

Trenco 818 Soundside Rd Edenton, NC 27932

# Re: 3466725 CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T30100011 thru T30100039

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844



March 21,2023

Velez, Joaquin

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job     | Truss | Truss Type                     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|--------------------------------|-----|-----|-----------------------------------------|
| 3466725 | A1    | Piggyback Base Supported Gable | 1   | 1   | T30100011<br>Job Reference (optional)   |

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:50 ID:eSvJ5iz0TWxjgDknVt356hzaKKe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:84.6 Plate Offsets (X, Y): [9:0-1-11,Edge], [13:0-1-11,Edge]

|              |            | E                      |                              |                     |              |                      |                                    |                      |       |                   |             |          |                      |                   |          |
|--------------|------------|------------------------|------------------------------|---------------------|--------------|----------------------|------------------------------------|----------------------|-------|-------------------|-------------|----------|----------------------|-------------------|----------|
| Loading      |            | (psf)                  | Spacing                      | 2-0-0               | )            | CSI                  |                                    | DEFL                 | in    | (loc)             | l/defl      | L/d      | PLATES               | GRIP              |          |
| TCLL (roof)  |            | 20.0                   | Plate Grip DOL               | 1.00                |              | тс                   | 0.13                               | Vert(LL)             | n/a   | -                 | n/a         | 999      | MT20                 | 244/190           |          |
| Snow (Ps/Pf) | :          | 8.3/20.0               | Lumber DOL                   | 1.15                |              | BC                   | 0.21                               | Vert(TL)             | n/a   | -                 | n/a         | 999      |                      |                   |          |
| TCDL         |            | 10.0                   | Rep Stress Incr              | YES                 |              | WB                   | 0.09                               | Horiz(TL)            | 0.00  | 22                | n/a         | n/a      |                      |                   |          |
| BCLL         |            | 0.0*                   | Code                         | IRC2                | 015/TPI2014  | Matrix-MS            |                                    | ( )                  |       |                   |             |          |                      |                   |          |
| BCDL         |            | 10.0                   |                              |                     |              |                      |                                    |                      |       |                   |             |          | Weight: 253 lb       | FT = 20%          |          |
|              |            |                        |                              |                     | FORCES       | (lb) - Maximum       | Compressio                         | on/Maximum           |       | 3) Tri            | uss desid   | ined fo  | or wind loads in th  | e plane of the    | truss    |
|              | 2x4 SP N   | 0.2                    |                              |                     |              | Tension              | 00111010001                        |                      |       | onl               | v. For st   | uds ex   | posed to wind (n     | ormal to the fa   | ce).     |
| BOT CHORD    | 2x4 SP N   | 0.2                    |                              |                     | TOP CHORD    | 1-2=-110/155, 2      | 2-3=-153/18                        | 9, 3-4=-78/14        | 6.    | see               | Standa      | d Indu   | stry Gable End D     | etails as appli   | cable,   |
| OTHERS       | 2x4 SP N   | 0.3                    |                              |                     |              | 4-5=-95/183, 5-0     | 6=-139/215                         | , 6-7=-185/24        | 8,    | or                | consult q   | ualified | d building designe   | er as per ANSI    | /TPI 1.  |
| BRACING      |            |                        |                              |                     |              | 7-8=-241/304, 8      | -9=-207/25                         | 5, 9-10=-188/        | 241,  | 4) ** 1           | CLL: AS     | CE 7-    | 10; Pr=20.0 psf (i   | oof live load: L  | umber    |
| TOP CHORD    | Structura  | l wood she             | athing directly applie       | d or                |              | 10-11=-188/241       | , 11-12=-18                        | 38/241,              |       | DO                | L=1.15 F    | Plate D  | OL=1.00); Pf=20      | .0 psf (flat roof |          |
|              | 10-0-0 oc  | purlins, ex            | cept                         |                     |              | 12-13=-188/241       | , 13-14=-20                        | )7/255,              |       | sno               | w); Ps=     | varies   | (min. roof snow=     | 8.3 psf Lumbe     | er       |
|              | 2-0-0 oc r | purlins (10-           | 0-0 max.): 9-13.             |                     |              | 14-15=-241/304       | , 15-16=-18                        | 35/242,              |       | DO                | L=1.15 F    | Plate D  | OL=1.00) see loa     | id cases; Cate    | gory II; |
| BOT CHORD    | Rigid ceil | ing directly           | applied or 6-0-0 oc          |                     |              | 16-17=-139/209       | , 17-18=-95                        | 5/178,               |       | Exp               | B; Fully    | Exp.;    | Ct=1.10; Unobst      | ucted slippery    | ,        |
|              | bracing.   |                        |                              |                     |              | 18-19=-70/141,       | 19-20=-141                         | /1//,                |       | sur               |             |          |                      |                   |          |
| WEBS         | 1 Row at   | midpt                  | 7-34, 8-32, 10-31, 1         | 1-30,               |              | 20-21=-105/151       | 20 20 - 110                        | 0/107                | :     | 5) R0             | of design   | snow     | load has been re     | duced to acco     | unt for  |
|              |            |                        | 12-29, 14-28, 15-27          |                     | BOT CHORD    | 1-39=-122/109,       | 26 27- 14                          | 0/107,<br>19/107     |       | SIU<br>SIU<br>SIU | uido odo    | quata    | drainago to prov     | ont water pend    | ling     |
| REACTIONS    | (size)     | 22=22-11               | -0, 23=22-11-0,              |                     |              | 35-36-118/107        | , 30-37=-1<br>' 34-3511            | 8/107,               |       | 7) Ca             | ble stude   | quale    | d at 1-4-0 oc        | shi water ponu    | ing.     |
|              |            | 24=22-11               | -0, 25=22-11-0,              |                     |              | 32-34=-118/107       | , 31-32=-11                        | 8/107                |       | 7) Oa<br>8) Thi   | e truce h   | as hee   | n designed for a     | 10.0 nsf bottor   | m        |
|              |            | 26=22-11               | -0, 27=22-11-0,              |                     |              | 30-31=-118/107       | , 01 0 <u>2</u> = 1<br>. 29-30=-11 | 8/107.               |       | chc               | ord live lo | ad nor   | aconcurrent with     | any other live l  | oads     |
|              |            | 28=22-11               | -0, 29=22-11-0,              |                     |              | 28-29=-118/107       | , 27-28=-11                        | 8/107,               |       | 9) * T            | nis truss   | has be   | en designed for      | a live load of 2  | 0.0psf   |
|              |            | 30=22-11               | -0, 31=22-11-0,              |                     |              | 26-27=-118/107       | , 25-26=-11                        | 8/107,               |       | on                | the botto   | m cho    | rd in all areas wh   | ere a rectangle   | 8        |
|              |            | 32=22-11               | -0, 34=22-11-0, 0.26=22.11.0 |                     |              | 24-25=-118/107       | , 23-24=-11                        | 8/107,               |       | 3-0               | 6-00 tall   | by 2-0   | 0-00 wide will fit I | petween the bo    | ottom    |
|              |            | 37-22-11               | -0, 30=22-11-0,              |                     |              | 22-23=-118/107       | ', 21-22=-11                       | 8/107                |       | cho               | ord and a   | ny oth   | er members.          |                   |          |
|              |            | 39=22-11               | -0, 30–22-11-0,<br>-0        |                     | WEBS         | 2-39=-152/83, 3      | 8-38=-136/1                        | 28, 4-37=-89/        | 59,   |                   |             |          |                      |                   |          |
|              | Max Horiz  | 39=-206 (              | I C 10)                      |                     |              | 5-36=-89/65, 6-      | 35=-91/66,                         | 7-34=-106/83         | ,     |                   |             |          | mm                   | IIIII.            |          |
|              | Max Uplift | 22=-202 (              | LC 11) 23=-230 (LC           | : 10)               |              | 8-32=-122/20, 1      | 0-31=-135/                         | 63, 11-30=-79        | 9/47, |                   |             |          | I'L'H G              | AIROUL            |          |
|              | max opint  | 24=-36 (L              | C 14). 25=-57 (LC 1          | 5).                 |              | 12-29=-133/63,       | 14-28=-120                         | )/20,<br>00,47,05,00 |       |                   |             |          | "all H               | 4.01              | 10       |
|              |            | 26=-48 (L              | C 15), 27=-68 (LC 1          | 5),                 |              | 10-27=-100/84,       | 10-20=-91/                         | 00, 17-20=-85<br>101 | 9/00, |                   |             | 3        | O'.EB                | Mo: V             | 14       |
|              |            | 30=-17 (L              | C 10), 34=-68 (LC 14         | 4),                 |              | 20-22-1/7/70         | 9-23=-132/                         | 124,                 |       |                   |             | 2.       |                      | 11.5.5            | 12       |
|              |            | 35=-48 (L              | C 14), 36=-57 (LC 14         | 4),                 | NOTEO        | 20-22=-147/79        |                                    |                      |       |                   |             | -        | :0                   | V K.              | -        |
|              |            | 37=-38 (L              | C 15), 38=-243 (LC           | 11),                | NUIES        | d voof live loode k  |                                    |                      |       |                   |             |          | : 05                 | E                 | - E      |
|              |            | 39=-219 (              | LC 10)                       |                     | 1) Unbalance | d roof live loads r  | lave been c                        | considered for       |       |                   |             |          | SE/                  | AL :              |          |
|              | Max Grav   | 22=324 (L              | _C 25), 23=273 (LC 1         | 13),                | 2) Wind ASC  | E 7-10: \/ult=115    | mph (3-500                         | and quet)            |       |                   |             |          | : 0418               | 360 :             | - E -    |
|              |            | 24=121 (L              | -C 30), 25=122 (LC 2         | 26),                | Vasd=91m     | D = 10, V = 10       | • BCDI =6 (                        | )nsf: h=30ft: C      | :at   |                   |             | =        | : 0410               | : .               | 2        |
|              |            | 20=113 (L              | _C 26), 27=115 (LC 2         | 26),<br>27)         | II: Exp B: E | nclosed: MWFR        | S (envelope                        | ) exterior zon       | e     |                   |             | -        | N                    |                   | 2        |
|              |            | 20=147 (L<br>30-105 (I | C 1) 31-161 (LC 2            | ∠ <i>r)</i> ,<br>R) | and C-C Ex   | kterior (2) zone: c  | antilever le                       | ft and right         | -     |                   |             | 1        | : ENG                | -ER. A            | 3        |
|              |            | 32=148 (L              | C(28) 34=115 (10)            | 25)                 | exposed; e   | end vertical left ar | nd right exp                       | osed;C-C for         |       |                   |             | 1        | GIN                  | IFE. CV           | 5        |
|              |            | 35=113 (1              | _C 25), 36=122 (I C 2        | 25).                | members a    | Ind forces & MWF     | RS for rea                         | ctions shown;        |       |                   |             |          | 1.40                 | VEL               |          |
|              |            | 37=121 (L              | _C 26), 38=286 (LC           | 12).                | Lumber DC    | DL=1.60 plate grip   | DOL=1.33                           | 5                    |       |                   |             |          | 1, YUIN              | Villin            |          |
|              |            | 39=337 (L              | _C 26)                       | .,,                 |              |                      |                                    |                      |       |                   |             |          | 1000                 | mm                |          |
|              |            | ``                     | ,                            |                     |              |                      |                                    |                      |       |                   |             |          |                      | March             | 21,2023  |



| Job     | Truss | Truss Type                     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|--------------------------------|-----|-----|-----------------------------------------|
| 3466725 | A1    | Piggyback Base Supported Gable | 1   | 1   | T30100011<br>Job Reference (optional)   |

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 219 lb uplift at joint 39, 243 lb uplift at joint 38, 38 lb uplift at joint 37, 57 lb uplift at joint 36, 48 lb uplift at joint 35, 68 lb uplift at joint 34, 17 lb uplift at joint 30, 68 lb uplift at joint 27, 48 lb uplift at joint 26, 57 lb uplift at joint 25, 36 lb uplift at joint 24, 230 lb uplift at joint 23 and 202 lb uplift at joint 22.

11) N/A

- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

## LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 1-9=-37, 9-13=-60, 13-21=-37, 21-40=-20 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:50 ID:eSvJ5iz0TWxjgDknVt356hzaKKe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



| Job     | Truss | Truss Type     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|----------------|-----|-----|-----------------------------------------|
| 3466725 | A2    | Piggyback Base | 3   | 1   | T30100012<br>Job Reference (optional)   |

(psf)

20.0

Plate Grip DOL

5-12=-42/270, 6-12=-244/185, 6-10=-102/79,

2-15=-904/125, 2-14=0/576, 7-9=-904/125,

7-10=0/576

Lumber DOL=1.60 plate grip DOL=1.33

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

1.00

Scale = 1:79.6

Loading

NOTES

2)

this design.

TCLL (roof)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:53 ID:AKSe9cn1i6NDCWMfwRmpKqzaKJb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



0.34 Vert(LL)

0.13

13-14

>999

240 MT20

| Snow (Ps/Pf) | 8.3/20.0               | Lumber DOL              | 1.15   |                                 | BC                | 0.48           | Vert(CT)        | -0.15      | 13-14 | >999 | 180 |                |          |
|--------------|------------------------|-------------------------|--------|---------------------------------|-------------------|----------------|-----------------|------------|-------|------|-----|----------------|----------|
| TCDL         | 10.0                   | Rep Stress Incr         | YES    |                                 | WB                | 0.27           | Horz(CT)        | 0.01       | 9     | n/a  | n/a |                |          |
| BCLL         | 0.0*                   | Code                    | IRC20  | 15/TPI2014                      | Matrix-MS         |                |                 |            |       |      |     |                |          |
| BCDL         | 10.0                   |                         |        |                                 |                   |                |                 |            |       |      |     | Weight: 171 lb | FT = 20% |
| LUMBER       |                        |                         | 3      | 3) ** TCLL: AS                  | CE 7-10; Pr=20    | ).0 psf (roof  | live load: Lu   | umber      |       |      |     |                |          |
| TOP CHORD    | 2x4 SP No.2            |                         |        | DOL=1.15 F                      | Plate DOL=1.00    | ); Pf=20.0 p   | sf (flat roof   |            |       |      |     |                |          |
| BOT CHORD    | 2x4 SP No.2            |                         |        | snow); Ps=                      | varies (min. roo  | f snow=8.3     | psf Lumber      |            |       |      |     |                |          |
| WEBS         | 2x4 SP No.3            |                         |        | DOL=1.15 F                      | Plate DOL=1.00    | ) see load c   | ases; Categ     | ory II;    |       |      |     |                |          |
| BRACING      |                        |                         |        | Exp B; Fully                    | Exp.; Ct=1.10;    | Unobstruct     | ed slippery     |            |       |      |     |                |          |
| TOP CHORD    | Structural wood she    | eathing directly applie | d or   | surface                         |                   |                |                 |            |       |      |     |                |          |
|              | 5-11-1 oc purlins, e   | xcept                   | 2      | <ol> <li>Roof design</li> </ol> | snow load has     | been reduc     | ced to accou    | nt for     |       |      |     |                |          |
|              | 2-0-0 oc purlins (6-0  | 0-0 max.): 4-5.         | _      | slope.                          |                   |                |                 |            |       |      |     |                |          |
| BOT CHORD    | Rigid ceiling directly | applied or 10-0-0 oc    | ; 5    | <ol> <li>Provide ade</li> </ol> | quate drainage    | to prevent     | water pondi     | ng.        |       |      |     |                |          |
|              | bracing.               |                         | 6      | 6) This truss h                 | as been design    | ed for a 10.   | 0 psf bottom    | ۱ <u>.</u> |       |      |     |                |          |
| REACTIONS    | (size) 9=0-3-8,        | 15=0-3-8                | -      | chord live lo                   | ad nonconcurre    | ent with any   | other live lo   | ads.       |       |      |     |                |          |
|              | Max Horiz 15=202 (     | LC 11)                  |        | ) ^ I his truss                 | has been desig    | ned for a liv  | e load of 20    | .0pst      |       |      |     |                |          |
|              | Max Uplift 9=-8 (LC    | 15), 15=-8 (LC 14)      |        | on the botto                    | m chord in all a  | reas where     | a rectangle     | 4          |       |      |     |                |          |
|              | Max Grav 9=990 (L      | C 2), 15=990 (LC 2)     |        | 3-06-00 tall                    | by 2-00-00 wide   | e Will Tit Det |                 | tom        |       |      |     |                |          |
| FORCES       | (lb) - Maximum Con     | nnression/Maximum       |        | Drovido mo                      |                   | tion (by oth   | DL = 10.0p      | 5I.        |       |      |     |                |          |
| IONOLO       | Tension                | npression/maximum       | c      | bearing plat                    | e canable of wit  | hetandina 8    | Blb uplift at i | oint       |       |      |     |                |          |
| TOP CHORD    | 1-2=-51/25 2-3=-90     | 04/98 3-4=-784/184      |        | 15 and 8 lb                     | unlift at joint 9 | instantung c   | s ib upint at j | Unit       |       |      |     |                |          |
|              | 4-5=-478/182.5-6=      | -784/184. 6-7=-904/9    | 8. c   | ) This trues is                 | designed in ac    | cordance w     | ith the 2015    |            |       |      |     |                |          |
|              | 7-8=-49/25             |                         | -, .   | Internationa                    | Residential Co    | de sections    | R502 11 1       | and        |       |      |     |                |          |
| BOT CHORD    | 1-15=-14/44, 14-15     | =-182/209,              |        | R802 10 2 a                     | and referenced    | standard Al    | JSI/TPI 1       | ana        |       |      |     |                |          |
|              | 13-14=-81/671, 12-     | 13=-6/510, 10-12=0/5    | 586, 1 | 0) Graphical p                  | urlin representa  | tion does n    | ot depict the   | size       |       |      |     |                |          |
|              | 9-10=-12/42, 8-9=-1    | 12/42                   |        | or the orient                   | ation of the pur  | lin along the  | e top and/or    | 0.20       |       |      |     |                | A        |
| WEBS         | 3-14=-102/79, 3-13     | =-244/185, 4-13=-42/    | 270,   | bottom chor                     | d.                |                |                 |            |       |      |     | "THY           | ARO.     |

тс

#### LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 Uniform Loads (lb/ft)
  - Vert: 1-4=-37, 4-5=-60, 5-8=-37, 16-19=-20



GRIP

244/190

March 21,2023



| Job     | Truss | Truss Type     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|----------------|-----|-----|-----------------------------------------|
| 3466725 | A3    | Piggyback Base | 5   | 1   | T30100013<br>Job Reference (optional)   |

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:11:54 ID:fc7jeCcJSJ4Q\_67wTRW\_dNzaKIW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GRIP

244/190

FT = 20%

Page: 1



| LUMBER<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| WEBS                             | 2x4 SP No.3                                                                                                                        |
| BRACING                          | • • • • • • • • • •                                                                                                                |
| TOP CHORD                        | Structural wood sheathing directly applied or<br>5-11-5 oc purlins, except end verticals, and<br>2-0-0 oc purlins (6-0-0 max): 4-5 |
| BOT CHORD                        | Rigid ceiling directly applied or 10-0-0 oc bracing.                                                                               |
| REACTIONS                        | (size) 8= Mechanical, 14=0-3-8                                                                                                     |
|                                  | Max Horiz 14=220 (LC 13)                                                                                                           |
|                                  | Max Uplift 8=-2 (LC 15), 14=-8 (LC 14)                                                                                             |
|                                  | Max Grav 8=893 (LC 2), 14=982 (LC 2)                                                                                               |
| FORCES                           | (lb) - Maximum Compression/Maximum<br>Tension                                                                                      |
| TOP CHORD                        | 1-2=-50/26, 2-3=-896/98, 3-4=-773/185,                                                                                             |
|                                  | 4-5=-471/182, 5-6=-772/185, 6-7=-854/98,                                                                                           |
|                                  | 7-8=-858/74                                                                                                                        |
| BOT CHORD                        | 1-14=-13/43, 13-14=-198/208,                                                                                                       |
|                                  | 12-13=-97/666, 11-12=-23/502,                                                                                                      |
|                                  | 9-11=-28/559, 8-9=-19/39                                                                                                           |
| WEBS                             | 3-13=-97/80, 3-12=-249/185, 4-12=-42/266,                                                                                          |
|                                  | 5-11=-42/260, 6-11=-223/178, 6-9=-137/80,                                                                                          |
|                                  | 7-9=-9/572, 2-14=-899/125, 2-13=0/572                                                                                              |
| NOTEO                            |                                                                                                                                    |

NOTES

Scale = 1:77.7

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Ps/Pf)

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) \*\* TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=8.3 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.
- 5) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 2 lb uplift at joint 8 and 8 lb uplift at joint 14.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

#### LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 Uniform Loads (lb/ft)

Vert: 1-4=-37, 4-5=-60, 5-7=-37, 8-15=-20



March 21,2023



| Job     | Truss | Truss Type     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|----------------|-----|-----|-----------------------------------------|
| 3466725 | A4    | Piggyback Base | 6   | 1   | T30100014<br>Job Reference (optional)   |

TCDL

BCLL

BCDL

WEBS

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:11:54 ID:DI?AWtuJdaDz?mL?rrtY6WzaKEH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



March 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



818 Soundside Road Edenton, NC 27932

| Job     | Truss | Truss Type                     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|--------------------------------|-----|-----|-----------------------------------------|
| 3466725 | A5    | Piggyback Base Supported Gable | 1   | 1   | T30100015<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:?MbvTsp\_kwoB7R9clpEMBYzaKD5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



