

< 19.2"O.C. ♠

	SHOP DRAWING APPROVAL	cation of the THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS designer is of the truss support LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS To insure AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.	BY: DATE: DATE:	by: Austrat - 2004 Austrat - 2004 Austrat - 2004	EMS, LLC Carolina Structural Systems	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems	SF P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd. Star, NC 27356 910-491-9004
Net Qty	SHOP DRA	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS AYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFOI TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU	APPROVED BY:	QUALITY AUDITED IBC 7704.2 IBC 2303.4	CAROLINA STRUCTURE SYSTEMS, LLC Sar, NC - Finit E3-437 303, 401 - 80004	ROOF DATA	Roof Area: 1785.76 SF
2	A NUC	it the specification of the THIS LAYOUT IS TH THIS LAYOUT IS TH THIS building designer is THA COUTS. REVIEW The design of the truss support LAYOUTS. REVIEW neral guidance regarding TO INSURE AGAINS fison, WI 53179.	REVIEWED BY:	Plan: HONEYSUCKLE A & B	Date: 9/22/2022	Sales Rep: RW	Designer: JSP
	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY	These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss structure including headers, beams, walls, and colurms is the responsibility of the building designer. For general guidance regarding bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, 583 D'Onifrio Drive; Madison, WI 53179.		Job #: Q2200855 GARAGE RIGHT	Customer: GARMAN HOMES	Site Address:	City, ST, ZIP:

	Plies	Net Qty
-2.0E	2	2
E	2	2
E	2	2
E	2	2
E	2	2
E	2	2
E	3	3

Trenco RE: Q2200855 - Garman Homes - Honeysuckle A & B 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: GARMAN HOMES Project Name: Lot/Block: Subdivision: SERENITY Model: HONEYSUCKLE Address: City: FUQUAY-VARINA State: NC General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 120 mph Design Method: MWFRS (Directional)/C-C hybrid Wind ASCE 7-10 Roof Load: 40.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: B

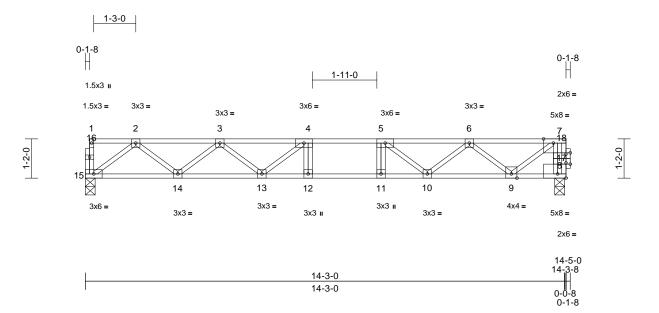
No.	Seal#	Truss Nam	e Date
1	154309745	F201	9/21/22
2	154309746	F202	9/21/22
3	154309747	F203	9/21/22
4	154309748	F204	9/21/22
5	154309749	F205	9/21/22
6	154309750	F206	9/21/22
7	154309751	F207	9/21/22
8	154309752	K201	9/21/22
9	154309753	K202	9/21/22
10	154309754	K203	9/21/22

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

September 21,2022

Job	Truss	Truss Type	Qty	Garman Homes - Honeysuckle A & B		
Q2200855	F201	Floor	1	1	Job Reference (optional)	154309745

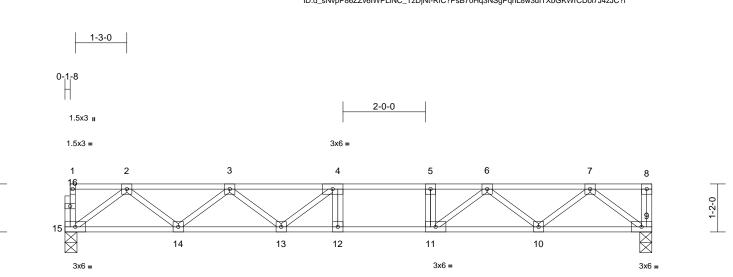
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:45 ID:ZTH8Lp_IgcqWaJ4v_hnmkozDjPi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.3

Plate Offsets (X, Y): [7:0-3-8,Edge], [8:Edge,0-1-8], [17:0-1-8,0-0-7], [18:0-1-8,0-0-7]

Loading (psf) Spacing 1-7-3 CSI DEFL in (loc) I/defl L/d I	PLATES GRIP
	MT20 244/190
TCDL 10.0 Lumber DOL 1.00 BC 0.77 Vert(CT) -0.19 12-13 >902 240	
BCLL 0.0 Rep Stress Incr NO WB 0.42 Horz(CT) 0.03 8 n/a n/a	
BCDL 5.0 Code IRC2015/TPI2014 Matrix-S V	Weight: 76 lb FT = 20%F, 11%E
LUMBER 6) CAUTION, Do not erect truss backwards.	
TOP CHORD 2x4 SP No.2(flat) LOAD CASE(S) Standard	
BOT CHORD 2x4 SP No.1(flat) 1) Dead + Floor Live (balanced): Lumber Increase=1.00.	
WEBS 2x4 SP No.3(flat) Plate Increase=1.00	
OTHERS 2x4 SP No.2(flat) Uniform Loads (lb/ft)	
BRACING Vert: 8-15=-8, 1-7=-80	
TOP CHORD Structural wood sheathing directly applied or Concentrated Loads (lb)	
6-0-0 oc purlins, except end verticals. Vert: 7=-4923	
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	
REACTIONS (size) 8=0-3-8, 15=0-3-8	
Max Grav 8=5538 (LC 1), 15=610 (LC 1)	
FORCES (Ib) - Maximum Compression/Maximum	
Tension	
TOP CHORD 1-15=-34/0, 7-8=-5533/0, 1-2=-2/0,	
2-3=-1235/0, 3-4=-1883/0, 4-5=-2023/0,	
5-6=-1645/0, 6-7=-720/0	
BOT CHORD 14-15=0/750, 13-14=0/1697, 12-13=0/2023,	
11-12=0/2023, 10-11=0/2023, 9-10=0/1323, 8-9=0/0	
WEBS 7-9=0/890, 2-15=-939/0, 6-9=-784/0,	
2-14=0/631, 6-10=0/425, 3-14=-601/0,	
5-10=-559/0.3-13=0/298.4-13=-349/22.	
4-12=-140/78,5-11=-52/167	TH UARO
NOTES	DR. FESCION N
1) Unbalanced floor live loads have been considered for	in the sta
this design.	The states
2) All plates are 3x3 MT20 unless otherwise indicated.	·
3) This truss is designed in accordance with the 2015	SEAL : =
International Residential Code sections R502.11.1 and	036322

- R802.10.2 and referenced standard ANSI/TPI 1.
 Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


SEAL 036322 A. GILBER September 21,2022

Page: 1

ENGINEERING BY EREPACE AMITER ATMIATE 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply Garman Homes - Honeysuckle A & B			
Q2200855	F202	Floor	9	1	Job Reference (optional)	154309746	

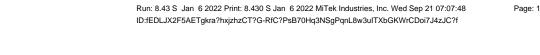
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:47 ID:d_sNvpP86ZZv6IWPLINC_TzDjNt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

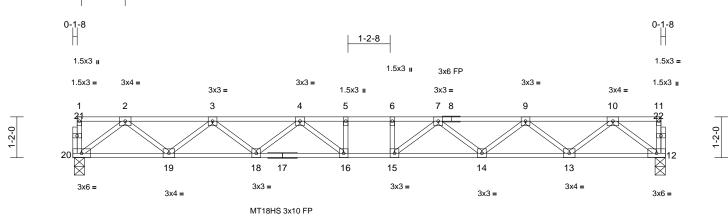
14-3-0 14-3-0

Scale = 1:28

1-2-0

Scale = 1.20											
TCLL 4	sf) Spacing D.0 Plate Grip DOL	1-7-3 1.00	CSI TC	0.58	DEFL Vert(LL)		(loc) 12-13	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
	0.0 Lumber DOL 0.0 Rep Stress Incr	1.00 YES	BC WB	0.94 0.30	Vert(CT) Horz(CT)	-0.21 0.03	12-13 9	>813 n/a	240 n/a		
	5.0 Code	IRC2015/TPI2014	Matrix-S	0.30		0.03	9	n/a	n/a	Weight: 74 lb	FT = 20%F, 11%E
		11(02013/1112014	Matrix-0	-						Weight. 74 lb	1 1 = 20 /01 , 11 /0L
6-0-0 oc purlin	at) at)										
bracing, Exce 2-2-0 oc braci	•										
	-3-8, 15=0-3-8 16 (LC 1), 15=611 (LC	1)									
FORCES (Ib) - Maximun Tension	Compression/Maximu	m									
2-3=-1238/0, 3	9=-31/0, 1-2=-2/0, -4=-1887/0, 4-5=-2020/ -7=-1222/0, 7-8=0/0	/0,									
	13-14=0/1702, 12-13=0 10-11=0/1680, 9-10=0	,									
WEBS 7-9=-951/0, 2- 2-14=0/634, 6-	15=-939/0, 7-10=0/603, 10=-596/0, 3-14=-604/0 13=0/305, 4-13=-341/1	D,								NITH CA	unn.
NOTES										WTH CA	Rollin
 Unbalanced floor live loads this design. 	have been considered	for							J.L.	ORIFESS	NA NIS
2) All plates are 3x3 MT20 ur								4			3.
 This truss is designed in a International Residential C R802.10.2 and referenced 	ode sections R502.11.1									SEA	
 Recommend 2x6 strongba 10-00-00 oc and fastened (0.131" X 3") nails. Strong at their outer ends or restra 	to each truss with 3-100 backs to be attached to	1						1111		0363	22
5) CAUTION, Do not erect tru									25	S. VGIN	EFICAN
LOAD CASE(S) Standard										CA. G	ILBE


September 21,2022


Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	F203	Floor	10	1	Job Reference (optional)	154309747

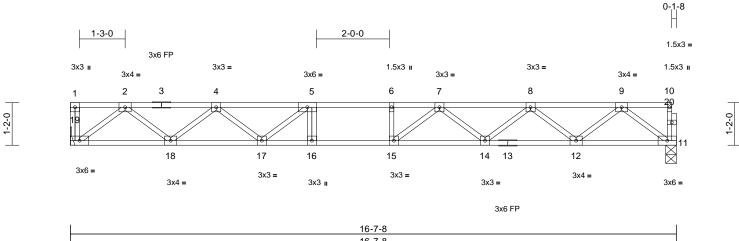
1-3-0

3x3 =

0-0	0-8	16-11-8	
0-0	0-8	16-11-0	

Scale = 1:33

Scale = 1.55												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.34	Vert(LL)	-0.21	15-16	>960	480	MT18HS	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.80	Vert(CT)	-0.29	15-16	>699	240	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.05	12	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S	-						Weight: 85 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.2(flat)											
BRACING												
TOP CHORD		athing directly applie	ed or									
DOTOLODD	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	0									
DEACTIONS	0	20.02.0										
	(size) 12=0-3-8 Max Grav 12=730 (I	, 20=0-3-8 LC 1). 20=730 (LC 1)									
FORCES	(lb) - Maximum Com		,									
	Tension											
TOP CHORD	1-20=-31/0, 11-12=-											
	2-3=-1535/0, 3-4=-2	, , ,										
	,	2923/0, 7-9=-2474/0,										
BOT CHORD	9-10=-1535/0, 10-11 19-20=0/911, 18-19		702									
BOTCHORD	15-16=0/2923, 14-1											
	12-13=0/911	0=0/2/00, 10 14=0/2	102,									
WEBS	10-12=-1140/0, 2-20	0=-1140/0, 10-13=0/8	312,									
	2-19=0/812, 9-13=-7		- ,								H CA	
	9-14=0/446, 3-18=0	/446, 7-14=-414/0,										1111
		-104/399, 4-16=-104/	/399,							13	IN TH CA	Roit
	5-16=-174/20, 6-15=	=-174/20								15	R	De Male
NOTES										21		Pitan
,	ed floor live loads have	e been considered fo	r						-4		12 -0	Var. 1
this desigr										8	· <	1 1 1 E
	are MT20 plates unles		d.						=		SEA	L 1 1
	are 3x3 MT20 unless on is designed in accordation in accord to the second to the seco								=	:	0363	
,	nal Residential Code s		nd						1		0363	22 ; :
	and referenced stand								-	8	1	1 3
	end 2x6 strongbacks, c								5		Nº En	Airs
	oc and fastened to eac									25	S GIN	EFICAS
	3") nails. Strongbacks		alls							11	10	BEIN
at their out	ter ends or restrained	by other means.									A. C	illuin
LOAD CASE(Standard 										111111	IIII.
											Sontombo	r 01 0000



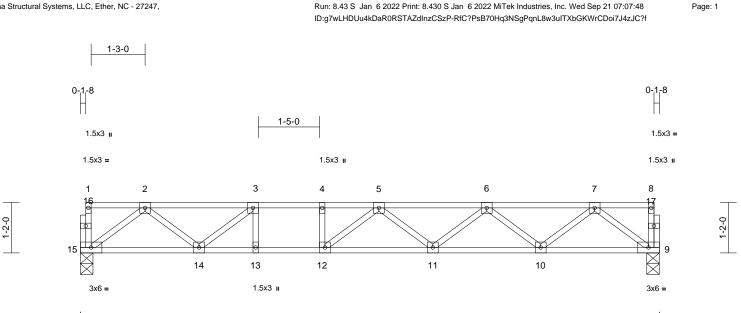
September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	F204	Floor	3	1	Job Reference (optional)	154309748

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:48 ID:nHZ7Abcj1c9ooyxcF3HkNczCT_X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

16-7-8


Scale = 1:31.6

ilat) P No.3(flat) P No.3(flat) ural wood she oc purlins, ex ceiling directly g. 11=0-3-8	*Except* 13-11:2x4 SP sheathing directly applied or except end verticals. ctly applied or 10-0-0 oc 3-8, 19= Mechanical	C2015/TPI2014 6) CAUTION, Do LOAD CASE(S)	Matrix-S o not erect truss ba Standard	ackward	s.					Weight: 84 lb	FT = 20%F, 11%E
P No.1(flat) *E lat) P No.3(flat) P No.3(flat) rural wood she oc purlins, ex ceiling directly ig. 11=0-3-8	*Except* 13-11:2x4 SP sheathing directly applied or except end verticals. ctly applied or 10-0-0 oc 3-8, 19= Mechanical	, , ,		ickward	s.						
cural wood she oc purlins, ex ceiling directly ng. 11=0-3-8	sheathing directly applied or except end verticals. ctly applied or 10-0-0 oc 3-8, 19= Mechanical										
ceiling directly ng. 11=0-3-8	ctly applied or 10-0-0 oc 3-8, 19= Mechanical										
	5 (LC 1), 19=720 (LC 1)										
,	Compression/Maximum										
-36/0, 10-11= 1498/0, 4-5=-2	1=-31/0, 1-2=0/0, =-2402/0, 5-6=-2782/0, =-2409/0, 8-9=-1497/0,										
=0/894, 17-18	-18=0/2070, 16-17=0/2782, 4-15=0/2699, 12-14=0/2079,										
-1116/0, 2-19 0/786, 8-12=- 0/429, 4-17=0	19=-1122/0, 9-12=0/788, 2=-758/0, 4-18=-745/0, *=0/466, 7-14=-378/0, 5=-134/395, 6-15=-168/0,								A.L.	ORTH CA	ROLL
								4	U		Mal
MT20 unless	ss otherwise indicated. truss connections. ordance with the 2015 e sections R502.11.1 and andard ANSI/TPI 1. s, on edge, spaced at each truss with 3-10d							Contraction of the second seco		SEA 0363	ER RUU
liv N	ve loads h IT20 unles r truss to ed in acco ential Cod renced sta rongback stened to	ve loads have been considered for IT20 unless otherwise indicated. Ir truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls or restrained by other means.	ve loads have been considered for IT20 unless otherwise indicated. Ir truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	re loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	re loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	re loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	ve loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	re loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	ve loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	ve loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls	ve loads have been considered for IT20 unless otherwise indicated. r truss to truss connections. ed in accordance with the 2015 ential Code sections R502.11.1 and renced standard ANSI/TPI 1. rongbacks, on edge, spaced at stened to each truss with 3-10d Strongbacks to be attached to walls

September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	F205	Floor	5	1	Job Reference (optional)	154309749

4.00 7

Scale = 1:26.7		1	;	1										
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d		GRIP		
TCLL	40.0	Plate Grip DOL	1.00	TC	0.54	Vert(LL)		11-12	>999	480	MT20	244/190		
TCDL	10.0	Lumber DOL	1.00	BC	0.88	Vert(CT)	-0.19	11-12	>830	240				
BCLL	0.0	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.03	9	n/a	n/a				
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 68 lb	FT = 20%F, 11%		
LUMBER														
TOP CHORD	2x4 SP No.2(flat)													
BOT CHORD	()													
WEBS	2x4 SP No.3(flat)													
OTHERS	2x4 SP No.3(flat)													
BRACING														
TOP CHORD	Structural wood she	Structural wood sheathing directly applied or												
	6-0-0 oc purlins, ex	cept end verticals.												
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с											
	bracing.													
REACTIONS	(size) 9=0-3-8, *	15=0-3-8												
	Max Grav 9=574 (L0	C 1), 15=574 (LC 1)												
FORCES	(lb) - Maximum Corr	npression/Maximum												
	Tension													
TOP CHORD	1-15=-39/0, 8-9=-30	/0, 1-2=-2/0, 2-3=-1	145/0,											
	3-4=-1669/0, 4-5=-1	669/0, 5-6=-1728/0,												
	6-7=-1140/0, 7-8=-2	2/0												
BOT CHORD	14-15=0/691, 13-14	=0/1669, 12-13=0/1	669,											
	11-12=0/1840, 10-1	1=0/1557, 9-10=0/7	06											
NEBS	2-15=-864/0, 2-14=0	0/591, 3-14=-669/0,												
	7-9=-883/0, 7-10=0/	565, 6-10=-542/0,												

NOTES

1) Unbalanced floor live loads have been considered for this design.

