

EFORE CONSTRUCTION BEGIN: ASSUMES NO LIABILITY FOR CONTRACTORS PRACTICES AND

NSTRUMENTS OF SERVICE AND AS SUCH SHALL REMAIN
PROPERTY OF THE DESIGNER.

Paxton

 SQUARE FOOTAGE

 HEATED
 1962 SQ.FT.

 FIRST FLOOR
 816 SQ.FT.

 SECOND FLOOR
 816 SQ.FT.

 TOTAL
 2778 SQ.FT.

 UNHEATED
 892 SQ.FT.

 FRONT PORCH
 180 SQ.FT.

 REAR PORCH
 175 SQ.FT.

 TOTAL
 1247 SQ.FT.

© Copyright 2023 Haynes Home Plans, Inc.

3/21/2023

230312B

PAGE 1 OF 9

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE

MEAN ROOF HEIGHT: 188	3"	HEIGHT TO R	(IDGE: 25'-3"
CLIMATE ZONE	ZONE 3A	ZONE 4A	ZONE 5A
FENESTRATION U-FACTOR	0.35	0.35	0.35
SKYLIGHT U-FACTOR	0.55	0.55	0.55
GLAZED FENESTRATION SHGC	0.30	0.30	0.30
CEILING R-VALUE	38 or 30ci	38 or 30ci	38 or 30ci
WALL R-VALUE	15	15	19
FLOOR R-VALUE	19	19	30
* BASEMENT WALL R-VALUE	5/13	10/15	10/15
** SLAB R-VALUE	0	10	10
* CRAWL SPACE WALL R-VALUE	5/13	10/15	10/19

* "10/13" MEANS R-10 SHEATHING INSULATION OR R-13 CAVITY INSULATION

** INSULATION DEPTH WITH MONOLITHIC SLAB 24" OR FROM INSPECTION GAP TO BOTTOM OF FOOTING; INSULATION DEPTH WITH STEM WALL SLAB 24" OR TO BOTTOM OF FOUNDATION WALL

DESIGNED FOR WIN	D SPEED	OF 115 MF	PH, 3 SECO	ond Gust	(89 FAST	EST MILE)	EXPOSUR	RE "B"
COMPONENT	& CLA	DDING	DESIG	NED FO	R THE	FOLLO	WING I	LOADS
MEAN ROOF	UP T	O 30'	30'-1"	TO 35'	35'-1"	TO 40'	40'-1"	TO 45'
ZONE 1	13.1	-14.0	13.8	-14.7	14.3	-15.3	14.7	-15.7
ZONE 2	13.0	-13.0	13.7	-13.7	14.2	-14.2	14.6	-14.6
ZONE 3	13.1	-16.0	13.8	-16.8	14.3	-17.4	14.7	-17.9
ZONE 4	14.3	-15.0	15.0	-15.8	15.6	-16.4	16.0	-16.8
ZONE 5	143	-19 N	15.0	-20 O	15.6	-20.7	16.0	-21 3

ROOF VENTILATION

R806.1 Ventilation required. Enclosed *attics* and enclosed rafter spaces formed where ceilings are applied directly to the underside of roof rafters shall have cross ventilation for each separate space by ventilating openings protected against the entrance of rain or snow. Ventilation openings shall have a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Ventilation openings having a least dimension larger than 1/4 inch (6.4 mm) shall be provided with corrosion-resistant wire cloth screening, hardware cloth, or similar material with openings having a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Openings in roof framing members shall conform to the requirements of Section R802.7.

R806.2 Minimum area. The total net free ventilating area shall not be less than 1/150 of the area of the space ventilated except that reduction of the total area to 1/300 is permitted provided that at least 50 percent and not more than 80 percent of the required ventilating area is provided by ventilators located in the upper portion of the space to be ventilated at least 3 feet (914 mm) above the eave or cornice vents with the balance of the required ventilation provided by eave or cornice vents. As an alternative, the net free cross-ventilation area may be reduced to 1/300 when a Class I or II vapor retarder is installed on the warm-in-winter side of the ceiling.

- 1. Enclosed attic/rafter spaces requiring less than 1 square foot (0.0929 m2) of ventilation may be vented with continuous soffit ventilation only.
- 2. Enclosed attic/rafter spaces over unconditioned space may be vented with

SQUARE FOOTAGE OF ROOF TO BE VENTED = 2,933 SQ.FT.

NET FREE CROSS VENTILATION NEEDED: WITHOUT 50% TO 80% OF VENTING 3'-0" ABOVE EAVE = 19.56 SQ.FT. WITH 50% TO 80% OF VENTING 3'-0" ABOVE EAVE; OR WITH CLASS I OR II

VAPOR RETARDER ON WARM-IN-WINTER SIDE OF CEILING = 9.78 SQ.FT.

GUARD RAIL NOTES

SECTION R312

R312.1 Where required. Guards shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or grade below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a *guard*.

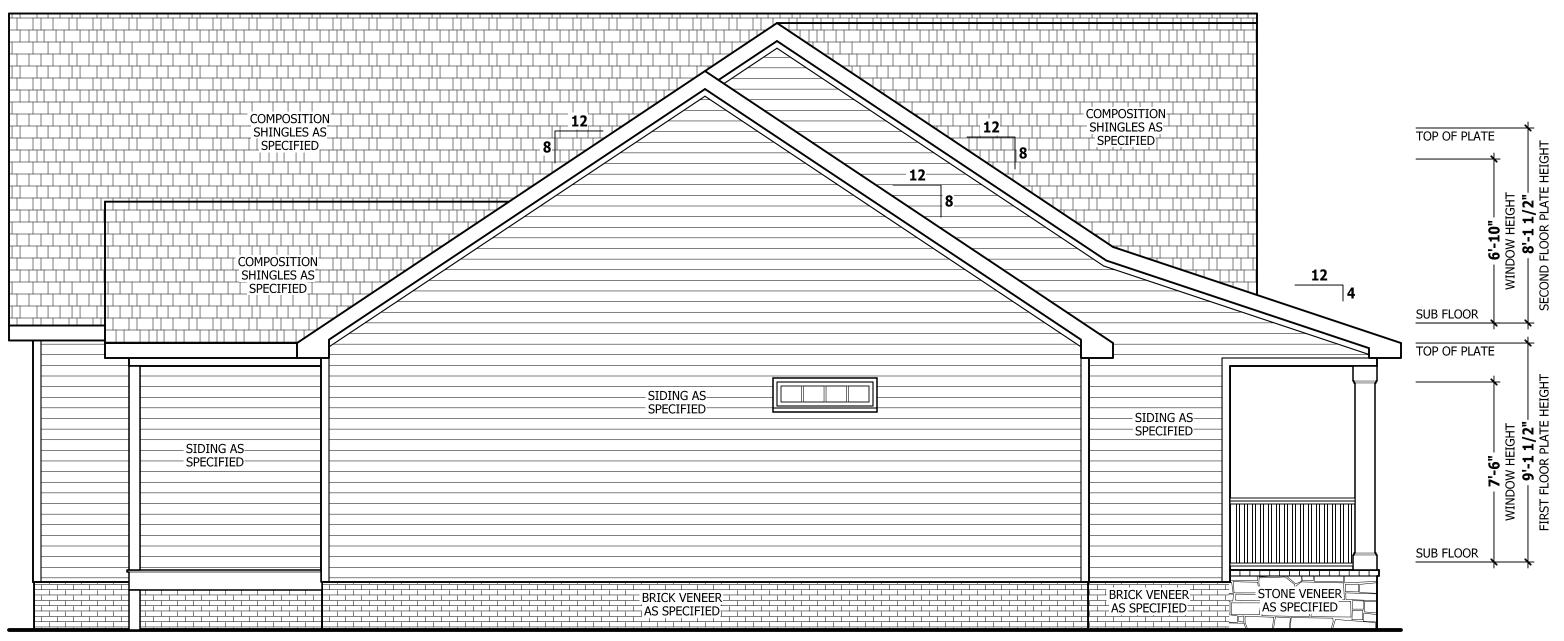
R312.2 Height. Required *quards* at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads.

- 1. *Guards* on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the
- 2. Where the top of the *guard* also serves as a handrail on the open sides of stairs, the top of the *quard* shall not be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

R312.3 Opening limitations. Required *guards* shall not have openings from the walking surface to the required *quard* height which allow passage of a sphere 4 inches (102 mm)in diameter.

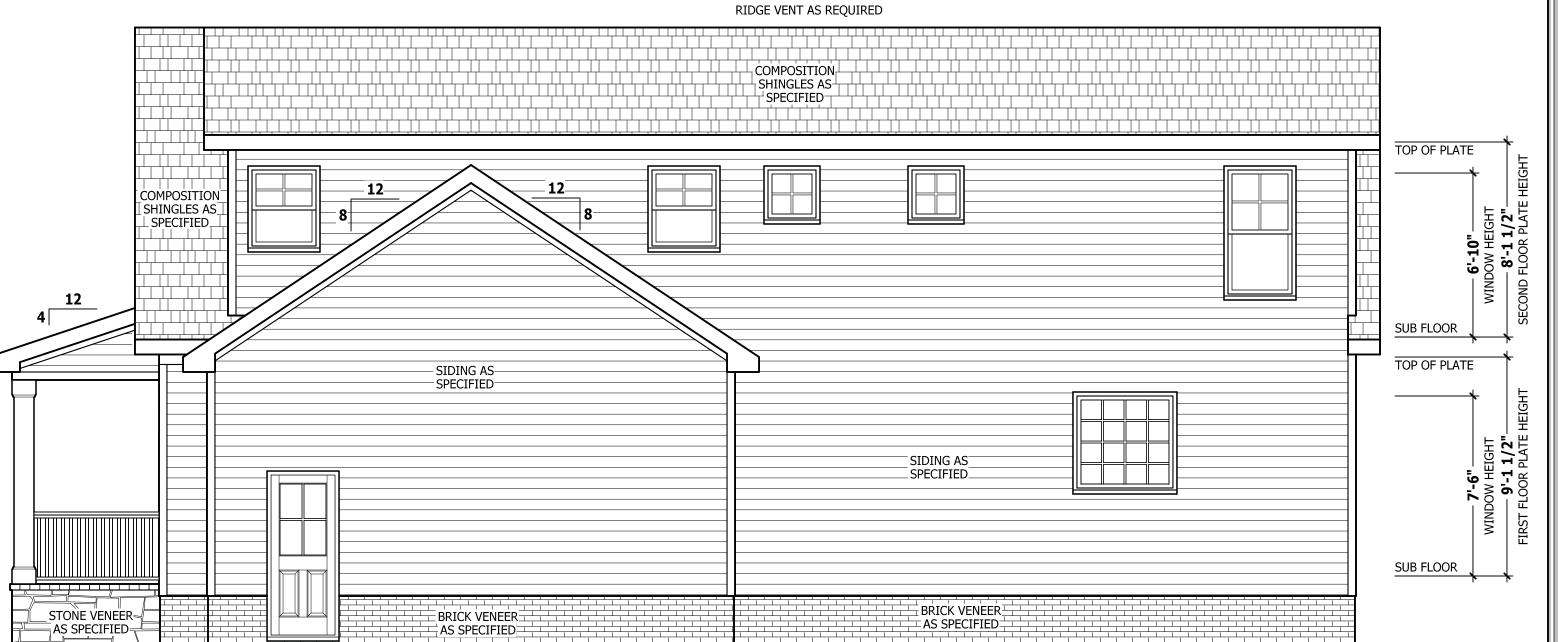
Exceptions:

- 1. The triangular openings at the open side of a stair, formed by the riser, tread and bottom rail of a *guard*, shall not allow passage of a sphere 6 inches (153 mm) in diameter.
- 2. *Guards* on the open sides of stairs shall not have openings which allow passage of a sphere 4 3/8 inches (111 mm) in diameter.


AIR LEAKAGE

Section N1102.4

N1102.4.1 Building thermal envelope. The building thermal envelope shall be durably sealed with an air barrier system to limit infiltration. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. For all homes, where present, the following shall be caulked, gasketed, weather stripped or otherwise sealed with an air barrier material or solid material consistent with Appendix E-2.4 of this code:


- 1. Blocking and sealing floor/ceiling systems and under knee walls open to unconditioned or exterior space.
- 2. Capping and sealing shafts or chases, including flue shafts.
- 3. Capping and sealing soffit or dropped ceiling areas.

RIDGE VENT AS REQUIRED

LEFT SIDE ELEVATION

SCALE 1/4" = 1'-0"

RIGHT SIDE ELEVATION

SCALE 1/4" = 1'-0"

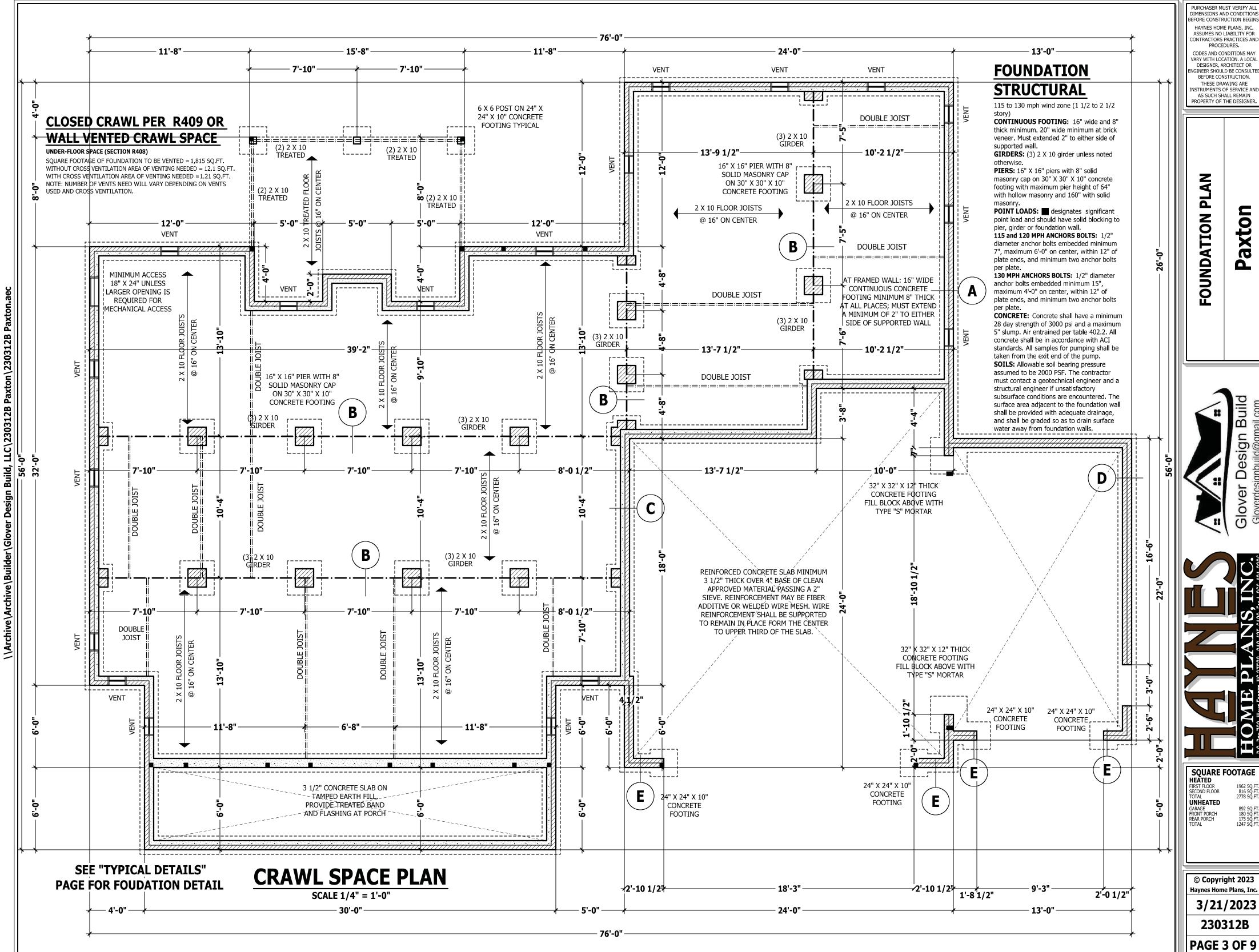
PURCHASER MUST VERIFY ALL SEFORE CONSTRUCTION BEGINS HAYNES HOME PLANS, INC. ASSUMES NO LIABILITY FOR CONTRACTORS PRACTICES AND PROCEDURES.

CODES AND CONDITIONS MAY DESIGNER, ARCHITECT OR BEFORE CONSTRUCTION, THESE DRAWING ARE

INSTRUMENTS OF SERVICE AND AS SUCH SHALL REMAIN PROPERTY OF THE DESIGNER.

ELEVATION Paxton RIGHT

∞


UNHEATED GARAGE FRONT PORCH REAR PORCH

© Copyright 2023 Haynes Home Plans, Inc.

3/21/2023

230312B

PAGE 2 OF 9

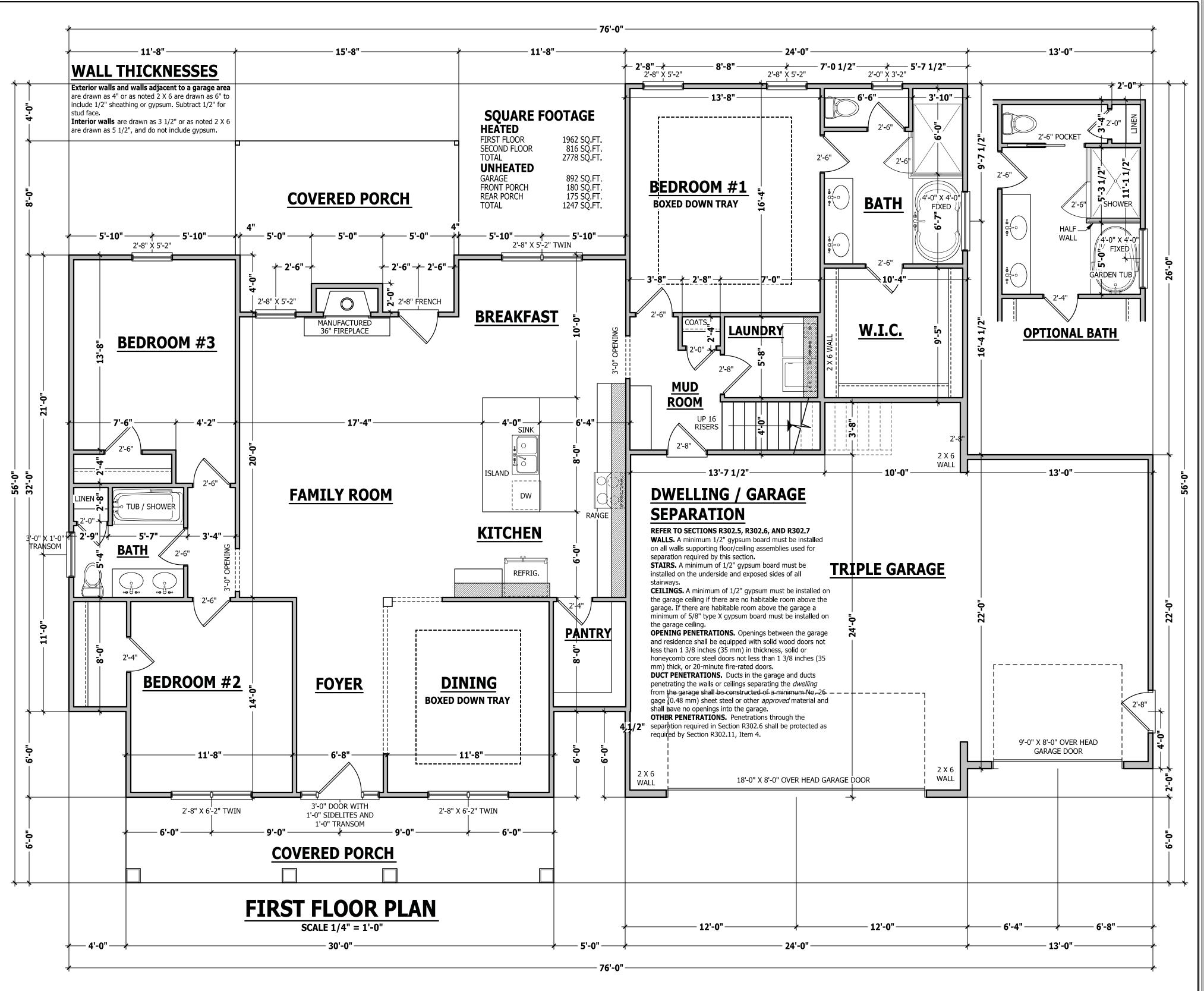
PURCHASER MUST VERIFY ALL IMENSIONS AND CONDITIONS BEFORE CONSTRUCTION BEGINS HAYNES HOME PLANS, INC.

