		ł	<u>.</u>											33'	8"									
42'3"	35' 3"	K204		• 1'2"			DB3	1.73/16"	1' 1' 1' 1' 1' 1' 1' 1' 1' 1'	191/8 2-1- 5 9/1 7 3/1 7 3/1	6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6"		F203(10'6	· · · · · · · · · · · · · · · · · · ·	22 2"		F2 1'71, 1'73/ 311/	02(3) 91/8 2.1 0" 5410 5410 5410 16" 16" 16" 16"	=91/€ 2.1 FB5 2' 10 A F207(8)		F2	21(5) 1(5) 22" 22" 1'73 1'73 1'73 1'73 1'73 1'73 1'73	K20 /8" /16" /16" /16" /16"	
	3' 8"				2X4	LEC HG)GER IUS41	14 14	US410	7/16 1' (6 5/8"		F209(2)					K2	07 2	X4 LE	EDGE	1'03 79/ R	716" 16"	
		[ŧ≡≡	===	=== C	巴)B21		1' 5	7/16	' 	209		/		5							
	3' 4		∎≓	==	==:	===		===	==:	===	==:	=== D	=== B34	==:	==:	==	===	==	===	===	===	===		=
									19	9' 8"										14' ()"			
		×								20' 6"										13'	2"			_
														33'	8"									

		Products		
Net Qty	Plies	Product	Length	PlotID
2	2	1-3/4X9-1/4 LP-LVL 2900Fb-2.0E	3' 0"	DB3
2	2	1-3/4X11-7/8 LP-LVL 2900Fb-2.0E	34' 0"	DB34
2	2	1-3/4X11-7/8 LP-LVL 2900Fb-2.0E	21' 0"	DB21
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	6' 0"	FB5A
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	5' 0"	FB5
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	4' 0"	FB4
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	4' 0"	FB4A
3	3	1-3/4X20 LP-LVL 2900Fb-2.0E	22' 0"	FB22

Tru	uss Connector T	otal List
Qty	Product	Manuf
11	LUS410	Simpson
1	HGUS414*	Simpson
36	SDW22500*	Simpson
	Tr Qty 11 1 36	Truss Connector TQtyProduct11LUS4101HGUS414*36SDW22500*

EXTERIOR DIMENSIONS ARE FACE OF SHEATHING SHEATHING IS FLUSH TO FACE OF FOUNDATION

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q2200858 Garman Homes - Wisteria A & B

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54245348 thru I54245362

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

September 16,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154245348

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:13 ID:qMA3ZbXBzG619xCEO6OmQizCmoV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-32=-125/54, 15-30=-116/54 17-29=-118/39, 18-28=-139/94,

19-27=-127/80, 20-26=-131/79,

21-25=-150/113

G 400000 September 16,2022

Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154245348

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 1, 1 lb uplift at joint 34, 1 lb uplift at joint 35, 10 lb uplift at joint 36, 45 lb uplift at joint 40, 35 lb uplift at joint 41, 31 lb uplift at joint 42, 51 lb uplift at joint 43, 1 lb uplift at joint 33, 10 lb uplift at joint 32, 45 lb uplift at joint 28, 36 Ib uplift at joint 27, 25 lb uplift at joint 26, 100 lb uplift at joint 25 and 69 lb uplift at joint 1.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries. Inc. Fri Sep 16 09:58:13 ID:qMA3ZbXBzG619xCEO6OmQizCmoV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F201	Floor	5	1	Job Reference (optional)	154245349

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:15 ID:p9tEMumr6JW5wPJDuGRbUWzCn1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-0-0 17-0-0

Scale = 1:32.2

Loa TCI TCI BCI BCI	ading LL DL LL DL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.55 0.89 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.30 0.06	(loc) 16 16 12	l/defl >925 >672 n/a	L/d 480 240 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%F. 11%E	
		0.0	0000		induit o							troigini co io	20701,11702	
LUI TOI BO WE OTI BR	MBER P CHORD T CHORD BS HERS ACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)												
то	P CHORD	Structural wood shea	athing directly applie	ed or										
BO	T CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc	2										
RE	ACTIONS	(size) 12=0-3-8, Max Grav 12=732 (L	20=0-3-8 .C 1), 20=732 (LC 1))										
FO	RCES	(lb) - Maximum Com	pression/Maximum											
то	P CHORD	Tension 1-20=-31/0, 11-12=-3 2-3=-1540/0, 3-5=-24 6-7=-2924/0, 7-8=-29 9-10=-1539/0, 10-11	31/0, 1-2=-2/0, 479/0, 5-6=-2924/0, 924/0, 8-9=-2486/0, =-2/0											
BO	T CHORD	19-20=0/913, 18-19= 16-17=0/2924, 15-16 12-13=0/913	=0/2138, 17-18=0/28 6=0/2802, 13-15=0/2	308, 2139,										
WE	BS	10-12=-1143/0, 2-20 2-19=0/816, 9-13=-7 9-15=0/451, 3-18=0/ 5-18=-429/0, 8-16=- 6-17=-298/42, 5-17=	=-1143/0, 10-13=0/8 82/0, 3-19=-778/0, 443, 8-15=-411/0, 102/422, 7-16=-194/ -102/476	315, '12,								TH CA	Roj	
NO	TES	,									SI	O FESS	Point Ville	
1) 2)	Unbalance this design All plates a	ed floor live loads have n. are 3x3 MT20 unless o	been considered fo therwise indicated.	r						Y		SEA		-
3)	This truss Internation R802.10.2	is designed in accordanal Residential Code set and referenced stand	ance with the 2015 ections R502.11.1 ar ard ANSI/TPI 1.	nd								0363	22	
4)	Recomme 10-00-00 c	nd 2x6 strongbacks, o oc and fastened to eac	n edge, spaced at h truss with 3-10d									N. En	RIAS	

(0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F202	Floor	3	1	Job Reference (optional)	154245350

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:15 ID:KyOtD2GmpQ2xj_UytAebEgzCmzA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [17:0-1-8,Edge]

Loadin TCLL TCDL BCLL BCDL	g	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.69 0.87 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.29 0.05	(loc) 15-16 15-16 12	l/defl >953 >691 n/a	L/d 480 240 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBE TOP CH BOT CH WEBS OTHER BRACIN TOP CH BOT CH	er Hord Hord S NG Hord Hord	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or	LOAD CASE(S) ed or c	Standard								
REACT	IONS	(size) 12=0-3-8, Max Grav 12=719 (L	20= Mechanical _C 1), 20=724 (LC 1)									
FORCE	S	(lb) - Maximum Com Tension	pression/Maximum										
TOP CH	HORD	1-20=-34/0, 11-12=- 2-3=-1508/0, 3-5=-2 6-7=-2820/0, 7-8=-2 9-10=-1506/0, 10-11	31/0, 1-2=0/0, 416/0, 5-6=-2820/0, 820/0, 8-9=-2424/0, 1=-2/0										
BOT CH	HORD	19-20=0/898, 18-19= 16-17=0/2820, 15-16 12-13=0/896	=0/2089, 17-18=0/27 6=0/2723, 13-15=0/2	739, 2092,									
WEBS		10-12=-1122/0, 2-20 2-19=0/795, 9-13=-7 9-15=0/433, 3-18=0/ 5-18=-436/0, 8-16=- 6-17=-401/95, 5-17=)=-1126/0, 10-13=0/ 763/0, 3-19=-756/0, /425, 8-15=-389/0, 116/391, 7-16=-181, 148/542	794, /19,							and the	OR FESE	ROLIN
NOTES		0 11 - 10 1/00, 0 11 -	110/012							4	0	11 /	City .
1) Unb	balance	d floor live loads have	e been considered fo	or						-		. 4-	N 1 E
2) Rof	design	l. rder(s) for trues to true	e connections							Ξ		SEA	L <u>:</u> E
3) This Inte	s truss i ernation	is designed in accorda al Residential Code so and referenced stand	ance with the 2015 ections R502.11.1 a	nd						LITTLE .		0363	22
4) Rec 10-0 (0.1	commei 00-00 c 31" X 3	nd 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks	n edge, spaced at th truss with 3-10d to be attached to w	alls								A CA	ERALIN
at th 5) CAU	heir out UTION,	er ends or restrained l Do not erect truss ba	by other means. ckwards.									September	16,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F203	Floor	7	1	Job Reference (optional)	154245351

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:15 ID:EQvekYNvrtzFbjnP4imPHNzCmwS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.2

															_
Load	ding	(ps	sf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLI	L	40	.0	Plate Grip DOL	1.00	TC	0.55	Vert(LL)	-0.22	16	>922	480	MT20	244/190	
TCD	L	10	.0	Lumber DOL	1.00	BC	0.89	Vert(CT)	-0.30	16	>669	240			
BCL	L	0	.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.06	12	n/a	n/a			
BCD	L	5	.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 85 lb	FT = 20%F, 11%E	_
LUM	BER														
TOP	CHORD	2x4 SP No.2(fla	t)												
BOT	CHORD	2x4 SP No.2(fla	it)												
WEE	BS	2x4 SP No.3(fla	ıt)												
OTH	ERS	2x4 SP No.3(fla	ıt)												
BRA	CING														
TOP	CHORD	Structural wood	Ishea	athing directly applie	ed or										
POT		Bigid coiling dir	o ethy	applied or 10.0.0 or											
БОТ	CHORD	bracing.	ecuy	applied of 10-0-0 oc	,										
REA	CTIONS	(size) 12=0	-3-8,	20=0-3-8											
		Max Grav 12=7	33 (L	.C 1), 20=738 (LC 1))										
FOR	CES	(lb) - Maximum	Com	pression/Maximum											
		Tension													
TOP	CHORD	1-20=-34/0, 11-	12=-3	31/0, 1-2=0/0,											
		2-3=-1545/0, 3-	5=-24	488/0, 5-6=-2939/0,											
		6-7=-2939/0, 7-	8=-29	J39/0, 8-9=-2495/0,											
POT		9-10=-1543/0,	0 10-	=-2/U _0/21/5 17 19_0/29	210										
BOI	CHORD	16-17-0/2939	0-19= 15_16	=0/2145, 17-16=0/20 S=0/2813 13-15=0/2	2146										
		12-13=0/915	10 10	-0/2010, 10 10-0/2	140,										
WEE	S	10-12=-1146/0,	2-20	=-1150/0, 10-13=0/8	317,										
		2-19=0/819, 9-	3=-7	85/0, 3-19=-781/0,	,										
		9-15=0/453, 3-1	8=0/	446, 8-15=-414/0,										un,	
		5-18=-430/0, 8-	16=-	100/427, 7-16=-196/	/11,								IN TH CA	Roille	
		6-17=-289/37, 5	5-17=	-99/473								1	R	Charles .	
NOT	ES											2.0	1000	IN SIN	,
1) l	Jnbalance	ed floor live loads	have	been considered fo	r						_		- QY	M.	
t	his desigr	۱. 										() }	:4		
2) /	All plates a	are 3x3 MT20 unl	ess o	therwise indicated.							=		SEA	L - E	
3)	I his truss	is designed in ac	corda	nce with the 2015	ad						=	:	0262	22 : 2	
1	2802 10 2	and referenced	tand	ard ANSI/TPI 1	nu						1		0363	~~ ; ;	
4) F	Recomme	nd 2x6 strongbag	ks o	n edge spaced at							-	8	•	1 E	
., .	10-00-00 c	oc and fastened to	b eac	h truss with 3-10d							5	1	·	Airs	
(0.131" X 3	3") nails. Strongt	acks	to be attached to wa	alls							25	S GIN	EFRAN	
			الممما	ov other means								1	110		

at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

A. GILBE September 16,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F204	Floor	7	1	Job Reference (optional)	154245352

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:16 ID:XbPavN4HBiH0YdDYTuo?eczCmvY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.3

Loa TCI TCI BC	ading LL DL LL DL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-S).60).87).43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.39 0.06	(loc) 15-16 15-16 12	l/defl >755 >551 n/a	L/d 480 240 n/a	PLATES MT18HS MT20 Weight: 92 lb	GRIP 244/190 244/190 FT = 20%F, 11%E	
		0.0	0000		Standard	!						troigita 62 ib	20,01,11,02	-
TO 30	P CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E No 1(flat)	xcept* 18-12:2x4 SP		Standard									
	VEBS 2x4 SP No.3(flat) ITHERS 2x4 SP No.2(flat) BRACING													
TO	P CHORD	Structural wood she 5-10-1 oc purlins, e	athing directly applie xcept end verticals.	ed or										
30	T CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; ;										
RE.	ACTIONS	(size) 12=0-3-8, Max Grav 12=792 (L	21=0-3-8 _C 1), 21=792 (LC 1))										
FO	RCES	(lb) - Maximum Com Tension	pression/Maximum											
го	P CHORD	1-21=-32/0, 11-12=- 2-3=-1693/0, 3-4=-2 5-6=-3429/0, 6-7=-3 9-10=-1689/0, 10-11	30/0, 1-2=-2/0, 772/0, 4-5=-3429/0, 339/0, 7-9=-2784/0, =-2/0											
30	T CHORD	20-21=0/993, 19-20= 16-17=0/3429, 15-16 13-14=0/2357, 12-13	=0/2361, 17-19=0/31 6=0/3429, 14-15=0/3 3=0/994	177, 3194,										
NE	EBS	10-12=-1245/0, 2-21 2-20=0/911, 9-13=-8 9-14=0/557, 3-19=0/ 4-19=-528/0, 7-15=0 6-15=-360/146, 5-17	=-1243/0, 10-13=0/9 368/0, 3-20=-870/0, /534, 7-14=-533/0, 0/317, 4-17=-30/538, 7=-192/0, 6-16=-161/	905, /87							A	ORTH CA	ROM	
NO	TES	, -	,							4	is	P	My May	•
1)	Unbalance this design	d floor live loads have	e been considered fo	r						111		SEAL	w/le	
2)	All plates a	are MT20 plates unless	s otherwise indicated	d.						Ξ	:	0262		
3) 4)	This truss i Internation R802.10.2	al Residential Code se and referenced stand	ance with the 2015 ections R502.11.1 ar lard ANSI/TPI 1.	nd						1111		03032	R. A.	
5)	Recommer 10-00-00 o (0.131" X 3	nd 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks	n edge, spaced at th truss with 3-10d to be attached to wa	alls								A. G	ILBER III	
	at their out	er ends or restrained l	by other means.									September	16.2022	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