23-7-0

Scale = 1:82.4

## Plate Offsets (X, Y): [9:0-1-11,Edge], [13:0-1-11,Edge]

Н

| Loading      |            | (psf)                  | Spacing                                   | 2-0-0        |              | CSI                    |            | DEFL              | in         | (         | oc)    | l/defl             | L/d     | PLATES           | GRIP           |                 |
|--------------|------------|------------------------|-------------------------------------------|--------------|--------------|------------------------|------------|-------------------|------------|-----------|--------|--------------------|---------|------------------|----------------|-----------------|
| TCLL (roof)  |            | 20.0                   | Plate Grip DOL                            | 1.00         |              | TC                     | 0.22       | Vert(LL)          | n/a        |           | -      | n/a                | 999     | MT20             | 244/19         | 90              |
| Snow (Ps/Pf) |            | 8.3/20.0               | Lumber DOL                                | 1.15         |              | BC                     | 0.17       | Vert(TL)          | n/a        |           | -      | n/a                | 999     |                  |                |                 |
| TCDL         |            | 10.0                   | Rep Stress Incr                           | YES          |              | WB                     | 0.12       | Horiz(TL)         | -0.01      |           | 22     | n/a                | n/a     |                  |                |                 |
| BCLL         |            | 0.0*                   | Code                                      | IRC2         | 015/TPI2014  | Matrix-MS              |            |                   |            |           |        |                    |         |                  |                |                 |
| BCDL         |            | 10.0                   |                                           |              |              |                        |            |                   |            |           |        |                    |         | Weight: 251      | lb FT = 2      | 20%             |
| LUMBER       |            |                        |                                           |              | FORCES       | (lb) - Maximum C       | ompressi   | on/Maximum        |            | 3)        | Trus   | s desig            | ned f   | or wind loads    | n the plane    | of the truss    |
| TOP CHORD    | 2x4 SP N   | 0.2                    |                                           |              |              | Tension                |            |                   |            |           | only.  | For st             | uds e   | xposed to wind   | d (normal to   | the face),      |
| BOT CHORD    | 2x4 SP N   | 0.2                    |                                           |              | TOP CHORD    | 1-2=-86/114, 2-3=      | =-119/123  | 3, 3-4=-62/10     | З,         |           | see S  | Standaı            | rd Ind  | ustry Gable Er   | d Details as   | s applicable,   |
| WEBS         | 2x4 SP N   | 0.3                    |                                           |              |              | 4-5=-107/140, 5-6      | 6=-151/18  | 84, 6-7=-197/2    | 239,       |           | or co  | nsult q            | ualifie | d building des   | igner as per   | r ANSI/TPI 1.   |
| OTHERS       | 2x4 SP N   | 0.3                    |                                           |              |              | 7-8=-254/306, 8-9      | 9=-216/25  | 56, 9-10=-197     | /242,      | 4)        | ** TC  | LL: AS             | CE 7    | 10; Pr=20.0 p    | sf (roof live  | load: Lumber    |
| BRACING      |            |                        |                                           |              |              | 10-11=-197/242,        | 11-12=-1   | 97/242,           |            |           | DOL    | =1.15 F            | Plate D | OOL=1.00); Pf    | =20.0 psf (fl  | at roof         |
| TOP CHORD    | Structura  | l wood she             | athing directly applie                    | ed or        |              | 12-13=-197/242,        | 13-14=-2   | 16/256,           |            |           | snow   | '); Ps=            | varies  | s (min. roof sno | ow=8.3 psf l   | Lumber          |
|              | 6-0-0 oc   | purlins. ex            | cept end verticals. a                     | nd           |              | 14-15=-254/306,        | 15-16=-1   | 97/260,           |            |           | DOL    | =1.15 F            | Plate D | DOL=1.00) see    | load cases     | s; Category II; |
|              | 2-0-0 oc   | purlins (10-           | 0-0 max.): 9-13.                          |              |              | 16-17=-151/226,        | 17-18=-1   | 14/196,           |            |           | Exp    | 3; Fully           | Exp.;   | Ct=1.10; Unc     | bstructed sl   | lippery         |
| BOT CHORD    | Rigid ceil | ing directly           | applied or 6-0-0 oc                       |              |              | 18-19=-108/153,        | 19-20=-2   | 15/250,           |            |           | surfa  | ce                 |         |                  |                |                 |
|              | bracing.   | • •                    |                                           |              |              | 20-21=-121/103,        | 21-22=-2   | 08/176            |            | 5)        | Root   | design             | snow    | load has bee     | n reduced to   | o account for   |
| WEBS         | 1 Row at   | midpt                  | 7-33, 8-32, 10-31, 1                      | 1-30,        | BOT CHORD    | 1-39=-87/89, 38-3      | 39=-152/1  | 130,<br>50/400    |            | $\sim$    | SIOPE  | ).<br>             | ~       | ducine as to a   |                |                 |
|              |            |                        | 12-29, 14-28, 15-27                       |              |              | 37-38=-152/130,        | 30-37=-1   | 52/136,<br>52/126 |            | (0)<br>7) | PIOVI  |                    | quate   | drainage to p    | revent wate    | er ponding.     |
| REACTIONS    | (size)     | 22=22-8-0              | ), 23=22-8-0, 24=22                       | -8-0,        |              | 32-33-152/130,         | 31-321     | 52/130,           |            | /)<br>0)  | Thic   | e siuus<br>truce b | os bo   | eu al 1-4-0 00   | x a 10.0 pcf   | fbottom         |
|              |            | 25=22-8-0              | 0, 26=22-8-0, 27=22                       | -8-0,        |              | 30-31=-152/136         | 29-30=-1   | 52/136            |            | 0)        | chore  | l live lo          | ad no   | nconcurrent w    | ith any othe   | r live loads    |
|              |            | 28=22-8-0              | 0, 29=22-8-0, 30=22                       | -8-0,        |              | 28-29=-152/136.        | 27-28=-1   | 52/136.           |            | 9)        | * Thie | s truss            | has h   | een designed     | for a live lo: | ad of 20 Onsf   |
|              |            | 31=22-8-0              | 0, 32=22-8-0, 33=22                       | -8-0,        |              | 26-27=-152/136.        | 25-26=-1   | 52/136.           |            | 0)        | on th  | e botto            | m cho   | ord in all areas | where a re-    | ctangle         |
|              |            | 35=22-8-0              | ), 36=22-8-0, 37=22                       | -8-0,        |              | 24-25=-152/136,        | 23-24=-1   | 52/136,           |            |           | 3-06-  | 00 tall            | by 2-0  | 00-00 wide will  | fit between    | the bottom      |
|              | M          | 38=22-8-0              | J, 39=22-8-0                              |              |              | 22-23=-152/136         |            |                   |            |           | chord  | d and a            | ny oth  | ner members.     |                |                 |
|              | Max Horiz  | 39=220 (L              | _C 13)<br>1 C 12) 22 201 (LC              | 10)          | WEBS         | 2-39=-148/62, 3-3      | 38=-107/1  | 17, 4-37=-91      | /59,       |           |        |                    |         |                  |                |                 |
|              | wax upint  | 22=-229 (              | (LC   3), 23 = -204 (LC )                 | 5 TU),<br>5) |              | 5-36=-89/65, 6-35      | 5=-91/66,  | 7-33=-107/84      | 4,         |           |        |                    |         |                  | MILLIN.        |                 |
|              |            | 24=-30 (L<br>26_ 40 (L | C 14), 25=-54 (LC 1<br>C 15) 27-66 (LC 1  | 5),<br>5)    |              | 8-32=-103/24, 10       | -31=-126   | /68, 11-30=-8     | 0/47,      |           |        |                    |         | "                | GAD.           | 11.             |
|              |            | 20=-43 (L<br>30=-10 (L | C 13), 27=-00 (LC 1<br>C 11) 33=-60 (LC 1 | 3),<br>4)    |              | 12-29=-131/68, 1       | 4-28=-11   | 8/24,             |            |           |        |                    |         | Natr             | YNO            | 1 111           |
|              |            | 35=-49 (L              | C 14) 36=-56 (LC 1                        | 4),<br>4)    |              | 15-27=-107/81, 1       | 6-26=-91   | /66, 17-25=-9     | 3/67,      |           |        |                    | ~       | O                | the .          | AN'S            |
|              |            | 37=-22 (1              | C 15) 38=-195 (I C                        | 11)          |              | 18-24=-79/51, 19       | -23=-233   | /172,             |            |           |        |                    | 5       | 2.077            | V V            | 1.7.            |
|              |            | 39=-133 (              | LC 10)                                    | ,,           |              | 20-22=-381/417         |            |                   |            |           |        |                    | 5       | :0               | * ' <b>`</b>   | 43. 3           |
|              | Max Grav   | 22=244 (L              | _C 10), 23=320 (LC )                      | 26).         | NOTES        |                        |            |                   |            |           |        |                    | 2       |                  |                | 1 1 2           |
|              |            | 24=100 (L              | _C 25), 25=126 (LC                        | 26),         | 1) Unbalance | d roof live loads ha   | ve been    | considered fo     | r          |           |        |                    |         | : S              | EAL            | : =             |
|              |            | 26=113 (L              | _C 26), 27=115 (LC                        | 26),         | this design  |                        |            |                   |            |           |        |                    |         | : 04             | 1960           | : =             |
|              |            | 28=145 (L              | _C 27), 29=158 (LC 1                      | 27),         | 2) Wind: ASC | E 7-10; Vult=115m      | iph (3-sec | cond gust)        | <b>.</b> . |           |        |                    | -       | : 04             | 1000           | - ÷ = =         |
|              |            | 30=107 (L              | _C 30), 31=153 (LC 3                      | 27),         | Vasd=91m     | ipn; TCDL=6.0psf; I    | BCDL=6.    | upst; n=30ft;     | Cat.       |           |        |                    | 2       | A                |                | - A - S -       |
|              |            | 32=129 (L              | _C 28), 33=118 (LC                        | 25),         |              | vtorior (2) zone: co   | (envelope  | e) exterior ZOI   | ie         |           |        |                    | -       | ·                | a              | . S.            |
|              |            | 35=115 (L              | _C 25), 36=118 (LC                        | 25),         | anu C-C E    | and vertical left and  | right even | n anu nynt        |            |           |        |                    | 1       | Vo NG            | INEE           | NS              |
|              |            | 37=125 (L              | LC 2), 38=208 (LC 1)                      | 2),          | members      | and forces & MW/FF     | RS for res | ictions shown     |            |           |        |                    | 1       | A                | 1111           | N. IN           |
|              |            | 39=326 (L              | _C 26)                                    |              | Lumber D     | DI = 1.60 plate arin I | DOI = 1.3  | 3                 | ,          |           |        |                    |         | 11,90            | IN VE          | in              |
|              |            |                        |                                           |              | 24.11001 20  |                        | 202-1.0    | -                 |            |           |        |                    |         | 1111             | mm             |                 |

March 21,2023

Page: 1



| Job     | Truss | Truss Type                     | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|--------------------------------|-----|-----|-----------------------------------------|
| 3466725 | A5    | Piggyback Base Supported Gable | 1   | 1   | T30100015<br>Job Reference (optional)   |

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 22, 133 lb uplift at joint 39, 195 lb uplift at joint 38, 22 lb uplift at joint 37, 56 lb uplift at joint 36, 49 lb uplift at joint 35, 69 lb uplift at joint 33, 19 lb uplift at joint 30, 66 lb uplift at joint 27, 49 lb uplift at joint 26, 54 lb uplift at joint 25, 38 lb uplift at joint 24 and 204 lb uplift at joint 23.

11) N/A

- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

## LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 1-9=-37, 9-13=-60, 13-21=-37, 22-40=-20 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:?MbvTsp\_kwoB7R9clpEMBYzaKD5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



| Job     | Truss | Truss Type              | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|-------------------------|-----|-----|-----------------------------------------|
| 3466725 | B1    | Common Structural Gable | 1   | 1   | T30100016<br>Job Reference (optional)   |

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:5Kyr8XAUqr8TFrmmar\_JKBzaKTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



## Plate Offsets (X, Y): [1:Edge,0-0-6], [23:Edge,0-0-6]

Scale = 1:88.2

| Loading      | (psf)                  | Spacing                | 2-0-0           | CSI                                     |                    | DEFL            | in         | (loc          | c) l/defl   | L/d             | PLATES              | GRIP              |               |
|--------------|------------------------|------------------------|-----------------|-----------------------------------------|--------------------|-----------------|------------|---------------|-------------|-----------------|---------------------|-------------------|---------------|
| TCLL (roof)  | 20.0                   | Plate Grip DOL         | 1.00            | TC                                      | 0.33               | Vert(LL)        | 0.13       | 41-4          | 2 >919      | 240             | MT20                | 244/190           |               |
| Snow (Ps/Pf) | 10.1/20.0              | Lumber DOL             | 1.15            | BC                                      | 0.55               | Vert(CT)        | -0.19      | 4             | 1 >649      | 180             |                     |                   |               |
| TCDL         | 10.0                   | Rep Stress Incr        | YES             | WB                                      | 0.39               | Horz(CT)        | 0.01       | 2             | 4 n/a       | n/a             |                     |                   |               |
| BCLI         | 0.0*                   | Code                   | IRC2015/TPI2014 | Matrix-MS                               |                    | - (- )          |            |               |             |                 |                     |                   |               |
| BCDL         | 10.0                   |                        |                 |                                         |                    |                 |            |               |             |                 | Weight: 276 lb      | FT = 20%          |               |
|              | 2x4 SP No 2            |                        | TOP CHORD       | 1-2=-355/57, 2-3=-{<br>4-5503/194, 5-6- | 523/129            | , 3-4=-500/16   | 62,<br>255 | 2) V          | Vind: ASCE  | 7-10;<br>b: TCI | ; Vult=115mph (;    | 3-second gust     | )<br>0ft: Cat |
|              | 2x4 SF N0.2            |                        |                 | 7-8=-546/302 8-10                       | -683/3             | 86              | _00,       | ů             | · Exn B· Er | nclose          | d: MWFRS (env       | elone) exterior   | 700e          |
|              | 2x4 SF N0.2            |                        |                 | 10-11=-677/411 11                       | - 000/0<br>1-12=-6 | -00,<br>-03/428 |            |               | nd C-C Fx   | terior (        | 2) zone: cantile    | ver left and rig  | ht            |
|              | 2x4 SP No 3            |                        |                 | 12-13=-301/307.13                       | 3-14=-2            | 95/306.         |            | e             | xposed : e  | nd ver          | tical left and righ | it exposed:C-C    | C for         |
|              | 244 01 10.5            |                        |                 | 14-16=-263/265, 16                      | 6-17=-2            | 31/224.         |            | n             | nembers ar  | nd forc         | es & MWFRS fo       | or reactions sh   | own:          |
|              | Structural wood obc    | othing directly opplie | dor             | 17-18=-194/189, 18                      | 3-19=-1            | 51/164,         |            | L             | umber DO    | L=1.60          | ) plate grip DOL    | =1.33             |               |
|              |                        | auting directly applie |                 | 19-20=-126/140, 20                      | )-21=-1            | 16/113,         |            | 3) -          | Truss desid | ned fo          | or wind loads in t  | the plane of th   | e truss       |
|              | Bigid coiling directly | (applied or 10.0.0 or  |                 | 21-22=-160/119, 22                      | 2-23=-1            | 13/87           |            | ΄ ο           | nly. For st | ,<br>uds ex     | posed to wind (     | normal to the f   | ace),         |
| BOT CHORD    | bracing                | applied of 10-0-0 of   | Ó BOT CHORD     | 1-44=-44/328, 43-4                      | 4=-170             | 453,            |            | s             | ee Standai  | d Indu          | stry Gable End      | Details as app    | licable,      |
| WEBS         | 1 Row at midnt         | 12-34                  |                 | 42-43=-170/453, 41                      | 1-42=-1            | 70/453,         |            | 0             | r consult q | ualified        | d building desigr   | er as per ANS     | SI/TPI 1.     |
| IOINTS       | 1 Brace at Jt(s): 45   | .20.                   |                 | 40-41=-170/453, 39                      | 9-40=-1            | 70/453,         |            | 4) T          | CLL: ASCI   | E 7-10          | ; Pr=20.0 psf (rc   | of live load: Li  | umber         |
|              | 46 48 49               |                        |                 | 38-39=-170/453, 37                      | 7-38=-1            | 21/220,         |            | D             | OL=1.15 F   | Plate D         | OL=1.00); Pf=2      | 0.0 psf (flat roo | of            |
| REACTIONS    | (size) 24=13-11        | -8 25=13-11-8          |                 | 36-37=-121/220, 35                      | 5-36=-1            | 21/220,         |            | S             | now); Ps=′  | 10.1 ps         | sf (roof snow: Lu   | mber DOL=1.       | 15 Plate      |
|              | 26=13-11               | -8 27=13-11-8          |                 | 34-35=-121/220, 33                      | 3-34=-1            | 23/217,         |            | E .           | OL=1.00);   | Categ           | jory II; Exp B; Fi  | Illy Exp.; Ct=1   | .10;          |
|              | 28=13-11               | -8, 29=13-11-8,        |                 | 32-33=-123/217, 30                      | )-32=-1            | 23/217,         |            |               | Inobstructe | d slipp         | pery surface        |                   |               |
|              | 30=13-11               | -8. 32=13-11-8.        |                 | 29-30=-77/107, 28-                      | 29=-77             | 107,            |            | 5) H          | loof design | snow            | load has been r     | educed to acc     | ount for      |
|              | 33=13-11               | -8, 34=13-11-8,        |                 | 27-28=-77/107, 26-                      | 2/=-//             | 107,            |            | s<br>ov c     | iope.       |                 |                     |                   |               |
|              | 35=13-11               | -8, 36=0-3-8, 44=0-5   | 5-8             | 23-20=-77/107, 24-                      | 25=-77             | 107,            |            | 0) (0<br>7) T |             | space           | ed al 1-4-0 oc.     | - 100 mathatt     |               |
|              | Max Horiz 44=205 (     | LC 11)                 | WERS            | 12 /9- 207/11/ /0                       | 2 10- 2            | 10/127          |            | <i>(</i> ) 1  | his truss h | as bee          | en designed for a   | 1 10.0 psi bollo  | loode         |
|              | Max Uplift 24=-102     | (LC 11), 25=-121 (LC   | C 10),          | 49-50335/130 30                         | )-49=-3<br>)-503   | +0/127,         |            | U             |             | au nui          | iconcurrent with    | any other live    | iuaus.        |
|              | 26=-19 (l              | _C 14), 27=-41 (LC 1   | 5),             | 38-47=-163/456 46                       | 6-47=-2            | 76/688          |            |               |             |                 |                     | in the            |               |
|              | 28=-34 (l              | _C 15), 29=-40 (LC 1   | 5),             | 45-46=-249/627, 12                      | 2-45=-3            | )7/752.         |            |               |             |                 | "THAY               | ARO!              |               |
|              | 30=-100                | (LC 14), 32=-46 (LC    | 15),            | 12-34=-227/0, 11-4                      | 5=-85/1            | 2, 35-45=-51    | /77,       |               |             |                 |                     | 6                 | 11            |
|              | 33=-9 (L0              | C 10), 35=-25 (LC 11   | ),              | 10-46=-20/29, 37-4                      | 6=-80/5            | 4, 8-47=-249    | /121,      |               |             | 5.              | SCOPPE              | PION              | 11            |
|              | 36=-128                | (LC 25), 44=-143 (LC   | ; 14)           | 7-39=-103/64, 6-40                      | =-16/28            | , 5-41=-40/38   | 3,         |               |             | 2               |                     | 7:                | 1 2           |
|              | Max Grav 24=268 (      | LC 25), 25=151 (LC 1   | 13),            | 4-42=-34/36, 3-43=                      | -43/39,            | 2-44=-303/96    | б,         |               |             | 2               | · · · /)            | S 3               | . =           |
|              | 26=120 (               | LC 2), 27=113 (LC 2)   | o),<br>26)      | 13-48=-107/4, 33-4                      | 8=-98/2            | 6, 14-49=-80    | /54,       |               |             | 2               | : SF                | Δ1                | : =           |
|              | 20=111 (               | LC 20), 29=114 (LC 2   | 20),            | 32-49=-91/63, 16-5                      | 0=-80/5            | 1, 17-29=-89    | /55,       |               |             |                 |                     |                   | : =           |
|              | 33–124 (               | LC 26), 32–120 (LC 2   | 20),<br>27)     | 18-28=-84/51, 19-2                      | 7=-86/5            | 3, 20-26=-84    | /47,       |               |             |                 | : 041               | 860               | ÷ =           |
|              | 35-52 (1               | C 25) 36-116 (LC 1     | 4)              | 21-25=-97/85, 22-2                      | 4=-124             | 51              |            |               |             | 2               | 1 C C               |                   |               |
|              | 44=660 (               | I C 2)                 | NOTES           |                                         |                    |                 |            |               |             | 3               | 1 A. A.             |                   | 5             |
| FORCES       | (lb) - Maximum Con     | nression/Maximum       | 1) Unbalance    | ed roof live loads have                 | e been o           | considered fo   | r          |               |             | 1               | . SNO.              | UEER. A           | 1.2           |
| 0.0000       | Tension                |                        | this desigr     | 1.                                      |                    |                 |            |               |             | 1               | 0,                  | NEE               | 5             |
|              |                        |                        |                 |                                         |                    |                 |            |               |             |                 | 1,40111             | VELV              | N             |
|              |                        |                        |                 |                                         |                    |                 |            |               |             |                 | 1101                | N MILLIN          |               |
|              |                        |                        |                 |                                         |                    |                 |            |               |             |                 | 20111               | anne.             |               |



Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 21,2023

| Job     | Truss | Truss Type              | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|-------------------------|-----|-----|-----------------------------------------|
| 3466725 | B1    | Common Structural Gable | 1   | 1   | T30100016<br>Job Reference (optional)   |

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 30, 25 lb uplift at joint 35, 143 lb uplift at joint 44, 9 lb uplift at joint 33, 46 lb uplift at joint 32, 40 lb uplift at joint 29, 34 lb uplift at joint 28, 41 lb uplift at joint 27, 19 lb uplift at joint 26, 121 lb uplift at joint 25, 102 lb uplift at joint 24 and 128 lb uplift at joint 36.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:5Kyr8XAUqr8TFrmmar\_JKBzaKTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | B2    | Common     | 3   | 1   | T30100017<br>Job Reference (optional)   |

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:11:56 ID:g4\_sQ4hS\_S7YVAnSwgAnyrzaKNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

1)

2)

March 21,2023



| Job     | Truss | Truss Type    | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|---------------|-----|-----|-----------------------------------------|
| 3466725 | В3    | Common Girder | 1   | 2   | T30100018<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:57 ID:yqqM9ofuFRcGWCV3OWUn0JzaKC?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:70.9