ASSUMES NO LIABILITY FOR CONTRACTORS PRACTICES AND PROCEDURES. CODES AND CONDITIONS MAY ARY WITH LOCATION. A LOCAL

DESIGNER, ARCHITECT OR

GINEER SHOULD BE CONSULTED BEFORE CONSTRUCTION. THESE DRAWING ARE NSTRUMENTS OF SERVICE AND AS SUCH SHALL REMAIN PROPERTY OF THE DESIGNER.

PLAN


Paxton **FOUNDATION**

SQUARE FOOTAGE
HEATED
FIRST FLOOR 1962 SQ.FT.
SECOND FLOOR 816 SQ.FT. TOTAL UNHEATED GARAGE FRONT PORCH REAR PORCH TOTAL

© Copyright 2023

Haynes Home Plans, Inc. 3/21/2023

230312B

\Archive\Archive\Builder\Glover Design Build, LLC\230312B Paxton\230312B Paxton.aec

PURCHASER MUST VERIFY ALL
DIMENSIONS AND CONDITIONS
BEFORE CONSTRUCTION BEGINS.
HAYNES HOME PLANS, INC.
ASSUMES NO LIABILITY FOR
CONTRACTORS PRACTICES AND

CONTRACTORS PRACTICES AND PROCEDURES. CODES AND CONDITIONS MAY VARY WITH LOCATION. A LOCAL DESIGNER, ARCHITECT OR ENGINEER SHOULD BE CONSULTED

BEFORE CONSTRUCTION.
THESE DRAWING ARE
INSTRUMENTS OF SERVICE AND
AS SUCH SHALL REMAIN
PROPERTY OF THE DESIGNER.

ST FLOOR PLAN
Paxton

Slover Design Build Gloverdesignbuild@gmail.com

SQUARE FOOTAGE
HEATED

 SQUARE FOOTAGE

 HEATED
 1962 SQ.FT.

 FIRST FLOOR
 1962 SQ.FT.

 SECOND FLOOR
 816 SQ.FT.

 TOTAL
 2778 SQ.FT.

 UNHEATED
 892 SQ.FT.

 FRONT PORCH
 180 SQ.FT.

 REAR PORCH
 175 SQ.FT.

 TOTAL
 1247 SQ.FT.

© Copyright 2023
Haynes Home Plans, Inc.
3/21/2023

230312B

PAGE 4 OF 9

\Archive\Archive\Builder\Glover Design Build, LLC\230312B Paxton\230312B Paxton.aed

PURCHASER MUST VERIFY ALL
DIMENSIONS AND CONDITIONS
BEFORE CONSTRUCTION BEGIN
HAYNES HOME PLANS, INC.
ASSUMES NO LIABILITY FOR

HAYNES HOME PLANS, INC. ASSUMES NO LIABILITY FOR CONTRACTORS PRACTICES AND PROCEDURES. CODES AND CONDITIONS MAY VARY WITH LOCATION A LOCAL

CODES AND CONDITIONS MAY VARY WITH LOCATION. A LOCAL DESIGNER, ARCHITECT OR NGINEER SHOULD BE CONSULTED BEFORE CONSTRUCTION. THESE DRAWING ARE

THESE DRAWING ARE
NSTRUMENTS OF SERVICE AND
AS SUCH SHALL REMAIN
PROPERTY OF THE DESIGNER.

FLOOR STRUCTURAL

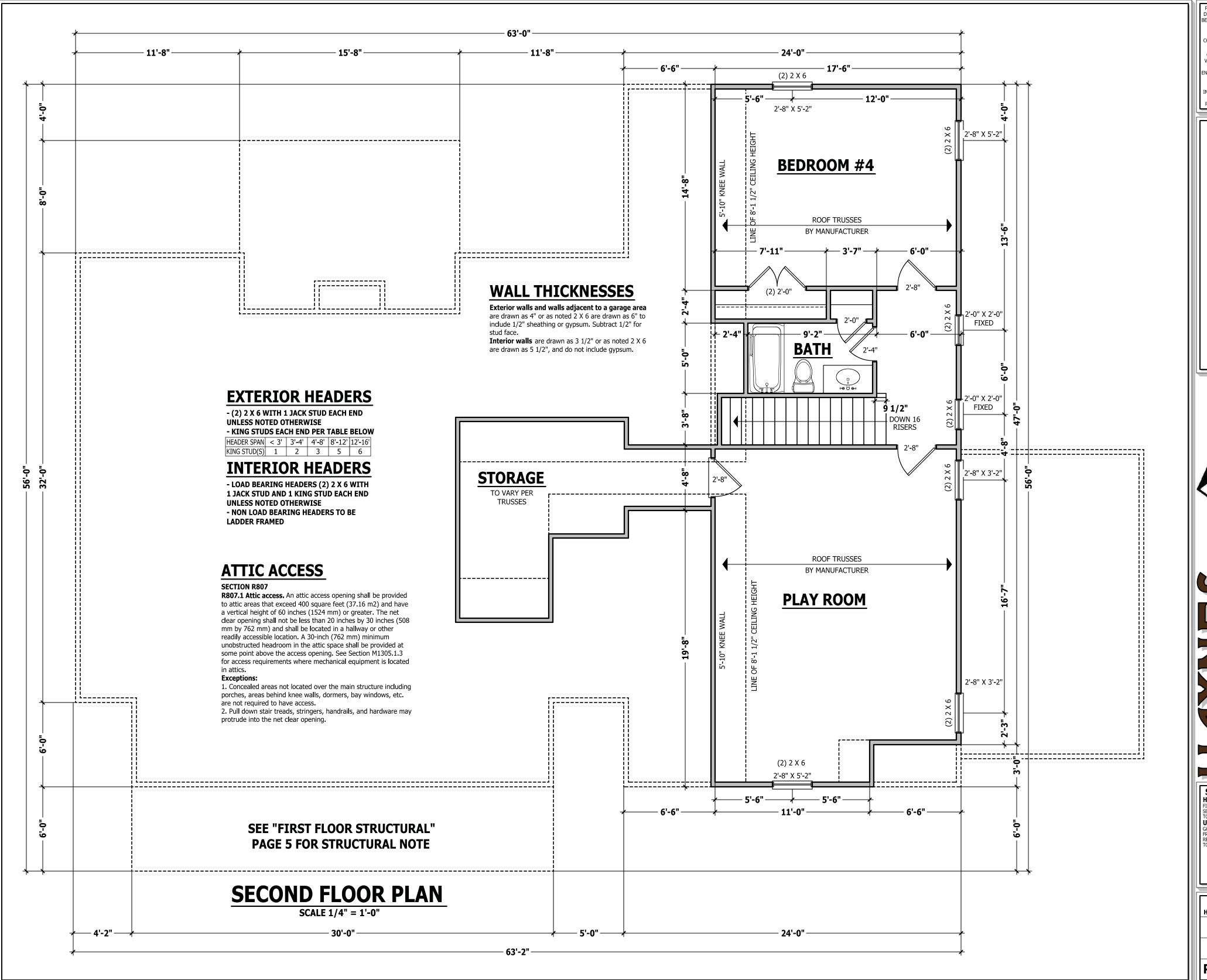
Paxton

Gloverdesignbuild@gmail.com

SQUARE FOOTAGE HEATED

© Copyright 2023

3/21/2023


FIRST FLOOR SECOND FLOOR

UNHEATED

GARAGE FRONT PORCH REAR PORCH

230312B

PAGE 5 OF 9

\Archive\Archive\Builder\Glover Design Build, LLC\230312B Paxton\230312B Paxton.aec

PURCHASER MUST VERIFY ALL
DIMENSIONS AND CONDITIONS
BEFORE CONSTRUCTION BEGINS.
HAYNES HOME PLANS, INC.
ASSUMES NO LIABILITY FOR
CONTRACTORS PRACTICES AND

PROCEDURES.

CODES AND CONDITIONS MAY
VARY WITH LOCATION. A LOCAL
DESIGNER, ARCHITECT OR
ENGINEER SHOULD BE CONSULTED
BEFORE CONSTRUCTION.

THESE DRAWING ARE INSTRUMENTS OF SERVICE AND AS SUCH SHALL REMAIN PROPERTY OF THE DESIGNER.

SECOND FLOOR PLAN
Paxton

 SQUARE FOOTAGE

 HEATED
 1962 SQ.FT.

 FIRST FLOOR
 816 SQ.FT.

 SECOND FLOOR
 815 SQ.FT.

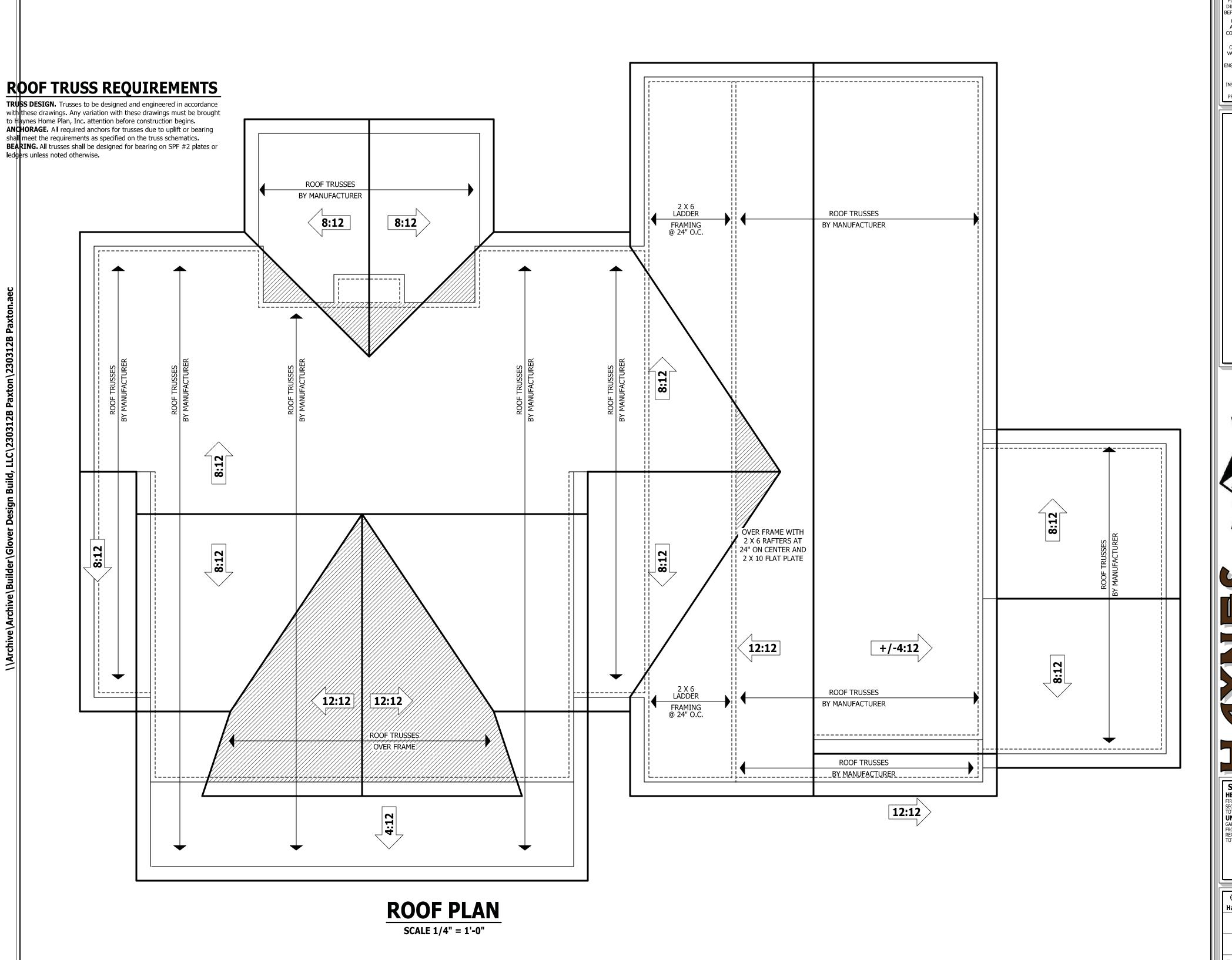
 TOTAL
 2778 SQ.FT.

 UNHEATED
 GARAGE

 GARAGE
 892 SQ.FT.

 FRONT PORCH
 180 SQ.FT.

 REAR PORCH
 175 SQ.FT.


 TOTAL
 1247 SQ.FT.

© Copyright 2023

3/21/2023

230312B

PAGE 6 OF 9

PURCHASER MUST VERIFY ALL
DIMENSIONS AND CONDITIONS
BEFORE CONSTRUCTION BEGINS.
HAYNES HOME PLANS, INC.
ASSUMES NO LIABILITY FOR
CONTRACTORS PRACTICES AND
PROCEDURES.

CODES AND CONDITIONS MAY
VARY WITH LOCATION. A LOCAL
DESIGNER, ARCHITECT OR
ENGINEER SHOULD BE CONSULTED
BEFORE CONSTRUCTION.
THESE DRAWING ARE
INSTRUMENTS OF SERVICE AND

INSTRUMENTS OF SERVICE AND AS SUCH SHALL REMAIN PROPERTY OF THE DESIGNER.

ROOF PLAN

Paxton

Sloverdesignbuild@gmail.com

 SQUARE FOOTAGE

 HEATED
 1962 SQ.FT.

 FIRST FLOOR
 816 SQ.FT.

 SECOND FLOOR
 816 SQ.FT.

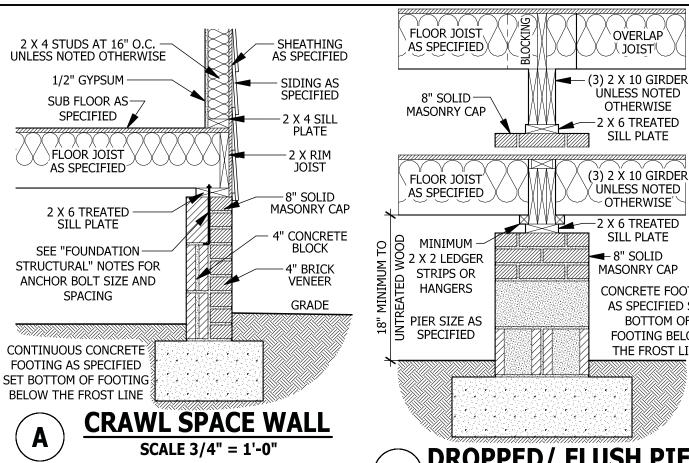
 TOTAL
 2778 SQ.FT.

 UNHEATED
 892 SQ.FT.

 GARAGE
 892 SQ.FT.

 FRONT PORCH
 180 SQ.FT.

 REAR PORCH
 175 SQ.FT.


 TOTAL
 1247 SQ.FT.

© Copyright 2023 Haynes Home Plans, Inc.

3/21/2023

230312B

PAGE 8 OF 9

2 X 4 STUDS AT 16" O.C. 1/2" GYPSUM UNLESS NOTED OTHERWISE SHEATHING SEE "FOUNDATION AS SPECIFIED STRUCTURAL" NOTES FOR ANCHOR BOLT SIZE AND SIDING AS **SPACING** 3 1/2" CONCRETE SLAB 2 X 6 TREATED FIBER REINFORCED OR 6 X 6 SILL PLATE 10/10 WELDED WIRE MESH 8" SOLID REINFORCED WITH CHAIRS MASONRY CAP EXPANSION JOINT 4" BRICK 6 MIL VAPOR BARRIER VENEER GRADE ్డ్కో 4" APPROVED BASE శ్రీ కేస్తో TAMPED OR UNDISTURBED CONTINUOUS CONCRETE **≬EARTH**∅ FOOTING AS SPECIFIED

SCALE 3/4" = 1'-0"

GARAGE STEM WALL

DECK STAIR NOTES

SECTION AM110

SET BOTTOM OF FOOTING

AM110.1 Stairs shall be constructed per Figure AM110. Stringer spans shall be no greater than 7 foot span between supports. Spacing between stringers shall be based upon decking material used per AM107.1. Each Stringer shall have minimum 3 1/2 inches between step cut and back of stringer. If used, suspended headers shall shall be attached with 3/8 inch galvanized bolts with nuts and washers to securely support stringers at the top.

DECK BRACING

SECTION AM109

AM109.1 Deck bracing. Decks shall be braced to provide lateral stability. The following are acceptable means to provide lateral stability.

AM109.1.1. When the deck floor height is less than 4'-0" above finished grade per Figure AM109 and the deck is attached to the structure in accordance with Section AM104, lateral bracing is not required.

AM109.1.2. 4 x 4 wood knee braces may be provided on each column in both directions. The knee braces shall attach to each post at a point not less than 1/3 of the post length from the top of the post, and the braces shall be angled between 45 degrees and 60 degrees from the horizontal. Knee braces shall be bolted to the post and the girder/double band with one 5/8 inch hot dipped galvanized bolt with nut and washer at both ends of the brace per Figure AM109.1

AM109.1.3. For freestanding decks without knee braces or diagonal bracing, lateral stability may be provided by embedding the post in accordance with Figure AM109.2 and the following:

POST SIZE	MAX TRIBUTARY AREA	MAX. POST HEIGHT	EMBEDMENT DEPTH	CONCRETE DIAMETER
4 X 4	48 SF	4'-0"	2'-6"	1'-0"
6 X 6	120 SF	6'-0"	3'-6"	1'-8"

AM109.1.4. 2 x 6 diagonal vertical cross bracing may be provided in two perpendicular directions for freestanding decks or parallel to the structure at the exterior column line for attached decks. The 2 x 6's shall be attached to the posts with one 5/8 inch hot dipped galvanized bolt with nut and washer at each end of each bracing member per Figure AM109.3.

AM109.1.5. For embedment of piles in Coastal Regions, see Chapter 45.

2 X 4 STUDS AT 16" O.C.

UNLESS NOTED OTHERWISE

SUB FLOOR AS—

SPECIFIED

FLOOR JOIST

AS SPECIFIED

2 X 6 TREATED SILL PLATE

SEE "FOUNDATION

SPACING

2 X TREATED— HOUSE BAND

SUB FLOOR AS -

SPECIFIED

TAMPED OR

SCALE 3/4" = 1'-0"

-2 X 4 SOLE PLATE

FLASHING MINIMUM 16" WIDE

3 1/2" CONCRETE SLAB

CONTINUOUS CONCRETE

SET BOTTOM OF FOOTING

FILLED PORCH SECTION WITH VENT

WITH (2) 1/2" HOT-DIPPED

GALVANIZED BOLTS

5/4 X 6 OR 2 X 4 TREATED-

GAP BETWEEN DECKING

FOUNDATION PLAN

ATTACH JOIST WITH HANGERS -

5/8" HOT-DIPPED GALVANIZED

BOLTS AT 1'-8" O.C. MINIMUM 2 1/2" FROM EDGE WITH (3) 12d

COMMON HOT-DIPPED

GALVANIZED NAILS AT 6" O.O

SET BOTTOM OF

FOOTING BELOW:

SMOKE ALARMS

equipment provisions of NFPA 72.

requirements of Section R314.4.

1. In each sleeping room.

below the upper level.

the alarms in the individual unit.

NFPA 72.

locations:

the bedrooms.