All TREENCED A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F205	Floor	2	1	Job Reference (optional)	154245353

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:16 ID:jnhRUO1razEpXmmkb_jXLGzCmuJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-2-0

Scale = 1:25.3													
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00	CSI TC BC	0.15 0.07	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 4-5 4-5	l/defl >999 >999	L/d 480 240	PLATES MT20	GRIP 244/190	
BCLL BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P	0.05	HOIZ(CT)	0.00	4	n/a	n/a	Weight: 22 lb	FT = 20%F, 11%E	
LUMBER TOP CHORD	2x4 SP No.2(flat)												

TOP CHORD	2X4 SP N	0.2(flat)
BOT CHORD	2x4 SP N	o.2(flat)
WEBS	2x4 SP N	o.3(flat)
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	3-5-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 6= Mechanical
	Max Grav	4=139 (LC 1), 6=139 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-
	1 6- 1/6	10 2 4- 27/0 1 2- 46/0 2 2-0/0

TOP CHORD	1-6=-146/0, 3-4=-37/0, 1-2=-46/0, 2-3=0/0
BOT CHORD	5-6=0/0, 4-5=0/124
WEBS	2-4=-156/0, 2-5=-102/0, 1-5=0/100

NOTES

1) Refer to girder(s) for truss to truss connections. 2) This truss is designed in accordance with the 2015

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Recommend 2x6 strongbacks, on edge, spaced at 3) 10-00-00 oc and fastened to each truss with 3-10d $(0.131" \times 3")$ nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F206	Floor	2	1	Job Reference (optional)	154245354

1-3-0

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:16 ID:7i5j1_daJQ_1V0Eal40PCBzCmoO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x3 =

Scale = 1:25.3												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.21	Vert(LL)	0.00	6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.11	Vert(CT)	-0.01	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 34 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)											

BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=0-3-8, 8= Mechanical
	Max Grav	5=255 (LC 1), 8=255 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-8=-255/	0 4-5=-32/0 1-2=-128/0

7-8=0/0, 6-7=0/349, 5-6=0/283

3-5=-355/0, 3-6=0/61, 2-6=-25/0, 2-7=-289/0,

1-2-0

WEBS

BOT CHORD

NOTES

1) Refer to girder(s) for truss to truss connections.

1-7=0/237

2-3=-330/0, 3-4=0/0

2) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Recommend 2x6 strongbacks, on edge, spaced at 3) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F207	Floor	8	1	Job Reference (optional)	154245355
Carolina Structural Systems, LLC	, Ether, NC - 27247,	Run: 8.43 S Jan 6 20)22 Print: 8.4	30 S Jan 62	2022 MiTek Industries, Inc. Fri Sep 16 09:58:16	Page: 1

1-10-0 0-10-0

ID:7i5j1_daJQ_1V0Eal40PCBzCmoO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x3 🛚

Scale = 1.27.2		
oading	(psf)	Spacing

ΤС	LL	40.0	Plate Grip DOL	1.00	TC	0.42	Vert(LL)	-0.10	12-13	>999	480	MT20	244/190	
ΤС	DL	10.0	Lumber DOL	1.00	BC	0.77	Vert(CT)	-0.14	12-13	>999	240			
BC	LL	0.0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.03	9	n/a	n/a			
BC	DL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 68 lb	FT = 20%F, 11%	ε
	MRED													
TO		2x4 SP No 2(flat)												
BO	TCHORD	2x4 SP No.2(flat)												
WE	BS	2x4 SP No.3(flat)												
ОТ	HERS	2x4 SP No.3(flat)												
BR	ACING													
ТО	P CHORD	Structural wood shea	athing directly applie	ed or										
		6-0-0 oc purlins, exc	cept end verticals.											
BO	T CHORD	Rigid ceiling directly	applied or 10-0-0 o	С										
		bracing.												
RE	ACTIONS	(SIZE) 9=0-3-8, 1 Max Grav 9=579 (LC	15=0-3-8 C 1) 15=574 (I C 1)											
	PCES	(lb) - Maximum Com												
. 0	NOLO		pression/maximum											
то	P CHORD	1-15=-31/0. 8-9=-31/	/0. 1-2=-2/0. 2-3=-1	143/0.										
		3-4=-1716/0, 4-5=-17	793/0, 5-6=-1793/0,	,										
		6-7=-1135/0, 7-8=0/0	0											
BO	T CHORD	14-15=0/707, 13-14=	=0/1553, 12-13=0/17	793,										
		11-12=0/1793, 10-11	1=0/1543, 9-10=0/7	11										
WE	BS	7-9=-891/0, 2-15=-88	85/0, 7-10=0/552,											
		2-14=0/567, 6-10=-5	32/0, 3-14=-534/0,											
		<i>A</i> -11=0/401, 3-13=0/ <i>A</i> -12=125/73 <i>A</i> -13=	-292, 5-11=-192/0,											
	TES	112-120/10, 110-										munn	Ullin.	
1)	Linhalance	d floor live loads have	been considered fo)r								W'TH CA	Rolly	
''	this design			7							5	R	Sin's	
2)	All plates a	are 3x3 MT20 unless o	therwise indicated.							/	55	U. FESO	Oria	-
3)	This truss i	is designed in accorda	ance with the 2015							6			1000	Z
	Internationa	al Residential Code se	ections R502.11.1 a	nd						-		. Q		
	R802.10.2	and referenced stand	ard ANSI/TPI 1.							Ξ		SEA		-
4)	Recommer	nd 2x6 strongbacks, or	n edge, spaced at							=		0202		Ξ
	10-00-00 0	c and fastened to eac	in truss with 3-10d							1		0363	ZZ ; .	=
	at their out	or ends or restrained b	hy other means	allo							2			
5)	CAUTION.	Do not erect truss ba	ckwards.							5	-	·	air S	
~ .														

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F208	Floor	11	1	Job Reference (optional)	154245356

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:16 ID:O_6z_Bd0jDkElvHvm?ZF9uzCmsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Lo: TC TC BC BC	ading LL DL LL DL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.70 1.00 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.57 0.09	(loc) 17-18 17-18 12	l/defl >588 >427 n/a	L/d 480 240 n/a	PLATES MT18HS MT20 Weight: 104 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
LU TO BO WE OT	MBER P CHORD T CHORD BS HERS ACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) * No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)	Except* 22-12:2x4 SP	 4) Recommendation 10-00-00 (0.131" X at their or 5) CAUTION LOAD CASE 	end 2x6 strongbacks oc and fastened to e 3") nails. Strongbac ter ends or restraine I, Do not erect truss (S) Standard	s, on edge each truss cks to be a ed by othe backward	e, spaced at s with 3-10d attached to v er means. ds.	valls					
то	P CHORD	Structural wood sh	eathing directly applie	ed or									
BO	T CHORD	Rigid ceiling directl bracing, Except: 2-2-0 oc bracing: 1 1-4-12 oc bracing:	8-19,16-17 17-18.	•									
RE	ACTIONS	(size) 12=0-3-8 Max Gray 12=884	8, 24=0-3-8 (I C 1) 24-889 (I C 1)										
FO	RCES	(lb) - Maximum Con Tension	mpression/Maximum	1									
то	P CHORD	1-24=-34/0, 11-12= 2-3=-1921/0, 3-4=- 5-6=-4280/0, 6-7=- 9-10=-1920/0, 10-1	31/0, 1-2=0/0, 3230/0, 4-5=-4030/0, 4030/0, 7-9=-3230/0, 1=-2/0										
BO	T CHORD	23-24=0/1115, 21-2 19-20=0/3769, 18- 16-17=0/4280, 15- 13-14=0/2698, 12-	23=0/2698, 20-21=0/3 19=0/4280, 17-18=0/4 16=0/3769, 14-15=0/3 13=0/1114	3769, 1280, 3769,								WH CA	Rout
WE	EBS	10-12=-1395/0, 2-2 2-23=0/1049, 9-13: 9-14=0/692, 3-21= 7-15=-20/39, 4-21= 7-16=0/422, 4-19= 5-19=-590/71 5-18	24=-1398/0, 10-13=0/1 =-1013/0, 3-23=-1012/ 0/692, 7-14=-689/0, =-689/0, 4-20=-20/39, 0/422, 6-16=-590/71, =-164/193, 6-17=-164	1049, /0, 4/193						4	ż	SEA	Res .
NO	TES	0 10- 000/11, 0 10	- 10 1/100, 0 11 - 10	1,100						Ξ		0363	
1)	Unbalance this design	ed floor live loads hav n.	ve been considered for	r								0303.	
2) 3)	All plates a This truss Internation	are MT20 plates unle is designed in accord nal Residential Code	ss otherwise indicated dance with the 2015 sections R502.11.1 ar	d. nd						ŝ	in the second second	A C NGIN	EREALIN

- this design.
- All plates are MT20 plates unless otherwise indicated. 2)
- 3) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

G minum September 16,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	F209	Floor	2	1	Job Reference (optional)	154245357
Carolina Structural Systems, LLC	, Ether, NC - 27247,	Run: 8.43 S Jan 6 2	022 Print: 8.4	30 S Jan 62	2022 MiTek Industries, Inc. Fri Sep 16 09:58:16	Page: 1

1-2-0

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries. Inc. Fri Sep 16 09:58:16 ID:7i5j1_daJQ_1V0Eal40PCBzCmoO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2

1.5x3 =

3x6 =

1

3x6 =

Weight: 62 lb

FT = 20%F, 11%E

	L	12-2-0											
			12-2-0										
Scale = 1:27.2													
Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.37	Vert(LL)	-0.07	10-11	>999	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.49	Vert(CT)	-0.10	10-11	>999	240			
BCLL	0.0	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.02	9	n/a	n/a			

Matrix-S

BCDL

	2v4 SP No 2(flat)
POT CHORD	2x4 SF No.2(flat) 2x4 SP No.2(flat)
	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(IIal)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing
DEACTIONS	(aiza) = 0 - Machanical 11 - 0.2.8
REACTIONS	(SiZe) 9= Mechanical, 14=0-3-0
	Max Grav 9=524 (LC 1), 14=519 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-14=-28/0, 8-9=-32/0, 1-2=-2/0, 2-3=-999/0,
	3-4=-1469/0, 4-5=-1469/0, 5-6=-1469/0,
	6-7=-1004/0, 7-8=0/0
BOT CHORD	13-14=0/638 12-13=0/1340 11-12=0/1469
201 0110112	10-11-0/1336 9-10-0/640
WERG	7 0 - 902/0 2 14 - 700/0 7 10 - 0/475
WEBS	7-9=-600/0, 2-14=-799/0, 7-10=0/470, 0.0000000000000000000000000000000000
	2-13=0/470, 6-10=-432/0, 3-13=-444/0,
	6-11=0/331, 5-11=-158/0, 4-12=-213/0,
	3-12=0/363

5.0

Code

IRC2015/TPI2014

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x3 MT20 unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

111111 Vananovan AND DUDIN SEAL 036322 GI 11111111 September 16,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	K201	Floor Supported Gable	1	1	Job Reference (optional)	154245358

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:17 ID:9VWZ?jb?yWIsnVPaiOCr23zCn3D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

~

Scale = 1:32.2															
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	15/TPI2014	CSI TC BC WB Matrix-R	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%F,	11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size)	lo.2(flat) lo.2(flat) lo.3(flat) lo.3(flat) lo.3(flat) l wood she purlins, ex ing directly 16=17-0-(23=17-0-(26=17-0-(29=17-0-(16=37 (1))	athing directly applie cept end verticals. applied or 10-0-0 or 0, 17=17-0-0, 18=17 0, 20=17-0-0, 21=17 0, 24=17-0-0, 25=17 0, 30=17-0-0 0, 30=17-0-0	3 4, 5, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0,	 Truss to be f braced again Gable studs This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3") at their outer OAD CASE(S) 	ully sheathed from ist lateral moveme spaced at 1-4-0 o designed in accor Residential Code nd referenced star 2x6 strongbacks and fastened to e nails. Strongbac ends or restraine Standard	n one fac ent (i.e. d c. dance w sections ndard AN on edge ach truss ks to be d by othe	the or securely liagonal web). State 2015 State 2015 St	nd alls						
	Max Grav	18=152 (L 20=147 (L 23=147 (L 25=147 (L 25=147 (L 27=147 (L 29=147 (L	LC 1), 19=145 (LC 1), LC 1), 21=147 (LC 1) LC 1), 24=147 (LC 1) LC 1), 26=147 (LC 1), LC 1), 26=147 (LC 1), LC 1), 28=147 (LC 1), LC 1), 30=53 (LC 1)),),),),											
FORCES	(lb) - Max	kimum Com	pression/Maximum											111	
TOP CHORD	1-30=-49 3-4=-7/0, 8-9=-7/0, 12-13=-7/	/0, 15-16=- 4-6=-7/0, 6 9-10=-7/0, /0, 13-14=-	31/0, 1-2=-7/0, 2-3= 5-7=-7/0, 7-8=-7/0, 10-11=-7/0, 11-12= 7/0, 14-15=-7/0	-7/0, -7/0,								I.I.I.	ORTH CA	ROIN	
BOT CHORD	29-30=0/ 25-26=0/ 20-21=0/ 16-17=0/	7, 28-29=0/ 7, 24-25=0/ 7, 19-20=0/ 7	/7, 27-28=0/7, 26-27 /7, 23-24=0/7, 21-23 /7, 18-19=0/7, 17-18	==0/7, ==0/7, ==0/7,							N		SEA	L	North In
WEBS	2-29=-13 6-26=-13 9-23=-13 12-19=-1	2/0, 3-28=- 3/0, 7-25=- 3/0, 10-21= 32/0, 13-18	134/0, 4-27=-133/0, 133/0, 8-24=-133/0, 133/0, 11-20=-134/ 3=-138/0, 14-17=-114	/0, 4/0							1111			EER X	unun.
 NOTES All plates Gable req 	are 1.5x3 M juires contin	IT20 unless uous bottor	s otherwise indicated m chord bearing.	i.									Septembe	r 16,2022	2

