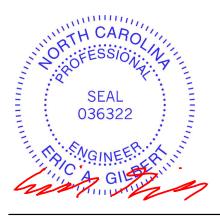


Trenco 818 Soundside Rd Edenton, NC 27932


Re: ELV B CP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

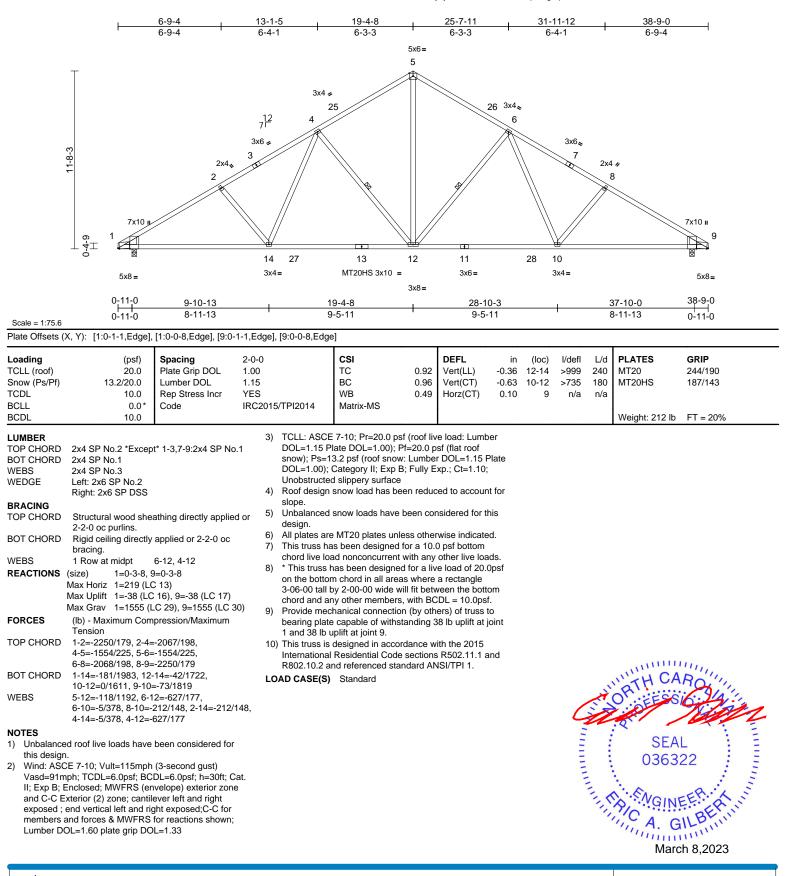
Pages or sheets covered by this seal: I57052873 thru I57052899

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

March 8,2023

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	A01	Common	10	1	Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:38 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f ____

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	A01G	Common Supported Gable	1	1	Job Reference (optional)

Scale = 1:76.5

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

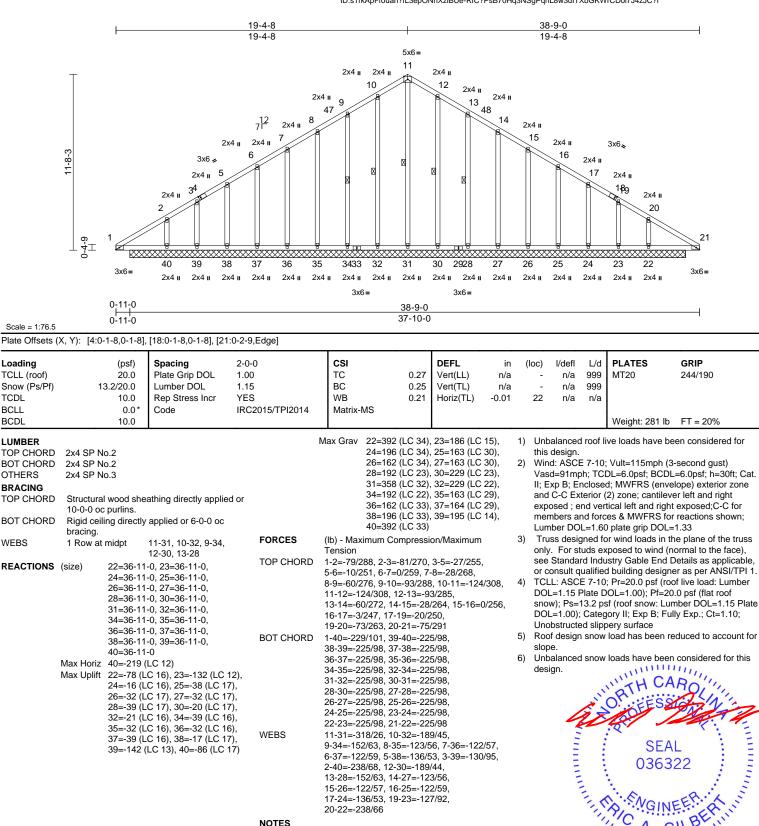
BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD


WEBS

TCLL (roof)

Snow (Ps/Pf)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:41 ID:s1rkApFfouah?fL3epONnXzIBUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

15-26=-122/57, 16-25=-122/59, 17-24=-136/53, 19-23=-127/92,

20-22=-238/66

NOTES

818 Soundside Road

Edenton, NC 27932

G minin March 8,2023 1111111111

Continued on page 2 WARNING

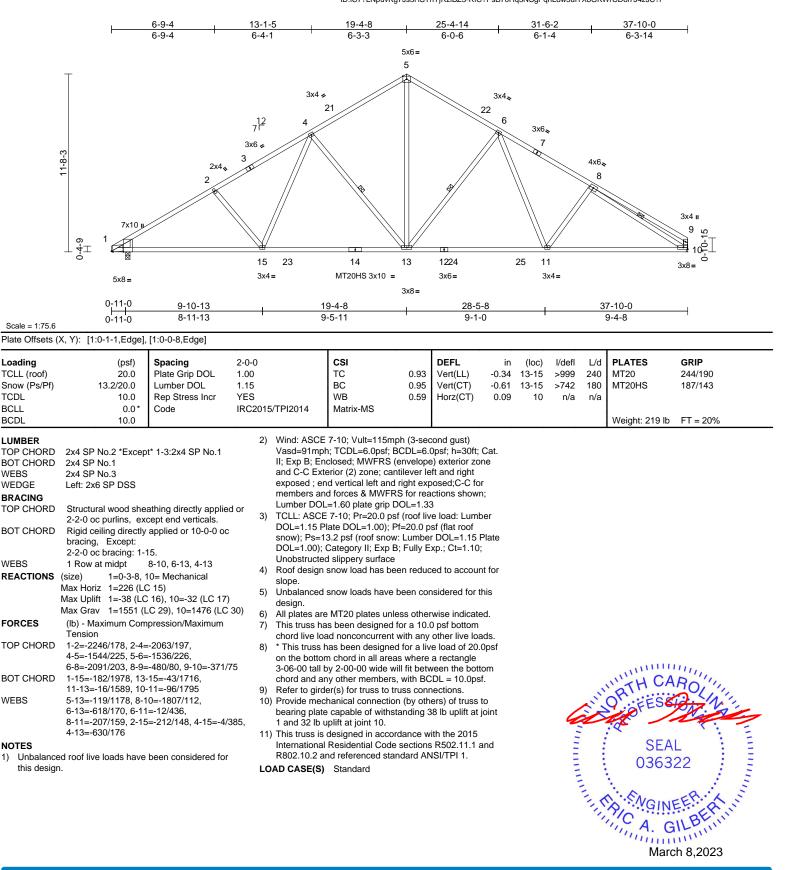
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply			157050074	
ELV B CP	A01G	Common Supported Gable	1	1	Job Reference (optional)	157052874	
Builders FirstSource (Apex, NC),	Apex, NC - 27523,	Run: 8.53 S Sep 22 2	Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:41				

- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 32, 39 lb uplift at joint 34, 32 lb uplift at joint 35, 32 lb uplift at joint 36, 39 lb uplift at joint 37, 17 lb uplift at joint 38, 142 lb uplift at joint 39, 86 lb uplift at joint 40, 20 lb uplift at joint 30, 39 lb uplift at joint 28, 32 lb uplift at joint 27, 32 lb uplift at joint 26, 38 lb uplift at joint 25, 16 lb uplift at joint 24, 132 lb uplift at joint 23 and 78 lb uplift at ioint 22.
- 11) Non Standard bearing condition. Review required.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:41 ID:s1rkApFfouah?fL3epONnXzIBUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

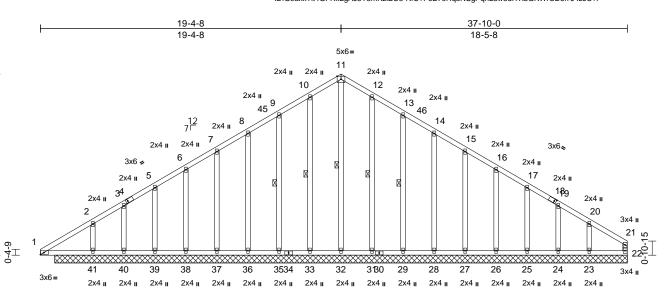
Job	Truss	Truss Type	Qty	Ply	
ELV B CP	A03	Common	5	1	Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:42 ID:iC7?LNpuvKg7Js3HSTnYjRzIBZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	
ELV B CP	A03G	Common Supported Gable	1	1	I57052876 Job Reference (optional)

11-8-3

Scale = 1:74.3

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:43 ID:G9akxTit4GFRxLgAJ5Y3mKzIBU3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6=

3x6=

Plate Offsets (X, Y):	[4:0-1-8,0-1-8], [18:0-1-8,0-1-8]

