

Trenco 818 Soundside Rd Edenton, NC 27932

Re: ELV B CP 3CG 628 B CP 3CG

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I60306418 thru I60306446

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

August 23,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	A01	Common	10	1	Job Reference (optional)	160306418

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:33 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -----

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITEK Affiliat

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	A01G	Common Supported Gable	1	1	Job Reference (optional)	160306419

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:35 ID:s1rkApFfouah?fL3epONnXzIBUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

38-9-0 37-10-0

Scale = 1:76.5

Plate Offsets (X, Y): [4:0-1-8,0-1-8], [18:0-1-8,0-1-8], [21:0-2-9,Edge]

0-11-0

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCLL	1:	(psf) 20.0 3.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.27 0.25 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(lo	22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 281 lb	GRIP 244/1	90 20%
LUMBER TOP CHORD 30T CHORD DTHERS BRACING TOP CHORD 30T CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 10-0-0 oc Rigid ceil bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 I wood shea purlins. ing directly midpt 22=36-11: 24=36-11: 24=36-11: 34=36-11: 34=36-11: 34=36-11: 34=36-11: 40=3-219(L 22=-78 (L 23=-21 (L 23=-21 (L 23=-39 (L 35=-32 (L) 35=-32 (L 35=-32 (L) 35=-32 (L 35=-32 (L) 35=-32	athing directly applie applied or 6-0-0 oc 11-31, 10-32, 9-34, 12-30, 13-28 0, 23=36-11-0, 0, 25=36-11-0, 0, 27=36-11-0, 0, 32=36-11-0, 0, 32=36-11-0, 0, 37=36-11-0, 0, 39=36-11-0, 0, 39=36-11-0, 10, 38=-32 (LC 10, 10, 34=-39 (LC 11, 10, 38=-32 (LC 11, 10, 38=-32 (LC 11, 10, 38=-32 (LC 11, 10, 38=-32 (LC 11, 10, 34), 23=186 (LC 12, 0, 34), 27=163 (LC 23, 0, 32, 32=229 (LC 24, 0, 33), 37=164 (LC 24, 0, 34), 42=106 (LC 12, 0, 44), 44=106 (LC 12,	d or 12), 7), 7), 7), 7), 7), 7), 17), 17), 17), 17), 17), 17), 17), 17), 17), 17), 17), 19), 19), 19),	FORCES FOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS VEBS VEBS VOTES) Unbalanced this design. 2) Wind: ASCE Vasd=91mp II; Exp B; Er and C-C Ex exposed ; e members ar Lumber DO	(lb) - Maximum Co Tension 1-2=-79/288, 2-3=: 5-6=-10/251, 6-7=! 8-9=-60/276, 9-10: 11-12=-124/308, 1 13-14=-60/272, 14 16-17=-3/247, 17- 19-20=-73/263, 20 1-40=-229/101, 39 38-39=-225/98, 37 36-37=-225/98, 32 31-32=-225/98, 23 21-32=-225/98, 23 22-23=-225/98, 23 22-23=-225/98, 21 11-31=-318/26, 10 9-34=-152/63, 8-3: 6-37=-122/59, 5-3: 32-40=-238/68, 12=: 13-28=-152/63, 14 15-26=-122/57, 16 17-24=-136/53, 19 20-22=-238/66 d roof live loads hav 57-10; Vult=115mp th; TCDL=6.0psf; B nclosed; MWFRS (terior (2) zone; can nd vertical left and nd forces & MWFR L=1.60 plate grip D	mpressi -81/270, 0/259, 7- -93/288 2-13=-9; -15=-28, 19=-20/2 -21=-75, -40=-22; -36=-22; -36=-22; -36=-22; -34=-22; -34=-22; -34=-22; -24=-22; -22=-22; -22=-22; -22=-22; -22=-23; -23=-12; -25=	on/Maximum 3-5=-27/255, 8=-28/268, ; 10-11=-124 3/285, [264, 15-16=(5/98, 5/98	/308,)/256,)/256, /57, /95, r Cat. ne ;	 3) 4) 5) 6) 7) 8) 9) 10) 	Truss only. see S or cor TCLL DOL= snow) DOL= Unobi Slope. Unbai desig Gable This t chord * This on the 3-06-1 chord All be capac	s design For st itandar nsult qi =1.15 F ; Ps==1 =1.00); Structe design s tructe design s tructe design i live lo s truss e botto 00 tall 1 and a a araings city of s	ined fit uals est d Indi ualifie E 7-10 Plate E Categ d slip snow space as bee as bee as bee as bee for by 2-0 has b by 2-0 has b b for b by 2-0 has b b for b for b for b for b for b for b for b for b for for for for for for for for for for	or wind loads in xposed to wind (ustry Gable End d building design ; PT=20.0 psf (r ODL=1.00); PT=20.0 psf (r ODL=1.00); PT=20.0 psf (roof snow: Lu gory II; Exp B; Fi- pery surface I loads have been r loads have been ed at 2-0-0 oc. en designed for n concurrent witt een designed for n concurrent witt een designed for m conc	the plane normal to Details a per as per of live lo 0.0 psf (timber DO July Exp.; reduced n consid a 10.0 ps a any oth here a re t betwee P No.2 ci No.2 ci No	e of the truss o the face), is applicable, er ANSI/TPI 1. iad: Lumber flat roof DL=1.15 Plate ; Ct=1.10; to account for lered for this is bottom ier live loads. vad of 20.0psf actangle n the bottom rushing
		38=196 (L 40=392 (L	.C 33), 39=195 (LC 1 .C 33)	4),										in min	mm	2 C

Continued on page 2

818 Soundside Road Edenton, NC 27932

August 23,2023

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	A01G	Common Supported Gable	1	1	Job Reference (optional)	160306419

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 32, 39 lb uplift at joint 34, 32 lb uplift at joint 35, 32 lb uplift at joint 36, 39 lb uplift at joint 37, 17 lb uplift at joint 38, 142 lb uplift at joint 39, 86 lb uplift at joint 40, 20 lb uplift at joint 30, 39 lb uplift at joint 28, 32 lb uplift at joint 27, 32 lb uplift at joint 26, 38 lb uplift at joint 25, 16 lb uplift at joint 24, 132 lb uplift at joint 23 and 78 lb uplift at joint 22.
- 12) Non Standard bearing condition. Review required.
- 13) This truss is designed in accordance with the 2015
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:35 ID:s1rkApFfouah?fL3epONnXzIBUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	A03	Common	5	1	Job Reference (optional)	160306420

1)

2)

Run: 8,63 S Jul 28 2023 Print: 8,630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:36

Page: 1

818 Soundside Road Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	A03G	Common Supported Gable	1	1	Job Reference (optional)	160306421

2x4 u

10

2x4 u

9

45

2x4 II

8

5x6= 11

2x4 II

12

2x4 II

13

46

19-4-8

19-4-8

12 7

2x4 II

6

38

2-0-0

1.00

1.15

YES

2x4 II

2x4 u

3x6 💋

34

40

2x4 II

2x4 II

2

41

2x4 II

Spacing

Code

Structural wood sheathing directly applied or

22=36-11-0, 23=36-11-0,

24=36-11-0, 25=36-11-0.

26=36-11-0 27=36-11-0

28=36-11-0, 29=36-11-0,

31=36-11-0, 32=36-11-0.

33=36-11-0, 35=36-11-0,

36=36-11-0, 37=36-11-0,

38=36-11-0, 39=36-11-0,

40=36-11-0, 41=36-11-0

24=-13 (LC 17), 25=-38 (LC 17),

26=-32 (LC 17), 27=-33 (LC 17),

28=-32 (LC 17), 29=-38 (LC 17),

31=-23 (LC 17), 33=-19 (LC 16),

35=-40 (LC 16), 36=-32 (LC 16),

37=-33 (LC 16), 38=-36 (LC 16),

39=-22 (LC 16), 40=-78 (LC 16),

Max Uplift 22=-165 (LC 15), 23=-99 (LC 17),

41=-9 (LC 17)

10-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

Plate Grip DOL

Rep Stress Incr

11-32, 10-33, 9-35,

12-31, 13-29

Lumber DOL

5 2x4 II

39

2x4 II

Builders FirstSource (Apex, NC), Apex, NC - 27523

11-8-3

Scale = 1:74.3

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

Continued on page 2

WARNING

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

0-4-9 ∏

3x6=

Plate Offsets (X, Y): [4:0-1-8,0-1-8], [18:0-1-8,0-1-8]

2x4 SP No 2

2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

bracing.