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	K203	Floor Supported Gable	1	1	Job Reference (optional)	154245359

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:17 ID:5X?BaLaxV0rdKIYdLSCNBZzCn4W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-2-0

7	7-1-0
7	7-1-0

Scale = 1:18

(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.09 0.03 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%F, 1	11%E
2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 8=7-1-0, 1 11=7-1-0, Max Gray 8=94 (LC	athing directly applia cept end verticals. applied or 10-0-0 or 9=7-1-0, 10=7-1-0, 12=7-1-0, 13=7-1-0 1). 9=161 (LC 1). 10	ed or c) =142										
(LC 1), 11 1), 13=64	I=151 (LC 1), 12=13 (LC 1)	3 (LC										
(lb) - Maximum Com Tension	pression/Maximum											
1-13=-55/0, 7-8=0/6 3-4=-17/0, 4-5=-17/0	, 1-2=-17/0, 2-3=-17), 5-6=-17/0, 6-7=-1/	/0, ′0										
12-13=0/17, 11-12=	0/17, 10-11=0/17,											
2-12=-126/0, 3-11=- 5-9=-143/0, 6-8=-96	136/0, 4-10=-130/0, /0											
are 1.5x3 MT20 unless uires continuous botto le fully sheathed from of ainst lateral movemen ds spaced at 1-4-0 oc. is designed in accorda nal Residential Code s 2 and referenced stance and 2x6 strongbacks, c oc and fastened to ead 3") nails. Strongbacks ter ends or restrained I, Do not erect truss ba	s otherwise indicated m chord bearing. one face or securely t (i.e. diagonal web). ance with the 2015 ections R502.11.1 a lard ANSI/TPI 1. on edge, spaced at th truss with 3-10d is to be attached to w by other means. ickwards.	ı. nd alls						Contraction of the second seco		SEA 0363	L 22 EEPERAT	Manning
	(psf) 40.0 10.0 0.0 5.0 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) (size) 8=7-1-0, 9 (size) 8=7-1-0, 9 (LC 1), 17 1), 13=64 (lb) - Maximum Com Tension 1-13=-55/0, 7-8=0/6 3-4=-17/0, 4-5=-17/0, 12-13=0/17, 8-9=0/17 2-12=-126/0, 3-11=- 5-9=-143/0, 6-8=-96 are 1.5x3 MT20 unless uires continuous botto e fully sheathed from of plainst lateral movemend ds spaced at 1-4-0 oc. is designed in accorda and Residential Code s 2 and referenced stance and 2x6 strongbacks, co oc and fastened to eaa 3") nails. Strongbacks, co co co restrained J, Do not erect truss ba	$ \begin{array}{c} (\text{psf}) \\ 40.0 \\ 10.0 \\ 0.0 \\ 0.0 \\ 5.0 \end{array} \begin{array}{c} \text{Spacing} \\ \text{Plate Grip DOL} \\ \text{Lumber DOL} \\ \text{Rep Stress Incr} \\ \hline \text{Code} \end{array} \right. \\ \begin{array}{c} 2x4 \text{ SP No.2(flat)} \\ 2x4 \text{ SP No.2(flat)} \\ 2x4 \text{ SP No.3(flat)} \\ \end{array} \right. \\ \begin{array}{c} \text{Structural wood sheathing directly applied} \\ 6-0 \circ \text{ oc purlins, except end verticals.} \\ \text{Rigid ceiling directly applied or 10-0-0 ordor bracing.} \\ (size) \\ 8=7-1-0, 9=7-1-0, 10=7-1-0, \\ 11=7-1-0, 12=7-1-0, 13=7-1-0 \\ \text{Max Grav} \\ 8=94 (\text{LC 1}), 9=161 (\text{LC 1}), 11 \\ (\text{LC 1}), 11=151 (\text{LC 1}), 12=13 \\ 1), 13=64 (\text{LC 1}) \\ (lb) - \text{Maximum Compression/Maximum Tension} \\ 1-13=-55/0, 7-8=0/6, 1-2=-17/0, 2-3=-17 \\ 3-4=-17/0, 4-5=-17/0, 5-6=-17/0, 6-7=-1/ \\ 12-13=0/17, 11-12=0/17, 10-11=0/17, \\ 9-10=0/17, 8-9=0/17 \\ 2-12=-126/0, 3-11=-136/0, 4-10=-130/0, \\ 5-9=-143/0, 6-8=-96/0 \\ \end{array} $ are 1.5x3 MT20 unless otherwise indicated uires continuous bottom chord bearing. \\ \text{e fully sheathed from one face or securely lainst lateral movement (i.e. diagonal web) \\ ds spaced at 1-4-0 oc. \\ \text{is designed in accordance with the 2015 \\ \text{nal Residential Code sections R502.1.1 a \\ 2 \text{ and referenced standard ANSI/TPI 1. \\ \text{end } 2x6 \text{ strongbacks, on edge, spaced at \\ \text{oc and fastened to each truss with 3-10d \\ 3") \text{ nails. Strongbacks to be attached to w ther ends or restrained by other means. \\ \text{Jo not erect truss backwards.} \\ \end{array}	$\begin{array}{c cccc} (psf) & Spacing & 2-0-0 \\ Plate Grip DOL & 1.00 \\ Lumber DOL & 1.00 \\ Lumber DOL & 1.00 \\ Rep Stress Incr & YES \\ Code & IRC2015/TPI2014 \end{array}$				(psf) Spacing 2-0-0 CSI DEFL in 40.0 Plate Grip DOL 1.00 TC 0.09 Vert(LL) n/a 0.0 Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 5.0 Code IRC2015/TPI2014 Matrix-R Horiz(TL) 0.00 2x4 SP No.2(flat) Xz4 SP No.3(flat) Xz4 SP No.3(flat) Xz4 SP No.3(flat) Xz4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 cc bracing. Size 8=7-1-0, 9=7-1-0, 10=7-1-0, 11=7-1-0, 11=7-1-0, 12=7-1-0, 13=7-1-0 Max Grave Se4 (LC 1), 9=161 (LC 1), 10=142 (LC 1), 11=151 (LC 1), 10=142 (LC 1), 11=151 (LC 1), 10=142 (LC 1), 11=161 (LC 1), 10=142 (Size), 7.8=0/17 Size=126/0, 3-11=-136/0, 4-10=-130/0, 3-4=-17/0, 5-	(psf) 40.0 Spacing Plate Grip DOL 0.0 1.00 1.00 TC TC 0.09 DEFL Vert(LL) Na in (loc) Vert(LL) Na 0.0 Rep Stress Incr 5.0 Code IRC2015/TPI2014 BC 0.03 Vert(TL) Vert(L) Vart Na 2x4 SP No.2(flat) 2x4 SP No.3(flat) Exc 2x4 SP No.3(flat) Exc 2x4 SP No.3(flat) Exc 2x4 SP No.3(flat) Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 cc bracing. Exc 12.1-10, 192-71-0, 132-71-0 Max Grav 8=94 (LC 1), 9=7-1-0, 10=71-0, 11=7-1-0, 12=71-0, 132-71-0 In 1.3=64 (LC 1) In 1.3=64 (LC 1) (b) - Maximum Compression/Maximum Tension 1.3=64 (LC 1) In 1.13=-55/0, 7-8=0/6, 1-2=-17/0, 2-3=-17/0, 3-4=-17/0, 4-5=-17/0, 5-6=-17/0, 6-7=-1/0 In 1.213=0/17, 11-12=0/17, 10-11=0/17, 9-10=0/17, 8-9=0/17 2-122-126(0, 3-111=-136/0, 4-10=-130/0, 5-9=-143/0, 6-8=-96/0 Structural disconder with the 2015 nal Residential Code sections R502_11.1 and 2 and referenced standard ANS/TP1 1. and 2x6 strongbacks, on edge, spaced at 0 cand fastened to each truss with 3-10d 3) nails. Strongbacks to be attached to walls ter ends or restrained by other means. b, Don ot erect truss backwards. Structural disconder dischared.	(inst) Spacing 2-0-0 CSI DEFL in (loc) ///edite 40.0 Lumber DOL 1.00 BC 0.09 Vert(TL) n/a - n/a 5.0 Code IRC2015/TPI2014 WB 0.03 Vert(TL) n/a - n/a 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) -	(nsf) Spacing 2-0-0 CSI DEFL in (loc) /// with (L/d) 40.0 Uumber DOL 1.00 BC 0.03 Vert(LL) n/a - n/a 999 0.0 Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 8 n/a n/a 2x4 SP No.2(flat) Zx4 SP No.3(flat) 2x4 SP No.3(flat) Zx4 SP No.3(flat) Zx4 SP No.3(flat) Zx4 SP No.3(flat) Zx4 SP No.3(flat) 2x4 SP No.3(flat) Zx4 SP No.3(flat) Zx4 SP No.3(flat) Zx4 SP No.2(flat) Zx4 SP No.2(flat) 2x4 SP No.2(flat) Zx4 SP No.3(flat) Zx4 SP No.3(flat) Zx4 SP No.2(flat) Zx4 SP No.2	(pr) 40.0 Spacing Plate Rip DOL Lumber DOL 1.00 2-0-0 TC CSI 0.0 DEF BC 0.00 Vert(TL) <i>n/a</i> 999 Vert(TL) <i>n/a</i> 990 Vert(TL) <i>n/a</i> 990 Vert(TL) <i>n/a</i> 990 Vert(T	(psh) Spacing 2-0-0 CSI DEFL in (pc) (Viet) PLATES GRIP 40.0 Plate for pOL 1.00 BC 0.03 Ver(TL) n/a - n/a 999 MT20 244/190 0.0 Rep Stress Incr YES WB 0.03 Ver(TL) n/a - n/a 999 Mr20 244/190 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 1x1-10.0 1x1-10.0

LOAD CASE(S) Standard

September 16,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	K204	Floor Supported Gable	1	1	Job Reference (optional)	154245360

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:17 ID:gErUW7IjCJce0vdKAOSflWzCn4I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.3