## Plate Offsets (X, Y): [6:Edge,0-3-8], [7:0-3-8,0-5-0], [10:0-5-0,0-4-12]

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                                                         | (psf)<br>20.0<br>10.1/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                 | 2-0-0<br>1.00<br>1.15<br>NO<br>IRC2015                | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.96<br>0.81<br>0.67                                                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                           | in<br>-0.09<br>-0.18<br>0.01                                              | (loc)<br>7-8<br>7-8<br>6                                                                                                      | l/defl<br>>999<br>>906<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATES<br>MT20<br>Weight: 358 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x6 SP No.2 *Except<br>2x4 SP No.3<br>Structural wood shee<br>6-0-0 oc purlins, exc<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 6=0-3-8, 8<br>11=0-5-8<br>Max Horiz 11=-220 (L<br>Max Uplift 6=-22 (LC<br>Max Grav 6=2729 (L<br>11=1516 (<br>(lb) - Maximum Com<br>Tension<br>1-2=-824/30, 2-3=-16<br>4-5=-2548/43, 1-11=<br>10-11=-219/665, 8-1<br>6-7=-54/408 | * 9-6:2x6 SP DSS<br>athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>4-8<br>=0-3-8, (req. 0-3-11),<br>_C 29)<br>11), 8=-157 (LC 10)<br>C 2), 8=7261 (LC 2),<br>LC 25)<br>pression/Maximum<br>5/784, 3-4=-32/558,<br>-621/6, 5-6=-1980/38<br>0=-123/582, 7-8=0/18 | 2)<br>i or 3)<br>4)<br>,<br>5)<br>6)<br>7)<br>378, 8) | All loads are<br>except if note<br>CASE(S) sec<br>provided to d<br>unless otherw<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>II; Exp B; Enc<br>cantilever left<br>right exposed<br>TCLL: ASCE<br>DOL=1.15 PI<br>snow); Ps=10<br>DOL=1.00); (<br>Unobstructed<br>Roof design s<br>slope.<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom | considered equally<br>id as front (F) or ba<br>istribute only loads<br>vise indicated.<br>roof live loads have<br>7-10; Vult=115mph<br>; TCDL=6.0psf; BC<br>closed; MWFRS (er<br>and right exposed<br>; Lumber DOL=1.6<br>7-10; Pr=20.0 psf<br>ate DOL=1.00); Pf=<br>0.1 psf (roof snow:<br>Category II; Exp B;<br>I slippery surface<br>snow load has been<br>s been designed fo<br>d nonconcurrent w<br>as been designed in<br>chord in all areas | r applier<br>ack (B)<br>nection<br>noted<br>been of<br>(3-sec<br>CDL=6.0<br>nvelope<br>(roof liv<br>=20.0 p<br>Lumbe<br>Fully E<br>n reduc<br>or a 10.0<br>rith any<br>for a liv<br>where | d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>cond gust)<br>Opsf; h=30ft; (<br>) exterior zor<br>vertical left an<br>grip DOL=1.15 P<br>xp.; Ct=1.10;<br>ved to accoun<br>D psf bottom<br>other live load<br>e load t 20.C<br>a rectangle | DAD<br>r<br>Cat.<br>le;<br>d<br>33<br>er<br>Plate<br>t for<br>ds.<br>0psf | 12) Har<br>prov<br>lb d<br>up a<br>lb d<br>up a<br>873<br>14 l<br>18-(<br>873<br>The<br>resp<br><b>LOAD (</b><br>1) De<br>Inc | riger(s) o<br>vided su<br>own and<br>at 4-0-1.<br>own and<br>at 10-0-<br>lb dowr<br>b up at<br>0-12, an<br>lb dowr<br>b up at<br>lb dowr<br>b up at<br>0-12, an<br>lb dowr<br>b up at<br>0-12, an<br>lb dowr<br>b up at<br>0-12, an<br>lb dowr<br>b up at<br>lb dowr<br>lb dowr<br>b up at<br>lb dowr<br>b up at<br>lb dowr<br>b up at<br>lb dowr<br>lb dowr<br>l | r r othe<br>ffficienti<br>1 14 lb<br>2, 873<br>1 14 lb<br>12, 873<br>1 14 lb<br>12, 873<br>1 14 lb<br>12, 873<br>1 16-0-1<br>4 873<br>a and 1<br>16-0-1<br>4 873<br>a and 1<br>16-0-1<br>5 90 0<br>5 12<br>1.00<br>5 12<br>5 1 | b<br>r connection devi<br>t to support conce<br>up at 2-0-12, 87<br>lb down and 14 I<br>up at 8-0-12, 87<br>3 lb down and 14 Ib<br>up at 14-0<br>2, 873 lb down and<br>lb down and 14 lb<br>4 lb up at 12-0<br>ion of such conne<br>hers.<br>ndard<br>alanced): Lumber<br>b/ft)<br>3-55-40, 6-11=-2<br>ads (lb)<br>B), 8=-660 (B), 78<br>B), 13=-660 (B), 78<br>B), 13=-660 (B), 78<br>B), 13=-660 (B), 78<br>B), 13=-660 (B), 78<br>C), 13=-660 (B), 13=-600 | ce(s) shall be<br>sntrated load(s) 873<br>3 lb down and 14 lb<br>b up at 6-0-12, 873<br>3 lb down and 14 lb<br>l b up at 12-0-12,<br>12, 873 lb down and<br>ind 14 lb up at<br>o up at 20-0-12, and<br>12 on bottom chord.<br>Section device(s) is the<br>r Increase=1.15, Plate<br>20<br>=-660 (B), 10=-660<br>14=-660 (B), 15=-660<br>19=-660 (B) |
| WEBS<br>NOTES<br>1) 2-ply truss<br>(0.131"x3"<br>Top chord:<br>oc.<br>Bottom chi-<br>staggered<br>Web conno                            | 3-8=-1053/0, 4-8=-2t<br>2-8=-1953/201, 2-10<br>5-7=0/1491<br>to be connected toget<br>) nails as follows:<br>s connected as follows<br>ords connected as follows<br>ords connected as follows<br>at 0-7-0 oc.<br>ected as follows: 2x4 -                                                                                                                                                             | 325/190, 4-7=0/3217,<br>=0/2137, 1-10=-86/12<br>: 2x4 - 1 row at 0-9-0<br>pws: 2x6 - 2 rows<br>1 row at 0-9-0 oc.                                                                                                                                                                         | 25,<br>9)<br>10                                       | 3-06-00 tall b<br>chord and an<br>WARNING: F<br>than input be<br>) Provide mech<br>bearing plate<br>joint 8 and 22<br>) This truss is d<br>International<br>R802.10.2 ar                                                                                                                                                                                                       | y 2-00-00 wide will<br>y other members, n<br>Required bearing si<br>aring size.<br>hanical connection<br>capable of withsta<br>2 Ib uplift at joint 6.<br>designed in accord<br>Residential Code s<br>ad referenced stand                                                                                                                                                                                                                           | fit betv<br>with BC<br>ze at jo<br>(by oth<br>nding 1<br>ance w<br>sections<br>dard AN                                                                                                    | veen the bott<br>int (s) 8 greater<br>ers) of truss to<br>57 lb uplift at<br>ith the 2015<br>i R502.11.1 a<br>ISI/TPI 1.                                                                                                                                                           | om<br>er<br>o                                                             |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "The second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE<br>0418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL<br>B60<br>VEER.EL                                                                                                                                                                                                                                                                                                                                |

March 21,2023



| Job     | Truss | Truss Type             | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------------------|-----|-----|-----------------------------------------|
| 3466725 | C1    | Common Supported Gable | 1   | 1   | T30100019<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:58 ID:QaUTW6A\_h9LtyUf3PhXc8OzaKW?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



| Scale = | 1:48.1 |
|---------|--------|
|---------|--------|

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                       | (psf)<br>20.0<br>10.1/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                              | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201                                                                                                      | 5/TPI2014                                                                                                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04<br>0.06<br>0.07                                                                                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                                                         | in<br>n/a<br>n/a<br>0.00                                                              | (loc)<br>-<br>-<br>12 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 77 lb | <b>GRIP</b><br>244/190<br>FT = 20% |           |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|-----------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood she<br>10-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 12=10-3-<br>15=10-3-<br>15=10-3-<br>18=10-3<br>Max Horiz 20=97 (L<br>Max Uplift 12=60 (I<br>14=-32 (I<br>19=-97 (I<br>Max Grav 12=166 (<br>14=113 (<br>16=158 (<br>18=113 (<br>20=174 ( | eathing directly applie<br>y applied or 6-0-0 oc<br>0, 13=10-3-0, 14=10-<br>0, 16=10-3-0, 17=10-<br>0, 19=10-3-0, 20=10-<br>C 11)<br>C 11), 13=-92 (LC 1:<br>C 14), 18=-31 (LC 1:<br>LC 14), 20=-70 (LC 1:<br>LC 25), 13=129 (LC 2:<br>LC 28), 17=119 (LC 2:<br>LC 29), 19=135 (LC 2:<br>LC 26) | 1)<br>2)<br>d or<br>3-0,<br>3-0,<br>3-0,<br>4)<br>5),<br>5),<br>4),<br>26),<br>5),<br>26),<br>5),<br>26),<br>6)<br>25),<br>7)<br>25),<br>7) | Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mpl<br>II; Exp B; En<br>and C-C Ext<br>exposed ; er<br>members an<br>Lumber DOL<br>Truss desig<br>only. For stt<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 P<br>snow); Ps=1<br>DOL=1.00;<br>Unobstructer<br>Roof design<br>slope.<br>Gable studs<br>This truss ha<br>chord live loa | roof live loads h<br>7-10; Vult=115r<br>,; TCDL=6.0psf;<br>closed; MWFRS<br>erior (2) zone; c<br>ad vertical left ar<br>d forces & MWF<br>=1.60 plate grip<br>ned for wind loa<br>dds exposed to v<br>d Industry Gable<br>alified building d<br>7-10; Pr=200, g<br>late DOL=1.00;<br>0.1 psf (roof snc<br>Category II; Exp<br>d slippery surfac<br>snow load has t<br>spaced at 1-4-0<br>is been designe<br>ad nonconcurrer<br>as been design | ave been of<br>mph (3-sec<br>BCDL=6.<br>§ (envelope<br>antilever le<br>dright exp<br>RS for ree<br>DOL=1.3;<br>ds in the p<br>vind (norm<br>e End Deta<br>designer a<br>bosf (roof liv<br>Pf=20.0 p<br>w: Lumbe<br>B; Fully E<br>ee<br>oc.<br>d for a 10.<br>tt with any<br>ed for a liv | considered fc<br>cond gust)<br>Opsf, h=30ft;<br>e) exterior zon<br>ff and right<br>bosed;C-C for<br>ctions showr<br>lane of the tr<br>ial to the face<br>ils as applica<br>s per ANSI/TI<br>re load: Lumb<br>sf (flat roof<br>r DOL=1.15 F<br>xp.; Ct=1.10;<br>wed to accour<br>0 psf bottom<br>other live loa<br>re load of 20.0 | or<br>Cat.<br>ne<br>r<br>JSS<br>),<br>ble,<br>Plate<br>Plate<br>t for<br>uds.<br>Opsf |                       |                             |                          |                                 |                                    |           |
| FORCES                                                                                               | (lb) - Maximum Cor<br>Tension<br>1-2=-53/77, 2-3=-66<br>4-5=-73/102, 5-6=-<br>7-8=-73/98, 8-9=-34                                                                                                                                                                                                                                             | npression/Maximum<br>5/83, 3-4=-35/80,<br>104/126, 6-7=-104/12<br>4/77, 9-10=-58/77,                                                                                                                                                                                                            | 6, 9)                                                                                                                                       | on the bottor<br>3-06-00 tall t<br>chord and ar<br>Provide mec<br>bearing plate                                                                                                                                                                                                                                                                        | n chord in all are<br>by 2-00-00 wide<br>by other membe<br>hanical connect<br>capable of with                                                                                                                                                                                                                                                                                                                                                 | eas where<br>will fit betw<br>rs.<br>ion (by oth<br>istanding 2                                                                                                                                                                                                                          | a rectangle<br>veen the both<br>ers) of truss t<br>29 lb uplift at j                                                                                                                                                                                                                                                              | om<br>to<br>joint                                                                     |                       |                             | in the second second     | NORTH G                         | APOLINA<br>PONACA                  | ALL NO    |
| BOT CHORD                                                                                            | 10-11=-48/73<br>1-20=-60/55, 19-20<br>17-18=-56/51, 16-1<br>14-15=-56/51, 13-1<br>11-12=-56/51                                                                                                                                                                                                                                                | =-56/51, 18-19=-56/5<br>7=-56/51, 15-16=-56/<br>4=-56/51, 12-13=-56/                                                                                                                                                                                                                            | 1,<br>51,<br>51, 10<br>11                                                                                                                   | 17, 31 lb upl<br>uplift at joint<br>13, 70 lb upl<br>) N/A                                                                                                                                                                                                                                                                                             | ift at joint 18, 97<br>15, 32 lb uplift a<br>ift at joint 20 and                                                                                                                                                                                                                                                                                                                                                                              | Ib uplift at<br>it joint 14, s<br>60 lb upli                                                                                                                                                                                                                                             | joint 19, 28 li<br>92 lb uplift at<br>ft at joint 12.                                                                                                                                                                                                                                                                             | o<br>joint                                                                            |                       |                             |                          | SE<br>041                       | AL<br>860                          | WILLING . |
| WEBS                                                                                                 | 6-16=-131/58, 5-17<br>3-19=-90/71, 7-15=<br>9-13=-87/69, 2-20=                                                                                                                                                                                                                                                                                | =-92/43, 4-18=-87/58<br>-91/42, 8-14=-87/58,<br>-82/35, 10-12=-79/35                                                                                                                                                                                                                            | ,<br>L(                                                                                                                                     | International<br>R802.10.2 a<br>DAD CASE(S)                                                                                                                                                                                                                                                                                                            | Residential Coo<br>nd referenced st<br>Standard                                                                                                                                                                                                                                                                                                                                                                                               | de sections<br>andard AN                                                                                                                                                                                                                                                                 | SR502.11.1 a                                                                                                                                                                                                                                                                                                                      | ind                                                                                   |                       |                             | and the second           |                                 | VEEP. EL                           | nn.       |

March 21,2023

818 Soundside Road Edenton, NC 27932



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | D1    | Monopitch  | 1   | 1   | Job Reference (optional)                |

Run: 8.63 S Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:19:45 ID:VSjNZ1fZJQwtMFcUJ4meYozaJxD-9k4UzySrv?EBI4wZutbiHGVvzbxIOAAPvEULwNzYj3E

| 3-4-4 | 4-8-4 | 6-0-4 | 7-4-4 |
|-------|-------|-------|-------|
| 3-4-4 | 1-4-0 | 1-4-0 | 1-4-0 |



#### 

Scale = 1:40.8

## Plate Offsets (X, Y): [1:0-0-7,0-0-14], [1:0-0-12,1-0-4]

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                                         | (psf)<br>20.0<br>18.7/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                     | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                  | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201    | 5/TPI2014                                                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                   | 0.47<br>0.50<br>0.01                                                                                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                        | in<br>-0.10<br>-0.19<br>0.02                    | (loc)<br>8-9<br>8-9<br>1 | l/defl<br>>903<br>>465<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 31 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>NOTES | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Left: 2x4 SP No.3<br>Structural wood shea<br>6-0-0 oc purlins, exo<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 1=319/0-3<br>Max Horiz 1=61 (LC<br>Max Uplift 1=c-21 (LC<br>Max Grav 1=330 (LC<br>(lb) - Max. Comp./Max<br>(lb) or less except with | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 or<br>8-8, 6=238/0-1-8<br>15)<br>: 12), 6=-24 (LC 16)<br>C 2), 6=-24 (LC 23)<br>ax. Ten All forces<br>hen shown. | 6)<br>7)<br>8)<br>c<br>10<br>11<br>250 12 | Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>Bearing at jo<br>using ANSI/<br>designer sho<br>0) Provide mec<br>bearing plate<br>1 and 24 lb u<br>2) This truss is<br>International<br>R802.10.2 a | spaced at 0-0-0<br>as been designe<br>ad nonconcurrer<br>has been design<br>m chord in all arr<br>oy 2-00-00 wide<br>yy other membe<br>iint(s) 6 consider<br>TPI 1 angle to gr<br>ould verify capac<br>thanical connect<br>e at joint(s) 6.<br>thanical connect<br>e capable of with<br>uplift at joint 6.<br>designed in acc<br>Residential Coo<br>nd referenced st | o oc.<br>d for a 10.0<br>ht with any<br>hed for a live<br>eas where<br>will fit betw<br>rs.<br>rs parallel t<br>rain formula<br>city of beari-<br>cion (by other<br>heranding 2<br>cordance wid<br>de sections<br>tandard AN | ) psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>o grain value<br>a. Building<br>ng surface.<br>ers) of truss<br>1 lb uplift at j<br>th the 2015<br>R502.11.1 a<br>ISI/TPI 1. | ads.<br>Opsf<br>rom<br>to<br>to<br>joint<br>and |                          |                               |                          |                                 |                                    |  |
| 1) Wind: ASC                                                                                                           | CE 7-10; Vult=115mph                                                                                                                                                                                                                                                                                   | (3-second gust)                                                                                                                                                                     | LC                                        | DAD CASE(S)                                                                                                                                                                                                                                                                 | Standard                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                 |                          |                               |                          |                                 |                                    |  |

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 5) Unbalanced snow loads have been considered for this design.

SEAL 041860

March 21,2023

Page: 1



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | D2    | Monopitch  | 9   | 1   | T30100021<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:58 

Page: 1



Scale = 1:25

| Plate Offsets (                                                                                                                                                                                                                                                                        | (X, Y): [1:0-0-7,0-0-14                                                                                                                                                                                                                                                                                                                                                                                                 | ], [1:0-2-4,Edge]                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                                                                                                                                                                         |                                                          |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL                                                                                                                                                                                                                                 | (psf)<br>20.0<br>18.7/20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                           | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>4 Matrix-MP                                                                                                                                                                                                                                                                                                                                 | 0.64<br>0.46<br>0.00                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                | in<br>-0.07<br>-0.16<br>0.02                             | (loc)<br>3-8<br>3-8<br>1 | l/defl<br>>999<br>>541<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20                                    | <b>GRIP</b><br>244/190                    |
| BCDL                                                                                                                                                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                                                                                                                                                                         |                                                          |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 26 lb                                     | FT = 20%                                  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                    | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Left: 2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>(size) 1=0-3-8, 3<br>Max Horiz 1=61 (LC<br>Max Uplift 1=-21 (LC                                                                                                                                                                                                 | athing directly appli<br>cept end verticals.<br>applied or 10-0-0 o<br>3=0-1-8<br>15)<br>2 12), 3=-24 (LC 16)                                                                                                                                                                                                                                | 6) * This ti<br>on the I<br>3-06-00<br>chord a<br>7) Bearing<br>using A<br>designe<br>8) Provide<br>bearing<br>1 and 2<br>10) This tru<br>Internal                                                  | uss has been designe<br>pottom chord in all area<br>tall by 2-00-00 wide w<br>nd any other members<br>at joint(s) 3 considers<br>NSI/TPI 1 angle to gra<br>re should verify capacit<br>mechanical connectic<br>plate at joint(s) 3.<br>mechanical connectic<br>plate capable of withs<br>4 lb uplift at joint 3.<br>ss is designed in acco<br>ional Residential Code | d for a liv<br>as where<br>vill fit bety<br>s parallel<br>in formul<br>y of bear<br>on (by oth<br>tanding 2<br>rdance we<br>e sections | re load of 20.<br>a rectangle<br>ween the bott<br>to grain value<br>a. Building<br>ing surface.<br>iers) of truss<br>21 lb uplift at j<br>ith the 2015<br>s R502.11.1 a | Opsf<br>om<br>to<br>to<br>ioint                          |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                           |
| FORCES                                                                                                                                                                                                                                                                                 | Max Grav 1=330 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=-62/45, 2-3=-18                                                                                                                                                                                                                                                                                                                                              | 0/89                                                                                                                                                                                                                                                                                                                                         | R802.1<br>LOAD CAS                                                                                                                                                                                  | 0.2 and referenced sta<br>E(S) Standard                                                                                                                                                                                                                                                                                                                              | Indard Al                                                                                                                              | NSI/TPI 1.                                                                                                                                                              |                                                          |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                           |
| BOT CHORD                                                                                                                                                                                                                                                                              | 1-3=-117/96                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                                                                                                                                                                         |                                                          |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                           |
| <ol> <li>Wind: ASt<br/>Vasd=91n<br/>II; Exp B;<br/>and C-C E<br/>exposed ;<br/>members<br/>Lumber D</li> <li>TCLL: AS<br/>DOL=1.15<br/>snow; Ps<br/>DOL=1.00<br/>Unobstruc</li> <li>Roof desig<br/>slope.</li> <li>Unbalancı<br/>design.</li> <li>This truss<br/>chord live</li> </ol> | CE 7-10; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>Exterior (2) zone; cantil<br>end vertical left and rig<br>and forces & MWFRS<br>IOL=1.60 plate grip DO<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.00); Pf=<br>:=18.7 psf (roof snow: L<br>D); Category II; Exp B; I<br>cted slippery surface<br>gn snow load has been<br>ed snow loads have be<br>has been designed for<br>load nonconcurrent wi | (3-second gust)<br>DL=6.0psf; h=30ft; (<br>welope) exterior zor<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown<br>DL=1.33<br>roof live load: Lumb<br>20.0 psf (flat roof<br>mber DOL=.115 F<br>Fully Exp.; Ct=1.10;<br>n reduced to account<br>een considered for the<br>r a 10.0 psf bottom<br>th any other live load | Cat.<br>ne<br>;<br>er<br>Plate<br>t for<br>nis<br>ds.                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                                                                                                                                                                         |                                                          |                          |                               | and an and a state of the state | SE/<br>0418                                       | AROLINA<br>AL<br>360<br>VEER EL MINING    |
| WARN<br>Design v<br>a truss sy<br>building o<br>is always<br>fabricatio<br>Safety In                                                                                                                                                                                                   | NING - Verify design paramete<br>alid for use only with MiTeKe<br>system. Before use, the buildi<br>design. Bracing indicated is to<br>required for stability and to p<br>n, storage, delivery, erection<br>nformation available from T                                                                                                                                                                                 | ers and READ NOTES ON<br>o connectors. This design<br>ng designer must verify th<br>to prevent buckling of ind<br>prevent collapse with pos<br>and bracing of trusses ai<br>russ Plate Institute, 2670                                                                                                                                       | THIS AND INCLUDED MI<br>is based only upon param<br>e applicability of design p<br>ividual truss web and/or cl<br>sible personal injury and p<br>ind truss systems, see<br>Crain Highway, Suite 203 | TEK REFERENCE PAGE MII<br>letters shown, and is for an ir<br>arameters and properly inco-<br>nord members only. Addition<br>roperty damage. For gener-<br><b>ANSJ/TPH Quality Cr</b><br>Waldorf, MD 20601                                                                                                                                                            | I-7473 rev. 5<br>Individual bu<br>rporate this<br>nal tempora<br>al guidance<br><i>iteria, DSB</i>                                     | 5/19/2020 BEFOR<br>ilding componen<br>design into the c<br>ry and permaner<br>regarding the<br>-89 and BCSI B                                                           | E USE.<br>t, not<br>overall<br>nt bracing<br>uilding Cor | nponent                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT ENGINEER<br>B18 Soundside R<br>Edenton, NC 275 | NG BY<br>A Mitek Affiliate<br>Road<br>332 |

| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | D3    | Monopitch  | 5   | 1   | T30100022<br>Job Reference (optional)   |