Plate Olisets (∧, f). [4.0-	1-0,0-1-0],	[10.0-1-0,0-1-0]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	13	(psf) 20.0 3.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	Ļ	CSI TC BC WB Matrix-MS	0.27 0.21 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(1	oc) l/defl - n/a - n/a 22 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 279 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 10-0-0 oc Rigid ceili bracing. 1 Row at	0.2 0.3 0.3 wood shear purlins, ear ng directly midpt 22=36-11- 24=36-11- 26=36-11-	athing directly applie xcept end verticals. applied or 6-0-0 oc 11-32, 10-33, 9-35, 12-31, 13-29 -0, 23=36-11-0, -0, 25=36-11-0, -0, 29=36-11-0, -0, 29=36-11-0,	d or FORCES TOP CHORI	D	26=159 28=163 31=227 33=226 36=162 38=157 40=91 ((lb) - Maximum Co Tension 1-2=-48/231, 2-3=: 5-6=0/192, 6-7=-11 8-9=-80/243, 9-10: 10-11=-143/3033, 1 12-13=-113/288, 1	(LC 34) (LC 30) (LC 30) (LC 23) (LC 22) (LC 22) (LC 29) (LC 29) (LC 29) LC 14), mpressi -18/178, 5/201, 7 =-113/27 1-12=-1 3-14=-8	25=174 (LC , 27=162 (LC , 29=193 (LC , 35=185 (LC , 35=185 (LC , 37=163 (LC , 39=191 (LC 41=369 (LC 2 on/Maximum 3-5=0/193, -8=-48/222, 72, 43/303, 0/276,	30), 30), 23), 31), 22), 29), 2), 2)	2)	this design Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; members a Lumber DC Truss des only. For s see Standa or consult TCLL: ASC DOL=1.15 snow); Ps=	E 7-10 ph; TC nclose kterior and ford DL=1.60 gned for tuds ex ard Indu qualifie E 7-10 Plate E 13.2 p	sf (roof snow: Lur	-second gust) =6.0psf; h=30ft lope) exterior zd er left and right exposed;C-C for reactions show 1.33 he plane of the t ormal to the fac Details as applic er as per ANSI/- of live load: Lum .0 psf (flat roof nber DOL=1.15	t; Cat. one or vn; truss ce), cable, TPI 1. nber i Plate
	28=36-11-0, 29=36-11-0, 31=36-11-0, 32=36-11-0, 33=36-11-0, 33=36-11-0, 36=36-11-0, 37=36-11-0, 40=36-11-0, 41=36-11-0 Max Horiz 41=226 (LC 15), 23=-99 (LC 17), 24=-13 (LC 17), 25=-38 (LC 17), 26=-32 (LC 17), 27=-33 (LC 17), 31=-23 (LC 17), 29=-38 (LC 17), 31=-23 (LC 17), 33=-19 (LC 16), 35=-40 (LC 16), 36=-32 (LC 16), 35=-40 (LC 16), 38=-36 (LC 16), 35=-40 (LC 16), 40=-78 (LC 16), 41=-9 (LC 17) WEBS				D	$\begin{array}{l} 10\mbox{-}11\mbox{=}-143/303, 11\mbox{-}12\mbox{=}-143/303, 11\mbox{-}12\mbox{=}-113/268, 13\mbox{-}14\mbox{=}-113/268, 15\mbox{-}16\mbox{=}-113/267, 20\mbox{-}21\mbox{=}-213/268, 19\mbox{-}20\mbox{=}-113/267, 20\mbox{-}21\mbox{=}-213/268, 19\mbox{-}20\mbox{=}-113/267, 20\mbox{-}21\mbox{=}-213/268, 19\mbox{-}20\mbox{=}-244/140, 20\mbox{=}-244/140, 38\mbox{-}39\mbox{-}-244/140, 38\mbox{-}39\mbox{-}-244/140, 33\mbox{-}32\mbox{-}33\mbox{=}-244/140, 33\mbox{-}32\mbox{-}33\mbox{=}-244/140, 31\mbox{-}32\mbox{-}32\mbox{=}-244/140, 28\mbox{-}29\mbox{-}224\mbox{-}4140, 28\mbox{-}29\mbox{-}224\mbox{-}4140, 28\mbox{-}29\mbox{-}244/140, 28\mbox{-}29\mbox{-}244/140, 28\mbox{-}29\mbox{-}244/140, 22\mbox{-}223\mbox{-}244/140, 22\mbox{-}223\mbox{-}244/140, 22\mbox{-}23\mbox{-}244/140, 22\mbox{-}223\mbox{-}244/140, 22\mbox{-}23\mbox{-}244/140, 22\mbox{-}223\mbox{-}244/140, 22\mbox{-}23\mbox{-}244/140, 23\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbox{-}24\mbo$				 DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.19 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.1 Unobstructed slippery surface 5) Roof design snow load has been reduced to accoslope. 6) Unbalanced snow loads have been considered fo design. <i>SEAL</i> 036322 <i>MGINEEF</i> <i>March</i> 8,2023 				considered for	unt for this

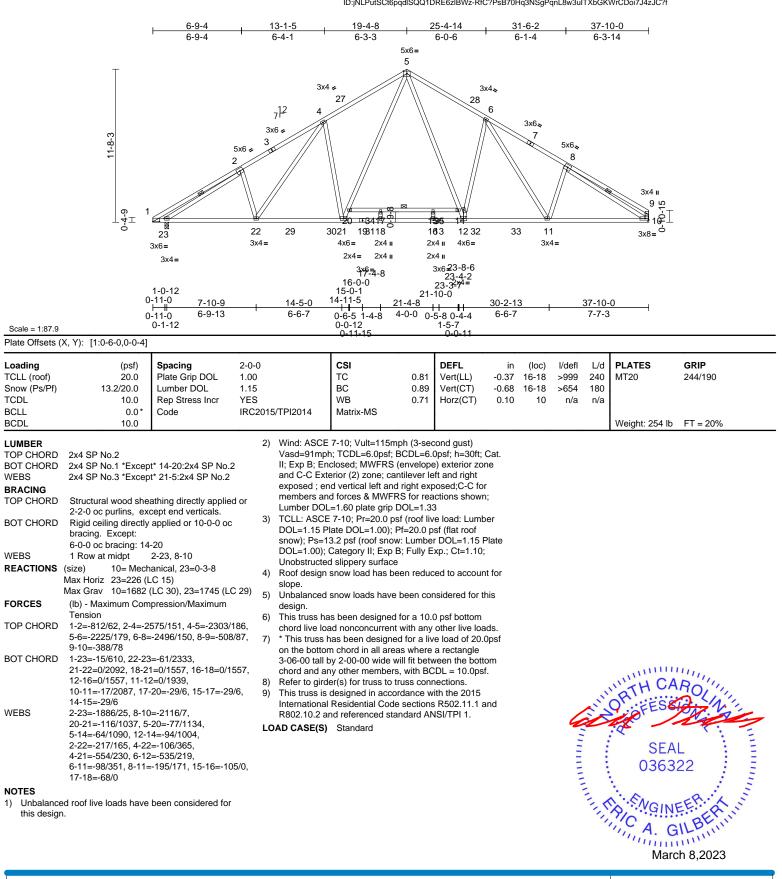
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply				
ELV B CP	A03G	Common Supported Gable	1	1	Job Reference (optional)	l57052876 I)		

- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint 22, 19 lb uplift at joint 33, 40 lb uplift at joint 35, 32 Ib uplift at joint 36, 33 lb uplift at joint 37, 36 lb uplift at joint 38, 22 lb uplift at joint 39, 78 lb uplift at joint 40, 9 lb uplift at joint 41, 23 lb uplift at joint 31, 38 lb uplift at joint 29, 32 lb uplift at joint 28, 33 lb uplift at joint 27, 32 lb uplift at joint 26, 38 lb uplift at joint 25, 13 lb uplift at joint 24 and 99 lb uplift at joint 23.
- 11) Non Standard bearing condition. Review required. 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run; 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:43 ID:G9akxTit4GFRxLgAJ5Y3mKzIBU3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

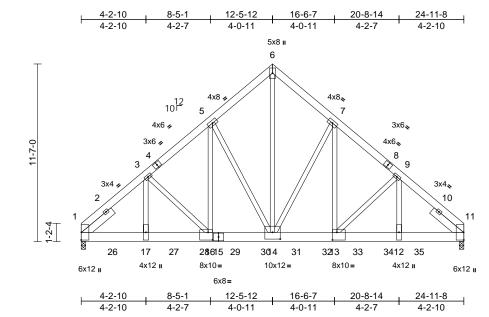

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	A03H	Common	7	1	Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:44 ID:jNLPutSCt6pqdlSQQ1DRE6zIBWz-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	B01GR	Common Girder	1	3	I57052878 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:45 ID:0qSBIjUG6KjQ1vAirZaJCRzIBIj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75.1 Plate Offsets (X, Y): [13:0-3-8,0-6-0], [14:0-6-0,0-5-4], [16:0-3-8,0-6-0]