DECK ATTACHMENT

SCALE 1/2" = 1'-0"

R314.1 Smoke detection and notification. All smoke alarms shall be

listed in accordance with UL 217 and installed in accordance with

R314.2 Smoke detection systems. Household fire alarm systems

a combination of smoke detector and audible notification device

installed as required by this section for smoke alarms, shall be

installed in accordance with NFPA 72 that include smoke alarms, or

permitted. The household fire alarm system shall provide the same

level of smoke detection and alarm as required by this section for

smoke alarms. Where a household fire warning system is installed

device(s), it shall become a permanent fixture of the occupancy and

approved supervising station and be maintained in accordance with

owned by the homeowner. The system shall be monitored by an

R314.3 Location. Smoke alarms shall be installed in the following

2. Outside each separate sleeping area in the immediate vicinity of

3. On each additional story of the dwelling, including basements

and habitable attics (finished) but not including crawl spaces,

uninhabitable (unfinished) attics and uninhabitable (unfinished)

attic-stories. In *dwellings* or *dwelling units* with split levels and

alarm installed on the upper level shall suffice for the adjacent

without an intervening door between the adjacent levels, a smoke

lower level provided that the lower level is less than one full story

When more than one smoke alarm is required to be installed within

Exception: Where smoke alarms are provided meeting the

using a combination of smoke detector and audible notification

the provisions of this code and the household fire warning

OR TREATED 2 X 2 LEDGER

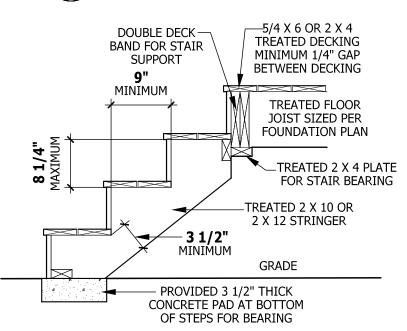
-FLASHING

COBBLED BRICK

FOR SLAB SUPPORT

Matreated Girder

TREATED POST


GRADE

ROWLOCK

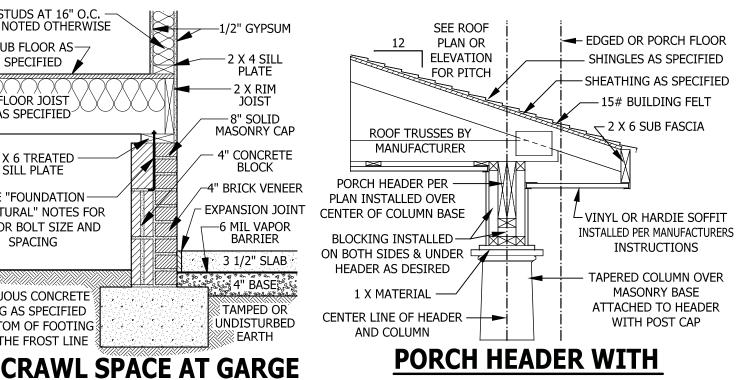
- 8 X 16 VEN

GRADE

FIGURE AM110 **TYPICAL DECK STAIR DETAIL**

SCALE 3/4" = 1'-0"

WEEP SCREEDS


All weep screeds and stone veneer to be installed per manufactures instructions and per the 2012 North Carolina Residential

R703.6.2.1 - A minimum 0.019-inch (0.5 mm) (No. 26 galvanized sheet gage),

corrosion-resistant weep screed or plastic weep screed, with a minimum vertical attachment flange of 31/2 inches (89 mm) shall be provided at or below the foundation plate line on exterior stud walls in accordance with ASTM C 926. The weep screed shall be placed a minimum of 4 inches (102 mm) above the earth or 2 inches (51 mm) above paved areas and shall be of a type that will allow trapped water to drain to the exterior of the

shall cover and terminate on the

attachment flange of the weep screed.

TAPERED COLUMN

SCALE 3/4" = 1'-0"

CARBON MONOXIDE ALARMS

R315.1 Carbon monoxide alarms. In new construction, dwelling units shall be provided with an approved carbon monoxide alarm installed outside of each separate sleeping area in the immediate vicinity of the bedroom(s) as directed by the alarm manufacturer

R315.2 Where required in existing dwellings. In existing dwellings, where interior alterations, repairs, fuel-fired appliance replacements, or additions requiring a permit occurs, or where one or more sleeping rooms are added or created, carbon monoxide alarms shall be provided in accordance with Section

R315.3 Alarm requirements. The required carbon monoxide alarms shall be audible in all bedrooms over background noise levels with all intervening doors closed. Single station carbon monoxide alarms shall be listed as complying with UL 2034 and shall be installed in accordance with this code and the manufacturer's installation instructions.

STAIRWAY NOTES

R311.7.2 Headroom. The minimum headroom in all parts of the stairway shall not be less than 6 feet 8 inches (2032 mm) measured vertically from the sloped line adjoining the tread nosing or from the floor surface of the landing or platform on that portion of the stairway.

R311.7.4 Stair treads and risers. Stair treads and risers shall meet the requirements of this section. For the purposes of this section all dimensions and dimensioned surfaces shall be exclusive of carpets, rugs or runners. R311.7.4.1 Riser height. The maximum riser height shall be 8 1/4 inches

(210 mm). The riser shall be measured vertically between leading edges of the adjacent treads. R311.7.4.2 Tread depth. The minimum tread depth shall be 9 inches (229 mm). The tread depth shall be measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. Winder treads shall have a minimum tread depth of 9 inches (229 mm) measured as above at a point 12 inches (305 mm)

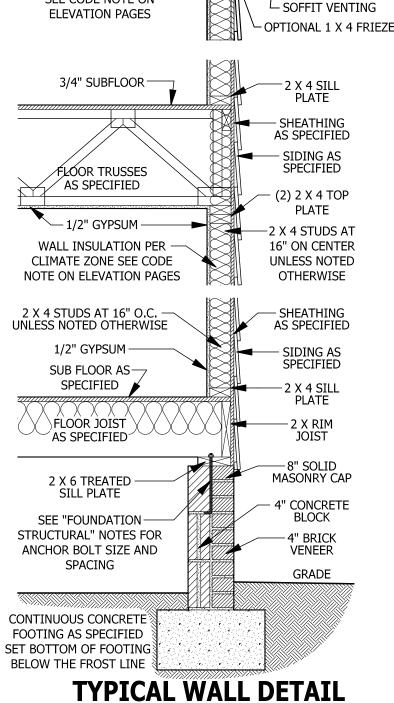
from the side where the treads are narrower. Winder treads shall have a

minimum tread depth of 4 inches (102 mm) at any point. **R311.7.4.3 Profile.** The radius of curvature at the nosing shall be no greater than 9/16 inch (14 mm). A nosing not less than 3/4 inch (19 mm) but not more than 1 1/4 inches (32 mm) shall be provided on stairways with solid

R311.7.7 Handrails. Handrails shall be provided on at least one side of each continuous run of treads or flight with four or more risers.

R311.7.7.1 Height. Handrail height, measured vertically from the sloped plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm)and not more than 38 inches (965 mm). **Exceptions:**

1. The use of a volute, turnout or starting easing shall be allowed over the lowest tread.


2. When handrail fittings or bendings are used to provide continuous transition between flights, the transition from handrail to guardrail, or used at the start of a flight, the handrail height at the fittings or bendings shall be permitted to exceed the maximum height.

R311.7.7.2 Continuity. Handrails for stairways shall be continuous for the full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails an individual *dwelling* unit the alarm devices shall be interconnected adjacent to a wall shall have a space of not less than 11/2 inch (38 mm) between the wall and the handrails.

in such a manner that the actuation of one alarm will activate all of Exceptions

1. Handrails shall be permitted to be interrupted by a newel post. 2. The use of a volute, turnout, starting easing or starting newel shall be allowed over the lowest tread.

3. Two or more separate rails shall be considered continuous if the termination of the rails occurs within 6 inches (152 mm) of each other. If transitioning between a wall-mounted handrail and a guardrail/handrail, the wall-mounted rail must return into the wall.

SCALE 3/4" = 1'-0"

PITCH PER ROOF PLAN

OR ELEVATIONS

ROOF INSULATION

(2) 2 X 4 TOP PLATE

- 1/2" GYPSUM

WALL INSULATION

PER CLIMATE ZONE

SEE CODE NOTE ON

PER CLIMATE ZONE

SEE CODE NOTE ON

ELEVATION PAGES

- SHINGLES AS SPECIFIED

-15# BUILDING FELT

-SHEATHING AS SPECIFIED

-SOFFIT

INSULATION BAFFLE

1 X 8 FASCIA

TYPICAL STAIR DETAIL

CONTINUOUS HANDRAIL

34 TO 38 INCHES

ABOVE TREAD NOSING

MAXIMUM 6" GAP

BETWEEN WALL

MOUNTED AND

OPEN RAIL

SQUARE FOOTAGE HEATED FIRST FLOOR SECOND FLOOR 1962 SQ.FT 816 SQ.FT 2778 SQ.FT UNHEATED Garage Front Porch REAR PORCH

PURCHASER MUST VERIFY ALL

EFORE CONSTRUCTION BEGINS

HAYNES HOME PLANS, INC.

ASSUMES NO LIABILITY FOR CONTRACTORS PRACTICES AND

PROCEDURES.

CODES AND CONDITIONS MAY

DESIGNER, ARCHITECT OR

BEFORE CONSTRUCTION.

THESE DRAWING ARE

NSTRUMENTS OF SERVICE AND

AS SUCH SHALL REMAIN

PROPERTY OF THE DESIGNER.

AIL

DET

TYPICAL

axton

IGINEER SHOULD BE CONSULTED

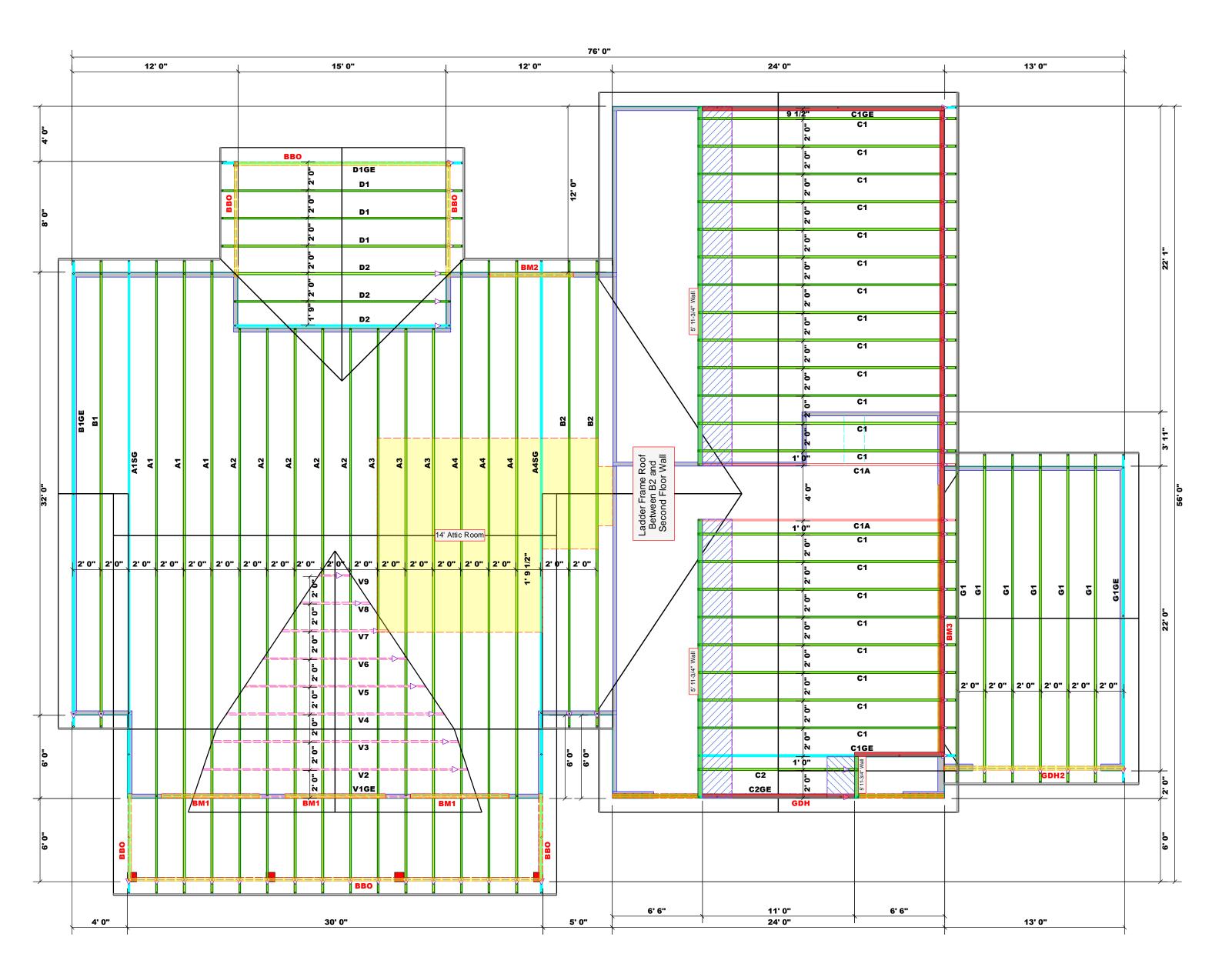
© Copyright 2023 Haynes Home Plans, Inc. 3/21/2023

230312B

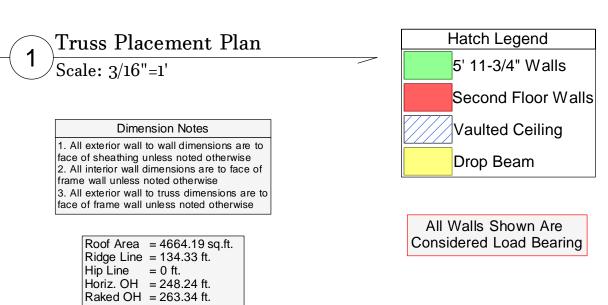
PAGE 8 OF 8

SHEATHING + STONE VEENER AS SPECIFIED AS SPECIFIED Building code. LATH-VAPOR BARRIER -WEEP SCREED MINIMUM 4" TO GROUND OR 2" -TO PAVEMENT SEE FOUNDATION

GRADE


FOR FOUNDATION

DETAILS


WEEP SCREED

SCALE 3/4" = 1'-0"

R314.4 Power source. Smoke alarms shall receive their primary power from the building wiring when such wiring is served from a building. The weather-resistant barrier shall commercial source, and when primary power is interrupted, shall lap the attachment flange. The exterior lath receive power from a battery. Wiring shall be permanent and without a disconnecting switch other than those required for overcurrent protection. Smoke alarms shall be interconnected.

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	8' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	6
BM2	6' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2
BM3	20' 0"	1-3/4"x 23-7/8" LVL Kerto-S	3	3
GDH	24' 0"	1-3/4"x 16" LVL Kerto-S	2	2
GDH2	13' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2

Decking = 160 sheets

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

соттесн **ROOF & FLOOR TRUSSES & BEAMS**

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

ring reactions less than or equal to 3000# are med to comply with the prescriptive Code uirements. The contractor shall refer to the ched Tables (derived from the prescriptive Couirements) to determine the minimum foundation and number of wood studs required to supportions greater than 3000# but not greater than 000#. A registered design professional shall be ined to design the support system for any stion that exceeds those specified in the attachles. A registered design professional shall be

Jonathan Landry

Jonathan Landry

LOAD CHART FOR JACK STUDS
(BASED ON TABLES R502.5(1) & (b))
NUMBER OF JACK STUDS REQUIRED @ EA END OF
HEADER/GIRDER

	(0		14 171000	J NOUL	.5(2) 00 (1	-,,,	
NUA	MBER C		RED @ E	A END O	F		
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER
1700	1		2550	1		3400	1
3400	2		5100	2		6800	
5100	3		7650	3		10200	
6800	4		10200	4		13600	4
8500	5		12750	5		17000	5
10200	6		15300	6			
11900	7						
13600	8						
15300	9						

Glover Design Build	CITY / CO.	CITY / CO. Fuquay Varina / Harnett
Lot 19 Purfoy Place	ADDRESS	438 Lambert Lane
Paxton/3GRF,CP	MODEL	Roof
N/A	DATE REV . 03/27/23	03/27/23
	DRAWN BY	DRAWN BY Jonathan Landry
J0922-4569	SALES REP.	SALES REP. Lenny Norris

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

JOB NAME

BUILDER

SEAL DATE

QUOTE ;

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0922-4569 Lot 19 Purfoy Place

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I57394434 thru I57394461

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

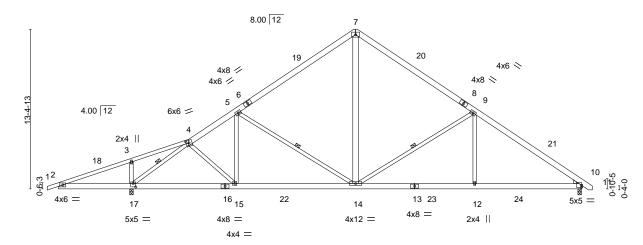
March 27,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394434 J0922-4569 Α1 **ROOF SPECIAL** 3 | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:45:57 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-ptt1xlnzXl6eVhhv?BsJzrrvbXefDJ8UTai5hXzWnde


43-11-0 44-10-0 0-11-0 -0-11-0 0-11-0 6-1-12 4-9-12 4-0-0 10-0-0 10-0-0 8-11-8

> Scale: 1/8"=1' 5x8 =

> > Structural wood sheathing directly applied or 4-8-8 oc purlins.

4-17, 5-14, 9-14

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-1-12 8-9-12 10-0-0 10-0-0 8-11-8 Plate Offsets (X,Y)--[4:0-2-12,0-2-8], [10:0-0-0,0-2-2], [17:0-2-8,0-3-8] LOADING (psf) SPACING-CSI DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.46 Vert(LL) -0.11 14-15 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.43 Vert(CT) -0.20 14-15 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.66 Horz(CT) 0.06 n/a 10 n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) 0.06 14-15 >999 240 Weight: 317 lb FT = 20%Matrix-S

BRACING-

WEBS

TOP CHORD

BOT CHORD

34-11-8

6-0-0 oc bracing: 2-17.

1 Row at midpt

24-11-8

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

1-4: 2x4 SP No.1 2x6 SP No.1

BOT CHORD WEBS 2x4 SP No.2 *Except*

7-14: 2x6 SP No.1

WEDGE

Right: 2x4 SP No.3

REACTIONS. (size) 17=0-3-8, 10=0-3-8

Max Horz 17=428(LC 11)

Max Uplift 17=-407(LC 12), 10=-272(LC 13) Max Grav 17=2101(LC 1), 10=1741(LC 20)

6-1-12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1030/770, 3-4=-898/721, 4-5=-2076/500, 5-7=-1695/602, 7-9=-1704/634, TOP CHORD

2-17=-663/1045, 15-17=-282/1769, 14-15=-288/1972, 12-14=-366/1898, 10-12=-366/1898

WEBS 3-17=-403/327, 4-17=-2428/1189, 4-15=-285/334, 5-15=-63/345, 5-14=-812/325,

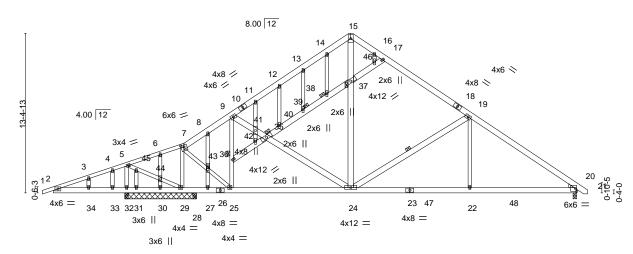
7-14=-277/1180, 9-14=-1074/470, 9-12=0/587

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 24-11-8, Exterior(2) 24-11-8 to 29-4-5, Interior(1) 29-4-5 to 44-8-1 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 407 lb uplift at joint 17 and 272 lb uplift at joint 10.

March 27,2023


Job Truss Truss Type Qty Lot 19 Purfoy Place 157394435 J0922-4569 A1SG **GABLE** | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:00 2023 Page 1

4-0-0

Comtech, Inc, Fayetteville, NC - 28314,

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-ESYAZmprqgUDM9QUgJP0aUTS8lfhQkCw9YwmlszWndb 24-11-8 10-0-0 10-0-0

> Scale: 1/8"=1' 5x8 ||

6-0-0	0-1-12 4-9-12	0-9-0 3-3-0	10-0-0	10-0-0		8-11-8	*
[7:0-3-0,0-2-0]							
SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.37 BC 0.41	DEFL. Vert(LL) Vert(CT)	in (loc) l/defl -0.06 22-24 >999 -0.12 22-24 >999	L/d 360 240	PLATES MT20	GRIP 244/190

0.07 20-22

240

10-0-0 oc bracing: 24-25,22-24,20-22.