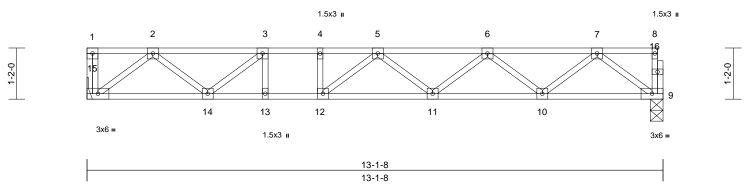
3-13=0/181, 4-12=-45/84

6-11=0/223, 5-11=-149/0, 5-12=-320/102,

All plates are 3x3 MT20 unless otherwise indicated. 2)

- This truss is designed in accordance with the 2015 3) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 4) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	F206	Floor	2	1	Job Reference (optional)	154309750

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:48 ID:zzmCsAjAMQQ0ea9X_J4MrMzCS?7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

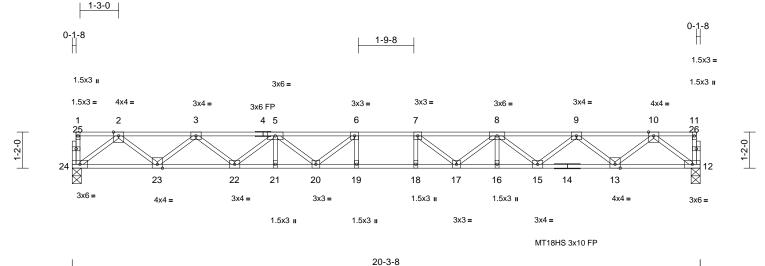
П

0-1-8 1-3-0 1-1-8 1.5x3 =

Scale = 1:26.2

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.44 0.76 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 480 240 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 9=0-3-8, Max Grav 9=561 (L0 (lb) - Maximum Com Tension 1-15=-38/0, 8-9=-30 3-4=-1595/0, 4-5=-1 6-7=-1109/0, 7-8=-2 14-15=0/680, 13-14	Pathing directly applie cept end verticals. ⁷ applied or 10-0 oc 15= Mechanical C 1), 15=566 (LC 1) hpression/Maximum 1/0, 1-2=0/0, 2-3=-11 ⁻ 595/0, 5-6=-1662/0, 1/0 =0/1505, 12-13=0/15 1=0/1509, 9-10=0/68 0/562, 3-14=-617/0, 136/0, 5-12=-315/88,	d or : 11/0, 95,								
 this design All plates a Refer to gi This truss Internation R802.10.2 Recomme 10-00-00 (0.131" X a 	ed floor live loads have are 3x3 MT20 unless of irder(s) for truss to trus is designed in accorda hal Residential Code s and referenced stand and 2x6 strongbacks, c boc and fastened to ead 3") nails. Strongbacks ter ends or restrained bo not erect truss ba	e been considered fo otherwise indicated. ss connections. ance with the 2015 ections R502.11.1 ar lard ANSI/TPI 1. on edge, spaced at ch truss with 3-10d s to be attached to wa by other means.	nd					A CONTINUE.		SEA 0363	22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	F207	Floor	11	1	Job Reference (optional)	154309751

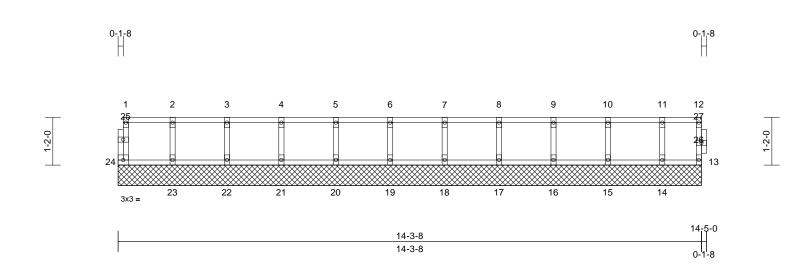
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:48 ID:Ib9rUaJyFBNJmaWQoaWwfQzDVuE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Wed Sep 21 07:07:48 Page: 1 XbGKWrCDoi7J4zJC?f

20-3-8

Scale = 1:37.2

Scale = 1:37.2		i				· · · ·						
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.69	Vert(LL)	-0.40	18-19	>603	480	MT18HS	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.96	Vert(CT)	-0.55	18-19	>438	240	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.08	12	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 103 lb	FT = 20%F, 11%E
LUMBER			5) Recommend	d 2x6 strongbacks,	on edae	e, spaced at						
TOP CHORD	2x4 SP No.2(flat)			and fastened to ea								
BOT CHORD	2x4 SP No.1(flat) *E	xcept* 14-12:2x4 SP) nails. Strongback			valls					
	No.2(flat)			r ends or restrained	d by othe	er means.						
WEBS	2x4 SP No.3(flat)		LOAD CASE(S)	Standard								
OTHERS	2x4 SP No.2(flat) *E	xcept* 12-26:2x4 SP										
	No.3(flat)											
BRACING	Other strengt strengt strengt	- de la se alla e ada a se ll'										
TOP CHORD	Structural wood she 5-1-8 oc purlins, ex		IO DI									
BOT CHORD	Rigid ceiling directly		、									
BOT CHORD	bracing, Except:		,									
	2-2-0 oc bracing: 19	-20,18-19,17-18.										
REACTIONS	(size) 12=0-3-8,	24=0-3-8										
	Max Grav 12=876 (L)									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	-										
TOP CHORD	1-24=-31/0, 11-12=-											
	2-3=-1901/0, 3-5=-3	, ,										
	6-7=-4214/0, 7-8=-3 9-10=-1902/0, 10-11											
BOT CHORD	23-24=0/1104, 22-23		725									
BOT ONORD	20-21=0/3725, 19-20											
	17-18=0/4214, 16-1										minin	unin.
	13-15=0/2671, 12-13										NITH CA	Rollin
WEBS	10-12=-1383/0, 2-24	,	,							AN	R	2114
	2-23=0/1038, 9-13=		/0,						/	32	FERS	M. and
	9-15=0/681, 3-22=0/								4	10	10/ 1	RAIN
	8-16=-18/37, 5-22=- 8-17=0/410, 5-20=0/								-			
	6-20=-565/75, 6-19=		2/189								SEA	L E
NOTES	,								=			• -
	ed floor live loads have	been considered fo	r						1		0363	~~ : :
1) Unbalance			•							9 0	•	· · · · ·


- Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

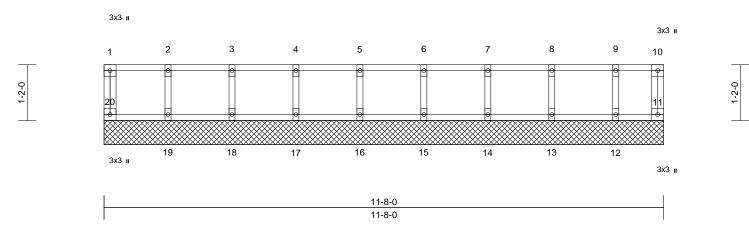
SEAL 036322 A. GILBERT

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	K201	Floor Supported Gable	1	1	Job Reference (optional)	154309752

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:49 ID:pyj6bZMC4k9xCMjSzOwe7lzDjUN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.2

Scale = 1:28.2													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	NO		WB Matrix D	0.03	Horiz(TL)	0.00	13	n/a	n/a	Waisht Cd lb	
BCDL	5.0	Code	IRC201	5/TPI2014	Matrix-R							Weight: 61 lb	FT = 20%F, 11%E
LUMBER			4)		spaced at 1-4-0 o								
TOP CHORD	2x4 SP No.2(flat)		5)		designed in accor								
BOT CHORD	2x4 SP No.2(flat)				Residential Code			ind					
WEBS	2x4 SP No.3(flat)	* 0 / 05 00 07 0			nd referenced sta								
OTHERS	2x4 SP No.3(flat) *E SP No.2(flat)	xcept [*] 24-25,26-27:2	2x4 6)	designer mu) 1 has/have beer st review loads to	verify th	at they are						
BRACING					e intended use of								
TOP CHORD		athing directly applie	dor 7)		2x6 strongbacks	, 0	· · ·						
	6-0-0 oc purlins, ex				and fastened to e nails. Strongbac			alle					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			ends or restraine			ans					
	bracing.		8)		o not erect truss								
REACTIONS	()	8, 14=14-3-8, 15=14-	·3-8, í	DAD CASE(S)									
		8, 17=14-3-8, 18=14- 8, 20=14-3-8, 21=14-	.3-0,	• • • •	or Live (balanced)): Lumbe	r Increase=1.	00,					
		8, 23=14-3-8, 24=14-		Plate Increa									
	Max Grav 13=609 (L			Uniform Lo	ads (lb/ft)								
		LC 1), 16=146 (LC 1)		Vert: 13-	24=-10, 1-12=-10	0							
		LC 1), 18=147 (LC 1)			ed Loads (lb)								
		LC 1), 20=147 (LC 1)		Vert: 12=	-568								
		LC 1), 22=146 (LC 1)	,										
	,	_C 1), 24=51 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/waximum											
TOP CHORD	1-24=-48/0, 12-13=-	602/0, 1-2=-6/0,										minin	11111
	2-3=-6/0, 3-4=-6/0, 4	4-5=-6/0, 5-6=-6/0,										WAH CA	ROUL
	6-7=-6/0, 7-8=-6/0, 8	8-9=-6/0, 9-10=-6/0,									15	R	. Lill
	10-11=-6/0, 11-12=-										5.	O .: FEST	Di Vi
BOT CHORD	23-24=0/6, 22-23=0/		,							2	Z		no.
	,	/6, 17-18=0/6, 16-17:	=0/6,							2	£	.2	1 K 1 2
	15-16=0/6, 14-15=0/									-		SEA	1 1 =
WEBS	2-23=-133/0, 3-22=- 5-20=-133/0, 6-19=-									=	:	JL-	• -
		133/0, 10-15=-136/0								=		0363	22 : =
	11-14=-120/0	100/0, 10 10= 100/0	,								÷ 3		1 E
NOTES											1		al. 3
	are 1.5x3 MT20 unless	s otherwise indicated									3.5	S. NGIN	FERIA
	uires continuous botto										11	710	THE FLAN
3) Truss to b	e fully sheathed from o	one face or securely										A C	ILBEIT

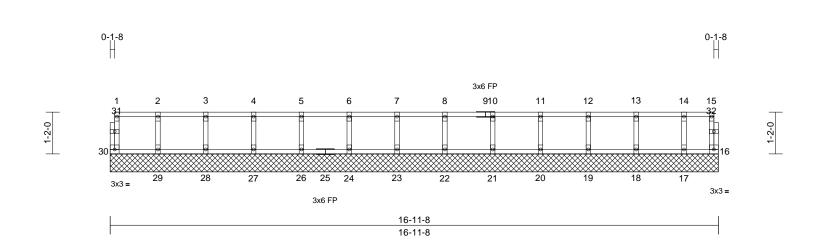

 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). September 21,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	K202	Floor Supported Gable	1	1	Job Reference (optional)	154309753

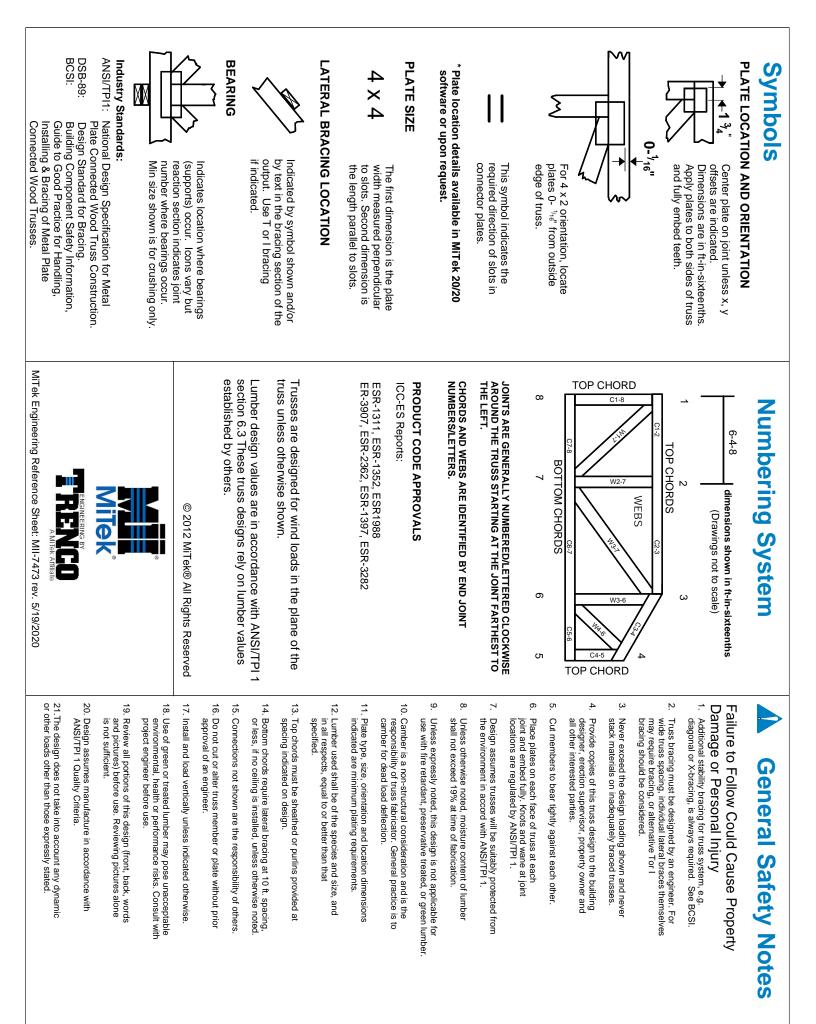
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:49 ID: WgupdW9BahHGojBCu5C1dEzCRzH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