5-10-8

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

1-11-8

-5-14

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:58 ID:p42ZWNLxWQzA5IkuiAZO1ozaJgr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🛛 12 3 ∟ 2 8 0 3x8 II 1-8-0 3

2x4 II



1

0



<u></u>]-3-8

Scale = 1:23.6

Plate Offsets (X, Y): [1:0-0-6,0-0-14], [1:0-3-8,Edge]

| Loading                                                                   | (psf)                                                                                                                             | Spacing                                                                               | 2-0-0             |                                                                                                                                                                                                                                                                                                                                     | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | DEFL                                                                                                              | in                 | (loc) | l/defl | L/d | PLATES        | GRIP     |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                               | 20.0                                                                                                                              | Plate Grip DOL                                                                        | 1.00              |                                                                                                                                                                                                                                                                                                                                     | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30                                                                                                            | Vert(LL)                                                                                                          | 0.04               | 3-5   | >999   | 240 | MT20          | 244/190  |
| Snow (Ps/Pf)                                                              | 18.7/20.0                                                                                                                         | Lumber DOL                                                                            | 1.15              |                                                                                                                                                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.22                                                                                                            | Vert(CT)                                                                                                          | -0.04              | 3-5   | >999   | 180 |               |          |
| TCDL                                                                      | 10.0                                                                                                                              | Rep Stress Incr                                                                       | YES               |                                                                                                                                                                                                                                                                                                                                     | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                            | Horz(CT)                                                                                                          | 0.00               | 3     | n/a    | n/a |               |          |
| BCLL                                                                      | 0.0*                                                                                                                              | Code                                                                                  | IRC201            | 5/TPI2014                                                                                                                                                                                                                                                                                                                           | Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                   |                    |       |        |     |               |          |
| BCDL                                                                      | 10.0                                                                                                                              |                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                   |                    |       |        |     | Weight: 21 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3 *Except<br>Left: 2x4 SP No.3<br>Structural wood shea<br>5-9-0 oc purlins, exc           | * 2-3:2x4 SP No.2<br>thing directly applie<br>ept end verticals.                      | 5<br>6<br>ed or 7 | This truss ha<br>chord live lo<br>* This truss<br>on the botto<br>3-06-00 tall<br>chord and a<br>Bearing at jo<br>using ANSI/                                                                                                                                                                                                       | as been designed<br>ad nonconcurren<br>has been design<br>m chord in all are<br>by 2-00-00 wide<br>ny other member<br>pint(s) 3 consider<br>TPI 1 angle to gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d for a 10.0<br>at with any<br>ed for a liv<br>eas where<br>will fit betw<br>rs.<br>s parallel t<br>ain formula | ) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>o grain value<br>a. Building | ads.<br>Opsf<br>om |       |        |     |               |          |
| BOT CHORD                                                                 | Rigid ceiling directly a<br>bracing.<br>(size) 1=0-3-8, 3:<br>Max Horiz 1=46 (LC 1<br>Max Uplift 1=-47 (LC<br>Max Grav 1=208 (I C | applied or 10-0-0 o<br>=0-1-8<br>15)<br>12), 3=-50 (LC 12)<br>2) 3=178 (I C 2)        | c 8               | <ul> <li>designer should verify capacity of bearing surface.</li> <li>8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.</li> <li>9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 1 and 50 lb uplift at joint 3.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                   |                    |       |        |     |               |          |
| FORCES                                                                    | (lb) - Maximum Comp<br>Tension                                                                                                    | pression/Maximum                                                                      | 1                 | Internationa<br>R802 10 2 a                                                                                                                                                                                                                                                                                                         | designed in account of the sidential Codure of the sidential Codure of the sidential Codure of the siden of t | ordance wi<br>le sections<br>andard AN                                                                          | th the 2015<br>R502.11.1 a<br>ISI/TPI 1                                                                           | and                |       |        |     |               |          |
| TOP CHORD                                                                 | 1-2=-48/47, 2-3=-121                                                                                                              | /83                                                                                   | 1                 | DAD CASE(S)                                                                                                                                                                                                                                                                                                                         | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | andara                                                                                                          | 0,1111                                                                                                            |                    |       |        |     |               |          |
| BOT CHORD                                                                 | 1-3=-51/56                                                                                                                        |                                                                                       | _                 | 5/12 5/10E(0)                                                                                                                                                                                                                                                                                                                       | etandulu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                                                                                                   |                    |       |        |     |               |          |
| NOTES                                                                     |                                                                                                                                   |                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                   |                    |       |        |     |               |          |
| <ol> <li>Wind: ASC<br/>Vasd=91m<br/>II; Exp B; I<br/>and C-C E</li> </ol> | CE 7-10; Vult=115mph (<br>nph; TCDL=6.0psf; BCE<br>Enclosed; MWFRS (env<br>Exterior (2) zone; cantile                             | (3-second gust)<br>DL=6.0psf; h=30ft; (<br>velope) exterior zor<br>ver left and right | Cat.<br>ne        |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                   |                    |       |        |     | IN ATH C      | ROUT     |

exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2)

snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

3) Roof design snow load has been reduced to account for slope.

4) Unbalanced snow loads have been considered for this design.



March 21,2023



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | D4    | Monopitch  | 1   | 1   | T30100023<br>Job Reference (optional)   |

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:59 ID:p42ZWNLxWQzA5IkuiAZO1ozaJgr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

| 1 | 3-2-8 | 4-6-8 | 5-10-8 |
|---|-------|-------|--------|
| Γ | 3-2-8 | 1-4-0 | 1-4-0  |





Scale = 1:38.4

| Plate Offsets                                                                                                                                   | (X, Y): [1:0-0-6,0-0-14]                                                                                                                                                                                                                                                                                                                                                     | ], [1:0-3-8,Edge]                                                                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |                                                |                          |                               |                          |                                 |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                  | (psf)<br>20.0<br>18.7/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                              | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                    | 0.23<br>0.25<br>0.01                                                                                                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                     | in<br>0.04<br>-0.05<br>0.00                    | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 24 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3 *Excep<br>Left: 2x4 SP No.3<br>Structural wood sheat<br>5-9-0 oc purlins, exa<br>Rigid ceiling directly<br>bracing.<br>(size) 1=0-3-8, 5<br>Max Horiz 1=46 (LC<br>Max Uplift 1=-47 (LC<br>Max Grav 1=208 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=-49/29, 2-3=-43,<br>4-5=-97/78<br>1-7=-45/39, 6-7=-23,<br>2-7=-30/24, 3-6=-29 | t* 4-5:2x4 SP No.2<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 or<br>5=0-1-8<br>15)<br>2 12), 5=-50 (LC 12)<br>2 2), 5=178 (LC 2)<br>pression/Maximum<br>/31, 3-4=-38/33,<br>/25, 5-6=-23/25 | 4<br>5<br>6<br>9<br>9<br>1<br>1        | <ul> <li>Unbalanced design.</li> <li>This truss ha chord live loa</li> <li>This truss for the bottor 3-06-00 tall b chord and ar</li> <li>Bearing at jo using ANSI/1 designer shot</li> <li>Provide mec bearing plate</li> <li>Provide mod bearing plate</li> <li>1 and 50 lb u</li> <li>This truss is International R802.10.2 ar</li> <li>OAD CASE(S)</li> </ul> | snow loads hav<br>as been designe<br>ad nonconcurrer<br>has been designe<br>of chord in all ar<br>y 2-00-00 wide<br>by other membe<br>int(s) 5 conside<br>(FPI 1 angle to g<br>uld verify capac<br>hanical connect<br>at joint(s) 5.<br>hanical connect<br>capable of with<br>uplift at joint 5.<br>designed in acc<br>Residential Con<br>nd referenced s<br>Standard | re been cor<br>ad for a 10.0<br>nt with any<br>hed for a liv<br>eas where<br>will fit betw<br>ers.<br>rs parallel t<br>rain formula<br>city of beari<br>tion (by oth-<br>tion (by oth-<br>nstanding 4<br>cordance wi<br>de sections<br>tandard AN | Isidered for t<br>opsf bottom<br>other live loze<br>e load of 20.<br>a rectangle<br>veen the bott<br>o grain value<br>a. Building<br>ng surface.<br>ers) of truss<br>of truss<br>7 lb uplift at<br>ith the 2015<br>R502.11.1 a<br>ISI/TPI 1. | his<br>ads.<br>Opsf<br>om<br>to<br>to<br>joint |                          |                               |                          |                                 |                                    |
| NOTES<br>1) Wind: AS(<br>Vasd=91r<br>II; Exp B;<br>and C-C E<br>exposed ;<br>and right of                                                       | CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (en<br>Exterior (2) zone; cantili<br>end vertical left and rig<br>exposed;C-C for memb                                                                                                                                                                                                                       | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>ivelope) exterior zon<br>ever left and right<br>ght exposed; porch lu<br>ers and forces &                                                                                   | Cat.<br>e<br>eft                       |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |                                                |                          |                               | and a second             | OPTH C                          | ROLING                             |

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof
- snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.



March 21,2023

Page: 1



| Job     | Truss | Truss Type                | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|---------------------------|-----|-----|-----------------------------------------|
| 3466725 | D6    | Monopitch Supported Gable | 4   | 1   | T30100024<br>Job Reference (optional)   |

6-8-0 6-8-0

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:59 ID:f50P4wjKBfGCgul2?enQAfzaJrz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f









Scale = 1:34.7

| Loading                                                                                                                                  | (psf)                                                                                                                                                                                                                                                                                                                         | Spacing                                                                                                                                                                            | 2-0-0                                  |                                                                                                                                                                                                                                                                                                                                                                    | CSI                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                           | DEFL                                                                                                                                                                                                                                                                   | in                                                            | (loc) | l/defl | L/d | PLATES        | GRIP     |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                          | Plate Grip DOL                                                                                                                                                                     | 1.00                                   |                                                                                                                                                                                                                                                                                                                                                                    | TC                                                                                                                                                                                                                                                                                                                                                                                       | 0.83                                                                                                                                                                                                                      | Vert(LL)                                                                                                                                                                                                                                                               | -0.10                                                         | 4-5   | >772   | 240 | MT20          | 244/190  |
| Snow (Ps/Pf)                                                                                                                             | 18.7/20.0                                                                                                                                                                                                                                                                                                                     | Lumber DOL                                                                                                                                                                         | 1.15                                   |                                                                                                                                                                                                                                                                                                                                                                    | BC                                                                                                                                                                                                                                                                                                                                                                                       | 0.53                                                                                                                                                                                                                      | Vert(CT)                                                                                                                                                                                                                                                               | -0.20                                                         | 4-5   | >386   | 180 |               |          |
| TCDL                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                          | Rep Stress Incr                                                                                                                                                                    | YES                                    |                                                                                                                                                                                                                                                                                                                                                                    | WB                                                                                                                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                      | Horz(CT)                                                                                                                                                                                                                                                               | 0.00                                                          | 4     | n/a    | n/a |               |          |
| BCLL                                                                                                                                     | 0.0*                                                                                                                                                                                                                                                                                                                          | Code                                                                                                                                                                               | IRC201                                 | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                          | Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |                                                               |       |        |     |               |          |
| BCDL                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |                                                               |       |        |     | Weight: 38 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 4=0-1-8, §<br>Max Horiz 5=115 (LC<br>Max Grav 4=267 (LC<br>Max Grav 4=267 (LC<br>(lb) - Maximum Com<br>Tension<br>2-5=-228/132, 1-2=0<br>3-4=-203/117<br>4-5=-181/139 | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>5=0-1-8<br>C 13)<br>C 16), 5=-35 (LC 12)<br>C 23), 5=292 (LC 2)<br>pression/Maximum<br>)/14, 2-3=-80/67, | 5<br>6<br>7<br>dor<br>8<br>9<br>1<br>1 | <ul> <li>This truss ha<br/>load of 12.0<br/>overhangs n</li> <li>This truss ha<br/>chord live loa</li> <li>This truss h<br/>on the bottor<br/>3-06-00 tall t<br/>chord and ar</li> <li>Bearing at jo<br/>using ANSI/<br/>designer sho</li> <li>Provide mec<br/>bearing plate<br/>4 and 35 lb u</li> <li>This truss is<br/>International<br/>8802 10 2 a</li> </ul> | as been designed<br>psf or 2.00 times<br>on-concurrent wit<br>as been designed<br>ad nonconcurrent<br>has been designe<br>m chord in all area<br>by 2-00-00 wide w<br>ny other members<br>int(s) 4, 5 consist<br>hanical connectio<br>e at joint(s) 4, 5.<br>hanical connectio<br>e capable of withs<br>uplift at joint 5.<br>designed in accoor<br>Residential Code<br>d referenced sta | for great<br>flat roof li<br>h other lin<br>for a 10.0<br>with any<br>d for a liv<br>as where<br>rill fit betv<br>ars paralli<br>in formula<br>y of bear<br>n (by oth<br>tanding 2<br>rdance w<br>s sections<br>nodard AD | er of min roof<br>bad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live load<br>e load of 20.1<br>a rectangle<br>veen the bott<br>el to grain val<br>a. Building<br>ing surface.<br>ers) of truss 1<br>crs) of truss 1<br>ith the 2015<br>s R502.11.1 a<br>SU/TPI 1 | live<br>sf on<br>ds.<br>Dpsf<br>om<br>ue<br>o<br>o<br>o<br>nt |       |        |     |               |          |
| WEBS                                                                                                                                     | 2-4=-104/153                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    | L                                      | OAD CASE(S)                                                                                                                                                                                                                                                                                                                                                        | Standard                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           | NOI/1111.                                                                                                                                                                                                                                                              |                                                               |       |        |     |               |          |
| NOTES                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                        | .,                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |                                                               |       |        |     |               |          |
| <ol> <li>Wind: ASC<br/>Vasd=91m</li> </ol>                                                                                               | CE 7-10; Vult=115mph<br>ph; TCDL=6.0psf; BC                                                                                                                                                                                                                                                                                   | (3-second gust)<br>DL=6.0psf; h=30ft; C                                                                                                                                            | at.                                    |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |                                                               |       |        |     | unin C        | AD       |

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

- Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate 2) DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.

C SEAL 041860

March 21,2023



| Job     | Truss | Truss Type             | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------------------|-----|-----|-----------------------------------------|
| 3466725 | E1    | Common Supported Gable | 1   | 1   | T30100025<br>Job Reference (optional)   |

Run: 8.63 S Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:21:02 ID:zyj2xFpsHhoDzrlOa9GaATza6SZ-LxLLYzPPJGBzkDTl0zWE\_wGWNR?xOuM14170ClzYj2?

Page: 1





Scale = 1:34.7

3-2-13

| Loading<br>TCLL (roof)<br>Snow (Ps/Pi<br>TCDL<br>BCLL<br>BCDL                                    | (psf)<br>20.0<br>f) 6.8/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                              | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201                               | 5/TPI2014                                                                                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                 | 0.06<br>0.07<br>0.03                                                                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                         | in<br>0.00<br>0.00<br>0.00                            | (loc)<br>10-11<br>11-12<br>10 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 66 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHOR<br>BOT CHOR<br>OTHERS<br>BRACING<br>TOP CHOR<br>BOT CHOR<br>REACTION:<br>(Ib) | <ul> <li>D 2x4 SP No.2</li> <li>D 2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>D Structural wood she<br/>10-0-0 oc purlins.</li> <li>D Rigid ceiling directly<br/>bracing.</li> <li>S All bearings 14-7-0. e</li> <li>10 Max Horiz 18=-36 (L<br/>Max Uplift All uplift 1<br/>10, 11, 12<br/>Max Grav All reactic<br/>(s) 10, 11<br/>19<br/>(lb) - Max. Comp./M<br/>(lb) or less except w</li> </ul> | athing directly appli<br>applied or 6-0-0 oc<br>xcept 10=0-3-8, 19=<br>C 17)<br>00 (lb) or less at joi<br>2, 13, 15, 17, 18, 19<br>ons 250 (lb) or less a<br>, 12, 13, 14, 15, 17,<br>ax. Ten All forces<br>hen shown. | 5<br>6<br>7<br>8<br>9<br>=0-3-8<br>1<br>at joint 1<br>18, 1<br>18, 1 | <ul> <li>Roof design<br/>slope.</li> <li>Unbalanced<br/>design.</li> <li>Gable studs</li> <li>This truss ha<br/>chord live lo.</li> <li>* This truss la<br/>chord and an<br/>0. Provide mec<br/>bearing plate<br/>joint(s) 15, 1</li> <li>This truss is<br/>International<br/>R802.10.2 a</li> </ul> | snow load has b<br>snow loads have<br>spaced at 2-0-0<br>as been designed<br>ad nonconcurren<br>has been designed<br>m chord in all are<br>by 2-00-00 wide<br>thanical connecti<br>e capable of with<br>7, 18, 13, 12, 11<br>designed in accor<br>Residential Cod<br>nd referenced sta<br>Standard | been reduc<br>e been cor<br>oc.<br>d for a 10.0<br>t with any<br>ed for a liv<br>ass where<br>will fit betw<br>'s.<br>on (by oth<br>standing 1<br>, 10, 19.<br>ordance w<br>le sections<br>andard AN | ed to accour<br>asidered for t<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>ers) of truss t<br>00 lb uplift at<br>the 2015<br>R502.11.1 a<br>(SI/TPI 1. | nt for<br>his<br>ads.<br>Opsf<br>com<br>t<br>t<br>and |                               |                               |                          | -                               |                                    |
| NOTES<br>1) Unbalar<br>this desi<br>2) Wind: A<br>Vasd=9<br>II; Exp E<br>and C-C<br>exposed      | iced roof live loads have<br>ign.<br>SCE 7-10; Vult=115mph<br>1mph; TCDL=6.0psf; BC<br>8, Enclosed; MWFRS (er<br>Exterior (2) zone; cantil<br>1; end vertical left and riu                                                                                                                                                                                                                       | been considered fo<br>(3-second gust)<br>DL=6.0psf; h=30ft;<br>ivelope) exterior zon<br>ever left and right<br>ght exposed;C-C for                                                                                     | or<br>Cat.<br>ne<br>r                                                |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                                                                                  |                                                       |                               |                               |                          | NHTH C                          |                                    |

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
  Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=6.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



SEAL

041860

Thomas and the second

March 21,2023

"nummer of the

| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | E2    | Common     | 1   | 1   | T30100026<br>Job Reference (optional)   |

 1
 Job Reference (optional)

 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:00
 Page: 1

 ID:GZA6zS6wd3qprX70\_ChD8Xza6SB-RfC?Psb70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 Page: 1