00010 = 1.04.0														
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCU	40.0	Plate Grip DOI	1 00		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
	10.0		1.00		BC	0.00	Vert(TL)	n/a		n/a	aga		210,000	
RCU	10.0	Bon Stross Incr	VES			0.01		0.00	17	n/a	n/o	1		
	0.0	Code	IEO IDC0045			0.03		0.00	17	n/a	n/a			440/ -
BCDL	5.0	Code	IRC2015	/1912014	Matrix-S							vveight: 80 lb	FT = 20%F,	11%E
LUMBER			NO	TES										
TOP CHORD	2x4 SP No.2(flat)		1)	All plates are	e 1.5x3 MT20 unl	less other	wise indicated	d.						
BOT CHORD	2x4 SP No.2(flat)		2)	Gable require	es continuous bo	ottom chor	d bearing.							
WEBS	2x4 SP No.3(flat)		3)	Truss to be f	ully sheathed fro	m one fac	e or securely	,						
OTHERS	2x4 SP No.3(flat)	*Except* 17-33:2x4 SF	>	braced again	ist lateral movem	nent (i.e. d	liagonal web)							
	No.2(flat)		4)	Gable studs	spaced at 1-4-0	oc.								
BRACING			5)	This truss is	designed in acco	ordance w	ith the 2015							
TOP CHORD	Structural wood s	heathing directly applie	ed or	International	Residential Cod	e sections	R502.11.1 a	ind						
	6-0-0 oc purlins,	except end verticals.		R002.10.2 al		anuaru An	NOI/TELT.							
BOT CHORD	Rigid ceiling direc bracing.	tly applied or 10-0-0 or	c 6)	Recommend 10-00-00 oc	and fastened to	s, on edge each truss	with 3-10d							
REACTIONS	(size) 17=18-	4-8, 18=18-4-8, 19=18	-4-8,	(0.131" X 3")	nails. Strongba	cks to be	attached to w	alls						
	20=18-	4-8, 21=18-4-8, 22=18	-4-8, _,	at their outer	ends or restrain	ed by othe	er means.							
	23=18-	4-8, 24=18-4-8, 25=18	-4-8, 7)	CAUTION, D	o not erect truss	backward	ds.							
	26=18-	4-8, 28=18-4-8, 29=18	₋₄₋₈ , LO	AD CASE(S)	Standard									
	30=18-	4-8, 31=18-4-8, 32=18	-4-8											
	Max Grav 17=32 19=150 21=147 23=147 25=148 28=147 30=145 32=52	[LC 1), 18=134 (LC 1), (LC 1), 20=146 (LC 1) (LC 1), 22=147 (LC 1) (LC 1), 22=147 (LC 1) (LC 1), 26=147 (LC 1) (LC 1), 29=147 (LC 1) (LC 1), 31=156 (LC 1) (LC 1)),),),),),									ammu	um.	
FORCES	(lb) - Maximum Co	ompression/Maximum									1	"TH CA	ROUL	
		20/0 1 2 0/0 2 2 0	N/O								15	A	Dr. JAK	1.
TOP CHORD	2 4-0/0 4 5-0/0	=-29/0, 1-2=0/0, 2-3=0									11		Print	1
	3-4=0/0, 4-3=0/0, 90-2/0, 0, 10-2	5 - 0 = 0/0, 0 - 7 = 0/0, 7 - 0 = 0/0, 10 - 10 - 0 = 0/0, 10 - 10 - 0 = 0/0, 10 - 0/0, 1	2/0							4		19 10	Va.y	-/
	0-9=-2/0, 9-10=-2	0, 10-12=-2/0, 12-13=	-2/0,							-		. K.	S	12
	13-14=-2/0, 14-15	=-2/0, 15-10=-2/0	0/0									CEA	1 L	1
BOICHORD	31-32=0/0, 30-31	=0/0, 29-30=0/0, 28-29	=0/0,								:	SEA	- :	1
	20-28=0/0, 25-26	=0/0, 24-25=0/2, 23-24	=0/2,								:	0363	22 :	
	22-23=0/2, 21-22	=0/2, 20-21=0/2, 19-20	=0/2,							-			:	-
	18-19=0/2, 17-18									-	-	N		-
WEBS	2-31=-142/0, 3-30	=-131/0, 4-29=-134/0,										· · .	-air	2
	5-28=-133/0, 6-26	=-133/0, 7-25=-133/0,									25	S VGIN	EFICA	5
	8-24=-132/0, 9-23	=-133/0, 10-22=-133/0), 0/0								1	710	ali	
	12-21=-134/0, 13-	20=-133/0, 14-19=-13	0/0,									IN A G	ILDIN	
	15-18=-121/0, 8-2	5=-2/0										111111	unin,	
												Sontombo	16 2022	
												Sebrempe	10,2022	

ENGINEERING BY ENGINEERING BY A MITEK Atfillate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	K207	Floor Supported Gable	1	1	Job Reference (optional)	154245361

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:17 ID:Vr9ueZP9oi4cfbUxXWy5dczCn4k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.5

Loading TCLL		(psf) 40.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.08	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
TCDL		10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	12	n/a	n/a			
BCDL		5.0	Code	IRC20	15/TPI2014	Matrix-S							Weight: 59 lb	FT = 20%F, 119	%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceill bracing.	o.2(flat) o.2(flat) o.3(flat) o.3(flat) I wood shea ourlins, ext ing directly	athing directly applie cept end verticals. applied or 10-0-0 oc	5 6 d or 7	 This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3") at their outer Hanger(s) or provided suff Ib down at 0 	designed in accord Residential Code nd referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained other connection ficient to support c -2-4 on top chord.	dance wi sections adard AN on edge ach truss (s to be device(s oncentra The de	ith the 2015 R502.11.1 a ISI/TPI 1. s, spaced at with 3-10d attached to w er means.) shall be ted load(s) 1 sign/selection	ralls 04 n of						
REACTIONS	(size) Max Grav	12=13-3-6 15=13-3-6 18=13-3-6 21=13-3-6 12=46 (LC 14=147 (L 16=152 (L 18=147 (L 20=146 (L 22=152 (L	8, 13=13-3-8, 14=13- 8, 16=13-3-8, 17=13- 8, 19=13-3-8, 20=13- 8, 22=13-3-8 2, 21=13-3-8 2, 21=13-3-8 2, 11, 13=149 (LC 2), C 2), 15=147 (LC 1) C 1), 17=147 (LC 1) C 2), 19=147 (LC 1) C 2), 21=152 (LC 1) C 1)	3-8, 8 3-8, ¹ 3-8, 1 , ,	such connec) In the LOAD of the truss a OAD CASE(S)) Dead + Flor Plate Increa Uniform Loo Vert: 12-: Concentrate Vert: 1=-	tion device(s) is th CASE(S) section, ire noted as front (Standard or Live (balanced): ase=1.00 ads (lb/ft) 22=-10, 1-11=-100 ed Loads (lb) 104 (F)	ie respor loads ap F) or ba : Lumbei	sibility of oth oplied to the f ck (B).	iers. face 00,						
FORCES	(lb) - Max Tension	imum Com	pression/Maximum												
TOP CHORD	1-22=-148 3-4=-9/0, 7-8=-3/0,	8/0, 11-12= 4-5=-9/0, 5 8-9=-3/0, 9	:-42/0, 1-2=-9/0, 2-3= ;-6=-9/0, 6-7=-9/0,)-10=-3/0, 10-11=-3/0	=-9/0,)									TH CA	RO	
BOT CHORD	21-22=0/9 17-18=0/9 13-14=0/9	9, 20-21=0/ 9, 16-17=0/ 3, 12-13=0/	9, 19-20=0/9, 18-19= 3, 15-16=0/3, 14-15= 3	=0/9, =0/3,							4	ii)	FESS	N'N'	3
WEBS	2-21=-138 5-18=-133 8-15=-133 7-17=0/8	8/0, 3-20=- 3/0, 6-17=- 3/0, 9-14=-	133/0, 4-19=-134/0, 133/0, 7-16=-138/0, 133/0, 10-13=-135/0,	,									SEA	L 22	
NOTES											Ξ		0505		5
 All plates a Gable required 	are 1.5x3 M	T20 unless	otherwise indicated											al. 3	-

3)

- Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 1-4-0 oc.

4)

A. GILB

PIC.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A & B	
Q2200858	K209	Floor Supported Gable	1	1	Job Reference (optional)	154245362

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Fri Sep 16 09:58:17 ID:4GTm?XNHVni2o8lMrOPO?_zCn4n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:24.8

1-2-0

DEFL in (loc) I/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/190 Vert(TL) n/a - n/a 999 Horiz(TL) 0.00 11 n/a n/a Weight: 54 lb FT = 20%F. 11%E 11%E
n the 2015 \$502.11.1 and J/TPI 1. spaced at with 3-10d ttached to walls means. ; shall be ed load(s) 81 lb 2, 78 lb down at top chord. The ice(s) is the Diled to the face k (B). ncrease=0.90,
22=-81 (F),
SEAL 036322
22- or (r), 03 03 Septer

		ł	<u>.</u>											33'	8"									
42'3"	35' 3"	K204		• 1'2"			DB3	1.73/16"	1' 1' 1' 1' 1' 1' 1' 1' 1' 1'	191/8 2-1- 5 9/1 7 3/1 7 3/1	6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6"		F203(10'6	· · · · · · · · · · · · · · · · · · ·	22 2"		F2 1'71, 1'73/ 311/	02(3) 91/8 2.1 0" 5410 5410 5410 16" 16" 16" 16"	=91/€ 2.1 FB5 2' 10 A F207(8)		F2	21(5) 1(5) 22" 22" 1'73 1'73 1'73 1'73 1'73 1'73 1'73	K20 /8" /16" /16" /16" /16"	
	3' 8"				2X4	LEC HG)GER IUS41	14 14	US410	7/16 1' (5/8"		F209(2)					K2	07 2	X4 LE	EDGE	1'03 79/ R	716" 16"	
		[ŧ≡≡	===	=== C	巴)B21		1' 5	7/16	' 	209		/		5							
	3' 4		∎≓	==	==:	===		===	==:	===	==:	=== D	=== B34	==:	==:	==	===	==	===	===	===	===		=
									19	9' 8"										14' ()"			
		×							2	20' 6"										13'	2"			_
														33'	8"									

		Products		
Net Qty	Plies	Product	Length	PlotID
2	2	1-3/4X9-1/4 LP-LVL 2900Fb-2.0E	3' 0"	DB3
2	2	1-3/4X11-7/8 LP-LVL 2900Fb-2.0E	34' 0"	DB34
2	2	1-3/4X11-7/8 LP-LVL 2900Fb-2.0E	21' 0"	DB21
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	6' 0"	FB5A
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	5' 0"	FB5
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	4' 0"	FB4
2	2	1-3/4X14 LP-LVL 2900Fb-2.0E	4' 0"	FB4A
3	3	1-3/4X20 LP-LVL 2900Fb-2.0E	22' 0"	FB22

Tru	uss Connector T	otal List
Qty	Product	Manuf
11	LUS410	Simpson
1	HGUS414*	Simpson
36	SDW22500*	Simpson
	Tr Qty 11 1 36	Truss Connector TQtyProduct11LUS4101HGUS414*36SDW22500*

EXTERIOR DIMENSIONS ARE FACE OF SHEATHING SHEATHING IS FLUSH TO FACE OF FOUNDATION

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q2200859 Garman Homes - Wisteria A Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54261561 thru I54261583

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

September 19,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154261561

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries. Inc. Mon Sep 19 07:39:16 ID:qMA3ZbXBzG619xCEO6OmQizCmoV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-21=-55/43, 21-22=-102/114, 22-23=0/39

40-41=-94/117, 39-40=-94/117,

37-39=-94/117, 36-37=-94/117,

35-36=-94/117, 34-35=-94/117,

33-34=-94/117, 32-33=-94/117,

30-32=-94/117, 29-30=-94/117,

28-29=-94/117, 27-28=-94/117,

26-27=-94/117, 25-26=-94/117,

12-34=-120/43, 11-35=-120/44

2-43=-160/96, 13-33=-120/44, 14-32=-125/54, 15-30=-116/54 17-29=-118/39, 18-28=-139/94,

19-27=-127/80, 20-26=-131/79,

1-43=-94/117, 42-43=-94/117, 41-42=-94/117,

10-36=-124/54, 9-37=-128/54, 7-39=-133/39, 6-40=-138/94, 4-41=-131/80, 3-42=-119/78,

22-24=-125/58

24-25=-94/117

21-25=-150/113

- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 7)

818 Soundside Road Edenton, NC 27932

Page: 1

Continued on page 2

Max Horiz 1=213 (LC 11), 44=213 (LC 11)

44=-69 (LC 10)

1=-69 (LC 10), 25=-100 (LC 12),

26=-25 (LC 12), 27=-36 (LC 12),

28=-45 (LC 12), 32=-10 (LC 12),

33=-1 (LC 12), 34=-1 (LC 12),

35=-1 (LC 12), 36=-10 (LC 12)

40=-45 (LC 12), 41=-35 (LC 12),

42=-31 (LC 12), 43=-51 (LC 12),

Max Uplift

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

WEBS

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154261561

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 1, 1 lb uplift at joint 34, 1 lb uplift at joint 35, 10 lb uplift at joint 36, 45 lb uplift at joint 40, 35 lb uplift at joint 41, 31 lb uplift at joint 42, 51 lb uplift at joint 43, 1 lb uplift at joint 33, 10 lb uplift at joint 32, 45 lb uplift at joint 28, 36 Ib uplift at joint 27, 25 lb uplift at joint 26, 100 lb uplift at joint 25 and 69 lb uplift at joint 1.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:16 ID:qMA3ZbXBzG619xCEO6OmQizCmoV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A02	Piggyback Base	6	1	Job Reference (optional)	154261562

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1)

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries. Inc. Mon Sep 19 07:39:18

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A03	Piggyback Base	6	1	Job Reference (optional)	154261563

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:19

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 19,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A04	Piggyback Base	4	1	Job Reference (optional)	154261564

-0<mark>-10-</mark>8

0-10-8

5-1-7

5-1-7

11-1-7

6-0-0

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:19

Plate Offsets (X, Y): [4:0-4-4,0-2-0], [6:0-4-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.54	Vert(LL)	-0.23	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.41	13-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.07	10	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 251 lb	FT = 20%

LUMBER		2)
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.3 *Except* 10-8,17-2:2x4 SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied,	
	except end verticals, and 2-0-0 oc purlins	
	(4-11-12 max.): 4-6.	
BOT CHORD	Rigid ceiling directly applied.	
WEBS	1 Row at midpt 5-13, 7-10, 5-14, 3-17	
REACTIONS	(size) 10=0-3-8, 17=0-3-8	2)
	Max Horiz 17=-221 (LC 10)	3) 4)
	Max Uplift 10=-36 (LC 12), 17=-36 (LC 12)	4)
	Max Grav 10=1510 (LC 21), 17=1510 (LC 20)	5)
FORCES	(Ib) - Maximum Compression/Maximum	0)
	Tension	
TOP CHORD	1-2=0/39, 2-3=-353/111, 3-4=-1715/259,	
	4-5=-1232/210, 5-6=-1232/210,	6)
	6-7=-1715/259, 7-8=-353/111, 8-9=0/39,	
	8-10=-370/132, 2-17=-370/132	
BOT CHORD	16-17=-41/1368, 14-16=0/1216,	7)
	13-14=0/1356, 11-13=0/1155,	
	10-11=-20/1215	
WEBS	5-13=-311/76, 6-13=0/561, 6-11=-97/327,	8)
	7-11=-197/174, 7-10=-1494/58,	
	5-14=-311/76, 4-14=0/561, 4-16=-97/327,	
	3-16=-19//1/4, 3-1/=-1495/58	
NOTES		9)

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-1-8 to 3-7-11, Interior (1) 3-7-11 to 12-1-7, Exterior (2) 12-1-7 to 17-1-2, Interior (1) 17-1-2 to 25-0-9, Exterior (2) 25-0-9 to 30-0-4, Interior (1) 30-0-4 to 37-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 36 lb uplift at joint 10 and 36 lb uplift at joint 17.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154261565

TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

12-34, 11-35, 10-36,

15-30, 17-29

24=35-2-0, 25=35-2-0, 26=35-2-0

27=35-2-0, 28=35-2-0, 29=35-2-0,

30=35-2-0, 32=35-2-0, 33=35-2-0,

34=35-2-0, 35=35-2-0, 36=35-2-0,

38=35-2-0, 39=35-2-0, 40=35-2-0,

41=35-2-0, 42=35-2-0, 43=35-2-0,

26=-28 (LC 12), 27=-35 (LC 12), 28=-46 (LC 12), 32=-11 (LC 12),

 $\begin{array}{c} 33 = 1 \ (12 \ (12) \ 347 \ (1 \ (12) \), \\ 36 = 1 \ (12 \ (12) \ 367 \ (12) \), \\ 36 = 1 \ (12 \ (12) \ 367 \ (12) \), \\ 36 = 1 \ (12 \ (12) \), \\ 36 = 1 \ (12 \ (12) \), \\ 36 = 1 \ (12 \ (12) \), \\ 36 = 1 \ (12 \), \ (12 \), \ (1$

(LC 12),

118 (LC 10)

9-38, 7-39, 13-33, 14-32,

(6-0-0 max.): 8-16.