Structural wood sheathing directly applied or 5-0-15 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

Weight: 412 lb

FT = 20%

>999

Wind(LL)

LUMBER-BRACING-

Code IRC2015/TPI2014

6-1,12 10-11-8 11-8,8 14-11-8

2x6 SP No.1 *Except* TOP CHORD TOP CHORD 1-7: 2x4 SP No.1 **BOT CHORD**

BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 *Except* **WEBS**

1 Row at midpt 5-32,5-29,7-29,7-25,9-25,19-22: 2x4 SP No.2 **JOINTS** 1 Brace at Jt(s): 35, 36, 37, 38, 39, 43 2x4 SP No.2

Matrix-S

OTHERS WEDGE

TCDL

BCLL

BCDL

Right: 2x4 SP No.3

Plate Offsets (X,Y)--LOADING (psf) TCLL

20.0

10.0

10.0

0.0

REACTIONS. All bearings 6-0-0 except (jt=length) 20=0-3-8, 28=0-3-8.

(lb) -Max Horz 32=553(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) except 32=-1265(LC 8), 29=-345(LC 12), 20=-514(LC 13), 30=-176(LC 8), 31=-544(LC 23), 28=-185(LC 12)

All reactions 250 lb or less at joint(s) except 32=1193(LC 23)

32=1137(LC 1), 29=1059(LC 19), 20=1516(LC 20), 30=313(LC 1), 31=571(LC 8),

28=464(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-962/724, 3-4=-902/722, 4-5=-861/715, 5-6=-386/467, 6-7=-328/445, 7-8=-784/348,

8-9=-883/352, 9-11=-1162/483, 11-12=-1143/486, 12-13=-1218/580, 13-14=-1265/646,

14-15=-1197/626, 15-16=-1159/597, 16-17=-1241/635, 17-19=-1323/633,

19-20=-2071/749

2-34=-660/960, 33-34=-660/960, 32-33=-660/960, 31-32=-780/932, 30-31=-780/932, **BOT CHORD**

29-30=-780/932, 28-29=-571/492, 27-28=-571/492, 25-27=-571/492, 24-25=-253/853,

22-24=-404/1545, 20-22=-404/1545

WEBS 5-32=-390/502, 5-45=-489/331, 44-45=-488/332, 29-44=-501/340, 7-29=-1456/714,

7-43=-603/1314, 25-43=-577/1263, 25-36=-704/516, 9-36=-574/418, 9-41=-5/345, 35-41=-63/423, 24-35=-149/387, 24-37=-240/736, 15-37=-266/760, 19-24=-1050/585,

19-22=0/594, 8-43=-262/69

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Continued on page 2

March 27,2023

Job	Truss	Truss Type	Qty	Ply	Lot 19 Purfoy Place
10000 4500	1400	CARLE			157394435
J0922-4569	A1SG	GABLE	1	1	
					Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:00 2023 Page 2

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-ESYAZmprqgUDM9QUgJP0aUTS8lfhQkCw9YwmlszWndb

NOTES-

- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1265 lb uplift at joint 32, 345 lb uplift at joint 29, 514 lb uplift at joint 20, 176 lb uplift at joint 30, 544 lb uplift at joint 31 and 185 lb uplift at joint 28.

818 Soundside Road Edenton, NC 27932

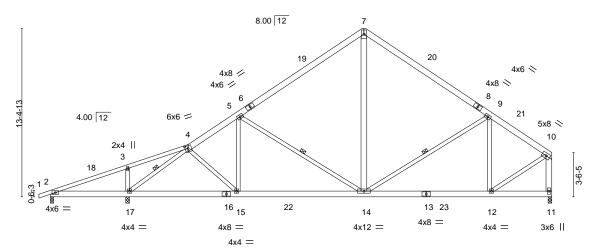
Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394436 J0922-4569 A2 **ROOF SPECIAL** 5 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:01 2023 Page 1 $ID: X5 az_D23 vLwLuiTNLuG6 bHyGfxb-ie6 Ym6 qTb_c4_J_gE1 wF7 h? cJ90S99W3OBgJqJzWnda$

Structural wood sheathing directly applied or 5-4-1 oc purlins,

4-17, 9-14, 5-14


Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

1 Row at midpt

24-11-8 39-11-0 14-11-8 34-11-8 6-1-12 4-9-12 4-0-0 10-0-0 10-0-0 4-11-8

> Scale = 1:91.7 5x8 ||

14-11-8 34-11-8 39-11-0 8-9-12 4-11-8

BRACING-

TOP CHORD

BOT CHORD

WEBS

Plate Off	Sets (X,Y)	[4:0-2-12,0-2-8]			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.41	Vert(LL) -0.08 14-15 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.37	Vert(CT) -0.15 14-15 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.51	Horz(CT) 0.03 11 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 14-15 >999 240	Weight: 308 lb FT = 20%

LUMBER-

WEBS

2x6 SP No.1 *Except* TOP CHORD

1-4: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 *Except*

10-11,7-14: 2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 17=0-3-8, 11=0-3-8

Max Horz 2=421(LC 9)

Max Uplift 2=-138(LC 8), 17=-377(LC 12), 11=-206(LC 13) Max Grav 2=182(LC 23), 17=1739(LC 1), 11=1410(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-203/368, 3-4=-116/369, 4-5=-1783/601, 5-7=-1381/579, 7-9=-1381/588,

9-10=-1251/444, 10-11=-1423/487

BOT CHORD 2-17=-368/118, 15-17=-437/1454, 14-15=-448/1651, 12-14=-307/1013

WEBS 3-17=-384/287, 4-17=-2012/635, 4-15=-16/270, 10-12=-366/1223, 7-14=-219/812,

9-14=-282/259, 9-12=-525/312, 5-14=-825/401, 5-15=0/275

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 24-11-8, Exterior(2) 24-11-8 to 29-4-5, Interior(1) 29-4-5 to 39-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 2, 377 lb uplift at joint 17 and 206 lb uplift at joint 11.

March 27,2023

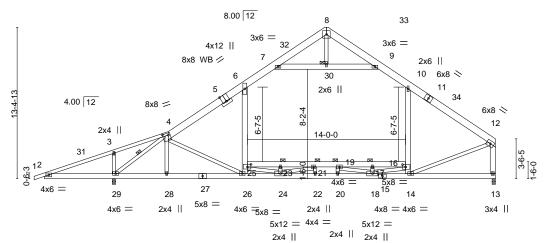
Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394437 J0922-4569 **A3 ROOF TRUSS** 3

Fayetteville, NC - 28314, Comtech, Inc.

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:03 2023 Page 1

Structural wood sheathing directly applied or 1-11-14 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:


except end verticals.

6-0-0 oc bracing: 2-29

9-6-15 oc bracing: 13-14.

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-e1ElBork7bsnDc83MSzjC65pTybZdysMrV9QuBzWndY 39-11-0 17-11-8 24-11-8 31-11-8 10-11-8 6-1-12 4-9-12 7-0-0 7-0-0 7-0-0 7-11-8

> Scale = 1:102.0 8x8 =

	6-1-12	10-11-8	17-11-8	20-10-10	23-11-8 2	25-11-8	29-0-6	31-11-8	39-11-0	ı
	6-1-12	4-9-12	7-0-0	2-11-2	3-0-14	2-0-0	3-0-14	2-11-2	7-11-8	1
_										

TOP CHORD

BOT CHORD

Plate Off	sets (X,Y)	[4:0-6-0,0-2-4], [5:0-4-0,Edge], [16:0-	3-4,0-2-8], [25:0-3-12,0-2-1	2]	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.94	Vert(LL) -0.35 26 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.78	Vert(CT) -0.76 26 >531 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.90	Horz(CT) 0.06 13 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.30 26-28 >999 240	Weight: 381 lb FT = 20%

LUMBER-BRACING-

2x8 SP No.1 *Except* TOP CHORD

1-4: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* **WEBS**

6-26,10-14,12-13,7-9: 2x6 SP No.1 **OTHERS** 2x4 SP No.2

WEBS 1 Row at midpt **JOINTS** 1 Brace at Jt(s): 30, 21, 19, 23, 17

REACTIONS. 29=0-3-8, 13=0-3-8 (size)

Max Horz 29=419(LC 9) Max Uplift 29=-38(LC 12)

Max Grav 29=2604(LC 2), 13=2254(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-583/770, 3-4=-463/732, 4-6=-2702/36, 6-7=-1948/233, 9-10=-2046/258,

10-12=-2429/55, 12-13=-2257/115

BOT CHORD 2-29=-664/628, 28-29=0/2506, 26-28=0/2498, 24-26=0/2949, 22-24=0/4355,

20-22=0/4355, 18-20=0/4355, 14-18=-37/1376, 23-25=-2487/0, 21-23=-2487/0,

19-21=-2628/0, 17-19=-1186/180, 16-17=-1186/180

WEBS 3-29=-393/300, 4-29=-3419/259, 4-26=-397/107, 6-25=0/1020, 10-16=0/714, 12-14=0/2069, 7-30=-2178/188, 9-30=-2178/188, 19-20=-14/263, 23-24=-399/0,

17-18=-429/0, 24-25=0/2032, 21-24=-424/513, 18-19=-1738/0, 16-18=0/2050

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 24-11-8, Exterior(2) 24-11-8 to 29-4-5, Interior(1) 29-4-5 to 39-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 4-6, 6-7, 9-10, 7-30, 9-30; Wall dead load (5.0psf) on member(s).6-25, 10-16

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 23-25, 21-23, 19-21, 17-19, 16-17

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 29.

8) Attic room checked for L/360 deflection.

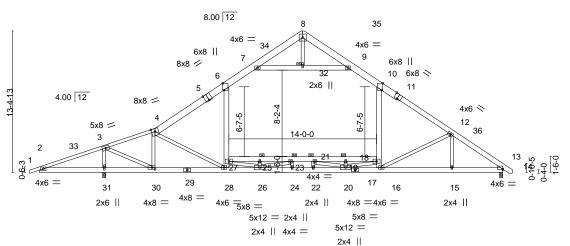
March 27,2023

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394438 **ROOF TRUSS** J0922-4569 A4 3 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:05 2023 Page 1

38-11-8


ID:X5az_D23vLwLuiTNLuG6bHyGfxb-aPM3cUt_fC6VTwlSTt?BHXA9JmG25uEfJpeXz4zWndW 31-11-8 7-0-0 7-0-0 7-0-0

> Scale = 1:109.2 8x8 =

> > 43-11-0

Structural wood sheathing directly applied or 2-1-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

	' 6-1-12	4-9-12	! ' 7-0-0 '	2-11-2 ' 3-0-14 '2-0-0	0 ' 3-0-14 ' 2-11-2	2 '	7-0-0	4-11-8	
(,Y)	[5:0-4-0,Edge], [6:0-7-11,	,Edge], [10:0-7	-11,Edge], [11:0-4-0,Ed	lge], [13:0-0-0,0-0-1	0], [30:0-3-8,0-2	2-0]			
)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defI	L/d	PLATES	GRIP
)	Plate Grip DOL	1.15	TC 0.92	Vert(LL)	-0.29 16-20	>999	360	MT20	244/190
)	Lumber DOL	1.15	BC 0.78	Vert(CT)	-0.57 22-24	>795	240		
) *	Rep Stress Incr	YES	WB 0.78	Horz(CT)	0.09 13	n/a	n/a		
)	Code IRC2015/TF	PI2014	Matrix-S	Wind(LL)	0.29 15-16	>999	240	Weight: 393 lb	FT = 20%

TOP CHORD

20-10-10 23-11-8 25-11-8 29-0-6 31-11-8

LUMBER-BRACING-

2x8 SP No.1 *Except* TOP CHORD

6-1-12

1-4: 2x4 SP No.1, 11-14: 2x6 SP No.1 **BOT CHORD**

BOT CHORD 2x6 SP No.1 6-0-0 oc bracing: 2-31,30-31. 2x4 SP No.2 *Except* **JOINTS** 1 Brace at Jt(s): 32, 21, 23, 25, 19 **WEBS**

10-11-8

10-16,6-28,7-9: 2x6 SP No.1

17-11-8

REACTIONS. (size) 31=0-3-8, 13=0-3-8

Max Horz 31=425(LC 11) Max Uplift 31=-20(LC 12)

Max Grav 31=2854(LC 2), 13=2387(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-581/774, 3-4=-2620/0, 4-6=-3232/64, 6-7=-2475/258, 7-8=-63/326, 8-9=-57/321,

9-10=-2453/276, 10-12=-3251/128, 12-13=-3697/209

BOT CHORD 2-31=-668/626, 30-31=-733/618, 28-30=0/2782, 26-28=0/2761, 24-26=0/4799,

22-24=0/4799, 20-22=0/4799, 16-20=0/2562, 15-16=-52/2930, 13-15=-52/2930, 25-27=-1722/0, 23-25=-1722/0, 21-23=-2543/0, 19-21=-1827/68, 18-19=-1827/68 3-31=-2614/470, 12-16=-670/340, 16-18=0/495, 10-18=0/1260, 27-28=-59/395,

6-27=0/1159, 7-32=-2956/217, 9-32=-2956/217, 4-30=-1384/215, 25-26=-421/0, 19-20=-420/0, 26-27=0/2034, 23-26=-1090/291, 20-21=-979/160, 18-20=0/2044,

3-30=-243/3176

NOTES-

WEBS

Plate Offsets (X,) LOADING (psf) TCLL

TCDL

BCLL

BCDL

20.0

10.0

10.0

0.0

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 24-11-8, Exterior(2) 24-11-8 to 29-4-5, Interior(1) 29-4-5 to 44-8-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 4-6, 6-7, 9-10, 7-32, 9-32; Wall dead load (5.0psf) on member(s).10-18, 6-27
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 25-27, 23-25, 21-23, 19-21,
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 31.
- 8) Attic room checked for L/360 deflection.

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394439 **ROOF TRUSS** J0922-4569 A4SG Job Reference (optional)

7-0-0

7-0-0

Fayetteville, NC - 28314, Comtech, Inc.

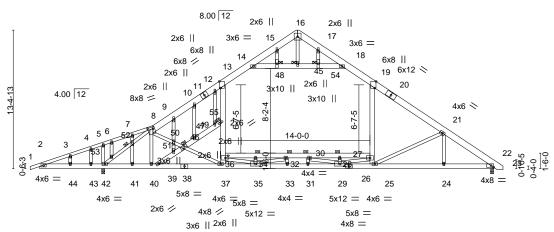
8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:07 2023 Page 1

7-0-0

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-XoTp19uEBqMDiESqbl1fMyFXfZz0Zowym77d1yzWndU 31-11-8 7-0-0

Scale = 1:111.5 8x8 =

Structural wood sheathing directly applied or 3-1-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

8-42

1 Brace at Jt(s): 45, 46, 47, 48, 54, 30, 32, 34, 28

6-0-0 oc bracing: 2-44,43-44,42-43.

1 Row at midpt

Plate Offsets (X,Y)	Plate Offsets (X,Y) [8:0-6-0,0-2-4], [13:0-7-11,Edge], [19:0-7-11,Edge], [36:0-3-4,0-2-8]											
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.80 BC 0.74 WB 0.83 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/defl -0.24 25-29 >999 -0.49 30 >915 0.10 22 n/a 0.30 24-25 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 450 lb	GRIP 244/190 FT = 20%					

20-10-10 23-11-8 25-11-8 29-0-6 31-11-8

TOP CHORD

BOT CHORD

WEBS

JOINTS

LUMBER-**BRACING-**

2x8 SP No.1 *Except* TOP CHORD 1-8: 2x4 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 *Except*

WEBS 19-25,13-37,14-18,46-47,39-46: 2x6 SP No.1

2x4 SP No.2 **OTHERS**

REACTIONS. 42=0-3-8, 22=0-3-8 (size)

Max Horz 42=549(LC 11)

Max Uplift 42=-509(LC 12), 22=-234(LC 13)

Max Grav 42=2751(LC 2), 22=2356(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1013/729, 3-4=-950/727, 4-5=-928/719, 5-6=-852/727, 6-7=-842/706,

7-8=-784/695, 8-9=-3196/165, 9-10=-3350/228, 10-12=-3467/267, 12-13=-3557/245, 13-14=-2441/421, 15-16=0/472, 16-17=0/464, 18-19=-2429/407, 19-21=-3226/265,

21-22=-3722/410

BOT CHORD 2-44=-665/1009, 43-44=-665/1009, 42-43=-665/1009, 41-42=-170/2818, 40-41=-170/2818,

39-40=-158/2803, 37-39=-522/3299, 35-37=-511/2598, 33-35=0/4653, 31-33=0/4653, 29-31=0/4653, 25-29=-6/2471, 24-25=-227/2978, 22-24=-227/2977, 34-36=-1517/331,

32-34=-1517/331, 30-32=-2301/0, 28-30=-1650/15, 27-28=-1650/15

WEBS 5-42=-24/256, 42-53=-3703/774, 52-53=-3559/760, 8-52=-3456/735, 8-40=-326/476,

8-50=-494/551, 46-50=-461/468, 37-46=-827/524, 16-45=-422/0, 21-25=-765/537, 25-27=-63/525, 19-27=0/1248, 36-37=-68/589, 36-47=0/1314, 13-47=0/1875,

14-48=-2890/366, 45-48=-2883/367, 45-54=-2883/367, 18-54=-2888/366, 46-49=-367/454,

49-55=-285/628, 47-55=-169/770, 39-51=-661/462, 46-51=-542/420, 15-48=-11/447, 10-49=-447/133, 9-50=-399/164, 50-51=-321/129, 17-54=0/464, 12-55=-429/35,

34-35=-425/0, 28-29=-426/0, 27-29=0/1944, 29-30=-924/326, 32-35=-1341/366,

35-36=0/2097

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (10.0 psf) on member(s). 13-14, 18-19, 14-48, 45-48, 45-54, 18-54; Wall dead load (5.0psf) on member(s).19-27,

Conใimded bin ∳age 2

March 27,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid to its 90 mly with win New Commercials. This design is based only upon parameters shown, and is 10 at an individual outlining Component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 19 Purfoy Place
					I57394439
J0922-4569	A4SG	ROOF TRUSS	1	1	
					Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:07 2023 Page 2 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-XoTp19uEBqMDiESqbl1fMyFXfZz0Zowym77d1yzWndU

NOTES-

- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 34-36, 32-34, 30-32, 28-30, 27-28
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 509 lb uplift at joint 42 and 234 lb uplift at joint 22.
- 9) Attic room checked for L/360 deflection.

818 Soundside Road Edenton, NC 27932

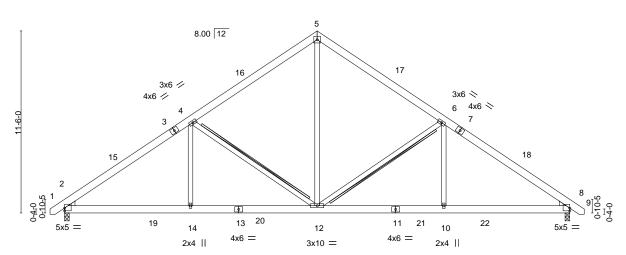
Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394440 J0922-4569 B1 COMMON Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:09 2023 Page 1 Fayetteville, NC - 28314, Comtech, Inc.

8-0-0

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-TBbaSrwVjRdxxXcDii37SNL_DNmN1jMFERck6rzWndS 23-11-8 31-11-0 32-10-0 0-11-0 8-0-0 7-11-8

Scale = 1:72.8 5x5 =

Structural wood sheathing directly applied or 5-3-8 oc purlins.


Fasten (2X) T and I braces to narrow edge of web with 10d

(0.131"x3") nails, 6in o.c., with 3in minimum end distance.

2x4 SPF No.2 - 6-12, 4-12

Rigid ceiling directly applied or 10-0-0 oc bracing.

Brace must cover 90% of web length.