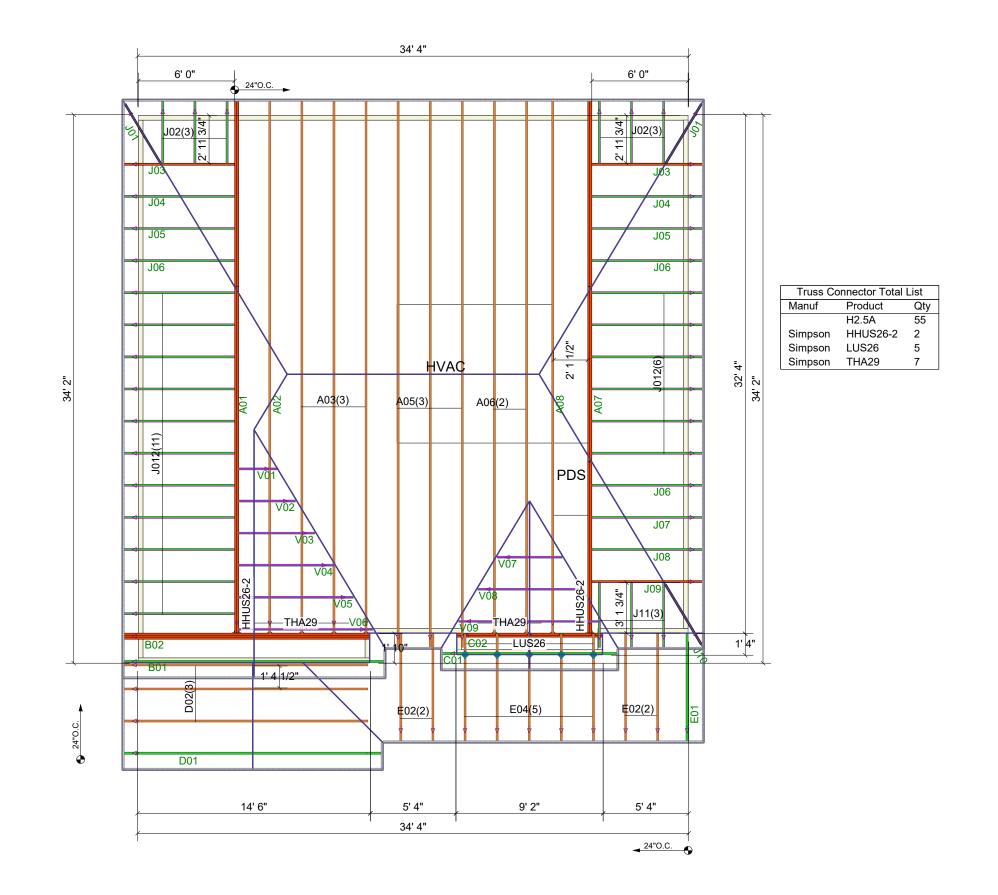
Scale = 1:24


Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%F, 11%E
	14=11-8-(17=11-8-(20=11-8-(Max Grav 11=43 (LC 13=152 (L 15=147 (L	cept end verticals. applied or 10-0-0 oc), 12=11-8-0, 13=11-), 15=11-8-0, 16=11- 0, 18=11-8-0, 19=11- 0 C 1), 12=122 (LC 1), C 1), 14=145 (LC 1) .C 1), 16=147 (LC 1)	10-00-00 oc (0.131" X 3" at their oute LOAD CASE(S) d or	d 2x6 strongbacks, (and fastened to ea) nails. Strongback r ends or restrained Standard	ch truss s to be	with 3-10d attached to wa	alls					
FORCES		LC 1), 18=147 (LC 1) LC 1), 20=60 (LC 1)	Ι,									
TOP CHORD	(ib) - Maximum Com Tension 1-20=-55/0, 10-11=-		·8/0.									
	3-4=-8/0, 4-5=-8/0, 5 7-8=-8/0, 8-9=-8/0, 9	5-6=-8/0, 6-7=-8/0,	,								mm	un,
BOT CHORD	19-20=0/8, 18-19=0/ 15-16=0/8, 14-15=0/	/8, 17-18=0/8, 16-17=								A.I.	TH CA	ROUT
WEBS	11-12=0/8 2-19=-132/0, 3-18=- 5-16=-133/0, 6-15=- 8-13=-138/0, 9-12=-	134/0, 7-14=-132/0,							4	i e	PROFESS	A A A A A A A A A A A A A A A A A A A
 2) Gable required 3) Truss to be braced again 4) Gable studies 5) This truss Internation 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement ds spaced at 1-4-0 oc. is designed in accorda nal Residential Code se and referenced stand	s otherwise indicated m chord bearing. one face or securely t (i.e. diagonal web). ance with the 2015 ections R502.11.1 ar							THUNKS		SEA 0363	

September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle A & B	
Q2200855	K203	Floor Supported Gable	2	1	Job Reference (optional)	154309754


Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 07:07:49 ID:tjxdNrhw0Ff7mmR54Ex_ZZzCT2J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:32.1

Scale = 1:32.1												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI20	CSI TC BC WB 14 Matrix-R	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	SP No.2(flat) Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 16=16-11 18=16-11 20=16-11 22=16-11 22=16-11 27=16-11 Max Grav 16=34 (LC 18=152 (L 20=147 (L 24=147 (L 27=147 (L	applied or 10-0-0 oc -8, 17=16-11-8, -8, 21=16-11-8, -8, 23=16-11-8, -8, 26=16-11-8, -8, 28=16-11-8, -8, 30=16-11-8	2) Gable 3) Truss x4 brace 4) Gable 5) This t d or Intern R802 6) Recon 10-00 (0.13' at the LOAD CA	ttes are 1.5x3 MT2 requires continuou to be fully sheathe d against lateral mo studs spaced at 1- russ is designed in ational Residential 10.2 and reference mmend 2x6 strongt -00 oc and fastene "X 3") nails. Stron ir outer ends or res SE(S) Standard	us bottom chor ed from one fac ovement (i.e. d -4-0 oc. accordance w Code sections ed standard AN backs, on edge d to each truss ngbacks to be	d bearing. e or securely iagonal web). R502.11.1 a ISI/TPI 1. spaced at s with 3-10d attached to w	nd				NIGH CA	11111111111111111111111111111111111111
FORCES	(lb) - Maximum Com Tension	pression/Maximum								A	ORTEESS	634
TOP CHORD	3-4=-7/0, 4-5=-7/0, 5	10-11=-7/0, 11-12=-7	,						4	a	SEA	Mall
BOT CHORD	29-30=0/7, 28-29=0/ 24-26=0/7, 23-24=0/	/7, 27-28=0/7, 26-27= /7, 22-23=0/7, 21-22= /7, 18-19=0/7, 17-18=	:0/7,						THUR.		0363	• -
WEBS	2-29=-132/0, 3-28=- 5-26=-133/0, 6-24=- 8-22=-133/0, 10-21=		,							in the	SEA 0363 NGIN A. C Septembe	EEP: 111111

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY		SHOP DRAWING APPROVAL	G APPROVAL
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, 583 D'Onifrio Drive; Madison, WI 53179.	THIS LAYOUT IS THE SOLE SOURCE poort LAYOUTS. REVIEW AND APPROVAL TO INSURE AGAINST CHANGES TH.	For Fabrication of trusses and of this layout must be received .T will result in extra charges	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.
REVIEWED BY:	REVIEWED BY:	APPROVED BY:	DATE:
Job #: Q2200856 GARAGE RIGHT Plan: HONEYSUCKLE B		QUALITY AUDITED by: BC 1704.2 BC 2303.4 ANSUTPI 1-2002 ANSUTPI 1-2014 ANSUTPI 1-2014	
Customer: GARMAN HOMES Date: 9/21/2022	122	CAROLINA STRUCTURAL SYSTEMS, LLC Siar, NC - Plant E30-437 910-491-6004	Carolina Structural Systems
Site Address: Sales Rep: RW ROOF I		<u>ROOF DATA</u>	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems
City, ST, ZIP: Roof Area:		ea: 1789 SF	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd, Star, NC 27356 910-491-9004

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q2200856 Garman Homes - Honeysuckle B Roof

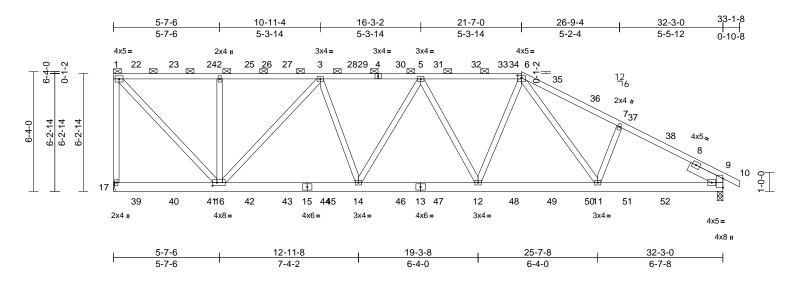
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54322394 thru I54322430

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

September 22,2022


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A01	Half Hip Girder	1	2	Job Reference (optional)	154322394

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:38 ID:qZ3E1n9?wOBI1cXFEt4TYszDPKq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61

Plate Offsets (X, Y): [6:0-2-8,0-1-8], [16:0-2-12,0-2-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.78			11-12		240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)		11-12	>999	180	11120	210,100
BCLL	0.0*	Rep Stress Incr	NO		WB	0.60	· · ·	0.06	9	 n/a	n/a		
BCDL	10.0	Code		5/TPI2014	Matrix-MS	0.00	11012(01)	0.00	3	n/a	n/a	Weight: 443 lb	FT = 20%
	10.0	oode	11(0201	5/11/2014								Weight. 440 lb	11 = 2070
	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Right 2x6 SP No.2 Structural wood she: 4-7-1 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 9=0-3-8, 1 Max Horiz 17=-175 (athing directly applie cept end verticals, ar -0 max.): 1-6. applied or 10-0-0 oc 17= Mechanical	3) d or nd 4)	except if note CASE(S) sec provided to d unless other Unbalanced this design. Wind: ASCE Vasd=95mph B=45ft; L=32 MWFRS (dird end vertical l plate grip DC		ack (B) innection s noted e been o h (3-sec CDL=6.0 l; Exp B r left an ed; Lun	face in the LC s have been as (F) or (B), considered fo cond gust) Dpsf; h=25ft; ; Enclosed; d right expose aber DOL=1.6	r ed ; 60	pro lb d at dov 9-2 anc 15- dov at dov up a on t	Vided su lown and 3-2-8, 12 vn and 7 -8, 125 I I 78 lb u 2-8, 125 vn and 7 21-2-8, ' vn and 5 at 27-2- top chor	fficient d 78 lb 25 lb do 8 lb up b dowr p at 13 lb dow 8 lb up 139 lb o 2 lb up 8, and d, and	up at 1-2-8, 125 own and 78 lb up at 7-2-8, 125 lb and 78 lb up at 3-2-8, 125 lb dow m and 78 lb up at at 19-2-8, 127 l down and 71 lb u at 25-2-8, and 182 lb down and 77 lb down at 1-	entrated load(s) 125 Ib down and 78 Ib up at 5-2-8, 125 Ib down and 78 Ib up at 11-2-8, 125 Ib down n and 78 Ib up at t 17-2-8, 125 Ib b down and 78 Ib up p at 23-2-8, 138 Ib 138 Ib down and 52 Ib 67 Ib up at 29-2-8 2-8, 77 Ib down at
	Max Uplift 9=-273 (L Max Grav 9=2435 (L	C 8), 17=-378 (LC 4) _C 1), 17=2556 (LC 1		This truss ha	uate drainage to p s been designed fo ad nonconcurrent w	or a 10.0) psf bottom		dov 13-	vn at 9-2 2-8, 77 I	2-8, 77 b dowr	lb down at 11-2 n at 15-2-8, 77 lb	own at 7-2-8, 77 lb -8, 77 lb down at down at 17-2-8, 77
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)		as been designed n chord in all areas)psf	23-	2-8, 70 I	b dowr	at 25-2-8, and	21-2-8, 70 lb down at 70 lb down at 27-2-8,
TOP CHORD	1-17=-2458/414, 1-2 2-3=-2094/339, 3-5= 5-6=-3332/478, 6-7= 7-9=-3871/474, 9-10	-3361/491, -3720/481,	8) 9)	chord and an Refer to girde	by 2-00-00 wide wil by other members, er(s) for truss to tru hanical connection	with BC iss conr	DL = 10.0psf nections.		des res		ction o ty of ot	hers.	om chord. The n device(s) is the
BOT CHORD	16-17=-42/142, 14-1 12-14=-410/3537, 11 9-11=-360/3341		10	joint 17 and 2	capable of withsta 273 lb uplift at joint designed in accord	9.						TH CA	ROUT
WEBS	1-16=-421/3006, 2-1 3-16=-1618/257, 3-1 5-12=-445/176, 6-12 7-11=-347/169	4=0/676, 5-14=-368/	'131,	International R802.10.2 ar) Graphical pu	Residential Code s nd referenced stan rlin representation ation of the purlin a	sections dard AN does no	R502.11.1 a ISI/TPI 1. ot depict the s			4	a de la compañía de	PROFESS	
NOTES				bottom chord		5				-		SEA	L 🕴 🗄
1) 2-ply truss (0.131"x3" Top chords oc.	to be connected toget) nails as follows: s connected as follows	s: 2x4 - 1 row at 0-9-0)							1111		0363	• -

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

GILBE C A. GILD A.

September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A01	Half Hip Girder	1	2	Job Reference (optional)	154322394
Carolina Structural Systems, LL	.C. Ether. NC - 27247.	Run: 8.43 S Jan 6	2022 Print: 8.4	430 S Jan 6	2022 MiTek Industries, Inc. Wed Sep 21 12:20:38	Page: 2

ID:qZ3E1n9?wOBI1cXFEt4TYszDPKq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Dead + Roof Live (balanced): Lumber Increase=1.15,

Plate Increase=1.00

1)

Uniform Loads (lb/ft)

Vert: 1-6=-60, 6-10=-60, 17-18=-20

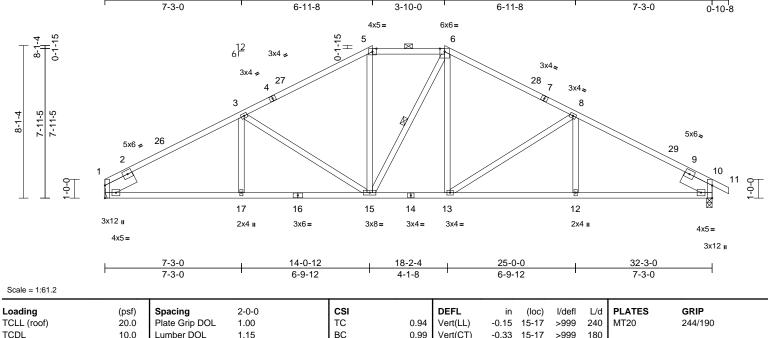
- Concentrated Loads (lb)
- oncentrated Loads (lb) Vert: 3=-108 (B), 14=-39 (B), 12=-39 (B), 22=-108 (B), 23=-108 (B), 24=-108 (B), 25=-108 (B), 27=-108 (B), 29=-108 (B), 30=-108 (B), 31=-108 (B), 32=-108 (B), 34=-108 (B), 35=-99 (B), 36=-98 (B), 37=-98 (B), 38=-142 (B), 39=-39 (B), 40=-39 (B), 41=-39 (B), 42=-39 (B), 43=-39 (B), 44=-39 (B), 46=-39 (B), 47=-39 (B), 48=-39 (B), 49=-47 (B), 50=-48 (B), 51=-48 (B), 52=-79 (B)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A02	Нір	1	1	Job Reference (optional)	154322395

14-2-8

Carolina Structural Systems, LLC, Ether, NC - 27247.


7-3-0

7-3-0

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:40

ID:HevxOyhIT1ZfVNd5Oz3aQTzDU8j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 33-1-8 18-0-8 25-0-0 32-3-0 3-10-0 0-10-8 6-11-8 7-3-0

Page: 1

L	UI	M	B	F	R

BCLL

BCDL

LUMBER	
TOP CHORD	2x4 SP No.2 *Except* 1-4,7-11:2x4 SP No.1
BOT CHORD	2x4 SP No.2 *Except* 14-10:2x4 SP No.1
WEBS	2x4 SP No.3
SLIDER	Left 2x8 SP No.2 1-9-7, Right 2x8 SP No.2
	1-9-7
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except
	2-0-0 oc purlins (4-8-12 max.): 5-6.
BOT CHORD	
WEBS	1 Row at midpt 6-15
REACTIONS	(,,,,,
	Max Horiz 1=-114 (LC 10)
	Max Uplift 1=-9 (LC 12), 10=-31 (LC 12)
	Max Grav 1=1289 (LC 1), 10=1343 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-3=-2006/170, 3-5=-1607/201,
	5-6=-1356/217, 6-8=-1606/198,
	8-10=-2001/166, 10-11=0/23
BOT CHORD	1-17=-100/1699, 15-17=-68/1699,
	13-15=-5/1354, 12-13=-75/1695,
	10-12=-83/1695
WEBS	3-17=0/231, 3-15=-435/84, 5-15=-6/379,
	6-15=-161/165, 6-13=0/379, 8-12=0/228,
	8-13=-432/83
NOTES	

0.0*

10.0

Rep Stress Incr

Code

YES

IRC2015/TPI2014

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-2-11, Interior (1) 3-2-11 to 14-2-8, Exterior (2) 14-2-8 to 22-7-4, Interior (1) 22-7-4 to 33-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

0.54

Horz(CT)

0.12

10

n/a n/a

Weight: 183 lb

FT = 20%

WB

Matrix-AS

- 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 6)
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1 and 31 lb uplift at joint 10.
- This truss is designed in accordance with the 2015 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A03	Common	3	1	Job Reference (optional)	154322396

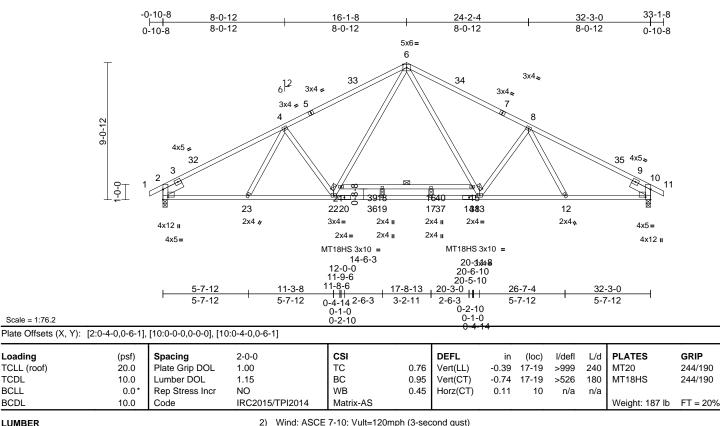
1)

2)

3)

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:40 ID:HevxOyhIT1ZfVNd5Oz3aQTzDU8j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A05	Common	3	1	Job Reference (optional)	154322397

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:41 ID:w3xUxNOdg95rAxyXd?eUavzDUAO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER	2
--------	---

Loading

TCDL

BCLL

BCDL

1)

this design.

