

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3466725 CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE

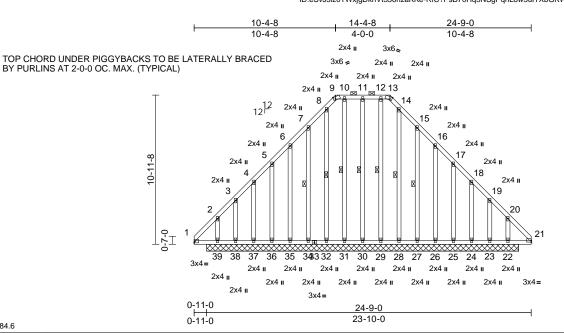
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T30100011 thru T30100039

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

March 21,2023


Velez, Joaquin

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A1	Piggyback Base Supported Gable	1	1	T30100011 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:50 ID:eSvJ5iz0TWxjgDknVt356hzaKKe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.6 Plate Offsets (X, Y): [9:0-1-11,Edge], [13:0-1-11,Edge]

Plate Offsets (.	X, Y): [9:0-	-i-ii,Eage	j, [13:0-1-11,Edge]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	;	(psf) 20.0 8.3/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2) 015/TPI2014	CSI TC BC WB Matrix-MS	0.13 0.21 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) 22	· n/a · n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 253 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP N 2x4 SP N 2x4 SP N	0.2	1		FORCES TOP CHORD	(lb) - Maximum Tension 1-2=-110/155, 2 4-5=-95/183, 5-I	2-3=-153/18	9, 3-4=-78/14	6,	or Se	nly. For s e Standa	tuds ex Ird Indu	<pre>kposed to wind (n ustry Gable End E</pre>	ne plane of the truss ormal to the face), Details as applicable, er as per ANSI/TPI 1.
BRACING TOP CHORD	Structural 10-0-0 oc 2-0-0 oc p	l wood she purlins, ex purlins (10-	0-0 max.): 9-13.			7-8=-241/304, 8 10-11=-188/241 12-13=-188/241 14-15=-241/304	, 11-12=-18 , 13-14=-20 Ⅰ, 15-16=-18	38/241, 07/255, 35/242,	/241,	D sr D	OL=1.15 now); Ps= OL=1.15	Plate D varies Plate D	OL=1.00); Pf=20 (min. roof snow= OL=1.00) see loa	8.3 psf Lumber ad cases; Category II;
BOT CHORD	bracing.	0 ,	applied or 6-0-0 oc			16-17=-139/209 18-19=-70/141, 20-21=-105/151	19-20=-141			รเ	irface	, ,	Ct=1.10; Unobst	duced to account for
WEBS	1 Row at		7-34, 8-32, 10-31, 1 12-29, 14-28, 15-27		BOT CHORD	1-39=-122/109,	38-39=-118			́ sl	ope.			
	Max Horiz Max Uplift	22=22-11 24=22-11 26=22-11 30=22-11 35=22-11 35=22-11 39=22-11 39=22-11 39=22-11 (22=-202 (24=-36 (L 30=-17 (L 35=-48 (L 37=-38 (L 37=-38 (L 39=-219 (22=324 (L))))))))))))))))))))))))))))))))))))	$\begin{array}{c} -0, \ 23 = 22 - 11 - 0, \\ -0, \ 25 = 22 - 11 - 0, \\ -0, \ 27 = 22 - 11 - 0, \\ -0, \ 27 = 22 - 11 - 0, \\ -0, \ 31 = 22 - 11 - 0, \\ -0, \ 34 = 22 - 11 - 0, \\ -0, \ 34 = 22 - 11 - 0, \\ -0, \ 36 = $	C 10), (5), (5), (4), (4), 11), 13),	, this design	37-38=-118/107 35-36=-118/107 32-34=-118/107 30-31=-118/107 28-29=-118/107 24-25=-118/107 22-23=-118/107 22-33=-152/83, 3 5-36=-89/65, 6 -8-32=-122/20, 1 12-29=-133/63, 15-27=-106/84, 1 -22=-147/79 d roof live loads h E 7-10; Vult=115	7, 34-35=-1 7, 31-32=-1 7, 29-30=-1 7, 27-28=-1 7, 22-26=-1 7, 23-24=-1 7, 21-22=-1 7, 21-22=-1 7, 21-22=-1 35=-91/66, 0-31=-135/ 14-28=-12(16-26=-91/ 9-23=-132/ have been of	18/107, 18/10, 18/107, 18/10, 18/10, 18/10, 18/10, 18/10, 18/10, 18/10, 18/10, 18/10,	/59, 3, 9/47, 9/65,	7) G 8) TI ch 9) * ⁻ or 3-	able stud nis truss h nord live lo This truss n the botto 06-00 tall nord and a	s space has bee bad nor has be om cho by 2-0 any oth	ed at 1-4-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh	any other live loads. a live load of 20.0psf ere a rectangle between the bottom
		26=113 (L 28=147 (L 30=105 (L 32=148 (L 35=113 (L	.C 30), 25=122 (LC C 26), 27=115 (LC C 27), 29=160 (LC C 1), 31=161 (LC 2 C 28), 34=115 (LC 2 C 25), 36=122 (LC C 26), 38=286 (LC .C 26)	26), 27), 28), 25), 25),	Vasd=91m II; Exp B; E and C-C E exposed ; o members a	ph; TCDL=6.0psf inclosed; MWFRS xterior (2) zone; c end vertical left ar and forces & MWF DL=1.60 plate grip	; BCDL=6.0 S (envelope cantilever le nd right exp FRS for rea	Opsf; h=30ft; () exterior zon ft and right osed;C-C for ctions shown;	e			AL DESTRUCTION		AL 360 VELEVIUM March 21,202

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A1	Piggyback Base Supported Gable	1	1	T30100011 Job Reference (optional)

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 219 lb uplift at joint 39, 243 lb uplift at joint 38, 38 lb uplift at joint 37, 57 lb uplift at joint 36, 48 lb uplift at joint 35, 68 lb uplift at joint 34, 17 lb uplift at joint 30, 68 lb uplift at joint 27, 48 lb uplift at joint 26, 57 lb uplift at joint 24, 230 lb uplift at joint 23 and 202 lb uplift at joint 22.

11) N/A

- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

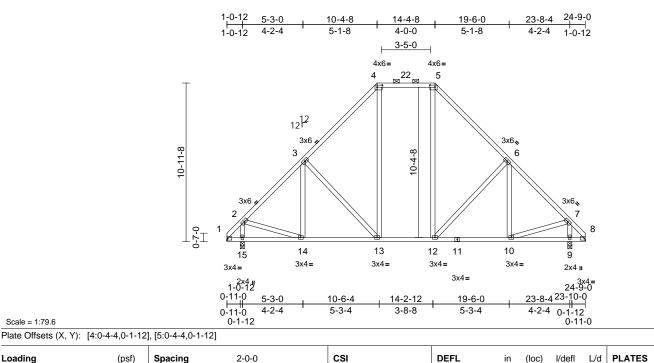
Uniform Loads (lb/ft) Vert: 1-9=-37, 9-13=-60, 13-21=-37, 21-40=-20 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:50 ID:eSvJ5iz0TWxjgDknVt356hzaKKe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A2	Piggyback Base	3	1	T30100012 Job Reference (optional)

Scale = 1:79.6

Loading

NOTES


TCLL (roof)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:53 ID:AKSe9cn1i6NDCWMfwRmpKqzaKJb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GRIP

244/190

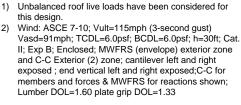
Page: 1

0.34 Vert(LL)

0.13

13-14

>999


240 MT20

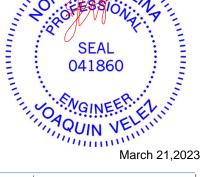
	20.0		1.00		10	0.04		0.10	10 14	-000	240	101120	244/100
Snow (Ps/Pf)	8.3/20.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.15	13-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.27	Horz(CT)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 171 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3			DOL=1.15 F snow); Ps= DOL=1.15 F	CE 7-10; Pr=20 Plate DOL=1.00) varies (min. roof Plate DOL=1.00) Exp.; Ct=1.10;	; Pf=20.0 p snow=8.3 see load c	sf (flat roof psf Lumber ases; Catego						
BRACING	o , , , , , , ,			surface	Exp., 01-1110,	011000011001	ou onppory						
TOP CHORD	Structural wood shea 5-11-1 oc purlins, ex 2-0-0 oc purlins (6-0-	cept		 Roof design slope. 	snow load has								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		6) This truss h	quate drainage as been designe	ed for a 10.	0 psf bottom	0					
	(size) 9=0-3-8, 1 Max Horiz 15=202 (L Max Uplift 9=-8 (LC Max Grav 9=990 (LC	.C 11) 15), 15=-8 (LC 14)		 This truss on the botto 3-06-00 tall 	ad nonconcurre has been desigr m chord in all ar by 2-00-00 wide ny other membe	ned for a liv eas where will fit bety	e load of 20. a rectangle veen the bott	.0psf tom					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3) Provide med	chanical connect e capable of with	tion (by oth	ers) of truss	to					
TOP CHORD	1-2=-51/25, 2-3=-904 4-5=-478/182, 5-6=-7 7-8=-49/25	, ,	8,	15 and 8 lb 9) This truss is	uplift at joint 9. designed in acc Residential Co	cordance w	ith the 2015						
BOT CHORD	1-15=-14/44, 14-15= 13-14=-81/671, 12-1 9-10=-12/42, 8-9=-12	3=-6/510, 10-12=0/5	86,	R802.10.2 a 10) Graphical p	Ind referenced s urlin representat ation of the purli	tandard AN	NSI/TPI 1. ot depict the					Whith St	
WEBS	3-14=-102/79, 3-13= 5-12=-42/270, 6-12=	-244/185, 4-13=-42/		bottom chor LOAD CASE(S)	d.	in along the	5 IOP and/OI					"ATH C	ROLI

тс

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 1-4=-37, 4-5=-60, 5-8=-37, 16-19=-20

7-10=0/576


2-15=-904/125, 2-14=0/576, 7-9=-904/125,

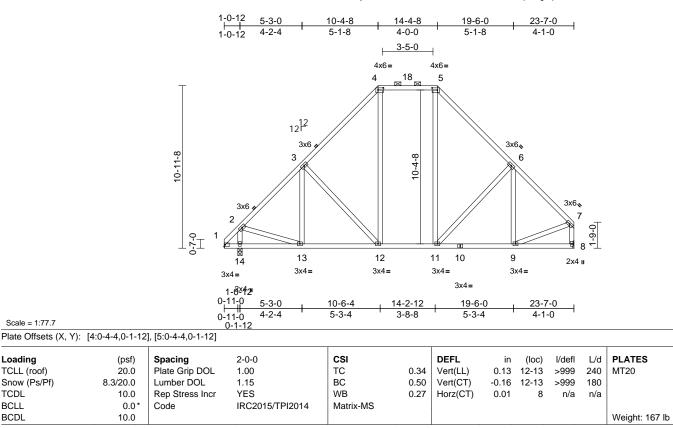
(psf)

20.0

Plate Grip DOL

1.00

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A3	Piggyback Base	5	1	T30100013 Job Reference (optional)


Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:11:54 ID:fc7jeCcJSJ4Q_67wTRW_dNzaKIW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GRIP

244/190

FT = 20%

Page: 1

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-11-5 oc purlins, except end verticals, and
	2-0-0 oc purlins (6-0-0 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 8= Mechanical, 14=0-3-8
	Max Horiz 14=220 (LC 13)
	Max Uplift 8=-2 (LC 15), 14=-8 (LC 14)
	Max Grav 8=893 (LC 2), 14=982 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-50/26, 2-3=-896/98, 3-4=-773/185,
	4-5=-471/182, 5-6=-772/185, 6-7=-854/98,
	7-8=-858/74
BOT CHORD	1-14=-13/43, 13-14=-198/208,
	12-13=-97/666, 11-12=-23/502,
	9-11=-28/559, 8-9=-19/39
WEBS	3-13=-97/80, 3-12=-249/185, 4-12=-42/266,
	5-11=-42/260, 6-11=-223/178, 6-9=-137/80,
	7-9=-9/572, 2-14=-899/125, 2-13=0/572
NOTES	

NOTES

Scale = 1:77.7

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Ps/Pf)

