [2:0	-2-8,0-0-3],	[8:0-2-8,0-2-11]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 55 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x4 SP N Left 2x4 S 1-2-5 Structura	lo.2 lo.3 SP No.3 ´ il wood she	1-2-5, Right 2x4 SP athing directly applie	ed or	Vasd=103n Cat. II; Exp zone and C 2-1-8 to 8-1 cantilever le right expose for reaction DOL=1.60	T-16; Vult=130m pp; TCDL=6.0ps; B; Enclosed; MWF -C Corner(3E) -0- -8, Corner(3E) 8-1 eft and right expose ed;C-C for membe s shown; Lumber I	BCDL=6 FRS (env 10-8 to 2- -8 to 11- ed ; end v rs and fo DOL=1.60	6.0psf; h=25ft; elope) exterio 1-8, Corner(3 1-8 zone; vertical left an rces & MWFR) plate grip	r R) d S	LOAD C	ASE(S)	Sta	ndard	
	bracing.				3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,									
	14=10-3-0, 15=10-3-0, 19=10-3-0 Max Horiz 2=94 (LC 13), 15=94 (LC 13) Max Uplift 2=-27 (LC 10), 8=-4 (LC 11), 10=-60 (LC 15), 11=-63 (LC 15), 13=-64 (LC 14), 14=-65 (LC 14), 15=-27 (LC 10), 19=-4 (LC 11) Max Grav 2=118 (LC 25), 8=118 (LC 22), 10=174 (LC 21), 13=266 (LC 21), 14=174 (LC 21), 13=118 (LC 25), 19=118 (LC 22),				 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 2-0-0 oc. 9) This truss has been designed for a 10.0 psf bottom 									ROLIN
FORCES	Tension 1-2=0/29 4-5=-86/1	(Ib) - Maximum Compression/Maximum Tension 1-2=0/29, 2-3=-46/56, 3-4=-75/53, 4-5=-86/130, 5-6=-86/130, 6-7=-73/41, 7-8=-46/55, 8-9=0/29			chord live load nonconcurrent with any other live loads									
BOT CHORD	RD 2-14=-28/104, 13-14=-28/104, 11 11) 12-13=-28/104, 11-12=-28/104, 10-11=-28/104, 8-10=-28/104, 5-12=-95/0, 4-13=-225/136, 3-14=-141/126, 6-11=-225/136, 7-10=-141/126 12) anced roof live loads have been considered for 12)				 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2, 4 lb uplift at joint 13, 65 lb uplift at joint 14, 63 lb uplift at joint 13, 65 lb uplift at joint 14, 63 lb uplift at joint 13, 65 lb uplift at joint 2 and 4 lb uplift at joint 8. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
NOTES														LEFRICE HILL


April 13,2023

EFORE USE. poment, not the overall manent bracing the SSI Building Component SSI Building Component SSI Building Component

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	PB1	Piggyback	9	1	Job Reference (optional)	157735071

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:55 ID:wJNqCabiWsYYdrqxblkjeKzRUFd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-8

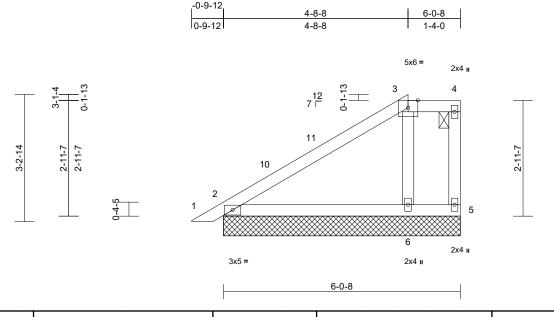
Scale =	1:34.5
---------	--------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.12 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, Rigid ceiling direc bracing. (size) 2=6-0-{ Max Horiz 2=129 Max Uplift 2=-15 (6=-100 Max Grav 2=80 (I	neathing directly applie except end verticals. tly applied or 10-0-0 o 5, 5=6-0-8, 6=6-0-8, 7= LC 13), 7=129 (LC 13 LC 10), 5=-21 (LC 14) (LC 14), 7=-15 (LC 10 (LC 25), 5=187 (LC 21) LC 21), 7=80 (LC 25)	8) 6-0-8 3) , 10 , 10	 design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss hon the bottor 3-06-00 tall b 	snow loads have as been designed psf or 1.00 times to on-concurrent with es continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w ny other members	for great flat roof le n other li tom chor c. for a 10. with any d for a liv is where ill fit betw	er of min roof oad of 20.0 p ve loads. rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle	f live sf on ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS	Tension	ompression/Maximum 0/95, 3-4=-113/59, 60/65		International R802.10.2 a 2) See Standar Detail for Co	designed in accor Residential Code nd referenced star d Industry Piggyb nnection to base t fied building desic	sections ndard AN ack Trus truss as a	s R502.11.1 a NSI/TPI 1. s Connection						
NOTES	0 0 004/200		L	OAD CASE(S)	0 0	JIICI.						MUL CA	Dille

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

- Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	PB2	Piggyback	1	1	Job Reference (optional)	157735072

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:56 ID:fnnhGvwxsd6jcLi?86GIQVzRTkx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