1 Row at midpt

Max Horiz 41=226 (LC 15)

(psf)

20.0

10.0

0.0

10.0

13.2/20.0

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:36 ID:G9akxTit4GFRxLgAJ5Y3mKzlBU3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

14

37-10-0

18-5-8

Page: 1

2x4 II 2x4 II 15 7 2x4 II 3x6。 16 2x4 u X 17 2x4 II 1**8**9 2x4 II 20 3x4 II م 21 22⁶ 37 36 3534 33 32 3130 29 28 27 26 25 24 23 3x4 u 2x4 🛛 2x4 II 2x4 ı 2x4 🛛 2x4 🛛 2x4 🛛 2x4 🛛 2x4 🛛 2x4 🛛 2x4 II 2x4 🛛 2x4 🛛 2x4 🛛 3x6= 3x6= 37-10-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) TC 0.27 Vert(LL) 999 MT20 244/190 n/a n/a BC 0.21 Vert(TL) n/a n/a 999 WB Horiz(TL) 22 0.21 -0.01 n/a n/a IRC2015/TPI2014 Matrix-MS Weight: 279 lb FT = 20% Max Grav 22=127 (LC 12), 23=321 (LC 30), 1) Unbalanced roof live loads have been considered for 24=139 (LC 34), 25=174 (LC 30), this desian 26=159 (LC 30), 27=162 (LC 30), Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) 28=163 (LC 30), 29=193 (LC 23), Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone 31=227 (LC 23), 32=358 (LC 31), 33=226 (LC 22), 35=185 (LC 22), and C-C Exterior (2) zone; cantilever left and right 36=162 (LC 29), 37=163 (LC 29), exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: 38=157 (LC 29), 39=191 (LC 2), 40=91 (LC 14), 41=369 (LC 2) Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss FORCES (Ib) - Maximum Compression/Maximum 3) Tension only. For studs exposed to wind (normal to the face), TOP CHORD 1-2=-48/231, 2-3=-18/178, 3-5=0/193, see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 5-6=0/192, 6-7=-16/201, 7-8=-48/222, 8-9=-80/243, 9-10=-113/272, 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 10-11=-143/303, 11-12=-143/303, snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate 12-13=-113/288, 13-14=-80/276, DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; 14-15=-48/268, 15-16=-51/260, 16-17=-70/254 17-19=-93/268 Unobstructed slippery surface 5) Roof design snow load has been reduced to account for 19-20=-113/267, 20-21=-155/320, slope. 21-22=-87/136 6) Unbalanced snow loads have been considered for this BOT CHORD 1-41=-166/72, 40-41=-244/140, design. 39-40=-244/140, 38-39=-244/140, ORTH CAR MILLIN 37-38=-244/140, 36-37=-244/140, 35-36=-244/140, 33-35=-244/140, 32-33=-244/140, 31-32=-244/140, 29-31=-244/140, 28-29=-244/140, 27-28=-244/140, 26-27=-244/140, Contraction of the 25-26=-244/140, 24-25=-244/140, 23-24=-244/140, 22-23=-244/140 SEAL WEBS 11-32=-318/45, 10-33=-186/42, 036322 9-35=-145/64, 8-36=-122/56, 7-37=-122/57,

NOTES

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

GI

1111111

August 23,2023

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

20-23=-204/95

6-38=-120/58, 5-39=-134/53, 3-40=-85/74, 2-41=-227/63, 12-31=-187/47, 13-29=-153/62, 14-28=-123/56, 15-27=-122/57, 16-26=-121/57 17-25=-127/60, 19-24=-108/48

Job	Truss	Truss Type		Ply	628 B CP 3CG	
ELV B CP 3CG	A03G	Common Supported Gable	1	1	Job Reference (optional)	160306421

- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint 22, 19 lb uplift at joint 33, 40 lb uplift at joint 35, 32 Ib uplift at joint 36, 33 lb uplift at joint 37, 36 lb uplift at joint 38, 22 lb uplift at joint 39, 78 lb uplift at joint 40, 9 lb uplift at joint 41, 23 lb uplift at joint 31, 38 lb uplift at joint 29, 32 lb uplift at joint 28, 33 lb uplift at joint 27, 32 lb uplift at joint 26, 38 lb uplift at joint 25, 13 lb uplift at joint 24 and 99 lb uplift at joint 23.
- 12) Non Standard bearing condition. Review required.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8,63 S Jul 28 2023 Print: 8,630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:36 ID:G9akxTit4GFRxLgAJ5Y3mKzIBU3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	A03H	Common	7	1	Job Reference (optional)	160306422

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:37 ID:jNLPutSCt6pqdISQQ1DRE6zIBWz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

August 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	B01GR	Common Girder	1	3	Job Reference (optional)	160306423

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:38 ID:0qSBIjUG6KjQ1vAirZaJCRzIBIj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:72.2

Plate Offsets (X, Y): [4:0-4-0,Edge], [8:0-4-0,Edge], [13:0-3-8,0-5-4], [14:0-6-0,0-6-0], [15:0-3-8,0-5-4]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.36 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.05	(loc) 15-16 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 761 It	GRIP 244/190	%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x8 SP DSS 2x4 SP No.3 *Excep Left 2x6 SP DSS 2 2-6-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Horiz 1=-199 (LI Max Grav 1=10051 (22)	t* 14-6:2x4 SP No.2 2-6-0, Right 2x6 SP E athing directly applie applied or 10-0-0 oc 11=0-3-8, (req. 0-3-9) C 6) (LC 21), 11=10637 (I	2) DSS 3) d or 4) () 5) _C	All loads are except if note CASE(S) see provided to d unless othern Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp B; En- cantilever lef right exposed TCLL: ASCE DOL=1.15 PI snow); Ps=10	considered equally ed as front (F) or bi- tion. Ply to ply cor istribute only loads wise indicated. roof live loads have 7-10; Vult=115mp 1; TCDL=6.0psf; Bi- closed; MWFRS (et and right exposed 3; Lumber DOL=1. 7-10; Pr=20.0 psf ate DOL=1.00); Pf 0.1 psf (roof snow: Category U: Exp B	y applie ack (B) anection s noted e been o h (3-sec CDL=6. envelope d; end v 60 plate (roof liv f=20.0 p Lumbe	d to all plies, face in the LC s have been as (F) or (B), considered fo wond gust) Dpsf; h=30ft; () exterior zor vertical left an grip DOL=1.: e load: Lumb sf (flat roof r DOL=1.15 F vp. Ct=1 10:	DAD or Cat. ne; id 33 ver Plate	12) Har prov lb d 4-0- 8-0- 12-(16-(dow 44 l 24-(con LOAD (1) De Inc	nger(s) o vided su own and 12, 166 0-12, 16 0-12, 16 0-12, 14 vn and 4 b up at 0-12 on nection CASE(S) ad + Sr rease=	r othe fficient I 44 lb 2 lb dc 2 lb dc 62 lb dc 56 lb dc 56 lb dc 4 lb up 22-0-1 bottom device) Sta i.00 bads (I	r connection de to support con- up at 2-0-12, 1 wm at 6-0-12, 2 wm at 10-0-12, lown at 10-0-12 lown and 44 lb o to at 20-0-12, ar 2, and 1459 lb n chord. The de (s) is the respon ndard alanced): Lumbo	vice(s) shall centrated loa 662 lb down 662 lb down 1662 lb down 2, 1662 lb doc 2, 1662 lb doc 4, 1456 lb do down and 4; sign/selection nsibility of ot er Increase=	be ad(s) 1456 n at n at wn at bwn at 12, 1456 lb own and 2 lb up at on of such thers. =1.15, Plate
FORCES TOP CHORD	22) CES (Ib) - Maximum Compression/Maximum Tension CHORD 1-3=-11818/0, 3-5=-10347/0, 5-6=-8167/0, 6-7=-8166/0, 7-9=-10177/0, 9-11=-11442/0			 Unobstructed slippery surface Roof design snow load has been reduced to account for slope. Stope. Concentrated Loads (lb) Vert: 16=-1307 (B), 23=-1222 (B), 25=-1219 26=-1307 (B), 27=-1307 (B), 28=-1307 (B), 								:19 (B), 5),		
BOT CHORD WEBS	 DRD 1-3=-11818/0, 3-5=-10347/0, 5-6=-8167/0, 6-7=-8166/0, 7-9=-10177/0, 9-11=-11442/0 DRD 1-16=0/8779, 15-16=0/8779, 13-15=0/8077, 12-13=0/8387, 11-12=0/8387 3-16=0/2044, 3-15=-982/0, 5-15=0/4388, 5-14=-3720/0, 6-14=0/10042, 7-14=-3426/0, 7-13=0/4033, 9-13=-871/485 			 7) This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members 							11=-1307 (B 4=-1219 (B), .)		
NOTES 1) 3-ply truss (0.131"x3" Top chord: staggered Bottom ch- staggered Web conn- Except me oc.	9-12=-340/1809 to be connected toget) nails as follows: s connected as follows at 0-9-0 oc. ords connected as follo at 0-4-0 oc. ected as follows: 2x4 - mber 3-16 2x4 - 2 row	ther with 10d s: 2x6 - 2 rows ows: 2x8 - 2 rows 1 row at 0-9-0 oc, <i>r</i> s staggered at 0-6-0	9) 10 11	WARNING: F than input be () All bearings a capacity of 6 () This truss is International R802.10.2 ar	Required bearing s aring size. are assumed to be 60 psi. designed in accord Residential Code : nd referenced stan	size at jo SP DS dance w sections dard AN	int(s) 11 grea S crushing ith the 2015 R 502.11.1 a ISI/TPI 1.	ater		A CONTRACT		SE/ 0363	AL 322 HEER GILBER	

August 23,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY RENCO

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	B02	Common	1	1	Job Reference (optional)	160306424

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:38 ID:c5Td3hHYNCYRSqJ3fFsTmlzIBPR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-6-0,0-0-12], [7:Edge,0-0-8], [7:0-0-8,Edge]