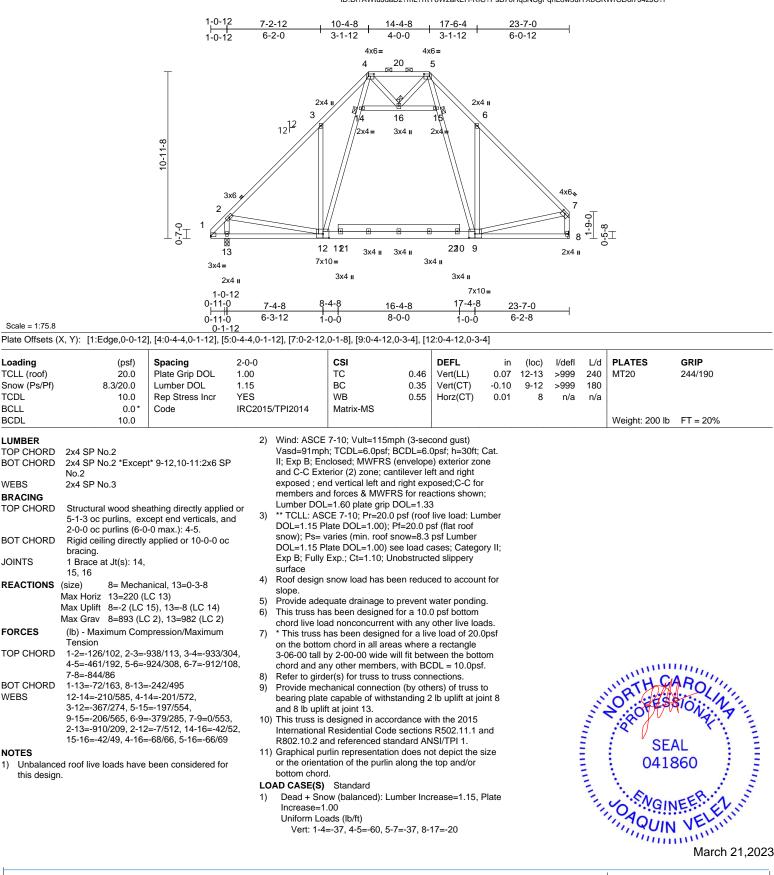
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=8.3 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.
- 5) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 2 lb uplift at joint 8 and 8 lb uplift at joint 14.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

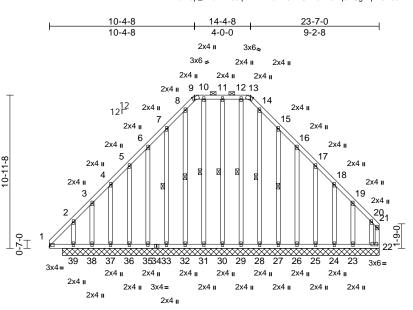
Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 Uniform Loads (lb/ft)

Vert: 1-4=-37, 4-5=-60, 5-7=-37, 8-15=-20



March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A4	Piggyback Base	6	1	T30100014 Job Reference (optional)


Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:54 ID:DI?AWtuJdaDz?mL?rrtY6WzaKEH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A5	Piggyback Base Supported Gable	1	1	T30100015 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:?MbvTsp_kwoB7R9clpEMBYzaKD5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

23-7-0

Scale = 1:82.4

Plate Offsets (X, Y): [9:0-1-11,Edge], [13:0-1-11,Edge]

Н

CLL (roof) now (Ps/Pf) CDL CLL	\$	20.0								(loc)		L/d	PLATES	GRIP
CDL	5	20.0	Plate Grip DOL	1.00		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
		3.3/20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
CLL		10.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	-0.01	22	n/a	n/a		
		0.0*	Code	IRC2	015/TPI2014	Matrix-MS								
CDL		10.0											Weight: 251 lb	FT = 20%
JMBER					FORCES	(lb) - Maximum Co	ompressi	on/Maximum		3) Ti	uss desi	gned fo	or wind loads in t	he plane of the tru
OP CHORD	2x4 SP N	0.2				Tension				on	ly. For s	tuds ex	xposed to wind (r	normal to the face)
OT CHORD	2x4 SP N	0.2			TOP CHORD	1-2=-86/114, 2-3=	-119/123	8, 3-4=-62/10	6,	se	e Standa	rd Indu	ustry Gable End I	Details as applicab
EBS	2x4 SP N	0.3				4-5=-107/140, 5-6	=-151/18	84, 6-7=-197/	239,	or	consult c	ualifie	d building design	er as per ANSI/TP
THERS	2x4 SP N	0.3				7-8=-254/306, 8-9	=-216/25	6, 9-10=-197	7/242,					(roof live load: Lum
RACING						10-11=-197/242,	11-12=-1	97/242,					OOL=1.00); Pf=20	
OP CHORD	Structural	wood she	athing directly applie	d or		12-13=-197/242, *							(min. roof snow=	
			cept end verticals, a			14-15=-254/306,	15-16=-1	97/260,						ad cases; Categor
			0-0 max.): 9-13.			16-17=-151/226,						/ Exp.;	Ct=1.10; Unobst	tructed slippery
OT CHORD			applied or 6-0-0 oc			18-19=-108/153,					rface			
	bracing.					20-21=-121/103, 2						n snow	load has been r	educed to account
EBS	1 Row at	midpt	7-33, 8-32, 10-31, 1	1-30.	BOT CHORD	1-39=-87/89, 38-3					pe.			
			12-29, 14-28, 15-27			37-38=-152/136, 3								ent water ponding
EACTIONS	(size)	22=22-8-0). 23=22-8-0. 24=22-	-8-0		35-36=-152/136, 3							ed at 1-4-0 oc.	
	(0.20)), 26=22-8-0, 27=22·			32-33=-152/136, 3							en designed for a	
), 29=22-8-0, 30=22·			30-31=-152/136, 2								any other live load
), 32=22-8-0, 33=22-			28-29=-152/136, 2								a live load of 20.0
), 36=22-8-0, 37=22-			26-27=-152/136, 2							ord in all areas wh	
), 39=22-8-0	,		24-25=-152/136, 2	23-24=-1	52/136,						between the botto
	Max Horiz					22-23=-152/136				ch	ord and a	any oth	er members.	
			LC 13), 23=-204 (LC	; 10).	WEBS	2-39=-148/62, 3-3								
			C 14), 25=-54 (LC 1			5-36=-89/65, 6-35 8-32=-103/24, 10-							minin	in the second se
			C 15), 27=-66 (LC 1						30/47,				"THO	ARO
			C 11), 33=-69 (LC 1-			12-29=-131/68, 14 15-27=-107/81, 16			0/07				Nav 1.7.	
		35=-49 (L	C 14), 36=-56 (LC 1-	4).					33/07,			5	O'.EES	Sto V
		37=-22 (L	C 15), 38=-195 (LC	11),		18-24=-79/51, 19- 20-22=-381/417	23=-233	172,				2 1	2:017V	No.7
		39=-133 (LC 10)			20-22=-301/417						-	:0	AL 860
	Max Grav	22=244 (L	_C 10), 23=320 (LC 2	201	NOTES							2	: /	
			_C 25), 25=126 (LC 2		,	d roof live loads ha	ve been	considered fo	or			=	: SE	AL :
		26=113 (L	_C 26), 27=115 (LC 2	26),	this design							22	: 041	000 :
		28=145 (L	C 27), 29=158 (LC 2	27),		E 7-10; Vult=115m						=	: 041	000 :
		30=107 (L	_C 30), 31=153 (LC 2	27),		ph; TCDL=6.0psf; E						-	A	
		32=129 (L	C 28), 33=118 (LC 2	25),		inclosed; MWFRS			ne			-	·	0.1
		35=115 (L	_C 25), 36=118 (LC 2	25),		kterior (2) zone; car						1	V. SNOI	JEEN. A.
			_C 2), 38=208 (LC 12			end vertical left and						1	0,	MAN ENS
		39=326 (L				ind forces & MWFR			ו;				SE 041	VELIN
		,	,		Lumber D0	DL=1.60 plate grip [DOL=1.3	3					1, OIN	

March 21,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	A5	Piggyback Base Supported Gable	1	1	T30100015 Job Reference (optional)

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 22, 133 lb uplift at joint 39, 195 lb uplift at joint 38, 22 lb uplift at joint 37, 56 lb uplift at joint 36, 49 lb uplift at joint 35, 69 lb uplift at joint 33, 19 lb uplift at joint 30, 66 lb uplift at joint 27, 49 lb uplift at joint 26, 54 lb uplift at joint 25, 38 lb uplift at joint 24 and 204 lb uplift at joint 23.

11) N/A

- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 1-9=-37, 9-13=-60, 13-21=-37, 22-40=-20 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:?MbvTsp_kwoB7R9clpEMBYzaKD5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	B1	Common Structural Gable	1	1	T30100016 Job Reference (optional)

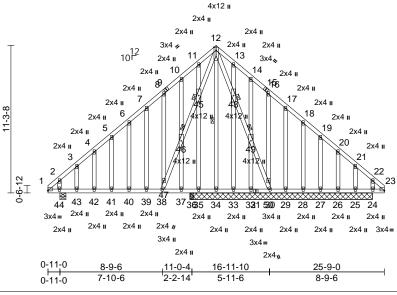
12-10-8

12-10-8

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:5Kyr8XAUqr8TFrmmar_JKBzaKTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-9-0


12-10-8

Page: 1

MULTIN NOW 818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **AVSUPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X_Y): [1:Edge 0-0-6] [23:Edge 0-0-6]

Scale = 1:88.2

Plate Offsets (X, Y): [1:Edge,0-0-6]	, [23:Edge,0-0-6]										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 10.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES	CSI TC BC WB	0.33 0.55 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.13 -0.19 0.01	(loc) 41-42 41 24	>649	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 276	b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 45, 46, 48, 49 (size) 24=13-11 26=13-11 26=13-11 30=13-11 33=13-11 33=13-11 Max Horiz 44=205 (Max Uplift 24=-102 26=-19 (L 26=-19 (L 26=-19 (L 30=-100 33=-9 (LC 36=-128 Max Grav 24=268 (26=120 (28=111 (30=389 (33=124 (35=52 (L)	-8, 25=13-11-8, -8, 27=13-11-8, -8, 29=13-11-8, -8, 32=13-11-8, -8, 34=13-11-8, -8, 36=0-3-8, 44=0-5- LC 11) (LC 11), 25=-121 (LC 15 .C 14), 27=-41 (LC 15 .C 14), 32=-46 (LC 1 2 10), 35=-25 (LC 11), (LC 25), 44=-143 (LC LC 25), 25=151 (LC 1 LC 26), 29=113 (LC 26 LC 26), 29=114 (LC 2 LC 26), 34=216 (LC 2 LC 26), 34=256 (LC 2 LC 26), 36=116 (LC 14	BOT CHORD 8 10), 1, 5), 14) 3), 6), 6), 7),	4-5=-503/194, 5-6 7-8=-546/302, 8-1 10-11=-677/411, 1 12-13=-301/307, 1 14-16=-263/265, 1 17-18=-194/189, 1 19-20=-126/140, 2 21-22=-160/119, 2	=-510/22 0=-683/3 1-12=-6 3-14=-2 6-17=-2 8-19=-1 10-21=-1 12-23=-1 44=-170 11-42=-1 39-40=-1 13-34=-1 30-32=-1 3-34=-1 30-32=-77, 5-27=-77, 1-25=-77, 1425=-3 46-47=-2 12-45=-3 46-80/5 0=-16/28 =-43/39, 48=-98/2 50=-80/5 27=-86/5	-7, 6-7=-503/2 -86, 93/428, 95/306, 31/224, 61/164, 16/113, 13/87 /453, 70/453, 70/453, 70/453, 21/220, 23/217, 23/217, 23/217, 23/217, /107, /107, /107, /107, /107, /107, /2, 35-45=-51, 34, 8-47=-249, 35-41=-40/38 2-44=-303/96 26, 14-49=-80, 15, 17-29=-89, 35, 20-26=-84,	/77, /121, 3, 5, /55,	Va II; I and exp me Lui 3) Tr onl 3) Tr onl 4) TC 5) Ro 5) Ro 50 Ga 7) Th	sd=91m; Exp B; E d C-C Ex posed ; e mber DC uss desig ly. For siz e Standa consult q LL: ASC DL=1.15 I ow); Ps= DL=1.00); obstructe of desigr pe. bble studs is trust h	bh; TC nclose tterior (and ver nd for U=1.60 gned for tuds ex rd Indu jualifie E 7-10 Plate E 10.1 p ; Categ ed slipp n snow	; Vult=115mph DL=6.0psf; BC d; MWFRS (en (2) zone; cantilu- tical left and rig ces & MWFRS 0 plate grip DO or wind loads ir cposed to wind ustry Gable End d building desig y; Pr=20.0 psf (roof snow: L gory II; Exp B; F poery surface load has been ed at 1-4-0 oc.	(3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right the exposed; C-C for for reactions shown; L=1.33 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe 20.0 psf (flat roof Lumber DOL=1.15 PI Fully Exp.; Ct=1.10; reduced to account
FORCES	44=660 ((Ib) - Maximum Con Tension	,		ed roof live loads hav n.	ve been	considered for	r			in the	JOAQUI	NEER EL