	., .). [1										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.36 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.05	(loc) 16-17 16-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 761 lb	GRIP 244/190 FT = 20%	
	2x6 SP No.2 2x8 SP DSS 2x4 SP No.3 *Excep Left 2x6 SP DSS 2 2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Horiz 1=199 (LC Max Grav 1=10051 (22)	2-6-0, Right 2x6 SP E athing directly applied applied or 10-0-0 oc 11=0-3-8, (req. 0-3-9) C 9)	3) d or 4)) 5)	except if note CASE(S) sec provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp B; En cantilever lef right expose TCLL: ASCE DOL=1.15 P snow); Ps=1	considered equal ad as front (F) or h ction. Ply to ply co listribute only loac wise indicated. roof live loads hav 7-10; Vult=115m ; TCDL=6.0psf; E closed; MWFRS (t and right expose d; Lumber DOL=1 7-10; Pr=20.0 ps late DOL=1.00); F 0.1 psf (roof snow	back (B) nnection is noted we been bb (3-sec SCDL=6. envelope ad ; end v .60 plate f (roof liv Pf=20.0 p r: Lumbe	face in the LC s have been as (F) or (B), considered for cond gust) opsf; h=30ft; s) exterior zor vertical left an grip DOL=1. e load: Lumb sf (flat roof r DOL=1.15 F	or Cat. ne; id 33 ier Plate	pro lb d 4-0 8-0 12- 16- dov 44 l 24- con LOAD (1) De In Ur	vided su lown anc -12, 166 -12, 166 0-12, 16 0-12, 16 0-12, 16 0-12, 14 vn and 4 b up at 0-12 on inection CASE(S) ead + Sr crease= niform Lo	fficient d 44 lb 2 lb dc 2 lb dc 62 lb dc 62 lb d 56 lb d 4 lb up 22-0-1 bottom device) Stanow (ba 1.00 bods (ll	up at 2-0-12, 16 wm at 6-0-12, 16 wm at 10-0-12, 1 lown at 10-0-12, 1 lown at 14-0-12, lown and 44 lb up at 20-0-12, and 2, and 1459 lb du c chord. The des (s) is the response indard alanced): Lumber b/ft)	entrated load(s) 1456 662 lb down at 662 lb down at 1662 lb down at 1662 lb down at 1 162 lb down at p at 18-0-12, 1456 lb 1 1456 lb down and own and 42 lb up at sign/selection of such sibility of others.	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	Unobstructed	Category II; Exp E d slippery surface snow load has be				Co	oncentra	ted Lo	· · /		
TOP CHORD	1-3=-11818/0, 3-5=- 6-7=-8166/0, 7-9=-1		D,	slope.	s been designed				Vert: 17=-1307 (B), 24=-1222 (B), 26=-1219 (B), 27=-1307 (B), 28=-1307 (B), 29=-1307 (B),					
BOT CHORD	1-17=0/8779, 16-17= 13-14=0/7876, 12-13	=0/8779, 14-16=0/80	77, ''	chord live loa	ad nonconcurrent	with any	other live loa			30=-1307 (B), 31=-1307 (B), 32=-1307 (B), 33=-1219 (B), 34=-1219 (B), 35=-1219 (B)				
WEBS	3-17=0/2044, 3-16=- 5-14=-3720/0, 6-14= 7-13=0/4033, 9-13=- 9-12=-340/1809	-982/0, 5-16=0/4388, =0/10042, 7-14=-3426	6/0,	 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. WARNING: Required bearing size at joint(s) 11 greater 								ROUT		
(0.131"x3" Top chords staggered Bottom ch- staggered Web conn	to be connected togel) nails as follows: s connected as follows at 0-9-0 oc. ords connected as follo at 0-4-0 oc. ected as follows: 2x4 - mber 3-17 2x4 - 2 row	s: 2x6 - 2 rows ows: 2x8 - 2 rows 1 row at 0-9-0 oc,	10	than input bearing size. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 036322 <i>MGINEEER</i>							EER.K			

March 8,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	B02	Common	1	1	I57052879 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:45 ID:c5Td3hHYNCYRSqJ3fFsTmlzIBPR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

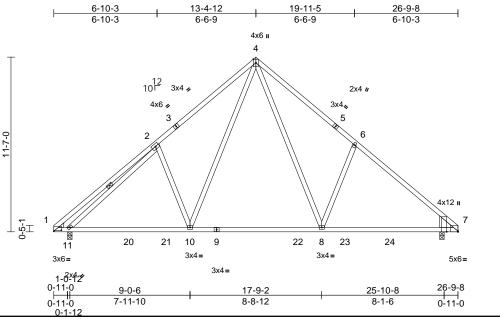


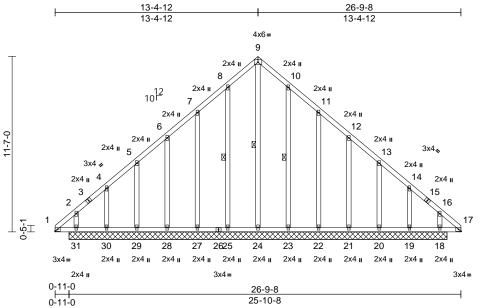
Plate Offsets (X, Y): [1:0-6-0,0-0-12], [7:Edge,0-0-8], [7:0-0-8,Edge]

Scale = 1:76.4

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.71 Vert(LL) -0.24 8-10 >999 24 Snow (Ps/Pf) 10.1/20.0 Lumber DOL 1.15 BC 0.90 Vert(CT) -0.40 8-10 >782 18 TCDL 10.0 Rep Stress Incr YES WB 0.36 Horz(CT) 0.04 7 n/a n BCDL 10.0 Inco IRC2015/TPI2014 Matrix-MS Vertice Ve	0 MT20 244/190 0
LUMBER 3) TCLL: ASCE 7-10, pr=20.0 psf (roof live load: Lumber TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 DDL=1.15 Plate DDL=1.0; Pr=20.0 psf (roof snow: Lumber DDL=1.15 Plate WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x10 SP DSS DDL=1.00; Category II; Exp B; Fully Exp; CL=1.10; UnobStructed slippery surface BOT CHORD Structural wood sheathing directly applied or 10-0-0 c bracing. BOT CHORD Rigid ceiling directly applied or 10-0-0 c bracing. WEBS 1 Row at midpt 2-11 REACTIONS (size) 7-0-3.8, 11=0-3-8 Max Horiz 11=216 (LC 10), Max uplift 7=10 (LC 15), 11=111 (LC 24), 11=111 (LC 24), 11=1112 (LC 26) Max Grav 7=1135 (LC 26), 11=1112 (LC 28) 7 FORCES (lb) - Maximum Compression/Maximum Tension This truss is designed in accordance with the 2015 TOP CHORD 1.1-2=-451/104, 24=-1173/233, 4-6=-126/598, 6-8=-298/226, 4-10=-118/629, 2-11=-289/233, 2-11=-926/41 Notes NOTES 1) Unbalanced roof live loads have been considered for this design. 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Y and -0 Exterior (2) zone; cantilever left and right 1	SEAL 036322

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A. GILB A. GILD March 8,2023

C

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	B02G	Common Supported Gable	1	1	Job Reference (optional)

Page: 1

Scale = 1:76.1

Plate Offsets (X, Y): [17:0-1-13,Edge]

Loading TOLL (rod) (pr) 2010 Specing Pate GP (P) 10.1200 2-0-0 Lumber DOL 10.0 CSI BCL OFF OFF OFF<		(X, T). [T7.0 T T0,E0											
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 Structural wood sheathing directly applied of $6-9 - 0 cc$ bracing. BOT CHORD Rigid ceiling directly applied or $6-0 - 0 cc$ bracing. WEBS 1 Row at midpt 9-24, 8-25, 10-23 REACTIONS (size) 18=24+11-8, 21=24+11-8, 20=24+11-8,	TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	20.0 10.1/20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.00 1.15 YES IRC2015/TPI201	TC BC WB 4 Matrix-MS	0.16 0.20	Vert(LL) r Vert(TL) r Horiz(TL) 0.	n/a n/a 00	- 18	n/a n/a n/a	999 999 n/a	MT20 Weight: 201 lb	244/190 FT = 20%
FORCES (lb) - Maximum Compression/Maximum Tension only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 030322	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. 1 Row at midpt (size) 18=24-1 20=24-1 24=24-1 24=24-1 24=24-1 31=24-1 Max Horiz 31=-216 Max Uplift 18=-95 20=-30 22=-61 28=-60 30=-162 Max Grav 18=255 20=166 22=165 24=321 27=165 29=166 31=271 (lb) - Maximum Co	y applied or 6-0-0 oc 9-24, 8-25, 10-23 1-8, 19=24-11-8, 1-8, 23=24-11-8, 1-8, 25=24-11-8, 1-8, 25=24-11-8, 1-8, 25=24-11-8, 1-8, 30=24-11-8, 1-8, 30=24-11-8, 1-8, 30=24-11-8, 1-8, 30=24-11-8, 1-8, 30=24-11-8, 1-8, 30=24-11-8, 1-2, 25, 21=-59 (LC 14) (LC 14), 21=-59 (LC 14) (LC 14), 22=-27 (LC 14) (LC 14), 22=-27 (LC 14) (LC 25), 19=229 (LC 2) (LC 26), 23=176 (LC 2) (LC 25), 28=172 (LC 2) (LC 25), 30=239 (LC 2) (LC 26)	d or BOT CHOF WEBS (5), 1) Unbala (4), 2) Wind: / (5), 1) Unbala (5), 1) Unbala (6), 1]; Exp (6), and C- (6), expose (7), 2) Wind: / Vasd=1 (7), 2) Wind: / Vasd=1 (7), 2) Wind: / (7), 3) Truss (7), 4) Truss (5-6=-94/169, 6-7=- 8-9=-245/292, 9-10 10-11=-200/240, 1' 12-13=-94/157, 13- 14-16=-135/153, 11 29-30=-114/114, 22 29-30=-114/114, 22 24-25=-114/114, 22 20-21=-114/114, 12 20-21=-114/114, 12 20-21=-114/114, 12 9-24=-318/203, 8-2 6-28=-130/79, 5-29 2-31=-138/53, 10-2 11-22=-126/86, 12- 13-20=-122/69, 14- 16-18=-131/47 Inced roof live loads have sign. ASCE 7-10; Vult=115mp 91mph; TCDL=6.0ps; Bi B; Enclosed; MWFRS (6 C Exterior (2) zone; cant d; end vertical left and r ers and forces & MWFRS r DOL=1.60 plate grip D designed for wind loads for studs exposed to win andard Industry Gable Ei	145/205)=-245/2 1-12=-14 -14=-83, 6-17=-11 -31=-114 -31=-114 -32=-11 -32=-11 -32=-11 -22=-11 -22=-11 -22=-11 -22=-11 -22=-11 -22=-11 -22=-12	5, 7-8=-200/246, 192, 145/194, 1/23, 13/131 14/114,	5) 6) 7) 8) , 9)	DOI sno DOI Uncc slop Gata 1 This cho 1 This cho 2 This cho 1 This cho 2 This Cho Cho Cho 2 This Cho Cho Cho Cho Cho Cho Cho Cho Cho Cho	L=1.15 l w); Ps= L=1.00) obstructo for design obs. obstructo for design obstructo for design	Plate E 10.1 ps (Catego ed slipp n snow s spaced slipp n snow s spaced slipp has be pad noo by 2-0 any oth has be por choo by 2-0 any oth has be are	POL=1.00); Pf=2(sf (roof snow: Lui pory II; Exp B; Fu load has been re ed at 2-0-0 oc. an designed for a nconcurrent with een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstand oint 27, 60 lb upil 62 lb upilift at joint 30 lb upilift at joint 18. wring condition.	0.0 psf (flat roof nber DOL=1.15 Pla Ily Exp.; Ct=1.10; aduced to account f 10.0 psf bottom any other live loads a live load of 20.0p here a rectangle between the bottom or others) of truss to ng 41 lb uplift at join ft at joint 28, 27 lb t 30, 117 lb uplift at puplift at joint 22, 55 nt 20, 153 lb uplift at Review required.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