Scale = 1:76.4

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC207	15/TPI2014	CSI TC BC WB Matrix-MS	0.71 0.90 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.40 0.04	(loc) 8-10 8-10 7	l/defl >999 >782 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigg 2) Wind: ASS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x10 SP DSS Structural wood sheat 3-11-2 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 11=-216 (Max Uplift 7=-10 (LC Max Grav 7=1135 (L (lb) - Maximum Com Tension 1-2=-451/104, 2-4=- 4-6=-1150/236, 6-7= 1-11=-50/248, 10-11 7-8=-29/885 4-8=-126/598, 6-8=- 2-10=-289/233, 2-11 ed roof live loads have n. CE 7-10: Vult=115mph	athing directly applie applied or 10-0-0 oc 2-11 11=0-3-8 LC 10) 15), 11=-10 (LC 14) C 26), 11=1112 (LC pression/Maximum 1173/233, -1246/122 =-81/1013, 8-10=0/6 298/226, 4-10=-118/ =-926/41 been considered for (3-second gust)	3 ed or 5 ; 6 ; 25) 8 9 ; 25) 9 ; 25) 9	 TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00;; Unobstructed Roof design slope. This truss ha chord live loa * This truss ha chord and ar All bearings All bearing and All bearing plate 7 and 10 lb u This truss is International R802.10.2 ar 	7-10; Pr=20.0 psf late DOL=1.00); Pf 0.1 psf (roof snow: Category II; Exp B; d slippery surface snow load has been so been designed for a nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will y other members, are assumed to be 65 psi. hanical connection e capable of withsta uplift at joint 11. designed in accord Residential Code nd referenced stan Standard	(roof liv =20.0 p Lumbe Fully E or a 10.0 vith any for a liv s where I fit betw with BC SP No. (by oth anding 1 Jance w sections dard AN	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accour 0 psf bottom other live load a rectangle veen the bott DL = 10.0ps 2 crushing ers) of truss i 0 lb uplift at j ith the 2015 i R502.11.1 a ISI/TPI 1.	per Plate ads. Opsf om f. to joint				OR SEA	ROUNS	7
2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33										IIIIII IIII		0363	22 ER ER III	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm August 23,2023

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	B02G	Common Supported Gable	1	1	Job Reference (optional)	160306425

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:39 ID:j3iheV1NJluQRbC1wL_YQKzIBPm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:76.1

Plate Offsets (X, Y): [7:0-3-0,0-3-0], [9:0-3-0,0-3-0], [15:0-1-13,Edge]

Loading TCLL (root) (ps) 200 (mode) Spacing Plate Gip DOL 100 (mode) 2-0-0 Plate Gip DOL 100 (mode) CSI TCL (root) DEFL (root) in (loc) Viell (loc) PLATES Plate (root) GR/P Plate (root) LUMGER TOC Code 0.00 0.01 0.00 10.00 10.00 FT = 20% LUMBER TOC CHORD ECOL 0.01 0.00 10.00 10.00 10.00 FT = 20% LUMBER TOC CHORD ECOL 2:4 SP No.2 TOP CHORD 10.00 2:4 SP No.2 TOP CHORD 12:0=724/280, 10:11-448/05, 5864/48/05, 6884/290, 68, 56148/05, 6884/290, 68, 56148/05, 6884/290, 68, 56148/05, 6884/290, 68, 56148/05, 6884/290, 68, 56148/05, 6884/290, 68, 56148/05, 6884/290, 68, 56148/05, 6884/290, 56, 56148/05, 58148/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/290, 11-48/05, 6828-24/190, 11-48/05, 6828-24/190, 11-28-24/190, 12-29-216/10, 12-29														
LUMBER TOP CHORD 2X4 SP No.2 SV SP No.3 SV SP No.2 SV SP No.3	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCCL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI20	CSI TC BC WB Matrix-MS	0.11 0.16 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 201 It	GRIP 244/190 b FT = 20))%
 27-24-11-8, 28=24-11-8, 29=24-11-8, 29=24-11-8, 29=24-11-8, 29=24-11-8, 29=24-11-8, 29=24-11-8, 19-75=4/121, 14-16=-131/47 Max Horiz 29=216 (LC 10), 17=-152 (LC 15), 21=-45 (LC 15), 20=51 (LC 15), 21=-45 (LC 16), 23=-45 (LC 14), 25=-51 (LC 14), 26=-62 (LC 14), 27=-27 (LC 14), 28=-161 (LC 14), 27=-27 (LC 14), 28=-161 (LC 14), 29=-116 (LC 10), 29=272 (LC 26), 18=166 (LC 20), 19=174 (LC 26), 20=125 (LC 25), 26=175 (LC 25), 26=175 (LC 25), 27=166 (LC 29), 28=237 (LC 25), 28=175 (LC 25), 27=166 (LC 29), 28=237 (LC 25), 28=175 (LC 25), 26=175 (LC 25), 26=175 (LC 25), 27=166 (LC 29), 28=237 (LC 25), 28=175 (LC 25), 28=1	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 16=24-11 18=24-11 20=24-11 22=24-11 25=24-11	athing directly applied applied or 6-0-0 oc 8-22, 7-23, 9-21 -8, 17=24-11-8, -8, 19=24-11-8, -8, 21=24-11-8, -8, 23=24-11-8, -8, 26=24-11-8,	TOP CHC or BOT CHC WEBS	 RD 1-2=-127/144, 2-3- 4-5=-95/169, 5-6=- 8-10=-242/290, 10 11-12=-95/157, 12 13-14=-134/151, 1 RD 1-29=-126/126, 28 27-28=-114/115, 2 25-26=-114/115, 2 20-21=-112/113, 1 18-19=-112/113, 1 18-17=-112/113, 1 8-22=-313/190, 7-2 5-26=-132/82, 4-22 2-29=-138/53, 9-2 11-19=-132/82, 12 	154/17 -148/205 -11=-14 -13=-82 4-15=-1 -29=-11 6-27=-1 3-25=-1 1-22=-1 9-20=-1 7-18=-1 23=-138, 7=-122/6 1=-137/6 -18=-12	1, 3-4=-99/13 5, 6-8=-242/29 3/193, 122, 12/129 14/115, 14/115, 14/115, 14/114, 12/113, 12/114, 12/14, 12/14	0, 0, 5/76, 125, 5/76,	 6) Ga 7) Thia 7) Thia 8) * T 9) All cap 10) Problem 23, upl joir joir joir joir 	ble studs is truss h ord live lo his truss the botto 6-00 tall ord and a bearings bacity of souide mee aring plat 51 lb up ift at joint tt 29, 45 uplift at joint 17 and	s space as bee pad nor has be om cho by 2-0 iny oth are as 565 ps chanic e capa lift at jo t 27, 10 lb uplif pint 19, 94 lb	ed at 2-0-0 oc. en designed for inconcurrent with een designed for rd in all areas 0-00 wide will fi er members. ssumed to be S i. al connection (b able of withstan- bint 25, 62 lb up 61 lb uplift at joi t at joint 21, 51 30 lb uplift at joi t at joint 16, 50 t at	a 10.0 psf b h any other r a live load /here a rect t between t P No.2 crus by others) o ding 45 lb u slift at joint 1 ht 28, 116 l lb uplift at j point 18, 152	bottom live loads. d of 20.0psf tangle the bottom shing of truss to uplift at joint 26, 27 lb lb uplift at joint 20, 61 2 lb uplift at
5) Roof design snow load has been reduced to account for	FORCES	2/=24-11 29=24-11 Max Horiz 29=-216 (Max Uplift 16=-94 (L 20=-51 (L 20=-51 (L 26=-62 (L 28=-161 (Max Grav 16=256 (l 18=166 (L 20=153 (L 22=318 (L 25=152 (L 27=166 (L 29=272 (L (lb) - Maximum Com Tension	-8, 28=24-11-8, -8 LC 10) C 11), 17=-152 (LC 15 C 15), 19=-61 (LC 15 C 15), 21=-45 (LC 15 C 14), 27=-27 (LC 14 LC 14), 27=-27 (LC 14 LC 14), 29=-116 (LC -C 25), 17=228 (LC 26 -C 30), 19=174 (LC 26 -C 26), 21=177 (LC 26 -C 25), 26=175 (LC 25 -C 29), 28=237 (LC 25 -C 26) -pression/Maximum	NOTES 5), 1) Unbal this di (), 2) Wind: (), 2) Wind: (), 11; Exp (10) and C (5), expos (5), constant (10) expos (10) on C (10) expos (10) on C (10) expos (10) on C (10) expos (10) ex	13-17=-154/121, 1 anced roof live loads hav ssign. ASCE 7-10; Vult=115mp 91mph; TCDL=6.0psf; B 9 B; Enclosed; MWFRS (i -C Exterior (2) zone; can ed; end vertical left and vers and forces & MWFR: er DOL=1.60 plate grip D designed for wind loads For studs exposed to wir tandard Industry Gable E usult qualified building de: ASCE 7-10; Pr=20.0 psi 1.15 Plate DOL=1.00); P ; Ps=10.1 psf (roof snow 1.00); Category II; Exp B structed slippery surface design snow load has bed	4-16=-1: e been of CDL=6.0 envelope tilever le right exp S for rea OL=1.3: in the p ad (norm nd Deta signer as ((roof liv f=20.0 p : Lumbe ; Fully E	31/47 considered for cond gust) Dpsf; h=30ft; C 2) exterior zon ft and right oseed;C-C for ctions shown; al to the face) ills as applicab s per ANSI/TP e load: Lumbe sf (flat roof r DOL=1.15 Pl xp.; Ct=1.10; ed to account	Cat. e ss , sle, er late for	11) No 12) Thi Inte R8 LOAD	n Standa is truss is ernationa 02.10.2 a CASE(S)	ard bea desig Resid and ref Star	ring condition. ned in accordan dential Code se erenced standa ndard OFTH C OFTEES SEA 0363	Review rec nce with the ctions R502 urd ANSI/TF	uired. 2015 2.11.1 and 1.