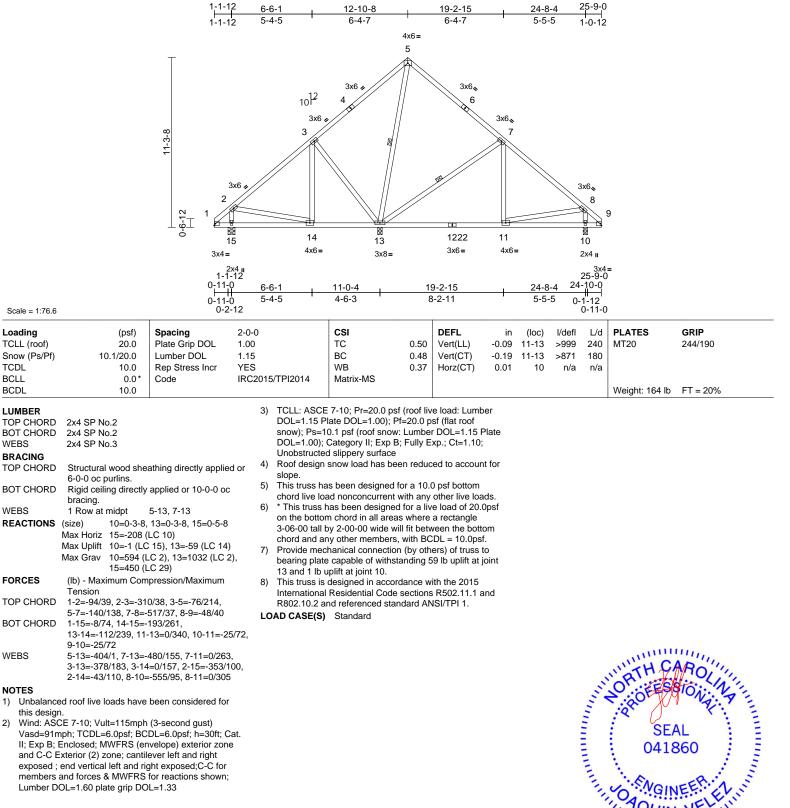
March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	B1	Common Structural Gable	1	1	T30100016 Job Reference (optional)

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 30, 25 lb uplift at joint 35, 143 lb uplift at joint 44, 9 lb uplift at joint 33, 46 lb uplift at joint 32, 40 lb uplift at joint 29, 34 lb uplift at joint 28, 41 lb uplift at joint 27, 19 lb uplift at joint 26, 121 lb uplift at joint 25, 102 lb uplift at joint 24 and 128 lb uplift at joint 36.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

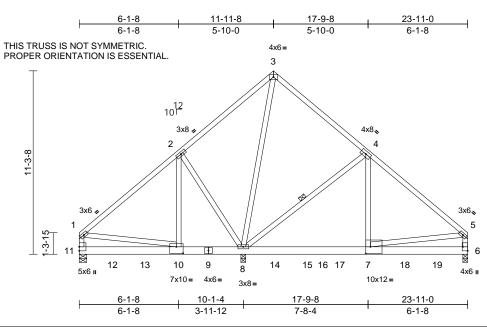
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:55 ID:5Kyr8XAUqr8TFrmmar_JKBzaKTQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	B2	Common	3	1	T30100017 Job Reference (optional)

2)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:11:56 ID:g4_sQ4hS_S7YVAnSwgAnyrzaKNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	B3	Common Girder	1	2	T30100018 Job Reference (optional)

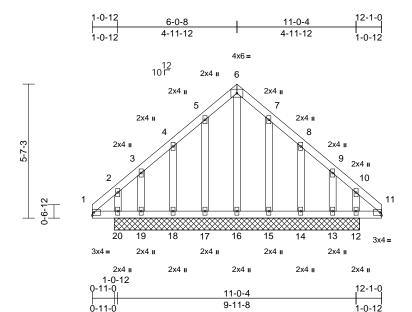
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:57 ID:yqqM9ofuFRcGWCV3OWUn0JzaKC?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.9

Plate Offsets (X, Y): [6:Edge,0-3-8], [7:0-3-8,0-5-0], [10:0-5-0,0-4-12]

6-0-0 oc purlins, ex Rigid ceiling directly bracing.	ot* 9-6:2x6 SP DSS	00 15 O C2015 2) 3)	except if note CASE(S) sec provided to d unless otherw	CSI TC BC WB Matrix-MS considered equally d as front (F) or ba tion. Ply to ply con istribute only loads	ack (B) t						PLATES MT20 Weight: 358 lb		
10.1/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	Lumber DOL 1.1 Rep Stress Incr NC Code IRC ot* 9-6:2x6 SP DSS eathing directly applied or ccept end verticals.	15 O C2015 2) 	All loads are except if note CASE(S) sec provided to d unless otherw	BC WB Matrix-MS considered equally d as front (F) or ba tion. Ply to ply cor istribute only loads	0.81 0.67 y applied	Vert(CT) Horz(CT)	-0.18 0.01	7-8 6 12) Hai	>906 n/a nger(s) o	180 n/a er other	Weight: 358 lb	FT = 20%	
10.0 0.0* 10.0 2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	Rep Stress Incr NC Code IR(bt* 9-6:2x6 SP DSS IR(eathing directly applied or cept end verticals. IR(2) 2) 3)	All loads are except if note CASE(S) sec provided to d unless otherw	WB Matrix-MS considered equally d as front (F) or b tion. Ply to ply cor istribute only loads	0.67 y applied ack (B)	Horz(CT)	0.01	6 12) Hai	n/a	n/a or other			
0.0* 10.0 2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	Code IR(ot* 9-6:2x6 SP DSS eathing directly applied or coept end verticals.	C2015 2) 3)	All loads are except if note CASE(S) sec provided to d unless otherw	Matrix-MS considered equally d as front (F) or ba tion. Ply to ply cor istribute only loads	y applied ack (B)	to all plies,		12) Hai	nger(s) o	or other			
10.0 2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	ot* 9-6:2x6 SP DSS eathing directly applied or cept end verticals.	2) 3)	All loads are except if note CASE(S) sec provided to d unless otherw	considered equally d as front (F) or ba tion. Ply to ply cor istribute only loads	ack (B) t								
2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	eathing directly applied or cept end verticals.	3)	except if note CASE(S) sec provided to d unless otherw	d as front (F) or ba tion. Ply to ply con istribute only loads	ack (B) t								
2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	eathing directly applied or cept end verticals.	3)	except if note CASE(S) sec provided to d unless otherw	d as front (F) or ba tion. Ply to ply con istribute only loads	ack (B) t						r connection devi	ce(s) shall be	
11=0-5-8 lax Horiz 11=-220 lax Uplift 6=-22 (LC	(LC 29) C 11), 8=-157 (LC 10) LC 2), 8=7261 (LC 2),	4) 5)	this design. Wind: ASCE Vasd=91mph II; Exp B; Enc cantilever left right exposed TCLL: ASCE DOL=1.15 PI snow); Ps=10 DOL=1.00); O	oof live loads have 7-10; Vult=115mp ; TCDL=6.0psf; Bo losed; MWFRS (e and right exposed ; Lumber DOL=1.1 7-10; Pr=20.0 psf ate DOL=1.00); Pf .1 psf (roof snow: Category II; Exp B;	s noted a e been o h (3-sec CDL=6.0 envelope d ; end v 60 plate (roof liv =20.0 p Lumber	as (F) or (B), considered for ond gust) Dpsf; h=30ft; (C) exterior zon ertical left an grip DOL=1.1, e load: Lumbo sf (flat roof DOL=1.15 P	r Cat. ie; d 33 er	ib c up lb c up 873 14 18- 873 The res LOAD 1) Do In	lown and at 4-0-1. lown and at 10-0- 3 lb dowr lb up at 0-12, an 3 lb dowr e design/ ponsibilit CASE(S)	1 14 lb 2, 873 1 14 lb 12, 873 1 and 1 16-0-1 d 873 1 and 1 selecti ty of ot) Sta now (ba 1.00	up at 2-0-12, 87 Ib down and 14 I up at 8-0-12, 87 3 Ib down and 14 4 Ib up at 14-0- 2, 873 Ib down a Ib down and 14 Ib 4 Ib up at 22-0- ion of such conne hers. ndard alanced): Lumber	entrated load(s) 873 3 lb down and 14 lb b up at 6-0-12, 873 3 lb down and 14 lb lb up at 12-0-12, 12, 873 lb down and nd 14 lb up at o up at 20-0-12, and 12 on bottom chord. action device(s) is the	
	pression/Maximum	6)	Roof design s	slippery surface	en reduc	ed to account	t for		Vert: 1-3 oncentra	,	3-5=-40, 6-11=-2 ads (lb)	20	
Tension 1-2=-824/30, 2-3=-1	6/784, 3-4=-32/558,	7)	slope.	s been designed fo	or a 10 () nef hottom						=-660 (B), 10=-660	
		')					ds		(B), 12=	-660 (B), 13=-660 (B), 1	14=-660 (B), 15=-660	
10-11=-219/665, 8-′ 6-7=-54/408	10=-123/582, 7-8=0/1878,	, 8)	* This truss has been designed for a live load of 20.0psf					(B), 17=-660 (B), 18=-660 (B), 19=-660 (B)					
		9)	3-06-00 tall b chord and an	y 2-00-00 wide wil y other members,	ll fit betv with BC	veen the botto DL = 10.0psf					ORTHC	ROLIN	
		,			,	() 0				2		7. 1	
nails as follows: connected as follows ds connected as foll t 0-7-0 oc.	s: 2x4 - 1 row at 0-9-0 lows: 2x6 - 2 rows	,	bearing plate joint 8 and 22) This truss is o International	capable of withsta built built at joint 6. built at joint 6. designed in accord Residential Code s	anding 1 Jance w sections	57 lb uplift at th the 2015 R502.11.1 a				11111111111111111		AL 360	
10 6- 3- 2- 5- 5- 0 k na co ds)-11=-219/665, 8- 7=-54/408 8=-1053/0, 4-8=-2 8=-1953/201, 2-10 7=0/1491 De connected toge ils as follows: nnected as follow: connected as follow- connected as follow-	7=-54/408 8=-1053/0, 4-8=-2825/190, 4-7=0/3217, 8=-1953/201, 2-10=0/2137, 1-10=-86/125, 7=0/1491 be connected together with 10d ils as follows: nnected as follows: 2x4 - 1 row at 0-9-0 connected as follows: 2x6 - 2 rows	0-11=-219/665, 8-10=-123/582, 7-8=0/1878, 8) 7=-54/408 8=-1053/0, 4-8=-2825/190, 4-7=0/3217, 8 8=-1953/201, 2-10=0/2137, 1-10=-86/125, 7=0/1491 9) Dec connected together with 10d 100 100 ils as follows: nnected as follows: 2x4 - 1 row at 0-9-0 11 s connected as follows: 2x6 - 2 rows 11 P-7-0 oc. 11	0-11=-219/665, 8-10=-123/582, 7-8=0/1878, 8) * This truss h 7=-54/408 on the bottom 8=-1053/0, 4-8=-2825/190, 4-7=0/3217, 3-06-00 tall b se=-1953/201, 2-10=0/2137, 1-10=-86/125, 3-06-00 tall b 7=0/1491 9) WARNING: F be connected together with 10d 10) Provide mech ils as follows: 2x4 - 1 row at 0-9-0 11) s connected as follows: 2x6 - 2 rows 11) This truss is on I-7-0 oc. R802.10.2 an	 b) -11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-54/408 c) This trusts has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide wit chord and any other members, r-0/1491 c) WARNING: Required bearing size. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. c) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. d) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. d) Provide mechanical connection bearing plate capable of withsts joint 8 and 22 lb uplift at joint 6. d) Provide mechanical connection bearing plate capable of withsts d) Provide mechanical connection bearing plate capable of withst	 b)-11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-54/408 c) This truss has been designed for a live out the total more total more	 b) -11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-54/408 c) -153/0, 4-8=-2825/190, 4-7=0/3217, 8=-1953/201, 2-10=0/2137, 1-10=-86/125, 7=0/1491 c) -100/2137, 1-100/2137,	 b)-11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-54/408 c) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. e) WARNING: Required bearing size. e) WARNING: Required bearing size. e) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint 8 and 22 lb uplift at joint 6. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	 55-2548/43, 1-11=-621/6, 5-6=-1980/38 0-11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-54/408 80.* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 90. WARNING: Required bearing size at joint(s) 8 greater than input bearing size. 91. WARNING: Required bearing size at joint(s) 8 greater than input bearing size. 92. WARNING: Required bearing size at joint(s) 8 greater than input bearing size. 93. WARNING: Required bearing size. 94. WARNING: Required bearing size. 95. WARNING: Required bearing size. 96. connected as follows: 2x4 - 1 row at 0-9-0 oc. 97. O oc. 98. dot dot dot dot dot dot dot dot dot dot	 5=-2548/43, 1-11=-621/6, 5-6=-1980/38 -11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-5/4/408 8=-1053/0, 4-8=-2825/190, 4-7=0/3217, 8=-1953/201, 2-10=0/2137, 1-10=-86/125, 7=0/1491 be connected together with 10d is as follows: nnected as follows: 2x4 - 1 row at 0-9-0 connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. connected as follows: 2x4 - 1 row at 0-9-0 oc. 	 52-2548/43, 1-11=-621/6, 5-6=-1980/38 0-11=-219/665, 8-10=-123/582, 7-8=0/1878, 7=-54/408 82-1053/0, 4-8=-2825/190, 4-7=0/3217, 8=-1953/201, 2-10=0/2137, 1-10=-86/125, 7=0/1491 90 WARNING: Required bearing size at joint(s) 8 greater than input bearing size. 10) Provide mechanical connection (by others) of truss to ibearing plate capable of withstanding 157 lb uplift at joint 6. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	 ba-2340/43, 1-11=-621/6, 5-0=-1360/35 chord live load nonconcurrent with any other live loads. (B), 17=-660 (B), 18=-660 (B), 17=-660 (B), 18=-660 (B), 18=-660	