7-11-8 15-11-8 23-11-8 7-11-8 7-11-8 Plate Offsets (X Y)-- [2:0-0-0 0-2-2] [8:0-0-0 0-2-2]

BRACING-

WEBS

TOP CHORD

BOT CHORD

I late Oil	3013 (7, 1)	[2.0 0 0,0 2 2], [0.0 0 0,0 2 2]			
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) -0.05 12-14 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.30	Vert(CT) -0.10 12-14 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.71	Horz(CT) 0.04 8 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.04 2-14 >999 240	Weight: 230 lb FT = 20%

LUMBER-

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=356(LC 11)

Max Uplift 2=-233(LC 12), 8=-233(LC 13) Max Grav 2=1472(LC 19), 8=1472(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2046/647, 4-5=-1483/609, 5-6=-1483/609, 6-8=-2047/647 **BOT CHORD** 2-14=-345/1807, 12-14=-345/1807, 10-12=-348/1560, 8-10=-348/1560 **WEBS** 5-12=-342/1092, 6-12=-832/389, 6-10=0/444, 4-12=-831/389, 4-14=0/444

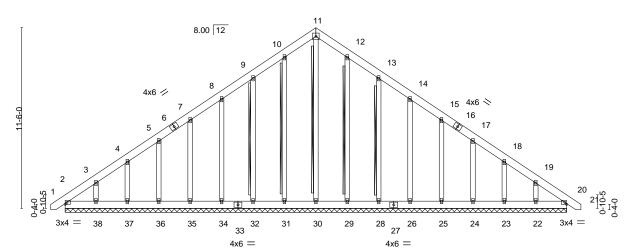
7-11-8 7-11-8

-0-11₋0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-8-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 2 and 233 lb uplift at joint 8.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

March 27,2023


Job Truss Truss Type Qty Lot 19 Purfoy Place 157394441 J0922-4569 B1GE **GABLE** Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:11 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-PZjKtXylE2tfBrlbq76bXoQOABW1VmDYhl5rBjzWndQ

32-10-0 -0-11-0 0-11-0 15-11-8 15-11-8

> Scale = 1:73.3 5x5 =

32-10-0 LOADING (psf) SPACING-DEFL. **PLATES GRIP** 2-0-0 CSI (loc) I/def L/d Plate Grip DOL 244/190 **TCLL** 20.0 1.15 TC 0.06 Vert(LL) 0.00 20 n/r 120 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.04 Vert(CT) 0.00 20 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.17 Horz(CT) 0.01 20 n/a n/a **BCDL** 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 295 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No 1 2x6 SP No.1 **BOT CHORD OTHERS** 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD WEBS**

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 - 11-30, 10-31, 9-32, 12-29, 13-28

ORTH

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 31-11-0.

Max Horz 2=445(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 20, 30, 31, 29 except 2=-150(LC 8), 32=-148(LC 12), 34=-133(LC 12), 35=-131(LC 12), 36=-132(LC 12), 37=-132(LC 12), 38=-212(LC 12), 28=-153(LC 13), 26=-133(LC 13), 25=-131(LC 13),

24=-132(LC 13), 23=-131(LC 13), 22=-198(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 20, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22 except 2=257(LC 9), 30=285(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-489/359, 3-4=-339/289, 4-5=-278/252, 8-9=-200/281, 9-10=-288/346, 10-11=-334/381, 11-12=-334/381, 12-13=-288/321, 19-20=-383/255

BOT CHORD 2-38=-224/347, 37-38=-224/347, 36-37=-224/347, 35-36=-224/347, 34-35=-224/347,

32-34=-224/347, 31-32=-224/347, 30-31=-224/347, 29-30=-224/347, 28-29=-224/347,

26-28=-224/347, 25-26=-224/347, 24-25=-224/347, 23-24=-224/347, 22-23=-224/347,

20-22=-224/347 11-30=-261/174

WEBS NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 30, 31, 29 except (jt=lb) 2=150, 32=148, 34=133, 35=131, 36=132, 37=132, 38=212, 28=153, 26=133, 25=131, 24=132, 23=131, 22=198.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building Contidesigner page 2

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

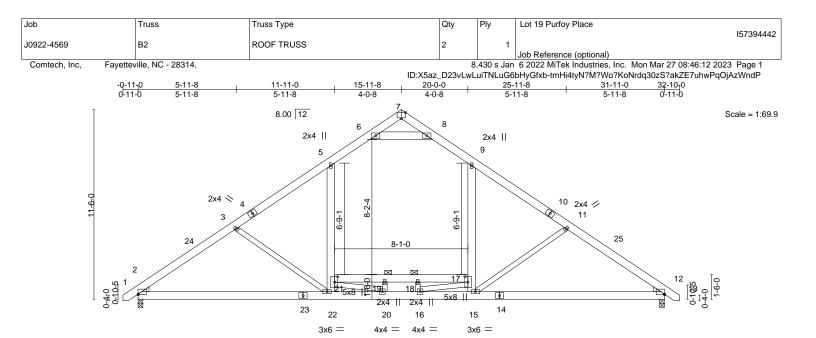
Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 19 Purfoy Place
	5.405	0.5.5	l.	_	l57394441
J0922-4569	B1GE	GABLE	1	1	
					Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:11 2023 Page 2 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-PZjKtXylE2tfBrlbq76bXoQOABW1VmDYhl5rBjzWndQ

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

818 Soundside Road Edenton, NC 27932

		5-11-8	11-11	1-0	14-11-8		-0-0	2	5-11-8		31-11-0	
		5-11-8	5-11	-8	3-0-8	2-0-0 3	0-8	5	5-11-8	<u> </u>	5-11-8	
Plate Offs	ets (X,Y)	[2:0-0-0,0-0-6], [7:0-3-0,Ed	ge], [12:0-0-0,0-	-0-6], [17:0-	4-0,0-2-4],	[21:0-4-0,0-2-4						
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC (0.57	Vert(LL)	-0.1	6 12-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC (0.46	Vert(CT)	-0.3	84 12-15	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB (0.53	Horz(CT) 0.0	06 12	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	2014	Matrix-	S	Wind(LL	0.	7 2-22	>999	240	Weight: 266 lb	FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP 2400F 2.0E *Except* TOP CHORD

1-4,10-13: 2x6 SP No.1

BOT CHORD 2x6 SP No.1

2x4 SP No.2 *Except* **WEBS**

9-15,5-22,6-8: 2x6 SP No.1

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. 2=0-3-8, 12=0-3-8 (size)

Max Horz 2=-356(LC 10)

Max Uplift 2=-14(LC 12), 12=-14(LC 13) Max Grav 2=1810(LC 20), 12=1810(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2606/327, 3-5=-2315/243, 5-6=-1746/318, 6-7=-96/1026, 7-8=-96/1025,

8-9=-1746/318, 9-11=-2314/243, 11-12=-2606/327

BOT CHORD 2-22=-125/2314, 20-22=0/2028, 16-20=0/2465, 15-16=0/1768, 12-15=-123/2048, 19-21=-713/0, 18-19=-713/0, 17-18=-713/0

WEBS 11-15=-619/356, 3-22=-619/356, 15-17=-60/585, 9-17=0/907, 21-22=-60/585,

5-21=0/907, 6-8=-3181/491, 16-18=-330/43, 19-20=-330/43, 20-21=-155/898,

16-17=-151/895

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 15-11-8, Exterior(2) 15-11-8 to 20-2-12, Interior(1) 20-2-12 to 32-8-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (10.0 psf) on member(s). 5-6, 8-9, 6-8; Wall dead load (5.0psf) on member(s).9-17, 5-21
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 19-21, 18-19, 17-18
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 10) Attic room checked for L/360 deflection.

Structural wood sheathing directly applied or 4-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 18, 19

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property danage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394443 J0922-4569 C₁ **ROOF SPECIAL** 21 | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:13 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:X5az_D23vLwLuiTNLuG6bHyGfxb-Lyr4HDz?mg7NQ9v_xY83cDVfr_7qzckq93ayFczWndO 17-9-0 0-11-0 11-11-8 5-11-8 6-0-0 5-9-8 Scale = 1:36.4 8x8 = 1 3.77 12 3x4 = 10 11 3 12.00 | 12 12 5x8 8 3x6 2x4 || 3x4 =11-11-8 17-9-0

_Plate Offsets	(X,Y)	[2:0-1-15,0-1-8], [4:0-5-8,	0-4-0], [5:0-6·	-4,0-0-0]									
LOADING (p	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.05	5-7	>999	360	MT20	244/190	
TCDL 10	.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.10	5-7	>999	240			
BCLL (.0 *	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.09	6	n/a	n/a			
BCDL 10	0.0	Code IRC2015/TF	PI2014	Matri	x-S	Wind(LL)	0.05	5-7	>999	240	Weight: 118 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

4-6: 2x10 SP No.1

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=166(LC 11)

Max Uplift 2=-189(LC 8), 6=-108(LC 8) Max Grav 2=746(LC 1), 6=711(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1503/605, 3-4=-857/407, 4-5=-926/397, 5-6=-451/249 TOP CHORD

BOT CHORD 2-8=-396/1365, 7-8=-396/1365, 5-7=-104/761

WEBS 3-7=-650/307, 4-7=-85/424

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-6 to 3-9-6, Interior(1) 3-9-6 to 11-11-8, Exterior(2) 11-11-8 to 16-4-5, Interior(1) 16-4-5 to 17-7-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=189, 6=108.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394444 J0922-4569 C1A **ROOF SPECIAL** 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:14 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:X5az_D23vLwLuiTNLuG6bHyGfxb-q8OSVZ_dXzFE2IUAVGfl9R2ncOS?i1K_NjJVn2zWndN 11-11-8 0-11-0

6-0-0

Scale = 1:36.4 8x8 = 1 3.77 12 3x4 = 10 11 3 12.00 | 12 12 5x8 8 3x6 2x4 || 3x4 =11-11-8 17-9-0 5-11-8 6-0-0 3-4-4 Plate Offsets (X,Y)--[2:0-1-15,0-1-8], [4:0-5-8,0-4-0], [5:0-6-4,0-0-0]

LOADING (psf) SPACING-2-6-0

CSI. TCLL 20.0 Plate Grip DOL 1.15 TC 0.63 TCDL 10.0 Lumber DOL 1.15 BC 0.34 **BCLL** 0.0 Rep Stress Incr NO WB 0.53 Code IRC2015/TPI2014 **BCDL** 10.0 Matrix-S

5-11-8

Vert(LL) -0.06 5-7 >999 360 Vert(CT) -0.12 5-7 >999 240 Horz(CT) 0.12 6 n/a n/a Wind(LL) 5-7 >999 240 0.06

I/def

in (loc) **PLATES** GRIP MT20 244/190

Weight: 118 lb FT = 20%

LUMBER-

WEBS

2x6 SP No.1 *Except* TOP CHORD

4-6: 2x10 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2

BRACING-

DEFL.

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-5-10 oc purlins.

5-9-8

Rigid ceiling directly applied or 10-0-0 oc bracing.

L/d

REACTIONS.

(size) 2=0-3-8, 6=0-3-8 Max Horz 2=207(LC 11)

Max Uplift 2=-236(LC 8), 6=-134(LC 8) Max Grav 2=933(LC 1), 6=889(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1879/756, 3-4=-1072/508, 4-5=-1157/496, 5-6=-564/311

BOT CHORD 2-8=-495/1707, 7-8=-495/1707, 5-7=-130/951 **WEBS** 3-8=0/295, 3-7=-813/383, 4-7=-106/530

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-6 to 3-9-6, Interior(1) 3-9-6 to 11-11-8, Exterior(2) 11-11-8 to 16-4-5, Interior(1) 16-4-5 to 17-7-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=236, 6=134.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394445 J0922-4569 C1GE **GABLE** 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:15 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:X5az_D23vLwLuiTNLuG6bHyGfxb-ILyriv?FIHN4fS3N3zAXheb?LopGRbH7cN32KVzWndM 0-11-0 11-11-8 5-11-8 6-0-0 5-9-8

2x4 || 3.77 12 6 2x4 || 3x4 = 12.00 | 12 4 2x4 || 3 3x6 8 2x4 || 5x8 12 11 10 13 2-1-12 3x6 2x4 || 2x4 || 2x4 || 3x4 =11-11-8 17-9-0 5-11-8 3-4-4 6-0-0 Plate Offsets (X,Y)--[2:0-1-15,0-1-8], [7:0-5-8,0-4-0], [8:0-5-8,0-0-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/def L/d **PLATES** GRIP

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

JOINTS

TOP CHORD

BOT CHORD

-0.05

-0.10

0.09

0.06

>999

>999

>999

1 Brace at Jt(s): 15

n/a

11

9

11

8-10

360

240

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

8x8 =

LUMBER-

TCLL

TCDL

BCLL

BCDL

2x6 SP No.1 *Except* TOP CHORD

7-9: 2x10 SP No.1 2x6 SP No.1

BOT CHORD WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

20.0

10.0

10.0

0.0

REACTIONS. (size) 2=0-3-8, 9=0-3-8

Max Horz 2=-227(LC 13)

Max Uplift 2=-350(LC 8), 9=-214(LC 13) Max Grav 2=746(LC 1), 9=711(LC 1)

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1469/782, 3-4=-1392/828, 4-5=-855/460, 5-6=-820/493, 6-7=-797/512,

7-8=-931/488, 8-9=-451/278

BOT CHORD 2-13=-593/1328, 12-13=-593/1328, 11-12=-593/1328, 10-11=-593/1328, 8-10=-172/765

1.15

1.15

YES

TC

BC

WB

Matrix-S

0.44

0.27

0.10

WEBS 4-15=-609/440, 14-15=-604/434, 10-14=-617/445, 7-10=-190/418

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=350. 9=214.

244/190

FT = 20%

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Weight: 126 lb

Scale = 1:36.4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

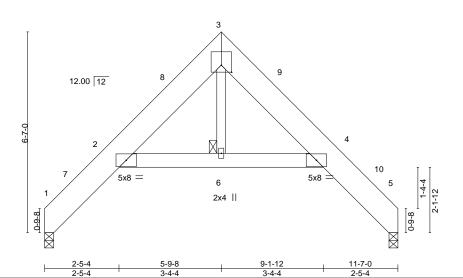
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394446 J0922-4569 C2 **ROOF SPECIAL**

Comtech, Inc, Fayetteville, NC - 28314,

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:16 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-mXWDwE?u3bVxHceZcghmEs7CpCBKA3NHr1ocsxzWndL


9-1-12 3-4-4 3-4-4 2-5-4

> Scale = 1:37.8 8x8 =

> > Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 6

Plate Off	sets (X,Y)	[3:0-4-0,0-2-12]								
LOADIN	G (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (l	oc) I/d	efl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.26	Vert(LL)	-0.03	6 >99	9 360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.16	Vert(CT)	-0.06	2-6 >99	9 240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.05	Horz(CT)	0.09	5 r	/a n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix-S	Wind(LL)	0.03	2-6 >99	9 240	Weight: 89 lb	FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x10 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=-180(LC 8) Max Uplift 1=-56(LC 12), 5=-56(LC 13) Max Grav 1=466(LC 1), 5=466(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-368/196, 2-3=-514/219, 3-4=-539/220, 4-5=-346/194

BOT CHORD 2-6=-36/499, 4-6=-36/499

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 5-9-8, Exterior(2) 5-9-8 to 10-2-5, Interior(1) 10-2-5 to 11-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394447 J0922-4569 C2GE **GABLE** Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:17 2023 Page 1

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-Ej4b7a0WqudovmDIAOD?m3gNZbXXvVLQ3hY9ONzWndK 9-1-12 3-4-4 3-4-4 2-5-4

> Scale = 1:37.8 8x8 =

> > Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 9

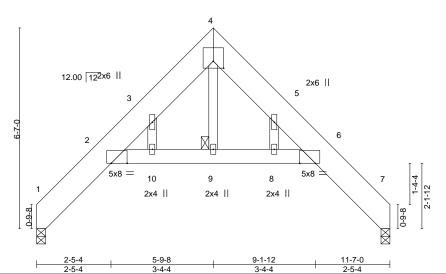


Plate Offsets (X,Y)-- [2:0-6-4,Edge], [4:0-4-0,0-2-12], [6:0-6-4,Edge]

LOADING	\(\(\)		2-0-0	CSI.	0.20	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.03	ō	>999	360	MT20	244/190
TCDL	10.0		1.15	BC	0.16	Vert(CT)	-0.06	8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.09	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	014	Matri	x-S	Wind(LL)	0.04	10	>999	240	Weight: 92 lb	FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

2x10 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

(size) 1=0-3-8, 7=0-3-8

Max Horz 1=-225(LC 8)

Max Uplift 1=-132(LC 12), 7=-132(LC 13) Max Grav 1=466(LC 1), 7=466(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-391/243, 2-3=-483/175, 3-4=-565/274, 4-5=-565/274, 5-6=-539/190, 6-7=-346/195

BOT CHORD 2-10=-84/548, 9-10=-78/539, 8-9=-78/539, 6-8=-78/544

WEBS 4-9=-109/318

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 1, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=132, 7=132,

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394448 J0922-4569 D1 COMMON 3 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:18 2023 Page 1 Fayetteville, NC - 28314, Comtech, Inc. ID:X5az_D23vLwLuiTNLuG6bHyGfxb-iwezLw18bClfWwoyk5kEJHDYX?oUeuRalLHjwpzWndJ 0-11-0 16-6-0 0-11-0

7-9-8

Scale = 1:38.1 5x5 =

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 9-7-8 oc bracing.

7-9-8

3 8.00 12 9 10 6 6x6 6x6 2x4

15-7-0

Plate Off	sets (X,Y)	[2:0-0-0,0-2-6], [4:Edge,0-2-6]		
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL) 0.07 4-6 >999 240 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.05 2-6 >999 240
BCLL	0.0 *	Rep Stress Incr YES	WB 0.33	Horz(CT) 0.01 4 n/a n/a
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 95 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 **WEBS** 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-0, 4=0-3-0

Max Horz 2=182(LC 11)

Max Uplift 2=-192(LC 9), 4=-192(LC 8) Max Grav 2=685(LC 2), 4=685(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-807/920, 3-4=-807/917 **BOT CHORD** 2-6=-564/567, 4-6=-564/567

WEBS 3-6=-674/457

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 7-9-8, Exterior(2) 7-9-8 to 12-2-5, Interior(1) 12-2-5 to 16-4-1 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

157394449 J0922-4569 D1GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:19 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-A6CLYG2mMWtW84M8lpFTsUlmgPE9NP?jX?1GTGzWndl |-0-11-0 | 0-11-0 16-6-0 7-9-8 7-9-8 0-11-0 Scale = 1:36.0 5x5 =6 7 8.00 12 8 10 3x4 = 3x4 =18 17 16 15 14 13 12 |-0-11-0 | 0-11-0 17-5-0 0-11-0 16-6-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES GRIP** (loc) I/defl 20.0 Plate Grip DOL -0.00 120 244/190 **TCLL** 1.15 TC 0.03 Vert(LL) 10 n/r MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.02 Vert(CT) 0.00 10 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 10 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 116 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

Lot 19 Purfoy Place

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-TOP CHORD

Job

Truss

Truss Type

2x6 SP No.1

BOT CHORD 2x6 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 15-7-0. Max Horz 2=227(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10 except 16=-121(LC 12), 17=-139(LC 12), 18=-168(LC 12),

14=-116(LC 13), 13=-141(LC 13), 12=-160(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 10, 15, 16, 17, 18, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10 except (jt=lb) 16=121, 17=139, 18=168, 14=116, 13=141, 12=160.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394450 J0922-4569 D2 COMMON 3 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:20 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-eImklc3O7p?NmDxKrWmiOilt5pWe6n0smfmp?izWndH 15-7-0 7-9-8 7-9-8 Scale = 1:37.3 5x8 = 2 8.00 12 6 - 0 - 53 0 - 10 - 0 \bigotimes 9 10 4 5x5 =5x5 = 2x4 || Plate Offsets (X,Y)--[1:0-0-0,0-1-15], [3:0-0-0,0-1-15] SPACING-GRIP LOADING (psf) CSI. DEFL. in (loc) I/defI L/d **PLATES** 240 TCLL 20.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) 0.07 1-4 >999 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.26 Vert(CT) -0.05 1-4 >999 240

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.01

3

n/a

n/a

Rigid ceiling directly applied or 9-6-4 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

0.0

10.0

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=-176(LC 8)

Max Uplift 1=-183(LC 9), 3=-183(LC 8) Max Grav 1=638(LC 2), 3=638(LC 2)

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-804/923, 2-3=-804/923 TOP CHORD **BOT CHORD** 1-4=-580/569, 3-4=-580/569

WFBS 2-4=-669/452

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 7-9-8, Exterior(2) 7-9-8 to 12-2-5, Interior(1) 12-2-5 to 15-5-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-S

0.33

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=183, 3=183.