August 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	CP01	Common	5	1	Job Reference (optional)	160306426

 Run: 8.63 S
 Jul 28 2023 Print: 8.630 S
 Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:39
 Page: 1

 ID:YJ08J4HIsFB04A9F2T_s5gzd290-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 6-8-0
 13-4-0

Scale = 1:29.1

Plate Offsets (X, Y): [1:0-2-8,Edge], [1:0-0-8,Edge], [3:0-2-8,Edge], [3:0-0-8,Edge]

Lading (cf) (cf) (cf) (cf) (cf) (cf) (cf) (cf)															
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheathing directly applied or rob-0 or purins. BOT CHORD Right: 2x4 SP No.3 Right: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheathing directly applied or rob-0 or purins. Structural wood sheathing directly applied or rob-0 and any other members. 4) I bearings are assumed to be SP No.2 crushing capacity of 665 pisl. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 buplit at joint 1 and 2x6 buplit at joint 1 and	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TI	PI2014	CSI TC BC WB Matrix-MS	0.33 0.28 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 4-14 4-14 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%	
	LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design Vind: ASC Vasd=91n II; Exp B; I and C-C E; wembers : Lumber D0 3) TCLL: ASC DOL=1.10 Unobstruc 4) Roof desig	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0,3 Max Horiz 1=29 (LC Max Uplift 1=-26 (LC Max Uplift 1=-26 (LC Max Grav 1=533 (LC (lb) - Maximum Com Tension 1-2=-700/124, 2-3=- 1-4=-58/617, 3-4=-5 2-4=0/215 ad roof live loads have b CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =17.2 psf (roof snow: L); Category II; Exp B; f ted slippery surface n snow load has been	athing directly applied applied or 10-0-0 oc 3=0-3-0 16) 2 12), 3=-26 (LC 13) 2 2), 3=533 (LC 2) apression/Maximum 700/124 8/617 been considered for (3-second gust) DL=6.0psf; h=30ft; C avelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; DL=1.33 roof live load: Lumbe -20.0 psf (flat roof -umber DOL=1.15 Pla Fully Exp.; Ct=1.10; n reduced to account	5) U d (6) T (7) * 3 (7) * (7) * 3 (7) * (7) * *	Inbalanced s lesign. 'his truss has hord live loa This truss h ord and an Il bearings a apacity of 56 'rovide mect earing plate and 26 lb u 'his truss is o Row 2.10.2 ar D CASE(S)	snow loads have be s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. anical connection capable of withsta plift at joint 3. designed in accord Residential Code s d referenced stand Standard	een cor or a 10.0 ith any for a liv where fit betw SP No. (by oth- nding 2 ance wi sections dard AN	sidered for the other live load of 20.1 a rectangle rectangle rectangle errors of truss to 6 lb uplift at j the 2015 R502.11.1 a SI/TPI 1.	his ads. Opsf om joint and				SEA 0363	ROUL EER. KIN	Manunity

August 23,2023

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	CP01G	Common Supported Gable	1	1	Job Reference (optional)	160306427

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:40 ID:Q4Gf9RKGwUhqYoT0HJ2oGWzd29k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 17.2/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.15 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0							-	_			Weight: 50 lb	FT = 20%	
LUMBER TOP CHORD 30T CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 8=11-2-0, 11=11-2-1	athing directly applied applied or 6-0-0 oc 9=11-2-0, 10=11-2-(0, 12=11-2-0	3) 4) d or), 5) 6)	Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI snow); PS=17 DOL=1.00); (Unobstructed Roof design s slope. Unbalanced s	ed for wind loads i ds exposed to wind I Industry Gable En alified building desi 7-10; Pr=20.0 psf ate DOL=1.00; Pf= .2 psf (roof snow: Category II; Exp B; I slippery surface snow load has been	n the pl d (norm nd Detai igner as (roof liv =20.0 p Lumber Fully E n reduc een cor	ane of the tru al to the face ils as applical s per ANSI/TF e load: Lumb of (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accoun asidered for th	uss), ble, Pl 1. er Plate t for nis						
FORCES TOP CHORD	Max Horiz 12=29 (L1 Max Uplift 8=-34 (LC 11=-16 (L Max Grav 8=306 (L1 10=309 (I 12=306 (I (lb) - Maximum Com Tension 1-2=-32/253, 2-3=-5 4-5=0/243 5-6=-5/2	C 16) C 17), 9=-15 (LC 13), C 12), 12=-33 (LC 16) C 34), 9=122 (LC 2), LC 2), 11=122 (LC 2) LC 33) pression/Maximum /239, 3-4=0/243, 39, 6-7=-32/253	5) 7) 8) 7 9) 10)	design. Gable studs s This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a	spaced at 2-0-0 oc. s been designed fo d nonconcurrent w as been designed in a chord in all areas y 2-00-00 wide will y other members. tre assumed to be	or a 10.0 rith any for a liv where fit betw SP No.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing	ds.)psf om						
BOT CHORD	1-12=-213/46, 11-12 10-11=-213/46, 9-10 7-8=-213/46 4-10=-256/30, 3-11=	2=-213/46,)=-213/46, 8-9=-213/4 =-108/56, 2-12=-187/6	11) 46, 63,	Provide mech bearing plate 11, 33 lb uplift uplift at joint 8	to psi. nanical connection capable of withsta t at joint 12, 15 lb u 3.	(by oth nding 1 uplift at	ers) of truss t 6 lb uplift at j joint 9 and 34	o oint 4 Ib			-11	TH CA	ROUTE	
	5-9=-108/56, 6-8=-1	87/63	12)	Non Standard	d bearing condition	. Revie	w required.			/	SI	O'.FESS	07.V:	_
NOTES			13)	This truss is o	designed in accord	ance w	ith the 2015			9		P'I	A Start	2
 Unbalance this design Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; members Lumber D 	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC	been considered for (3-second gust) DL=6.0psf; h=30ft; C nvelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; DL=1.33	13) LO≀ at. ≩	International R802.10.2 ar AD CASE(S)	resigned in accord. Residential Code s Id referenced stand Standard	ance wi	ւռ the 2015 .R502.11.1 a ISI/TPI 1.	Ind		Vinner		SEA 0363 NGINI	ER. KI	Leven number

- and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minimite August 23,2023

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	G01	Common	5	1	Job Reference (optional)	160306428

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:40 ID:u8TZMNQp8Y0oyef?k_ppizylLdt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

Plate Offsets	(X, Y): [1:0-0-12,Edge]], [1:0-0-8,Edge], [5	:0-0-12,Edg	ge], [5:0-0-8,Ec	lge], [6:0-4-0,0-3·	-4]							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.55 0.91 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.31 0.05	(loc) 6-11 6-11 5	l/defl >999 >880 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 4-1-5 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 5 Max Horiz 1=50 (LC Max Grav 1=910 (LC (lb) - Maximum Com Tension 1-2=-1697/262, 2-3= 3-4=-1304/164, 4-5= 1-5=-194/1564 3-6=0/523, 2-6=-446	athing directly appli applied or 10-0-0 o 5=0-3-8 16) 12), 5=-43 (LC 13) 2 2), 5=910 (LC 2) pression/Maximum -1304/164, -1697/262	4) 5) 6) 7) ed or 8) 9) 10 10	Roof design slope. Unbalanced design. This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 1 and 43 lb u) This truss is International R802.10.2 ai	snow load has be snow loads have is been designed ad nonconcurrent has been designe n chord in all are by 2-00-00 wide v by other members are assumed to b 65 psi. hanical connectio capable of withs plift at joint 5. designed in accoo Residential Code nd referenced sta Standard	een reduc been cor for a 10.0 with any d for a liv as where vill fit betv s. pe SP No. on (by oth standing 4 rdance w e sections undard AN	ed to accour nsidered for t D psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing ers) of truss 3 lb uplift at ith the 2015 i R502.11.1 a ISI/TPI 1.	nt for his nds. Dpsf om to ioint					
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=911 II; Exp B; and C-C1 exposed members Lumber E 3) TCLL: AS DOL=1.1: snow): Ps	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantilé ; end vertical left and rig and forces & MWFRS i DOL=1.60 plate grip DO ICE 7-10; Pr=20.0 psf (t 5 Plate DOL=1.00); Pf= =17.2 psf (roof snow: L	been considered for (3-second gust) DL=6.0psf; h=30ft; velope) exterior zor ever left and right ght exposed;C-C for for reactions shown L=1.33 roof live load: Lumb 20.0 psf (flat roof .umber DOL=1.15 F	or Cat. ne r ; ; ; ; ; ; ; ; ; ; ; ;							Walling		SEA 0363	L L L L L L

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=17.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

mmm August 23,2023

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	G01G	Common Supported Gable	1	1	Job Reference (optional)	160306429

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:40 ID:mvi4BkTKCmXERFzmzqtlspylLdp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

billiding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	J01	Jack-Open	4	1	Job Reference (optional)	160306430

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:41 ID:KC8IrtP5zqvCkTm7_V9gMIzd28L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-1-8

Scale = 1:22.3

Plate Offsets (X, Y): [1:0-4-0.Edge], [1:0-0-8.Edge]