Scale = 1:32.3

## Plate Offsets (X, Y): [1:0-2-5,Edge], [3:0-2-5,Edge], [4:0-3-0,0-3-0]

| Loading                              | (psf)                     | Spacing                | 2-0-0            |               | CSI                 |              | DEFL             | in    | (loc) | l/defl | L/d | PLATES                                    | GRIP       |           |
|--------------------------------------|---------------------------|------------------------|------------------|---------------|---------------------|--------------|------------------|-------|-------|--------|-----|-------------------------------------------|------------|-----------|
| TCLL (roof)                          | 20.0                      | Plate Grip DOL         | 1.00             |               | TC                  | 0.59         | Vert(LL)         | -0.07 | 4-14  | >999   | 240 | MT20                                      | 244/190    |           |
| Snow (Ps/Pf)                         | 17.2/20.0                 | Lumber DOL             | 1.15             |               | BC                  | 0.43         | Vert(CT)         | -0.11 | 4-14  | >999   | 180 | MT20HS                                    | 187/143    |           |
| TCDL                                 | 10.0                      | Rep Stress Incr        | YES              |               | WB                  | 0.11         | Horz(CT)         | 0.02  | 3     | n/a    | n/a |                                           |            |           |
| BCLL                                 | 0.0*                      | Code                   | IRC2015/TF       | PI2014        | Matrix-MS           |              |                  |       |       |        |     |                                           |            |           |
| BCDL                                 | 10.0                      |                        |                  |               |                     |              |                  |       |       |        |     | Weight: 61 lb                             | FT = 20%   |           |
| LUMBER                               |                           |                        | 5) U             | nbalanced     | snow loads have     | been cor     | nsidered for t   | his   |       |        |     |                                           |            |           |
| TOP CHORD                            | 2x4 SP No.2               |                        | de               | esign.        |                     |              |                  |       |       |        |     |                                           |            |           |
| BOT CHORD                            | 2x4 SP No.2               |                        | 6) A             | Il plates are | MT20 plates unle    | ess other    | wise indicate    | ed.   |       |        |     |                                           |            |           |
| WEBS                                 | 2x4 SP No.3               |                        | 7) TI            | his truss ha  | s been designed     | for a 10.0   | ) psf bottom     |       |       |        |     |                                           |            |           |
| WEDGE                                | Left: 2x6 SP No.2         |                        | ch               | hord live loa | d nonconcurrent     | with any     | other live loa   | ads.  |       |        |     |                                           |            |           |
|                                      | Right: 2x6 SP No.2        |                        | 8) *             | This truss h  | as been designe     | d for a liv  | e load of 20.    | 0psf  |       |        |     |                                           |            |           |
| BRACING                              |                           |                        | 0                | n the botton  | n chord in all area | as where     | a rectangle      |       |       |        |     |                                           |            |           |
| TOP CHORD                            | Structural wood she       | athing directly applie | dor <sup>3</sup> | -06-00 tall b | y 2-00-00 wide w    | ill fit betv | veen the bott    | om    |       |        |     |                                           |            |           |
|                                      | 5-1-1 oc purlins.         |                        | ch               | hord and an   | y other members     |              |                  |       |       |        |     |                                           |            |           |
| BOT CHORD                            | Rigid ceiling directly    | applied or 10-0-0 or   | ; 9) P           | rovide mech   | nanical connectio   | n (by oth    | ers) of truss    | to    |       |        |     |                                           |            |           |
|                                      | bracing.                  |                        | De               | earing plate  | capable of withs    | tanding 3    | of its uplift at | joint |       |        |     |                                           |            |           |
| REACTIONS                            | (size) 1=0-3-8, 3         | 3=0-3-8                | 10) T            | and 31 lb u   | plift at joint 3.   | danco w      | ith the 2015     |       |       |        |     |                                           |            |           |
|                                      | Max Horiz 1=-36 (LC       | 2 17)                  | 10) In           | ternational   | Residential Code    | sections     | R502 11 1        | and   |       |        |     |                                           |            |           |
|                                      | Max Uplift 1=-31 (LC      | 2 12), 3=-31 (LC 13)   | R                | 802 10 2 ar   | nd referenced sta   | ndard AN     | ISI/TPI 1        |       |       |        |     |                                           |            |           |
|                                      | Max Grav 1=657 (LC        | C 2), 3=657 (LC 2)     |                  | CASE(S)       | Standard            |              |                  |       |       |        |     |                                           |            |           |
| FORCES                               | (lb) - Maximum Com        | pression/Maximum       | 20/12            | 0/102(0)      | olandara            |              |                  |       |       |        |     |                                           |            |           |
|                                      | Tension                   |                        |                  |               |                     |              |                  |       |       |        |     |                                           |            |           |
| TOP CHORD                            | 1-2=-898/134, 2-3=-       | 898/134                |                  |               |                     |              |                  |       |       |        |     |                                           |            |           |
| BOT CHORD                            | 1-3=-59/790               |                        |                  |               |                     |              |                  |       |       |        |     |                                           |            |           |
| WEBS                                 | 2-4=0/276                 |                        |                  |               |                     |              |                  |       |       |        |     |                                           |            |           |
| NOTES                                |                           |                        |                  |               |                     |              |                  |       |       |        |     | minin                                     | 11111      |           |
| 1) Unbalance                         | ed roof live loads have   | been considered for    | •                |               |                     |              |                  |       |       |        |     | "TH 9                                     | ARO        |           |
| this design                          | ן.<br>רב ד 40: עניוג 445  | ( <b>0</b>             |                  |               |                     |              |                  |       |       |        |     |                                           |            | 1,        |
| 2) Wind: ASC                         | JE 7-10; Vult=115mpn      | (3-second gust)        | <b>Net</b>       |               |                     |              |                  |       |       |        | 5   | V. FER                                    | HONEV      | 10        |
|                                      | Enclosed: MW/ERS (or      | DL=6.0psi; n=30ii; C   | -al.             |               |                     |              |                  |       |       |        | 31  | <b>~</b>                                  | 1 4:7      | 3         |
| and C-C E                            | Enclosed, MWERG (el       | ever left and right    | e                |               |                     |              |                  |       |       |        | 2   | · ? )                                     | V X        | 1         |
| exposed .                            | end vertical left and rid | aht exposed C-C for    |                  |               |                     |              |                  |       |       |        | 2   | : CE                                      | AL :       | =         |
| members                              | and forces & MWFRS        | for reactions shown:   |                  |               |                     |              |                  |       |       |        |     | : 31/                                     | <u>-</u> : | =         |
| Lumber D                             | OL=1.60 plate grip DO     | L=1.33                 |                  |               |                     |              |                  |       |       |        | 2   | 0418                                      | 360 🔅      | <b>-</b>  |
| 3) TCLL: AS                          | CE 7-10; Pr=20.0 psf (    | roof live load: Lumbe  | er               |               |                     |              |                  |       |       |        | =   |                                           |            |           |
| DOL=1.15                             | Plate DOL=1.00); Pf=      | 20.0 psf (flat roof    |                  |               |                     |              |                  |       |       |        | 3   | 1. A. |            |           |
| snow); Ps                            | =17.2 psf (roof snow: l   | _umber DOL=1.15 P      | late             |               |                     |              |                  |       |       |        | -   |                                           | IFER. A    | 1         |
| DOL=1.00                             | ); Category II; Exp B; I  | Fully Exp.; Ct=1.10;   |                  |               |                     |              |                  |       |       |        | 1   | 0,                                        | 15.5.6     | 5         |
| Unobstruc                            | ted slippery surface      |                        |                  |               |                     |              |                  |       |       |        |     | 1, OLIN                                   | VELIN      |           |
| <ol> <li>Roof designation</li> </ol> | gn snow load has beer     | reduced to account     | tor              |               |                     |              |                  |       |       |        |     | 11101                                     |            |           |
| siope.                               |                           |                        |                  |               |                     |              |                  |       |       |        |     |                                           | Morch      | 21 2022   |
|                                      |                           |                        |                  |               |                     |              |                  |       |       |        |     |                                           | iviarch    | ∠ i ,∠u23 |



| Job     | Truss | Truss Type   | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|--------------|-----|-----|-----------------------------------------|
| 3466725 | E3    | Roof Special | 3   | 1   | T30100027<br>Job Reference (optional)   |

Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:12:00 ID:WrGN?9duVHFiV8wH?kzIObza6RW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-184/41, 2-3=-1376/142, 3-4=-1378/142, TOP CHORD 4-5=-183/40 BOT CHORD 1-12=-36/69, 11-12=0/0, 10-11=0/0,

Max Grav 6=666 (LC 2), 12=665 (LC 2)

2-9=-66/1307, 4-9=-65/1307, 7-8=0/0, 6-7=0/0, 5-6=-5/67 WEBS 3-9=0/300, 2-11=0/53, 4-7=0/54

#### NOTES

Scale = 1:37.5

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

BRACING

TCLL (roof)

Snow (Ps/Pf)

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=17.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface



March 21,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12 and 42 lb uplift at joint 6.

LOAD CASE(S) Standard

9)

This truss is designed in accordance with the 2015

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

| Job     | Truss | Truss Type                    | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|-------------------------------|-----|-----|-----------------------------------------|
| 3466725 | F1    | Roof Special Structural Gable | 1   | 1   | T30100028<br>Job Reference (optional)   |

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:00 ID:W17CCsODMEafkaoHVawTKnza6C.I-RfC2PsB70Ha3NSaPaal 8w3uITXbGKWrCDoi7.I4z.IC?f

Page: 1

|                 |                                                                                  |                                                                                                       |                                                                                                                          |                 |                                                                                                                        | 12.00001                                                                                                                                                                         | DMEqingori                                                                                               |                                                                                                                                        |          | gi qileoiit  |                                                                                                                | 01010000110420011   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|-----------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                 |                                                                                  | 2-0-4                                                                                                 | 4-0-4 6-0-4                                                                                                              | 8-0-4           | 10-0-4 12                                                                                                              | -0-4 14-0-4 15-                                                                                                                                                                  | <u>-10-8 18</u>                                                                                          | -4-12                                                                                                                                  | 2        | 28-11-6      |                                                                                                                |                     | 31-9-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                 |                                                                                  | 2-0-4                                                                                                 | 2-0-0 2-0-0                                                                                                              | 2-0-0           | 2-0-0 2-                                                                                                               | 1 8 8                                                                                                                                                                            | 10-4 2                                                                                                   | -0-4                                                                                                                                   |          | 0-6-10       |                                                                                                                |                     | 2-9-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                 |                                                                                  |                                                                                                       |                                                                                                                          |                 |                                                                                                                        |                                                                                                                                                                                  |                                                                                                          |                                                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  |                                                                                                       |                                                                                                                          |                 | . 1-                                                                                                                   | 8-8                                                                                                                                                                              | -5-0                                                                                                     |                                                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  |                                                                                                       |                                                                                                                          | 1-8-8           | <br>↓ 1-8-8 ↓                                                                                                          | 2×4 II                                                                                                                                                                           | 5x8 II                                                                                                   |                                                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| -               | Г                                                                                |                                                                                                       | 1-8-8                                                                                                                    | 1               | 12 244 1                                                                                                               | 3x4 ≈ 2x4 II<br>9                                                                                                                                                                |                                                                                                          | 3x6 II                                                                                                                                 | ~        |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  |                                                                                                       |                                                                                                                          | 4               | 2,74 1                                                                                                                 | 7 8                                                                                                                                                                              |                                                                                                          |                                                                                                                                        | 12       |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  |                                                                                                       | 2                                                                                                                        | 2<br>2x4 u F    | 2x4 II 635                                                                                                             |                                                                                                                                                                                  |                                                                                                          |                                                                                                                                        | 36       |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 8-<br>6-        |                                                                                  |                                                                                                       | 2x4 II 4                                                                                                                 |                 |                                                                                                                        | ဆု ကို                                                                                                                                                                           |                                                                                                          |                                                                                                                                        |          | $\geq$       |                                                                                                                | 2x4 II              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Q               |                                                                                  | 2                                                                                                     | 2x4 II 3                                                                                                                 | 8               | -9<br>-9<br>-9                                                                                                         | 4-7                                                                                                                                                                              |                                                                                                          |                                                                                                                                        |          |              |                                                                                                                | 13                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  | 1                                                                                                     |                                                                                                                          |                 | 3 3                                                                                                                    |                                                                                                                                                                                  |                                                                                                          | 28 0                                                                                                                                   |          |              |                                                                                                                |                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| -               | LĕŢ                                                                              |                                                                                                       |                                                                                                                          |                 |                                                                                                                        |                                                                                                                                                                                  |                                                                                                          | 18 <del>.</del>                                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 | C                                                                                | 3x4= 2                                                                                                | 27 26 2                                                                                                                  | 2524 2          | ××××××××××××××××××××××××××××××××××××××                                                                                 | 21 20                                                                                                                                                                            | ××××××××××××××××××××××××××××××××××××××                                                                   | 4x6 =                                                                                                                                  |          |              |                                                                                                                | 1716                | ⊠<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                 |                                                                                  | 2                                                                                                     | 2x4 II 2x4 II 2                                                                                                          | 2x4 II 2        | 2x4 II 2x4 II                                                                                                          | 2x4 II 2x4 II                                                                                                                                                                    | 3x4=                                                                                                     | 2x4 II                                                                                                                                 |          |              |                                                                                                                | 2X4 II              | 3x4=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                 |                                                                                  |                                                                                                       |                                                                                                                          | 3x4 =           |                                                                                                                        |                                                                                                                                                                                  |                                                                                                          | 2x4=                                                                                                                                   | -        |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  | 0-11-0                                                                                                | 1<br>1 4-0-4 1 6-0-4                                                                                                     | 8-0-4           | 10-0-4 1 12                                                                                                            | -0-4 14-0-4 15-                                                                                                                                                                  | 16-4-12<br>8-12                                                                                          | 8-6-8                                                                                                                                  | 2        | 28-6-8       |                                                                                                                | -30<br>28-11-6      | .10-0<br>31-9-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  | 0-11-0                                                                                                | 2-0-0 2-0-0                                                                                                              | 2-0-0           | 2-0-0 2-                                                                                                               | 0-0 2-0-0 1-                                                                                                                                                                     | 8-80-8-02                                                                                                | 2-1-12                                                                                                                                 | 1        | 0-0-0        |                                                                                                                | 0-4-14              | 0-11-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Scale = 1:60.5  |                                                                                  | 1-1-4                                                                                                 | 1                                                                                                                        |                 |                                                                                                                        |                                                                                                                                                                                  |                                                                                                          |                                                                                                                                        |          |              |                                                                                                                | 1-1                 | 0-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _  |
| Plate Offsets ( | X, Y): [28:                                                                      | 0-2-3,Edge                                                                                            |                                                                                                                          |                 |                                                                                                                        |                                                                                                                                                                                  |                                                                                                          |                                                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Loading         |                                                                                  | (psf)                                                                                                 | Spacing                                                                                                                  | 2-0-0           |                                                                                                                        | CSI                                                                                                                                                                              | 0.02                                                                                                     | DEFL                                                                                                                                   | in (loc) | l/defl       | L/d                                                                                                            | PLATES              | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Snow (Ps/Pf)    | 1                                                                                | 7.2/20.0                                                                                              | Lumber DOL                                                                                                               | 1.00            |                                                                                                                        | BC                                                                                                                                                                               | 0.93                                                                                                     | Vert(CT) -0                                                                                                                            | .24 17   | >759<br>>494 | 240<br>180                                                                                                     | WI120               | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| TCDL            |                                                                                  | 10.0                                                                                                  | Rep Stress Incr                                                                                                          | YES             | 015/TDI2014                                                                                                            | WB<br>Matrix MS                                                                                                                                                                  | 0.38                                                                                                     | Horz(CT) 0                                                                                                                             | .14 15   | n/a          | n/a                                                                                                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| BCDL            |                                                                                  | 10.0                                                                                                  | Code                                                                                                                     | INCZ            | J15/1F12014                                                                                                            | Wathx-WiS                                                                                                                                                                        |                                                                                                          |                                                                                                                                        |          |              |                                                                                                                | Weight: 165 lb      | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| LUMBER          |                                                                                  |                                                                                                       |                                                                                                                          |                 | WEBS                                                                                                                   | 10-19=-650/107                                                                                                                                                                   | , 19-28=-5                                                                                               | 02/181,                                                                                                                                | LOAD     | CASE(S)      | Star                                                                                                           | ndard               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| TOP CHORD       | 2x4 SP N                                                                         | lo.2 *Excep                                                                                           | ot* 10-12,12-14:2x6                                                                                                      | SP              |                                                                                                                        | 10-28=-277/763                                                                                                                                                                   | , 13-16=0/-<br>-22=-127/5                                                                                | 45, 9-20=-179/59,<br>0 5-23=-125/53                                                                                                    | ,        |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| BOT CHORD       | 2x4 SP N                                                                         | lo.2 *Excep                                                                                           | ot* 18-11:2x4 SP No                                                                                                      | o.3             |                                                                                                                        | 4-25=-120/39, 3-                                                                                                                                                                 | -26=-211/9                                                                                               | 5, 2-27=-131/101                                                                                                                       | I        |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| WEBS<br>BRACING | 2x4 SP N                                                                         | lo.3                                                                                                  |                                                                                                                          |                 | NOTES<br>1) Unbalance                                                                                                  | ed roof live loads h                                                                                                                                                             | ave been (                                                                                               | considered for                                                                                                                         |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| TOP CHORD       | Structura                                                                        | I wood she                                                                                            | athing directly appli                                                                                                    | ied or          | this design                                                                                                            |                                                                                                                                                                                  |                                                                                                          | ()                                                                                                                                     |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| BOT CHORD       | 2-2-0 oc<br>Rigid ceil                                                           | purlins.<br>ling directly                                                                             | applied or 6-0-0 oc                                                                                                      | ;               | <li>Z) Wind: ASC<br/>Vasd=91n</li>                                                                                     | ph; TCDL=6.0psf;                                                                                                                                                                 | mpn (3-sec<br>; BCDL=6.0                                                                                 | ond gust)<br>Opsf; h=30ft; Cat.                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| DEACTIONS       | bracing.                                                                         | 15-0.2.9                                                                                              | 10 15 7 9 20 15                                                                                                          | 7 0             | II; Exp B; I<br>and C-C F                                                                                              | Enclosed; MWFRS                                                                                                                                                                  | 6 (envelope<br>antilever le                                                                              | e) exterior zone                                                                                                                       |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| REACTIONS       | (SIZE)                                                                           | 15=0-3-8,<br>21=15-7-8                                                                                | 8, 22=15-7-8, 20=15-<br>8, 22=15-7-8, 23=15                                                                              | -7-8,<br>5-7-8, | exposed ;                                                                                                              | end vertical left an                                                                                                                                                             | nd right exp                                                                                             | osed;C-C for                                                                                                                           |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 | Max Horiz                                                                        | 25=15-7-8<br>27=-72 (L                                                                                | 8, 26=15-7-8, 27=15<br>.C 17)                                                                                            | 5-7-8           | Lumber D                                                                                                               | OL=1.60 plate grip                                                                                                                                                               | DOL=1.3                                                                                                  | Stions shown,                                                                                                                          |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 | Max Uplift                                                                       | 15=-110 (                                                                                             | (LC 13), 19=-117 (LC                                                                                                     | .C 13),         | <ol> <li>TCLL: AS<br/>DOI =1 15</li> </ol>                                                                             | CE 7-10; Pr=20.0 p<br>Plate DOI =1 00):                                                                                                                                          | psf (roof liv<br>Pf=20.0 p                                                                               | e load: Lumber<br>sf (flat roof                                                                                                        |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  | 20=-18 (L<br>22=-18 (L                                                                                | .C 16), 23=-24 (LC <sup>2</sup>                                                                                          | 10),<br>12),    | snow); Ps                                                                                                              | =17.2 psf (roof sno                                                                                                                                                              | w: Lumbe                                                                                                 | DOL=1.15 Plate                                                                                                                         | •        |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  | 25=-4 (LC<br>27=-213 (                                                                                | C 16), 26=-85 (LC 12<br>(LC 34)                                                                                          | 2),             | Unobstruc                                                                                                              | i); Category II; Exp<br>ted slippery surfac                                                                                                                                      | e B; Fully E                                                                                             | xp.; Ct=1.10;                                                                                                                          |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 | Max Grav                                                                         | 15=422 (L                                                                                             | LC 34), 19=950 (LC                                                                                                       | 23),            | <ol> <li>Roof designation</li> <li>slope</li> </ol>                                                                    | gn snow load has b                                                                                                                                                               | been reduc                                                                                               | ed to account for                                                                                                                      |          |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                                                                                  | 20=188 (L<br>22=165 (L                                                                                | LC 22), 21=201 (LC<br>LC 22), 23=173 (LC                                                                                 | , ∠∠),<br>; 2), | 5) Unbalance                                                                                                           | ed snow loads have                                                                                                                                                               | e been cor                                                                                               | nsidered for this                                                                                                                      |          |              |                                                                                                                | minin               | in the second se |    |
|                 |                                                                                  | 25=160 (L<br>27=189 (I                                                                                | LC 33), 26=350 (LC<br>LC 33)                                                                                             | 2),             | <ul><li>design.</li><li>6) This truss</li></ul>                                                                        | has been designe                                                                                                                                                                 | d for a 10.0                                                                                             | ) psf bottom                                                                                                                           |          |              |                                                                                                                | "aTH M              | ROIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| FORCES          | (lb) - Max                                                                       | kimum Com                                                                                             | pression/Maximum                                                                                                         | 1               | chord live<br>7) * This true                                                                                           | load nonconcurrer                                                                                                                                                                | nt with any                                                                                              | other live loads.                                                                                                                      |          |              | 3                                                                                                              | S. EFS              | ION N'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| TOP CHORD       | Tension<br>1-2=-151                                                              | /468, 2-3=-                                                                                           | 147/512, 3-4=-109/                                                                                                       | 475,            | on the bot                                                                                                             | tom chord in all are                                                                                                                                                             | eas where                                                                                                | a rectangle                                                                                                                            |          |              | 3                                                                                                              |                     | N 7: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                 | 4-5=-89/4                                                                        | 485, 5-6=-6                                                                                           | 5/483, 6-8=-42/482,                                                                                                      | ,               | 3-06-00 ta<br>chord and                                                                                                | any other member                                                                                                                                                                 | will fit betv<br>rs.                                                                                     | veen the bottom                                                                                                                        |          |              |                                                                                                                | SF4                 | AL E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                 | U 3-113/4                                                                        |                                                                                                       | , , , <del>,</del> , , , , , , , , , , , , , , ,                                                                         | ,               | 8) Provide m                                                                                                           | echanical connecti                                                                                                                                                               | ion (by oth                                                                                              | ers) of truss to                                                                                                                       |          |              | 2                                                                                                              | 0418                | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                 | 11-13=-4                                                                         | 0/150, 13-1                                                                                           | 14=-105/54                                                                                                               |                 | bearing of                                                                                                             | ate capable of with                                                                                                                                                              | nstanding 1                                                                                              | 17 lb uplitt at ioin                                                                                                                   | )Ť       |              |                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| BOT CHORD       | 11-13=-4<br>1-27=-44<br>25-26=-4                                                 | 0/150, 13-1<br>9/159, 26-2<br>49/162, 23·                                                             | 14=-105/54<br>27=-449/162,<br>-25=-449/162,                                                                              |                 | bearing pl<br>19, 16 lb ι                                                                                              | ate capable of with<br>plift at joint 20, 20                                                                                                                                     | standing 1<br>Ib uplift at                                                                               | 17 lb uplift at join<br>joint 21, 18 lb                                                                                                | it       |              |                                                                                                                | 1 0410              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| BOT CHORD       | 11-13=-4<br>1-27=-44<br>25-26=-4<br>22-23=-4                                     | 0/150, 13-1<br>9/159, 26-2<br>49/162, 23-<br>49/162, 21-                                              | 14=-105/54<br>27=-449/162,<br>-25=-449/162,<br>-22=-449/162,<br>-20=-449/162                                             |                 | bearing pl<br>19, 16 lb u<br>uplift at joi<br>25, 85 lb u                                                              | ate capable of with<br>iplift at joint 20, 20<br>nt 22, 24 lb uplift a<br>iplift at joint 26, 213                                                                                | istanding 1<br>Ib uplift at<br>it joint 23, 4<br>3 Ib uplift a                                           | 17 lb uplift at join<br>joint 21, 18 lb<br>4 lb uplift at joint<br>t joint 27 and 110                                                  | )        |              |                                                                                                                | . Enco              | -ER. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| BOT CHORD       | 11-13=-4<br>1-27=-44<br>25-26=-4<br>22-23=-4<br>20-21=-4<br>18-19=-1             | 0/150, 13-1<br>9/159, 26-2<br>49/162, 23-<br>49/162, 21-<br>49/162, 19-<br>1/41, 18-28                | 14=-105/54<br>27=-449/162,<br>-25=-449/162,<br>-22=-449/162,<br>-20=-449/162,<br>3=-5/40, 11-28=-846                     | 6/329,          | bearing pl<br>19, 16 lb u<br>uplift at joi<br>25, 85 lb u<br>lb uplift at<br>9) This truss                             | ate capable of with<br>uplift at joint 20, 20<br>nt 22, 24 lb uplift a<br>uplift at joint 26, 21<br>joint 15.                                                                    | Istanding 1<br>Ib uplift at<br>it joint 23, 4<br>3 Ib uplift a                                           | 17 lb uplift at join<br>joint 21, 18 lb<br>4 lb uplift at joint<br>t joint 27 and 110<br>ith the 2015                                  | )        |              | A. A                                                                       | × <sup>€</sup> NGIN | EEREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| BOT CHORD       | 11-13=-4<br>1-27=-44<br>25-26=-4<br>22-23=-4<br>20-21=-4<br>18-19=-1<br>16-17=0/ | 0/150, 13-1<br>9/159, 26-2<br>49/162, 23-<br>49/162, 21-<br>49/162, 19-<br>1/41, 18-28<br>0, 15-16=0/ | 14=-105/54<br>27=-449/162,<br>-25=-449/162,<br>-22=-449/162,<br>-20=-449/162,<br>3=-5/40, 11-28=-846<br>/0, 14-15=-13/35 | 6/329,          | bearing pl<br>19, 16 lb u<br>uplift at joi<br>25, 85 lb u<br>lb uplift at<br>9) This truss<br>Internation              | ate capable of with<br>uplift at joint 20, 20<br>nt 22, 24 lb uplift a<br>uplift at joint 26, 21:<br>joint 15.<br>is designed in acc<br>nal Residential Coc                      | Istanding 1<br>Ib uplift at<br>it joint 23, 4<br>3 Ib uplift a<br>ordance w<br>de sections               | 17 lb uplift at join<br>joint 21, 18 lb<br>4 lb uplift at joint<br>t joint 27 and 110<br>ith the 2015<br>5 R502.11.1 and               | )        |              | A DATE OF THE OWNER |                     | EER. EL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| BOT CHORD       | 11-13=-4<br>1-27=-44<br>25-26=-4<br>22-23=-4<br>20-21=-4<br>18-19=-1<br>16-17=0/ | 0/150, 13-1<br>9/159, 26-2<br>49/162, 23:<br>49/162, 21:<br>49/162, 19:<br>1/41, 18-28<br>0, 15-16=0, | 14=-105/54<br>27=-449/162,<br>-25=-449/162,<br>-22=-449/162,<br>-20=-449/162,<br>3=-5/40, 11-28=-846<br>/0, 14-15=-13/35 | 6/329,          | bearing pl<br>19, 16 lb u<br>uplift at joi<br>25, 85 lb u<br>lb uplift at<br>9) This truss<br>Internation<br>R802.10.2 | ate capable of with<br>uplift at joint 20, 20<br>nt 22, 24 lb uplift a<br>uplift at joint 26, 21:<br>joint 15.<br>is designed in acc<br>nal Residential Coc<br>and referenced st | Istanding 1<br>Ib uplift at<br>it joint 23, 4<br>3 Ib uplift a<br>ordance w<br>de sections<br>tandard AN | 17 lb uplift at join<br>joint 21, 18 lb<br>4 lb uplift at joint<br>t joint 27 and 110<br>ith the 2015<br>• R502.11.1 and<br>ISI/TPI 1. | )        |              | AL DE                                                                      |                     | March 21.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 |