TCLL (roof)

Scale = 1:76.2

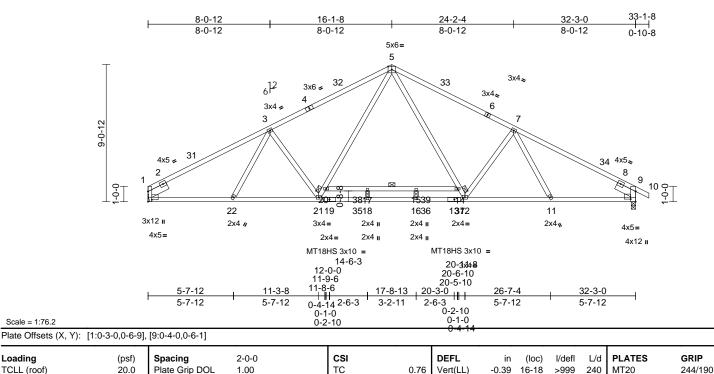
TOP CHORD BOT CHORD	2x4 SP No.1 *Except* 1-5,7-11:2x4 SP DSS 2x4 SP DSS *Except* 20-14:2x4 SP No.1, 21-15:2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x6 SP No.2 1-6-0, Right 2x6 SP No.2 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Rigid ceiling directly applied. Except: 6-0-0 oc bracing: 15-21
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=131 (LC 11)
	Max Grav 2=1433 (LC 1), 10=1433 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	(lb) - Maximum Compression/Maximum Tension
FORCES	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23
	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497, 12-13=0/1863, 10-12=-49/1799, 18-21=-93/0,
TOP CHORD BOT CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497, 12-13=0/1863, 10-12=-49/1799, 18-21=-93/0, 16-18=-93/0, 15-16=-93/0
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497, 12-13=0/1863, 10-12=-49/1799, 18-21=-93/0, 16-18=-93/0, 15-16=-93/0 6-15=0/804, 13-15=0/683, 8-13=-372/156,
TOP CHORD BOT CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497, 12-13=0/1863, 10-12=-49/1799, 18-21=-93/0, 16-18=-93/0, 15-16=-93/0 6-15=0/804, 13-15=0/683, 8-13=-372/156, 8-12=-141/29, 21-22=0/683, 6-21=0/804,
TOP CHORD BOT CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497, 12-13=0/1863, 10-12=-49/1799, 18-21=-93/0, 16-18=-93/0, 15-16=-93/0 6-15=0/804, 13-15=0/683, 8-13=-372/156, 8-12=-141/29, 21-22=0/683, 6-21=0/804, 4-22=-372/156, 4-23=-141/29, 18-19=-74/0,
TOP CHORD BOT CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2122/51, 4-6=-2035/71, 6-8=-2035/71, 8-10=-2123/51, 10-11=0/23 2-23=-60/1897, 22-23=0/1958, 19-22=0/1497, 17-19=0/1497, 13-17=0/1497, 12-13=0/1863, 10-12=-49/1799, 18-21=-93/0, 16-18=-93/0, 15-16=-93/0 6-15=0/804, 13-15=0/683, 8-13=-372/156, 8-12=-141/29, 21-22=0/683, 6-21=0/804,

Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-4-3, Interior (1) 2-4-3 to 16-1-8, Exterior (2) 16-1-8 to 19-4-3, Interior (1) 19-4-3 to 33-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated.

- 3)
- 4) All plates are 2x4 MT20 unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss design requires that a minimum of 7/16'
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A06	Common	2	1	Job Reference (optional)	154322398

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:41 ID:HevxOyhIT1ZfVNd5Oz3aQTzDU8j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TODL		
BCLL		

Scale = 1:76.2

Loading

1)

this design.

TCLL (roof)

BCDL	10.0	Code	IRC2015/TPI2014
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		* 19-13:2x4 SP No.1	, B=45ft; MWFRS 3-2-11, Io.2 to 19-4- left and
BRACING TOP CHORD BOT CHORD REACTIONS	Rigid ceiling directly 6-0-0 oc bracing: 14-	applied. Except:	3) All plate 4) All plate
REACTIONS	Max Horiz 1=-130 (L0 Max Grav 1=1380 (L	C 10)	5) This tru: chord liv) 6) * This tr
FORCES	(lb) - Maximum Com Tension		on the b 3-06-00
TOP CHORD	1-3=-2127/40, 3-5=-2 7-9=-2123/50, 9-10=		71, chord a 7) Refer to
BOT CHORD	1-22=-68/1902, 21-2 18-21=0/1498, 16-18 11-12=0/1864, 9-11= 15-17=-93/0, 14-15=	8=0/1498, 12-16=0/14 -49/1800, 17-20=-93	
WEBS	5-14=0/804, 12-14=0 7-11=-141/29, 20-21 3-21=-375/156, 3-22 15-16=-74/0)/683, 7-12=-372/156 =0/685, 5-20=0/806,	5, structur chord a
NOTES			LOAD CAS

Unbalanced roof live loads have been considered for

10.0

0.0

Lumber DOL

Rep Stress Incr

1.15

NO

ind: ASCE 7-10; Vult=120mph (3-second gust) asd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; WFRS (directional) and C-C Exterior (2) 0-0-0 to 2-11, Interior (1) 3-2-11 to 16-1-8, Exterior (2) 16-1-8 19-4-3, Interior (1) 19-4-3 to 33-1-8 zone; cantilever t and right exposed ; end vertical left and right posed;C-C for members and forces & MWFRS for actions shown; Lumber DOL=1.60 plate grip DL=1.60

0.95

0.45

Vert(CT)

Horz(CT)

-0.73

0.11

16-18

9

>527

n/a n/a

180

MT18HS

Weight: 185 lb

244/190

FT = 20%

BC

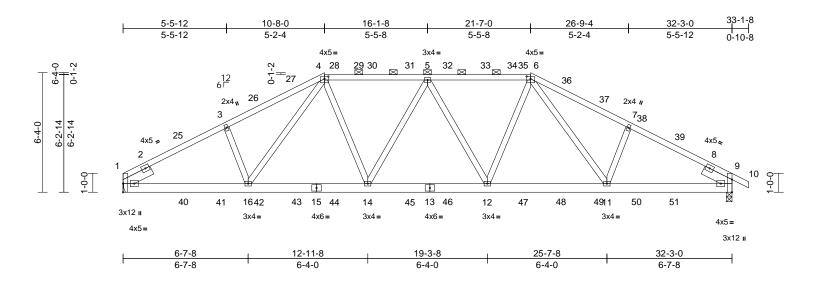
WB

Matrix-AS

- plates are MT20 plates unless otherwise indicated.
- plates are 2x4 MT20 unless otherwise indicated. is truss has been designed for a 10.0 psf bottom
- ord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf the bottom chord in all areas where a rectangle 06-00 tall by 2-00-00 wide will fit between the bottom ord and any other members, with BCDL = 10.0psf.
- efer to girder(s) for truss to truss connections.

is truss is designed in accordance with the 2015 ernational Residential Code sections R502.11.1 and 302.10.2 and referenced standard ANSI/TPI 1.

is truss design requires that a minimum of 7/16" ructural wood sheathing be applied directly to the top ord and 1/2" gypsum sheetrock be applied directly to e bottom chord.


CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A07	Roof Special Girder	1	2	Job Reference (optional)	154322399

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:42 ID:nfUooRHmcR_?rmCvOymSkyzDOmW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61

Plate Offsets (X, Y): [4:0-2-8,0-1-8], [6:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.85	Vert(LL)	-0.11	14-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.22	14-16	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.16	Horz(CT)	0.07	9	n/a	n/a		
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 406 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered	2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1-8-3 Structural wood she 4-2-2 oc purlins, exc 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=-87 (LC Max Uplift 1=-234 (L Max Grav 1=2394 (I (Ib) - Maximum Corr Tension 1-3=-3902/445, 3-4= 4-5=-3279/448, 5-6= 6-7=-3713/457, 7-9= 1-16=-339/3372, 14 12-11=-341/3360 3-16=-370/174, 4-16	9-0 max.): 4-6. • applied or 10-0-0 oc anical, 9=0-3-8 C 6), 9=-260 (LC 8) _C 1), 9=2450 (LC 1) pression/Maximum =-3720/455, =-3277/449, =-3892/449, 9-10=0/2 =16=-299/3030, 1-12=-300/3008, S=0/428, 4-14=-10/77 2=-456/167, 6-12=-9/7 363/173 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows	lo.2 3 d or 4 5 6 7 3 9 9, 1 '81, 1	 except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=95mpl B=45ft; L=32 MWFRS (dir end vertical I plate grip DC Provide adec This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate joint 1 and 20 This truss is International R802.10.2 ar Graphical put 	quate drainage to is been designed to ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members er(s) for truss to tr hanical connection e capable of withst 60 lb uplift at joint designed in accor Residential Code nd referenced star riln representation ation of the purlin a	pack (B) nnection ls noted /e been (bh (3-sec 3CDL=6. II); Exp B er left an sed; Lun prevent (for a 10. with any d for a liv is where ill fit betw - uss conr us conr (by oth canding 2 9. dance w sections ndard AL	face in the LC is have been as (F) or (B), considered fo opsf; h=25ft; ; Enclosed; d right expose her DOL=1.6 water ponding 0 psf bottom other live load of 20.0 a rectangle veen the botto nections. ers) of truss t 234 lb uplift at ith the 2015 s R502.11.1 a SI/TP11. ot depict the s	r ed ; 50 ds. opsf om o	Pro Ib d at : dow 11 anc 17 dow at : Ib d Ib u 70 9-2 dow 19 Ib d Ib d Sele res LOAD (1) De	vided su lown and 5-2-8, 113 vn and 7 2-8, 125 vn and 7 2-8, 125 vn and 7 23-2-8, 7 b down and 23-2-8, 77 b down at 23-2-8, 77 b down at lown at consibili CASE(S cad + R cate Incre	fficien d 67 lb 88 lb d 11 lb up lb doo p at 1 lb doo p at 2 lb b 2 lb b b b 2 lb b b b b b b b b b b b b b b b b b b	up at 3-2-8, 138 lown and 53 lb up p at 9-2-8, 127 lb wn and 78 lb up a 5-2-8, 125 lb dow wn and 78 lb up a p at 21-2-8, 139 down and 52 lb u up at 27-2-8, ar n top chord, and 2-8, 70 lb down at at 11-2-8, 77 lb 77 lb down at 17- 77 lb down at 17- 77 lb down at 17- 71 b down at 17- 71 b down at 17- n at 21-2-8, 70 lb 8, and 70 lb down 3 on bottom chorc connection device thers. undard e (balanced): Lur	A particular of the second sec

September 22,2022

Job	Truss	Truss Type	Qt	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A07	Roof Special Girder	1		2	Job Reference (optional)	154322399
Carolina Structural Systems, LLC	Run: 8.	43 S Jan 6 2022	Print: 8.43	30 S Jan 6 2	2022 MiTek Industries, Inc. Wed Sep 21 12:20:42	Page: 2	

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:42 ID:nfUooRHmcR_?rmCvOymSkyzDOmW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

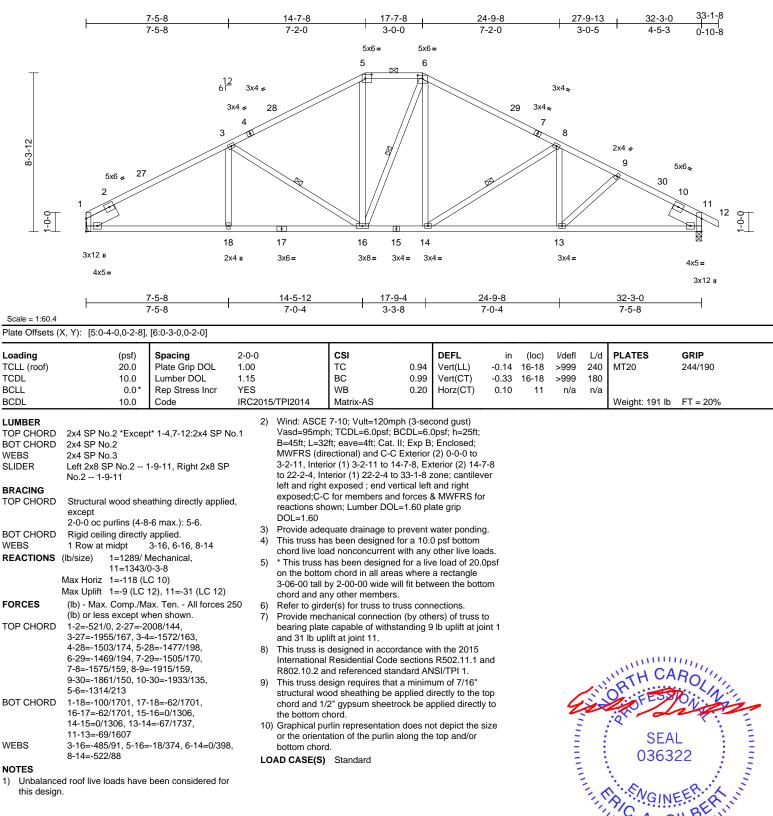
Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-6=-60, 6-10=-60, 17-21=-20

Concentrated Loads (lb)

Vert: 3=-98 (F), 14=-39 (F), 12=-39 (F), 25=-149 (F), 26=-98 (F), 27=-99 (F), 28=-108 (F), 30=-108 (F),

31=-108 (F), 32=-108 (F), 33=-108 (F), 35=-108 (F),

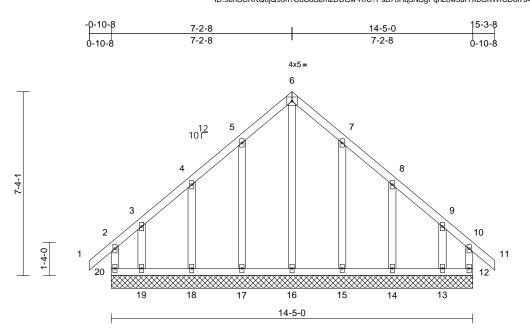

36-99 (F), 37=-98 (F), 38=-98 (F), 39=-104 (F), 39=-104 (F), 39=-104 (F), 30=-98 (F), 38=-98 (F), 39=-142 (F), 40=-83 (F), 41=-48 (F), 42=-48 (F), 43=-47 (F), 44=-39 (F), 45=-39 (F), 46=-39 (F), 47=-39 (F), 48=-47 (F), 49=-48 (F), 50=-48 (F), 51=-79 (F)

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	A08	Нір	1	1	Job Reference (optional)	154322400

Run: 8,43 E Jan 6 2022 Print: 8,430 E Jan 6 2022 MiTek Industries. Inc. Wed Sep 21 13:40:13 ID:HevxOyhIT1ZfVNd5Oz3aQTzDU8j-AhbEqYK2eN3HBwHU4BegE3tHjTlwuSXcMqOr3fybORm

Page: 1

1) this design.