JC?f

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.41 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4	, ed or	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced	ned for wind loa Ids exposed to v d Industry Gable Ialified building : 7-16; Pr=20.0 I.15); Pf=20.0 p Is=1.0; Rough C =1.10 snow loads hav									
BOT CHORD	bracing. (size) 2=6-0-8, Max Horiz 2=99 (LC Max Uplift 2=-25 (LC 6=-49 (LC Max Grav 2=289 (LI	C 14), 5=-72 (LC 40), C 14), 7=-25 (LC 14)	6) 6-0-8 7) 8) 9) 10	load of 12.0 overhangs n Provide adec Gable requir Gable studs) This truss ha	as been designe psf or 1.00 time on-concurrent v quate drainage es continuous b spaced at 4-0-0 as been designe d papeoporurgo	s flat roof lo ith other liv o prevent v ottom chor oc. d for a 10.0	bad of 20.0 p ve loads. water ponding d bearing. D psf bottom	sf on g.					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-2=0/25, 2-3=-120/ 4-5=-54/23 2-6=-46/77, 5-6=-46	npression/Maximum /79, 3-4=-47/51,	, 11) * This truss h on the bottor 3-06-00 tall b	ad nonconcurren nas been desigr n chord in all ar by 2-00-00 wide ny other membe	ed for a liv eas where will fit betv	e load of 20.0 a rectangle	Opsf					UG. :
WEBS	3-6=-195/74											TH CA	Ro

NOTES

Scale = 1:29.4

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Exterior(2R) 3-3-11 to 5-6-10, Exterior(2E) 5-6-10 to 6-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 136 FaNC	
23040043	PB3	Piggyback	1	1	Job Reference (optional)	157735073

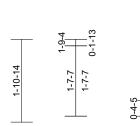
2-5-1

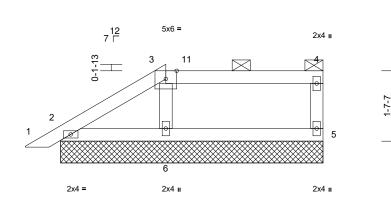
2-5-1

-0-9-12

0-9-12

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Apr 12 12:23:56 ID:cAvShbxBOEMQrevOFXImVwzRTkv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-0-8

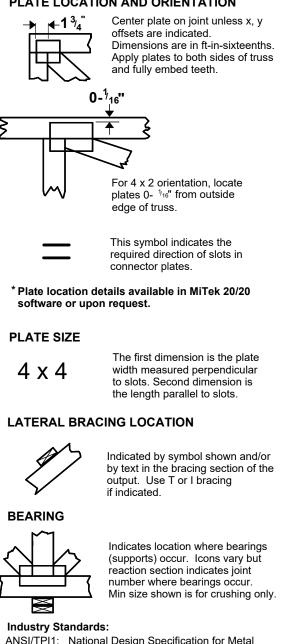
3-7-7

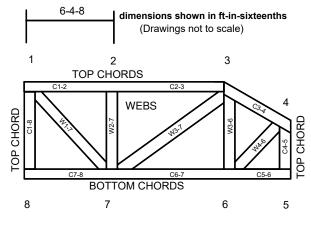
Faye

6-0-8

Scale	=	1.26	5

Scale = 1:26.5											-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.35 0.10 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 2=51 (LC 1 Max Uplift 2=-24 (LC 6=-22 (LC Max Grav 2=175 (LC	ept end verticals, ar 0 max.): 3-4. applied or 10-0-0 oc =6-0-8, 6=6-0-8, 7= 3), 7=51 (LC 13) 14), 5=-27 (LC 10), 11), 7=-24 (LC 14)	nd 5) 6-0-8 7) 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec Gable requiri Gable studs D) This truss ha	snow loads have so the signed psf or 1.00 times on-concurrent w quate drainage to es continuous bo spaced at 4-0-0 is been designed	vind (norm End Deta lesigner a: sof (roof LL of (Lum DC at B; Fully e been cor d for greats flat roof k ith other lin o prevent v ottom chor oc. d for a 10.0	al to the face ils as applica is per ANSI/TI :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for tl er of min roof bad of 20.0 p ve loads. water ponding d bearing.), ble, Pl 1. 1.15 e 9; his f live sf on g.					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum	1'	l)* This truss h	ad nonconcurrer nas been design n chord in all are	ed for a liv	e load of 20.0						
TOP CHORD	1-2=0/25, 2-3=-54/38, 4-5=-157/59	, 3-4=-24/26,			by 2-00-00 wide by other member		veen the bott	om					
BOT CHORD WEBS NOTES	2-6=-23/26, 5-6=-23/2 3-6=-187/86	25	12	2) N/A	-							TH CA	RONIN


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-3, Exterior(2R) 3-3-3 to 3-8-14, Exterior(2E) 3-8-14 to 6-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

ANSI/TPI1:	National Design Specification for Metal
	Plate Connected Wood Truss Construction.
DSB-89:	Design Standard for Bracing.
BCSI:	Building Component Safety Information,
	Guide to Good Practice for Handling,
	Installing & Bracing of Metal Plate
	Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020