	(,,,,), [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1.0 0 0,2090]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91 II; Exp B; and C-C exposed NOTES 2) TCLL: AS DOL=1.0 Unobstru 3) Roof desi slope. 4) Unbalanc design.	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood shea 3-1-8 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0, 2 Mechanic: Max Horiz 1=23 (LC Max Uplift 1=-10 (LC Max Grav 1=194 (LC (LC 7) (lb) - Maximum Com Tension 1-2=-7/28 1-3=-19/0 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS (en Exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end vertical left and rig and forces & myFRS (en exterior (2) zone; cantil ; end ver	athing directly applie applied or 10-0-0 oc 2= Mechanical, 3= al 12) 12), 2=-10 (LC 12) 2 2), 2=32 (LC 2), 3= pression/Maximum (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right fht exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof Lumber DOL=1.15 P Fully Exp.; Ct=1.10; reduced to account en considered for th	5) 6) 2 8) 9) =23 LO Cat. Le cat. Le t for his	This truss ha chord live lo * This truss lo on the botton 3-06-00 tall 1 chord and an Bearings are capacity of 5 Refer to gird Provide mec bearing plate 2 and 10 lb o) This truss is International R802.10.2 a	as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members a assumed to be: , i65 psi. ler(s) for truss to t capable of withs uplift at joint 1. designed in accou Residential Code nd referenced sta Standard	for a 10.0 with any d for a liv as where vill fit betv s , Joint 1 \$ truss con in (by oth tanding 1 rdance w e sections indard AN	D psf bottom other live loa e load of 20.0 a rectangle veen the botto SP No.2 crush nections. ers) of truss t 0 lb uplift at j ith the 2015 s R502.11.1 a ISI/TPI 1.	ds. Dpsf om ning oint nd				SEA 0363	L L L B H B H H H H H H H H H H H H H H

August 23,2023

SINEEDING 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	J02	Half Hip	2	1	Job Reference (optional)	160306431

1-11-8

1-11-8

12 3 Г

0

3x4 =

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:41 ID:znOGwolH7kY5iwUiB5AT2Pzd27u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x8 II

0

4

0-10-0

3-1-8

1-2-0

9

3x4 =

2

Page: 1

 \bigotimes 5

Scale = 1:23.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.11	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI20	14 Matrix-MR								
BCDL	10.0										Weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-1-8 oc purlins, ex 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing.	athing directly applied cept end verticals, an applied or 6-0-0 oc	 6) Provid 7) This t chord 8) * This is on the 3-06-1 chord 9) Bearin capace 10) Refer 11) Provid 	de adequate drainage russ has been designe live load nonconcurre truss has been design é bottom chord in all ar 00 tall by 2-00-00 wide and any other membe ogs are assumed to be ity of 565 psi. to girder(s) for truss to de mechanical connect	to prevent d ed for a 10.1 nt with any hed for a liv eas where will fit betw ers. : Joint 5 SI o truss conr tion (by oth	water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botto P No.2 crushin nections. ers) of truss to	j. ds.)psf om ng o					
REACTIONS	Max Horiz 5=17 (LC	15)	bearin	ng plate capable of with	nstanding 9) Ib uplift at joi	nt 4					
	Max Uplift 4=-9 (LC Max Grav 4=64 (LC	13), 5=-39 (LC 12) 34), 5=261 (LC 35)	12) This t	russ is designed in acc	cordance w	ith the 2015	- a al					
FORCES	(lb) - Maximum Com	pression/Maximum	R802	.10.2 and referenced s	tandard AN	ISI/TPI 1.	na					
TOP CHORD	1-228/50 2-328	/42 3-464/26	13) Grapi	nical purlin representat	ion does no	ot depict the s	IZe					
BOT CHORD	1-5=-42/51, 4-5=-42	/37	bottor	n chord.	in along the	top and/or						
NOTES			LOAD CA	SE(S) Standard								
 Unbalance this design Wind: ASC Vasd=91m Exp B; E and C-C E exposed; o members a Lumber DC ** TCLL: A 	d roof live loads have E 7-10; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er xterior (2) zone; cantil end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO SCE 7-10; Pr=20.0 ps	been considered for (3-second gust) DL=6.0psf; h=30ft; Ci vvelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; L=1.33 (f (roof live load: Lumi	1) Dea Incre Unifi at. Vi	d + Snow (balanced): I ease=1.00 orm Loads (lb/ft) ert: 1-2=-57, 2-3=-60, 4	Lumber Inc	rease=1.15, F	Plate		4		OR. FESS	ROUNT

- DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for 4) slope.
- 5) Unbalanced snow loads have been considered for this design.

en normalite The manness SEAL 036322 GILB A. GIL August 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	P01	Monopitch	6	1	Job Reference (optional)	160306432

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:41 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading (psf) Spa TCLL (roof) 20.0 Plat Snow (Ps/Pf) 18.7/20.0 Lum TCDL 10.0 Rep BCLL 0.0* Cod BCDL 10.0 Her	acing 2-0-0 tte Grip DOL 1.00 mber DOL 1.15 p Stress Incr YES de IRC20	015/TPI2014	CSI TC BC WB Matrix-MP	0.70 0.55 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.01	(loc) 3-8 3-8 1	l/defl >966 >451 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing 6-0-0 oc purlins, except e BOT CHORD Rigid ceiling directly applied bracing. REACTIONS (size) 1=0-3-0, 3=0-1- Max Horiz 1=63 (LC 15) Max Uplift 1=-24 (LC 12), 1 Max Grav 1=365 (LC 2), 3 FORCES (lb) - Maximum Compress Tension TOP CHORD 1-2=-89/45, 2-3=-190/87 BOT CHORD 1-3=-91/109 NOTES 1) Wind: ASCE 7-10; Vult=115mph (3-se Vasd=91mph; TCDL=6.0psf; BCDL=6 II; Exp B; Enclosed; MWFRS (envelop and C-C Exterior (2) zone; cantilever li exposed ; end vertical left and right ex members and forces & MWFRS for re: Lumber DOL=1.60 plate grip DOL=1.3 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof li DOL=1.15 Plate DOL=1.00); Pf=20.0 ps snow); Ps=18.7 psf (roof snow: Lumber DOL=1.00); Category II; Exp B; Fully F Unobstructed slippery surface 3) Roof design snow load has been redu slope. 4) Unbalanced snow loads have been co	g directly applied or end verticals. ied or 10-0-0 oc 1-8 3=279 (LC 16) 3=279 (LC 23) sion/Maximum econd gust) 6.0psf; h=30ft; Cat. pe) exterior zone left and right xposed;C-C for sactions shown; 33 live load: Lumber psf (flat roof per DOL=1.15 Plate Exp.; Ct=1.10; uced to account for onsidered for this	 6) This truss hotton 3-06-00 tall b chord and ar 7) Bearings are capacity of 5 565 psi. 8) Bearing at jo using ANSI/T designer sho 9) Provide mecl bearing plate 10) Provide mecl bearing plate 1 and 25 lb u 11) This truss is International R802.10.2 ar 	as been designed in chord in all areas by 2-00-00 wide will y other members. assumed to be: Jo 65 psi, Joint 3 SP N int(s) 3 considers p PI 1 angle to grain uld verify capacity hanical connection a t joint(s) 3. hanical connection capable of withsta plift at joint 3. designed in accord Residential Code s d referenced stand Standard	for a liv where fit betw int 1 SF lo.3 cru arallel t formula of beari (by oth- nding 2 ance wi sections dard AN	e load of 20.6 a rectangle reen the botto P No.2 crushi shing capaci o grain value a. Building ng surface. ers) of truss t 4 lb uplift at j th the 2015 R502.11.1 a SI/TPI 1.	Ipsf ng ty of o oint nd		Marina and		SEA 0363	ROLUNIUM

- snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface 3) Roof design snow load has been reduced to account for
- slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

G

minin

August 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	P02	Half Hip Girder	2	1	Job Reference (optional)	160306433

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:41 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-12

0-1-8

Page: 1

Plate Offsets (X, Y): [1:0-8-8,0-0-12]

1-1-8

2-1-12

		-											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 18.7/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015/TPI20	14	CSI TC BC WB Matrix-MP	0.79 0.16 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 38 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (5-1	thing directly applied cept end verticals, an 0-10 max.): 2-3.	6) Provio 7) This tr chord 8) * This 8) * This on the 3-06-0 d chord 9) Bearin	le adec russ ha live loa truss h botton 00 tall b and an ngs are	uate drainage to p s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be: Jo	revent or a 10. vith any for a liv where I fit betw bint 1 Sl	water ponding 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto P No.2 crushi	g. ds. Dpsf om ng	Co	Vert: 1-2 oncentra Vert: 14	2=-57, ted Loa =-48 (I	2-3=-60, 1-4=-20 ads (lb) 3), 15=-6 (B), 16=	6 (B)
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	capac 565 p	ity of 5 si.	65 psi, Joint 4 SP N	No.3 cru	ushing capaci	ty of					
REACTIONS	(size) 1=0-3-0, 4 Max Horiz 1=25 (LC Max Uplift 1=-45 (LC Max Grav 1=460 (LC	4=0-1-8 9) 2 8), 4=-23 (LC 8) C 32), 4=354 (LC 31)	10) Bearir using design 11) Provic	ig at jo ANSI/T ner sho le mecl g plate	nt(s) 4 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 4	of bear (by oth	to grain value a. Building ing surface. ers) of truss t	0					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	12) Provic bearir	le mecl g plate	anical connection capable of withsta	(by oth Inding 4	ers) of truss t I5 lb uplift at j	o oint					
BOT CHORD WEBS	1-2=-502/82, 2-3=-4 1-5=-62/478, 4-5=-8 2-5=-102/51, 3-5=-1	58/18, 3-4=-288/45 /6 2/464	1 and 13) This ti Intern B802	23 lb u uss is ational	plift at joint 4. designed in accord Residential Code s	lance w sections	ith the 2015 R502.11.1 a	ind					
 NOTES Unbalanc this desig Wind: AS/ Vasd=91r II; Exp B; cantilever right expo ** TCLL: / DOL=1.15 snow); Ps DOL=1.15 Exp B; Fu surface 	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 ASCE 7-10; Pr=20.0 ps 5 Plate DOL=1.00); Pf= = varies (min. roof sno 5 Plate DOL=1.00) see illy Exp.; Ct=1.10; Unot	14) Graph or the bottor at. 15) Hangy y; provic ber 2-0-4, down desig r II; respo 16) In the of the	 4) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 19 lb down and 6 lb up at 4-0-4, and 19 lb down and 6 lb up at 6-0-4 on top chord, and 48 lb down and 18 lb up at 2-0-4, and 6 lb down and 1 lb up at 4-0-4, and 6 lb down and 1 lb up at 4-0-4, and 6 lb down and 1 lb up at 6-0-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. (6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 								ROLAN MUMUUU		
 4) Roof designslope. 5) Unbalance design. 	gn snow load has beer ed snow loads have be	n reduced to account	for LOAD CA 1) Dead s Incre Unifo	OAD CASE(S) Standard) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft) August 23,2023							11.BER 1111 123,2023		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