818 Soundside Road Edenton, NC 27932

G unnun 1 September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	B01	Common Supported Gable	1	1	Job Reference (optional)	154322401

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:43 ID:9ehSCRKQ6jQ90h?C8C8SemzDUGw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.9

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.07 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc Rigid ceil bracing.	o.2 o.3 I wood she purlins, exi ing directly	athing directly applie cept end verticals. applied or 6-0-0 oc), 13=14-5-0, 14=14-	3	Vasd=95mpl B=45ft; L=24 MWFRS (dir 2-1-8, Exteri and right exp exposed;C-C reactions she DOL=1.60 Truss design	7-10; Vult=120 n; TCDL=6.0psf lift; eave=2ft; Ca ectional) and C- or (2) 2-1-8 to 7 rior (2) 10-2-8 to bosed ; end vert c for members a bown; Lumber DC ned for wind loa	; BCDL=6. it. II; Exp B -C Corner (-2-8, Corner 0 15-3-8 zc ical left and ical left and DL=1.60 pl ds in the p	Opsf; h=25ft; ; Enclosed; (3) -0-10-8 to er (3) 7-2-8 to ne; cantileve d right & MWFRS for ate grip lane of the tru	o r left r						
	Max Horiz Max Uplift	15=14-5-(18=14-5-(20=-152 (12=-62 (L 14=-38 (L 17=-30 (L 19=-74 (L 12=162 (L 14=166 (L 16=213 (L), 16=14-5-0, 17=14), 19=14-5-0, 20=14 LC 10) C 9), 13=-68 (LC 8), C 12), 15=-30 (LC 1 C 12), 18=-38 (LC 1 C 9), 20=-79 (LC 10 C 0), 20=-79 (LC 10 C 22), 15=173 (LC C 22), 17=173 (LC C 21), 19=185 (LC	-5-0, -5-0 2), 6 2), 7 18), 8 18), 8	see Standard or consult qu) All plates are) Gable requir) Truss to be f braced agair) Gable studs) This truss ha chord live loa) * This truss h on the bottor	Ids exposed to 1 d Industry Gable aulified building 4 2 2x4 MT20 unle es continuous b ully sheathed fr inst lateral mover spaced at 2-0-0 is been designe ad nonconcurrer has been designe n chord in all ar y 2-00-00 wide	e End Deta designer a ess otherwi ottom choi om one fac ment (i.e. c o oc. d for a 10. nt with any ned for a liv eas where	ils as applica s per ANSI/TI se indicated. d bearing. e or securely liagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle	ble, PI 1. ads. 0psf						
FORCES TOP CHORD BOT CHORD	Tension 2-20=-13: 3-4=-68/7 6-7=-166/ 9-10=-90/ 19-20=-7	5/61, 1-2=0 76, 4-5=-11 /215, 7-8=- /86, 10-11= 7/67, 18-19	pression/Maximum)/39, 2-3=-104/101, 1/150, 5-6=-166/214 111/150, 8-9=-60/77 -0/39, 10-12=-126/58)=-77/67, 17-18=-77/	, 3 67, <u>1</u>	chord and ar 0) Provide mec bearing plate 20, 62 lb upli uplift at joint 15, 38 lb upli 1) This truss is	ny other member hanical connect capable of with ift at joint 12, 30 18, 74 lb uplift a ift at joint 14 and designed in acc	rs. tion (by oth hstanding 7 I b uplift at at joint 19, d 68 lb upli cordance w	ers) of truss t 79 lb uplift at j joint 17, 38 ll 30 lb uplift at ft at joint 13. ith the 2015	to joint b joint		4	in in	OPT FESS	ROUNT	7
WEBS	13-14=-7 6-16=-22	7/67, 12-13 1/105, 5-17 7/83, 7-15=	5=-77/67, 14-15=-77/ 5=-77/67 '=-133/78, 4-18=-135 132/77, 8-14=-135/	^{5/92,} L		Residential Coo nd referenced s Standard			and		11111111111		0363	•	
NOTES 1) Unbalance this design		loads have	been considered for									tree a	Septembe	IIIIIIII	

NOTES

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	B02	Common Girder	1	3	Job Reference (optional)	154322402

7-2-8

7-2-8

Carolina Structural Systems, LLC, Ether, NC - 27247.

0-10-8

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries. Inc. Wed Sep 21 12:20:43 ID:jLhBux9mAcJ61Clh22dGwbzDU?4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-5-0

7-2-8

Page: 1

Edenton, NC 27932

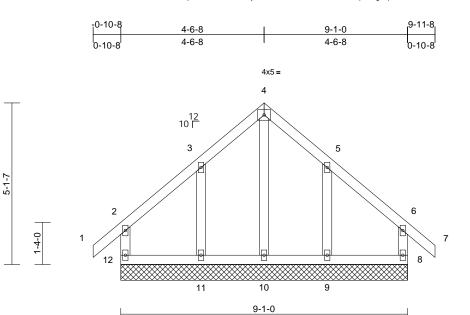
7-4-1 4x6 💊 4x6 2 4 1-4-0 5 ĕ X 8 6 9 10 11 MT18HS 5x10 I MT18HS 5x10 II 7x8 = 7-2-8 14-5-0 7-2-8 7-2-8 2-0-0 Spacing CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.00 TC 0.76 Vert(LL) -0.09 >999 240 MT20 244/190 5-6 10.0 Lumber DOL 1.15 BC 0.77 Vert(CT) -0.19 5-6 >899 180 MT18HS 244/190 0.0* Rep Stress Incr WB Horz(CT) NO 0.61 0.00 5 n/a n/a 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 288 lb FT = 20% 4) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) 5=0-3-8, 7=0-3-8 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 272 lb uplift at joint 7 and 215 lb uplift at joint 5. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPL1 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2536 Ib down and 390 lb up at 6-1-8, 1269 lb down and 21 lb up at 8-2-4, and 1269 lb down and 21 lb up at 10-2-4, and 1269 lb down and 21 lb up at 12-2-4 on bottom chord. The design/selection of such connection device (s) is the responsibility of others. C LOAD CASE(S) Standard Dead + Roof Live (balanced): Lumber Increase=1.15, 1) VIIIIIIIIIIII Plate Increase=1.00 SEAL Uniform Loads (lb/ft) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 036322 Concentrated Loads (lb) Vert: 8=-2441 (B), 9=-1269 (B), 10=-1269 (B), 11=-1269 (B) G mmm September 22,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road

0-10-8 4x5 u 3 12 10 Г

Scale = 1:49.2

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [5:Edge,0-3-8], [6:0-4-0,0-4-12]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.1 2x4 SP No.3 *Except* 7-2,5-4:2x4 SP No.2 WEBS BRACING Structural wood sheathing directly applied or TOP CHORD 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) Max Horiz 7=146 (LC 7) Max Uplift 5=-215 (LC 8), 7=-272 (LC 8) Max Grav 5=4303 (LC 1), 7=3137 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/39, 2-3=-3885/329, 3-4=-3876/324, 2-7=-3051/265, 4-5=-2871/247 BOT CHORD 6-7=-197/516, 5-6=-50/1099 WEBS 3-6=-299/4399, 4-6=-194/1870, 2-6=-145/2621 NOTES 3-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC. Bottom chords connected as follows: 2x6 - 3 rows


staggered at 0-4-0 oc Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for 3) this design.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	C01	Common Supported Gable	1	1	Job Reference (optional)	154322403

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:44 ID:pDxQIMhdHe41?9jnLo9GJtzDUGT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

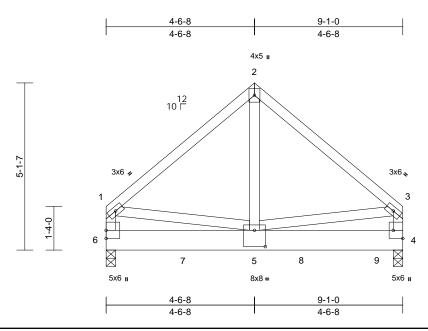
Page: 1

Scale = 1:36.5

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	8	n/a	n/a		
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MR							Weight: 53 lb	FT = 20%
LUMBER				3) Truss desia	ned for wind load	s in the p	lane of the tru	ISS					
TOP CHORD	2x4 SP N	lo.2				ids exposed to wi								
BOT CHORD	2x4 SP N				see Standard	Industry Gable	End Deta	ils as applica	ole,					
WEBS	2x4 SP N	lo.3			or consult qu	alified building de	esigner as	s per ANSI/TI	기 1.					
OTHERS	2x4 SP N	lo.3		4		2x4 MT20 unles								
BRACING				5		es continuous bo								
TOP CHORD			athing directly applie cept end verticals.	dor 6		ully sheathed fror ist lateral movem								
BOT CHORD			applied or 10-0-0 oc		This truss ha	spaced at 2-0-0 o s been designed	for a 10.0							
REACTIONS	(size)		9=9-1-0, 10=9-1-0, 12=9-1-0	ç) * This truss h	ad nonconcurrent has been designe	d for a liv	e load of 20.0						
	Max Horiz					n chord in all area								
			2 12), 9=-39 (LC 12),			by 2-00-00 wide w by other members		veen the bott	om					
		11=-39 (L	C 12), 12=-69 (LC 1	2) 1		hanical connectio		ore) of truce t	•					
	Max Grav		C 1), 9=220 (LC 18), _C 12), 11=222 (LC _C 1)		bearing plate 12, 69 lb upli	capable of withs ft at joint 8, 39 lb	standing 6	i9 lb uplift at j	oint					
FORCES	(lb) - Max Tension	,	pression/Maximum	1		9. designed in acco Residential Code			nd					
TOP CHORD		0/121 1-2	=0/39, 2-3=-81/89,			nd referenced sta			nu					
	3-4=-134	,	134/167, 5-6=-78/87	, L	OAD CASE(S)									1.000
BOT CHORD	11-12=-5 8-9=-53/6		=-53/60, 9-10=-53/6	0,									ORTH CA	RO
WEBS	4-10=-16	2/70, 3-11=	-162/110, 5-9=-161/	109								N	A	SALA LA
NOTES												6.	C FFS	This
1) Unbalance this design		loads have	been considered for								4	D		
Vasd=95n B=45ft; L= MWFRS (2-1-8, Ext 7-6-8, Ext and right e	nph; TCDL= =24ft; eave= directional) erior (2) 2-1 erior (2) 7-6 exposed ; e	=6.0psf; BC =2ft; Cat. II; and C-C C I-8 to 4-6-8 5-8 to 9-11- nd vertical	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) -0-10-8 to , Corner (3) 4-6-8 to 8 zone; cantilever lef left and right orces & MWFRS for	t									SEA 0363	• -

B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -0-10-8 to 2-1-8, Exterior (2) 2-1-8 to 4-6-8, Corner (3) 4-6-8 to 7-6-8, Exterior (2) 7-6-8 to 9-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI

mmm September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	C02	Common Girder	1	2	Job Reference (optional)	154322404

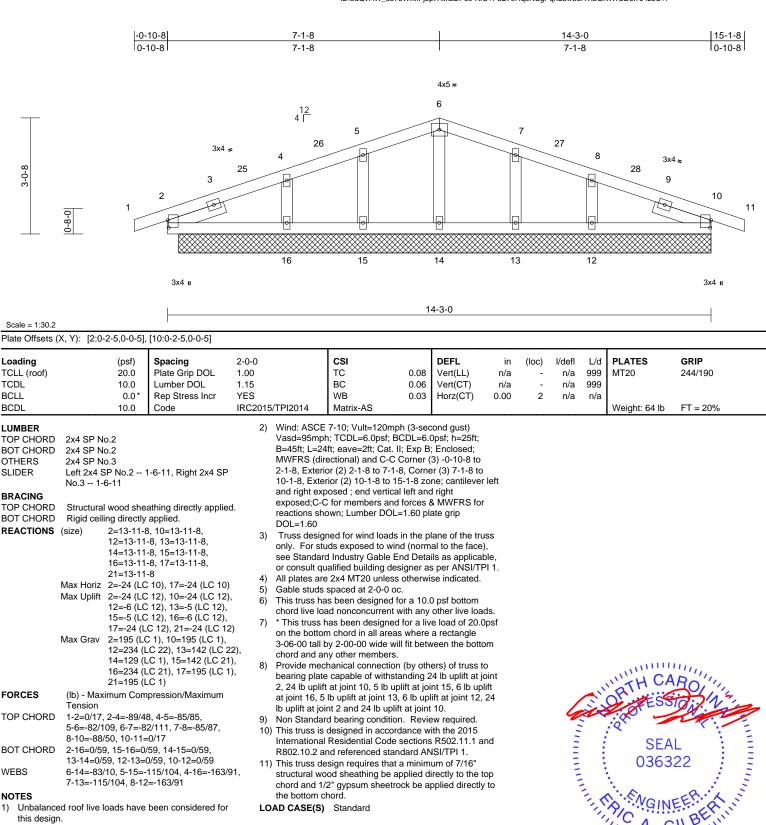
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:44 ID:E_vO75VqRW2Y58KMWng8tizDU1D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.3

Plate Offsets (X, Y): [4:Edge,0-3-8], [5:0-4-0,0-6-0]

TCLL (roof) TCDL BCLL	20.0 Plat 10.0 Lum 0.0* Rep	acing Ite Grip DOL mber DOL p Stress Incr	2-0-0 1.00 1.15 NO		CSI TC BC WB	0.78 0.44 0.62	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0 Cod	de	IRC201	5/TPI2014	Matrix-MS		-					Weight: 133 lb	FT = 20%
BOT CHORD 6-0-0 oc puril Rigid ceiling bracing. REACTIONS (size) 4= Max Grav 4= FORCES (lb) - Maximu Tension	bod sheathing ins, except e directly appli 0-3-8, 6=0-3- -93 (LC 6) 4418 (LC 1), im Compress 2-3=-2601/0 -5=-32/461 3-5=0/1515, : ed together w vs: s follows: 2x4 d as follows: 2 s: 2x4 - 1 rov equally applie c) or back (B) oby connection y loads noted id.	ied or 10-0-0 oc 3-8 , 6=4072 (LC 1) sion/Maximum 0, 1-6=-2105/0, 2-5=0/2978 with 10d 4 - 1 row at 0-9-0 2x8 - 3 rows w at 0-9-0 oc. ied to all plies, O place in the LOA ons have been d as (F) or (B),	5) 6) 7) 8) L(1)	Vasd=95mpł B=45ft; L=24 MWFRS (dim end vertical I plate grip DC This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss is International R802.10.2 ar Hanger(s) or provided suff Ib down at 0 at 4-4-4, and and 2378 lb chord. The c (s) is the resp DAD CASE(S) Dead + Roc Plate Increas Uniform Loa Vert: 1-2: Concentrate	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. designed in accord Residential Code s d referenced stan other connection of icient to support co 1-12, 1367 lb down and 244 lb up lesign/selection of bonsibility of others Standard of Live (balanced): use=1.00	CDL=6.(; Exp B; r left and ed; Lum or a 10.0 vith any for a 10.0 vith any for a 10.0 vith any for a 10.0 s where I fit betw dance wis sections dard AN device(s concentra m at 2 d 21 lb u p at 8-3 s. Lumber =-20	Dipsf; h=25ft; Enclosed; d right expose iber DOL=1.6) psf bottom other live loa e load of 20.0 a rectangle veen the bottot th the 2015 R502.11.1 a SIJ/TPI 1.) shall be ited load(s) 1 I-4, 1367 lb c p at 5-11-12 -8 on bottom nnection dev	30 ds. Dpsf om nd 421 lown , ice		M. HILLING.		SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G unnun 1 September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	D01	Common Supported Gable	1	1	Job Reference (optional)	154322405

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:44 ID:8dQvHW_s37oWfMFjbpITwxzDPsc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

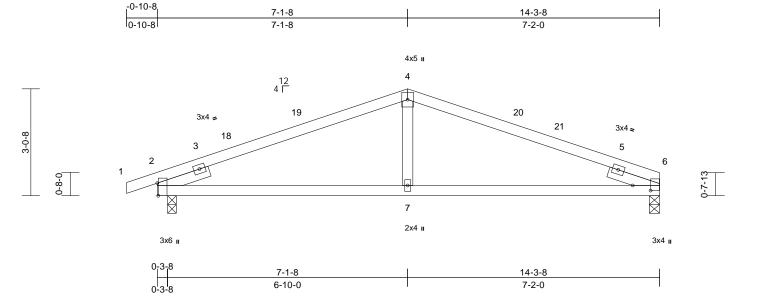
NOTES

Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

the bottom chord.