March 8,2023

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	B02G	Common Supported Gable	1	1	Job Reference (optional)	157052880

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:46 ID:j3iheV1NJluQRbC1wL_YQKzIBPm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	CP01	Common	5	1	I57052881 Job Reference (optional)	

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:46 ID:YJ08J4HIsFBO4A9F2T_s5gzd29o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

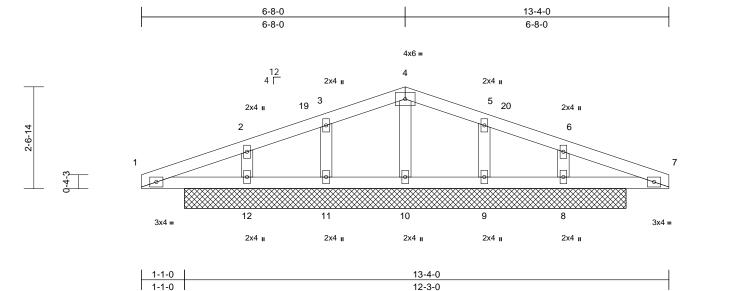
Page: 1

Scale = 1:29.1

Plate Offsets (X, Y): [1:0-2-8,Edge], [1:0-0-8,Edge], [3:0-2-8,Edge], [3:0-0-8,Edge]

Flate Olisets (∧, 1). [1.0-2-0,Euge],	[1.0-0-0,Euge], [3.0-	z-o,Eugej,	[3.0-0-8,Euge	;] 								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MS	0.33 0.28 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 4-14 4-14 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER 10.0 11 = 20.0 LUMBER 4) Roof design snow load has been reduced to account for slope. BOT CHORD 2x4 SP No.2 5) Unbalanced snow loads have been considered for this design. WEBS 2x4 SP No.3 5) Unbalanced snow loads have been considered for this design. WEDGE Left: 2x4 SP No.3 60-0 oc purlins. 60-0 oc purlins. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BOT CHORD figid ceiling directly applied or 10-0-0 oc bracing. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1 and 26 lb uplift at joint 3. 8) REACTIONS (size) 1=0-3-0, 3=-0.0 Max Horiz 1=29 (LC 13) Max Grav 1=533 (LC 2), 3=-533 (LC 2) 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. FORCES (b) - Maximum Compression/Maximum Tension LoAD CASE(S) Standard TOP CHORD 1-4=-58/617, 3-4=-58/617 VEBS 2-4=0/215 NOTES 2-4=0/215 Standard													
WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91m II; Exp B; I and C-C E exposed ; members : Lumber DU 3) TCLL: ASG DOL=1.15 snow); Ps: DOL=1.00	2-4=0/215 ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=30ft; C welope) exterior zone ever left and right ght exposed;C-C for for reactions shown; uL=1.33 roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 Pi	e							M. HILLING		SEA 0363	EER A LIVE

> mmm March 8,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

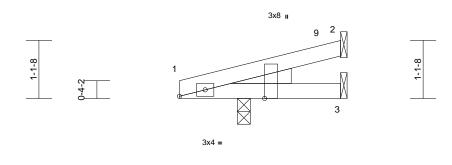
Job	Truss	Truss Type	Qty	Ply	
ELV B CP	CP01G	Common Supported Gable	1	1	I57052882 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:46 ID:Q4Gf9RKGwUhqYoT0HJ2oGWzd29k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Scale = 1:29.1												
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.19	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Ps/Pf)	17.2/20.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL BCLL	10.0 0.0	Rep Stress Incr	YES IRC2015/TF	WB PI2014 Matrix-MS	0.06	Horiz(TL)	0.00	8	n/a	n/a		
BCLL BCDL	0.0 10.0	Code	IRC2015/11	12014 Matrix-105							Weight: 50 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 10-0-0 oc purlins. Rigid ceiling direc bracing. (size) 8=11-2 11=11- Max Horiz 12=29 Max Uplift 8=-34 (11=-16 Max Grav 8=00 10=300 12=300	LC 17), 9=-15 (LC 13), (LC 12), 12=-33 (LC 1 LC 34), 9=122 (LC 2), (LC 2), 11=122 (LC 2 (LC 33)	or se or 4) Tc ed or 5) Ri 0, 5) Ri 10 6) Ui 6 7) G 8) Th cr 0, 9) *	russ designed for wind loa hly. For studs exposed to be Standard Industry Gable consult qualified building CLL: ASCE 7-10; Pr=20.0 DL=1.15 Plate DOL=1.00) iow); Ps=17.2 psf (roof sm DL=1.00); Category II; Exp hobstructed slippery surfac bof design snow load has l oppe. habalanced snow loads hav esign. able studs spaced at 2-0-0 his truss has been designe ord live load nonconcurre This truss has been designe the bottom chord in all ar	wind (norm e End Deta designer a psf (roof liv ; $Pf=20.0 p$ ow: Lumbe b B; Fully E been reduc re been reduc re been con 0 oc. d for a 10. nt with any ned for a liv	al to the face ils as applical s per ANSI/TK e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accoun nsidered for th 0 psf bottom other live loa e load of 20.0), ble, PI 1. er Plate t for his ds.				Weight: 50 lb	FT = 20%
	Tension	mpression/Maximum	ch	06-00 tall by 2-00-00 wide ord and any other membe	ers.							
TOP CHORD		-5/239, 3-4=0/243, /239, 6-7=-32/253		ovide mechanical connect earing plate capable of with								
BOT CHORD	7-8=-213/46	10=-213/46, 8-9=-213, 1=-108/56, 2-12=-187,	11 /46, up 11) No /63, 12) Th	, 33 lb uplift at joint 12, 15 lift at joint 8. on Standard bearing condi nis truss is designed in acc ternational Residential Co	ib uplift at ition. Revie cordance w	joint 9 and 34 w required. ith the 2015	4 lb			ALL IN	ORTH CA	AROLINI,
NOTES				302.10.2 and referenced s	tandard Al	ISI/TPI 1.			4		12 -10	Ne. /
this design 2) Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; members	n. CE 7-10; Vult=115m nph; TCDL=6.0psf; I Enclosed; MWFRS Exterior (2) zone; ca end vertical left and	CDL=6.0psf; h=30ft; (envelope) exterior zor titlever left and right right exposed;C-C for S for reactions shown	Cat. le	CASE(S) Standard					CONTRACTOR OF		SEA 0363	EER AL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	J01	Jack-Open	4	1	Job Reference (optional)	157052883

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:47 ID:KC8IrtIP5zqvCkTm7_V9gMIzd28L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:22.3

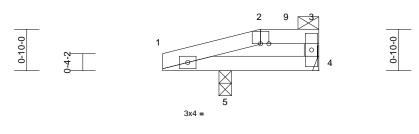
Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Plate Offsets	(X, Y): [1:0-4-0,Edge],	[1:0-0-8,Edge]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 3-1-8 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0, 2 Mechanic Max Horiz 1=23 (LC Max Grav 1=194 (LC Max Grav 1=194 (LC (LC 7)	applied or 10-0-0 oc 2= Mechanical, 3= ial 12) 12), 2=-10 (LC 12) C 2), 2=32 (LC 2), 3=	6) d or 7) : 8) 9)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec 2 and 10 b u This truss is International	as been designed i ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members. er(s) for truss to t hanical connection e capable of withst uplift at joint 1. designed in accor Residential Code ind referenced star Standard	with any d for a liv is where ill fit betw russ con n (by oth anding 1 dance w sections	other live load e load of 20.1 a rectangle veen the botti nections. ers) of truss t 0 lb uplift at j ith the 2015 s R502.11.1 a	Opsf om to oint					
FORCES (lb) - Maximum Compression/Maximum Tension T TOP CHORD 1-2=-7/28 BOT CHORD 1-3=-19/0													
NOTES	CE 7-10; Vult=115mph	(2 second quist)											un.
Vasd=91r II; Exp B; and C-C I exposed ; members Lumber D 2) TCLL: AS DOL=1.1! snow); Pa DOL=1.0 Unobstruu 3) Roof desi slope.	CE 7-10; Vult=115mpn mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and riç and forces & MWFRS OCL=1.60 plate grip DO SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.00); Pf= s=18.7 psf (roof snow: I 0); Category II; Exp B; I cted slippery surface ign snow load has been red snow loads have be	DL=6.0psf; h=30ft; C velope) exterior zone ever left and right ght exposed;C-C for for reactions shown; DL=1.33 roof live load: Lumber 20.0 psf (flat roof _umber DOL=1.15 PI Fully Exp.; Ct=1.10; n reduced to account	e er late for									SEA 0363	EER RUU