March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	C1	Common Supported Gable	1	1	T30100019 Job Reference (optional)

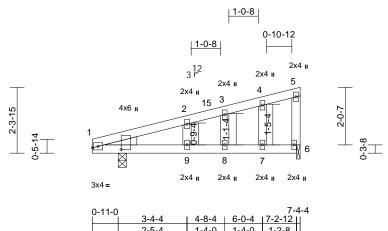
Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:58 ID:QaUTW6A_h9LtyUf3PhXc8OzaKW?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

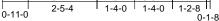
Page: 1

Scale = 1:48.1

Scale = 1.48.1					0112										
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Ps/Pf)	10	0.1/20.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	12	n/a	n/a			
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-MS									
BCDL		10.0											Weight: 77 lb	FT = 20%	
LUMBER				1)	Unbalanced	roof live loads ha	ave been	considered fo	r						
TOP CHORD	2x4 SP N	o.2			this design.										
BOT CHORD	2x4 SP N	o.2		2)		7-10; Vult=115m									
WEBS	2x4 SP N	o.3				n; TCDL=6.0psf;									
OTHERS	2x4 SP N	0.3				closed; MWFRS			ne						
BRACING						erior (2) zone; ca		0							
TOP CHORD	Structural	wood she	eathing directly applie	ed or		d vertical left and									
	10-0-0 oc					d forces & MWFI			;						
BOT CHORD			applied or 6-0-0 oc			=1.60 plate grip									
	bracing.		,	3)		ned for wind load									
REACTIONS	0	12=10-3-	0, 13=10-3-0, 14=10	-3-0		ids exposed to w									
	(0120)		0, 16=10-3-0, 14=10	,	see Standar	Industry Gable	End Deta	ils as applical	ble,						
			0, 10=10-3-0, 17=10	-3-0		alified building d									
	Max Horiz			-3-0 4)		7-10; Pr=20.0 p			er						
		· ·	LC 11), 13=-92 (LC 1	5)		late DOL=1.00);									
	max opint	(LC 15), 15=-28 (LC 1			0.1 psf (roof snov									
			LC 14), 18=-31 (LC 1			Category II; Exp		xp.; Ct=1.10;							
		(LC 14), 20=-70 (LC 1	<u>ທ</u> ໌		slippery surface									
	Max Grav		LC 25), 13=129 (LC 2		0	snow load has b	een reduc	ed to account	t for						
	max orar		LC 30), 15=118 (LC 2	26)	slope.										
		,	LC 28), 17=119 (LC 2	25) 0)		spaced at 1-4-0									
			LC 29), 19=135 (LC 2			s been designed									
		20=174 (ad nonconcurrent								UIII.	
FORCES	(lb) - Max	,	npression/Maximum	8)		as been designe			Jpst				11" I C	A.M. 111.	
IONOLO	Tension		npression/maximum			n chord in all are						0	N'STH 9	17011	6
TOP CHORD		7 2-366	6/83, 3-4=-35/80,			y 2-00-00 wide v		veen the botto	om				N	1. ··· //	1
			104/126, 6-7=-104/12	26 av		y other member						5.	2.0PF	PONT	12
			1/77, 9-10=-58/77,	26, 9)		hanical connection						2	· ite A	1.	-
	10-11=-48		<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>			capable of with						=	: Q	· · · ·	-
BOT CHORD			=-56/51, 18-19=-56/5	1		ft at joint 18, 97 I						-	: CF	Δ1 :	=
		,	7=-56/51, 15-16=-56/	,		15, 32 lb uplift at			joint			=	: 32		=
			4=-56/51, 12-13=-56/	1-1		ft at joint 20 and	ilqu ai vo	it at joint 12.				=	: 041	860 :	
	11-12=-56	,		, 10) N/A	designed in		ith the 2015				-			
WEBS			=-92/43, 4-18=-87/58	11	,	designed in acco						-	N		Markov Marina
		,	-91/42, 8-14=-87/58,	,		Residential Cod			na			-	· EN-	-cR.	5
			-82/35, 10-12=-79/35			nd referenced sta	andard AP	NSI/TPT1.				1	GI	NEFICI	5
NOTES	5 10- 017	00, <u>2</u> 20-	52,50, 10 12- 10/00	LC	DAD CASE(S)	Standard							AO	TEL	
NOTES													SE 041	VEIN	
													in the second se	mm	
														March 2	1 202

0-1-12


March 21,2023



Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	D1	Monopitch	1	1	Job Reference (optional)

Run: 8.63 S Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:19:45 ID:VSjNZ1fZJQwtMFcUJ4meYozaJxD-9k4UzySrv?EBI4wZutbiHGVvzbxIOAAPvEULwNzYj3E

L	3-4-4	4-8-4	6-0-4	7-4-4	I
Γ	3-4-4	1-4-0	1-4-0	1-4-0	l

Scale = 1:40.8

Plate Offsets (X, Y): [1:0-0-7,0-0-14], [1:0-0-12,1-0-4]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.47	Vert(LL)	-0.10	8-9	>903	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.19	8-9	>465	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.01	Horz(CT)	0.02	1	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 31 lb	FT = 20%
LUMBER			6)	Gable studs	spaced at 0-0-0) oc.							
TOP CHORD	2x4 SP No.2		7)		as been designe) psf bottom						
BOT CHORD	2x4 SP No.2			chord live lo	ad nonconcurre	nt with any	other live loa	ads.					
WEBS	2x4 SP No.3		8)		has been desigr			0psf					
WEDGE	Left: 2x4 SP No.3				m chord in all ar								
BRACING					by 2-00-00 wide		een the bott	om					
TOP CHORD	Structural wood she	athing directly applie	ed or		ny other membe								
	6-0-0 oc purlins, ex		9)		pint(s) 6 conside TPI 1 angle to g			,					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с		ould verify capad								
	bracing.		1(chanical connect			to					
	· /	3-8, 6=238/0-1-8		,	e at joint(s) 6.								
	Max Horiz 1=61 (LC	,	1.		chanical connect	ion (by oth	ers) of truss t	to					
	Max Uplift 1=-21 (LC			bearing plat	e capable of with	nstanding 2	1 lb uplift at j	joint					
	Max Grav 1=330 (LC			1 and 24 lb	uplift at joint 6.								
FORCES	(lb) - Max. Comp./Ma		250 12	2) This truss is	designed in acc	ordance w	th the 2015						
	(lb) or less except w	hen shown.			Residential Co			and					
NOTES					ind referenced s	tandard AN	ISI/TPI 1.						
	E 7-10; Vult=115mph		L.	DAD CASE(S)	Standard								

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

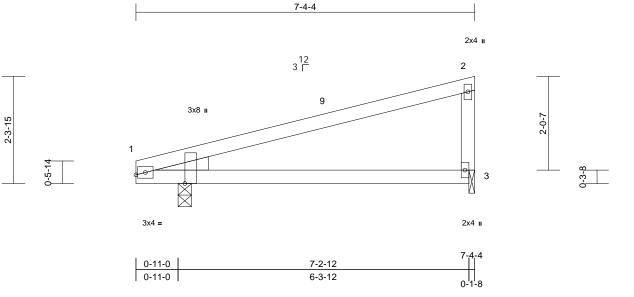
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 5) Unbalanced snow loads have been considered for this design.

SEAL 041860

March 21,2023

Page: 1



Job		Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
34667	725	D2	Monopitch	9	1	T30100021 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:58 ID:VSjNZ1fZJQwtMFcUJ4meYozaJxD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:25

Plate Offsets (X, Y): [1:0-0-7,0-0-14], [1:0-2-4,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.64	Vert(LL)	-0.07	3-8	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15		BC	0.46	Vert(CT)	-0.16	3-8	>541	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.02	1	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 26 lb	FT = 20%
	Max Horiz 1=61 (LC Max Uplift 1=-21 (LC Max Grav 1=330 (LC	cept end verticals. applied or 10-0-0 oc =0-1-8 15) 12), 3=-24 (LC 16) 2 2), 3=262 (LC 23)	7) id or 8) ; 9) 1(on the bottor 3-06-00 tall b chord and ar 9 Bearing at jo using ANSI/1 designer sho 9 Provide mec bearing plate 1 and 24 lb u 0) This truss is International R802.10.2 ar	nanical connecti capable of with plift at joint 3. designed in acc Residential Coc nd referenced st	eas where will fit betw 's. s parallel f ain formul ity of bear on (by oth on (by oth standing 2 ordance w le sections	a rectangle ween the bott to grain value a. Building ing surface. ers) of truss ers) of truss 21 lb uplift at ith the 2015 5 R502.11.1 a	tom e to joint					
ORCES OP CHORD OT CHORD	(lb) - Maximum Com Tension 1-2=-62/45, 2-3=-180 1-3=-117/96		L	OAD CASE(S)	Standard								
Vasd=91m II; Exp B; E and C-C E: exposed ; e members a Lumber DC	E 7-10; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (en tterior (2) zone; cantil- end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO DE 7-10; Pr=20.0 psf (DL=6.0psf; h=30ft; C velope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.33	e								in the second second	NATH O	AROLIN
DOL=1.15 snow); Ps= DOL=1.00) Unobstruct 8) Roof desig slope. 4) Unbalance design. 5) This truss I	3E 7-10; Pr=20.0 pst (Plate DOL=1.00); Pf= 18.7 psf (roof snow: L ; Category II; Exp B; F ed slippery surface n snow load has been d snow loads have be has been designed for oad nonconcurrent wi	20.0 psf (flat roof umber DOL=1.15 P Fully Exp.; Ct=1.10; reduced to account en considered for th a 10.0 psf bottom	late for is								and an and a second second		860

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	D3	Monopitch	5	1	T30100022 Job Reference (optional)

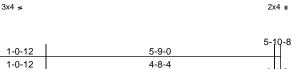
5-10-8

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

1-11-8

-5-14

1


6

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:58 ID:p42ZWNLxWQzA5IkuiAZO1ozaJgr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🛛 12 3 ∟ 2 8 0 3x8 II 1-8-0 3

0-1-8

Scale = 1:23.6

Plate Offsets (X, Y): [1:0-0-6,0-0-14], [1:0-3-8,Edge]

	,, ,, ,, [1.0 0 0,0 0 11], [1.0 0 0,Edg0]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.30 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.04 0.00	(loc) 3-5 3-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood she 5-9-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-8, 3 Max Horiz 1=46 (LC Max Uplift 1=-47 (LC Max Grav 1=208 (LC (lb) - Maximum Com Tension 1-2=-48/47, 2-3=-12 1-3=-51/56	athing directly applic cept end verticals. applied or 10-0-0 or 3=0-1-8 15) C 2), 3=-50 (LC 12) C 2), 3=-78 (LC 2) apression/Maximum	c 8) 9) 10	chord live lo * This truss on the botto 3-06-00 tall chord and a bearing at j using ANSI, designer sh 0 Provide me bearing plat 1 and 50 lb 0) This truss is Internationa	as been designe bad nonconcurrer has been design m chord in all arr by 2-00-00 wide ony other membe bint(s) 3 consider TPI 1 angle to gr ould verify capac chanical connect e at joint(s) 3. chanical connect e capable of with uplift at joint 3. designed in acc and referenced st) Standard	nt with any led for a live eas where will fit betworks. rs parallel to rain formul city of bear ion (by oth ion (by oth standing 2 cordance we de sections	other live load e load of 20. a rectangle ween the bott to grain value a. Building ing surface. ers) of truss ers) of truss 17 lb uplift at ith the 2015 s R502.11.1 a	ads. .0psf tom e to to joint					
Vasd=91n II; Exp B; I	CE 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er exterior (2) zone: cantil	DL=6.0psf; h=30ft; (velope) exterior zor										IN THOS	ARO

and C-C Exterior (2) zone: cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2) snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.