INFEDING

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	P03	Half Hip	2	1	Job Reference (optional)	160306434

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:42 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.21 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-10 5-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0	athing directly applie cept end verticals, au -0 max.): 2-3.	4) 5) 6) 7) ed or nd 8)	Roof design slope. Unbalanced design. Provide adeo This truss ha chord live loa * This truss h on the bottor	snow load has bee snow loads have b quate drainage to p s been designed fo ad nonconcurrent w nas been designed n chord in all areas	n reduc een cor revent or a 10.4 rith any for a liv where	ed to accour isidered for t water pondin) psf bottom other live loa e load of 20. a rectangle	nt for his g. ads. Opsf					
BOT CHORD	Rigid ceiling directly bracing. (size) 1=0-3-0, 4 Max Horiz 1=42 (LC Max Uplift 1=-27 (LC Max Grav 1=463 (LC	applied or 10-0-0 od l=0-1-8 15) 12), 4=-22 (LC 12) 2 36), 4=294 (LC 35)	9) 10)	3-06-00 tall t chord and ar Bearings are capacity of 5 565 psi. Bearing at jo using ANSI/T	y 2-00-00 wide will y other members. assumed to be: Jc 65 psi, Joint 4 SP M int(s) 4 considers p TPI 1 angle to grain	int 1 Sl No.3 cru arallel 1 formul	veen the bott P No.2 crushi Ishing capac o grain value a. Building	ing ity of					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r	(lb) - Maximum Com Tension 1-2=-391/82, 2-3=-3: 1-5=-97/346, 4-5=-18 2-5=-88/66, 3-5=-87/ ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI	pression/Maximum 38/84, 3-4=-274/81 8/20 '381 been considered for (3-second gust) DL=6.0psf; h=30ft; C	11) 12) , 13) Cat. 14)	designer sho Provide meci bearing plate Provide meci bearing plate 1 and 22 lb u This truss is International R802.10.2 au Graphical puer	uld verify capacity hanical connection at joint(s) 4. hanical connection e capable of withsta plift at joint 4. designed in accord Residential Code s ad referenced stan rlin representation ation of the purina	of bear (by oth nding 2 ance w sections dard AN does no	ng surface. ers) of truss 7 lb uplift at j R502.11.1 a ISI/TP1. to depict the s	to to joint and size		4	in the second se	OR SS	ROUTIN

- Vasd=91mph; 1CDL=6.0pst; BCDL=6.0pst; h=30ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 1-2=-57, 2-3=-60, 4-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	P04	Monopitch	2	1	Job Reference (optional)	160306435

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:42 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TP	CS TC BC WE I2014 Ma	SI C B atrix-MP	0.70 0.55 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.01	(loc) 3-8 3-8 1	l/defl >966 >451 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=63 (LC Max Uplift 1=-24 (LC Max Uplift 1=-24 (LC Max Grav 1=365 (LC (Ib) - Maximum Com Tension 1-2=-89/45, 2-3=-19 1-3=-91/109 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & mWFRS (er Exterior (2) zone; cantil end vertical left and rig and for (zone; cantil end vertical left and rig and for (zone; cantil er	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-1-8 15) (12), 3=-25 (LC 16) (2), 3=279 (LC 23) pression/Maximum 0/87 (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed; C- for for reactions shown; L=1.33 roof live load: Lumbe :20.0 psf (flat roof .umber DOL=1.15 P Fully Exp.; Ct=1.10; in reduced to account	6) * T on 3-CC cha 7) Be cal 56 8) Be 9) Pr bes 10) Pr bes 10) Pr bes 11) Th bes 12 11) Th Int R8 LOAD	This truss has b the bottom ch 06-00 tall by 2- ord and any ot arings are ass pacity of 565 p 5 psi. the string at joint(s ing ANSI/TPI 1 signer should v ovide mechani- aring plate cap and 25 lb uplift is truss is deag- total cap and 25 lb uplift is truss is deag- and 25 lb uplift is truss is deag- total cap and c	been designed f lord in all areas -00-00 wide will ther members. sumed to be: Joi bsi, Joint 3 SP N 	or a liv, where fit betw int 1 SF lo.3 cru arallel t formula of beari (by othor (by othor (by othor (by othor (by othor (by othor (by othor (by othor (by othor (constant)) (by othor (constant)) (constant) (con	e load of 20.1 a rectangle even the bott P No.2 crushi Ishing capaci o grain value A Building ng surface. ers) of truss 1 ers) of truss 1 4 lb uplift at j th the 2015 R502.11.1 a SI/TPI 1.	Opsf om ing ity of to joint and		Manual Street		SEA 0363	ROUL 22
 Unbalance design 	ed snow loads have be	en considered for th	IS								14	210	affin

- DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface 3) Roof design snow load has been reduced to account for
- slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

G

August 23,2023

minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V01	Valley	1	1	Job Reference (optional)	160306436

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:42 ID:E0Zd81oG80YGhiU5ulFJBDzIBZ6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

22-11-3

Scale = 1:64.4													
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.16 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=22-11- 9=22-11- 11=22-11 Max Horiz 1=-182 (L Max Uplift 1=-33 (LC 9=-123 (L 0=-123 (L 13=-95 (L 8=356 (LC 10=423 (I 13=360 (I (15) - Maximum Corr Tension 1-2=-182/167, 2-3=- 4-5=-135/153, 5-6=- 1-13=-104/148 11-1	athing directly applied applied or 6-0-0 oc 4-10 3, 7=22-11-3, 8=22-1 3, 10=22-11-3, -3, 13=22-11-3 C 10) 2 10), 8=-91 (LC 15), C 15), 11=-123 (LC 1 C 14) C 26), 7=118 (LC 28), C 26), 9=472 (LC 26), LC 28), 11=471 (LC 2 LC 28), 11=471 (LC 2 LC 25) pression/Maximum 136/133, 3-4=-135/16 92/89, 6-7=-156/122 13=-104/144	2) l or 3) l-3, 4) 4), 5) 6) 7) 5), 8) 9) 1,	Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext exposed ; en members an Lumber DOL Truss desig only. For st see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); ' Unobstructed Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar	7-10; Vult=115m n; TCDL=6.0psf; E closed; MWFRS (erior (2) zone; car ad vertical left and d forces & MWFRS =1.60 plate grip [ned for wind loads dids exposed to wi d Industry Gable F ialified building de ; 7-10; Pr=20.0 ps late DDL=1.00); F 0.1 psf (roof snow Category II; Exp E d slippery surface snow load has be es continuous bot spaced at 4-0-0 c is been designed na chord in all area by 2-00-00 wide w ny other members	ph (3-sec 3CDL=6. (envelope tillever let right exp S for rea DOL=1.3; s in the p nd (norm End Deta ssigner as of (roof liv Pf=20.0 p treat of (roof liv Pf=20.0 p	cond gust) cond gust) cond gust) cops; h=30ft; (i exterior zor ff and right costorions shown alane of the true ala to the face ills as applical s per ANSI/TF e load to the face if (flat roof r fOL=1.15 F xp.; Ct=1.10; cred to account d bearing. D psf bottom other live load e load of 20.0; a rectangle veen the botto; DDL = 10.0psf CDL = 10.0psf Construction	Cat. ne ss), ole, ole, ole, ole, ole, ole, ole, ole				NITH CA	
WEBS NOTES 1) Unbalance this design	10-11=-104/144, 9-1 8-9=-104/144, 7-8=- 4-10=-221/0, 3-11=- 5-9=-277/173, 6-8=- ed roof live loads have h.	10=-104/144, 104/144 277/173, 2-13=-239/1 237/134 been considered for	36, ¹¹ 12 LC	 capacity of 5 Provide mec bearing plate 1, 123 lb upli uplift at joint This truss is International R802.10.2 at 	65 psi. hanical connectio e capable of withs ift at joint 11, 95 lb 9 and 91 lb uplift designed in accor Residential Code nd referenced sta Standard	n (by oth tanding 3 o uplift at at joint 8. rdance w sections ndard AN	ers) of truss t 33 lb uplift at ji joint 13, 123 ith the 2015 s R502.11.1 a ISI/TPI 1.	o oint Ib nd		W. CHILLING		SEA 0363	L 22 EERER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G 411111111 August 23,2023

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V02	Valley	1	1	Job Reference (optional)	160306437

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

1)

TCLL (roof)

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:43 ID:iC7?LNpuvKg7Js3HSTnYjRzIBZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V03	Valley	1	1	Job Reference (optional)	160306438

. . . .