Page: 1

DRE USE. hrt, not o voerall ent bracing
Building Component
Building Component
Building Component

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	
ELV B CP	J02	Half Hip	2	1	I57052884 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:47 ID:znOGwolH7kY5iwUiB5AT2Pzd27u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-11-8 3-1-8 1-11-8 1-2-0

Scale = 1:23.1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.11 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
	3-1-8 oc purlins, ex 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=17 (LC	applied or 6-0-0 oc anical, 5=0-3-0 15)	nd 9) 10	 This truss has chord live load This truss has chord live load This truss has the hottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate and 39 lb up This truss is International 	designed in accore Residential Code	for a 10.0 with any I for a liv s where II fit betw uss conr h (by oth anding S dance w sections	b) psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to l lb uplift at joi ith the 2015 i R502.11.1 a	ds. Dpsf om o int 4					
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; members a	Tension TOP CHORD 1-2=-28/50, 2-3=-28/42, 3-4=-64/26 BOT CHORD 1-5=-42/51, 4-5=-42/37 NOTES 1) Unbalanced roof live loads have been considered for this design.				nd referenced star rlin representation ation of the purlin a Standard ow (balanced): Lur .00 ads (lb/ft) =-57, 2-3=-60, 4-6	does no along the nber Inc	ot depict the s top and/or			L.		ORTH CA	ROLIN

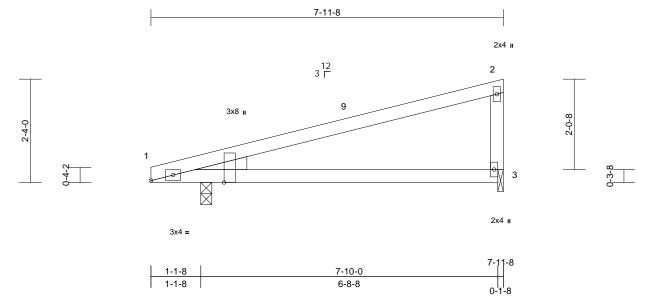
- Lumber DOL=1.60 plate grip DOL=1.33 ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.
- 5) Unbalanced snow loads have been considered for this design.

GI

11 Minin

March 8,2023

SEAL 036322


Theorem and the

Variation

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	P01	Monopitch	6	1	Job Reference (optional)	57052885

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:47 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

	(, 1): [1:0 1 0,⊵dg0],	[1.0 0 0,Edg0]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015		CSI TC BC WB Matrix-MP			in -0.10 -0.21 0.01	(loc) 3-8 3-8 1	I/defl >966 >451 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex. Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=63 (LC Max Uplift 1=-24 (LC Max Grav 1=365 (LC (Ib) - Maximum Com Tension 1-2=-89/45, 2-3=-19 1-3=-91/109	cept end verticals. applied or 10-0-0 or 3=0-1-8 15) 12), 3=-25 (LC 16) 2 2), 3=-279 (LC 23) pression/Maximum	c 8) 9) 10	* This truss on the botto 3-06-00 tall chord and a Bearing at ju using ANSI/ designer sh Provide med bearing plat Provide med bearing plat 1 and 25 lb) This truss is Internationa	has been designe m chord in all area by 2-00-00 wide w ny other members point(s) 3 considers TPI 1 angle to gra buld verify capacit chanical connectio e at joint(s) 3. chanical connectio e capable of withs uplift at joint 3. designed in accool I Residential Code and referenced sta	d for a liv as where vill fit betv s. parallel t in formul- y of bear y of bear on (by oth tanding 2 rdance w e sections	e load of 20. a rectangle veen the bott o grain value a. Building ng surface. ers) of truss ers) of truss 4 lb uplift at ith the 2015 c R502.11.1 a	Opsf com e to to joint					
1) Wind: ASC Vasd=91mj II; Exp B; E and C-C Ex	E 7-10; Vult=115mph ph; TCDL=6.0psf; BC nclosed; MWFRS (er xterior (2) zone; cantil	DL=6.0psf; h=30ft; (velope) exterior zor ever left and right									11	H CA	ROLI

and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

- ICLL: ASCE 7-10; Pf=20.0 pst (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEER March 8,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	P02	Half Hip Girder	2	1	Job Reference (optional)	157052886

4x6 =

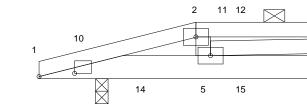
Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:47 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13

16

4x6 =


4

2x4 u

Page: 1

12 3 Г

3x4 =

4x6 =

Scale = 1:22.9

1-1-8

Plate Offsets (X, Y): [1:0-8-8,0-0-12]

	(,,, ,): [::e e eje e :=	1											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC20 ²	15/TPI2014	CSI TC BC WB Matrix-MP	0.79 0.16 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD		ed or 8 nd	 design. Provide ader This truss has chord live los * This truss loss loss on the bottor 3-06-00 tall loss 	snow loads have quate drainage to as been designed ad nonconcurrent nas been designer m chord in all area by 2-00-00 wide w ny other members	prevent for a 10. with any d for a liv is where ill fit betw	water pondin 0 psf bottom other live loa re load of 20. a rectangle	g. ads. Opsf	Co	oncentra	ated Lo	2-3=-60, 1-4=-2(ads (lb) B), 15=-6 (B), 16		
REACTIONS	bracing.	4=0-1-8 9) : 8), 4=-23 (LC 8) : 32), 4=354 (LC 31)	9	using ANSI/ designer sho 0) Provide meo bearing plate 1) Provide meo bearing plate	int(s) 4 considers TPI 1 angle to grain buld verify capacity chanical connections at joint(s) 4. chanical connections a capable of withstrong uplift at joint 4.	n formul y of bear n (by oth n (by oth	a. Building ing surface. ers) of truss ers) of truss	to					
TOP CHORD 1-2=-502/82, 2-3=-458/18, 3-4=-288/45 BOT CHORD 1-5=-62/478, 4-5=-8/6 WEBS 2-5=-102/51, 3-5=-12/464 NOTES 1) 1) Unbalanced roof live loads have been considered for				 2) This truss is International R802.10.2 a 3) Graphical put 	designed in accor Residential Code nd referenced sta Irlin representation ation of the purlin	sections ndard Al	s R502.11.1 a NSI/TPI 1. ot depict the s					NITH CA	
Vasd=91n II; Exp B; cantilever right expo 3) ** TCLL: A DOL=1.15 snow); Ps DOL=1.15	 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 ASCE 7-10; Pr=20.0 ps 5 Plate DOL=1.00); Pf= = varies (min. roof sno 5 Plate DOL=1.00) see lly Exp.; Ct=1.10; Und	Cat. e; d 33 nber ry II; 1	 Hanger(s) or provided suf down and 6 at 6-0-4 on 2-0-4, and 6 down and 1 design/selec responsibility In the LOAD 	other connection ficient to support of lb up at 4-0-4, an top chord, and 48 lb down and 1 lb lb up at 6-0-4 on tion of such connection of others. CASE(S) section are noted as front	concentra d 19 lb d lb down up at 4-i bottom c ection de	ated load(s) 1 own and 6 lb and 18 lb up D-4, and 6 lb hord. The vice(s) is the pplied to the	up at		United and a second sec	E)	A PERSON	22	

- 4) Roof design snow load has been reduced to account for slope.
- LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00
 - Uniform Loads (lb/ft)

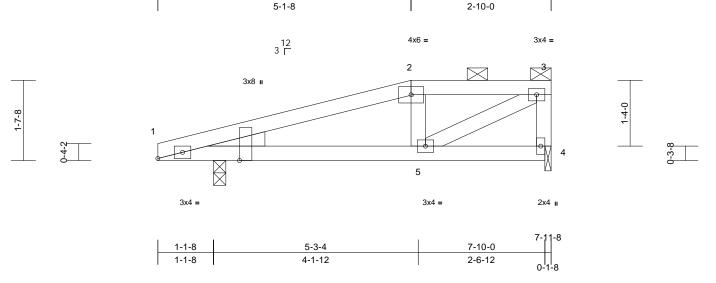
GILB

March 8,2023

A. GILDIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	P03	Half Hip	2	1	I57052887 Job Reference (optional)


5-1-8

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:48 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-11-8