FT = 20%

Weight: 89 lb

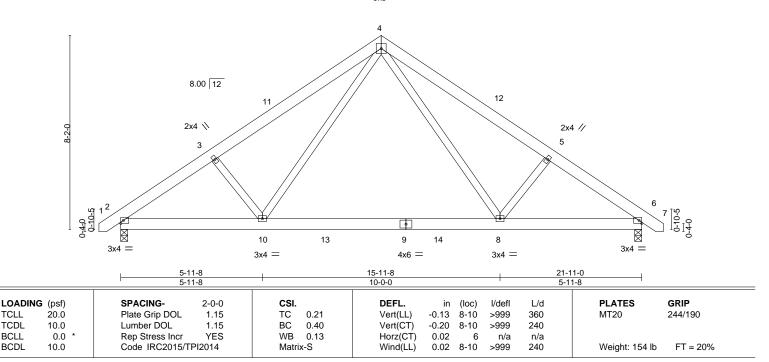
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394451 J0922-4569 G1 COMMON 6 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:21 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:X5az_D23vLwLuiTNLuG6bHyGfxb-6UK6zy30u77EONWWPEHxxvq3JDqdrHI0_JWNX8zWndG 21-11-0 22-10-0 0-11-0

7-0-0


7-0-0

Scale: 1/4"=1' 5x5 =

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-11-8

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS.

(size) 2=0-3-8, 6=0-3-8 Max Horz 2=187(LC 11)

Max Uplift 2=-57(LC 12), 6=-57(LC 13) Max Grav 2=960(LC 19), 6=960(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1386/278, 3-4=-1267/323, 4-5=-1268/323, 5-6=-1386/278

3-11-8

BOT CHORD 2-10=-158/1188. 8-10=0/718. 6-8=-163/1048

WEBS 4-8=-83/607, 5-8=-299/225, 4-10=-83/607, 3-10=-299/225

NOTES-

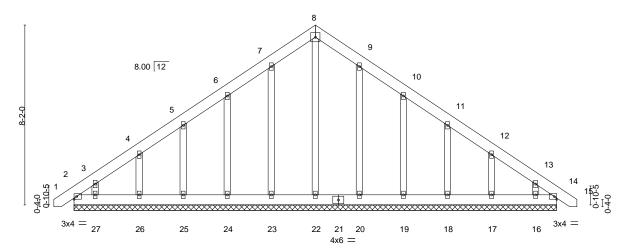
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-9-12, Interior(1) 3-9-12 to 10-11-8, Exterior(2) 10-11-8 to 15-4-5, Interior(1) 15-4-5 to 22-8-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Lot 19 Purfoy Place 157394452 J0922-4569 G1GE **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:23 2023 Page 1

5x5 =


Comtech, Inc, Fayetteville, NC - 28314, $ID: X5az_D23vLwLuiTNLuG6bHyGfxb-3tRsOe5HQkNydhgvXfKP0KwSe0c7JCtJSd?Uc1zWndEurustander (Control of the Control of the Control$

22-10-0 23-9-0 -0-11-0 0-11-0 10-11-8 10-11-8

Scale = 1:52.3

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	-0-11-0 0-11-0		22-10-0 21-11-0		23-9-0 0-11-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.03 BC 0.02 WB 0.13	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) l/defl 14 n/r 14 n/r 14 n/a	L/d PLATES 120 MT20 120 n/a	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 178	3 lb FT = 20%

LUMBER-BRACING-TOP CHORD

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **OTHERS**

2x4 SP No.2

BOT CHORD

All bearings 21-11-0. Max Horz 2=234(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 23, 24, 25, 26, 20, 19, 18, 17 except 27=-134(LC 12),

16=-120(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 22, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16

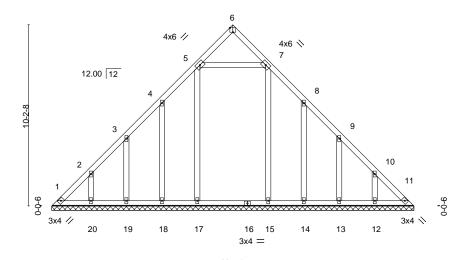
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-275/196

NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 23, 24, 25, 26, 20, 19, 18, 17 except (jt=lb) 27=134, 16=120.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394453 J0922-4569 V1GE VALLEY

3x4 =

Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:24 2023 Page 1

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-X3?Ebz6vA2WpFrF54MreZYSceQwX2dYSgHk18TzWndD 20-5-1 10-2-8 10-2-9

Scale = 1:65.0

[6:0-2-0 Edge] [7:0-0-0 0-0-0] [8:0-0-0 0-0-0] [9:0-0-0 0-0-0] [10:0-0-0 0-0-0]

Plate Offsets (X,Y)	Plate Offsets (X,Y) [6:0-2-0,Edge], [7:0-0-0,0-0-0], [8:0-0-0,0-0-0], [9:0-0-0,0-0-0], [10:0-0-0,0-0-0]											
LOADING (psf)	SPACING- 2-0-0	CSI.		n (loc)	l/defl	L/d	PLATES GR					
TCLL 20.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL) n.	a -	n/a	999	MT20 244	/190				
TCDL 10.0	Lumber DOL 1.15	BC 0.13	Vert(CT) n	'a -	n/a	999						
BCLL 0.0 *	Rep Stress Incr YES	WB 0.23	Horz(CT) 0.0	1 11	n/a	n/a						
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 133 lb F	T = 20%				

LUMBER-BRACING-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.2 TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-5-1.

Max Horz 1=-393(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 17 except 1=-174(LC 10), 18=-200(LC 12), 19=-200(LC 12),

20=-217(LC 12), 14=-197(LC 13), 13=-201(LC 13), 12=-217(LC 13)

All reactions 250 lb or less at joint(s) 11, 18, 19, 20, 14, 13, 12 except 1=265(LC 9), 17=404(LC 19), Max Grav

15=340(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-399/324, 2-3=-293/256, 3-4=-245/253, 4-5=-282/345, 7-8=-282/296,

BOT CHORD 1-20=-146/267, 19-20=-146/267, 18-19=-146/267, 17-18=-146/267, 15-17=-146/267,

14-15=-146/267, 13-14=-146/267, 12-13=-146/267, 11-12=-146/267

WEBS 5-7=-236/292

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 17 except (jt=lb) 1=174, 18=200, 19=200, 20=217, 14=197, 13=201, 12=217.

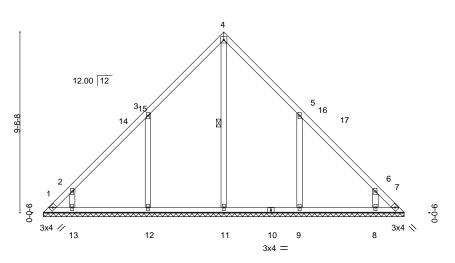
March 27,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394454 VALLEY J0922-4569 V2


Comtech, Inc, Fayetteville, NC - 28314,

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:26 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-TS7?0f79ifmXU8PUCnt6ezYw9EbBWXzl8aD8CMzWndB

9-6-8 9-6-9

4x4 =

Scale = 1:60.8

19-1-1

Plate Offs	sets (X,Y)	[5:0-0-0,0-0-0], [6:0-0-0,0)-0-0]										
LOADING	\	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.01	7	n/a	n/a			
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 98 lb	FT = 20%	

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. 4-11

WEBS 1 Row at midpt

REACTIONS. All bearings 19-0-5.

(lb) -Max Horz 1=-293(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-189(LC 10), 7=-140(LC 11), 12=-280(LC 12),

13=-203(LC 12), 9=-279(LC 13), 8=-204(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 7 except 1=255(LC 12), 11=447(LC 22), 12=523(LC 19),

13=304(LC 19), 9=523(LC 20), 8=304(LC 20)

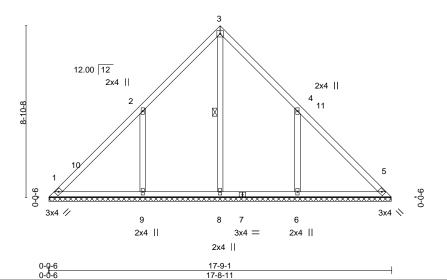
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-357/311, 3-4=-273/261, 4-5=-273/261, 6-7=-355/311 **WEBS** 3-12=-511/429, 2-13=-395/368, 5-9=-511/429, 6-8=-395/368

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 9-6-8, Exterior(2) 9-6-8 to 13-11-5, Interior(1) 13-11-5 to 18-8-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 1, 140 lb uplift at joint 7, 280 lb uplift at joint 12, 203 lb uplift at joint 13, 279 lb uplift at joint 9 and 204 lb uplift at joint 8.
- 7) N/A

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394455 J0922-4569 V3 VALLEY


4x4 =

Comtech, Inc, Fayetteville, NC - 28314,

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:27 2023 Page 1 $ID: X5az_D23vLwLuiTNLuG6bHyGfxb-xehNE?8nTzuN6l_gmUOLAA44ndxWF_juNEzhlozWndA$

8-10-8 8-10-9

Scale = 1:59.6

Plate Offsets (X,Y) [4:0-0-0,0-0-0]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl	L/d	PLATES GRIP			
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) n/a	- n/a	999	MT20 244/190			
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) n/a	- n/a	999				
BCLL 0.0	Rep Stress Incr YES	WB 0.20	Horz(CT) 0.00	5 n/a	n/a				
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 87 lb FT = 20%			

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD WEBS**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 3-8

REACTIONS. All bearings 17-8-5.

(lb) -Max Horz 1=-272(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-328(LC 12), 6=-327(LC 13)

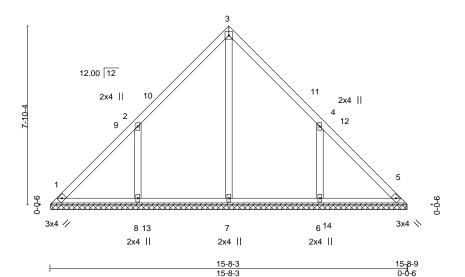
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=427(LC 22), 9=594(LC 19), 6=594(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-255/243, 3-4=-255/244 WEBS 2-9=-583/475, 4-6=-583/475

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-10-8, Interior(1) 4-10-8 to 8-10-8, Exterior(2) 8-10-8 to 13-3-5, Interior(1) 13-3-5 to 17-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=328, 6=327.
- 6) N/A


Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394456 J0922-4569 V4 VALLEY

Comtech, Inc, Fayetteville, NC - 28314,

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:28 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-PrFIRL9PEG0EjSZtJCvajOdGd1Hh_Sv2buiEHEzWnd9

15-8-9 7-10-5 7-10-4

> Scale = 1:50.6 4x4 =

Plate Offsets (X,Y) [4:0-0-0,0-0-0]												
LOADIN	G (psf)	SPACING- 2-	0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1	.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL 1	.15	BC	0.18	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr Y	'ES	WB	0.14	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI201	14	Matri	x-S						Weight: 75 lb	FT = 20%

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-7-13.

Max Horz 1=240(LC 9) (lb) -

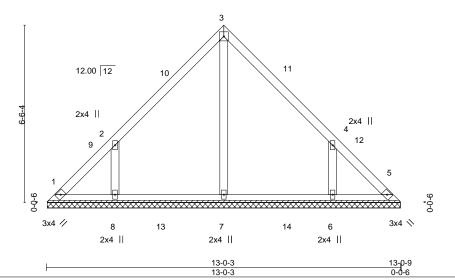
Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-284(LC 12), 6=-284(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=425(LC 22), 8=512(LC 19), 6=512(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-511/431, 4-6=-511/431 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-10-5, Exterior(2) 7-10-5 to 12-3-1, Interior(1) 12-3-1 to 15-4-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=284, 6=284,


Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394457 J0922-4569 V5 VALLEY

Comtech, Inc, Fayetteville, NC - 28314,

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:29 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-t1o7ehA1?a85Lc73tvQpGbASvRdTjwxBqYSophzWnd8

6-6-5 6-6-5 13-0-9 6-6-4

> Scale = 1:42.4 4x4 =

1 1010 011	3013 (7,1)	[4.0 0 0,0 0 0]			
LOADIN	\(\(\)	SPACING- 2-0-0		DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.17	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) n/a - n/a 999	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) 0.00 5 n/a n/a	I
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 60 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-11-13.

Plate Offsets (X V)-- [4:0-0-0 0-0-0]

Max Horz 1=197(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-245(LC 12), 6=-245(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=390(LC 19), 8=404(LC 19), 6=404(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-451/401, 4-6=-451/402 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-6-5, Exterior(2) 6-6-5 to 10-11-1, Interior(1) 10-11-1 to 12-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=245, 6=245,

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394458 J0922-4569 V₆ VALLEY

Fayetteville, NC - 28314, Comtech, Inc.

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:30 2023 Page 1

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-MDMWs1AgmuGyzmiFRdy2opicDr_gSNEL3CBLL7zWnd7 5-2-5 5-2-5 5-2-4

> Scale = 1:34.2 4x4 =

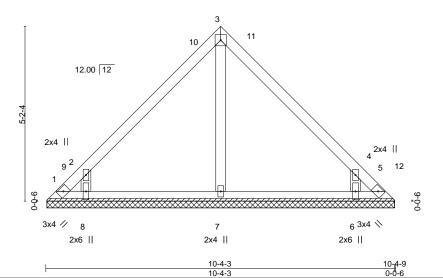


Plate Offsets (X,Y)--[4:0-0-0,0-0-0] SPACING-L/d **PLATES** LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) 999 244/190 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.09 0.00 Horz(CT) n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Matrix-S Weight: 44 lb

LUMBER-**BRACING-**

2x4 SP No.1 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-3-13. (lb) -

2x4 SP No.2

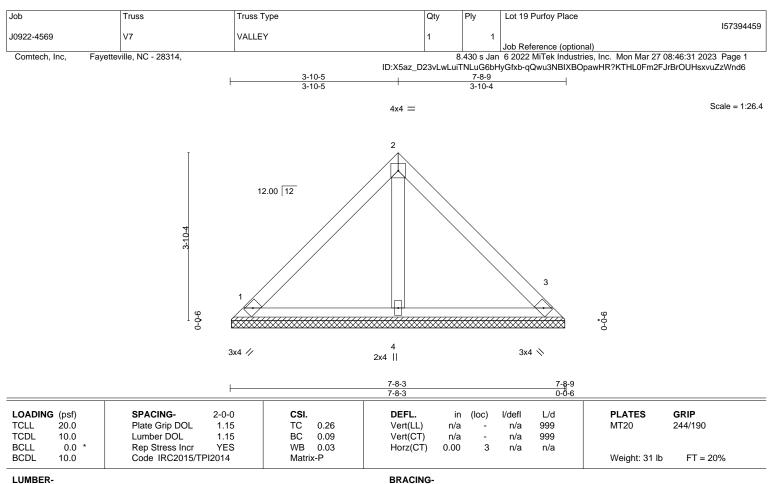
Max Horz 1=-154(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-178(LC 10), 5=-153(LC 11), 8=-276(LC 12), 6=-276(LC

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=416(LC 19), 6=416(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-257/213, 4-5=-258/213 WEBS 2-8=-529/498, 4-6=-530/498


NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-2-5, Exterior(2) 5-2-5 to 9-7-1, Interior(1) 9-7-1 to 10-0-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 178 lb uplift at joint 1, 153 lb uplift at joint 5, 276 lb uplift at joint 8 and 276 lb uplift at joint 6.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

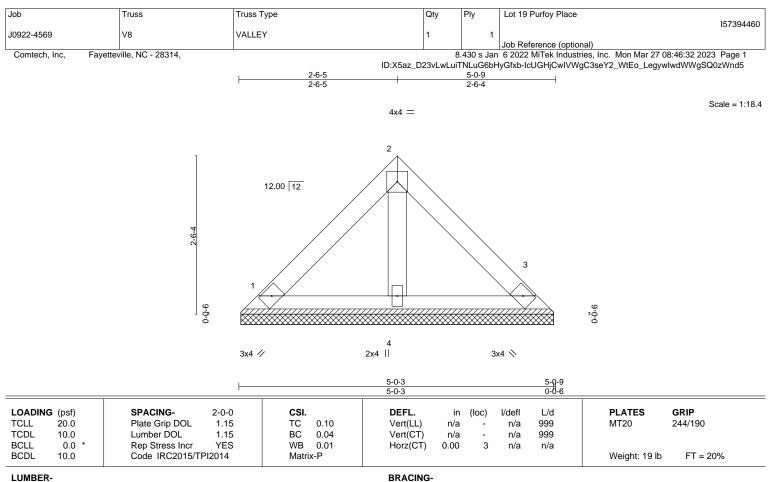
REACTIONS.

1=7-7-13, 3=7-7-13, 4=7-7-13 (size) Max Horz 1=-112(LC 10) Max Uplift 1=-55(LC 13), 3=-55(LC 13)

Max Grav 1=171(LC 1), 3=171(LC 1), 4=219(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 1 and 55 lb uplift at joint 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.

1=4-11-13, 3=4-11-13, 4=4-11-13 (size) Max Horz 1=-69(LC 8) Max Uplift 1=-34(LC 13), 3=-34(LC 13)

Max Grav 1=106(LC 1), 3=106(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1 and 34 lb uplift at joint 3.

Structural wood sheathing directly applied or 5-0-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157394461 J0922-4569 V9 VALLEY Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 27 08:46:33 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-mo2eU2DY3peXqDRq6IVIQRKAO20OflKnlAQ?ySzWnd4 1-2-5 1-2-5 2-4-9 1-2-4 Scale = 1:8.7 3x4 =2 12.00 12 3 9-0-0 9-0-0 3x4 // 3x4 N Plate Offsets (X,Y)--[2:0-2-0,Edge] SPACING-L/d **PLATES** GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI Plate Grip DOL TCLL 20.0 1.15 TC 0.02 Vert(LL) 999 MT20 244/190 n/a n/a TCDL 10.0 Lumber DOL 1.15 ВС 0.02 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a

LUMBER-

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

10.0

BRACING-

Matrix-P

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-4-9 oc purlins.

Weight: 7 lb

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=2-3-13, 3=2-3-13 (size)

Max Horz 1=-27(LC 8)

Max Uplift 1=-10(LC 12), 3=-10(LC 12) Max Grav 1=67(LC 1), 3=67(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 10 lb uplift at joint 3.