1 Row at midpt

Rigid ceiling directly applied.

44=35-2-0

Max Uplift 24=-66 (LC 11), 25=-83 (LC 8),

Max Horiz 44=-221 (LC 10)

43

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries. Inc. Mon Sep 19 07:39:20 ID:EwrCBda3GBUc0Pwo3EyT1LzCmoS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

40=168 (LC 20), 41=170 (LC 20),

42=168 (LC 24), 43=218 (LC 20),

44=231 (LC 21)

Tension

(Ib) - Maximum Compression/Maximum

1-2=0/39, 2-3=-170/165, 3-4=-122/115,

10-11=-193/237, 11-12=-193/237,

12-13=-193/237, 13-14=-193/237,

14-15=-193/237, 15-16=-193/237,

16-17=-230/269, 17-18=-198/235,

18-19=-135/160, 19-20=-80/94,

22-24=-149/39, 2-44=-178/78

43-44=-100/98, 42-43=-100/98

41-42=-100/98, 40-41=-100/98, 39-40=-100/98, 38-39=-100/98,

36-38=-100/98, 35-36=-100/98, 34-35=-100/98, 33-34=-100/98, 32-33=-100/98, 30-32=-100/98,

29-30=-100/98, 28-29=-100/98,

27-28=-100/98, 26-27=-100/98, 25-26=-100/98. 24-25=-100/98

12-34=-120/43, 11-35=-120/44

3-43=-140/105, 13-33=-120/44, 14-32=-124/56, 15-30=-119/61 17-29=-123/34, 18-28=-139/95, 19-27=-128/79, 20-26=-129/81,

4-5=-110/95. 5-6=-135/160. 6-7=-198/235

7-8=-230/269, 8-9=-193/237, 9-10=-193/237,

20-21=-82/79, 21-22=-122/116, 22-23=0/39,

10-36=-124/56, 9-38=-119/61, 7-39=-128/34, 6-40=-139/95, 5-41=-128/80, 4-42=-128/81,

MWFRS (directional) and C-C Corner (3) 0-1-8 to 3-7-11, Exterior (2) 3-7-11 to 12-1-7, Corner (3) 12-1-7 to 15-7-10, Exterior (2) 15-7-10 to 25-0-9, Corner (3) 25-0-9 to 28-7-0, Exterior (2) 28-7-0 to 37-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Provide adequate drainage to prevent water ponding. 4)
- All plates are 2x4 MT20 unless otherwise indicated. 5)
- 6)
- Gable requires continuous bottom chord bearing.

Truss to be fully sheathed from one face or securely 7) braced against lateral movement (i.e. diagonal web).

September 19,2022

A. GILL eters and RF connect tesir 21-25=-139/103 Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIT-74/3 (eV. or)19/20/20 BEFURE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES

TOP CHORD

BOT CHORD

WEBS

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	A05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154261565

- 8) Gable studs spaced at 2-0-0 oc
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 24, 118 lb uplift at joint 44, 1 lb uplift at joint 34, 1 lb uplift at joint 35, 11 lb uplift at joint 36, 46 lb uplift at joint 40, 35 lb uplift at joint 41, 28 lb uplift at joint 42, 99 lb uplift at joint 43, 1 lb uplift at joint 33, 11 lb uplift at joint 32, 46 Ib uplift at joint 28, 35 lb uplift at joint 27, 28 lb uplift at joint 26 and 83 lb uplift at joint 25.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries. Inc. Mon Sep 19 07:39:20 ID:EwrCBda3GBUc0Pwo3EyT1LzCmoS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	B01	Common Supported Gable	1	1	Job Reference (optional)	154261566

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:20 ID:i7PaPzah1VcTeZV?dyTiaYzCmoR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T	FPI2014	CSI TC BC WB Matrix-MR	0.08 0.09 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=12-5- 13=12-5- 16=12-5- Max Uplift 10=-60 (i 12=-39 (i 15=-75 (i Max Grav 10=185 (i 12=169 (i 14=169 (i 16=192 (i (lb) - Maximum Cor Tension 2-16=-154/102, 1-2 3-4=-127/166, 4-5= 6-7=-128/168, 7-8= 8-10=-148/100 15-16==83/80, 14-1 12-13=-83/80, 14-1 12-13=-298/167, 4-1 3-15=-169/129, 6-1	eathing directly applied (cept end verticals. y applied or 10-0 oc 0, 11=12-5-0, 12=12-5 0 (LC 10) _C 9), 11=-72 (LC 8), _C 12), 14=-39 (LC 12 _C 9), 16=-66 (LC 8) LC 17), 11=222 (LC 12 _C 22), 13=270 (LC 12 _C 23), 15=226 (LC 12 _C 24), 15=226 (LC 12 _C 24), 15=226 (LC 12 _C 24), 15=226 (LC 12) _C 25, 5-6=-198/25 _107/90, 8-9=0/43, 5=-83/80, 13-14=-83/8 2=-83/80, 13-14=-83/8 2=-83/80, 13-14=-83/8 2=-141/98, 7-11=-168/ 2 been considered for	2) V V V V P P P P P P P P P P P P P P P P	Wind: ASCE Vasd=95mph B=45ft; L=24 WWFRS (dire 2-2-8, Exteric 3-2-8, Exteric and right exp exposed;C-C reactions sho DOL=1.60 Truss desigr only. For stu see Standarc or consult qu All plates are Gable require Gable require Gable require Gable studs s This truss ha chord live loa able studs s this truss ha on the botton 3-06-00 tall b chord and an Provide mect bearing plate 16, 60 lb upli uplift at joint international R802.10.2 ar D CASE(S)	7-10; Vult=120mp; ;; TCDL=6.0psf; B ft; eave=2ft; Cat. I actional) and C-C or (2) 2-2-8 to 6-2- or (2) 9-2-8 to 13-3 osed; end vertica for members and own; Lumber DOL and for wind loads ds exposed to wirk I Industry Gable E alified building de 2x4 MT20 unless es continuous bott Illy sheathed from st lateral moveme spaced at 2-0-0 or s been designed 1 dn onoconcurrent 1 as been designed 1 dn onconcurrent 1 as been designed on ther members. nanical connection capable of withst ft at joint 10, 39 lb 15, 39 lb uplift at j designed in accor Residential Code and referenced star Standard	boh (3-sec CDL=6.() II; Exp B Corner (8, Corne 3-8 zone al left anc al for al live s where al for al live s where al for al live s where al for al live s where al do and ing 6 al ance w sections and and AN	orond gust) opsf; h=25ft; Enclosed; 3) -0-10-8 to r (3) 6-2-8 to r (4) 6-20 to r	t ss ole, ole, l1. ds. psf m o oint at		Manute.		NITH CA OR JEESS SEA 0363	ROUL 22
												A GIN	EERER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 19,2022

818 Sou

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	B02	Common	1	1	Job Reference (optional)	154261567

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:21 ID:i7PaPzah1VcTeZV?dyTiaYzCmoR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.4	
----------------	--

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.45	Vert(LL)	-0.03	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.06	6-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/	/TPI2014	Matrix-MS							Weight: 80 lb	FT = 20%
			5)	Provide med	hanical connectio	on (by othe	ers) of truss	to					
TOP CHORD	2x4 SP No 2		0)	bearing plate	capable of withs	standing 2	9 lb uplift at	ioint					
BOT CHORD	2x4 SP No 2			8 and 29 lb u	uplift at joint 6.	5							
WEBS	2x4 SP No.3 *Excep	t* 8-2.6-4:2x4 SP N	0.2 6)	This truss is	designed in acco	ordance wi	th the 2015						
BRACING			, ,	International	Residential Code	e sections	R502.11.1	and					
TOP CHORD	Structural wood she	athing directly appli	ed or	R802.10.2 a	nd referenced sta	andard AN	SI/TPI 1.						
	6-0-0 oc purlins, ex	cept end verticals.	LO	AD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C	. ,									
	bracing.												
REACTIONS	(size) 6=0-3-8, 8	3=0-3-8											
	Max Horiz 8=-169 (L	C 10)											
	Max Uplift 6=-29 (LC	2 12), 8=-29 (LC 12)											
	Max Grav 6=546 (LC	C 1), 8=546 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/43, 2-3=-453/	90, 3-4=-453/90,											
	4-5=0/43, 2-8=-492/	112, 4-6=-492/112											
BOT CHORD	7-8=-140/295, 6-7=-	82/231											
WEBS	3-7=0/242, 2-7=-97/	195, 4-7=-99/195											
NOTES													
1) Unbalance	ed roof live loads have	been considered fo	r										17.5
this desig	n.												
2) Wind: AS	CE 7-10; Vult=120mph	(3-second gust)										IN TH CA	ROUL
Vasd=95r	mph; TCDL=6.0psf; BC	DL=6.0pst; h=25ft;									15	R	Dell'
B=4011; L=	(directional) and C C E	EXP B; Enclosed;									12	1 to	Phillip
2-1-8 Inte	(u) = (1) + (1)	Evterior (2) 6-2-8 to	1								(A		
9-2-8 Inte	erior (1) 9-2-8 to 13-3-8	zone: cantilever lef	t							-	- 14	. Q	N 1 2
and right	exposed · end vertical	eft and right								-		SEA	1 1 2
exposed:(C-C for members and f	orces & MWFRS for								Ξ		02/	
reactions	shown; Lumber DOL="	1.60 plate grip								Ξ		0363	22
DOL=1.60	0										0		1 E
3) This truss	has been designed for	r a 10.0 psf bottom									1	·	A 1. 3
chord live	load nonconcurrent wi	th any other live loa	ds.								20	NGIN	FERIAS
4) * This trus	ss has been designed f	or a live load of 20.0)psf								1	2/0 ····	E. E. S.
on the bot	ttom chord in all areas	where a rectangle										ICA C	IL BY IN

- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 4)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI China China

September 19,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	B03	Common Girder	1	3	Job Reference (optional)	154261568

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:21 ID:BJzyclbJookKFi4BBf_x7mzCmoQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.8

Plate Offsets (X, Y): [4:Edge,0-3-8], [5:0-4-0,0-4-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 NO	5/TPI2014	CSI TC BC WB Matrix-MS	0.95 0.80 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 257 lb	GRIP 244/190 244/190 ET = 20%
BCDL	10.0	Code	IRC2018	D/TP12014	IVIALITX-IVIS							weight. 257 lb	FT = 20%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR	D 2x4 SP No.2 D 2x6 SP No.1 2x4 SP No.3 D Structural wood she 6-0-0 oc purlins, exi	athing directly applie	4) ed or 5)	Wind: ASCE Vasd=95mpl B=45ft; L=24 MWFRS (dir end vertical I plate grip DC All plates are	7-10; Vult=120m; h; TCDL=6.0psf; E lft; eave=4ft; Cat. ectional); cantileve left and right expos DL=1.60 e MT20 plates unle	ph (3-sec 3CDL=6.(II; Exp B er left and sed; Lum ess other	ond gust) Opsf; h=25ft; Enclosed; d right exposed ber DOL=1.6 wise indicate	ed ; 50 d.					
 Big d ceiling directly applied or 10-0-0 oc bracing. CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. CHORD (size) 4=0-3-8, 6=0-3-8 Max Horiz 6=-147 (LC 6) Max Uplift 4=-67 (LC 8), 6=-73 (LC 8) Max Grav 4=4655 (LC 13), 6=5115 (LC 14) CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to the provide mechanica													
FORCES	(lb) - Maximum Com Tension	pression/Maximum	, 0)	bearing plate capable of withstanding 73 lb uplift at joint 6 and 67 lb uplift at joint 4.									
TOP CHOR	D 1-2=-3702/100, 2-3= 1-6=-3013/72, 3-4=-	-3702/100, 3017/72	9)	This truss is International	designed in accor Residential Code	dance w	th the 2015 R502.11.1 a	ind					
BOT CHOR WEBS	D 5-6=-140/871, 4-5=- 2-5=-26/4741, 1-5=-	52/746 26/1882, 3-5=-28/19	02 10	R802.10.2 a Hanger(s) or	nd referenced star other connection	ndard AN device(s	ISI/TPI 1.) shall be	404					
1) 3-ply tru (0.131"> Top cho oc. Bottom staggere Web co	ss to be connected toget (3") nails as follows: rds connected as follows chords connected as follows ed at 0-7-0 oc. nnected as follows: 2x4 -	ther with 10d s: 2x4 - 1 row at 0-9- ows: 2x6 - 3 rows 1 row at 0-9-0 oc.	0	lb down and lb up at 2-10 1481 lb down down and 22 22 lb up at 1 selection of s responsibility	21 lb up at 0-10- 2-12, 1481 lb down n and 22 lb up at 1 2 lb up at 8-10-12, 10-10-12 on bottor such connection d y of others.	12, 1481 n and 22 6-10-12, , and 148 m chord. evice(s)	Ib down and Ib up at 4-10 and 1481 lb 11 lb down an The design/ s the	22)-12,		4	ALL A	OR THESE	ROLIN
 All loads except i CASE(S provides unless c Unbalar 	s are considered equally f noted as front (F) or bar s) section. Ply to ply conr d to distribute only loads otherwise indicated. Inced roof live loads have	applied to all plies, ck (B) face in the LO lections have been noted as (F) or (B), been considered for	LC IAD 1)	LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 1-2=-60, 2-3=-60, 4-6=-20 Concentrated Loads (lb)									