Mar 08 08:14:48 Page: 1 rCDoi7J4zJC?f

Scale = 1:23.3

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

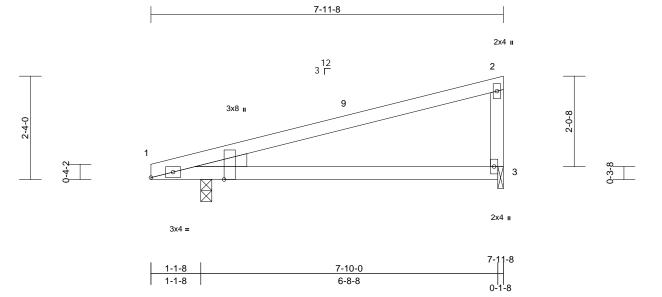
		. ,											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.21 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-10 5-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exa 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 1=0-3-0,4 Max Horiz 1=42 (LC Max Uplift 1=-27 (LC Max Grav 1=463 (LC	applied or 10-0-0 oc 4=0-1-8 15) 12), 4=-22 (LC 12) C 36), 4=294 (LC 35)	ıd 8) 9)	slope. Unbalanced design. Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall l chord and ar Bearing at jo using ANSI/ designer sho) Provide meco	snow load has bee snow loads have b quate drainage to p is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by 0-ther members. int(s) 4 considers p IFPI 1 angle to grain puld verify capacity hanical connection at joint(s) 4.	een cor revent or a 10. iith any for a liv where fit betw arallel formul of bear	nsidered for t water pondin 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott to grain value a. Building ing surface.	his g. ads. Opsf om					
this design 2) Wind: ASC Vasd=91n	1-5=-97/346, 4-5=-1 2-5=-88/66, 3-5=-87/ ed roof live loads have	38/84, 3-4=-274/81 8/20 /381 been considered for (3-second gust) DL=6.0psf; h=30ft; Cr	12 13	bearing plate 1 and 22 lb u This truss is International R802.10.2 a) Graphical pu		nding 2 ance w sections dard AN does no	?7 lb uplift at j ith the 2015 s R502.11.1 a ISI/TPI 1. ot depict the s	joint and		4	24	ORTH CA	ROUT

- (1) Wind: ASCE 7-10, Vull=113hpln (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 1-2=-57, 2-3=-60, 4-6=-20


ENGINEERING BY EREPACED A MITEK AMILIA B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1)

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	P04	Monopitch	2	1	Job Reference (optional)	57052888

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:48 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

- 1410 0110010 (1	,, ,, ,, [, s,_uge],	[
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.70 0.55 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.01	(loc) 3-8 3-8 1	l/defl >966 >451 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=63 (LC Max Uplift 1=-24 (LC Max Grav 1=365 (LC (Ib) - Maximum Com Tension 1-2=-89/45, 2-3=-190 1-3=-91/109	cept end verticals. applied or 10-0-0 or 3=0-1-8 15) 12), 3=-25 (LC 16) 2 2), 3=-279 (LC 23) pression/Maximum	c 8) 9) 1(chord live lo * This truss on the botto 3-06-00 tall chord and a Bearing at jo using ANSI/ designer shi Provide mee bearing plat 1 rovide mee bearing plat 1 and 25 lb)) This truss is Internationa	as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members bint(s) 3 considers TPI 1 angle to gra buld verify capacity chanical connectio e at joint(s) 3. chanical connectio e capable of withs uplift at joint 3. designed in accord I Residential Code and referenced sta	with any d for a liv as where vill fit betw parallel in formul y of bear n (by oth tanding 2 rdance w a sections	other live load e load of 20. a rectangle veen the bott o grain value a. Building ng surface. ers) of truss ers) of truss 14 lb uplift at ith the 2015 c R502.11.1 a	Opsf com e to to joint					
Vasd=91m II; Exp B; I	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantile	DL=6.0psf; h=30ft; (velope) exterior zor										TH CA	ROUT

and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

- 2) TOLL: ASCE 7-10; PI=20.0 psi (fool live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEERHALIUM March 8,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V01	Valley	1	1	I57052889 Job Reference (optional)

Scale = 1:64.4 Loading

TCLL (roof)

TCDL

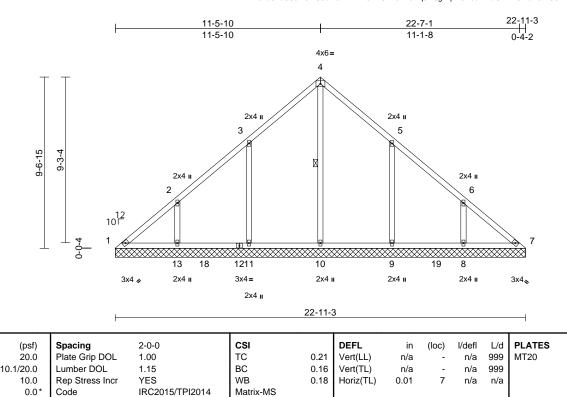
BCLL

BCDL

Snow (Ps/Pf)

this design.

Run; 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:48 ID:E0Zd81oG80YGhiU5ulFJBDzIBZ6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Page: 1

GRIP

Weight: 114 lb

244/190

FT = 20%

LUMBER										
TOP CHORD	2x4 SP N	0.2								
BOT CHORD	2x4 SP N	0.2								
OTHERS	2x4 SP N	0.3								
BRACING										
TOP CHORD	Structura	I wood sheathing directly applied or								
	6-0-0 oc j	ourlins.								
BOT CHORD		ing directly applied or 6-0-0 oc								
	bracing.									
WEBS	1 Row at									
REACTIONS	(size)	1=22-11-3, 7=22-11-3, 8=22-11-3,								
	9=22-11-3, 10=22-11-3,									
		11=22-11-3, 13=22-11-3								
		1=-182 (LC 10)								
	Max Uplift	1=-33 (LC 10), 8=-91 (LC 15),								
		9=-123 (LC 15), 11=-123 (LC 14), 13=-95 (LC 14)								
	Max Grav	()								
	wax Grav	8=356 (LC 26), 9=472 (LC 26),								
		10=423 (LC 28), 9=472 (LC 28), 10=423 (LC 28), 11=471 (LC 25),								
		13=360 (LC 25)								
FORCES	(lb) - May	imum Compression/Maximum								
TONOLO	Tension									
TOP CHORD	1-2=-182	/167, 2-3=-136/133, 3-4=-135/161,								
	4-5=-135	/153, 5-6=-92/89, 6-7=-156/122								
BOT CHORD		4/148, 11-13=-104/144,								
	10-11=-104/144, 9-10=-104/144,									
		/144, 7-8=-104/144								
WEBS		1/0, 3-11=-277/173, 2-13=-239/136,								
	5-9=-277	/173, 6-8=-237/134								
NOTES										
1) Unbalance	1) Unbalanced roof live loads have been considered for									

10.0

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1, 123 lb uplift at joint 11, 95 lb uplift at joint 13, 123 lb uplift at joint 9 and 91 lb uplift at joint 8.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V02	Valley	1	1	I57052890 Job Reference (optional)

Loading

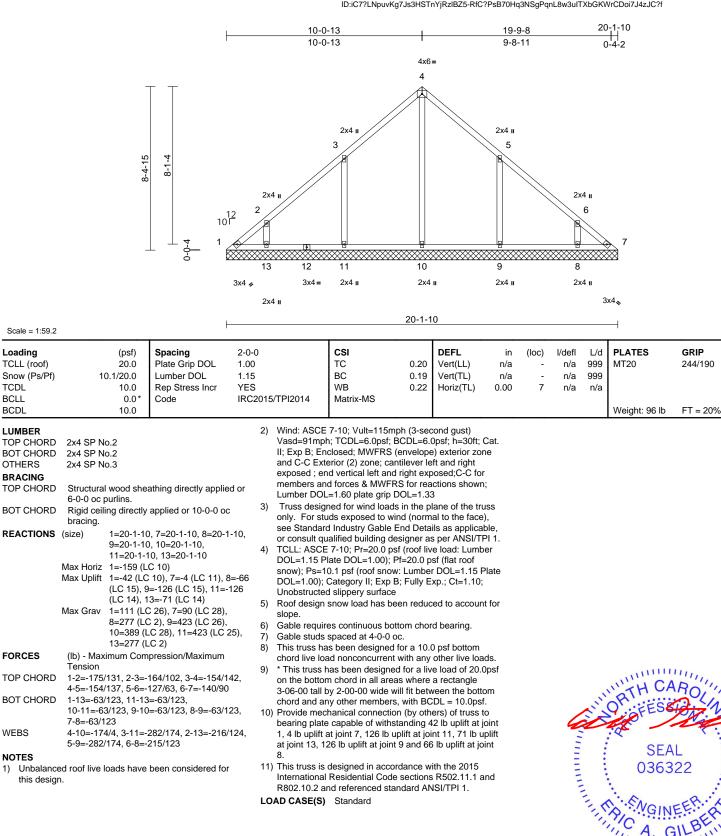
TCDL

BCLL

BCDL

LUMBER

OTHERS


FORCES

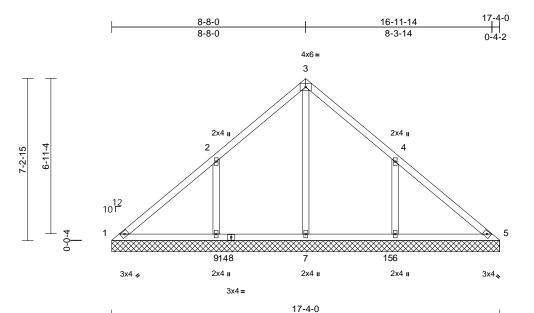
WEBS

NOTES

Run; 8,53 S Sep 22 2022 Print: 8,530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08;14;49 ID:iC7?LNpuvKg7Js3HSTnYjRzIBZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

mmm March 8,2023 1111111111


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V03	Valley	1	1	I57052891 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:49 ID:n_DfTBQyMVZ6OSI2IcAz9hzIBX?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