LOAD CASE(S) Standard



GI 40000 September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	D02	Common	3	1	Job Reference (optional)	154322406

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:44 ID:zsuupquGes70XkvywMdqwYzDPrS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.8

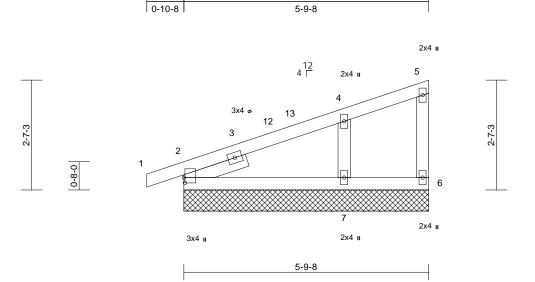
Plate Offsets (X, Y): [2:0-4-5,Edge], [6:0-1-12,0-6-1]

1 1010 0110010 (1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0:0 : :=;0 0 :]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.51 0.44 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.01	(loc) 7-10 7-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she Rigid ceiling directly (size) 2=0-3-0, 6 Max Horiz 2=25 (LC Max Grav 2=648 (LC (lb) - Maximum Com Tension	1-6-7, Right 2x4 SP I athing directly applied applied. 5=0-3-8 11) 2 12) 2 1), 6=565 (LC 1) pression/Maximum	5) 6) No.2 7) rd. 8)	Provide mec bearing plate Provide mec bearing plate 2. This truss is International R802.10.2 at This truss de structural wo	hanical connection e at joint(s) 2. hanical connection e capable of withst: designed in accord Residential Code nd referenced star usign requires that od sheathing be a 2" gypsum sheetro hord.	dance w sections anding 2 dance w sections adard AN a minim pplied d	ers) of truss 2 lb uplift at tht he 2015 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the	to joint and top				rrogna oo is	
TOP CHORD BOT CHORD WEBS	,												
 this design Wind: ASC Vasd=95m B=45ft; L= MWFRS (c 2-1-8, Inte 10-1-8, Inte 10-1-8, Inte 10-1-8, Inte and right e exposed;C reactions s DOL=1.60 This truss chord live i * This truss on the bott 3-06-00 tai 	CE 7-10; Vult=120mph hph; TCDL=6.0psf; BC :24ft; eave=4ft; Cat. II; directional) and C-C E: rrior (1) 2-1-8 to 7-1-8, terior (1) 10-1-8 to 14-3 exposed ; end vertical I C-C for members and ft shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to Exterior (2) 7-1-8 to 3-8 zone; cantilever I left and right orcces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	eft ds. psf							G . (1111)		SEA 0363	EER HALL

818 Soundside Road Edenton, NC 27932

11111111 September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	E01	Monopitch Supported Gable	1	1	Job Reference (optional)	154322407


5-9-8

-0-10-8

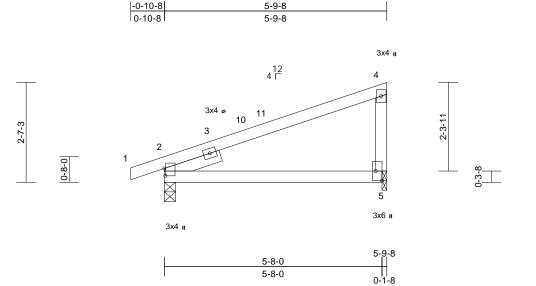
Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:45 ID:xd445izF1X0Bj_UcYo3iMTzDUoy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.2

Plate Offsets (X, Y): [2:0-1-8,0-0-5]


Plate Olisets (.	X, Y): [2:0-1-8,0-0-5]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-AS	0.13 0.09 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m B=45ft; L= MWFRS (c 2-1-8, Exte and right e exposed;C reactions s DOL=1.60 2) Truss des only. For s see Stand or consult 3) Gable requ	Max Horiz 2=68 (LC Max Uplift 2=-18 (LC (LC 12), 8 Max Grav 2=184 (LC (LC 1), 8= (Ib) - Maximum Com Tension 1-2=0/17, 2-4=-115/ 5-6=-22/41 2-7=-35/46, 6-7=-35, 4-7=-207/205 CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC 24ft; eave=2ft; Cat. II; directional) and C-C C erior (2) 2-1-8 to 5-7-12 ixposed ; end vertical I -C for members and ft shown; Lumber DOL=	athing directly applie applied. 5=5-9-8, 7=5-9-8, 8=4 11), 8=68 (LC 11) ;12), 6=-1 (LC 9), 7= 3=-18 (LC 12) C 1), 6=21 (LC 1), 7= :184 (LC 1) pression/Maximum 76, 4-5=-44/44, /46 (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) -0-10-8 to 2 zone; cantilever left left and right orcces & MWFRS for 1.60 plate grip n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	ch 6) * T on 3-(c ch 7) Pro be 2-9-8 8) Th 8) Th 8 -14 9) Th 9) Th 8 100 LOAD	ord live loa his truss h the bottor 36-00 tall b ord and ar ovide meci aring plate 1 lb uplift a lift at joint is truss is ernational 02.10.2 ar is truss de uctural wo ord and 1/ b bottom cl	designed in accord Residential Code nd referenced stan sign requires that od sheathing be a 2" gypsum sheetro	with any I for a liv s where II fit betv (by oth anding 1 ift at join dance w sections dard AN a minim pplied d	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 8 lb uplift at jo t 7 and 18 lb ith the 2015 s R502.11.1 au USI/TPI 1. um of 7/16" irectly to the to	psf om obint nd		1		SEA 0363 Septembe	EER.K	

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	E02	Monopitch	4	1	Job Reference (optional)	154322408

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:45 ID:bFeaeLpAQXh4yAl3siRwAAzDjtc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30

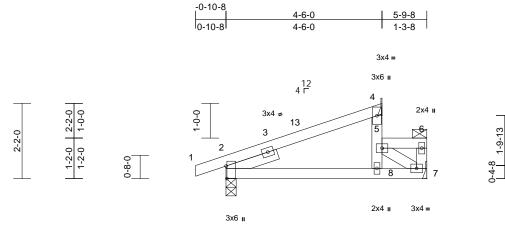
Plate Offsets (X, Y): [2:0-2-5,0-0-5], [5:Edge,0-2-0]

	(,, ,). [2:0 2 0;0 0 0],	[0:2090;0 2 0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.39 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly applie applied. 5=0-1-8 C 12) 8), 5=-20 (LC 12)	bearing plat and 20 lb up 7) This truss is Internationa R802.10.2 a 8) This truss d structural w		standing 9 ordance w e sections andard AN at a minim applied di	b lb uplift at jo ith the 2015 is R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the	oint 2 and top					
Vasd=95n B=45ft; L= MWFRS (2-1-8, Inte	,	29, 4-5=-138/100 (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to zone; cantilever left									WING CA	

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom

exposed;C-C for members and forces & MWFRS for

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value 4) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 5) bearing plate at joint(s) 5.


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	E04	Half Hip	5	1	Job Reference (optional)	154322409

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:45 ID:SrJh3qF_0hWkd9uUX?czcBzDUNU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1 20

1-5-5

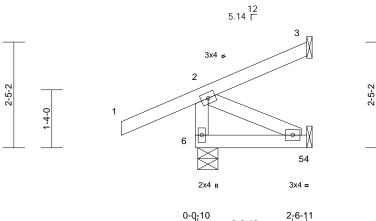
-4-8

Scale = 1:33.2

Plate Offsets (X, Y): [2:0-4-5,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015/T		CSI TC BC WB Matrix-MP	0.26 0.23 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 Structural wood sh 5-9-8 oc purlins, e 2-0-0 oc purlins; 5- Rigid ceiling direct bracing. (size) 2=0-3-8, Mechan Max Horiz 2=56 (L0 Max Uplift 2=-15 (L	eathing directly applie xcept end verticals, a 8, 5-6. y applied or 10-0-0 or 4= Mechanical, 7= cal C 12), 7=-2 (LC 9) C 12), 7=-2 (LC 9) C 1), 4=707 (LC 19),	ad or bd or c c c c c c c c c c c c c	n the bottom -06-00 tall by hord and any tefer to girdei rovide mech earing plate and 2 lb upli his truss is d thernational F (802.10.2 and oad case(s) esigner must orrect for the graphical purl r the orientat ottom chord.	esigned in accc Residential Cod d referenced sta 1, 2 has/have b t review loads to intended use o in representatic ion of the purlin	as where vill fit betw s. russ conr on (by oth tanding 1 rdance w e sections indard AN een modif o verify tha f this truss n does n along the	a rectangle veen the both ections. ers) of truss 5 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1. ied. Building at they are S. ot depict the top and/or	tom to joint and					
 this design Wind: ASC Vasd=95m B=45ft; L= MWFRS (i 2-1-8, Inter and right exposed; cractions; DOL=1.60 Provide ac This truss 	(ib) - Maximum Co Tension 1-2=0/17, 2-4=-118 4-5=0/168, 5-6=-13 2-8=-162/136, 7-8= 5-7=-114/92 ed roof live loads hav n. CE 7-10; Vult=120mp nph; TCDL=6.0psf; B =24ft; eave=4ft; Cat. I (directional) and C-C arior (1) 2-1-8 to 5-7-1 exposed ; end vertica 2-C for members and shown; Lumber DOL	mpression/Maximum //15, 5-8=-9/174, //15, 6-7=-91/6 -85/105 e been considered for h (3-second gust) CDL=6.0psf; h=25ft; ; Exp B; Enclosed; Exterior (2) -0-10-8 to 2 zone; cantilever left left and right forces & MWFRS for =1.60 plate grip prevent water ponding or a 10.0 psf bottom	d LOAI 1) 2)	iagonal or ve D CASE(S) Dead + Roof Plate Increas Uniform Loav Vert: 1-4= Concentratee Vert: 4=-4 Dead + 0.75 Lumber Incre Uniform Load	Live (balanced se=1.00 ds (lb/ft) -60, 5-6=-90, 7- d Loads (lb) 67 Roof Live (bala sase=1.15, Plat ds (lb/ft) -50, 5-6=-140, 7 d Loads (lb)	not excee): Lumber 9=-20 nced) + 0 e Increase	d 0.500in. Increase=1.	·				SEA 0363	EER.KI

4-4-4



Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J01	Jack-Open Girder	2	1	Job Reference (optional)	154322410

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:45 ID:SptN1hDa8kaENGSYVLDUCdzDPOd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-8-7	2-6-11
1-8-7	2-6-11

Page: 1

	2-2-13	2-0-11
0-0-10	2-2-3	0-3-14

Scale = 1:26.5

		i										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.27	Vert(LL)	0.00	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 16 lb	FT = 20%
LUMBER		•	6) This truce is	designed in accord	lon oo …	ith the 2015					•	
TOP CHORD	2x4 SP No.2			Residential Code s			nd					
BOT CHORD				nd referenced stan			na					
WEBS	2x4 SP No.3		LOAD CASE(S)									
BRACING			20/10 0/102(0)	olandara								
TOP CHORD	Structural wood she	athing directly applie	ed or									
	2-6-11 oc purlins, e											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	b									
	bracing.											
REACTIONS	(size) 3= Mecha 6=0-5-9	anical, 5= Mechanica	ıl,									
	Max Horiz 6=75 (LC	8)										
	Max Uplift 3=-8 (LC		-34									
	(LC 8)	,, ,, ,,										
	Max Grav 3=27 (LC (LC 1)	1), 5=51 (LC 3), 6=2	248									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD		44. 2-3=-45/6										
BOT CHORD												
WEBS	2-5=-15/72											
NOTES												
	CE 7-10; Vult=120mph											111.
	nph; TCDL=6.0psf; BC										WHY CA	Pall
	=24ft; eave=4ft; Cat. II; (directional); cantilever		. I.								R	
	al left and right expose								/	S.	Quint 85	D2 pm
	DOL=1.60		0							2 A	.04	
	has been designed fo	r a 10.0 psf bottom							-	£	<u>.</u> ?`	K
chord live	load nonconcurrent w	ith any other live load	ds.						-		SEA	L : =
	ss has been designed f		psf									• -
	ttom chord in all areas								1		0363	22 : :
	all by 2-00-00 wide will any other members.	In between the bollo	0(1)						-	9	N	1 S - S
	irder(s) for truss to tru	iss connections							CONTRACTOR OF STREET	1	·	Airs
	nechanical connection		C							25	S. GINI	EFICAS
bearing pl	late capable of withsta	nding 34 lb uplift at jo								11	C .	BEIN
6, 8 lb upl	lift at joint 3 and 16 lb u	uplift at joint 5.									A. G	ILLIN
											<i></i>	IIII

September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J02	Jack-Open	6	1	Job Reference (optional)	154322411

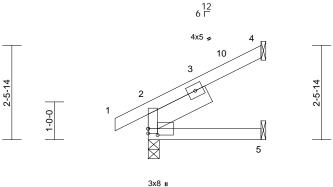
2-11-12

2-11-12

-0-10-8

0-10-8

Carolina Structural Systems, LLC, Ether, NC - 27247,


Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:46 ID:w?RIF1ECv2i4?Q1k32kjkqzDPOc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

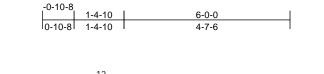
4x5 = 2-11-12

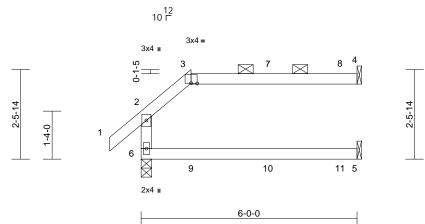
11111 September 22,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:30.4

Plate Offsets (X, Y): [2:0-3-0.0-2-0]


Plate Offsets	(X, Y): [2:0-3-0,0-2-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 Left 2x6 SP No.2 Structural wood she 2-11-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Mechanic Max Horiz 2=52 (LC Max Uplift 2=-6 (LC Max Grav 2=177 (LC 	athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al 12) 12), 4=-25 (LC 12)	d or bearing p 4 and 6 ll 6) This truss Internatic R802.10. LOAD CASE	hechanical connection late capable of withs o uplift at joint 2. s is designed in acconnal Residential Code 2 and referenced sta (S) Standard	tanding 2 rdance w sections	5 lb́ uplift at j ith the 2015 5 R502.11.1 a	oint					
FORCES TOP CHORD BOT CHORD												
NOTES 1) Wind: AS Vasd=951; B=45ft; L MWFRS 2-1-8, Intr and right exposed; reactions DOL=1.61 2) This truss chord live 3) * This trus on the bo 3-06-00 tr chord and	CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C E erior (1) 2-1-8 to 2-11-0 exposed ; end vertical C-C for members and f shown; Lumber DOL=	DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to zone; cantilever left left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	ls. psf						J. Contraction		SEA 0363	EER ALU



Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J03	Jack-Open Girder	2	1	Job Reference (optional)	154322412

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:46 ID:w?RIF1ECv2i4?Q1k32kjkqzDPOc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32

Plate Offsets (X, Y): [3:0-2-0,0-0-2]

	(X, Y): [3:0-2-0,0-0-2]				-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.73	Vert(LL)	-0.06	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.14	5-6	>489	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.19	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI20	14 Matrix-MR	-						Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2	cept end verticals, a	bearin 6 and 8) This tu Intern ed or R802. nd 9) Graph or the	le mechanical connecti g plate capable of with 67 lb uplift at joint 4. uss is designed in acc ational Residential Coo 10.2 and referenced st ical purlin representati orientation of the purli	ordance w le sections andard AN on does no	i2 lb uplift at j ith the 2015 is R502.11.1 a ISI/TPI 1. ot depict the s	joint and					
BOT CHORD			0	n chord. er(s) or other connectio	n device(s) shall be						
REACTIONS	0	C 5), 6=-52 (LC 8) C 18), 5=141 (LC 3),	al, down up at top ch 17 lb o chord.	ed sufficient to support and 23 lb up at 1-4-10 3-6-5, and 53 lb down ord, and 35 lb down at down at 3-6-5, and 23 The design/selection he responsibility of oth	, and 59 lb and 23 lb nd 25 lb up lb down a of such co	down and 2 up at 5-6-5 o at 1-4-10, a 5-6-5 on bo	2 lb on and ottom					
FORCES	(lb) - Maximum Com	pression/Maximum	11) In the	LOAD CASE(S) section	n, loads a		face					
TOP CHORD BOT CHORD NOTES	5-6=0/0		^{1=0/0} LOAD CA 1) Dead Plate	truss are noted as fror SE(S) Standard d + Roof Live (balanced increase=1.00	.,		15,					
 Unbalance this design 	ed roof live loads have	been considered to		orm Loads (lb/ft)	4 00 5	2 20					1111 C	
2) Wind: ASC Vasd=95n B=45ft; L= MWFRS (end vertic	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directional); cantilever al left and right expose	DL=6.0psf; h=25ft; Exp B; Enclosed; left and right expose	Conc Ve 10	ert: 1-2=-60, 2-3=-60, 3 centrated Loads (lb) ert: 3=-15 (B), 7=-15 (B =-14 (B), 11=-20 (B)	,				4		SEA 0363	TOLIN
	DOL=1.60 dequate drainage to pr	overt water ponding							= =		SEA	• –
	has been designed for		J.						1		0363	322 : =
	load nonconcurrent wi		ds.						-	6		1 E
	s has been designed f									-	·	A 1. 3
on the bot	ttom chord in all areas	where a rectangle								20	NGINI	FERRICAS
	all by 2-00-00 wide will	fit between the botto	om							14	20	E. S. S.
	any other members.										A. C	HLB

6) Refer to girder(s) for truss to truss connections.