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Symbols

PLATE LOCATION AND ORIENTATION

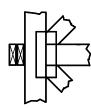
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

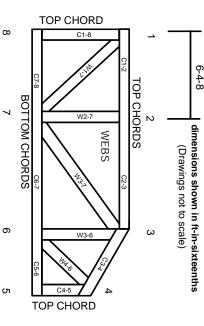

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

National Design Specification for Metal

DSB-89: ANSI/TPI1:

Building Component Safety Information. Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling Design Standard for Bracing. Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

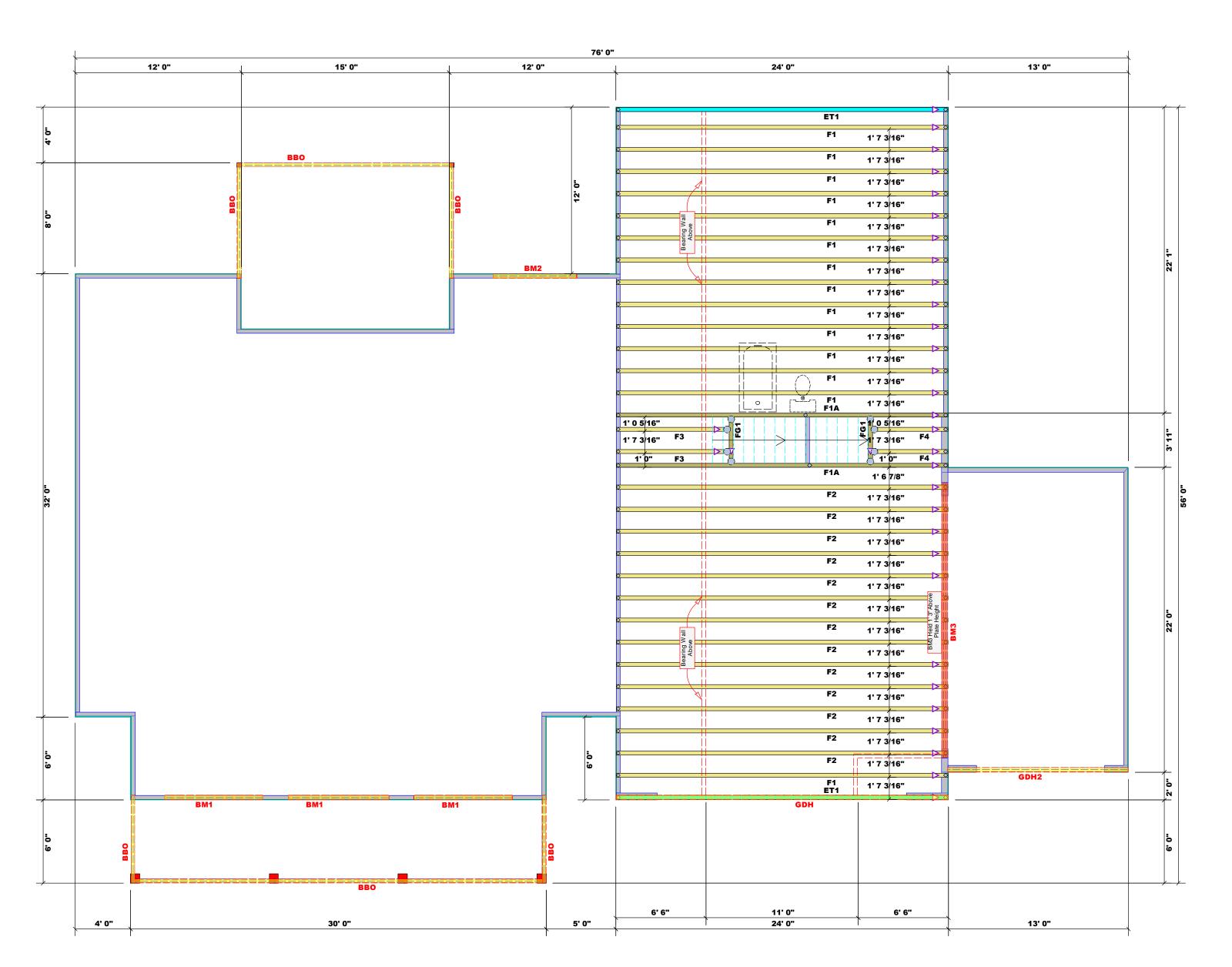
- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For bracing should be considered. may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building

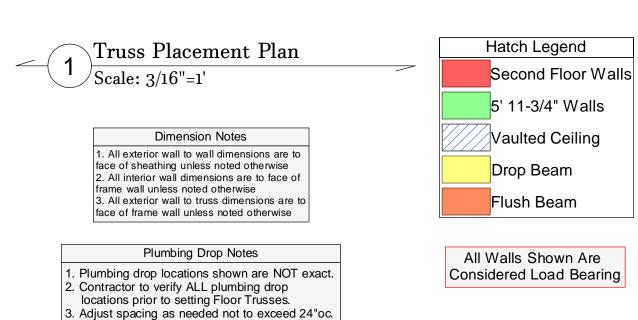
4

- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.


ტ. Ö

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9


φ.

- Camber is a non-structural consideration and is the camber for dead load deflection. responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	8' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	6
BM2	6' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2
BM3	20' 0"	1-3/4"x 18" LVL Kerto-S	3	3
GDH	24' 0"	1-3/4"x 16" LVL Kerto-S	2	2
GDH2	13' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2

	Conne	Nail Info	rmation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
0	MSH422	USP	8	Varies	10d/3"	10d/3"

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing) соттесн **ROOF & FLOOR**

TRUSSES & BEAMS

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

ing reactions less than or equal to 3000# are med to comply with the prescriptive Code irements. The contractor shall refer to the ched Tables (derived from the prescriptive Co irements) to determine the minimum foundati and number of wood studs required to suppor tions greater than 3000# but not greater than 00#. A registered design professional shall be ned to design the support system for any tion that exceeds those specified in the attach es. A registered design professional shall be se. A registered design professional shall be

Jonathan Landry

Jonathan Landry

LOAD CHART FOR JACK STUDS (BASED ON TABLES R502.5(1) & (b))

NON	NREK C	HEADER/		A END O	
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER	END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER	END REACTION (UP TO)	REQ'D STUDS FOR
1700	1	2550	1	3400	
3400	2	5100	2	6800	
5100	3	7650	3	10200	
6800	4	10200	4	13600	
8500	5	12750	5	17000	!
10200	6	15300	6		
11900	7				
13600	8				
15300	9				

CITY / CO.	Fuquay Varina / Harnett
ADDRESS	438 Lambert Lane
MODEL	Floor
DATE REV.	03/29/23
DRAWN BY	DRAWN BY Jonathan Landry
SALES REP.	Lenny Norris

Place Glover Design Build 19 N/A JOB NAME SEAL DATE BUILDER QUOTE

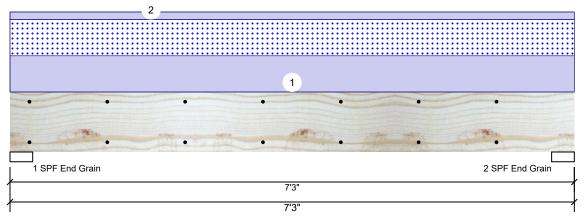
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

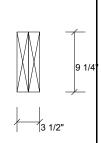
BM1

Client: Glover Design Build

Project:

Address: 438 Lambert Lane


Fuquay Varina, NC 27526


Date: 3/29/2023 Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place Project #: J0922-4570

Level: Level

2-Ply - PASSED 1.750" X 9.250"

Kerto-S LVL

Page 1 of 10

Member Information

Type:	Girder
Plies:	2
Moisture Condition:	Dry
Deflection LL:	480
Deflection TL:	240
Importance:	Normal - II
Temperature:	Temp <= 100°F

Application: Floor Design Method: ASD **Building Code: IBC/IRC 2015** Load Sharing: No Deck: Not Checked

	ctions UNP	ATTERNED	lb (Uplift)	
Brg	Direction	Live	Dead	Snow	

Brg	Direction	Live	Dead	Snow	Wind	Const
1	Vertical	0	3158	2588	0	0
2	Vertical	0	3158	2588	0	0

Analysis Results

Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	9140 ft-lb	3'7 1/2"	14423 ft-lb	0.634 (63%)	D+S	L
Unbraced	9140 ft-lb	3'7 1/2"	9819 ft-lb	0.931 (93%)	D+S	L
Shear	4068 lb	1' 3/4"	7943 lb	0.512 (51%)	D+S	L
LL Defl inch	0.089 (L/919)	3'7 9/16"	0.170 (L/480)	0.522 (52%)	S	L
TL Defl inch	0.197 (L/414)	3'7 9/16"	0.340 (L/240)	0.580 (58%)	D+S	L

Bearings

Bearing	Length	Dir.	Сар. 1	React D/L Ib	Iotai	Ld. Case	La. Comb.
1 - SPF End Grain	3.500"	Vert	56%	3158 / 2588	5746	L	D+S
2 - SPF End Grain	3.500"	Vert	56%	3158 / 2588	5746	L	D+S

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at end bearings.

- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Тор	714 PLF	0 PLF	714 PLF	0 PLF	0 PLF	A3
2	Uniform			Тор	150 PLF	0 PLF	0 PLF	0 PLF	0 PLF	V1GE
	Self Weight				7 PLF					

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- LVL beams must not be cut or drilled
 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 2 Damaged Beams must not be used

- Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

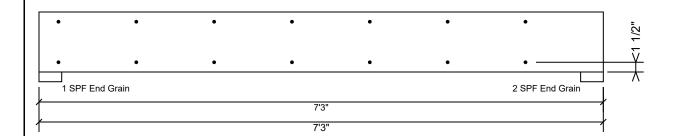
Manufacturer Info

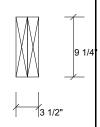
BM1

Client: Glover Design Build

Project:

Address: 438 Lambert Lane


Fuquay Varina, NC 27526


Date: 3/29/2023 Input by:

Jonathan Landry Job Name: Lot 19 Purfoy Place Project #: J0922-4570

Kerto-S LVL 2-Ply - PASSED 1.750" X 9.250"

Level: Level

Page 2 of 10

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

rasterrain pries asing E rows	or roa box rians (. 120x3) at
Capacity	0.0 %
Load	0.0 PLF
Yield Limit per Foot	163.7 PLF
Yield Limit per Fastener	81.9 lb.
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	
Duration Factor	1.00

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Handling & Installation

 1. UVI beams must not be cut or drilled

 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 3. Damaged Beams must not be used

 4. Design assumes top edge is laterally restrained

 5. Provide lateral support at bearing points to avoid lateral displacement and rotation
- For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

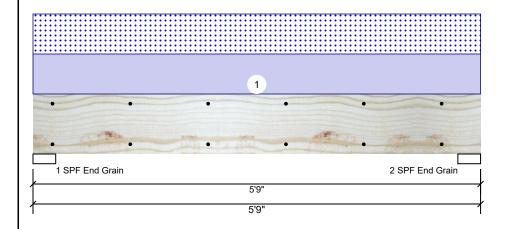
Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

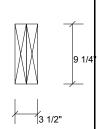
CSD DESIGN

Project:

Address: 438 Lambert Lane

Fuquay Varina, NC 27526


Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place Project #: J0922-4570


Date:

Kerto-S LVL 2-Ply - PASSED 1.750" X 9.250" BM₂

Level: Level

3/29/2023

Page 3 of 10

Member Information

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 240 Importance: Normal - II Temp <= 100°F Temperature:

Application: Floor Design Method: ASD **Building Code: IBC/IRC 2015** Load Sharing: No Deck: Not Checked

Reactions UNPATTERNED Ib (Uplift) Live Wind Brg Direction Dead Snow Const 0 1737 1716 Vertical 0 0 2 Vertical 0 1737 1716 0 0

Analysis Results

•	mary 515 rec	, are					
	Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
	Moment	4204 ft-lb	2'10 1/2"	14423 ft-lb	0.292 (29%)	D+S	L
	Unbraced	4204 ft-lb	2'10 1/2"	11298 ft-lb	0.372 (37%)	D+S	L
	Shear	2183 lb	1' 3/4"	7943 lb	0.275 (27%)	D+S	L
	LL Defl inch	0.030 (L/2099)	2'10 1/2"	0.132 (L/480)	0.229 (23%)	S	L
	TI Defl inch	0.061 (L/1043)	2'10 1/2"	0.265 (L/240)	0.230 (23%)	D+S	L

Bearings

Bearing Length Dir. Cap. React D/L lb Total Ld. Case Ld. Comb. D+S 1 - SPF 3.500" Vert 1737 / 1716 3453 L End Grain 1737 / 1716 3453 L D+S 2 - SPF 3.500" Vert End Grain

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at end bearings.
- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Тор	597 PLF	0 PLF	597 PLF	0 PLF	0 PLF	A3
	Self Weight				7 PLF					

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive
- Handling & Installation
- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code
- Damaged Beams must not be used
- Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024

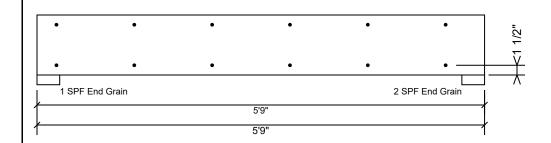
Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

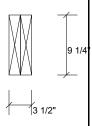
Project:

Address: 438 Lambert Lane

Fuquay Varina, NC 27526

Date: 3/29/2023 Input by: Jonathan Landry


Job Name: Lot 19 Purfoy Place Project #: J0922-4570


Kerto-S LVL BM₂

1.750" X 9.250"

2-Ply - PASSED

Level: Level

Page 4 of 10

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

process and process and grant and contract of the contract of						
Capacity	0.0 %					
Load	0.0 PLF					
Yield Limit per Foot	163.7 PLF					
Yield Limit per Fastener	81.9 lb.					
Yield Mode	IV					
Edge Distance	1 1/2"					
Min. End Distance	3"					
Load Combination						
Duration Factor	1.00					

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

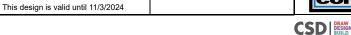
Handling & Installation

1. UVI beams must not be cut or drilled

2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

3. Damaged Beams must not be used

4. Design assumes top edge is laterally restrained


5. Provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

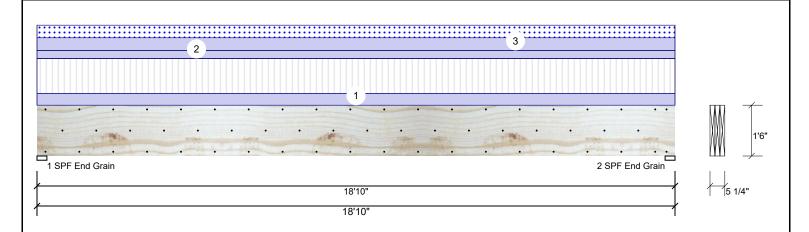
Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Project:

Address: 438 Lambert Lane

Fuquay Varina, NC 27526


3/29/2023

Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place Project #: J0922-4570

Page 5 of 10

3-Ply - PASSED **Kerto-S LVL** 1.750" X 18.000" BM₃

Level: Level

Type:	Girder	Application:	Floor
Plies:	3	Design Method:	ASD
Moisture Condition:	Dry	Building Code:	IBC/IRC 2015
Deflection LL:	480	Load Sharing:	Yes
Deflection TL:	360	Deck:	Not Checked
Importance:	Normal - II	Ceiling:	Gypsum 1/2"
Temperature:	Temp <= 100°F		

Reactions UNPATTERNED Ib (Uplift)

Brg	Direction	Live	Dead	Snow	Wind	Const
1	Vertical	4897	4727	1761	0	0
2	Vertical	4897	4727	1761	0	0

Bearings

Grain

Bearing	Length	Dir.	Cap.	React D/L lb	Total	Ld. Case	Ld. Comb.
1 - SPF End Grain	3.500"	Vert	63%	4727 / 4993	9720	L	D+0.75(L+S)
2 - SPF End	3.500"	Vert	63%	4727 / 4993	9720	L	D+0.75(L+S)

Analysis Results

Member Information

•						
Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	43231 ft-lb	9'5"	67051 ft-lb	0.645 (64%)	D+L	L
Unbraced	43231 ft-lb	9'5"	43277 ft-lb	0.999 (100%)	D+L	L
Shear	7824 lb	17' 1/2"	20160 lb	0.388 (39%)	D+L	L
LL Defl inch	0.295 (L/748)	9'5 1/16"	0.460 (L/480)	0.642 (64%)	0.75(L+S)	L
TL Defl inch	0.574 (L/384)	9'5 1/16"	0.613 (L/360)	0.937 (94%)	D+0.75(L+S)	L

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at a maximum of 4'5 1/16" o.c.

7 Lateral slenderness ratio based on single bly width

r Lateral Sienderness ratio based on single pry width.											
	ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
	1	Uniform			Тор	174 PLF	520 PLF	0 PLF	0 PLF	0 PLF	F1
	2	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall
	3	Uniform			Тор	187 PLF	0 PLF	187 PLF	0 PLF	0 PLF	C1
		Self Weight				21 PLF					

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive
- Handling & Installation
- LVL beams must not be cut or drilled
 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 2 Damaged Beams must not be used

- Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

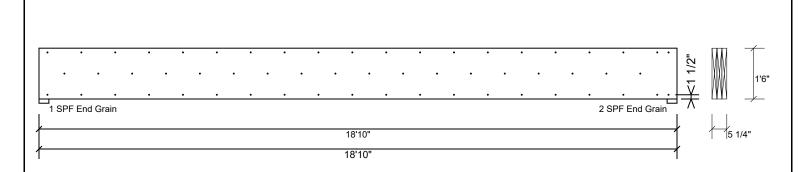
This design is valid until 11/3/2024

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Project:

Address: 438 Lambert Lane


Fuquay Varina, NC 27526

3/29/2023 Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place

Project #: J0922-4570

Kerto-S LVL 3-Ply - PASSED 1.750" X 18.000" BM₃

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Nail from both sides. Maximum end distance not to exceed

Capacity	0.0 %	
Load	0.0 PLF	
Yield Limit per Foot	245.6 PLF	
Yield Limit per Fastener	81.9 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination		
Duration Factor	1 00	

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Informing & Installation

 I. VIL beams must not be cut or drilled

 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

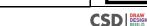
 Damaged Beams must not be used

 Design assumes top edge is laterally restrained

 Design assumes top edge is laterally restrained is provide lateral support at bearing points to avoid lateral displacement and rotation

- For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024


Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

Page 6 of 10

GDH

Client: Glover Design Build

Project:

Address: 438 Lambert Lane

Fuquay Varina, NC 27526

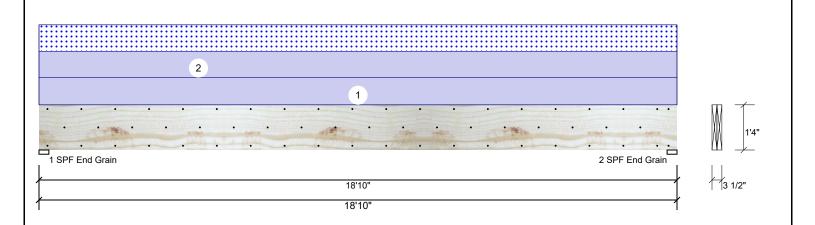
Date: 3/29/2023 Input by:

Project #:

Jonathan Landry Job Name: Lot 19 Purfoy Place J0922-4570

Page 7 of 10

Ld. Comb.


D+S

D+S

2-Ply - PASSED **Kerto-S LVL** 1.750" X 16.000"

Level: Level

Deartions UNIDATTEDNIED IL (Unitt)

Bearings

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 240 Importance: Normal - II Temp <= 100°F Temperature:

Member Information

Application: Floor Design Method: ASD **Building Code: IBC/IRC 2015** Load Sharing: No Deck: Not Checked

Reactions UNPAITERNED ID (Uplift)												
Brg	Direction	Live	Dead	Snow	Wind	Const						
1	Vertical	0	2349	1102	0	0						
2	Vertical	0	2349	1102	0	0						
	2	-										

Analysis Results

, ,						
Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	15501 ft-lb	9'5"	39750 ft-lb	0.390 (39%)	D+S	L
Unbraced	15501 ft-lb	9'5"	15563 ft-lb	0.996 (100%)	D+S	L
Shear	2872 lb	1'7 1/2"	13739 lb	0.209 (21%)	D+S	L
LL Defl inch	0.136 (L/1619)	9'5 1/16"	0.460 (L/480)	0.296 (30%)	S	L
TL Defl inch	0.427 (L/517)	9'5 1/16"	0.920 (L/240)	0.464 (46%)	D+S	L

Bearing Length Dir. Cap. React D/L lb Total Ld. Case 1-SPF 3.500" Vert 2349 / 1102 3451 L End Grain 2 - SPF 3.500" 2349 / 1102 3451 L Vert 34% End Grain

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at a maximum of 7'7 3/8" o.c.
- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width

e Eater a cicindentices ratio baced on onigio pry within.											
ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments	
1	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall	
2	Uniform			Тор	117 PLF	0 PLF	117 PLF	0 PLF	0 PLF	C2GE	
	Self Weight				12 PLF						

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code

approvals

Damaged Beams must not be used

Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

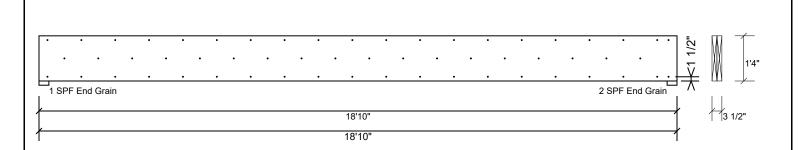
6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Project:

Address: 438 Lambert Lane


Fuquay Varina, NC 27526

Date: 3/29/2023 Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place

Project #: J0922-4570

Kerto-S LVL 2-Ply - PASSED 1.750" X 16.000" **GDH**

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

		,	,
Capacity	0.0 %		
Load	0.0 PLF		
Yield Limit per Foot	245.6 PLF		
Yield Limit per Fastener	81.9 lb.		
Yield Mode	IV		
Edge Distance	1 1/2"		
Min. End Distance	3"		
Load Combination			
Duration Factor	1.00		

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

Handling & Installation

1. UVI beams must not be cut or drilled

2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

3. Damaged Beams must not be used

4. Design assumes top edge is laterally restrained

5. Provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

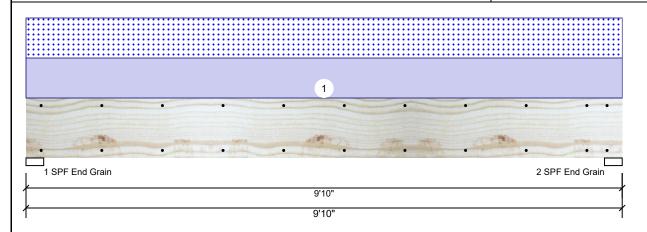
Page 8 of 10

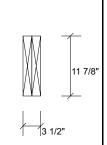
GDH2

Client: Glover Design Build

Project:

Address: 438 Lambert Lane


Fuquay Varina, NC 27526


Date: 3/29/2023 Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place

Project #: J0922-4570 Level: Level

Kerto-S LVL 1.750" X 11.875"

2-Ply - PASSED

Page 9 of 10

Member Information

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 240 Importance:

Normal - II Temp <= 100°F Temperature:

Application: Floor Design Method: ASD

Building Code: IBC/IRC 2015 Load Sharing: No

Deck: Not Checked

Reactions UNPATTERNED Ib (Uplift)

Brg	Direction	Live	Dead	Snow	Wind	Const
1	Vertical	0	1225	1180	0	0
2	Vertical	0	1225	1180	0	0

Bearings

Grain

Bearing Length Dir. Cap. React D/L lb Total Ld. Case Ld. Comb. 2405 L D+S 1 - SPF 3.500" Vert 1225 / 1180 End Grain 1225 / 1180 2405 L D+S 2 - SPF 3.500" Vert 23% End

Analysis Results

Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	5375 ft-lb	4'11"	22897 ft-lb	0.235 (23%)	D+S	L
Unbraced	5375 ft-lb	4'11"	9857 ft-lb	0.545 (55%)	D+S	L
Shear	1788 lb	1'3 3/8"	10197 lb	0.175 (18%)	D+S	L
LL Defl inch	0.050 (L/2249)	4'11"	0.234 (L/480)	0.213 (21%)	S	L
TL Defl inch	0.102 (L/1104)	4'11"	0.469 (L/240)	0.217 (22%)	D+S	L

Design Notes

- 1 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on the bottom edge only.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at end bearings.
- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Тор	240 PLF	0 PLF	240 PLF	0 PLF	0 PLF	G1
	Self Weight				9 PLF					

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code
- approvals

 Damaged Beams must not be used Design assumes top edge is laterally restrained
 Provide lateral support at bearing points to avoid
 lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

GDH₂

Kerto-S LVL

Client: Glover Design Build

1.750" X 11.875"

Project:


Address: 438 Lambert Lane

Fuquay Varina, NC 27526

Date: 3/29/2023 Input by: Jonathan Landry Job Name: Lot 19 Purfoy Place Project #: J0922-4570

2-Ply - PASSED

Level: Level

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c., Maximum end distance not to exceed 6".