.				1	7-4-0						
Scale = 1:51.5										·	
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	BC 0	28 Vert(LL) 18 Vert(TL) 30 Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=17-4-0 7=17-4-0 Max Horiz 1=-137 (I Max Uplift 1=-14 (LC 9=-137 (I Max Grav 1=111 (L	C 10), 6=-134 (LC 15 _C 14) C 26), 5=102 (LC 30 C 26), 7=488 (LC 25	DOL=1.15 I snow); PS= DOL=1.00); Unobstructe of or 5) Roof design slope. 6) Gable studs 7) Gable studs 8) This truss h chord live lc 9) * This truss on the botto 3.06-00 tall chord and a), 10) Provide me bearing plai	E 7-10; Pr=20.0 psf (roo Plate DOL=1.00); Pf=20 10.1 psf (roof snow: Lur Category II; Exp B; Fu ad slippery surface a snow load has been re res continuous bottom as been designed for a bad nonconcurrent with has been designed for m chord in all areas wf by 2-00-00 wide will fit iny other members, with chanical connection (by e capable of withstandi	.0 psf (flat roof nber DOL=1.12 ly Exp.; Ct=1.1 educed to acco chord bearing. 10.0 psf bottor any other live I a live load of 2 ere a rectangle between the bc BCDL = 10.0 others) of trus ng 14 lb uplift a	5 Plate 0; unt for oads. 0.0psf e ottom osf. s to at joint					
FORCES	Tension 1-2=-126/230, 2-3=	npression/Maximum -24/170, 3-4=-13/164	11) This truss is Internationa	lift at joint 9 and 134 lb designed in accordance Residential Code sect and referenced standard	e with the 201 ions R502.11.	5					
BOT CHORD	4-5=-105/194 1-9=-151/116, 7-9= 5-6=-151/114	-151/114, 6-7=-151/1	14, LOAD CASE(S) Standard						OR EESS	110m
WEBS	3-7=-329/0, 2-9=-30	05/175, 4-6=-304/174	Ļ							"TH UA	RO
 this design Wind: ASC Vasd=91m II; Exp B; E 	CE 7-10; Vult=115mpł nph; TCDL=6.0psf; BC Enclosed; MWFRS (e	n (3-second gust) CDL=6.0psf; h=30ft; (nvelope) exterior zon	Cat.						25		N. Tin
exposed ; members a Lumber D0 3) Truss des only. For s	xterior (2) zone; canti end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC igned for wind loads i studs exposed to wind	ight exposed;C-C for for reactions shown DL=1.33 in the plane of the tru d (normal to the face)	; iss i,						A A A A A A A A A A A A A A A A A A A	NGIN	EER. K

- Wind: ASCE 7 0; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G

11111111

March 8,2023

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V04	Valley	1	1	Job Reference (optional)

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

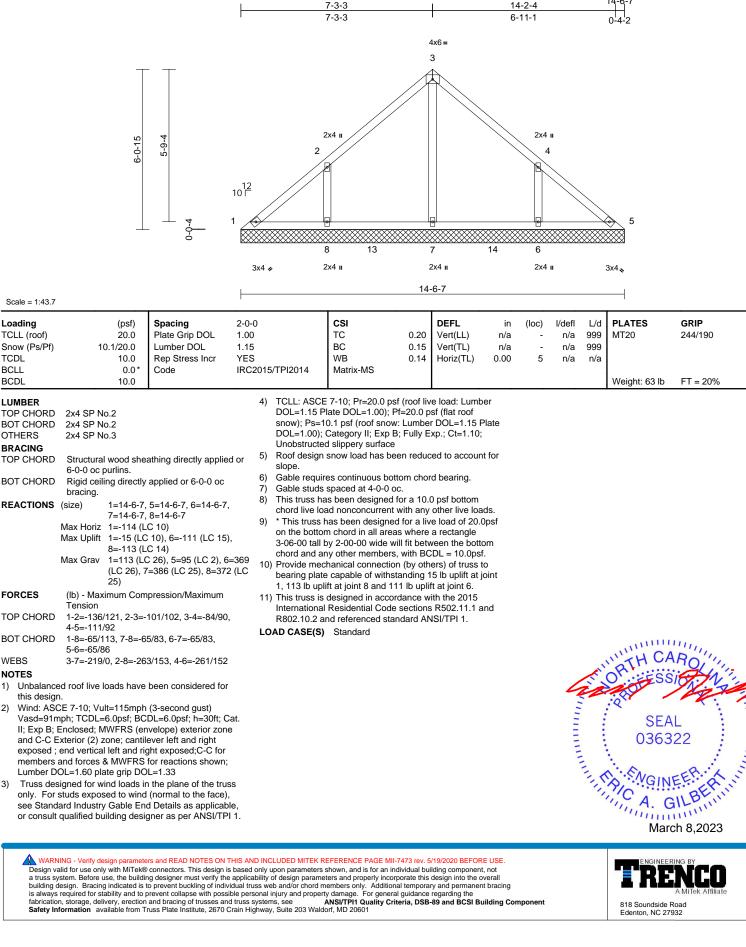
FORCES

WEBS

NOTES

1)

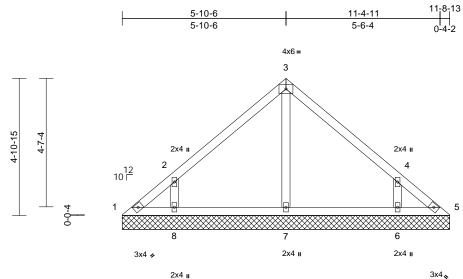
2)


3)

BRACING

TCLL (roof)

Run; 8,53 S Sep 22 2022 Print: 8,530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08;14;49 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V05	Valley	1	1	I57052893 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:49 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

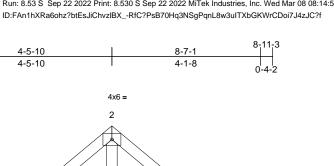
Page: 1

11-8-13

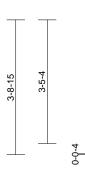
Scale = 1:41.3	

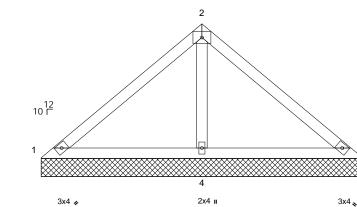
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	10.1/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 48 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-8-1: 7=11-8-1: Max Horiz 1=-91 (LC Max Uplift 1=-27 (LC (LC 15), { Max Grav 1=78 (LC	C 10), 5=-4 (LC 11), 6 3=-99 (LC 14)	DOL=1.15 F snow); Ps=1 DOL=1.00;; Unobstructe d or 5) Roof design slope. 6) Gable requir 7) Gable studs 8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall e-310 10) Provide mec bearing plate	E 7-10; Pr=20.0 ps Plate DOL=1.00); F 0.1 psf (roof snow Category II; Exp E d slippery surface snow load has be res continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs	Pf=20.0 p v: Lumbe 3; Fully E een reduc ttom chor cc. for a 10.1 with any d for a liv as where vill fit betv s. n (by oth tanding 2	sf (flat roof r DOL=1.15 F xp.; Ct=1.10; eed to accoun d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 27 lb uplift at j	Plate It for Ids. Opsf om to					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	uplift at joint	1, 4 lb uplift at joint 5, 99 lb uplift at joint 8 and 96 lb uplift at joint 6. 11) This truss is designed in accordance with the 2015								
TOP CHORD	1-2=-97/83, 2-3=-14 4-5=-77/53	2/86, 3-4=-139/82,		International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.								
BOT CHORD	1-8=-24/67, 7-8=-21 5-6=-21/67	/67, 6-7=-21/67,	LOAD CASE(S)	Standard							, unun	11111
WEBS		31/159, 4-6=-260/158									WTH CA	Rollin
NOTES										1	R	in Links
	ed roof live loads have	been considered for								53	C. FESS	The 2
 Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed; members a Lumber DO Truss des only. For see Standa 	CE 7-10; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er xterior (2) zone; canti end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC igned for wind loads i studs exposed to wind ard Industry Gable En qualified building desi	EL=6.0psf; h=30ft; C hvelope) exterior zon lever left and right ght exposed;C-C for for reactions shown; DL=1.33 n the plane of the true I (normal to the face) d Details as applicab	e ss le,						Contraction of the second s		SEA 0363	EER A LUN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 8,2023


Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V06	Valley	1	1	I57052894 Job Reference (optional)


Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:50

Page: 1

3

8-11-3

Scale = 1:32

00010 = 1102											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 Plate Grip DO 10.1/20.0 Lumber DOL 10.0 Rep Stress Int 0.0* Code	1.15	PI2014	0.27 0.24 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly a 8-11-3 oc purlins. Rigid ceiling directly applied or 6-0-0 bracing. (size) 1=8-11-3, 3=8-11-3, 4=8- Max Horiz 1=-69 (LC 12) Max Uplift 1=-30 (LC 30), 3=-30 (LC 4=-58 (LC 14) Max Grav 1=60 (LC 29), 3=60 (LC 3 (LC 2)	Deplied or 5) R s loc 6) G l1-3 8) T 29), 9) * 0), 4=676 c 10) P	CLL: ASCE 7-10; Pr=20.0 p DOL=1.15 Plate DOL=1.00); snow); Ps=10.1 psf (roof snow DOL=1.00); Category II; Exp Jnobstructed slippery surface Roof design snow load has b slope. Sable requires continuous bo Sable studs spaced at 4-0-0 'his truss has been designed thord live load nonconcurreni This truss has been designed on the bottom chord in all are toord and any other members 'rovide mechanical connectic	Pf = 20.0 p W: Lumbe $B;$ Fully $E \Rightarrow$ een reduc ttom chor pc. I for a 10.1 t with any d for a liv as where vill fit betv S.	sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accoun d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottom	Plate t for ds. Dpsf om					
FORCES	(lb) - Maximum Compression/Maxim Tension	um ໌b	pearing plate capable of with , 30 lb uplift at joint 3 and 58	standing 3	10 lb uplift at j						
TOP CHORD BOT CHORD WEBS	1-2=-75/286, 2-3=-75/286 1-4=-221/115, 3-4=-221/115 2-4=-503/135	11) T Ir	This truss is designed in acconternational Residential Code (8802.10.2 and referenced state)	ordance w e sections	ith the 2015 R502.11.1 a	ind					
NOTES			D CASE(S) Standard								
1) Unbalance this design	ed roof live loads have been considere n.										Dilli