| Job     | Truss | Truss Type   | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|--------------|-----|-----|-----------------------------------------|
| 3466725 | F2    | Roof Special | 1   | 1   | T30100029<br>Job Reference (optional)   |

15-10-8

7-9-7

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

8-1-1

8-1-1

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:01





2-1-12

Scale = 1:56.6

| Plate Offsets (X, Y): | [1:Edge,0-0-10], [1 | :0-2-5,Edge], [7:0-2-4,0-0 | -4], [7:0-1-3,0-2-0], [8:0-2 | 2-15,0-0-2], [8:0-0-13,1-2 | -14], [11:0-8-0,0-4-0] |
|-----------------------|---------------------|----------------------------|------------------------------|----------------------------|------------------------|
|-----------------------|---------------------|----------------------------|------------------------------|----------------------------|------------------------|

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE                                                                                                                                | (psf)<br>20.0<br>17.2/20.0<br>10.0<br>0.0*<br>10.0<br>2x4 SP No.2 *Excep<br>2x4 SP No.2 *Excep<br>2x4 SP No.3<br>Left: 2x6 SP No.2                                                                                                                                                                                                                                                                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code<br>t* 4-6,6-8:2x6 SP No<br>t* 12-5:2x4 SP No.3                                                                                                                                                                                                                                                                                                                                                                                        | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201<br>3)<br>.2             | 5/TPI2014<br>TCLL: ASCE<br>DOL=1.15 P<br>snow); Ps=1<br>DOL=1.00);<br>Unobstructe<br>Roof docim                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MS<br>E 7-10; Pr=20.0 p<br>late DOL=1.00);<br>7.2 psf (roof snor<br>Category II; Exp<br>d slippery surface                                                                                                                                                               | 1.00<br>0.95<br>0.54<br>sf (roof liv<br>Pf=20.0 p<br>w: Lumbe<br>B; Fully E<br>e                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>e load: Lumt<br>sf (flat roof<br>r DOL=1.15 I<br>xp.; Ct=1.10;                                                                                                               | in<br>-0.34<br>-0.76<br>0.11<br>Der<br>Plate | (loc)<br>7-11<br>7-11<br>8 | l/defl<br>>552<br>>245<br>n/a | L/d<br>240<br>180<br>n/a                                                                                        | PLATES<br>MT20<br>MT20HS<br>Weight: 158 lb | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=91n<br>II; Exp B; I<br>and C-C<br>exposed ;<br>members<br>Lumber D | Structural wood she<br>Rigid ceiling directly<br>1 Row at midpt<br>(size) 1=0-3-8, 8<br>Max Horiz 1=-72 (LC<br>Max Uplift 1=-75 (LC<br>13=-52 (L<br>Max Grav 1=458 (LC<br>13=2016 /<br>(lb) - Maximum Com<br>Tension<br>1-2=-452/463, 2-4=-<br>5-7=-94/1141, 7-8=-<br>1-15=-407/383, 13-1<br>12-13=-164/0, 11-12<br>2-15=0/338, 2-13=-1<br>11-13=-1167/276, 4-<br>ed roof live loads have<br>DE 7-10; Vult=115mph<br>hph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>Exterior (2) zone; cantil<br>and forces & MWFRS<br>OL=1.60 plate grip DO | athing directly applied<br>applied.<br>2-13<br>3=0-3-8, 13=0-3-8<br>2 (17)<br>2 (16), 8=-27 (LC 17),<br>C (13)<br>C (13)<br>C (13), 8=-276 (LC 34)<br>(LC 2)<br>pression/Maximum<br>66/1158, 4-5=0/1043<br>45/31<br>5=-407/383,<br>2=-690, 5-11=-748/2;<br>J=0/0, 8-9=-14/38<br>089/184, 4-13=-918/<br>-11=-77/303, 7-9=0/5<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ft; C<br>ivelope) exterior zone<br>ever left and right<br>pht exposed;C-C for<br>for reactions shown;<br>'L=1.33 | -,<br>6)<br>7)<br>8)<br>,<br>9)<br>,<br>114,<br>1<br>144,<br>1 | Slope.<br>Unbalanced<br>design.<br>All plates are<br>This truss ha<br>chord live loi<br>* This truss l<br>on the bottoo<br>3-06-00 tall t<br>chord and a<br>Provide mec<br>bearing platt<br>13, 75 lb upl<br>0) This truss is<br>International<br>R802.10.2 a<br><b>DAD CASE(S)</b> | snow loads have<br>e MT20 plates un<br>as been designed<br>ad nonconcurren<br>has been designed<br>n chord in all are<br>by 2-00-00 wide to<br>y other member<br>hanical connective<br>e capable of with<br>iff at joint 1 and 2<br>designed in acco<br>Residential Cod<br>nd referenced sta<br>Standard | e been cor<br>less other<br>f for a 10.7<br>t with any<br>ed for a liv<br>as where<br>will fit betv<br>s.<br>on (by oth<br>standing 5<br>27 lb uplift<br>ordance w<br>e sections<br>andard AN | nsidered for t<br>my seindicate<br>of psf bottom<br>other live load<br>e load of 20.<br>a rectangle<br>veen the bott<br>ers) of truss<br>i2 lb uplift at<br>at joint 8.<br>it h the 2015<br>is R502.11.1 a<br>JSI/TPI 1. | his<br>ed.<br>Opsf<br>to<br>joint<br>and     |                            |                               | The second se | SE/<br>0418                                | AROLINA<br>ONAL<br>360                        | and and and a second se |

minim March 21,2023

818 Soundside Road Edenton, NC 27932

0-3-2



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | F3    | Common     | 4   | 1   | T30100030<br>Job Reference (optional)   |

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:01 ID:sceCOoFlqj6rfYIMu7gSgXza5aT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:55.3

## Plate Offsets (X, Y): [1:Edge,0-0-14], [1:0-2-5,Edge], [7:Edge,0-0-14], [7:0-2-5,Edge]

| Loading     | (psf)                                       | Spacing                      | 2-0-0   |                   | CSI                   |                    | DEFL                                | in        | (loc) | l/defl | L/d | PLATES                                                                                                          | GRIP     |         |
|-------------|---------------------------------------------|------------------------------|---------|-------------------|-----------------------|--------------------|-------------------------------------|-----------|-------|--------|-----|-----------------------------------------------------------------------------------------------------------------|----------|---------|
| TCLL (roof) | 20.0                                        | Plate Grip DOL               | 1.00    |                   | TC                    | 0.95               | Vert(LL)                            | -0.08     | 10-12 | >999   | 240 | MT20                                                                                                            | 244/190  |         |
| Snow (Ps/F  | f) 17.2/20.0                                | Lumber DOL                   | 1.15    |                   | BC                    | 0.55               | Vert(CT)                            | -0.17     | 10-12 | >999   | 180 | MT20HS                                                                                                          | 187/143  |         |
| TCDL        | 10.0                                        | Rep Stress Incr              | YES     |                   | WB                    | 0.42               | Horz(CT)                            | 0.02      | 7     | n/a    | n/a |                                                                                                                 |          |         |
| BCLL        | 0.0*                                        | Code                         | IRC2018 | 5/TPI2014         | Matrix-MS             |                    |                                     |           |       |        |     |                                                                                                                 |          |         |
| BCDL        | 10.0                                        |                              |         |                   |                       |                    |                                     |           |       |        |     | Weight: 143 lb                                                                                                  | FT = 20% |         |
| LUMBER      |                                             |                              | 3)      | TCLL: ASCE        | 7-10; Pr=20.0 psf     | (roof liv          | e load: Lumb                        | er        |       |        |     |                                                                                                                 |          |         |
| TOP CHOR    | D 2x4 SP No.2                               |                              |         | DOL=1.15 PI       | ate DOL=1.00); Pf=    | =20.0 p            | sf (flat roof                       |           |       |        |     |                                                                                                                 |          |         |
| BOT CHOR    | D 2x4 SP No.2                               |                              |         | snow); Ps=1       | 7.2 psf (roof snow:   | Lumbe              | DOL=1.15 F                          | Plate     |       |        |     |                                                                                                                 |          |         |
| WEBS        | 2x4 SP No.3                                 |                              |         | DOL=1.00); (      | Category II; Exp B;   | Fully E            | xp.; Ct=1.10;                       |           |       |        |     |                                                                                                                 |          |         |
| WEDGE       | Left: 2x6 SP No.2                           |                              | 1)      | Doof dooign       | i siippery suriace    | n roduo            | ad to account                       | + for     |       |        |     |                                                                                                                 |          |         |
|             | Right: 2x6 SP No.2                          |                              | 4)      | slope             | Show load has been    | nieduc             | eu lo accouri                       | 1 101     |       |        |     |                                                                                                                 |          |         |
|             |                                             |                              | . 5)    | Unbalanced        | snow loads have b     | een cor            | sidered for th                      | nis       |       |        |     |                                                                                                                 |          |         |
| IOP CHOR    | D Structural wood she                       | athing directly applie       | d or o) | design.           |                       | 0011 001           |                                     | 10        |       |        |     |                                                                                                                 |          |         |
|             | Z-Z-0 OC putitins. D Rigid ceiling directly | applied or 10-0-0 oc         | . 6)    | All plates are    | MT20 plates unles     | s other            | wise indicate                       | d.        |       |        |     |                                                                                                                 |          |         |
|             | bracing                                     |                              | , T)    | This truss ha     | s been designed fo    | or a 10.0          | ) psf bottom                        |           |       |        |     |                                                                                                                 |          |         |
| WEBS        | 1 Row at midpt                              | 6-10 2-10                    |         | chord live loa    | d nonconcurrent w     | rith any           | other live loa                      | ds.       |       |        |     |                                                                                                                 |          |         |
| REACTION    | <b>S</b> (size) 1-0-3-8 7                   | 7-0-3-8 10-0-3-8             | 8)      | * This truss h    | as been designed      | for a liv          | e load of 20.0                      | )psf      |       |        |     |                                                                                                                 |          |         |
|             | Max Horiz 1=-69 (LC                         | (17)                         |         | on the botton     | n chord in all areas  | where              | a rectangle                         |           |       |        |     |                                                                                                                 |          |         |
|             | Max Uplift 1=-50 (LC                        | (12) 7=-56 (IC 17)           |         | 3-06-00 tall b    | y 2-00-00 wide will   | fit betv           | een the botto                       | om        |       |        |     |                                                                                                                 |          |         |
|             | 10=-18 (L                                   | C 12)                        | 0)      | chord and an      | y other members.      | (by oth            | oro) of truco t                     | •         |       |        |     |                                                                                                                 |          |         |
|             | Max Grav 1=584 (LC                          | C 33), 7=541 (LC 34)         | 9)      | boaring plate     | concello of withsto   | (by oth<br>nding 1 | ers) or truss t<br>9 lb uplift at i | 0<br>oint |       |        |     |                                                                                                                 |          |         |
|             | 10=1491                                     | (LC 2)                       |         | 10 50 lb unli     | t at joint 1 and 56 l | hung i<br>bunlift  | at joint 7                          | UIII      |       |        |     |                                                                                                                 |          |         |
| FORCES      | (lb) - Maximum Com                          | pression/Maximum             | 10      | ) This truss is ( | designed in accord    | ance w             | ith the 2015                        |           |       |        |     |                                                                                                                 |          |         |
|             | Tension                                     |                              |         | International     | Residential Code s    | ections            | R502.11.1 a                         | nd        |       |        |     |                                                                                                                 |          |         |
| TOP CHOR    | D 1-2=-771/127, 2-4=0                       | )/406, 4-6=0/474,            |         | R802.10.2 ar      | nd referenced stand   | dard AN            | ISI/TPI 1.                          |           |       |        |     |                                                                                                                 | 111.     |         |
|             | 6-7=-656/118                                |                              | LC      | DAD CASE(S)       | Standard              |                    |                                     |           |       |        |     | M' G                                                                                                            | 10 111   |         |
| BOT CHOR    | D 1-12=-104/682, 10-1                       | 2=-104/682,                  |         |                   |                       |                    |                                     |           |       |        |     | N'aTH Y                                                                                                         | 170/ 11  | 14      |
| NEDO        | 8-10=-54/574, 7-8=-                         | 54/5/4<br>- 026/177 6 9-0/27 | 70      |                   |                       |                    |                                     |           |       |        | 1   | O                                                                                                               | in N     | 14      |
| VEDO        | 2-10003/160 2-12                            | 2=-930/177, 0-0=0/27         | 9,      |                   |                       |                    |                                     |           |       |        | 3.  | 2.000                                                                                                           | N: 5     | 12      |
|             | 2 10- 333/103, 2 12                         | -0/000                       |         |                   |                       |                    |                                     |           |       |        | 2   | :0                                                                                                              | 1 K .    | -       |
| 1) Unbolo   | and roof live loads have                    | been considered for          |         |                   |                       |                    |                                     |           |       |        |     | : 1                                                                                                             |          | -       |
| this des    | ion                                         | been considered for          |         |                   |                       |                    |                                     |           |       |        |     | SE/                                                                                                             | ۱L :     |         |
| 2) Wind A   | SCF 7-10: Vult=115mph                       | (3-second gust)              |         |                   |                       |                    |                                     |           |       |        | 2   | 0418                                                                                                            | 860      |         |
| Vasd=9      | 1mph; TCDL=6.0psf; BC                       | DL=6.0psf; h=30ft; C         | Cat.    |                   |                       |                    |                                     |           |       |        | -   | : 0410                                                                                                          |          |         |
| II; Exp I   | B; Enclosed; MWFRS (en                      | velope) exterior zon         | е       |                   |                       |                    |                                     |           |       |        | -   | 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - |          | 2       |
| and C-0     | Exterior (2) zone; cantil                   | ever left and right          |         |                   |                       |                    |                                     |           |       |        | 1   | · ENIS                                                                                                          | -cR. A   | 3       |
| expose      | d ; end vertical left and rig               | ght exposed;C-C for          |         |                   |                       |                    |                                     |           |       |        | 1   | GIN                                                                                                             | EF. CV   | 5       |
| membe       | rs and forces & MWFRS                       | for reactions shown;         |         |                   |                       |                    |                                     |           |       |        |     | 1, AOU                                                                                                          | VEL      |         |
| Lumber      | DOL=1.60 plate grip DO                      | L=1.33                       |         |                   |                       |                    |                                     |           |       |        |     | 1, YUIN                                                                                                         | V. IIII  |         |
|             |                                             |                              |         |                   |                       |                    |                                     |           |       |        |     |                                                                                                                 | inte.    |         |
|             |                                             |                              |         |                   |                       |                    |                                     |           |       |        |     |                                                                                                                 | March    | 21,2023 |
|             |                                             |                              |         |                   |                       |                    |                                     |           |       |        |     |                                                                                                                 |          |         |

Page: 1



| Job     | Truss | Truss Type             | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------------------|-----|-----|-----------------------------------------|
| 3466725 | G1    | Common Supported Gable | 1   | 1   | T30100031<br>Job Reference (optional)   |

Run: 8.63 S Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:22:02 ID:HSqdOLfhEvO\_xmo7k5JJzOzZ0eE-bUz18U81AilTxS3HXabJQallWdTUS1GttMfClpzYj13





Scale = 1:40.4

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                         | 8                                                                                                                                                                                 | (psf)<br>20.0<br>3.1/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                     | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC20                       | )15/TPI2014                                                                                                                                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                                                                                                                                                                                                                         | 0.11<br>0.10<br>0.03                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                      | in<br>0.00<br>0.00<br>0.00                     | (loc)<br>12-13<br>22-23<br>12 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 91 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>(lb) - | 2x4 SP Nc<br>2x4 SP Nc<br>2x4 SP Nc<br>Structural<br>6-0-0 oc p<br>Rigid ceilin<br>bracing.<br>All bearings<br>Max Horiz<br>Max Uplift<br>Max Grav<br>(lb) - Max.<br>(lb) or less | 0.2<br>0.2<br>0.3<br>wood she<br>urlins.<br>ng directly<br>21-0-0. e<br>22=37 (LC<br>All uplift 1<br>12, 13, 14<br>23<br>All reaction<br>(s) 12, 13<br>21, 22, 23<br>Comp./Mis<br>e sccept w | athing directly appli<br>applied or 6-0-0 oc<br>xcept 12=0-3-8, 23=<br>C 16)<br>00 (lb) or less at joi<br>I, 15, 16, 18, 20, 21<br>ons 250 (lb) or less a<br>, 14, 15, 16, 17, 18,<br>ax. Ten All forces<br>hen shown. | ed or<br>=0-3-8<br>nt(s)<br>, 22,<br>at joint<br>20,<br>250 | <ul> <li>5) Roof design<br/>slope.</li> <li>6) Unbalanced<br/>design.</li> <li>7) Gable studs</li> <li>8) This truss h<br/>chord live lo</li> <li>9) * This truss<br/>on the botto<br/>3-06-00 tall</li> <li>10) Provide mea<br/>bearing plat<br/>joint(s) 18, 2</li> <li>11) This truss is<br/>Internationa<br/>R802.10.2 a</li> <li>LOAD CASE(S)</li> </ul> | snow load has b<br>snow loads have<br>spaced at 2-0-0<br>as been designe<br>ad nonconcurren<br>has been designe<br>m chord in all are<br>by 2-00-00 wide –<br>ny other member<br>shanical connecti<br>e capable of with<br>20, 21, 22, 16, 15<br>designed in acco<br>I Residential Cod<br>und referenced stato<br>Standard | been reduc<br>e been cor<br>oc.<br>d for a 10.0<br>t with any<br>ed for a liv<br>eas where<br>will fit betw<br>rs.<br>on (by oth<br>standing 1<br>, 14, 13, 1:<br>ordance w<br>le sections<br>andard AN | ed to accour<br>asidered for the<br>opsf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botthers) of truss 1<br>00 lb uplift at<br>2, 23.<br>th the 2015<br>R502.11.1 a<br>ISI/TPI 1. | nt for<br>his<br>nds.<br>Opsf<br>om<br>to<br>t |                               |                               |                          |                                 |                                    |  |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASC<br/>Vasd=91n<br/>II; Exp B; I</li> </ol>         | ed roof live lo<br>n.<br>CE 7-10; Vul<br>nph; TCDL=6<br>Enclosed; M                                                                                                               | bads have<br>t=115mph<br>6.0psf; BC<br>WFRS (en                                                                                                                                              | been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ft;<br>ivelope) exterior zon                                                                                                                                  | or<br>Cat.<br>ne                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                |                               |                               |                          | WHTH C                          | ROLIN                              |  |