A. GILBENN September 22,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

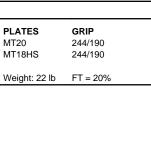
Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J04	Jack-Open	2	1	Job Reference (optional)	154322413

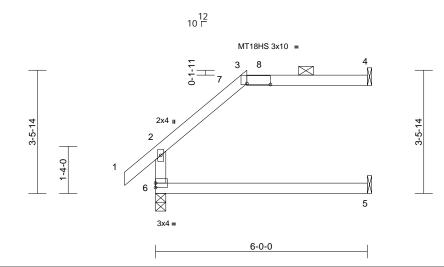
2-7-1

2-7-1

-0-10-8

0-10-8


Carolina Structural Systems, LLC, Ether, NC - 27247,


Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:46 ID:oEdPynsNzqwLPpkzJIChWVzDPP4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0

3-4-15

Page: 1

Scale = 1:32.6

Plate Offsets (X, Y): [3:0-8-0,0-0-5]

	(A, T). [3.0-0-0,0-0-3]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.53 0.39 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.12 0.21	(loc) 5-6 5-6 4	l/defl >999 >581 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 22 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals 3-4. Rigid ceiling directly (size) 4= Mecha 6=0-3-8 Max Horiz 6=101 (LC Max Uplift 4=-52 (LC Max Grav 4=158 (LC	athing directly applie , and 2-0-0 oc purlin applied. nical, 5= Mechanica C 12) : 9), 6=-6 (LC 12)	6) 7) ed, 8) s: 9) Il, 10	 * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate and 52 lb up This truss is International R802.10.2 ai This truss de structural wo 	has been designer n chord in all area y 2-00-00 wide w by other members er(s) for truss to t hanical connection o capable of withst iff at joint 4. designed in accor Residential Code nd referenced stan sign requires that od sheathing be a 2" gypsum sheetrr	is where ill fit betv russ con n (by oth anding 6 rdance w sections ndard AN a minim applied d	a rectangle veen the both nections. ers) of truss in buplift at jup ith the 2015 R502.11.1 ISI/TPI 1. um of 7/16" rectly to the	tom to pint 6 and top					
FORCES TOP CHORD BOT CHORD NOTES	(LC 1) (lb) - Maximum Com Tension 2-6=-250/122, 1-2=0 3-4=-1/1 5-6=0/0							size					
 Unbalance this design Wind: ASC Vasd=95m B=45ft; L= MWFRS (2-1-8, Inte 5-11-4 zor vertical lef forces & M DOL=1.6C Provide ac All plates is This truss 	ed roof live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directional) and C-C E: iroir (1) 2-1-8 to 2-7-1, ne; cantilever left and r ft and right exposed;C- IWFRS for reactions s 0) plate grip DOL=1.60 dequate drainage to pr are MT20 plates unless: has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; kterior (2) -0-10-8 to Exterior (2) 2-7-1 to ight exposed ; end C for members and hown; Lumber event water ponding s otherwise indicated a 10.0 psf bottom	I. d.									SEA 0363	L 22 EER HILL

A. GILIN September 22,2022

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J05	Jack-Open	2	1	Job Reference (optional)	154322414

3-9-7

3-9-7

12 10 Г

8

0-1-11

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:46 ID:1QcyiEZis8muvzK9L?Fq0EzDPPT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-14

8

5

6-0-0

2-2-9

MT18HS 9x12 =

3

6-0-0

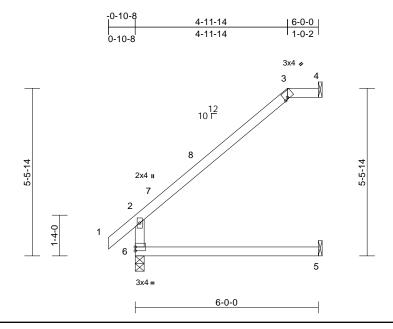
-0-10-8

0-10-8

818 Soundside Road Edenton, NC 27932

4-5-14 3х4 ш 2 7 ø 1-4-0 1 6 \bigotimes 3x4 =

Scale = 1:33.9


Plate Offsets (X, Y): [3:0-9-8,0-2-7]

	(, .). [
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.48 0.39 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.12 0.21	(loc) 5-6 5-6 4	l/defl >999 >582 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 23 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals 3-4. Rigid ceiling directly	, and 2-0-0 oc purlin applied. Inical, 5= Mechanica C 12) C 12)	s: 9) II, 5=298	on the bottor 3-06-00 tall h chord and ar) Refer to gird) Provide mec bearing plate 4.) This truss is International R802.10.2 a)) This truss de structural wo chord and 1/ the bottom c		s where Il fit betw russ con a (by oth anding f dance w sections idard AN a minim pplied d ock be a	a rectangle veen the both nections. ers) of truss 52 lb uplift at ith the 2015 5 R502.11.1 i NSI/TPI 1. um of 7/16" irectly to the pplied directl	to joint and top y to					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-6=-250/95, 1-2=0/		0/0					size					
NOTES	5-6=0/0												
this desigr			r									mmm	unn.
Vasd=95n B=45ft; L= MWFRS (2-1-8, Inte 5-11-4 zor vertical lef forces & N DOL=1.60 3) Provide au 4) All plates 5) This truss	CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directional) and C-C E erior (1) 2-1-8 to 3-9-7, ne; cantilever left and r ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60 dequate drainage to pr are MT20 plates unles has been designed fo load nonconcurrent with	DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to Exterior (2) 3-9-7 to ight exposed; end C for members and hown; Lumber event water ponding s otherwise indicated r a 10.0 psf bottom	d.								2	SEA 0363	EER HILL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

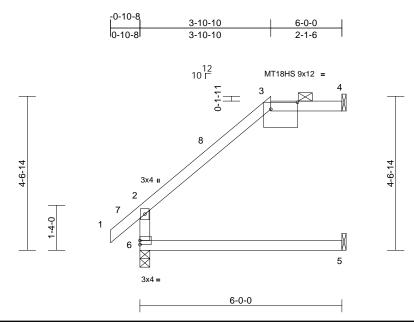
Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J06	Jack-Open	3	1	Job Reference (optional)	154322415

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:46 ID:gBHe5ilv2N?0Gbex2Nsf7bzDPPp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37.8

Plate Offsets (X, Y): [3:0-1-6,0-0-10]

Plate Offsets	(X, Y): [3:0-1-6,0-0-	0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.48 0.38 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.12 0.18	(loc) 5-6 5-6 4	l/defl >999 >583 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this desig 2) Wind: ASI Vasd=95r B=45ft; L= MWFRS (2-1-8, Inte to 5-11-4 vertical lee forces & M DOL=1.6(3) Provide ar 4) This truss chord live 5) * This truss on the bod 3-06-00 ta	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sl except end vertice 3-4. Rigid ceiling direc (size) 4= Mec 6=0-3-8 Max Horiz 6=153 (Max Uplift 4=-71 (I Max Grav 4=159 (6=298 ((lb) - Maximum Co Tension 2-6=-250/64, 1-2= 5-6=0/0 ed roof live loads hav n. CE 7-10; Vult=120m mph; TCDL=6.0psf; E =24ft; eave=4ft; Cat. (directional) and C-C erior (1) 2-1-8 to 4-11 zone; cantilever left at ft and right exposed; WWFRS for reactions 0 plate grip DOL=1.6 dequate drainage to has been designed load nonconcurrent ss has been designed	leathing directly applie ls, and 2-0-0 oc purlin ly applied. hanical, 5= Mechanica LC 12) LC 12) LC 17), 5=110 (LC 3), LC 17), 5=110 (LC 3), LC 17) mpression/Maximum D/39, 2-3=-122/80, 3-4 re been considered for bh (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to th (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; I for a live load of 20.0 I fo	6) Refer to 7) Provide bearing 4. 8) This trus ad, R802.10 9) This trus structura chord ar the botto 10) Graphica or the or bottom c LOAD CASE 4=0/0 r 14 d	girder(s) for truss to mechanical connecti olate capable of with s is designed in acco onal Residential Cod. 2 and referenced st. s design requires the I wood sheathing be d 1/2" gypsum shee m chord. a purlin representati ientation of the purlir	on (by oth standing 7 ordance w le sections andard AN at a minim applied d trock be a on does no	ers) of truss i 1 lb uplift at j 1 lb uplift at j 1 lb uplift at j 1 lb uplift at j 1 lb uplift 1 lb u	joint and top y to				SEA O363 Septembe	EER. K
											e ep torribo	· _ _,_ ·



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J07	Jack-Open	1	1	Job Reference (optional)	154322416

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:47 ID:4Dvwa6wSLs5P2qn_kMoOM2zDPQI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

Plate Offsets (X, Y): [3:0-9-8,0-2-7]

	(X, 1): [0:0 0 0;0 2 7]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.48 0.39 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.12 0.21	(loc) 5-6 5-6 4	l/defl >999 >583 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 23 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals 3-4. Rigid ceiling directly (size) 4= Mecha 6=0-3-8 Max Horiz 6=128 (LC Max Uplift 4=-53 (LC Max Grav 4=158 (LC (LC 1)	, and 2-0-0 oc purlins applied. nical, 5= Mechanica C 12) : 12)	s: 9) I, 10 =298	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4. This truss is International R802.10.2 ar 9) This truss de structural wo chord and 1/ the bottom c		as where vill fit betv s. truss con on (by oth standing 5 rdance w e sections andard AN t a minim applied d rock be a	a rectangle veen the bott nections. ers) of truss 3 lb uplift at ith the 2015 i R502.11.1 at ISI/TPI 1. um of 7/16" irectly to the opplied directl	to joint and top ly to					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-6=-250/93, 1-2=0/3 5-6=0/0		0/0					size					
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m B=45ft; L= MWFRS (2-1-8, Inte to 5-11-4 z vertical lef forces & M DOL=1.60 3) Provide ac 4) All plates a 5) This truss	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to 0, Exterior (2) 3-10-1 d right exposed ; enc C for members and hown; Lumber event water ponding s otherwise indicated r a 10.0 psf bottom	10 3									SEA 0363	EER ER III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. GILBE A. GILD September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J08	Jack-Open	1	1	Job Reference (optional)	154322417

2-8-4

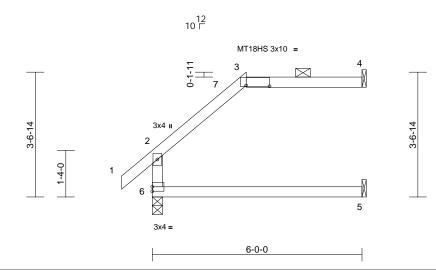
2-8-4

-0-10-8

0-10-8

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:47 ID:uIAUZvAZxpHCcI136Lhsr_zDPRG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-0-0

3-3-12

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:33

Plate Offsets (X, Y): [3:0-8-0,0-0-5]

·													
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.53	DEFL Vert(LL)	in -0.05	(loc) 5-6	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC WB	0.39	Vert(CT)	-0.12	5-6 4	>581	180	MT18HS	244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES	5/TPI2014	Matrix-AS	0.00	Horz(CT)	0.21	4	n/a	n/a	Weight: 22 lb	FT = 20%
BCDL	10.0	Code	INC20	13/1F12014	Wathx-A3							weight. 22 lb	FT = 20 / 6
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		athing directly applie , and 2-0-0 oc purlins	7 d, ⁸	on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing plate and 52 lb up	has been designed in chord in all area by 2-00-00 wide w by other members er(s) for truss to t hanical connection a capable of withst lift at joint 4. designed in accor	is where ill fit betv russ con n (by oth tanding 5	a rectangle veen the bot nections. ers) of truss 5 lb uplift at jo	tom to					
		applied. anical, 5= Mechanical		International	Residential Code	sections	R502.11.1	and					
	6=0-3-8 Max Horiz 6=103 (L0 Max Uplift 4=-52 (L0 Max Grav 4=158 (L0 (LC 1)	C 12) C 9), 6=-5 (LC 12)	1 =298	0) This truss de structural wo chord and 1/ the bottom c	nd referenced star sign requires that od sheathing be a 2" gypsum sheetr hord. rlin representatior	a minim applied d ock be a	um of 7/16" irectly to the pplied direct	ly to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			ation of the purlin			5120					
TOP CHORD	2-6=-250/120, 1-2=0 3-4=-1/1	0/39, 2-3=-119/16,	L	OAD CASE(S)									
BOT CHORD	5-6=0/0												
NOTES													
	ed roof live loads have	been considered for											11111
Vasd=95m B=45ft; L= MWFRS (2-1-8, Inte 5-11-4 zor vertical left forces & M DOL=1.60	1. CE 7-10; Vult=120mph TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C E rior (1) 2-1-8 to 2-8-4, ne; cantilever left and I t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60 dequate drainage to pr	DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to Exterior (2) 2-8-4 to ight exposed ; end C for members and hown; Lumber								Jan 1111		SEA 0363	• -
4) All plates a5) This truss	has been designed for load nonconcurrent w	s otherwise indicated r a 10.0 psf bottom										A. G	EERATION

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J09	Jack-Open Girder	1	1	Job Reference (optional)	154322418

-0-10-8

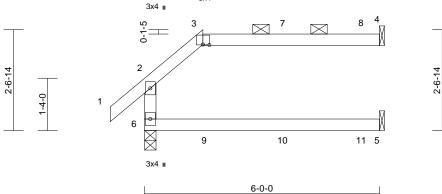
0-10-8

1-5-14

1-5-14

12 10 ∟

Carolina Structural Systems, LLC, Ether, NC - 27247,


Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:47 ID:YLMbWC6Q7GfwVX95Jo5h8wzDPRL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4 8 7

6-0-0

4-6-2

3x4 =

Scale = 1:29.4

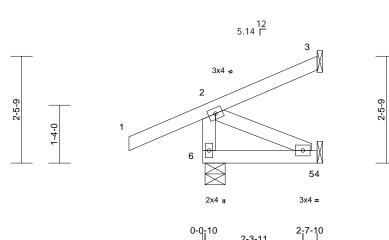
Plate Offsets (X, Y): [3:0-2-0.0-0-2]

Plate Offsets ((X, Y): [3:0-2-0,0-0-2]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015/	[PI2014	CSI TC BC WB Matrix-MR	0.76 0.52 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.15 0.20	(loc) 5-6 5-6 4	l/defl >999 >475 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins; s.4 Rigid ceiling directly bracing. (size) 4= Mecha 6=0-3-8 Max Horiz 6=79 (LC Max Grav 4=209 (LC 6=345 (LC (lb) - Maximum Com	athing directly applie cept end verticals, ar applied or 10-0-0 oc inical, 5= Mechanica 8) : 5), 6=-27 (LC 8) : 18), 5=146 (LC 3), : 1)	7) 8) dor 1d 9) 10)	Provide mec bearing plate 6 and 67 lb u This truss is International R802.10.2 a Graphical pu or the orient bottom chord Hanger(s) or provided suf down and 23 up at 3-6-5, top chord, ar 3-6-5, and 24 design/selec responsibility	hanical connection e capable of withs uplift at joint 4. designed in accoo Residential Code and referenced sta irlin representation ation of the purlin d. or ther connection ficient to support (d) b up at 1-5-14, and 55 lb down at 19 lb down at 6 lb down at 5 lb down at 5 lb down at 5 lb down at	tanding 2 rdance w e sections indard AN n does no along the a device(s concentra and 61 lt ind 24 lb 1-6-5, an 5 on bott ection de	17 Ib uplift at 17 Ib uplift at 18502.11.1 at 18502.11.1 at 1851/TPI 1. 19 depict the 19 depict the 19 depict the 10 depict the 11 depict the 11 depict the 10 depict th	joint and size 54 lb 3 lb 30 at he				Weight. 22 ib	
 this design Wind: ASS Vasd=95n B=45ft; L= MWFRS (end vertice plate grip Provide au This truss chord live * This truss on the bot 3-06-00 ta chord and 	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; left and right expose d; Lumber DOL=1.60 event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.00 where a rectangle fit between the botto	=0/0 LOA 1) d;) ls. psf	D CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-2 Concentrat Vert: 3=-	of Live (balanced) ase=1.00): Lumber 4=-60, 5-	Increase=1.			V. COLLINS.		SEA OBCEESS SEA O363	EER A LU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 22,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J10	Jack-Open Girder	1	1	Job Reference (optional)	154322419


-1-8-7

1-8-7

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:47 ID:jeyT7WdLY_cbiN5PzONIXUzDPRz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-3-11 2-3-1 0-0-10 0-3-15