March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	D4	Monopitch	1	1	T30100023 Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:59 ID:p42ZWNLxWQzA5IkuiAZO1ozaJgr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	3-2-8	4-6-8	5-10-8
I	3-2-8	1-4-0	1-4-0

1-0-12 2-1-12 1-4-0 0-1-8

Scale = 1:38.4

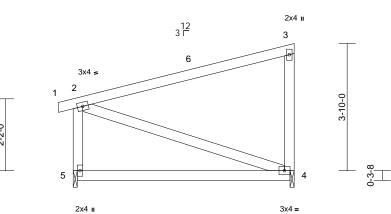
Scale = 1.30.4													
Plate Offsets (2	X, Y): [1:0-0-6,0-0-14	l], [1:0-3-8,Edge]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015 4) 5)	design. This truss ha chord live lo	CSI TC BC WB Matrix-MP snow loads have as been designed ad nonconcurren	d for a 10.0 t with any) psf bottom other live loa	ads.	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
	Left: 2x4 SP No.3 Structural wood she 5-9-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Max Horiz 1=46 (LC Max Grav 1=208 (LC Max Grav 1=208 (LC	cept end verticals. v applied or 10-0-0 o 5=0-1-8 15) C 12), 5=-50 (LC 12)	c 7) 8)	on the botto 3-06-00 tall chord and a Bearing at jo using ANSI/ designer sho Provide med bearing plate Provide med	has been designe m chord in all are by 2-00-00 wide v y other member bint(s) 5 considers TPI 1 angle to gra buld verify capaci chanical connectid e at joint(s) 5.	eas where will fit betw s. s parallel t ain formula ity of beari on (by oth on (by oth	a rectangle veen the both to grain value a. Building ing surface. ers) of truss ers) of truss	tom e to to					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-49/29, 2-3=-43 4-5=-97/78 1-7=-45/39, 6-7=-23 2-7=-30/24, 3-6=-29	hpression/Maximum 3/31, 3-4=-38/33, 3/25, 5-6=-23/25	10	1 and 50 lb) This truss is Internationa	e capable of withs uplift at joint 5. designed in acco Residential Cod nd referenced sta Standard	ordance w e sections	ith the 2015 R502.11.1 a						
NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed; and right e MWFRS fc grip DOL= 2) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 Unobstruct	CE 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er xterior (2) zone; cantil end vertical left and rie xposed;C-C for memt or reactions shown; Lu	a (3-second gust) CDL=6.0psf; h=30ft; (hvelope) exterior zor lever left and right ght exposed; porch l bers and forces & umber DOL=1.60 pla (roof live load: Lumber 20.0 psf (flat roof Lumber DOL=1.15 F Fully Exp.; Ct=1.10;	ne left ate er Plate								and and a state of the state of	SE 041	AROLINA NEERLEL

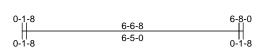
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2) snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate
- DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface 3) Roof design snow load has been reduced to account for
- slope.

March 21,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	D6	Monopitch Supported Gable	4	1	T30100024 Job Reference (optional)


6-8-0 6-8-0


Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:11:59 ID:f50P4wjKBfGCgul2?enQAfzaJrz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

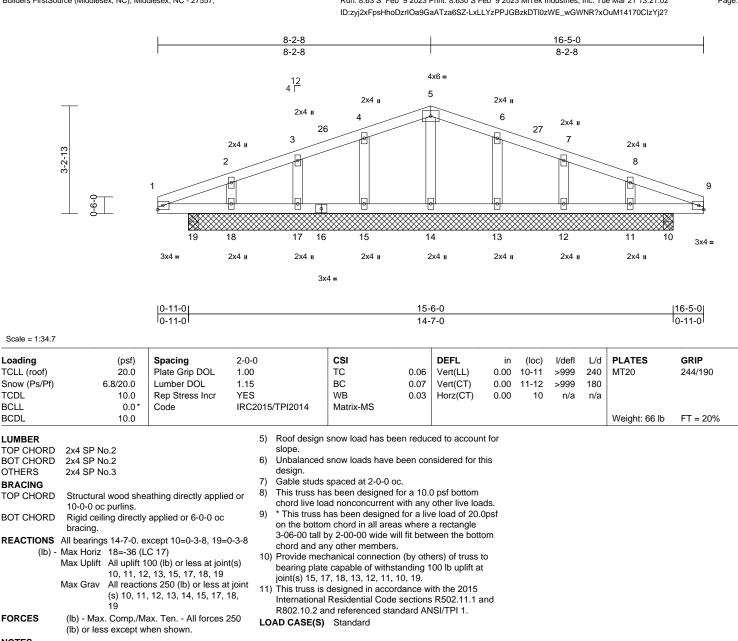
Scale = 1:34.7

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.83 0.53 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.20 0.00	(loc) 4-5 4-5 4	l/defl >772 >386 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex	applied or 10-0-0 oc 5=0-1-8 C 13) C 16), 5=-35 (LC 12)	d or d or 8) Provide mer 9) Provide	as been designed f psf or 2.00 times fl non-concurrent with as been designed f ad nonconcurrent to has been designed m chord in all areas by 2-00-00 wide wi ny other members. pint(s) 4, 5 conside TPI 1 angle to grain ould verify capacity chanical connectior e at joint(s) 4, 5.	at roof le other lir or a 10. with any for a liv s where Il fit betw rs parall n formul of bear n (by oth	bad of 20.0 p: ve loads.) psf bottom other live load e load of 20.0 a rectangle veen the bottu- el to grain vala a. Building ng surface. ers) of truss t	sf on ds. Dpsf om lue to					
FORCES	(lb) - Maximum Com Tension 2-5=-228/132, 1-2=0		4 and 35 lb	e capable of withsta uplift at joint 5.	0	, ,	oint					
TOP CHORD	3-4=-203/117	J/14, 2-3=-00/07,		designed in accord Residential Code			ind					
BOT CHORD WEBS	4-5=-181/139 2-4=-104/153		R802.10.2 a LOAD CASE(S	and referenced star	idard AN	ISI/TPI 1.						
NOTES	2 12 10 1/100		LOAD CASE(S)	Stanuaru								
Vasd=91m	CE 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed: MW/ERS (en	DL=6.0psf; h=30ft; C									WITH C	ARO

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

- Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate 2) DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.

and a state of the C SEAL 041860


March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	E1	Common Supported Gable	1	1	T30100025 Job Reference (optional)

Run: 8.63 S. Feb. 9 2023 Print: 8.630 S.Feb. 9 2023 MiTek Industries. Inc. Tue Mar 21 13:21:02

Page: 1

FORCES NOTES

Loading

TCDL

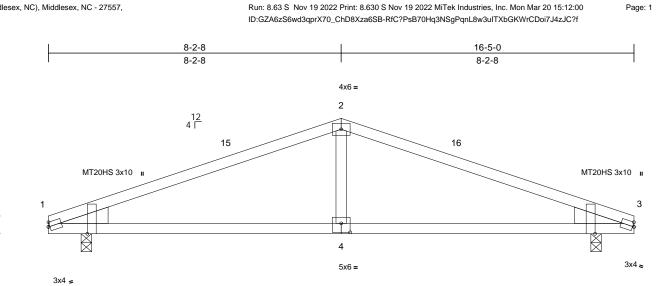
BCLL

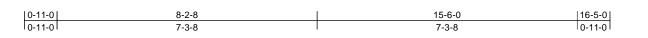
BCDL

LUMBER

OTHERS

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=6.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 21,2023

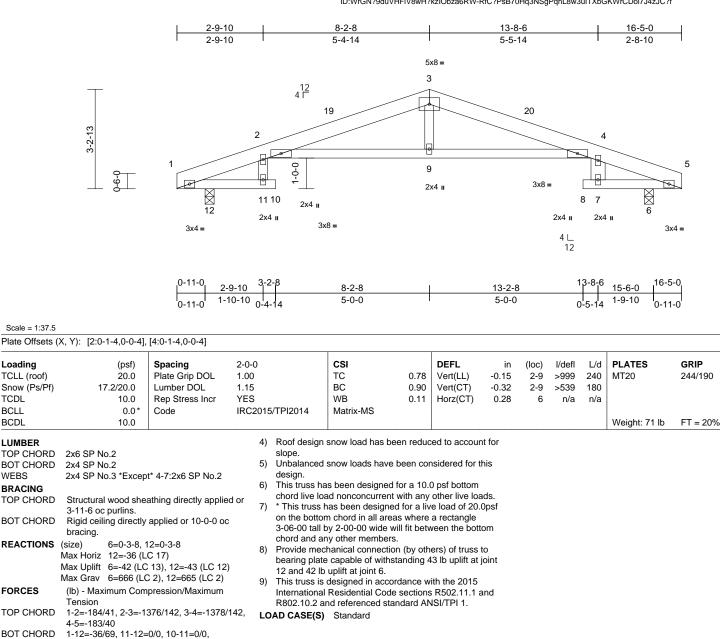
Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	E2	Common	1	1	T30100026 Job Reference (optional)

Scale = 1:32.3

3-2-13

0-9-0

Plate Offsets (X, Y): [1:0-2-5,Edge], [3:0-2-5,Edge], [4:0-3-0,0-3-0]


	1). [1.0-2-3,Euge],	[0.0 £ 0,Edg0], [1.0	0 0,0 0 0]											
	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	5)	design.	CSI TC BC WB Matrix-MS snow loads have MT20 plates unli				(loc) 4-14 4-14 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 61 lb	GRIP 244/190 187/143 FT = 20%	
WEBS WEDGE	2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2		7)	This truss ha chord live loa	s been designed ad nonconcurrent as been designe	for a 10.0 with any) psf bottom other live loa	ads.						
BRACING	0				n chord in all area									
	Structural wood sheat 5-1-1 oc purlins.	athing directly applie	d or		y 2-00-00 wide w y other members		veen the both	iom						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	9)	bearing plate	hanical connectio capable of withs									
FORCES TOP CHORD BOT CHORD	size) 1=0-3-8, 3 lax Horiz 1=-36 (LC lax Uplift 1=-31 (LC lax Grav 1=657 (LC (lb) - Maximum Com Tension 1-2=-898/134, 2-3=-1 1-3=-59/790 2-4=0/276	: 17) : 12), 3=-31 (LC 13) : 2), 3=657 (LC 2) pression/Maximum)) This truss is International	plift at joint 3. designed in accou Residential Code di referenced sta Standard	sections	R502.11.1	and						
NOTES	roof live loads have	been considered for											ANUL	
 this design. Wind: ASCE Vasd=91mp II; Exp B; En and C-C Ext exposed; er members an Lumber DOI TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructe 	FOOL INVE IOADS Have T-10; Vult=115mph h; TCDL=6.0psf; BC iclosed; MWFRS (en- erior (2) zone; cantili di vertical left and rig di dorces & MWFRS =1.60 plate grip DO = 7-10; Pr=20.0 psf (i Plate DOL=1.00); Pf= 7.2 psf (roof snow: L Category II; Exp B; F d slippery surface snow load has been	(3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon- ever left and right th exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 PI Fully Exp.; Ct=1.10;	cat. e er ate								and an	SE 0412 VOAQUIN	360	1,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	E3	Roof Special	3	1	T30100027 Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:12:00 ID:WrGN?9duVHFiV8wH?kzIObza6RW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

Scale = 1:37.5

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

BRACING

TCLL (roof)

Snow (Ps/Pf)

1) Unbalanced roof live loads have been considered for this design.