- and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
  3) Truss designed for wind loads in the plane of the truss end forces are the trust of the trust
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
  4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 4) TCLL: ASCE 7-10; PT=20.0 psr (roor live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=8.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

SEAL 041860

March 21,2023

Page: 1



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | G2    | Common     | 5   | 1   | T30100032<br>Job Reference (optional)   |

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:02 ID:a4HiRYylbHPapSek88kxxSzZ0ds-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



Scale = 1:40.4

## Plate Offsets (X, Y): [1:0-2-4,Edge], [5:0-2-4,Edge]

| Loading                  | (psf)                                     | Spacing                 | 2-0-0              |                                 | CSI                                      |                       | DEFL                           | in     | (loc) | l/defl | L/d | PLATES        | GRIP     | _ |
|--------------------------|-------------------------------------------|-------------------------|--------------------|---------------------------------|------------------------------------------|-----------------------|--------------------------------|--------|-------|--------|-----|---------------|----------|---|
| TCLL (roof)              | 20.0                                      | Plate Grip DOL          | 1.00               |                                 | TC                                       | 0.78                  | Vert(LL)                       | -0.17  | 6-8   | >999   | 240 | MT20          | 244/190  |   |
| Snow (Ps/Pf)             | 18.7/20.0                                 | Lumber DOL              | 1.15               |                                 | BC                                       | 0.83                  | Vert(CT)                       | -0.41  | 6-8   | >666   | 180 |               |          |   |
| TCDL                     | 10.0                                      | Rep Stress Incr         | YES                |                                 | WB                                       | 0.26                  | Horz(CT)                       | 0.06   | 5     | n/a    | n/a |               |          |   |
| BCLL                     | 0.0*                                      | Code                    | IRC2015            | 5/TPI2014                       | Matrix-MS                                |                       |                                |        |       |        |     |               |          |   |
| BCDL                     | 10.0                                      |                         |                    |                                 |                                          |                       |                                |        |       |        |     | Weight: 91 lb | FT = 20% |   |
| LUMBER                   |                                           |                         | 3)                 | TCLL: ASCE                      | 7-10; Pr=20.0 psf                        | (roof liv             | e load: Lumb                   | ber    |       |        |     |               |          |   |
| TOP CHORD                | 2x4 SP No.2                               |                         |                    | DOL=1.15 P                      | late DOL=1.00); Pt                       | f=20.0 p              | sf (flat roof                  |        |       |        |     |               |          |   |
| BOT CHORD                | 2x4 SP No.2                               |                         |                    | snow); Ps=1                     | 8.7 psf (roof snow:                      | Lumber                | DOL=1.15                       | Plate  |       |        |     |               |          |   |
| WEBS                     | 2x4 SP No.3                               |                         |                    | DOL=1.00);                      | Category II; Exp B                       | ; Fully E             | xp.; Ct=1.10;                  | ;      |       |        |     |               |          |   |
| WEDGE                    | Left: 2x4 SP No.3                         |                         |                    | Unobstructed                    | slippery surface                         |                       |                                |        |       |        |     |               |          |   |
|                          | Right: 2x4 SP No.3                        |                         | 4)                 | Koot design                     | snow load has bee                        | en reduc              | ea to accour                   | nt for |       |        |     |               |          |   |
| BRACING                  | <b>a</b>                                  |                         | . 5)               | Siupe.                          | snow loads have h                        | heen cor              | sidered for t                  | his    |       |        |     |               |          |   |
| TOP CHORD                | Structural wood shea<br>3-2-3 oc purlins. | athing directly applie  | d or <sup>5)</sup> | design.                         |                                          |                       |                                |        |       |        |     |               |          |   |
| BOT CHORD                | Rigid ceiling directly<br>bracing.        | applied or 10-0-0 oc    | 6)                 | this truss ha<br>chord live loa | is been designed f<br>ad nonconcurrent v | or a 10.0<br>with any | o pst bottom<br>other live loa | ads.   |       |        |     |               |          |   |
| REACTIONS                | (size) 1=0-3-8 5                          | 5=0-3-8                 | 7)                 | * This truss h                  | as been designed                         | l for a liv           | e load of 20.                  | 0psf   |       |        |     |               |          |   |
|                          | Max Horiz 1=37 (LC                        | 16)                     |                    | on the botton                   | n chord in all areas                     | s where               | a rectangle                    |        |       |        |     |               |          |   |
|                          | Max Uplift 1=-41 (LC                      | ,<br>12), 5=-41 (LC 13) |                    | 3-00-00 tall t                  | y ∠-00-00 Wide Wi                        |                       | veen ine bott                  | Om     |       |        |     |               |          |   |
|                          | Max Grav 1=910 (LC                        | C 2), 5=910 (LC 2)      | 8)                 | Provide med                     | hanical connection                       | h (by oth             | ers) of truss                  | to     |       |        |     |               |          |   |
| FORCES                   | (lb) - Maximum Com                        | pression/Maximum        | 0)                 | bearing plate                   | capable of withst                        | anding 4              | 1 lb uplift at                 | joint  |       |        |     |               |          |   |
|                          | 1 2- 1064/220 2 2-                        | 1024/200                |                    | 1 and 41 lb u                   | iplift at joint 5.                       |                       | where 0015                     |        |       |        |     |               |          |   |
| I OF CHURD               | 3-4-1934/239, 2-3=                        | -1964/200,<br>-1964/239 | 9)                 | I NIS TRUSS IS                  | designed in accord                       | ance w                | IT THE 2015                    | and    |       |        |     |               |          |   |
| BOT CHORD                | 1-8=-184/1850, 6-8=                       | -139/1421,              |                    | R802.10.2 a                     | nd referenced stan                       | Idard AN              | ISI/TPI 1.                     | anu    |       |        |     |               |          |   |
|                          | 5-6=-184/1850                             |                         | LC                 | AD CASE(S)                      | Standard                                 |                       |                                |        |       |        |     |               | 1111     |   |
| WEBS                     | 3-6=-59/627, 4-6=-28                      | 80/122, 3-8=-59/627     |                    |                                 | 2.13110010                               |                       |                                |        |       |        |     | C             | AD       |   |
|                          | 2-8=-280/122                              |                         |                    |                                 |                                          |                       |                                |        |       |        |     | "atty         | 10/11    |   |
| NOTES                    |                                           |                         |                    |                                 |                                          |                       |                                |        |       |        | 3   | 01:245        | 10: 11   |   |
| 1) Unbalance             | ed roof live loads have                   | been considered for     |                    |                                 |                                          |                       |                                |        |       |        | 2 . | < .: OVIA     | No. 7    | - |
| this desigi              | n.<br>CE 7 10: \/ult_115mph               | (2 accord quat)         |                    |                                 |                                          |                       |                                |        |       |        | -   | :0            | K .      | - |
| Z) WINU: ASO<br>Vasd=01n | C = 1 - 10; Vuit=115mpn                   | (S-SECOND GUSI)         | at                 |                                 |                                          |                       |                                |        |       |        | 8   | · .           | A1 .     | Ξ |
| II: Exp B:               | Enclosed: MWFRS (en                       | velope) exterior zon    | a<br>2             |                                 |                                          |                       |                                |        |       |        |     | E SE/         | AL :     | Ξ |
| and C-C F                | Exterior (2) zone: cantile                | ever left and right     | -                  |                                 |                                          |                       |                                |        |       |        |     | : 0418        | 360      | - |
| exposed ;                | end vertical left and ric                 | ht exposed;C-C for      |                    |                                 |                                          |                       |                                |        |       |        | 1   | 1             | · · ·    | - |
| members                  | and forces & MWFRS                        | for reactions shown;    |                    |                                 |                                          |                       |                                |        |       |        | -   |               |          | - |
| Lumber D                 | OL=1.60 plate grip DO                     | L=1.33                  |                    |                                 |                                          |                       |                                |        |       |        | 1   |               | FER.A S  |   |
|                          |                                           |                         |                    |                                 |                                          |                       |                                |        |       |        | 1   | OWGIN         | E. EVS   |   |
|                          |                                           |                         |                    |                                 |                                          |                       |                                |        |       |        | 5   | 1, AOLIN      | VELIN    |   |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 21,2023

| Job     | Truss | Truss Type    | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|---------------|-----|-----|-----------------------------------------|
| 3466725 | G3    | Common Girder | 1   | 4   | T30100033<br>Job Reference (optional)   |

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:03 ID:OQ5Ee?SOOftc5FDh3821rnzZ06x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:40.4

## Plate Offsets (X, Y): [1:0-5-0,0-5-10], [5:0-5-0,0-5-10]

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL                                                                                   | (psf)<br>20.0<br>18.7/20.0<br>10.0                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                    | 2-0-0<br>1.00<br>1.15<br>NO |                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                | 0.35<br>0.33<br>0.45                                                                                                                                            | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                         | in<br>-0.08<br>-0.16<br>0.02             | (loc)<br>9<br>9<br>5                                                        | l/defl<br>>999<br>>999<br>n/a                                                                                                                                        | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20                                                                                                                                                                                           | <b>GRIP</b><br>244/190                                                                                 |                                    |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|
| BCDL                                                                                                                             | 10.0                                                                                                                                                                                                                 | Code                                                                                                                 | IRC201                      | 0/1812014                                                                                                                                                                                              | IVIAUIX-IVIS                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                         |                                          |                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 585 lb                                                                                                                                                                                           | FT = 20%                                                                                               |                                    |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                       | 2x4 SP No.2<br>2x10 SP DSS<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=0-3-8, 4<br>Max Horiz 1=37 (LC<br>Max Uplift 1=-476 (L<br>Max Grav 1=6484 (I | eathing directly applie<br>r applied or 10-0-0 or<br>5=0-3-8<br>16)<br>.C 8), 5=-158 (LC 9)<br>.C 2), 5==2409 (LC 2) | 3)<br>ed or 4)<br>c 5)      | All loads are<br>except if not<br>CASE(S) se<br>provided to o<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mp<br>II; Exp B; En<br>cantilever le<br>right expose<br>TCLL: ASCE | considered equa<br>ed as front (F) or<br>ction. Ply to ply co<br>distribute only load<br>wise indicated.<br>roof live loads ha<br>: 7-10; Vult=115m<br>h; TCDL=6.0psf; i<br>loclosed; MWFRS<br>d; Lumber DOL=1<br>: 7-10; Pr=20.0 pc | Ily applied<br>back (B) f<br>connection<br>ds noted a<br>ve been o<br>ph (3-sec<br>BCDL=6.0<br>(envelope<br>ed ; end v<br>1.60 plate<br>of (roof liv<br>20.00 c | d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>ond gust)<br>pps; h=30ft; (<br>b) exterior zor<br>ertical left an<br>grip DOL=1.<br>e load: Lumb | DAD<br>r<br>Cat.<br>ne;<br>d<br>33<br>er | 13) Har<br>pro<br>lb c<br>337<br>sele<br>res<br>LOAD (<br>1) De<br>In<br>Un | nger(s) c<br>vided su<br>own anc<br>l b up at<br>action of<br>consibilit<br><b>CASE(S</b> )<br>cad + Sn<br>crease=<br>niform Lc<br>Vert: 1-5<br>oncentra<br>Vert: 9= | r other<br>fficient<br>215 II<br>2-7-1<br>such o<br>ty of ot<br>) Star<br>ow (ba<br>1.00<br>bads (II<br>3=-57,<br>ted Lo<br>-2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r connection devir<br>t to support conci<br>b up at 9-8-12, a<br>4 on bottom cho<br>connection device<br>hers.<br>ndard<br>alanced): Lumbei<br>b/ft)<br>3-55-57, 1-55-20<br>ads (lb)<br>(F), 19=-4175 (F | ce(s) shall be<br>intrated load(s<br>nd 4320 lb dov<br>'d. The design<br>>(s) is the<br>'Increase=1.1{ | ) 2752<br>vn and<br>i/<br>5, Plate |
|                                                                                                                                  | (lb) - Maximum Com<br>Tension                                                                                                                                                                                        | npression/Maximum                                                                                                    | ,                           | snow); Ps=1<br>DOL=1.00);                                                                                                                                                                              | 8.7 psf (roof snov<br>Category II; Exp I                                                                                                                                                                                             | v: Lumber<br>B; Fully E                                                                                                                                         | DOL=1.15 F<br>xp.; Ct=1.10;                                                                                                                                                             | Plate                                    |                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                        |                                    |
| BOT CHORD                                                                                                                        | 3-4=-7233/479, 4-5=<br>1-10=-714/10056, 9<br>8-9=-416/6768, 6-8=                                                                                                                                                     | =-6299/423<br>-10=-714/10056,<br>=-374/6079,                                                                         | 7)<br>8)                    | Roof design<br>slope.<br>Unbalanced                                                                                                                                                                    | snow loads have                                                                                                                                                                                                                      | en reduc                                                                                                                                                        | ed to accoun<br>sidered for th                                                                                                                                                          | t for<br>nis                             |                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                        |                                    |
| WEBS                                                                                                                             | 3-9=-269/3765, 2-9=<br>2-10=-27/763, 3-8=-<br>4-6=-864/112                                                                                                                                                           | =-1595/182,<br>10/460, 4-8=-108/11                                                                                   | 9)<br>62,<br>10             | This truss ha<br>chord live lo<br>) * This truss l                                                                                                                                                     | as been designed<br>ad nonconcurrent<br>has been designe                                                                                                                                                                             | for a 10.0<br>with any<br>d for a liv                                                                                                                           | ) psf bottom<br>other live loa<br>e load of 20.0                                                                                                                                        | ds.<br>Opsf                              |                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WITH Q                                                                                                                                                                                                   | ARO                                                                                                    |                                    |
| NOTES<br>1) N/A                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                      |                             | on the botton<br>3-06-00 tall I<br>chord and a                                                                                                                                                         | m chord in all area<br>by 2-00-00 wide w<br>ny other members                                                                                                                                                                         | as where<br>vill fit betw<br>3.                                                                                                                                 | a rectangle<br>veen the botto                                                                                                                                                           | om                                       |                                                                             |                                                                                                                                                                      | in the second se | NOFE                                                                                                                                                                                                     | PON: 1                                                                                                 |                                    |
| <ol> <li>4-ply truss<br/>(0.131"x3"<br/>Top chord<br/>oc.</li> <li>Bottom ch<br/>staggered<br/>Web conn<br/>Attach BC</li> </ol> | to be connected toge<br>) nails as follows:<br>s connected as follows<br>ords connected as foll<br>at 0-4-0 oc.<br>ected as follows: 2x4<br>w/ 1/2" diam. bolts (A                                                   | ther with 10d<br>s: 2x4 - 1 row at 0-9-<br>ows: 2x10 - 5 rows<br>- 1 row at 0-9-0 oc.<br>STM A-307) in the           | 11<br>0<br>12               | ) Provide med<br>bearing plate<br>joint 1 and 1<br>) This truss is<br>International<br>R802.10.2 a                                                                                                     | hanical connection<br>capable of withs<br>58 lb uplift at joint<br>designed in acco<br>Residential Code<br>nd referenced sta                                                                                                         | on (by othe<br>tanding 4<br>5.<br>rdance wi<br>e sections<br>indard AN                                                                                          | ers) of truss t<br>76 lb uplift at<br>ith the 2015<br>R502.11.1 a<br>ISI/TPI 1.                                                                                                         | nd                                       |                                                                             |                                                                                                                                                                      | THINK WARNEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SE<br>041                                                                                                                                                                                                | AL<br>360                                                                                              | The second second                  |

Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Thuman and

| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | P1    | Piggyback  | 14  | 1   | T30100034<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:03 ID:E1aT52B6Jmh8HH6XpFa9VozaKYZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



2-10-10

Scale = 1:30.7

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-0,Edge], [4:0-2-6,0-1-0]

|              |                           |                           | ,                 |                                 |                     |                           |                  |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|---------------------------|---------------------------|-------------------|---------------------------------|---------------------|---------------------------|------------------|--------------|-------|--------|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading      | (psf)                     | Spacing<br>Plate Grip DOI | 2-0-0<br>1 00     |                                 | CSI<br>TC           | 0.04                      | DEFL<br>Vert(LL) | in<br>n/a    | (loc) | l/defl | L/d<br>999 | PLATES        | <b>GRIP</b><br>244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Snow (Ps/Pf) | 8 3/20 0                  | Lumber DOI                | 1 15              |                                 | BC                  | 0.05                      | Vert(CT)         | n/a          | -     | n/a    | 999        |               | 210,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TCDL         | 10.0                      | Rep Stress Incr           | YES               |                                 | WB                  | 0.00                      | Horz(CT)         | 0.00         | 2     | n/a    | n/a        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BCLL         | 0.0*                      | Code                      | IRC20             | 15/TPI2014                      | Matrix-MP           |                           |                  |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BCDL         | 10.0                      |                           |                   |                                 |                     |                           |                  |              |       |        |            | Weight: 13 lb | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LUMBER       |                           |                           | 4                 | ) TCLL: ASCE                    | E 7-10; Pr=20.0 p   | osf (roof liv             | e load: Lumb     | ber          |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOP CHORD    | 2x4 SP No.2               |                           |                   | DOL=1.15 P                      | late DOL=1.00);     | Pf=20.0 p                 | sf (flat roof    |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BOT CHORD    | 2x4 SP No.2               |                           |                   | snow); Ps=8                     | .3 psf (roof snow   | v: Lumber                 | DOL=1.15 PI      | ate          |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BRACING      |                           |                           |                   | DOL=1.00);                      | Category II; Exp    | B; Fully E                | xp.; Ct=1.10;    |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOP CHORD    | Structural wood she       | athing directly applie    | ed or 5           | ) Roof design                   | d slippery suffac   | e<br>een reduc            | ed to accour     | t for        |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 4-0-0 oc purlins.         |                           | 5                 | slope                           | 3110111080 1183 0   | Jeen leuuc                |                  |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BOT CHORD    | Rigid ceiling directly    | applied or 10-0-0 o       | с<br>6            | ) This truss ha                 | as been designed    | d for great               | er of min roof   | live         |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PEACTIONS    | (cizo) 2-2 10 10          | 1-2 10 10                 |                   | load of 12.0                    | psf or 2.00 times   | s flat roof le            | ad of 20.0 p     | sf on        |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| REACTIONS    | (SIZE) 2=2-10-10          | J, 4=2-10-10              |                   | overhangs n                     | on-concurrent w     | ith other liv             | /e loads.        |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Max Horiz 2=35 (LC        | 13)                       | 7                 | ) Gable requir                  | es continuous bo    | ottom chor                | d bearing.       |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Max Uplift 2=-4 (LC       | 14), 4=-4 (LC 15)         | 8                 | ) Gable studs                   | spaced at 2-0-0     | OC.                       |                  |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                           | // ( /                    | 9                 | ) I his truss ha                | as been designed    | d for a 10.0              | ) pst bottom     | de           |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Max Grav 2=136 (LC        | C 2), 4=136 (LC 2)        | 1                 | O) * This truck                 | ad nonconcurren     | nt with any               | other live loa   | lus.<br>Opef |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                           |                           | 1                 | on the botto                    | n chord in all are  | eu ior a liv              | a rectande       | оры          |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FORCES       | (lb) - Maximum Com        | pression/Maximum          |                   | 3-06-00 tall                    | ov 2-00-00 wide     | will fit betv             | veen the bott    | om           |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Tension                   |                           |                   | chord and a                     | ny other member     | rs.                       |                  |              |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOP CHORD    | 1-2=0/24, 2-3=-76/2       | 1, 3-4=-76/21, 4-5=0      | <sup>)/24</sup> 1 | 1) Provide med                  | hanical connecti    | ion (by oth               | ers) of truss t  | to           |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BOT CHORD    | 2-4=-9/53                 |                           |                   | bearing plate                   | e capable of with   | standing 4                | Ib uplift at jo  | oint         |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOTES        |                           |                           |                   | 2, 4 lb uplift                  | at joint 4, 4 lb up | lift at joint             | 2 and 4 lb up    | olift        |       |        |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1) Unbalanc  | ed roof live loads have   | been considered fo        | r .               | at joint 4.                     |                     |                           |                  |              |       |        |            | mini          | IIIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| this desig   | n.                        | <i>(</i> <b>1</b> ) )     | 1                 | 2) This truss is                | designed in acco    | ordance w                 | ith the 2015     |              |       |        |            | WH C          | ARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2) Wind: AS  | CE 7-10; Vult=115mph      | (3-second gust)           | Cat               | International                   | Residential Cod     |                           | 8 R502.11.1 a    | and          |       |        |            | i'a'          | L. U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Enclosed: MW/ERS (or      | DL=6.0psi; n=30it; (      | Jal.              | R0U2.1U.2 a<br>3) See Standau   | d Industry Piggy    | anuaru Ar<br>back Trus    | Connection       |              |       |        | 1          | O'.FEB        | Stor: V'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| II; EXP B;   | Enclosed; IVIVERS (eff    | ever left and right       | ie i              | 5) See Standar<br>Detail for Co | a mausify Figgy     | back itus<br>a truss as a | applicable or    |              |       |        |            | <             | 1. 7 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| exposed :    | end vertical left and rid | ht exposed C-C for        |                   | consult qual                    | fied building des   | ianer                     |                  |              |       |        | Ξ          | :2 M          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| members      | and forces & MWFRS        | for reactions shown       | : т               | OAD CASE(S)                     | Standard            | ignor.                    |                  |              |       |        | Ξ          | : 00          | Λ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lumber D     | OL=1.60 plate grip DO     | L=1.33                    | , -               |                                 | Otandara            |                           |                  |              |       |        | =          | : SE          | AL :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3) Truss de  | signed for wind loads ir  | n the plane of the tru    | ISS               |                                 |                     |                           |                  |              |       |        | =          | : 041         | 860 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| only. For    | studs exposed to wind     | (normal to the face)      | ),                |                                 |                     |                           |                  |              |       |        | =          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| see Stand    | dard Industry Gable En    | d Details as applical     | ble,              |                                 |                     |                           |                  |              |       |        | -          | N             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| or consult   | qualified building desig  | gner as per ANSI/TF       | PI 1.             |                                 |                     |                           |                  |              |       |        | 1          |               | FER.A.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                           |                           |                   |                                 |                     |                           |                  |              |       |        | 1          | 0,            | E. E.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                           |                           |                   |                                 |                     |                           |                  |              |       |        |            | 1, OLIN       | VELIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                           |                           |                   |                                 |                     |                           |                  |              |       |        |            | 11 OIN        | in the second seco |
|              |                           |                           |                   |                                 |                     |                           |                  |              |       |        |            | 2000          | 1111 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