Vert: 7=-1420 (B), 8=-1417 (B), 9=-1417 (B), 10=-1417 (B), 11=-1417 (B), 12=-1417 (B)

3) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI A. GIL September 19,2022

C

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	C01	Monopitch Structural Gable	1	1	Job Reference (optional)	154261569

6-0-8

-0-10-8

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:21 ID:r7kjN?Y4qkoXfLoAD3i?dOzCoI1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Pa

Scale = 1:28.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.35	Vert(LL)	-0.05	6-11	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.37	Vert(CT)	-0.11	6-11	>668	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 24 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep	t* 6-3:2x4 SP No.3	 Bearing at journers Bearing ANSI/ designer shot Provide meaning plate 	hint(s) 5 consid TPI 1 angle to buld verify capa chanical conne e at joint(s) 5.	ers parallel t grain formula acity of beari ction (by othe	o grain value a. Building ng surface. ers) of truss	to		·				

TOP CHORD	Structural	l wood sheathing directly applied
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	2=0-3-8, 5=0-1-8
	Max Horiz	2=63 (LC 11)
	Max Uplift	2=-22 (LC 12)
	Max Grav	2=313 (LC 1), 5=218 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/17.	2-3=-79/79. 3-4=-45/52.

4-5=-121/58 BOT CHORD 2-6=-82/80, 5-6=-31/33 WEBS 3-6=-58/68

NOTES

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-10-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

chord and any other members.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

SEAL 036322 September 19,2022

Job	Truss	Truss Type Qty Ply Ga		Garman Homes - Wisteria A Roof					
Q2200859	C02	Monopitch	6	1	Job Reference (optional)	154261570			

6-0-8

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:22 ID:v?8OW8kUILhPyfR2ciTWkYzCoHo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8

Scale =	1:28.8
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.38 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 4-9 4-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly size) 2=0-3-8, 4 fax Horiz 2=98 (LC fax Grav 2=313 (LC (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-170/	athing directly applie applied. 4=0-1-8 12), 4=-12 (LC 12) C 1), 4=218 (LC 1) ipression/Maximum 79, 3-4=-137/97	 7) This truss is Internationa R802.10.2 8) This truss of structural w chord and 2 the bottom LOAD CASE(S 	s designed in acco al Residential Code and referenced sta lesign requires tha ood sheathing be /2" gypsum sheet chord.) Standard	rdance wi e sections Indard AN t a minim applied di rock be ap	ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	nd op to					
BOT CHORD	2-4=-77/125											
1) Wind: ASCE Vasd=95mp B=45ft; L=2 MWFRS (di 2-1-8, Interi and right ex exposed;C- reactions sf DOL=1.60 2) This truss h	F7-10; Vult=120mph h; TCDL=6.0psf; BC 4ft; eave=4ft; Cat. II; rectional) and C-C E or (1) 2-1-8 to 5-10-1 posed ; end vertical C for members and f iown; Lumber DOL= as been designed for	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to 2 zone; cantilever lef eft and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom	it							- III	MATH CA	ROLIN

- chord live load nonconcurrent with any other live loads.
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface.5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 2 and 12 lb uplift at joint 4.

Job	Truss	ss Truss Type		Ply	Garman Homes - Wisteria A Roof	15 4004 574
Q2200859	C03	Monopitch	6	1	Job Reference (optional)	154261571

1-8-11

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries. Inc. Mon Sep 19 07:39:22 ID:JsLyjzz1aVDaMkzunvqDXmzCoHU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1.25.2

30ale = 1.23.2											-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	0.00	4-9	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	4-9	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MR							Weight: 13 lb	FT = 20%	
LUMBER TOP CHORD	6) Provide mechanical connection (by others) of truss to 2x4 SP No 2 bearing plate capable of withstanding 18 lb uplift at joint												

BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or
	3-4-8 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 4=0-1-8
	Max Horiz	2=59 (LC 12)
	Max Uplift	2=-18 (LC 12), 4=-3 (LC 12)
	Max Grav	2=212 (LC 1), 4=103 (LC 1)

(lb) - Maximum Compression/Maximum

FORCES

Tension TOP CHORD 1-2=0/17, 2-3=-70/83, 3-4=-66/53 BOT CHORD 2-4=-78/74

NOTES

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-2-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value 4) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 5) bearing plate at joint(s) 4.

bearing plate capable of withstanding 18 lb uplift at joint 2 and 3 lb uplift at joint 4.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	s Truss Type Qty Ply Garman H		Garman Homes - Wisteria A Roof		
Q2200859	C04	Monopitch	4	1	Job Reference (optional)	154261572

7-0-0

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:22 ID: Cu6u79DCeysbNy4wVpi8uCzCoH9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:29.9

TCDL 10.0 BCLL 0.0*	Lumber DOL Rep Stress Incr	1.15 VES	BC	0 51									
BCLL 0.0*	Rep Stress Incr	VEC		0.51	Vert(CT)	-0.02	5-10	>999	180				
PCDI 10.0			WB	0.07	Horz(CT)	0.00	2	n/a	n/a	Waight: 22 lb	ET - 209/		
	Code	IRC2015/1112014	Mainx-AS							weight. 32 lb	FT = 20%		
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING 2x4 SP No.2 BRACING Structural wood she BOT CHORD Structural wood she BOT CHORD Kigid ceiling directly REACTIONS (size) 2=0-3-8,4 Max Horiz 2=272 (LC Max Uplift 2=245 (Ld Max Grav 2=295 (Ld (LC 3) LC 3)	athing directly applied applied. ↓=0-1-8, 5=0-3-8 11) : 12), 4=-19 (LC 12) C 1), 4=212 (LC 1), 5=	 6) Provide mech bearing plate 2 and 19 lb up 7) This truss is of International R802.10.2 an 8) This truss des structural word chord and 1/2 the bottom ch LOAD CASE(S) 	anical connection (capable of withstar oblift at joint 4. lesigned in accorda Residential Code se d referenced stand sign requires that a d sheathing be app " gypsum sheetroc ord. Standard	by othe nding 4 nce wi ections ard AN minimu blied di k be ap	ers) of truss to 5 lb uplift at jo th the 2015 R502.11.1 at SI/TPI 1. Jm of 7/16" rectly to the to oplied directly	o bint nd op to							
(LC 3) (Ib) - Maximum Compression/Maximum													
Max Grav 2-295 (LC 1), 4-212 (LC 1), 5-163 (LC 3) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1.2=0/17, 2-3=-218/81, 3-4=-198/125 BOT CHORD 1.2=0-017, 2-3=-218/81, 3-4=-198/125 WEBS 3-5=-106/169 NOTES 1) Wind: ASCE 7-10; Vull=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cal. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a live loads. 3) "This truss has been designed for a live loads. 3) "This truss has been designed for a live loads. 3) "This truss has been designed for a live loads. 3) "This truss has been designed for a live loads. 4) Bearing at joint(3) 4 considers parallel to grain value using ANS/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface.													

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	C05	Monopitch Structural Gable	1	1	Job Reference (optional)	154261573

2-11-3

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:22 ID:VTSgUpI5QB6Mb6SPvFjsE3zCo9J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.07 0.12 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 9-14 9-14 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-8, (Max Horiz 2=72 (LC (LC 12) Max Grav 2=206 (LC (LC 1), 8= (lb) - Maximum Com Tension 1-2=0/17, 2-3=-98/8 4-5=-42/36, 5-6=-42 2-9=-85/81, 8-9=-35	athing directly applied. 6=3-7-8, 7=3-7-8, 8=(11) 2 12), 6=-1 (LC 9), 7= C 1), 6=63 (LC 1), 7= -213 (LC 1) 10; 10; 10; 10; 10; 10; 10; 10; 10; 10;	d, 7) 0-3-8 8) 7	* This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 6, 7 lb uplift a This truss is International R802.10.2 ar This truss de structural wo chord and 1/2 the bottom cl DAD CASE(S)	Interfactorial and a second	for a liv s where Il fit betw a (by oth anding 1 uplift at dance w sections dard AN a minim pplied di ock be ap	e load of 20.0 a rectangle veen the botto ers) of truss t lb uplift at jo joint 2. th the 2015 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the t oplied directly	Opsf om int and top y to				vveignt: 23 lb	<u>r1 = 20%</u>	
	6-7=-35/38	26/46												
	4-1=-100/00, 0-9=-1	30/40												
 Wind: ASC Vasd=95m B=45ft; L=: MWFRS (c 2-1-8, Intel and right e exposed;C reactions s DOL=1.60 Truss des only. For s see Standa or consult Gable stud This truss i chord live i 	CE 7-10; Vult=120mph ph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C E rior (1) 2-1-8 to 6-10-4 c-C for members and f shown; Lumber DOL= igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi ds spaced at 2-0-0 oc. has been designed fo load nonconcurrent wi	(3-second gust) IDL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to 2 zone; cantilever left left and right orces & MWFRS for 1.60 plate grip In the plane of the trust (normal to the face), d Details as applicab gner as per ANSI/TP r a 10.0 psf bottom ith any other live load	ss le, l 1. Is.							Contraction of the second seco		SEA ORGINICAL G	L 22 ILBER 19,2022	A Dawning and

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	P01	Piggyback	2	1	Job Reference (optional)	154261574

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:23 ID:OAOoBuOLaAKAzR9vGrXQ44zCmd3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.9									-	1		
Plate Offsets (X, Y)	: [2:0-2-1,0-1-8],	[8:0-2-1,0-1-8]										
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 62 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
	Structure	wood aboathing directly applied
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	2=11-7-11, 8=11-7-11, 10=11-7-11
	()	11=11-7-11, 12=11-7-11,
		13=11-7-11, 14=11-7-11,
		15=11-7-11, 19=11-7-11
	Max Horiz	2=93 (LC 11), 15=93 (LC 11)
	Max Uplift	10=-39 (LC 12), 11=-33 (LC 12),
		13=-33 (LC 12), 14=-39 (LC 12)
	Max Grav	2=111 (LC 18), 8=103 (LC 1),
		10=172 (LC 18), 11=168 (LC 18),
		12=119 (LC 1), 13=169 (LC 17),
		14=173 (LC 17), 15=111 (LC 18),
		19=103 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/15,	2-3=-81/68, 3-4=-88/47,
	4-5=-97/8	8, 5-6=-98/90, 6-7=-66/31,
	7-8=-60/5	0, 8-9=0/15
BOT CHORD	2-14=-50/	76, 13-14=-50/76, 12-13=-50/76,
	11-12=-50	0/76, 10-11=-50/76, 8-10=-50/76
WEBS	5-12=-78/	16, 4-13=-131/87, 3-14=-132/82,
	6-11=-13	1/86, 7-10=-132/83
NOTES		

NOTES

 Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 6-5-9, Exterior (2) 6-5-9 to 9-5-9, Interior (1) 9-5-9 to 12-8-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 13, 39 lb uplift at joint 14, 33 lb uplift at joint 11 and 39 lb uplift at joint 10.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	P02	Piggyback	16	1	Job Reference (optional)	154261575

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:23 ID:9_PFRRi0hsUdTHZjEbTHbLzCmcg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.9										
Plate Offsets (X, Y): [2:0-2-1,0-1-8],	[4:0-2-1,0-1-8]								
Loading	(psf)	Spacing	2-0-0	csi	DEFL	in	(loc)	l/defl	L/d	