6-7=0/0, 5-6=-5/67

2-9=-66/1307, 4-9=-65/1307, 7-8=0/0,

3-9=0/300, 2-11=0/53, 4-7=0/54

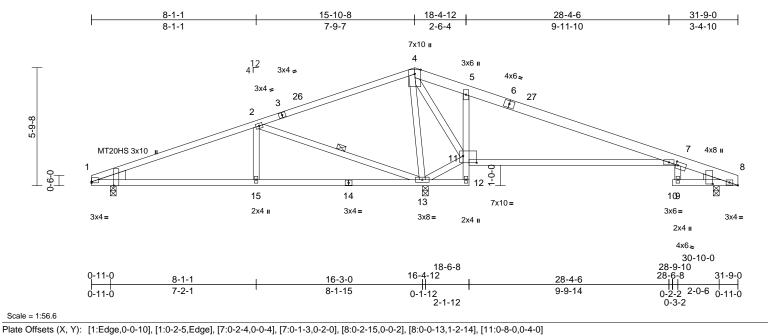
Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=17.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	F1	Roof Special Structural Gable	1	1	T30100028 Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:00 ID:W17CCsODMEafkaoHVawTKnza6C.I-RfC2PsB70Ha3NSaPaal 8w3uITXbGKWrCDoi7.I4z.IC?f


Page: 1

View CSI CSI <th></th> <th></th> <th>ID:W1ZCCsODMEqfkgoHVawTKnza60</th> <th>CJ-RfC?PsB70Hq3NSgPqnL8w3uITXI</th> <th>oGKWrCDoi7J4zJC?f</th>			ID:W1ZCCsODMEqfkgoHVawTKnza60	CJ-RfC?PsB70Hq3NSgPqnL8w3uITXI	oGKWrCDoi7J4zJC?f
Image: Process of the state in the			0-0 2-0-0 2-0-0 2-0-0 1-10-4 2-6-4		
Chitch 29-0 2-0-0 2-0-0 2-0-0 1-3-4 0-11-0 ate Offsets (X, Y): [280-2-3.Edge] Spacing 2-0-0 CSI DEFL in (00) Vietl Vietl </td <td>- - - - - - -</td> <td>$\begin{array}{c} 1-8-8 \\ 1-8-8 \\ 2x4 \\ 2x4 \\ 2x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 3$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>4x6 ≈ 12 36 12 36 0 4x6 ≈ 4x6 ≈</td> <td>2x4 II 13 14 1716 15 2x4 II 3x4 = 30-10-0</td>	- - - - - - -	$\begin{array}{c} 1-8-8 \\ 1-8-8 \\ 2x4 \\ 2x4 \\ 2x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 3x4 \\ 2x4 \\ 3x4 \\ 3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4x6 ≈ 12 36 12 36 0 4x6 ≈ 4x6 ≈	2x4 II 13 14 1716 15 2x4 II 3x4 = 30-10-0
Data = 1003 Data = 076455 (X, Y): [28.0-2-3.Edge] Deading (psf) Spacing 2-0-0 CSI D = 100 Verif(1) 0.22 177 758 240 MT20 24/4190 DDL (nod) 2.00 (nod) Code CSI D = 0.93 Verif(1) 0.23 Verif(1) 0.24 177 758 240 MT20 24/4190 DDL 0.00 Code IRC2015/TP12014 Bits Grip 0.01 1.15 Bits C 0.57 Verif(1) 0.24 15 n/a n/a n/a n/a N DP CHORD 2x4 SP No.2 Excert 113.12x4 SP No.3 NOT Verif 23 13-14-6.0/45, 920-17190, 523-125/53, 42-227-131/101 LOAD CASE(S) Standard VICRDN 2x4 SP No.2 Excert 23 22-16-5/10, 22-32 NOT Standard Not 22-16-10, 22-36 Not CHORD 2x4 SP No.2 Excert 23 22-16-5/2, 22-157-8, 22-157-8, 22-157-8, 22-157-8, 22-157-8, 22-157-8, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-157-78, 22-15		1 + 4 + 0 - 4 + 6 - 0 - 0 - 2 - 0 - 0 - 2 - 0 - 0 - 2 - 0 - 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0-4-14 0-11-0
Action (1) Spacing (pst) Spacing (pst) 2-0-0 CSI DEFL in (for) (for) </td <td>Scale = 1:60.5 Plate Offsets (</td> <td></td> <td></td> <td></td> <td>1-10-10</td>	Scale = 1:60.5 Plate Offsets (1-10-10
PF CHOR 2x4 SP No.2 * Except*10.12,12:14:2x6 SP 10:28=277763, 13:16:00:49, 9:20=-179/58, 9:22=179/51, 9:22=179/51, 9:22=179/51, 9:22=179/51, 9:22=179/51, 9:22=179/51	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	.00 TC 0.93 Vert(LL) .15 BC 0.57 Vert(CT) /ES WB 0.38 Horz(CT)	-0.24 17 >759 240 -0.36 17 >494 180	MT20 244/190
R802.10.2 and referenced standard ANSI/TPI 1. March 21,20	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	No.2 2x4 SP No.2 *Except* 18-11:2x4 SP No.3 2x4 SP No.3 Structural wood sheathing directly applied 2-2-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. (size) 15=0-3-8, 19=15-7-8, 20=15-7-8 21=15-7-8, 22=15-7-8, 20=15-7-8 21=15-7-8, 22=15-7-8, 20=15-7-8 21=15-7-8, 22=15-7-8, 20=15-7-8 21=15-7-8, 22=15-7-8, 20=15-7-8 21=15-7-8, 22=15-7-8, 20=15-7-8 Max Horiz 27=-72 (LC 17) Max Uplift 15=-110 (LC 13), 19=-117 (LC 1 20=-16 (LC 12), 21=-20 (LC 16), 22=-18 (LC 16), 23=-24 (LC 12), 25=-4 (LC 16), 26=-85 (LC 12), 25=-4 (LC 16), 26=-85 (LC 12), 25=-4 (LC 34) Max Grav 15=422 (LC 34), 19=950 (LC 23) 20=188 (LC 22), 21=201 (LC 22), 25=160 (LC 33), 26=350 (LC 2), 27=189 (LC 33) (b) - Maximum Compression/Maximum Tension 1-2=-151/468, 2-3=-147/512, 3-4=-109/475 4-5=-89/485, 5-6=-65/43, 6-8=-42/482, 8-9=-19/486, 9-10=0/474, 10-11=-93/195, 11-13=-40/150, 13-14=-105/54 1-27=-449/162, 23-25=-449/162, 22-23=-449/162, 19-20=-449/162, 20-21=-449/162, 19-20=-449/162, 18-19=-11/41, 18-28=-5/40, 11-28=-846/32	 10-28=-277/763, 13-16=0/45, 9-20=-1 8-21=-153/48, 6-22=-127/50, 5-23=-1 4-25=-120/39, 3-26=-211/95, 2-27=-1 NOTES 1) Unbalanced roof live loads have been considered this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0p5; BCDL=6.0psf; h=30f II; Exp B; Enclosed; MWFRS (envelope) exterior z and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C members and forces & MWFRS for reactions sho Lumber DOL=1.60 plate grip DOL=1.33 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lur DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=17.2 psf (roof snow: Lumber DOL=1.16 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.1 Unobstructed slippery surface 4) Roof design snow loads have been considered for design. 6) This truss has been designed for a 10.0 psf bottor chord live load nonconcurrent with any other live la 3-06-00 tall by 2-00-00 wide will fit between the bc chord and any other members. 8) Provide mechanical connection (by others) of trus bearing plate capable of withstanding 117 lb uplift 19, 16 lb uplift at joint 20, 20 lb uplift at joint 21, 16 uplift at joint 22, 24 lb uplift at joint 23, 4 lb uplift at 25, 85 lb uplift at joint 26, 213 lb uplift at joint 27 a lb uplift at joint 15. 9) This truss is designed in accordance with the 2011 International Residential Code sections R502.11.1 	179/59, 25/53, 31/101 I for ft; Cat. zone t for wn; mber 5 Plate 10; unt for r this m oads. 0.0psf e ottom s to : at joint B lb t joint ind 110	ORTH CAROUNS SEAL 041860
		,,		1 and	March 21,202

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	F2	Roof Special	1	1	T30100029 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:01 ID:u3J1RcbBKJjQ6LBro8B54Qza5cd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	1.00 0.95 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.76 0.11	(loc) 7-11 7-11 8	l/defl >552 >245 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 158 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x4 SP No.3 Structural wood shea Rigid ceiling directly 1 Row at midpt	t* 12-5:2x4 SP No.3 athing directly applie applied. 2-13 3=0-3-8, 13=0-3-8 : 17) : 16), 8=-27 (LC 17), C 13) C 33), 8=276 (LC 34)	0.2 4; d. 5; 6; 7; 8;	DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructed Roof design slope. Unbalanced design. All plates are This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar	E 7-10; Pr=20.0 p late DOL=1.00); 7.2 psf (roof sno Category II; Exp d slippery surface snow load has b snow loads have a MT20 plates un as been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide u- hanical connecti	PT=20.0 p w: Lumbe B; Fully E e een reduc been cor less other for a 10. t with any ed for a liv as where will fit betv s.	sf (flat roof r DOL=1.15 l xp.; Ct=1.10; ced to accour nsidered for t rwise indicate 0 psf bottom other live loz re load of 20. a rectangle veen the bott	Plate ; ht for his ed. ads. Opsf om					
FORCES	(lb) - Maximum Com Tension			bearing plate 13, 75 lb upl	e capable of with ift at joint 1 and 2	standing 5 27 lb uplift	52 lb uplift at at joint 8.						
TOP CHORD	1-2=-452/463, 2-4=-0 5-7=-94/1141, 7-8=-0 1-15=-407/383, 13-1	45/31	5, 10	International	designed in according Residential Cod	e sections	s R502.11.1 a	and					
BOT CHORD	12-13=-164/0, 11-12 7-11=-961/159, 9-10 2-15=0/338, 2-13=-1	e=-69/0, 5-11=-748/2 =0/0, 8-9=-14/38 089/184, 4-13=-918	/114,	R802.10.2 a OAD CASE(S)	nd referenced sta Standard	andard An	NSI/TPI 1.					URTH 9	ROLIN
this design 2) Wind: ASC Vasd=91n II; Exp B; and C-C E exposed ; members	11-13=-1167/276, 4- ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en :xterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right pht exposed;C-C for for reactions shown;	cat. e								The second se	SE/ 0418	AL 360

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	F3	Common	4	1	T30100030 Job Reference (optional)

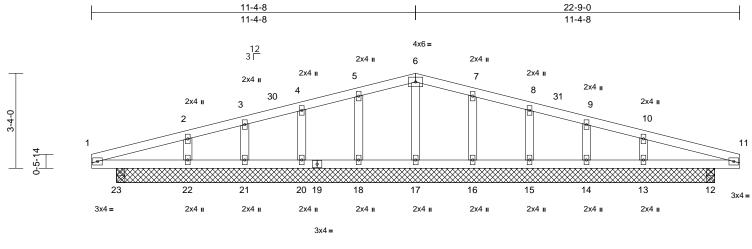
Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:01 ID:sceCOoFlqj6rfYIMu7gSgXza5aT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

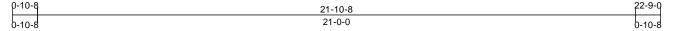
23-7-15 8-1-1 15-10-8 31-9-0 8-1-1 7-9-7 7-9-7 8-1-1 5x6= 4 3x4 **≈** 12 4 Г 3x4 🚅 3x4 -3x4 = 23 24 5 3 6 2 TE 5-9-8 æ MT20HS 3x10 y MT20HS 3x10 II 0-9-0 • • Ø 12 9 8 11 10 2x4 II 3x6= 3x4= 2x4 🛛 3x4= 3x8= 3x4= 0-11-0 31-9-0 8-1-1 16-4-12 23-7-15 30-10-0 0-11-7-2-1 7-3-3 8-3-11 7-2-1 0-11

Scale = 1:55.3

Plate Offsets (X, Y): [1:Edge,0-0-14], [1:0-2-5,Edge], [7:Edge,0-0-14], [7:0-2-5,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TP	T E V	CSI C SC VB Matrix-MS	0.95 0.55 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-12 10-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 143 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt	applied or 10-0-0 oc 6-10, 2-10 7=0-3-8, 10=0-3-8 : 17) : 12), 7=-56 (LC 17), C 12) C 33), 7=541 (LC 34), (LC 2)	d or 5) Ur d or 5) Ur d or 5) Ur d or 6) All 7) Th ch 8) * 1 on 3-(ch 9) Pr 10 10) Th	OL=1.15 Plate owy; Ps=17.2 OL=1.00; Cai nobstructed si oof design sno ope. nbalanced sno esign. Il plates are M nis truss has b nord live load This truss has b nord live load This truss has 06-00 tall by 2 nord and any of rovide mechan earing plate cai plate cai earing plate cai no 5, 50 lb uplift a	10; Pr=20.0 psf e DCL=1.00); Pf= psf (roof snow: tegory II; Exp B; lippery surface ow loads have b T20 plates unlee owen designed for nonconcurrent w been designed thord in all areas 2-00-00 wide will other members. nical connection apable of withsta at joint 1 and 56 i signed in accord sidential Code s	=20.0 p Lumbe Fully E een cor ss other or a 10.0 vith any for a liv s where I fit betw (by oth anding 1 Ib uplift lance w	sf (flat roof DQL=1.15 F xp.; Ct=1.10; ed to accoun asidered for th wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle ereen the botto ers) of truss t 8 lb uplift at j at joint 7. ith the 2015	Plate t for his d. ds.)psf om o oint					
this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C E exposed ; members	6-7=-656/118 1-12=-104/682, 10-1 8-10=-54/574, 7-8=-1 4-10=-670/135, 6-10 2-10=-993/169, 2-12 ed roof live loads have	2=-104/682, 54/574 =-936/177, 6-8=0/27 =0/309 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right ht exposed;C-C for for reactions shown;	R8 LOAD 9, at.		referenced stand						and an and a state of the state	SE/ 0418	• •