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:43 ID:n_DfTBQyMVZ6OSI2IcAz9hzIBX?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL PCDL	(psf) 20.0 10.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.28 0.18 0.30	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=17-4-0, 7=17-4-0, Max Horiz 1=-137 (L Max Uplift 1=-14 (LC 9=137 (L 9=475 (LC 9=478 (LC (lb) - Maximum Corr	athing directly applie applied or 6-0-0 oc 5=17-4-0, 6=17-4-0 9=17-4-0 C 10) (10), 6=-134 (LC 15 C 14) (26), 5=102 (LC 30 C 26), 7=488 (LC 25 C 25) apression/Maximum	4) ed or 5) 6) 7) , 8) 9)), 10 , 11	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); ' Unobstructed Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord of live loa * This truss ha chord and ar) All bearings i capacity of 5) Provide mec bearing plate	7-10; Pr=20.0 p late DOL=1.00); 0.1 psf (roof snov Category II; Exp d slippery surface snow load has b es continuous bo spaced at 4-0-0 is been designed ad nonconcurremi- nas been designed n chord in all are by 2-00-00 wide v are assumed to b 65 psi. hanical connection e capable of withs	sf (roof liv Pf=20.0 p v: Lumbe B; Fully E een reduc ttom chor bc. for a 10.0 with any vd for a liv as where vill fit betv s, with BC se SP No. on (by oth standing 1	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accoun d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2 crushing ers) of truss t 4 lb uplift at j	Plate Plate It for opsf om f.					
TOP CHORD	1-2=-126/230, 2-3=- 4-5=-105/194	24/170, 3-4=-13/164	[,] 12	1, 137 lb upli) This truss is	ft at joint 9 and 1 designed in acco Residential Code	34 lb upli rdance w	It at joint 6. ith the 2015	and					
BOT CHORD WEBS	1-9=-151/116, 7-9=- 5-6=-151/114 3-7=-329/0, 2-9=-30	151/114, 6-7=-151/1 5/175, 4-6=-304/174	14, LC	R802.10.2 a	nd referenced sta Standard	indard AN	ISI/TPI 1.					WHICH CA	Pall

- this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V04	Valley	1	1	Job Reference (optional)	160306439

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:43 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Casla		4.40.7
Scale	=	1:43.7

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.15 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20 ⁶
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=14-6-7 7=14-6-7 Max Horiz 1=-114 (L Max Uplift 1=-15 (LC 8=-113 (L (LC 26), 7 25)	eathing directly applied applied or 6-0-0 oc , 5=14-6-7, 6=14-6-7, , 8=14-6-7 C 10) C 10), 6=-111 (LC 15), C 14) C 26), 5=95 (LC 2), 6= 7=386 (LC 25), 8=372	4) or 5) 6) 7) 8) 9) -369 10 (LC 14	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); 1 Unobstructed Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss a 0 on the bottor 3-06-00 tall b chord and ar 0) All bearings capacity of 5	7-10; Pr=20.0 p late DOL=1.00); 0.1 psf (roof sno Category II; Exp d slippery surfac snow load has b es continuous bo spaced at 4-0-0 is been designer ad nonconcurren has been designer on chord in all are by 2-00-00 wide by 0 other member are assumed to 65 psi.	ssf (roof liv Pf=20.0 p w: Lumbel B; Fully E e eeen reduc ottom chor oc. d for a 10.0 t with any ed for a liv eas where will fit betw s, with BC	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accour d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi 2 crushing	Plate Plate It for Ids. Dpsf f.					
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-2=-136/121, 2-3=-	npression/Maximum 101/102, 3-4=-84/90,	12	bearing plate 1, 113 lb upli 2) This truss is	e capable of with ift at joint 8 and 7 designed in acco	standing 1 111 lb uplit ordance w	IS Ib uplift at j t at joint 6. ith the 2015	oint					
BOT CHORD WEBS NOTES	4-5=-111/92 1-8=-65/113, 7-8=-6 5-6=-65/86 3-7=-219/0, 2-8=-26	5/83, 6-7=-65/83, 3/153, 4-6=-261/152	L	International R802.10.2 a DAD CASE(S)	Residential Cod nd referenced st Standard	le sections andard AN	s R502.11.1 a NSI/TPI 1.	Ind				TH CA	RO

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

mmm August 23,2023

SEAL

036322

arreaded and

Manunin,

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V05	Valley	1	1	Job Reference (optional)	160306440

5-10-6

5-10-6

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Scale = 1:41.3 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

Snow (Ps/Pf)

(psf)

20.0

10.0

0.0

10.0

10 1/20 0

2x4 SP No.2

2x4 SP No.2 2x4 SP No.3

6-0-0 oc purlins.

25)

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

4-5=-77/53

5-6=-21/67

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:44 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5x6 =

11-4-11

5-6-4

11<mark>-</mark>8-13

Page: 1

3 4-10-15 4-7-4 2x4 II 2x4 ı 2 4 12 10 Г 5 7-0-0 8 6 2x4 II 2x4 II 3x4 🖌 2x4 🛛 3x4、 11-8-13 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.00 TC 0.18 Vert(LL) n/a 999 MT20 244/190 n/a BC 1 15 Lumber DOL 0.12 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 5 n/a n/a Code IRC2015/TPI2014 Matrix-MS Weight: 48 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied or slope. Gable requires continuous bottom chord bearing. 6) Rigid ceiling directly applied or 10-0-0 oc 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom 1=11-8-13, 5=11-8-13, 6=11-8-13, chord live load nonconcurrent with any other live loads. 7=11-8-13, 8=11-8-13 9) * This truss has been designed for a live load of 20.0psf 1=-91 (LC 10) on the bottom chord in all areas where a rectangle 1=-27 (LC 10), 5=-4 (LC 11), 6=-96 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 15), 8=-99 (LC 14) chord and any other members. 1=78 (LC 26), 5=61 (LC 25), 6=310 10) All bearings are assumed to be SP No.2 crushing (LC 26), 7=238 (LC 2), 8=313 (LC capacity of 565 psi. 11) Provide mechanical connection (by others) of truss to (Ib) - Maximum Compression/Maximum bearing plate capable of withstanding 27 lb uplift at joint 1, 4 lb uplift at joint 5, 99 lb uplift at joint 8 and 96 lb 1-2=-97/83, 2-3=-142/86, 3-4=-139/82, uplift at joint 6. 12) This truss is designed in accordance with the 2015 1-8=-24/67, 7-8=-21/67, 6-7=-21/67, International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 3-7=-151/0. 2-8=-261/159. 4-6=-260/158 ORT LOAD CASE(S) Standard Unbalanced roof live loads have been considered for Wind: ASCE 7-10; Vult=115mph (3-second gust) WITH THE WARNER Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. SEAL II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right 036322 exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, G or consult qualified building designer as per ANSI/TPI 1. mmm August 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V06	Valley	1	1	Job Reference (optional)	l60306441

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:44 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-11-3

Scale = 1:32.1

this design.

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Lumber DOL=1.60 plate grip DOL=1.33

2)

3)

Loading TCLL (roof) Snow (Ps/Pf)	(psf) 20.0 10.1/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.27 0.24	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0* 10.0	Rep Stress Incr Code	YES IRC201	5/TPI2014	WB Matrix-MP	0.14	Horiz(TL)	0.00	3	n/a	n/a	Weight: 34 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-11-3 oc purlins. Rigid ceiling directly bracing. (size) 1=8-11-3, Max Horiz 1=-69 (LC Max Uplift 1=-30 (LC 4=-58 (LC Max Grav 1=60 (LC (LC 2)	athing directly applie applied or 6-0-0 oc , 3=8-11-3, 4=8-11-3 ; 12) ; 30), 3=-30 (LC 29), ; 14) 29), 3=60 (LC 30), 4	4) ed or 5) 6) 7) 8) 9) 4=676 11	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructe Roof design slope. Gable requir Gable studs This truss ha chord live lo * This truss l on the botton 3-06-00 tall l chord and ai	7-10; Pr=20.0 p. Plate DOL=1.00); 1 0.1 psf (roof snov Category II; Exp d slippery surface snow load has be res continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide w ny other members are assumed to b	sf (roof liv Pf=20.0 p v: Lumbe B; Fully E een reduc ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv s. e SP No.	e load: Lumb sf (flat roof r DOL=1.15 f xp.; Ct=1.10; ed to accour d bearing. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 crushing	Plate Plate It for Ids. Dpsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1.	capacity of 5	65 psi. chanical connectio	on (by oth	ers) of truss	to					
TOP CHORD BOT CHORD	1-2=-75/286, 2-3=-7 1-4=-221/115, 3-4=-	5/286 221/115		bearing plate 1, 30 lb uplif	e capable of withs t at joint 3 and 58	tanding 3 Ib uplift a	80 lb uplift at j at joint 4.	oint					
WEBS NOTES 1) Unbalance	2-4=-503/135 ed roof live loads have	been considered for	1: r	 This truss is International R802.10.2 a 	designed in acco Residential Code nd referenced sta	rdance w e sections indard AN	ith the 2015 8 R502.11.1 a NSI/TPI 1.	and					11.5

LOAD CASE(S) Standard Wind: ASCE 7-10; Vult=115mph (3-second gust)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V07	Valley	1	1	Job Reference (optional)	160306442

3-0-13

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:44 ID:Ok_LxAhg?8Sx9nNkZcV2ZQzIBSo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-10

5-9-8

6-1-10

Scale = 1:27.4

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-1-10 oc purlins. Rigid ceiling directly bracing. (size) 1=6-1-10, Max Horiz 1=-46 (LC Max Uplift 4=-22 (LC Max Grav 1=66 (LC	Roof design slope. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Capacity of 5 Provide mec bearing plate	snow load has be es continuous bott spaced at 4-0-0 or s been designed ad nonconcurrent as been designed n chord in all area by 2-00-00 wide wi y other members. are assumed to be 65 psi. hanical connection o capable of withst	en reduc com chor c. or a 10.0 with any d for a liv s where ill fit betw e SP No. e SP No. h (by oth anding 2	ed to account d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 2 lb uplift at jo	for ds. psf m pint							
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; f and C-C E	(Ib) - Maximum Com Tension 1-2=-57/138, 2-3=-5 1-4=-109/64, 3-4=-1 2-4=-265/63 ed roof live loads have b E 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er xterior (2) zone; cantil	pression/Maximum 7/138 09/64 been considered for (3-second gust) DL=6.0psf; h=30ft; C- ivelope) exterior zone ever left and right	12) LO	This truss is International R802.10.2 ar AD CASE(S)	designed in accor Residential Code nd referenced star Standard	dance w sections ndard AN	ith the 2015 R502.11.1 ai ISI/TPI 1.	nd			A	OTH CA	ROUNT