March 21,2023

Page: 1



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | P2    | Piggyback  | 2   | 1   | T30100035<br>Job Reference (optional)   |

0-6-7

1-5-5

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Run: 8,63 S Feb 9 2023 Print: 8,630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:30:56 ID:Pz9Q88v\_ssLjkgGuSfy\_CqzZ0ya-0q69oOaku9n\_ICjXil83\_mnhe4385eLAC7XLz\_zYiul

2-10-10

Page: 1



Scale = 1:26.8

Plate Offsets (X, Y): [2:0-2-6.0-1-0]. [4:0-2-6.0-1-0]

| - 1410 0110010 (                                                                                                                                                                                                                                                                                                                                                                         | (,,, ); [=:0 = 0,0 : 0];                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                   |                      |                             |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                           | (psf)<br>20.0<br>8.3/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201                                                                                        | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02<br>0.03<br>0.01                                                                                                                                                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                              | in<br>n/a<br>n/a<br>0.00                                          | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 14 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>REACTIONS<br>(Ib) -<br>FORCES<br>NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASG<br>Vasd=91n<br>II; Exp 8;<br>and C-C<br>exposed ;<br>members<br>Lumber D<br>3) Truss des<br>only. For<br>see Stand<br>or consult<br>4) TCLL: AS<br>DOL=1.15<br>snow); Ps<br>DOL=1.00<br>Unobstruct | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>4-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>All bearings 2-10-10.<br>Max Horiz 2=35 (LC<br>Max Uplift All uplift 1<br>2, 4, 7, 10<br>Max Grav All reactio<br>(s) 2, 4, 6,<br>(lb) - Max. Comp./Ma<br>(lb) or less except will<br>ed roof live loads have<br>n.<br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (en<br>Exterior (2) zone; cantil<br>end vertical left and rig<br>and forces & MWFRS<br>OL=1.60 plate grip DO<br>signed for wind loads ir<br>studs exposed to wind<br>lard Industry Gable End<br>qualified building desig<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.00); Pf=<br>=8.3 psf (roof snow: LL<br>0); Category II; Exp B; F | athing directly applie<br>applied or 10-0-0 or<br>13), 7=35 (LC 13)<br>00 (lb) or less at joir<br>ons 250 (lb) or less at<br>, 7, 10<br>ax. Ten All forces<br>hen shown.<br>been considered fo<br>(3-second gust)<br>DL=6.0psf; h=30ft; (<br>ivelope) exterior zor<br>ever left and right<br>ght exposed;C-C for<br>for reactions shown<br>L=1.33<br>in the plane of the tru<br>(normal to the face)<br>d Details as applical<br>gner as per ANSI/TF<br>roof live load: Lumb<br>20.0 psf (flat roof<br>imber DOL=1.15 Pl&<br>Fully Exp.; Ct=1.10; | 5)<br>ed or 7)<br>8)<br>c 9)<br>10<br>nt(s) 11<br>250 12<br>r 13<br>Cat. LC<br>.;<br>uss<br>.),<br>ble,<br>PI 1.<br>er<br>ate | Roof design<br>slope.<br>This truss ha<br>load of 12.0<br>overhangs r<br>Gable requin<br>Gable studs<br>This truss ha<br>chord live lo<br>) * This truss is<br>on the botto<br>3-06-00 tall<br>chord and a<br>) Provide meet<br>bearing plat<br>bearing plat<br>bearing load<br>R802.10.2 a<br>) See Standal<br>Detail for Cc<br>consult qual<br>DAD CASE(S) | snow load has be<br>as been designed<br>psf or 2.00 times<br>on-concurrent wit<br>es continuous boi<br>spaced at 1-4-0 of<br>as been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w<br>my other members<br>thanical connectio<br>e capable of withs<br>2, 4.<br>designed in accoo<br>Residential Code<br>nd referenced sta<br>rd Industry Piggyb<br>menection to base<br>ified building desig<br>Standard | een reduc<br>for great<br>flat roof li<br>tho ther lini-<br>titom choro-<br>oc.<br>I for a 10.1<br>t with any version<br>ed for a liva<br>as where<br>will fit betworks.<br>on (by oth<br>standing 1<br>ordance we<br>e sectionss<br>andard AN<br>boack Trus<br>truss as a<br>gner. | ed to accour<br>er of min rool<br>oad of 20.0 p<br>re loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>ers) of truss i<br>00 lb uplift ai<br>ith the 2015<br>i R502.11.1 a<br>ISI/TPI 1.<br>s Connection<br>applicable, or | nt for<br>f live<br>sf on<br>ads.<br>Opsf<br>om<br>to<br>t<br>and |                      |                             |                          | SE<br>041                       | AL<br>860<br>VELERIT               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



VIN VELIN

March 21,2023

818 Soundside Road Edenton, NC 27932

| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | VB1   | Valley     | 1   | 1   | T30100036<br>Job Reference (optional)   |

4x6 =3

9-2-2

9-2-2

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Scale = 1:53.4 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

Snow (Ps/Pf)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:12:04 ID:tMNRHLTgNcfhemWi22JFPrzaKLI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-0-1

8-10-0

18-4-3

0-4-2

818 Soundside Road Edenton, NC 27932

Page: 1

2x4 II 2x4 I 2 4 7-8-0 7-4 12 10 Г 5 ò 9 6 8 7 2x4 II 3x4 2x4 II 2x4 II 3x4、 3x4 =18-4-3 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.33 Vert(LL) n/a 999 MT20 244/190 n/a BC 10 1/20 0 Lumber DOL 1 15 0.23 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.39 Horiz(TL) 0.01 5 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 83 lb FT = 20%10.0 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2x4 SP No.2 snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied or slope. 10-0-0 oc purlins. Gable requires continuous bottom chord bearing. 6) Rigid ceiling directly applied or 6-0-0 oc 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom 1=18-4-3, 5=18-4-3, 6=18-4-3, chord live load nonconcurrent with any other live loads. 7=18-4-3, 9=18-4-3 9) \* This truss has been designed for a live load of 20.0psf 1=-145 (LC 10) on the bottom chord in all areas where a rectangle 1=-15 (LC 10), 6=-144 (LC 15), 3-06-00 tall by 2-00-00 wide will fit between the bottom 9=-146 (LC 14) chord and any other members, with BCDL = 10.0psf. 1=103 (LC 26), 5=100 (LC 30), 10) Provide mechanical connection (by others) of truss to 6=515 (LC 26), 7=525 (LC 25), bearing plate capable of withstanding 15 lb uplift at joint 9=518 (LC 25) 1, 146 lb uplift at joint 9 and 144 lb uplift at joint 6. (Ib) - Maximum Compression/Maximum 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and 1-2=-131/282, 2-3=-5/207, 3-4=0/207, R802.10.2 and referenced standard ANSI/TPI 1. 4-5=-96/249 LOAD CASE(S) Standard 1-9=-190/128, 7-9=-190/128, 6-7=-190/128, 5-6=-190/128 The American Ame American Amer 3-7=-377/0. 2-9=-325/186. 4-6=-324/185 20 Unbalanced roof live loads have been considered for Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. SEAL II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right 041860 exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. March 21,2023

| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | VB2   | Valley     | 1   | 1   | T30100037<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:04 ID:LqSE2Vgy78w7oXuA5qeT8ezaKL0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



13-6-10

| 0     |   | 4 44 0 |  |
|-------|---|--------|--|
| Scale | = | 1:41.9 |  |

| Loading                                    |                                               | (psf)                                                                                           | Spacing                                                                                                                       | 2-0-0                             |                                                                                                                                                                                             | CSI                                                                                                                                                                                  |                                                                                                                 | DEFL                                                                                                                                        | in                                | (loc) | l/defl | L/d | PLATES        | GRIP     |
|--------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                |                                               | 20.0                                                                                            | Plate Grip DOL                                                                                                                | 1.00                              |                                                                                                                                                                                             | TC                                                                                                                                                                                   | 0.19                                                                                                            | Vert(LL)                                                                                                                                    | n/a                               | -     | n/a    | 999 | MT20          | 244/190  |
| Snow (Ps/Pf)                               | 10                                            | ).1/20.0                                                                                        | Lumber DOL                                                                                                                    | 1.15                              |                                                                                                                                                                                             | BC                                                                                                                                                                                   | 0.12                                                                                                            | Vert(TL)                                                                                                                                    | n/a                               | -     | n/a    | 999 |               |          |
| TCDL                                       |                                               | 10.0                                                                                            | Rep Stress Incr                                                                                                               | YES                               |                                                                                                                                                                                             | WB                                                                                                                                                                                   | 0.11                                                                                                            | Horiz(TL)                                                                                                                                   | 0.00                              | 5     | n/a    | n/a |               |          |
| BCLL                                       |                                               | 0.0*                                                                                            | Code                                                                                                                          | IRC20                             | 15/TPI2014                                                                                                                                                                                  | Matrix-MS                                                                                                                                                                            |                                                                                                                 |                                                                                                                                             |                                   |       |        |     |               |          |
| BCDL                                       |                                               | 10.0                                                                                            |                                                                                                                               |                                   |                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                             |                                   |       |        |     | Weight: 58 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS | 2x4 SP No<br>2x4 SP No<br>2x4 SP No           | 0.2<br>0.2<br>0.3                                                                               |                                                                                                                               | 2                                 | <ul> <li>FCLL: ASC<br/>DOL=1.15  <br/>snow); Ps=<br/>DOL=1.00)</li> </ul>                                                                                                                   | E 7-10; Pr=20.0<br>Plate DOL=1.00)<br>10.1 psf (roof sno<br>; Category II; Exp                                                                                                       | osf (roof liv<br>Pf=20.0 p<br>w: Lumber<br>B; Fully E                                                           | ve load: Lumb<br>sf (flat roof<br>r DOL=1.15 F<br>xp.; Ct=1.10;                                                                             | oer<br>Plate                      |       |        |     |               |          |
| BRACING                                    |                                               |                                                                                                 |                                                                                                                               |                                   | Unobstructe                                                                                                                                                                                 | ed slippery surfac                                                                                                                                                                   | e                                                                                                               |                                                                                                                                             |                                   |       |        |     |               |          |
| TOP CHORD                                  | Structural<br>6-0-0 oc p                      | wood shea<br>ourlins.                                                                           | athing directly applie                                                                                                        | ed or <sup>g</sup>                | <ol> <li>Roof design<br/>slope.</li> </ol>                                                                                                                                                  | n snow load has l                                                                                                                                                                    | been reduc                                                                                                      | ed to accoun                                                                                                                                | nt for                            |       |        |     |               |          |
| BOT CHORD                                  | Rigid ceili<br>bracing.                       | ng directly                                                                                     | applied or 6-0-0 oc                                                                                                           | 6                                 | <ul> <li>Gable requi</li> <li>Gable stude</li> </ul>                                                                                                                                        | ires continuous b<br>s spaced at 4-0-0                                                                                                                                               | ottom chor                                                                                                      | d bearing.                                                                                                                                  |                                   |       |        |     |               |          |
| REACTIONS                                  | (size)<br>Max Horiz<br>Max Uplift<br>Max Grav | 1=13-6-10<br>7=13-6-10<br>1=-106 (L<br>1=-18 (LC<br>8=-107 (L<br>1=106 (LC<br>(LC 26), 7<br>25) | 0, 5=13-6-10, 6=13-6<br>), 8=13-6-10<br>C 10)<br>: 10), 6=-104 (LC 15<br>C 14)<br>C 26), 5=88 (LC 2), 6<br>=271 (LC 2), 8=336 | 5-10,<br>5<br>5<br>5=333<br>(LC 1 | <ul> <li>a) This truss on the bottom</li> <li>b) * This truss on the bottom</li> <li>chord and a</li> <li>chord and a</li> <li>chord eme</li> <li>bearing pla</li> <li>1 07 h un</li> </ul> | has been designe<br>bad nonconcurrer<br>has been design<br>om chord in all ar<br>by 2-00-00 wide<br>any other membe<br>chanical connect<br>te capable of with<br>biff at joint 8 and | o for a 10.0<br>nt with any<br>led for a liv<br>eas where<br>will fit betw<br>rs.<br>ion (by oth<br>istanding 1 | or per bottom<br>other live load<br>re load of 20.1<br>a rectangle<br>veen the bottivers) of truss to<br>18 lb uplift at j<br>ft at joint 6 | ads.<br>Opsf<br>om<br>to<br>joint |       |        |     |               |          |
| FORCES                                     | (lb) - Maxi<br>Tension                        | mum Com                                                                                         | pression/Maximum                                                                                                              | 1                                 | 1, 107 15 up<br>11) This truss is<br>Internationa                                                                                                                                           | s designed in acc                                                                                                                                                                    | ordance w                                                                                                       | ith the 2015                                                                                                                                | and                               |       |        |     |               |          |
| TOP CHORD                                  | 1-2=-131/<br>4-5=-107/                        | 100, 2-3=- <sup>-</sup><br>71                                                                   | 117/97, 3-4=-108/89                                                                                                           | ,                                 | R802.10.2                                                                                                                                                                                   | and referenced s                                                                                                                                                                     | tandard AN                                                                                                      | NSI/TPI 1.                                                                                                                                  |                                   |       |        |     |               |          |
| BOT CHORD                                  | 1-8=-42/1                                     | 02, 7-8=-42                                                                                     | 2/74, 6-7=-42/74,                                                                                                             | L                                 | LUAD CASE(S                                                                                                                                                                                 | ) Standard                                                                                                                                                                           |                                                                                                                 |                                                                                                                                             |                                   |       |        |     |               |          |
| WEDO                                       | 5-6=-42/8                                     | 1                                                                                               |                                                                                                                               |                                   |                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                             |                                   |       |        |     |               | A SULL   |
| NOTES                                      | 3-7=-190/                                     | 0, 2-8=-250                                                                                     | 0/100, 4-0=-254/149                                                                                                           |                                   |                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                             |                                   |       |        |     | "ATHA         | RO       |
| NULES                                      |                                               |                                                                                                 |                                                                                                                               |                                   |                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                             |                                   |       |        |     | an old        | dier 1   |

- Unbalanced roof live loads have been considered for this design.
   Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 21,2023

Page: 1



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | VB3   | Valley     | 1   | 1   | T30100038<br>Job Reference (optional)   |

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:04 ID:\_b7wRzP9JO8F98DxpDFJF?zaKLM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



3



8-9-0

Scale = 1:31.7

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                 | (psf)<br>20.0<br>10.1/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                     | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC201                    | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                             | 0.26<br>0.23<br>0.13                                                                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                        | in<br>n/a<br>n/a<br>0.00                                      | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 33 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>8-9-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=8-9-0, 3<br>Max Horiz 1=-67 (LC<br>Max Uplift 1=-27 (LC<br>Max Grav 1=61 (LC<br>(LC 2)<br>(lb) - Maximum Corr<br>Tension<br>1-2=-71/275, 2-3=-7<br>1-4=-213/112, 3-4=-<br>2-4=-485/129 | eathing directly applied<br>/ applied or 6-0-0 oc<br>3=8-9-0, 4=8-9-0<br>C 10)<br>C 30), 3=-27 (LC 29),<br>C 14)<br>: 29), 3=61 (LC 30), 4=<br>npression/Maximum<br>/1/275<br>-213/112 | 4)<br>I or 5)<br>6)<br>7)<br>8)<br>9)<br>=655<br>10<br>11 | TCLL: ASCE<br>DOL=1.15 P<br>snow); Ps=1<br>DOL=1.00);<br>Unobstructe<br>Roof design<br>slope.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss ha<br>on the bottoo<br>3-06-00 tall t<br>chord and ar<br>Provide mec<br>bearing plate<br>1, 27 lb upliff<br>) This truss is<br>International<br>R802.10.2 a<br>DAD CASE(S) | 57-10; Pr=20.0 ps<br>late DOL=1.00); F<br>0.1 psf (roof snow<br>Category II; Exp E<br>d slippery surface<br>es continuous bot<br>spaced at 4-0-0 c<br>is been designed<br>ad nonconcurrent<br>has been designed<br>ad nonconcurrent<br>hanical connectio<br>e capable of withs<br>a t joint 3 and 55<br>designed in accon<br>Residential Code<br>nd referenced sta<br>Standard | of (roof liv<br>f=20.0 p<br>y: Lumbe<br>3; Fully E<br>een reduc<br>tom chor<br>c.<br>for a 10.<br>with any<br>d for a liv<br>as where<br>rill fit betv<br>5.<br>Ib uplift a<br>rdance w<br>s sections<br>ndard AN | re load: Lumb<br>sf (flat roof<br>r DOL=1.15 F<br>xp.; Ct=1.10;<br>red to accour<br>d bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.1<br>a rectangle<br>veen the bott<br>ers) of truss I<br>r7 lb uplift at j<br>tt joint 4.<br>ith the 2015<br>s R502.11.1 <i>a</i><br>JSI/TPI 1. | Plate<br>Plate<br>It for<br>Ids.<br>Dpsf<br>com<br>to<br>oint |                      |                             |                          |                                 |                                    |
| <ol> <li>Unbalance</li> </ol>                                                                                                                                  | ed roof live loads have                                                                                                                                                                                                                                                                                                        | been considered for                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                  |                                                               |                      |                             |                          |                                 | 1117.                              |

this design.

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.



March 21,2023



| Job     | Truss | Truss Type | Qty | Ply | CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE |
|---------|-------|------------|-----|-----|-----------------------------------------|
| 3466725 | VB4   | Valley     | 1   | 1   | T30100039<br>Job Reference (optional)   |

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:04 ID:D3eumEJ8Bx8OBvcPLX5RwJzaKLU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:24.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

| Loading<br>TCLL (roof)<br>Snow (Ps/Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                         | (psf)<br>20.0<br>10.1/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                           | 2-0-0<br>1.00<br>1.15<br>YES<br>IRC2015 | /TPI2014                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                            | 0.11<br>0.10<br>0.00                                                                                        | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                            | in<br>n/a<br>n/a<br>0.00  | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 12 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                                                                     | 2x4 SP No.2<br>2x4 SP No.2<br>Structural wood shea<br>3-11-6 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=3-11-6,<br>Max Horiz 1=29 (LC<br>Max Uplift 1=-2 (LC 1<br>Max Gray 1=158 (LC                                                                                                                                                                                                                                                                   | athing directly applied<br>applied or 10-0-0 oc<br>3=3-11-6<br>11)<br>14), 3=-2 (LC 15)<br>2), 3=158 (LC 2)                                                                                                                                                                                                                                                                  | 6)<br>7)<br>8)<br>d or 9)<br>10)        | Gable require<br>Gable studs a<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>and 2 lb uplif<br>This truss is o | es continuous botto<br>spaced at 4-0-0 oc<br>s been designed fi<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members.<br>nanical connection<br>capable of withsta<br>t at joint 3.<br>designed in accord | or a 10.0<br>or a 10.0<br>vith any<br>for a liv<br>s where<br>I fit betw<br>(by oth<br>anding 2<br>dance wi | d bearing.<br>) psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss to<br>lb uplift at joi<br>th the 2015<br>DECO 14 5 | ds.<br>)psf<br>om<br>nt 1 |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                    |
| FORCES                                                                                                                                                                                                                                                                                                                 | (lb) - Maximum Com                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pression/Maximum                                                                                                                                                                                                                                                                                                                                                             |                                         | R802.10.2 ar                                                                                                                                                                                                 | Residential Code s                                                                                                                                                                                                                                            | sections<br>dard AN                                                                                         | R502.11.1 a<br>ISI/TPI 1.                                                                                                                                            | nd                        |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                    |
| TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                                                                                 | 1-2=-212/26, 2-3=-21<br>1-3=-13/159                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/26                                                                                                                                                                                                                                                                                                                                                                        | LO                                      | AD CASE(S)                                                                                                                                                                                                   | Standard                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                      |                           |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                    |
| <ol> <li>Unbalancethis design</li> <li>Unbalancethis design</li> <li>Wind: ASC Vasd=91m</li> <li>Exp 8; E</li> <li>and C-C Exexposed ; exposed ; emembers a Lumber DC</li> <li>Truss desisionly. For ssee Standa or consult of DCL=1.15 snow); Ps= DOL=1.00)</li> <li>Unobstruct</li> <li>Roof desig slope.</li> </ol> | d roof live loads have<br>E 7-10; Vult=115mph<br>ph; TCDL=6.0psf; BCI<br>inclosed; MWFRS (en-<br>kterior (2) zone; cantile<br>end vertical left and rig<br>and forces & MWFRS f<br>DL=1.60 plate grip DOI<br>igned for wind loads in<br>tuds exposed to wind<br>ard Industry Gable Enc<br>qualified building desig<br>E 7-10; Pr=20.0 psf (r<br>Plate DOL=1.00); Pf=:<br>10.1 psf (roof snow: L<br>; Category II; Exp B; F<br>ed slippery surface<br>n snow load has been | (3-second gust)<br>DL=6.0psf; h=30ft; C:<br>velope) exterior zone<br>ever left and right<br>hft exposed;C-C for<br>for reactions shown;<br>L=1.33<br>the plane of the trus<br>(normal to the face),<br>d Details as applicabl<br>gner as per ANSI/TPI<br>coof live load: Lumbe<br>20.0 psf (flat roof<br>.umber DOL=1.15 Pla<br>Fully Exp.; Ct=1.10;<br>reduced to account i | at.<br>s<br>e,<br>1.<br>r<br>ate        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                                                      |                           |                      |                             | and the second s | SE/<br>0418                     | AL<br>360<br>VELETINATION          |