March 21,2023


Page: 1

Job)	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
34	66725	G1	Common Supported Gable	1	1	T30100031 Job Reference (optional)

Run: 8.63 S Feb 9 2023 Print: 8.630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:22:02 ID:HSqdOLfhEvO_xmo7k5JJzOzZ0eE-bUz18U81AilTxS3HXabJQallWdTUS1GttMfClpzYj13

Scale = 1:40.4

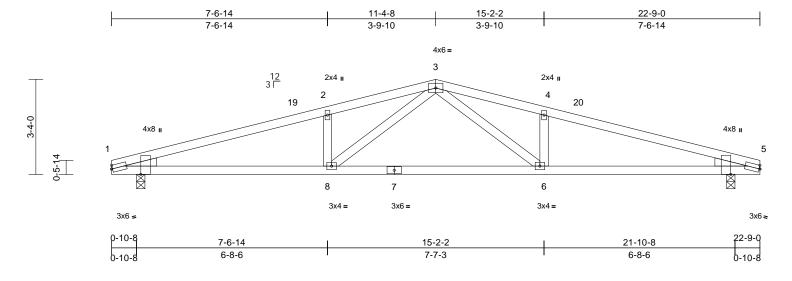
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.11	Vert(LL)	0.00	12-13	>999	240	MT20	244/190
Snow (Ps/Pf)	8.1/20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	0.00	22-23	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 91 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. All bearings 21-0-0. e Max Horiz 22=37 (LC Max Uplift All uplift 1 12, 13, 14 23 Max Grav All reactic (s) 12, 13	applied or 6-0-0 oc xcept 12=0-3-8, 23= C 16) 00 (lb) or less at join I, 15, 16, 18, 20, 21, ons 250 (lb) or less a , 14, 15, 16, 17, 18,	ed or =0-3-8 nt(s) , 22, at joint	 slope. Unbalanced design. Gable studs This truss ha chord live lo * This truss in the botto 3-06-00 tall chord and a Provide mec bearing plat ijoint(s) 18, 2 This truss is Internationa 	snow load has be snow loads have spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members shanical connectio e capable of withsi 20, 21, 22, 16, 15, designed in accor I Residential Code ind referenced stat	been cor for a 10. with any d for a liv as where vill fit betv tanding 1 14, 13, 1 rdance w e sections	0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 1 00 lb uplift ar 2, 23. ith the 2015 s R502.11.1 a	his Ids. Opsf om to					
FORCES	21, 22, 23 (lb) - Max. Comp./M		250	LOAD CASE(S)	Standard								
IUNCED	(lb) or less except w		200										
NOTES 1) Unbalance	ed roof live loads have	been considered fo	r										
this desigr													un
Vasd=91n II; Exp B; I	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil	DL=6.0psf; h=30ft; (velope) exterior zor									1	URTH O	APOLINI NON

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=8.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

SEAL 041860

March 21,2023

Page: 1



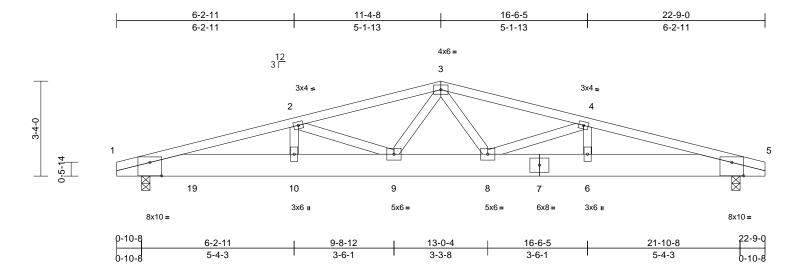
Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	G2	Common	5	1	T30100032 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:02 ID:a4HiRYylbHPapSek88kxxSzZ0ds-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

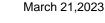
Scale = 1:40.4

Plate Offsets (X, Y): [1:0-2-4,Edge], [5:0-2-4,Edge]


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.78	Vert(LL)	-0.17	6-8	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.41	6-8	>666	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.26	Horz(CT)	0.06	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 91 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		3)	DOL=1.15 F snow); Ps=1 DOL=1.00);	E 7-10; Pr=20.0 ps Plate DOL=1.00); I 8.7 psf (roof snow Category II; Exp I	Pf=20.0 p w: Lumbe B; Fully E	sf (flat roof r DOL=1.15	Plate					
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3		4)	Roof design	d slippery surface snow load has be		ed to accour	nt for					
BRACING			-	slope.									
TOP CHORD	Structural wood she 3-2-3 oc purlins.	athing directly applie		design.	snow loads have			his					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	, ,	chord live lo	as been designed ad nonconcurrent	with any	other live loa						
REACTIONS	(size) 1=0-3-8, 5 Max Horiz 1=37 (LC Max Uplift 1=-41 (LC Max Grav 1=910 (LC	16) : 12), 5=-41 (LC 13)	7)	on the botto 3-06-00 tall chord and a	has been designe m chord in all area by 2-00-00 wide v ny other members chanical connectio	as where vill fit betv s.	a rectangle veen the bott	tom					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	-,	bearing plate	e capable of withs uplift at joint 5.								
TOP CHORD	1-2=-1964/239, 2-3= 3-4=-1934/280, 4-5=	-1964/239	9)	This truss is	designed in acco I Residential Code			and					
BOT CHORD	1-8=-184/1850, 6-8= 5-6=-184/1850	-139/1421,	10	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
WEBS	3-6=-59/627, 4-6=-2 2-8=-280/122	80/122, 3-8=-59/627	, LC	AD CASE(S)	Stanuaru							"TH G	ARO
NOTES											1		···· · / / ···
1) Unbalance this design	ed roof live loads have	been considered for	r								1	₹.;OF	NY Y
 Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; members 	DE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	DL=6.0psf; h=30ft; (ivelope) exterior zor ever left and right ght exposed;C-C for for reactions shown	e								THINK WARNING THE	SE 041	860

March 21,2023

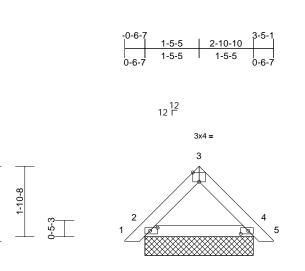
Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	G3	Common Girder	1	4	T30100033 Job Reference (optional)


Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:03 ID:OQ5Ee?SOOftc5FDh3821rnzZ06x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.4

Plate Offsets (X, Y): [1:0-5-0,0-5-10], [5:0-5-0,0-5-10]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.35	Vert(LL)	-0.08	9	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.16	9	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.45	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 585 lb	FT = 20%
(0.131"x3" Top chord oc. Bottom ch staggered Web conn Attach BC	2x10 SP DSS 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=37 (LC Max Uplift 1=-476 (L Max Grav 1=6484 (I (lb) - Maximum Con Tension 1-2=-10383/742, 2-3 3-4=-7233/479, 4-5 1-10=-714/10056, 9 8-9=-416/6768, 6-8 5-6=-374/6079 3-9=-269/3765, 2-9=	5=0-3-8 16) .C 8), 5=-158 (LC 9) .L 2), 5=2409 (LC 2), apression/Maximum 3=-8958/615, =-6299/423 -10=-714/10056, =-374/6079, =-1595/182, 10/460, 4-8=-108/11 ther with 10d s: 2x4 - 1 row at 0-9- iows: 2x10 - 5 rows - 1 row at 0-9-0 oc. STM A-307) in the	ed or 4) 5 5)) 6) 7) 8) 9) 10 11 0	except if note CASE(S) sec provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp B; En cantilever lef right expose TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); ' Unobstructed Roof design Slope. Unbalanced design. This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing platte joint 1 and 15) This truss is International	considered equa ad as front (F) or l tion. Ply to ply cc listribute only load wise indicated. roof live loads ha 7-10; Vult=115m n; TCDL=6.0psf; E closed; MWFRS (t and right expose d; Lumber DOL=1 7-10; Pr=20.0 ps late DOL=1.00); F 8.7 psf (roof snow Category II; Exp E d slippery surface snow load has be snow loads have s been designed an chord in all area by 2-00-00 wide w and the slipped of withs S Blu uplift at joint designed in accoor Residential Code nd referenced sta	back (B) i princetion ds noted is ve been of gh (3-sec 3CDL=6.((envelope ed ; end v .60 plates f (roof liv Pf=20.0 p v: Lumbei 3; Fully E been reduc been cor for a 10.0 with any d for a liv as where vill fit betv 5. n (by oth tanding 4 5.	face in the LC s have been as (F) or (B), considered for cond gust) opps; h=30ft; e) exterior zor vertical left an grip DOL=1. e load: Lumbb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to account other live load e load of 20.0 a rectangle veen the bottom other live load e load of 20.0 a rectangle veen the bottom it, 76 lb uplift at ith the 2015 c R502.11.1 a	r Cat. ne; d 33 er Plate t for his ds. Opsf om	pro lb d 337 sele res LOAD (1) De In Ur	vided su lown and I bup a ection of ponsibili CASE(S ead + Sr crease= hiform Li Vert: 1- pocentra Vert: 9=	ufficient d 215 ll t 2-7-1 such o ty of ot) Sta now (ba 1.00 oads (l 3=-57, atted Lo 2660	b up at 9-8-12, a 4 on bottom choi connection device hers. Indard alanced): Lumber b/ft) 3-55-57, 1-5=-20 ads (lb) (F), 19=-4175 (F	ce(s) shall be entrated load(s) 2752 nd 4320 lb down and rd. The design/ a(s) is the Increase=1.15, Plate


Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	P1	Piggyback	14	1	T30100034 Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:03 ID:E1aT52B6Jmh8HH6XpFa9VozaKYZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

2-10-10

Scale = 1:30.7

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-0,Edge], [4:0-2-6,0-1-0]

2-0-0

		[0.0 £ 0,Edg0], [1.0 .	- ,	1									
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91rr II; Exp B; II and C-C E exposed ; members : Lumber DU 3) Truss des only. For see Stand	2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=2-10-10 Max Horiz 2=35 (LC Max Uplift 2=-4 (LC Max Grav 2=136 (LC (lb) - Maximum Com Tension 1-2=0/24, 2-3=-76/2 2-4=-9/53 ed roof live loads have	applied or 10-0-0 oc), 4=2-10-10 13) 14), 4=-4 (LC 15) C 2), 4=136 (LC 2) pression/Maximum 1, 3-4=-76/21, 4-5=0/ been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right ght exposed; C-C for for reactions shown; L=1.33 the plane of the trus (normal to the face), d Details as applicable	5) 6) 7) 8) 9) 1(/24 1 12 ;at. 12 ;at. 12 ; 5 ; 5 ; 6 ; , 12 ; 5 ; , 12 ; 5 ; , 12 ; , 11 ; , 12 ; , 12 ; , 12 ; , 12 ; , 12 ; , 12 ; , 12 ; , 11 ; , 12 ; ,] ; ,] ; ,] ; , ; , ; ; ; , ; ; ; ;	DOL=1.15 F snow); Ps={ DOL=1.00;; Unobstructe Roof design slope. This truss hi- load of 12.0 overhangs r Gable requi Gable studs This truss hi- chord live lo 3-06-00 tall chord and a Provide mee bearing plat 2, 4 lb uplift at joint 4. This truss is Internationa R802.10.2 a 3) See Standa Detail for Co	F-10; Pr=20.0 ps Plate DOL=1.00); F S3 psf (roof snow: Category II; Exp E d slippery surface snow load has be as been designed psf or 2.00 times ion-concurrent wit res continuous bol spaced at 2-0-0 c as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs at joint 4, 4 lb upli designed in accool I Residential Code and referenced star d Industry Piggyb nenection to base ified building desig Standard	Pf=20.0 p Lumber 3; Fully E even reduce for great flat roof k h other lin thor for a reduce for a 10.0 with any d for a liv as where vill fit betw s. on (by oth tanding 4 ft at joint rdance w e sections indard AN wack Truss as a	sf (flat roof DOL=1.15 PI xp.; Ct=1.10; ed to accoun er of min roof boad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t I b uplift at jo 2 and 4 lb up ith the 2015 rs502.11.1 a ISJ/TPI 1. s Connection	ate t for live sf on ds. Dpsf om int lift			and a second s	SE 0411	APOLINA OLINA AL 860

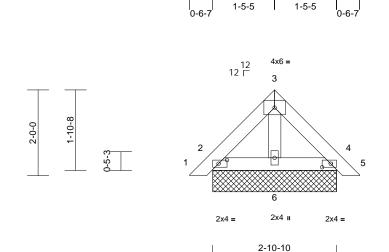
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