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

G mmm March 8,2023

SEAL

036322

Vinnerenter

" national and a second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

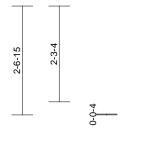
Jo	bb	Truss	Truss Type	Qty	Ply		
E	LV B CP	V07	Valley	1	1	Job Reference (optional)	157052895

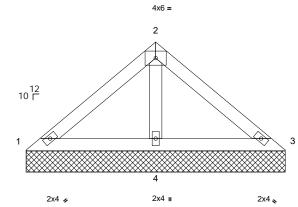
3-0-13

3-0-13

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:50 ID:Ok_LxAhg?8Sx9nNkZcV2ZQzIBSo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-9-8


2-8-11

6-1-10

4x6 = 2

6-1-10

Scale = 1:27.3

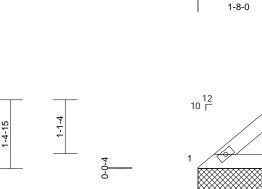
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalancee this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed ; 6 members a Lumber DC 3) Truss desi only. For s see Standa or consult of 4) TCLL: ASC DOL=1.15	Max Horiz 1=-46 (LC Max Uplift 4=-22 (LC Max Grav 1=66 (LC (LC 2) (Ib) - Maximum Corr Tension 1-2=-57/138, 2-3=-5 1-4=-109/64, 3-4=-1 2-4=-265/63	applied or 6-0-0 oc 3=6-1-10, 4=6-1-10 2 (10) 2 (14) 2 (14	9) 1(4=394 1 ⁻¹ L(r Cat. le ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	slope.) Gable requirin) Gable studs) This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar 0) Provide mec bearing plate 4. 1) This truss is International	snow load has be es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members hanical connection e capable of withst designed in accor Residential Code nd referenced star Standard	tom chor c. for a 10.1 with any d for a liv as where ill fit betv n (by oth tanding 2 vdance w sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t 22 lb uplift at j ith the 2015 5 R502.11.1 a	ids. Opsf om to joint				SEA 0363	• -

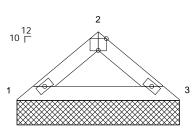
4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

A. GIL March 8,2023

GI

10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V08	Valley	1	1	I57052896 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:50 ID:h4v?PZm4MIKyVsP4Ta7hLuzIBSh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-14

1-3-14

3-4-0

3x4 =

1-8-0

2x4 🥠

2x4 💊

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-2-0,Edge]

or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate

DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;

Roof design snow load has been reduced to account for

Unobstructed slippery surface

4)

5)

slope.

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/		CSI TC BC WB Matrix-MP	0.08 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-4-0 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-0, 3 Max Horiz 1=-24 (LC Max Uplift 1=-2 (LC Max Grav 1=133 (LC	applied or 10-0-0 or 3=3-4-0 2 12) 14), 3=-2 (LC 15)	7) 8) ed or 9) c 10) 11)	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate and 2 lb uplif This truss is	spaced at 4-0-0 o is been designed that an onconcurrent has been designed in chord in all area by 2-00-00 wide w by other members hanical connection o capable of withst t at joint 3. designed in accor	c. for a 10. with any d for a liv as where ill fit betv n (by oth tanding 2	D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss i lb uplift at jo ith the 2015	Opsf om to int 1					
FORCES TOP CHORD BOT CHORD NOTES	(lb) - Maximum Com Tension 1-2=-175/21, 2-3=-1 1-3=-10/131	pression/Maximum			Residential Code nd referenced star Standard			ind					
 Unbalance: this design Wind: ASC Vasd=91m I; Exp B; E and C-C E: exposed; e members a Lumber DC Truss desi only. For s 	d roof live loads have E 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er and vertical left and ri- and forces & MWFRS DL=1.60 plate grip DC igned for wind loads in studs exposed to wind ard Industry Gable En	(3-second gust) DL=6.0psf; h=30ff; (wolope) exterior zor ever left and right ght exposed;C-C for for reactions shown vL=1.33 n the plane of the tru (normal to the face)	Cat. ne ; iss),							4		OFESS OFESS	• -

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
ELV B CP	V09	Valley	1	1	Job Reference (optional)	57052897

Scale = 1:23.8 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

NOTES

2)

3)

TOP CHORD

BOT CHORD

this design.

Snow (Ps/Pf)

Page: 1

Run; 8,53 S Sep 22 2022 Print; 8,530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:50 ID:IDLcbx8o?NLkokzBXkIqHszd2BG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-0-13 7-5-5 8-1-11 4-0-13 0-8-6 3-4-8 4x6 =2 9 10 12 5 ∟ -4-14 1-8-10 3 9-0-0 4 2x4 II 3x4 👟 3x4 🥃 8-1-11 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.19 Vert(LL) n/a n/a 999 MT20 244/190 BC 1 15 15 8/20 0 Lumber DOL 0.20 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 Weight: 25 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2x4 SP No.2 snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate 2x4 SP No.2 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; 2x4 SP No.3 Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied or slope. 8-1-11 oc purlins. 6) Unbalanced snow loads have been considered for this Rigid ceiling directly applied or 6-0-0 oc design. bracing. 7) Gable requires continuous bottom chord bearing. (size) 1=8-1-11, 3=8-1-11, 4=8-1-11 8) Gable studs spaced at 4-0-0 oc. Max Horiz 1=20 (LC 16) This truss has been designed for a 10.0 psf bottom 9) Max Uplift 1=-8 (LC 16), 3=-12 (LC 17), 4=-4 chord live load nonconcurrent with any other live loads. (LC 16) 10) * This truss has been designed for a live load of 20.0psf Max Grav 1=89 (LC 33), 3=89 (LC 34), 4=523 on the bottom chord in all areas where a rectangle (LC 2) 3-06-00 tall by 2-00-00 wide will fit between the bottom (lb) - Maximum Compression/Maximum chord and any other members. Tension 11) Provide mechanical connection (by others) of truss to 1-2=-110/273, 2-3=-110/273 bearing plate capable of withstanding 8 lb uplift at joint 1-4=-229/96, 3-4=-229/96 1, 12 lb uplift at joint 3 and 4 lb uplift at joint 4. 2-4=-353/111 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 1) Unbalanced roof live loads have been considered for LOAD CASE(S) Standard Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right and the second exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; SEAL Lumber DOL=1.60 plate grip DOL=1.33 036322 Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

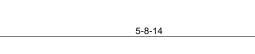
G mmm March 8,2023

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V10	Valley	1	1	Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:51 ID:io0kDyAgIIjJfBimDsrXvUzd2BD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-7 5-0-8 2-10-7 2-2-1 3x4 = 2 12 5 Г 0-10-14 0-0-4

3x4 ≤


3x4 👟

5-8-14

0-8-6

3

1-2-10

Scale = 1:22

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015,	/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.21 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 5-8-14 oc purlins. Rigid ceiling directly bracing. (size) 1=5-8-14, Max Horiz 1=14 (LC Max Uplift 1=-7 (LC Max Grav 1=230 (LC (lb) - Maximum Com Tension 1-2=-478/124, 2-3=- 1-3=-104/433	7) 8) 9) c 10) 11) 12)	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate and 7 lb uplii This truss is International	designed in accord Residential Code nd referenced stan	om choi c. or a 10. with any l for a liv s where Il fit betv anding 7 dance w sections	d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott ers) of truss t 7 lb uplift at jo ith the 2015 \$ R502.11.1 a	nds. Opsf om to int 1				. ogni i o b	2070	
this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed ; e	d roof live loads have E 7-10; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er xterior (2) zone; cantil end vertical left and riv and forces & MWFRS	(3-second gust) DL=6.0psf; h=30ft; (nvelope) exterior zor ever left and right ght exposed;C-C for	Cat. ie							6	ALL	ORTH CA	ROUN

Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

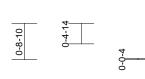
5) Roof design snow load has been reduced to account for slope.

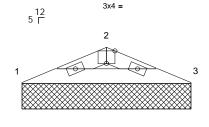
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
ELV B CP	V11	Valley	1	1	I57052899 Job Reference (optional)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Mar 08 08:14:51 ID:fB8VeeCxqvz1uVs8KHu?_vzd2BB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-8-1


1-8-1


2-7-12 3-4-1

0-11-11 0-8-6

Page: 1

2x4 ਫ਼ 2x4 🛼

3-4-1

Scale = 1:22.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 15.8/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 8 lb	FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-4-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=3-4-1, 3=3-4-1 Max Horiz 1=7 (LC 16) Max Grav 1=134 (LC 2), 3=134 (LC 2) FORCES (lb) - Maximum Compression/Maximum			ed or s	 design. Gable requir Gable studs This truss ha chord live lo. 10) * This truss li on the botton 3-06-00 tall li chord and ai Provide mec bearing plate and 4 lb upli 	•	ottom chor oc. I for a 10.0 t with any ed for a liv eas where will fit betw s. on (by oth standing 4	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss i l b uplift at jo	ads. Opsf om to					
Tension				12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and									
TOP CHORD BOT CHORD	1-2=-241/65, 2-3=-2 1-3=-50/231	_	R802.10.2 and referenced standard ANSI/TPI 1.										
NOTES				OAD CASE(S)	Standard								
this desigr 2) Wind: ASC	CE 7-10; Vult=115mph	(3-second gust)											10
II; Exp B; I and C-C E exposed ;	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and riv and forces & MWFRS	ever left and right exposed;C-C for	ne r							4	i i	OP. FESS	ROUT

- Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.

818 Soundside Road Edenton, NC 27932

GI minim

March 8,2023

SEAL

036322

Mannin 11

Contraction and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