Loading	(psf)	Spacing 2-	-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL 1.	.00		TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL 1.	.15		BC	0.54	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr Y	ES		WB	0.07	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IF	RC2015	/TPI2014	Matrix-AS							Weight: 49 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=11-7-11 7=11-7-11 Max Horiz 2=93 (LC Max Uplift 2=-41 (LC Max Grav 2=323 (LC (LC 1), 7= 1) (lb) - Maximum Com Tension	athing directly applied. applied. I, 4=11-7-11, 6=11-7-11, I, 11=11-7-11 11), 7=93 (LC 11) : 12), 4=-41 (LC 12), : 12), 11=-41 (LC 12) C 1), 4=323 (LC 1), 6=33 :323 (LC 1), 11=323 (LC pression/Maximum	4) 5) 6) 7) , 8) 33 9) 10)	Gable requir Gable studs This truss ha chord live loc * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 2, 41 lb uplift uplift at joint This truss lo International R802.10.2 at This truss de structural wo	es continuous b spaced at 6-0-0 as been designe ad nonconcurrei has been design m chord in all ar by 2-00-00 wide ny other membe chanical connect e capable of with t at joint 4, 41 lb 4. designed in acco Residential Coo nd referenced s asign requires th pod sheathing b	ottom chor o cc. d for a 10.0 nt with any ned for a liv eas where will fit betw rs. tion (by oth nstanding 4 uplift at joi cordance w de sections tandard AN nat a minim e applied d	d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the botto ers) of truss t 1 lb uplift at j nt 2 and 41 li ith the 2015 s R502.11.1 a USI/TPI 1. um of 7/16" irrectly to the l	ids. Dpsf om oint o und					
TOP CHORD	1-2=0/15, 2-3=-266/ 4-5=0/15	108, 3-4=-266/111,	11)	the bottom c See Standar	bord. d Industry Pigg	/back Trus	s Connection	y 10					
BOT CHORD	2-6=-27/142, 4-6=-29	9/142	,	Detail for Co	nnection to bas	e truss as a	applicable, or						
WEBS	3-6=-147/0			consult quali	ified building de	signer.							
NOTES			LO	AD CASE(S)	Standard							munn	unin.
 Unbalance this design 	ed roof live loads have	been considered for										"ATH CA	ROUT
		(0										01	

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 6-5-9, Exterior (2) 6-5-9 to 9-5-9, Interior (1) 9-5-9 to 12-8-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 036322 September 19,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V01	Valley	1	1	Job Reference (optional)	154261576

Run: 8.43 E Jan 6 2022 Print: 8.430 E Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 10:36:56 ID:PDUtZ6cvRtAG0SZ7csefTLzCo6K-BAMOsz0e5kaxNFv9X1ibZ_3tTnGORtoIJ8GcbJyc5Jb

> 3x4 = 2

4-9-15

2-3-4

3

2x4 💊

i klnlu

818 Soundside Road Edenton, NC 27932

2-6-11

2-6-11

2x4 🥠

2-3-4

0-0-4

2-6-15

5-1-5

Scale = 1:27.4

Plate Offsets (X, Y): [2:0-2-0,Edge]

	(X, T). [2.0-2-0,Euge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB 4 Matrix-MP	0.17 0.26 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95 B=45ft; L MWFRS cantileve right expt for reactin DOL=1.6 3) Truss de only. For see Stan or consul 4) Gable ret 5) Gable stu chord live 7) * This trus on the bc 3-06-00 t chord and	 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-1-5 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=204/5- Max Horiz 1=-45 (LC Max Uplift 1=-1 (LC (lb) - Max. Comp./M (lb) or less except w 1-2=-261/39 ted roof live loads have mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C E r left and right exposed osed; C-C for members ons shown; Lumber DC 0 signed for wind loads in t qualified building desi quires continuous botto uds spaced at 6-0-0 oc. s has been designed fo e load nonconcurrent wi ss has been designed fo totom chord in all areas all by 2-00-00 wide will d any other members. 	eathing directly applied applied or 10-0-0 oc 1-5, 3=204/5-1-5 2 10) 12), 3=-1 (LC 12) lax. Ten All forces 2 then shown. been considered for a (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR DL=1.60 plate grip In the plane of the tru d (normal to the face) d Details as applicat gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto	8) Provide bearing and 1 lt 9) This tru Internat R802.1 5 LOAD CAS 250 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	mechanical connectic plate capable of withs o uplift at joint 3. ss is designed in acco ional Residential Code 0.2 and referenced sta E(S) Standard	n (by oth tanding 1 rdance w e sections indard AN	ers) of truss to Ib uplift at joi ith the 2015 s R502.11.1 at ISI/TPI 1.	o nt 1		With the		SEA 0363	L 22 LBFFIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Design	NING - Verify design parameters valid for use only with MiTek®	ers and READ NOTES ON connectors. This design i	THIS AND INCLUDED MI s based only upon param	TEK REFERENCE PAGE MII neters shown, and is for an ir	-7473 rev. 5 Idividual bui	/19/2020 BEFORE	E USE. not				ENGINEER		

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V02	Valley	1	1	Job Reference (optional)	154261577

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:23 ID:E5KjGMT?1UnqBmD?S2x3X0zCo6V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34

-		i			1								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20 ²	15/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.37 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 8-5-5 oc purlins. Rigid ceiling directly bracing. (size) 1=8-5-5, 3 Max Horiz 1=-77 (LC Max Uplift 1=-23 (LC 4=-76 (LC Max Grav 1=61 (LC (LC 1)	athing directly applied applied or 6-0-0 oc 3=8-5-5, 4=8-5-5 ; 10) ; 22), 3=-23 (LC 21), ; 12) 21), 3=61 (LC 22), 4:	6 7 d or 8 9 =625	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 23 lb uplift This truss is International R802.10.2 ar 	is been designed ad nonconcurrent has been designe in chord in all aree by 2-00-00 wide hanical connectio e capable of withs at joint 3 and 76 designed in accoo Residential Code and referenced sta Standard	for a 10.0 with any d for a liv as where vill fit betw as n (by oth tanding 2 Ib uplift a rdance w e sections ndard AN) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 3 lb uplift at ju t joint 4. ith the 2015 R502.11.1 a ISI/TPI 1.	ds. Ipsf om o bint nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	(lb) - Maximum Com Tension 1-2=-100/243, 2-3=- 1-4=-209/136, 3-4=- 2-4=-460/165 ad roof live loads have b CE 7-10; Vult=120mph	pression/Maximum 100/243 209/136 been considered for (3-second gust)										annin CA	Destruction

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-2-15, Exterior (2) 4-2-15 to 7-2-15, Interior (1) 7-2-15 to 8-5-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 6-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V03	Valley	1	1	Job Reference (optional)	154261578

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:24 ID:EqolhYGL1GeEf9Qkz_84LRzCo6m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.9

FORCES

WEBS

NOTES

2)

3)

4)

5)

Δ

TOP CHORD

BOT CHORD

this design.

DOL=1.60

Max Uplift 1=-64 (LC 22), 3=-64 (LC 21),

(Ib) - Maximum Compression/Maximum

1=59 (LC 12), 3=59 (LC 12), 4=954

4=-125 (LC 12)

(LC 1)

1-2=-162/416, 2-3=-163/416

1-4=-315/172, 3-4=-315/172

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=120mph (3-second gust)

left and right exposed ; end vertical left and right

reactions shown; Lumber DOL=1.60 plate grip

Gable studs spaced at 6-0-0 oc.

exposed;C-C for members and forces & MWFRS for

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to

3-0-4, Interior (1) 3-0-4 to 5-10-15, Exterior (2) 5-10-15

to 8-10-15, Interior (1) 8-10-15 to 11-9-9 zone; cantilever

Max Grav

Tension

2-4=-752/244

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.44	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.45	Horiz(TL)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 49 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins.	athing directly applie	6) 7) ed or 8)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mect	s been designed d nonconcurrent as been designen n chord in all area y 2-00-00 wide w y other members nanical connectio	for a 10.0 with any d for a liv s where ill fit betv n (by oth) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ads. Opsf om to					
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	0)	bearing plate 1, 64 lb uplift	capable of withs at joint 3 and 12	5 lb uplift	4 lb uplift at j at joint 4.	joint					
REACTIONS	(size) 1=11-9-5, Max Horiz 1=-109 (Lu	3=11-9-5, 4=11-9-5 C 10)	9)	International R802.10.2 ar	Residential Code Residential Code	sections	ith the 2015 R502.11.1 a ISI/TPI 1.	and					

11-9-5

LOAD CASE(S) Standard

SEAL 036322 September 19,2022

ENGINEERING BY EREPACED A MITEK Attiliate 818 Soundside Road Edenton, NC 27932

onent

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Comp Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V04	Valley	1	1	Job Reference (optional)	154261579

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:24 ID:ilqFK34IoMdVkhBf1drKh3zCo70-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4、

Page: 1

<u>15</u>-1-5

2x4 II

Scale = 1:53.2

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.34	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 66 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 0.2 0.3 wood sheat ourlins. ng directly 1=15-1-5, 7=15-1-5, 1=-141 (L 1=-127 (L 6=-141 (L)	athing directly applie applied or 10-0-0 oc 5=15-1-5, 6=15-1-5, 8=15-1-5 C 10) C 10), 5=-93 (LC 11) C 12), 8=-141 (LC 12 C 12), 8=-142 (LC 12)	4 d or 5 6 7 1, 8 1, 8 2) 549	 Truss desig only. For stu- see Standard or consult qu Gable requir Gable studs This truss had the bottor 3-06-00 tall had the chord and ar Provide meet bearing plate joint 1, 93 lb 	ned for wind loads ids exposed to wind d Industry Gable E alified building dee es continuous bott spaced at 6-0-0 oc is been designed fad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wil y other members, hanical connection e capable of withsts uplift at joint 5, 14*	in the pl d (norm nd Deta signer as om chor c. or a 10.0 vith any for a liv s where l fit betw with BC (by oth anding 1 1 lb uplif	ane of the tru al to the face Is as applical s as applical s per ANSI/Tf d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0psf DL = 10.0psf 27 lb uplift at t at joint 8 an	uss), ole, Pl 1. ds. opsf o o d					
FORCES	(lb) - Max Tension 1-2=-186/	(LC 18), 7 17) imum Com	=437 (LC 17), 8=556 pression/Maximum 261/124, 3-4=-256/1	5 (LC 9 24, L	This truss is International R802.10.2 a	designed in accord Residential Code nd referenced stan Standard	dance w sections dard AN	th the 2015 R502.11.1 a ISI/TPI 1.	nd					
BOT CHORD	4-5=-185/	167 116, 7-8=-2	29/116, 6-7=-29/116	,										
WEBS	3-7164/	110 0 2-8510	9/335 4-6510/335										mmm	UIII.
NOTES	5-7 104/	0, 2-001;	5/555, +-0=-518/555										"TH CA	Ro
 Unbalance this design Wind: AS0 Vasd=95r B=45ft; L= MWFRS (3-0-4, Inte 10-6-15, I left and rig exposed; reactions DOL=1.60 	ed roof live I n. CE 7-10; Vu nph; TCDL= =24ft; eave= directional) : rrior (1) 3-0 nterior (1) 10 ght exposed ght exposed shown; Lum	oads have It=120mph 6.0psf; BC 4ft; Cat. II; and C-C E; 4 to 7-6-15 0-6-15 to 11; ; end vertic bers and for ber DOL=1	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) 0-0-4 to , Exterior (2) 7-6-15 5-1-9 zone; cantilevec cal left and right orces & MWFRS for 1.60 plate grip	to er							Within		SEA 0363	L 22 BERTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١ Gin Ginn September 19,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V05	Valley	1	1	Job Reference (optional)	154261580

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:24 ID:Hd5FZQd5W_zlo?sYMLhfhFzCo7b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.4

10.0	Code	YES IRC2015/TPI2014	WB 0.0 Matrix-MS	1 Vert(TL) 9 Horiz(TL)	n/a 0.00	5	n/a n/a	999 n/a	Weight: 86 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood she 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS (size) 1=18-5-5 8=18-5-5 Max Horiz 1=-171 (L Max Uplift 1=-42 (LC 6=-136 (L 9=559 (L 9=559)	eathing directly applied of r applied or 10-0-0 oc 3-8 , 5=18-5-5, 6=18-5-5, , 9=18-5-5 C 10), 5=-13 (LC 11), C 12), 9=-136 (LC 12) C 18), 5=-119 (LC 17), C 18), 8=503 (LC 17), C 17)	 3) Truss design only. For stu see Standard or consult qu 4) Gable require 5) Gable studs : 6) This truss ha chord live loa 7) * This truss h on the bottom 3-06-00 tall b chord and an 8) Provide med bearing plate 1, 13 lb uplift uplift at joint 0 9) This truss is a International B802 10 2 ar 	ted for wind loads in the ds exposed to wind (not l Industry Gable End D alified building designe as continuous bottom or spaced at 6-0-0 oc. s been designed for a d nonconcurrent with a as been designed for a n chord in all areas who y 2-00-00 wide will fit b y other members, with nanical connection (by capable of withstandir at joint 5, 136 lb uplift 6. designed in accordance Residential Code secti to referenced standard	 a plane of the tri rmal to the face stails as applica as per ANSI/TI nord bearing. 0.0 psf bottom ny other live loa live load of 20.0. re a rectangle etween the botti BCDL = 10.0psi others) of truss i g 42 lb uplift at j it joint 9 and 130 with the 2015 ons R502.11.1 a ANSI/TP1 	uss), ble, PI 1. ds. Dpsf o o oint ô lb					
FORCES (lb) - Maximum Con Tension	npression/Maximum	LOAD CASE(S)	Standard							
TOP CHORD 1-2=-194/156, 2-3=- 4-5=-154/107	246/142, 3-4=-221/141	Ι,								
BOT CHORD 1-9=-52/136, 8-9=-5 5-6=-52/114	52/110, 6-8=-52/110,								, minini	1111
 WEBS 3-8=-216/0, 2-9=-40 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=120mpt Vasd=95mph; TCDL=6.0psf; BC B=45ft; L=24ft; eave=4ft; Cat. II 	7/236, 4-6=-406/236 been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed;						U	AN AN	OR LESS SEA	

to 12-2-15, Interior (1) 12-2-15 to 18-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V06	Valley	1	1	Job Reference (optional)	154261581