100000

March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	P2	Piggyback	2	1	T30100035 Job Reference (optional)

0-6-7


1-5-5

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Run: 8,63 S Feb 9 2023 Print: 8,630 S Feb 9 2023 MiTek Industries, Inc. Tue Mar 21 13:30:56 ID:Pz9Q88v_ssLjkgGuSfy_CqzZ0ya-0q69oOaku9n_ICjXil83_mnhe4385eLAC7XLz_zYiul

2-10-10

Page: 1

Scale = 1:26.8

Plate Offsets (X, Y): [2:0-2-6.0-1-0]. [4:0-2-6.0-1-0]

Loading(psf)Spacing2-0-0CSIDEFLTCLL (roof)20.0Plate Grip DOL1.00TC0.02Vert(LL)Snow (Ps/Pf)8.3/20.0Lumber DOL1.15BC0.03Vert(CT)TCDL10.0Rep Stress IncrYESWB0.01Horz(CT)BCL0.0*CodeIRC2015/TPI2014Matrix-MPVert(CT)LUMBER10.0TOP CHORD2x4 SP No.25)Roof design snow load has been reduced to account slope.DT CHORD2x4 SP No.2Fils Tuss has been designed for greater or finin roof lil load of 12.0 psf or 2.00 times flat roof load of 20.0 psf or verthangs non-concurrent with other live loads.7)Gable requires continuous bottom chord bearing.7)Gable requires continuous bottom chord bearing.	live	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	MT20	GRIP 244/190 FT = 20%
BCDL 10.0 LUMBER 5) TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING 7)	live				Weight: 14 lb	FT = 20%
TOP CHORD 2x4 SP No.2 slope. BOT CHORD 2x4 SP No.2 6) This truss has been designed for greater of min roof li OTHERS 2x4 SP No.3 load of 12.0 psf or 2.00 times flat roof load of 20.0 psf BRACING Orther No.3 Orther No.4	live					
 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load oncoorurent with any other live load 02.0 pon the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottor chord and any other members. 9) This truss has been designed for a 10.0 psf bottom chord live load oncoorurent with any other live load 02.0 pon the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottor chord and any other members. 9) This truss has been designed for a 10.0 psf bottom chord live load oncoorurent with any other live load 02.0 pon the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottor chord and any other members. 1) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 2, 4. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 an R802.10.2 and referenced standard ANSI/TP1 1. 13) See Standard Industry Piggyback Truss Connection to base truss as applicable, or consult qualified building designer. 14.000 CASE(S) Standard 15.000 Case and referenced standard ANSI/TP1 1. 16.000 plate grip DOL=1.33 16.000 plate grip DOL=1.33 17.000 Figure and reference as applicable, or consult qualified building designer as per ANSI/TP1 1.)psf om o				•	AL 860

- 3
- 2 DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=8.3 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

THE OAQU in' Unin Vinin

March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	VB1	Valley	1	1	T30100036 Job Reference (optional)

4x6 =3

9-2-2

9-2-2

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Scale = 1:53.4 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

Snow (Ps/Pf)

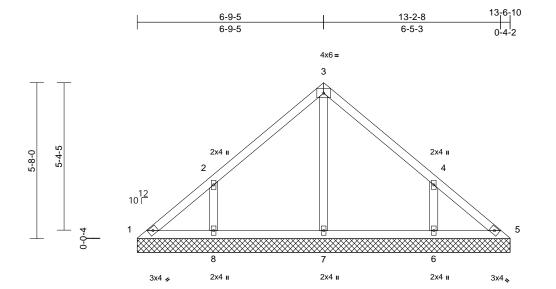
Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Mon Mar 20 15:12:04 ID:tMNRHLTgNcfhemWi22JFPrzaKLI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-0-1

8-10-0

18-4-3

0-4-2


818 Soundside Road Edenton, NC 27932

Page: 1

2x4 II 2x4 I 2 4 7-8-0 7-4 12 10 Г 5 ò 9 6 8 7 2x4 II 3x4 2x4 II 2x4 II 3x4、 3x4 =18-4-3 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.33 Vert(LL) n/a 999 MT20 244/190 n/a BC 10 1/20 0 Lumber DOL 1 15 0.23 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.39 Horiz(TL) 0.01 5 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 83 lb FT = 20%10.0 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2x4 SP No.2 snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied or slope. 10-0-0 oc purlins. Gable requires continuous bottom chord bearing. 6) Rigid ceiling directly applied or 6-0-0 oc 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom 1=18-4-3, 5=18-4-3, 6=18-4-3, chord live load nonconcurrent with any other live loads. 7=18-4-3, 9=18-4-3 9) * This truss has been designed for a live load of 20.0psf 1=-145 (LC 10) on the bottom chord in all areas where a rectangle 1=-15 (LC 10), 6=-144 (LC 15), 3-06-00 tall by 2-00-00 wide will fit between the bottom 9=-146 (LC 14) chord and any other members, with BCDL = 10.0psf. 1=103 (LC 26), 5=100 (LC 30), 10) Provide mechanical connection (by others) of truss to 6=515 (LC 26), 7=525 (LC 25), bearing plate capable of withstanding 15 lb uplift at joint 9=518 (LC 25) 1, 146 lb uplift at joint 9 and 144 lb uplift at joint 6. (Ib) - Maximum Compression/Maximum 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and 1-2=-131/282, 2-3=-5/207, 3-4=0/207, R802.10.2 and referenced standard ANSI/TPI 1. 4-5=-96/249 LOAD CASE(S) Standard 1-9=-190/128, 7-9=-190/128, 6-7=-190/128, 5-6=-190/128 The American Ame American Amer 3-7=-377/0. 2-9=-325/186. 4-6=-324/185 20 Unbalanced roof live loads have been considered for Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. SEAL II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right 041860 exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. March 21,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	VB2	Valley	1	1	T30100037 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:04 ID:LqSE2Vgy78w7oXuA5qeT8ezaKL0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

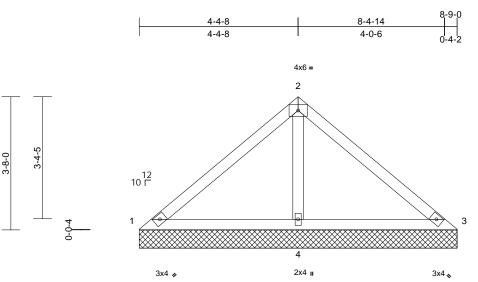
13-6-10

0			~
Scale	= 1	:41	.9

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	1	(psf) 20.0 0.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.12 0.11		in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 58 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N Structura 6-0-0 oc Rigid ceil bracing.	lo.2 lo.3 I wood shea purlins. ling directly	athing directly applied	d or ⁵ 6 7	DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructed Noof design slope.) Gable requir) Gable studs	F7-10; Pr=20.0 late DOL=1.00); 0.1 psf (roof snn Category II; Exp d slippery surfac snow load has t snow load has t es continuous b spaced at 4-0-0 is been designe	Pf=20.0 p ow: Lumbe B; Fully E been reduc ottom chor oc.	sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ced to accoun rd bearing.	Plate					
REACTIONS	Max Uplift	7=13-6-10 1=-106 (L 1=-18 (LC 8=-107 (L 1=106 (LC	(LC 15), 6=-104 (LC 15	-10, 9 , =333 1	 chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar 0) Provide mec bearing plate 	ad nonconcurrer has been design in chord in all arr by 2-00-00 wide hy other membe hanical connect capable of with	nt with any led for a liv eas where will fit betw rs. ion (by oth istanding 1	other live loa re load of 20.0 a rectangle veen the botto ers) of truss t 18 lb uplift at j	Dpsf om o					
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	1	1) This truss is	ift at joint 8 and designed in acc Residential Coo	ordance w	ith the 2015	nd					
TOP CHORD	4-5=-107	/71	117/97, 3-4=-108/89,			nd referenced st								
BOT CHORD	1-8=-42/1 5-6=-42/8		2/74, 6-7=-42/74,	-		Clandalu							anni	uun.
WEBS NOTES	3-7=-190	/0, 2-8=-25	6/150, 4-6=-254/149										UNTH ORTHO	ARO !!!
	ad roof live	loade bave	boon considered for									~	0	ANT

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

March 21,2023


Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	VB3	Valley	1	1	T30100038 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:04 ID:_b7wRzP9JO8F98DxpDFJF?zaKLM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

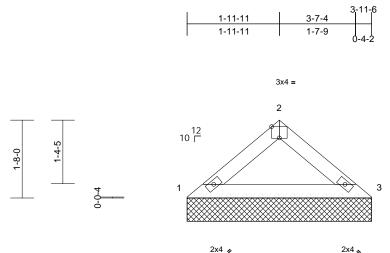
8-9-0

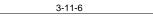
Scale = 1:31.7

Scale = 1.51.7												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .00 .15 ES RC2015/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.23 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES	8-9-0 oc purlins. Rigid ceiling directly bracing. (size) 1=8-9-0, 3 Max Horiz 1=-67 (LC Max Uplift 1=-27 (LC 4=-55 (LC	2 30), 3=-27 (LC 29), 2 14) 2 9), 3=61 (LC 30), 4=6! npression/Maximum 1/275	 DOL=1.15 P snow); Ps=1 DOL=1.00; Unobstructe Solope. Gable requir Gable studs This truss hachord live lo * This truss hachord live lo 	2 7-10; Pr=20.0 ps Plate DOL=1.00); I 0.1 psf (roof snow Category II; Exp I d slippery surface snow load has be res continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectic e capable of withs t at joint 3 and 55 designed in accoo I Residential Code and referenced sta	Pf=20.0 p v: Lumbe B; Fully E e een reduc ttom chor oc. for a 10.0 with any d for a liv as where will fit betv s. on (by oth tstanding 2 lb uplift a rdance w e sections	sf (flat roof r DOL=1.15 F xp.; Ct=1.10; wed to accound d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t r7 lb uplift at j t joint 4. ith the 2015 s R502.11.1 a	Plate at for ads. 0psf om to ioint					
	ed roof live loads have	been considered for	LOAD CASE(S)	Stanuard								un.

this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


March 21,2023



Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES-1944 A w/ 3 CAR GARAGE
3466725	VB4	Valley	1	1	T30100039 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Mar 20 15:12:04 ID:D3eumEJ8Bx8OBvcPLX5RwJzaKLU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

		-									1	
Loading	(psf)	Spacing	2-0-0	CSI	• ()	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	10.1/20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL BCDL	0.0*	Code	IRC2015/TPI201	4 Matrix-MP							Mainht 10 lb	FT 200/
BCDL	10.0										Weight: 12 lb	FT = 20%
LUMBER				equires continuous b		rd bearing.						
TOP CHORD				tuds spaced at 4-0-0		0						
BOT CHORD	2x4 SP No.2			ss has been designe ve load nonconcurre			do					
BRACING	o		O) * This 4	uss has been design								
TOP CHORD	Structural wood she 3-11-6 oc purlins.	athing directly appli		ottom chord in all ar			0001					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o		tall by 2-00-00 wide		veen the botte	om					
	bracing.			nd any other membe mechanical connect		ora) of truca t	to					
REACTIONS		, 3=3-11-6		plate capable of with								
	Max Horiz 1=29 (LC			uplift at joint 3.	lotanang 1							
	Max Uplift 1=-2 (LC Max Grav 1=158 (LC			ss is designed in acc								
FORCES				ional Residential Co			and					
FURCES	(lb) - Maximum Con Tension	ipression/waximum		0.2 and referenced s	tandard Af	NSI/TPL1.						
TOP CHORD	1-2=-212/26, 2-3=-2	12/26	LOAD CAS	E(S) Standard								
BOT CHORD	1-3=-13/159											
NOTES												
1) Unbalance	ed roof live loads have	been considered for	or									
this design												
	CE 7-10; Vult=115mph		0-1									LDD
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
	enclosed, www.rks (el exterior (2) zone; canti		lie								"THA	AROIN
	end vertical left and ri		r							1		A start
members a	and forces & MWFRS	for reactions shown	1;								2.0r4	N. TI
	OL=1.60 plate grip DC									3	:0	1: 3
	igned for wind loads i									2	: V	
	studs exposed to wind									2	: SE	AL
	ard Industry Gable En qualified building desi									Ξ	041	860 : 3
	CE 7-10; Pr=20.0 psf (=	1 O.11	: :
	Plate DOL=1.00); Pf=									-	A	1.
	=10.1 psf (roof snow:									1	. SNO.	FERIN S
); Category II; Exp B;	Fully Exp.; Ct=1.10;								1	SE 041	NEFERS
	ted slippery surface										1,40111	VELIN
	gn snow load has beer	n reduced to account	IT TOF								WINDER	in the second seco
slope.												March 21,2023
												10101121,2020