, ,		`	,
Capacity	0.0 %		
Load	0.0 PLF		
Yield Limit per Foot	163.7 PLF		
Yield Limit per Fastener	81.9 lb.		
Yield Mode	IV		
Edge Distance	1 1/2"		
Min. End Distance	3"		
Load Combination			
Duration Factor	1.00		

Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Handling & Installation

 1. UVI beams must not be cut or drilled

 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 3. Damaged Beams must not be used

 4. Design assumes top edge is laterally restrained

 5. Provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 11/3/2024

301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Metsä Wood

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

Page 10 of 10

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0922-4570 Lot 19 Purfoy Place

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I57456101 thru I57456107

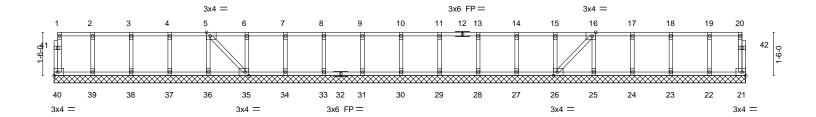
My license renewal date for the state of North Carolina is December 31, 2023.

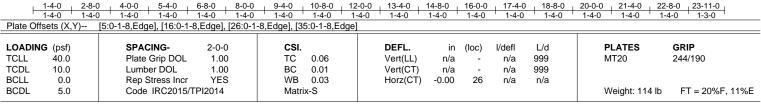
North Carolina COA: C-0844

March 29,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job	Truss	Truss Type	Qty	Ply	Lot 19 Purfoy Place	
					I57456101	
J0922-4570	ET1	GABLE	2	1		
					Job Reference (optional)	


Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:12 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-LfEVb3WtSdtMvTFrCI_5xtMTJva_JMiH7jaSt5zW7?H

0-<u>1</u>-8

0-<u>1</u>1-8 Scale = 1:39.8

LUMBER-BOT CHORD

REACTIONS.

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat)

TOP CHORD 2x4 SP No.1(flat)

All bearings 23-11-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 40, 21, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26,

25, 24, 23, 22

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.

2x4 SP No.1(flat)

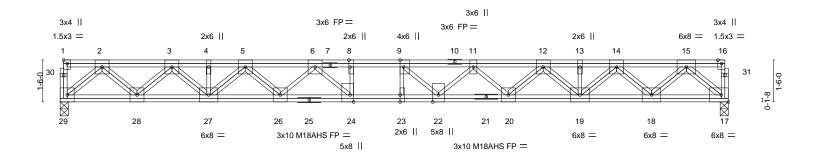
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job Truss Truss Type Qty Lot 19 Purfoy Place 157456102 J0922-4570 F1 **FLOOR** 14 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:13 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-prnuoPXVDw?DXdp1mTVKT4vYwJm12fgQMNJ?PXzW7?G

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-1-8 H 1-3-0

1-8-0

0-1-8 Scale = 1:41.2

23-11-0 Plate Offsets (X,Y)--[1:Edge,0-1-8], [8:0-3-0,Edge], [9:0-3-0,Edge], [23:0-3-0,0-0-0], [24:0-3-0,Edge] LOADING (psf) SPACINGin (loc) I/defl L/d **PLATES GRIP** -0.38 22-23 TCLL 40.0 Plate Grip DOL 1.00 TC 0.39 Vert(LL) >756 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.66 Vert(CT) -0.52 22-23 >550 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr NO WB 0.69 Horz(CT) 0.08 17 n/a n/a BCDL Code IRC2015/TPI2014 5.0 FT = 20%F, 11%E Matrix-S Weight: 222 lb

TOP CHORD

BOT CHORD

LUMBER-**BRACING-**

2x4 SP 2400F 2.0E(flat) TOP CHORD BOT CHORD 2x4 SP 2400F 2.0E(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 29=0-3-8, 17=0-3-8

Max Grav 29=1393(LC 1), 17=1979(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2650/0, 3-4=-4820/0, 4-5=-4820/0, 5-6=-6418/0, 6-8=-8034/0, 8-9=-8034/0,

9-11=-8559/0, 11-12=-8790/0, 12-13=-7231/0, 13-14=-7231/0, 14-15=-3872/0 BOT CHORD 28-29=0/1480, 27-28=0/3803, 26-27=0/5761, 24-26=0/7207, 23-24=0/8034, 22-23=0/8034,

20-22=0/8839, 19-20=0/8751, 18-19=0/5601, 17-18=0/2120

WFBS 2-29=-1997/0, 2-28=0/1655, 3-28=-1631/0, 3-27=0/1404, 15-17=-2862/0, 15-18=0/2478,

14-18=-2445/0, 14-19=0/2251, 12-19=-2099/0, 12-20=-133/289, 5-27=-1300/0,

5-26=0/948, 6-26=-1098/0, 11-20=-269/119, 11-22=-629/217, 6-24=0/1446, 8-24=-593/0,

9-22=-214/1061, 9-23=-521/33

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 6x6 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1300 lb down at 17-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 17-29=-8. 1-16=-80 Concentrated Loads (lb) Vert: 12=-1300(F)

March 29,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

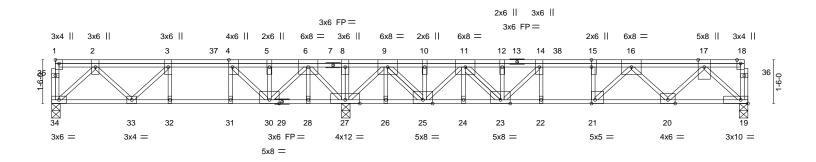
Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157456103 J0922-4570 F1A FLOOR GIRDER 2

Fayetteville, NC - 28314, Comtech, Inc.

Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:16 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-DQT0QRZNWrOoO5YcRb315jXyFWmaFyzt2LYg0szW7?D

Structural wood sheathing directly applied or 5-7-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:


6-0-0 oc bracing: 28-30,27-28,26-27,25-26.

except end verticals.

0-1-8 H|-1-3-0

1-11-8 | 1-2-8

0-1-8 Scale = 1:39.6

_		9-11-8			1011-0	12-9-0				23-11-0		
		9-11-8			0-1'-8	2-8-0	1			11-2-0)	ı ı
Plate Of	fsets (X,Y)	[1:Edge,0-1-8], [4:0-3-0,I	Edge], [15:0-3	-0,0-0-0], [21:	0-1-8,Ed	ge]						
LOADIN	IG (psf)	SPACING-	1-7-3	CSI.			DEFL.	in (loc)	I/defI	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.89		Vert(LL)	-0.14 22-23	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.73		Vert(CT)	-0.19 22-23	>862	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.91		Horz(CT)	0.03 19	n/a	n/a		
BCDL	5.0	Code IRC2015/T	PI2014	Matrix	x-S						Weight: 174 lb	FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP 2400F 2.0E(flat)

2x4 SP No.3(flat) **WEBS**

(size) 34=0-3-8, 19=0-3-8, 27=0-3-8

Max Grav 34=521(LC 3), 19=1302(LC 7), 27=3526(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-795/0, 3-4=-1043/0, 4-5=0/1471, 5-6=0/1471, 6-8=0/3631, 8-9=0/3631,

9-10=-553/144, 10-11=-561/141, 11-12=-4047/0, 12-14=-4086/0, 14-15=-4606/0,

15-16=-4606/0, 16-17=-2322/0

BOT CHORD 33-34=0/512, 32-33=0/1043, 31-32=0/1043, 30-31=0/1043, 28-30=-2487/0,

27-28=-2487/0, 26-27=-1535/0, 25-26=-1533/0, 24-25=0/2411, 23-24=0/2412,

22-23=0/4606, 21-22=0/4606, 20-21=0/3324, 19-20=0/1329

WEBS 8-27=-287/0, 2-34=-706/0, 2-33=-16/411, 3-33=-350/127, 6-27=-1769/0, 6-30=0/1660,

5-30=0/461, 4-30=-2274/0, 9-25=0/2771, 11-25=-2548/0, 11-23=0/2403, 12-23=-1155/0,

14-23=-854/149, 17-19=-1836/0, 17-20=0/1440, 16-20=-1452/0, 16-21=0/1910,

15-21=-1218/0, 9-27=-2837/0

NOTES-

REACTIONS.

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1280 lb down at 17-4-12, and 976 lb down at 5-7-0, and 976 lb down at 15-7-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 19-34=-8, 1-18=-80

Concentrated Loads (lb)

Vert: 12=-912(B) 37=-912(B) 38=-1280(F)

Job	Truss	Truss Type	Qty	Ply	Lot 19 Purfoy Place
10000 4570	F0.	FLOOR	40		I57456104
J0922-4570	F2	FLOOR	13	1	Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:18 2023 Page 1 ID:X5az_D23vLwLuiTNLuG6bHyGfxb-9pbmr6be2TeWdOi?Z05VA8cNEKRxjtx9Vf1m5kzW7?B

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

2-5-4

0-1-8 Scale = 1:41.2

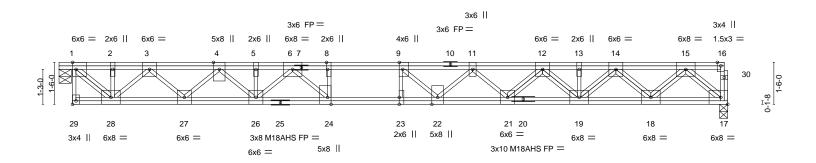


Plate Offsets (X,Y)--[1:0-1-8,Edge], [8:0-3-0,Edge], [9:0-3-0,Edge], [23:0-3-0,0-0-0], [24:0-3-0,Edge], [29:Edge,0-1-8] LOADING (psf) SPACING-(loc) I/defl L/d **PLATES GRIP** -0.40 22-23 TCLL 40.0 Plate Grip DOL 1.00 TC 0.54 Vert(LL) >706 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.80 Vert(CT) -0.54 22-23 >514 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr NO WB 0.88 0.02 Horz(CT) 17 n/a n/a Code IRC2015/TPI2014 Weight: 207 lb **BCDL** 5.0 FT = 20%F, 11%E Matrix-S

TOP CHORD

BOT CHORD

LUMBER-**BRACING-**

TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 1=0-5-4, 17=0-3-8

Max Grav 1=1386(LC 1), 17=1954(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

1-2=-1423/0, 2-3=-1428/0, 3-4=-3776/0, 4-5=-5637/0, 5-6=-5637/0, 6-8=-7637/0,

8-9=-7637/0, 9-11=-8344/0, 11-12=-8642/0, 12-13=-7131/0, 13-14=-7131/0,

14-15=-3820/0

BOT CHORD $27 - 28 = 0/2729,\ 26 - 27 = 0/4768,\ 24 - 26 = 0/6493,\ 23 - 24 = 0/7637,\ 22 - 23 = 0/7637,\ 21 - 22 = 0/8688,\ 24 - 26 = 0/6493,\ 23 - 24 = 0/7637,\ 24 - 23 = 0/7637,\ 21 - 22 = 0/8688,\ 24 - 26 = 0$

19-21=0/8616. 18-19=0/5525. 17-18=0/2093

WEBS $1-28=0/1956,\ 3-28=-1767/0,\ 3-27=0/1481,\ 15-17=-2826/0,\ 15-18=0/2443,\ 14-18=-2411/0,$ 14-19=0/2219, 12-19=-2049/0, 12-21=-111/267, 11-22=-683/190, 9-22=-152/1289, 9-23=-636/0, 4-27=-1402/0, 4-26=0/1201, 6-26=-1181/0, 6-24=0/1847, 8-24=-799/0

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 6) CAUTION, Do not erect truss backwards.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1300 lb down at 17-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 17-29=-8, 1-16=-80

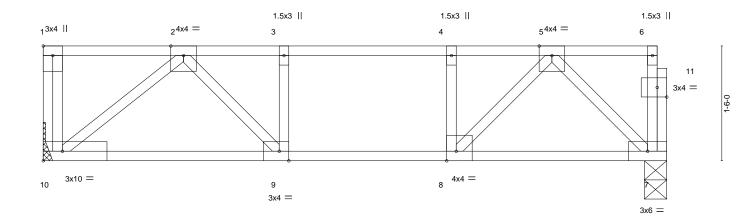
Concentrated Loads (lb)

Vert: 12=-1300(F)

March 29,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Truss Type Qty Lot 19 Purfoy Place 157456105 J0922-4570 F3 **FLOOR** 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:19 2023 Page 1 Fayetteville, NC - 28314, Comtech, Inc. ID:X5az_D23vLwLuiTNLuG6bHyGfxb-e?993SbGpmmNFYHB7jckjL9TUjiQSQ1JkJmKdBzW7?A

2-0-12

Scale = 1:15.1

0-1-8

8-1-12 Plate Offsets (X,Y)--[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,Edge], [11:0-1-8,0-1-8] LOADING (psf) SPACING-DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 40.0 Plate Grip DOL 1.00 TC 0.89 Vert(LL) -0.14 9-10 >679 480 244/190 MT20 TCDL 10.0 Lumber DOL 1.00 ВС 0.92 Vert(CT) -0.19 9-10 >498 360 **BCLL** 0.0 Rep Stress Incr NO WB 0.50 Horz(CT) 0.01 n/a n/a Code IRC2015/TPI2014 FT = 20%F, 11%E **BCDL** 5.0 Matrix-S Weight: 46 lb

TOP CHORD

LUMBER-**BRACING-**

2x4 SP 2400F 2.0E(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

1-7-0

1-3-0

WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 10=Mechanical, 7=0-3-8 Max Grav 10=1366(LC 1), 7=623(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-1253/0, 3-4=-1253/0, 4-5=-1253/0

BOT CHORD 9-10=0/1593, 8-9=0/1253, 7-8=0/571

2-10=-2045/0, 2-9=-565/59, 5-7=-802/0, 5-8=0/1016, 4-8=-566/0, 3-9=-43/289 WEBS

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1300 lb down at 1-10-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 7-10=-8, 1-6=-80

Concentrated Loads (lb) Vert: 2=-1300(F)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

March 29,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157456106 J0922-4570 F4 **FLOOR** 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:20 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:X5az_D23vLwLuiTNLuG6bHyGfxb-6BiXGocua4uEtisNgR7zFZipO7lLBzuSzzWt9dzW7?9 0-1-8 2-2-4 1-3-0 \vdash Scale = 1:11.6 3x4 = 11.5x3 || 3x4 = 4 3x4 II 2 9 3x4 =1.5x3 || 6 1.5x3 || 7 5 3x6 = 3x6 =Plate Offsets (X,Y)--[2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8] SPACING-**PLATES** GRIP LOADING (psf) CSI. DEFL. in (loc) I/defI L/d 244/190 **TCLL** 40.0 Plate Grip DOL 1.00 TC 0.18 Vert(LL) -0.01 6 >999 480 MT20 TCDL 10.0 Lumber DOL 1.00 ВС 0.10 Vert(CT) -0.01 6 >999 360 **BCLL** 0.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 5 n/a n/a **BCDL** Code IRC2015/TPI2014 FT = 20%F, 11%E 5.0 Weight: 32 lb Matrix-S **BRACING-**

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) WEBS

TOP CHORD 2x4 SP No.3(flat) **BOT CHORD**

REACTIONS. (size) 8=0-3-8, 5=Mechanical Max Grav 8=279(LC 1), 5=285(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

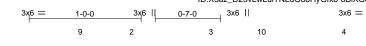
WEBS 2-8=-336/0, 3-5=-339/0

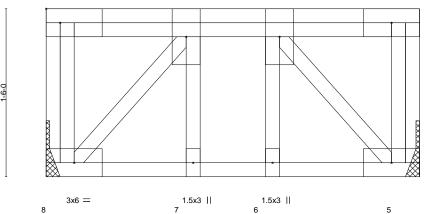
NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

Structural wood sheathing directly applied or 5-5-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.


Job Truss Truss Type Qty Ply Lot 19 Purfoy Place 157456107 J0922-4570 FG1 FLOOR GIRDER 2 | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 29 09:16:20 2023 Page 1

Comtech, Inc, Fayetteville, NC - 28314,

ID:X5az_D23vLwLuiTNLuG6bHyGfxb-6BiXGocua4uEtisNgR7zFZik?7GeBv9SzzWt9dzW7?9

Scale = 1:10.3

3x6 =

except end verticals.

Structural wood sheathing directly applied or 3-4-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-4-0	
3-4-0	1

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.46	Vert(LL)	-0.01	7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.21	Vert(CT	-0.01	7	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.32	Horz(C	0.00	5	n/a	n/a		
BCDL	5.0	Code IRC2015/TP	PI2014	Matri	x-S						Weight: 29 lb	FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) BOT CHORD

2x4 SP No.3(flat) WEBS

> 8=Mechanical, 5=Mechanical Max Grav 8=1470(LC 1), 5=1447(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-8=-448/0, 4-5=-424/0, 2-3=-916/0 **BOT CHORD** 7-8=0/916, 6-7=0/916, 5-6=0/916 WEBS 2-8=-1366/0, 3-5=-1366/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1337 lb down at 0-10-4, and 1336 lb down at 2-5-7 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 9=-1289(F) 10=-1288(F)

March 29,2023

Symbols

PLATE LOCATION AND ORIENTATION

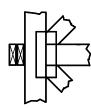
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

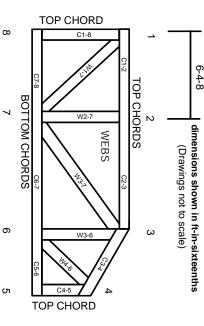

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

National Design Specification for Metal

DSB-89: ANSI/TPI1:

Building Component Safety Information. Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling Design Standard for Bracing. Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For bracing should be considered. may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building

4

- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ტ. Ö

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

φ.

- Camber is a non-structural consideration and is the camber for dead load deflection. responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.