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:25 ID:6FPghrIX6NRkRijAjTB5ZMzCo81-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

21-9-5

Scale = 1:70.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.48 0.42 0.34	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=21-9-5, 8=21-9-5, Max Horiz 1=-204 (L Max Uplift 1=-123 (L Max Grav 1=150 (LC (LC 18), 8 17), 14=0	athing directly applied applied or 6-0-0 oc 3-8 5=21-9-5, 6=21-9-5, 9=21-9-5, 14=21-9-5 C 10) C 10), 6=-156 (LC 12 C 12) C 11), 5=0 (LC 11), 6= =894 (LC 17), 9=626 (LC 11)	3) or 5) 6) 7) 8)), 8) (LC 10	Truss design only. For stu see Standard or consult qu Gable requirr Gable studs 3 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate joint 1, 161 lb This truss is International R802.10.2 ar	need for wind loads ds exposed to wi d Industry Gable E alified building de as continuous bot spaced at 6-0-0 o s been designed d nonconcurrent has been designed n chord in all area y 2-00-00 wide w yo other members hanical connectio capable of withs b uplift at joint 9 a designed in accor Residential Code nd referenced star Standard	in the pind (norm End Deta signer as tom chor c. for a 10.0 with any d for a liv s where ill fit betw , with BC n (by oth tanding 1 nd 156 lb dance w sections ndard AN	ane of the tru: al to the face) ils as applicab s per ANSI/TP d bearing. 0 psf bottom other live loac e load of 20.0 a rectangle veen the botto DL = 10.0psf. ers) of truss to 23 lb uplift at joint (i th the 2015 ; R502.11.1 ar ISI/TPI 1.	ss le, l 1. ls. osf m 5.					
TOP CHORD	(lb) - Maximum Com Tension 1-2=-176/406, 2-3=- 4-5=-151/298	pression/Maximum 121/331, 3-4=-121/29	3,										
BOT CHORD	1-9=-148/65, 8-9=-1 5-6=-148/65	48/65, 6-8=-148/65,										, uninnin	1111
WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95r B=45ft; L: MWFRS 3-0-4, Inte 10-10-15 zone; can and right MWFRS	3-8=-580/0, 2-9=-43 ed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C E: erior (1) 3-0-4 to 10-10- to 13-10-15, Interior (1) titlever left and right exp exposed; C-C for memb for reactions shown. Lu	3/244, 4-6=-432/243 been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) 0-0-4 to 15, Exterior (2)) 13-10-15 to 21-5-10 posed ; end vertical le vers and forces & mber DOL=1.60 plate	ft							Within		SEA 0363	

Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 10-10-15, Exterior (2) 10-10-15 to 13-10-15, Interior (1) 13-10-15 to 21-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G 11111111 September 19,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V07	Valley	1	1	Job Reference (optional)	154261582

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:25 ID:szJQg8mZEA0qn5xvixv?JHzCo8i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.5

Plate Offsets	(X, Y): [4:0	-1-0,0-1-0],	[4:0-1-0,0-1-0], [5:0	-1-12,0-1	-12], [5:0-1-12,0)-1-12], [6:0-1-0	,0-1-0], [6:0)-1-0,0-1-0], [8:0-2-1,0	-1-0]					
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.83	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.58	Vert(TL)	n/a	-	n/a	999	MT18HS	244/190	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.32	Horiz(TL)	0.03	9	n/a	n/a			
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 130 lb	FT = 20%	
				2) Wind: ASCE	7-10: Vult=120)mph (3-sec	ond aust)							
TOP CHORD	2x4 SP N	lo.2			Vasd=95mp	h; TCDL=6.0psf	f; BCDL=6.0	Opsf; h=25ft;							
BOT CHORD	2x4 SP N	0.2			B=45ft; L=2	5ft; eave=4ft; Ca	at. II; Exp B	Enclosed;							
WEBS	2x4 SP N	lo.2			MWFRS (dir	rectional) and C	-C Exterior	(2) 0-0-4 to							
OTHERS	2x4 SP N	lo.3			3-0-4, Interio	or (1) 3-0-4 to 12	2-6-15, Exte	erior (2) 12-6-	15						
BRACING					to 15-6-15, I	nterior (1) 15-6-	15 to 24-9-	10 zone;							
TOP CHORD	Structura	al wood she	athing directly applie	ed or	cantilever le	ft and right expo	osed; end v	ertical left an	ld						
	6-0-0 oc	purlins.			fight expose	a;C-C for memo	POI -1 60		(5						
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 10-0-0 or	0	DOL=1.60	snown, Lumbe		plate grip							
WEBS	1 Row at	midpt	12-14	3	 Truss desig 	ned for wind loa	ads in the p	ane of the tru	JSS						
JOINTS	1 Brace a	at Jt(s): 14			only. For stu	uds exposed to	wind (norm	al to the face),						
REACTIONS	(size)	1=25-1-5.	9=25-1-5, 10=25-1-	5.	see Standar	d Industry Gable	e End Deta	ils as applicat	ble,						
	()	12=25-1-5	5, 13=25-1-5	-,) All ploton or	allied building	designer as	s per ANSI/ I i	-11. d						
	Max Horiz	1=-235 (L	C 10)	-	 All plates are All plates are 	$a 2 \times 4 MT20$ unly	ariess ourier	wise indicated	u.						
	Max Uplift	10=-110 (LC 12), 13=-111 (LC) 12) e	Attach MiTe	k MTHNH18 (H:	alf and Half	Plate) on ea	ch						
	Max Grav	1=423 (LC	C 18), 9=399 (LC 17),	face of truss	with USP NA11	1 nails (0.13	31" x 1.5") in i	pre-						
		10=767 (L	_C 18), 12=365 (LC	16),	punched hol	es provided. All	nail holes i	nust be filled	(6						
		13=776 (L	_C 17)		Nails per sid	le 12 nails total)									
FORCES	(lb) - Max	kimum Com	pression/Maximum	7) See HINGE	PLATE DETAIL	S for plate	placement.							
	Tension			8	 Provisions n 	nust be made to	prevent lat	eral moveme	ent of						
TOP CHORD	1-2=-497	/111, 2-3=-	400/108, 3-5=-221/4	7,	hinged mem	ber(s) during tra	ansportation	1.					mmm	1111	
	5-7=-221	/47, 7-8=-4	00/108, 8-9=-485/10	11 9) Gable requir	es continuous b	pottom chor	d bearing.				3	WAH CA	ROUL	
BOT CHORD	1-13=-51	/418, 12-13	5=-51/261,	1	 Gable studs This tensor has been studed. 	spaced at 6-0-0	J OC.					N	R	All's	
WEDO	C-=21-01	01/201, 9-10	/=-01/30/ _102/12010111_1	י ב/ גר	1) This truss ha	as been designe	ed for a 10.0	other live log	de			×.	O' FESS	92Vin	2
WEDS	2-1343	6/192 8-10	F=-102/120, 12-14=-/)431/101	24/3,	2) * This trues I	has been design	ned for a liv		us. Inef		1	23		1.1	-
NOTES	2-1040	0/132, 0-10			on the botto	m chord in all ar	reas where	e loau of 20.0 a rectangle	Jhai		4		2	- K - 13	
NUIES	ad roof live	loodo hovo	haan considered for		3-06-00 tall	bv 2-00-00 wide	will fit betw	een the bott	om				SEV.	1 1 1	
1) Unbalanc	ed roor live	loads have	been considered to		chord and a	ny other membe	ers, with BC	DL = 10.0psf			=	:	SLA	- : =	1
this desig				1	3) Provide med	hanical connect	tion (by oth	ers) of truss t	0		=		0363	22 : =	
					bearing plate	e capable of with	hstanding 1	11 lb uplift at	joint		-	3			
					13 and 110	lb uplift at joint 1	10.					-	1. A.	- A 1 - E	
				1	This truss is	designed in acc	cordance w	ith the 2015				2.0	NO NOINE	ERIAS	
					International	Residential Co	de sections	R502.11.1 a	ind			1	S	ET IN	
					R802.10.2 a	na reterenced s	standard AN	ISI/TPI 1.					A G	ILBUIN	
				L	OAD CASE(S)	Standard							111111	in the second se	
													September	19 2022	
													Copionibei		

t 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Wisteria A Roof	
Q2200859	V08	Valley	1	1	Job Reference (optional)	154261583

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Sep 19 07:39:26 ID:9wOGmV8fQsBL7q3uQj2emvzBWcs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.9

Plate Offsets (X, Y): [8:0-1-0,0-1-0], [8:0-1-0,0-1-0], [9:0-1-12,0-1-12], [9:0-1-12,0-1-12], [10:0-1-0,0-1-0], [10:0-1-0,0-1-0]

Η

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.20 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT18HS Weight: 212 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood st 6-0-0 oc purlins. Rigid ceiling direct bracing.	neathing directly applie tly applied or 10-0-0 oc	BC W d or	DT CHORD	1-30=-69/128, 29-3(27-28=-49/90, 26-2) 24-25=-49/90, 22-2 20-21=-49/90, 19-2(17-18=-49/90 7-31=-214/243, 31-1 11-32=-214/243, 25 24-32=-13/10, 6-26 4-28=-155/82, 3-29 12-22=-296/0, 13-2 15-19=-137/102, 16	0=-49/9 7=-49/9 4=-49/9 0=-49/9 32=-21- -31=-2 =-380/6 =-144/8 1=-95/7 -18=-1	0, 28-29=-49 0, 25-26=-49 0, 21-22=-49 0, 18-19=-49 4/243, 7/12, 8, 5-27=-99/8 6, 14-20=-15 75/64	/90, /90, /90, /90, /90, 34, /82, 5/80,	 This cho * Tr on t 3-00 cho Pro bea join upli 30, 	s truss h rd live lo his truss he botto 6-00 tall rd and a vide me ring plat t 1, 40 lb ft at join 45 lb up	as bee ad nor has be m cho by 2-0 ny oth chanica e capa o uplift : 28, 53 lift at jo	In designed for a nconcurrent with a een designed for a rd in all areas wh 0-00 wide will fit b er members, with al connection (by ble of withstandir at joint 26, 51 lb u 3 lb uplift at joint 2 bint 21, 43 lb uplif	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. others) of truss to ng 133 lb uplift at uplift at joint 27, 51 lb 29, 35 lb uplift at joint t at joint 20 and 90 lb
WEBS REACTIONS	1 Row at midpt (size) 1=27-4 19=27- 26=27- 29=27- Max Horiz 1=-262 Max Uplift 1=-133 26=-40 28=-51 30=-35 Max Grav 1=205 19=144 21=106 24=175 26=383 28=193 30=178	25-31, 24-32, 6-26, - 0, 17=27-4-0, 18=27-4 4-0, 20=27-4-0, 21=27-4 4-0, 24=27-4-0, 25=27-4-0, 27=27-4-0, 28=27-4-0, 30=27-4-0, 37=27-4-0, 30=27-4-0, 37=27-4-0, 30=27-4-0, 30=20-20, 20-20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DTES Unbalanced this design. Wind: ASCE Vasd=95mph B=45ft; L=27 MWFRS (dirr 3-0-4, Interio 16-8-4, Interio 16-8-4, Interi and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are	roof live loads have 7-10; Vult=120mph r; TCDL=6.0psf; BC ff; eave=4ft; Cat. II; ectional) and C-C E r (1) 3-0-4 to 13-8-4 or (1) 16-8-4 to 27- oosed ; end vertical c for members and f own; Lumber DOL= ned for wind loads i ids exposed to wind d Industry Gable Em ialified building desis e MT20 plates unles	been of CDL=6.0 Exp B Exterior 4, Exter 0-4 zor left and forces & 1.60 pla n the pla d (norm d Deta igner as so other	considered fo cond gust) Dpsf; h=25ft; ; Enclosed; (2) 0-0-4 to ior (2) 13-8-4 te; cantilever d right & MWFRS for ate grip lane of the tru- al to the face ils as applical s per ANSI/TF wise indicate	r to left Jss), ble, PI 1. d.	upli 14) This Inte R80 LOAD (ft at join s truss is rnationa j2.10.2 a CASE(S)	19. desig: I Resid and refi	ned in accordanc Jential Code secti erenced standard Indard	e with the 2015 ons R502.11.1 and ANSI/TPI 1.
FORCES TOP CHORD	(lb) - Maximum Co Tension 1-2=-285/262, 2-3 4-5=-257/189, 5-6 7-9=-221/47, 9-11 12-13=-253/259, 14-15=-133/117, 16-17=-103/67	-289/241, 3-4=-270/2 -252/260, 6-7=-276/1 -221/47, 11-12=-276/ 3-14=-215/189, 5-16=-169/50,	5) 6) 93, 191, 7) 8) 9) 10	All plates are Attach MiTek face of truss punched hole Nails per side See HINGE I Provisions m hinged mem Gable require) Gable studs	2×4 MT20 unless (≤ MTHNH18 (Half a with USP NA11 nai es provided. All nail e 12 nails total). PLATE DETAILS fo uust be made to pre ber(s) during transp es continuous botto spaced at 2-0-0 oc.	otherwi nd Half ils (0.13 holes i por plate vent lat portation or chor	se indicated. Plate) on ead 31" x 1.5") in j must be filled placement. eral moveme h. d bearing.	ch pre- (6 nt of		1111111		SEA 0363	

September 19,2022

Page: 1

/	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
	Safety Information available from Truss Plate Institute 2670 Crain Highway, Suite 203 Waldorf, MD 20601