- and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 3) Truss designed for wind loads in the plane of the truss cash. For expendence of the wind (normal to the face)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

818 Soundside Road Edenton, NC 27932

VIIIIIII

SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V08	Valley	1	1	Job Reference (optional)	160306443

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:44 ID:h4v?PZm4MIKyVsP4Ta7hLuzIBSh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-14 1-3-14

1-8-0

3x4 🍬

Page: 1

3-4-0

3x4 =

3x4 💊

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.1/20.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	999 n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 10 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; F and C-C E exposed ; members a Lumber DC 3) Truss des only. For see Stand or consult	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheat 3-4-0 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-0, 3 Max Horiz 1=-24 (LC Max Grav 1=133 (LC (lb) - Maximum Com Tension 1-2=-175/21, 2-3=-1 1-3=-10/131 ed roof live loads have b CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en xterior (2) zone; cantil end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable End qualified building desig	Athing directly applie applied or 10-0-0 oc 3=3-4-0 14), 3=-2 (LC 15) 2), 3=133 (LC 2) pression/Maximum 75/21 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right pht exposed;C-C for for reactions shown; L=1.33 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	6) Gable requ 7) Gable stud 8) This truss chord live 9) * This truss on the bott 3-06-00 ta chord and 10) All bearing capacity of 11) Provide m bearing pla and 2 lb up 12) This truss Internation R802.10.2 LOAD CASE(S stat. e	ires continuous botti s spaced at 4-0-0 oc has been designed fo oad nonconcurrent v has been designed om chord in all areas by 2-00-00 wide wi any other members. s are assumed to be 565 psi. echanical connection te capable of withsta lift at joint 3. s designed in accord al Residential Code and referenced stan b) Standard	om chor c. or a 10.0 with any for a liv s where Il fit betv e SP No. a (by oth anding 2 dance w sections adard AN	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t I b uplift at joo ith the 2015 i R502.11.1 a ISI/TPI 1.	ds.)psf om int 1 nd				NUMERAL IN ID	RO,	
4) TCLL: AS(DOL=1.15 snow): Ps:	CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =10.1 psf (roof snow: L	roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 Pl	ate									RIAS	
DOL=1.00); Category II; Exp B; F	Fully Exp.; Ct=1.10;								11	GIN	EF. P.	
Unobstruc	ted slippery surface	reduced to account	for							1	AG	ILBEIN	
slope.											"IIIIII	IIIII	

August 23,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V09	Valley	1	1	Job Reference (optional)	160306444

1-4-14

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

2-0-0

1.00

1 15

YES

1-8-10

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:45 ID:IDLcbx8o?NLkokzBXkIqHszd2BG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-13 7-5-5 8-1-11 4-0-13 3-4-8 0-8-6 5x6 =2 9 10 12 5 Г 3 4 2x4 II 3x4 🥃 3x4 👟 8-1-11 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.19 Vert(LL) n/a n/a 999 MT20 244/190 BC 0.20 Vert(TL) n/a n/a 999 WB 0.07 Horiz(TL) 0.00 4 n/a n/a IRC2015/TPI2014 Matrix-MP Weight: 25 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) slope. Unbalanced snow loads have been considered for this 6) design. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 12 lb uplift at joint 3 and 4 lb uplift at joint 4. 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:23.8

Loading

TCDL

BCLL

BCDL

LUMBER

TCLL (roof)

Snow (Ps/Pf)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 8-1-11 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=8-1-11, 3=8-1-11, 4=8-1-11 Max Horiz 1=20 (LC 16) Max Uplift 1=-8 (LC 16), 3=-12 (LC 17), 4=-4 (I C 16)Max Grav 1=89 (LC 33), 3=89 (LC 34), 4=523 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-110/273, 2-3=-110/273 1-4=-229/96, 3-4=-229/96 BOT CHORD WFBS 2-4=-353/111

(psf)

20.0

10.0

10.0

0.0

15 8/20 0

NOTES

Unbalanced roof live loads have been considered for 1) this design Wind: ASCE 7-10; Vult=115mph (3-second gust) 2)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V10	Valley	1	1	Job Reference (optional)	160306445

2-10-7

2-10-7

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:45 ID:io0kDyAgIIjJfBimDsrXvUzd2BD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-8

2-2-1

5-8-14

0-8-6

5-8-14

3x4 🚽

3x4 👟

Scale = 1:22

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.21 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood sl 5-8-14 oc purlins. Rigid ceiling direc bracing. (size) 1=5-8-1 Max Horiz 1=14 (L Max Uplift 1=-7 (Li Max Grav 1=230 ((Ib) - Maximum Co Tension 1-2=-478/124, 2-3	heathing directly applie ly applied or 10-0-0 o 4, 3=5-8-14 C 20) C 16), 3=-7 (LC 17) LC 2), 3=230 (LC 2) mpression/Maximum =-478/124	6) 7) 8) c 10) c 11) 12) 13	Unbalanced design. Gable requir Gable studs This truss ha chord live loz * This truss h on the bottor 3-06-00 tall k chord and ar All bearings capacity of 5 Provide mec bearing plate and 7 lb uplif This truss is	snow loads have es continuous bot spaced at 4-0-0 o s been designed ad onconcurrent has been designed n chord in all area by 2-00-00 wide w by other members are assumed to be 65 psi. hanical connectio capable of withs t at joint 3. designed in accor	been cor tom chor c. for a 10.0 with any d for a liv is where ill fit betw e SP No. n (by oth tanding 7 rdance w	asidered for the d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 1 buplift at jour ith the 2015	nis ds.)psf om o int 1					
BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; members Lumber D	1-3=-104/433 ed roof live loads hav n. CE 7-10; Vult=115m nph; TCDL=6.0psf; E Enclosed; MWFRS (Exterior (2) zone; car end vertical left and and forces & MWFR OL=1.60 plate grip D	re been considered fo oh (3-second gust) CDL=6.0psf; h=30ft; (envelope) exterior zor tilever left and right right exposed;C-C for S for reactions shown iOL=1.33	r LO Cat. he ;	International R802.10.2 a AD CASE(S)	Residential Code nd referenced star Standard	e sections ndard AN	R502.11.1 a	nd		G	AN IN	NITH CA	ROLIN

- Truss designed for wind loads in the plane of the truss 3) only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 4) snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.

THILL WANTER Participant and a second GI 1111111 August 23,2023

SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	628 B CP 3CG	
ELV B CP 3CG	V11	Valley	1	1	Job Reference (optional)	160306446

Run: 8.63 S Jul 28 2023 Print: 8.630 S Jul 28 2023 MiTek Industries, Inc. Tue Aug 22 08:46:45 ID:fB8VeeCxqvz1uVs8KHu?_vzd2BB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

2

3-4-1

2x4 🚅

1-8-1

1-8-1

12 5 Г

0-4-14

0-0-4

0-8-10

2-7-12 3-4-1

0-11-11 0-8-6

6

2x4 👟

3

Page: 1

Scale = 1:22.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-4-1 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-1, 3 Max Horiz 1=7 (LC 1 Max Libitt 1=-4 (LC	athing directly applie applied or 10-0-0 or 3=3-4-1 6) 16) 3=-4 (I C 17)	6) 7) 8) ed or 9) 5 10	Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss h on the botton 3-06-00 tall chord and ar) All bearings	snow loads have es continuous bo spaced at 4-0-0 d s been designed ad nonconcurrent has been designe been designe has been designe y 2-00-00 wide w y other members are assumed to b	been cor tor chor oc. I for a 10.0 t with any d for a liv as where will fit betw s. op SP No.	sidered for t d bearing.) psf bottom other live loz e load of 20. a rectangle veen the bott 2 crushing	his ads. Opsf com					
Max Uplift 1=-4 (LC 16), 3=-4 (LC 17) Max Grav Max Grav 1=134 (LC 2), 3=134 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-241/65, 2-3=-241/65 BOT CHORD 1-3=-50/231				capacity of 5) Provide mec bearing plate and 4 lb uplit) This truss is International R802.10.2 a	65 psi. hanical connectic capable of withs t at joint 3. designed in acco Residential Code of referenced sta	on (by oth standing 4 ordance w e sections andard AN	ers) of truss Ib uplift at jo th the 2015 R502.11.1 a ISI/TPI 1.	to bint 1 and					
 Unbalanc this desig Wind: AS Vasd=911 II; Exp 8; and C-C I exposed ; members Lumber D Truss de only. For see Stanc 	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er- Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS JOL=1.60 plate grip DO signed for wind loads ir studs exposed to wind dard Industry Gable En-	been considered for (3-second gust) DL=6.0psf; h=30f; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown L=1.33 h the plane of the tru (normal to the face) d Details as applicat	Cat. e ss ,	AD CASE(S)	Standard					V	I. I.	OR. ESS	

- or consult qualified building designer as per ANSI/TPI 1.
 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;
- Unobstructed slippery surface5) Roof design snow load has been reduced to account for slope.

A MITek Affilia

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