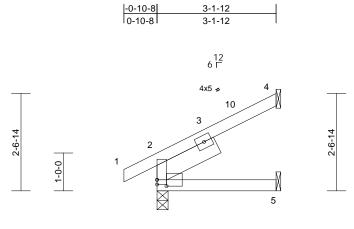
2-7-10

2-7-10

Scale = 1:26.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.27	Vert(LL)	0.00	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 16 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-7-10 oc purlins, e Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 or anical, 5= Mechanica 8) 5), 5=-15 (LC 8), 6=-	6) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or	designed in acco Residential Code and referenced sta	e sections	s R502.11.1 a	and					
FORCES	(LC 1) (lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD BOT CHORD WEBS		,										
NOTES												
 Vasd=95n B=45ft; L= MWFRS (end vestic plate grip This truss chord live This truss on the bot 3-06-00 ta chord and Refer to g Provide m bearing pl 	CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC 224ft; eave=4ft; Cat. II; (directional); cantilever al left and right expose DOL=1.60 thas been designed fo load nonconcurrent w ss has been designed fo tom chord in all areas all by 2-00-00 wide will any other members. jirder(s) for truss to tru hechanical connection late capable of withstan lift at joint 3 and 15 lb u	DL=6.0psf; h=25ft; Exp B; Enclosed; left and right expose d; Lumber DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to doing 34 lb uplift at ju	0 ds. psf om						CA THINK		SEA 0363	EER. KUN

September 22,2022



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J11	Jack-Open	3	1	Job Reference (optional)	154322420

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:47 ID:q37gajyrV4hOcwOrFLuPouzDPSq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

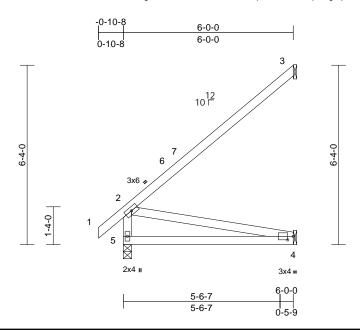
3x8 II

4x5 =

3-1-12

Scale = 1:30.5 Plate Offsets (X, Y): [2:0-3-0,0-2-0]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
Mechanic: Max Horiz 2=54 (LC Max Uplift 2=-5 (LC Max Grav 2=183 (LC	athing directly applied applied or 10-0-0 oc = Mechanical, 5= al 12) 12), 4=-26 (LC 12)	International R802.10.2 a LOAD CASE(S)	designed in acco Residential Code nd referenced sta Standard	e sections	s R502.11.1 a	Ind					
(LC 3) FORCES ((b) - Maximum Com Tension TOP CHORD 1-2=0/23, 2-4=-84/25 BOT CHORD 2-5=-90/34 NOTES 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCI B=45ft; L=24ft; eave=4ft; Cat. II; MWFRS (directional) and C-C Eb 2-1-8, Interior (1) 2-1-8 to 3-1-0 z right exposed ; end vertical left a for members and forces & MWFF Lumber DOL=1.60 plate grip DO 2) This truss has been designed for chord live load nonconcurrent wii 3) * This truss has been designed for on the bottom chord in all areas in 3-06-00 tall by 2-00-00 wide will 1 chord and any other members. 4) Refer to girder(s) for truss to trus 5) Provide mechanical connection (bearing plate capable of withstan 4 and 5 lb uplift at joint 2.	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; tterior (2) -0-10-8 to cone; cantilever left a nd right exposed;C-C RS for reactions show L=1.60 a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle lit between the bottor ss connections. by others) of truss to	c vn; s. osf n						Contraction of the second seco		SEA 0363	EER. KINN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	J012	Jack-Open	17	1	Job Reference (optional)	154322421

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:48 ID:gBHe5ilv2N?0Gbex2Nsf7bzDPPp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.7

Plate Offsets (X, Y): [4:0-2-5,0-1-8]

											-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.53	Vert(LL)	-0.07	4-5	>997	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.14	4-5	>499	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Except Structural wood she except end verticals Rigid ceiling directly	eathing directly applies. r applied. anical, 4= Mechanica C 12) C 12) C 17), 4=117 (LC 3)	ed, 7) This true R802.10 7) This true structura al, chord an the botto LOAD CAS	mechanical connecti plate capable of with ss is designed in acco onal Residential Coc 0.2 and referenced st ss design requires th al wood sheathing be ad 1/2" gypsum shee om chord. E(S) Standard	standing & ordance w le sections andard AN at a minim applied d	1 lb uplift at th the 2015 R502.11.1 ISI/TPI 1. um of 7/16" rectly to the	joint and top					
FORCES	(lb) - Maximum Con	,										
TOP CHORD BOT CHORD	4-5=-207/173	/39, 2-3=-128/120										
WEBS	2-4=-177/211											
NOTES												
Vasd=95n B=45ft; L= MWFRS (2-1-8, Inte and right e exposed;0	CE 7-10; Vult=120mpt mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C E erior (1) 2-1-8 to 5-11-4 exposed ; end vertical C-C for members and f shown; Lumber DOL= 0	DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to t zone; cantilever lef left and right forces & MWFRS for	ft						4		OR OFESS	NRO THE
	has been designed fo	r a 10.0 psf bottom							=	:		• -
	load nonconcurrent w		ads.						Ξ		0363	22 : E
3) * This trus on the bot 3-06-00 ta	ss has been designed t ttom chord in all areas all by 2-00-00 wide will	for a live load of 20.0 where a rectangle	0psf								NGIN	FERIX
	any other members.	iss connections								11	B/C	BELIN

4) Refer to girder(s) for truss to truss connections.

GI 11111111 September 22,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V01	Valley	1	1	Job Reference (optional)	154322422

1-4-14 1-4-14

12 10 ∟

1-2-5

0-11

3x4 = 2

Carolina Structural Systems, LLC, Ether, NC - 27247.

Scale = 1:25.8

Loading

TCDL

BCLL

BCDL

LUMBER

BRACING

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

NOTES

1)

2)

3)

4)

5) 6)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

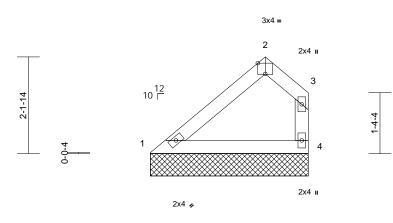
TCLL (roof)

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:48 ID:d8ALpUboLL6D07TL3nbXDNybSQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

Page: 1

2x4 🍫 2x4 =2-4-5 Plate Offsets (X, Y): [2:0-2-0,Edge], [3:0-2-1,0-1-0] PLATES 2-0-0 CSI DEFL l/defl L/d GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) 999 MT20 244/190 n/a n/a 10.0 Lumber DOL 1.15 BC 0.07 Vert(TL) n/a n/a 999 0.0* Rep Stress Incr YES WB Horiz(TL) 6 0.00 0.00 n/a n/a 10.0 Code IRC2015/TPI2014 Matrix-MP Weight: 8 lb FT = 20% 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SP No.2 chord and any other members. This truss is designed in accordance with the 2015 8) Structural wood sheathing directly applied or International Residential Code sections R502.11.1 and 2-4-11 oc purlins. R802.10.2 and referenced standard ANSI/TPI 1. Rigid ceiling directly applied or 6-0-0 oc LOAD CASE(S) Standard bracing. (size) 1=2-4-5, 3=2-4-5, 6=2-4-5 Max Horiz 1=-16 (LC 10) Max Grav 1=123 (LC 3), 3=100 (LC 1), 6=100 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-153/14, 2-3=-80/19 1-3=-61/118 Unbalanced roof live loads have been considered for Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; \cap cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip Truss designed for wind loads in the plane of the truss SEAL only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, 036322 or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. G mmm September 22,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V02	Valley	1	1	Job Reference (optional)	154322423

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:48 ID:F1ZEkMECLFYkp?auPRuy_ezDPYw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

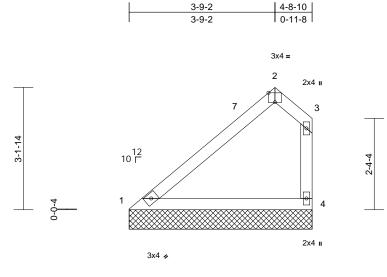
Page: 1

818 Soundside Road Edenton, NC 27932

3-6-3

Scale = 1:25.7

Plate Offsets (X, Y): [2:0-2-0,Edge]


Plate Offsets (X, Y): [2:0-2-0,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.17 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 3-6-3 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc 4=3-6-3 11)	7) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in accor I Residential Code and referenced stat	sections	8 R502.11.1 a	nd				weight. 13 lb	11 - 2078
FORCES TOP CHORD BOT CHORD	Max Grav 1=135 (LC (lb) - Maximum Com Tension 1-2=-170/31, 2-3=-9 1-4=-67/151	C 1), 4=135 (LC 1) pression/Maximum										
 this design Wind: ASC Vasd=95m B=45ft; L= MWFRS (ic cantilever right exposion for reaction DOL=1.60 Gable required This truss chord live * This truss on the botis 3-06-00 ta chord and Provide m 	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC :24ft; eave=4ft; Cat. II; directional) and C-C E: left and right exposed sed;C-C for members a ns shown; Lumber DO	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR IL=1.60 plate grip m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto (by others) of truss to	d S ds. psf m						Withhit		SEA 0363	EER.K.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V03	Valley	1	1	Job Reference (optional)	154322424

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:48 ID:f3BWDIsmeke7bEix4QrgE6zDPZP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-8-10

Scale = 1:29.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets (X, Y): [2:0-2-0,Edge]			-							-	
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.30 0.32 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood shere except end verticals. BOT CHORD Rigid ceiling directly REACTIONS (size) 1=4-8-10, Max Horiz 1=77 (LC Max Uplift 4=-4 (LC ' Max Grav 1=183 (LC) FORCES (b) - Maximum Com Tension TOP CHORD 1-2=-234/41, 2-3=-1 BOT CHORD 1-4=-105/226 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCI B=45ft; L=24ft; eave=4ft; Cat. II; MWFRS (directional) and C-C E9 3-0-5, Interior (1) 3-0-5 to 3-9-7, 4-7-3 zone; cantilever left and rig vertical left and right exposed;C-f forces & MWFRS for reactions s1 DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig 4) Gable studs spaced at 6-0-0 cc. 6) This truss has been designed for chord live load nonconcurrent wit	applied. 4=4-8-10 11) 12) C 1), 4=183 (LC 1) pression/Maximum 19/64, 3-4=-109/62 been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) 0-0-5 to Exterior (2) 3-9-7 to pht exposed; end C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom	on the botto 3-06-00 tall chord and a 8) Provide me bearing pla 4. 9) This truss is Internationa R802.10.2 i 10) This truss of structural we chord and 1 the bottom LOAD CASE(S SS Ie, I 1.		where fit betw (by oth nding 4 ance w ections dard AN minim plied di	a rectangle veen the bottc ers) of truss to lb uplift at joi th the 2015 R502.11.1 an ISI/TPI 1. um of 7/16" rectly to the to	om ont nd				SEA 0363	EER R. LIN

818 Soundside Road Edenton, NC 27932

GI A. GIL September 22,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V04	Valley	1	1	Job Reference (optional)	154322425

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:48 ID:TgVxLBXCE766EwZYRYL65CzDPZr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-11-8 5-11-0 4-11-8 0-11-8 4x5 = 2 2x4 II 3 9 4-1-14 3-4-4 8 12 10 Г 4 0-C 5 2x4 II 3x4 🍫

5-11-0	

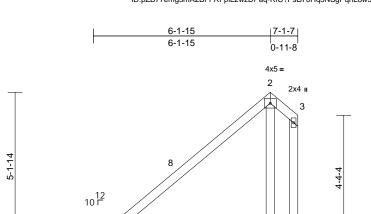
Scale =	1:35.8
---------	--------

										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC 0.2 BC 0.5 WB 0.0 Matrix-AS	5 Vert(TL) 6 Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 1=5-11-0, Max Horiz 1=107 (LI Max Uplift 4=-113 (L Max Grav 1=177 (LI (LC 17)	r applied. , 4=5-11-0, 5=5-11-0 C 11) .C 21), 5=-17 (LC 9) C 21), 4=10 (LC 9), 5=	d, 9) This truss is International R802.10.2 a 10) This truss is International R802.10.2 a 10) This truss de structural we chord and 1/		re a rectangle etween the both thers) of truss g 113 lb uplift a with the 2015 ins R502.11.1 ANSI/TPI 1. imum of 7/16" directly to the	to at joint and					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-223/106, 2-3=- 1-5=-108/223, 4-5=- 2-5=-195/124	79/87, 3-4=-68/64									
NOTES	2 0= 100/124										
 Unbalance this design 	ed roof live loads have	been considered for									
 Wind: ASC Vasd=95n B=45ft; L= MWFRS (i 3-0-5, Inte to 5-9-9 zc vertical lef forces & M DOL=1.60 Truss des 	CE 7-10; Vult=120mph ph; TCDL=6.0psf; BC c24ft; eave=4ft; Cat. II; directional) and C-C E rior (1) 3-0-5 to 4-11-1 one; cantilever left and t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60 signed for wind loads in	DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) 0-0-5 to 3, Exterior (2) 4-11-1 right exposed ; end C for members and hown; Lumber n the plane of the trus						4		SEA 0363	AL

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 6-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

036322 *A. GILBERNEER* September 22,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V05	Valley	1	1	Job Reference (optional)	154322426

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:49 ID:pZB77emg3mA2BFFRFpiL2wzDPaq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

2x4 🛛

5 2x4 🛛

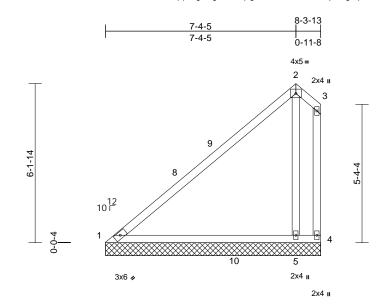
7-1-7

Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.46 0.80 0.11		in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood shear except end verticals. Rigid ceiling directly (size) 1=7-1-7, 4 Max Horiz 1=137 (LC Max Uplift 4=-181 (LC Max Grav 1=221 (LC (LC 17)	applied. =7-1-7, 5=7-1-7 \$ 11) C 17), 5=-21 (LC 9)	d, 9) This truss i Internationa R802.10.2 10) This truss of structural w chord and a bearing pla joint 4 and 9) This truss of structural w chord and		where fit betw (by oth nding 1 ance w ections lard AN minim plied d	a rectangle veen the bottc ers) of truss to 81 lb uplift at ith the 2015 R502.11.1 at ISI/TPI 1. um of 7/16" irrectly to the to	nd					
this design 2) Wind: ASC	(lb) - Maximum Com Tension 1-2=-282/142, 2-3=-{ 1-5=-131/283, 4-5=-{ 2-5=-249/160 d roof live loads have E 7-10; Vult=120mph	97/106, 3-4=-79/76 52/68 been considered for (3-second gust)	LUAD CASE(S) Standard							mmm	1111

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-2-3, Exterior (2) 6-2-3 to 6-11-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 6-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


-0-0

3x6 🖌

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V06	Valley	1	1	Job Reference (optional)	154322427

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:49 ID:d5OqzpbTgH4fgUv_df_q9gzDPcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

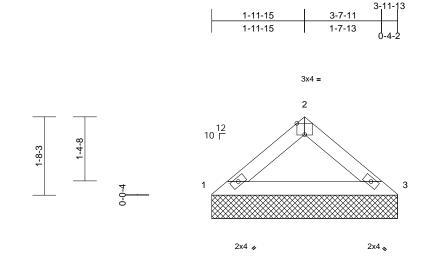
8-3-13

Scale = 1:44.6

						-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.66	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.19	Horiz(TL)	0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 44 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea except end verticals. Rigid ceiling directly (size) 1=8-3-13, Max Horiz 1=166 (LC Max Upliff 4=-327 (LL Max Grav 1=268 (LC (LC 17) (lb) - Maximum Com Tension 1-2=-340/175, 2-3=- 1-5=-147/334, 4-5=- 2-5=-300/191 ed roof live loads have	applied. 4=8-3-13, 5=8-3-13 C 11) C 17), 5=-23 (LC 9) C 18), 4=1 (LC 9), 5= pression/Maximum 115/125, 3-4=-90/87 76/82	9) 10 792	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 4 and 2 This truss is International R802.10.2 a)) This truss de structural wo		as where will fit betw s, with BC on (by oth standing 3 5. ordance w e sections andard AN andard AN applied di	a rectangle veen the botto DL = 10.0psf ers) of truss t 27 lb uplift at th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	o o nd					

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2) B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-4-10, Exterior (2) 7-4-10 to 8-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 6-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V07	Valley	1	1	Job Reference (optional)	154322428

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:49 ID:j9iTYFGh6_xfYVDdgsET_rzDjRw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-13

Page: 1

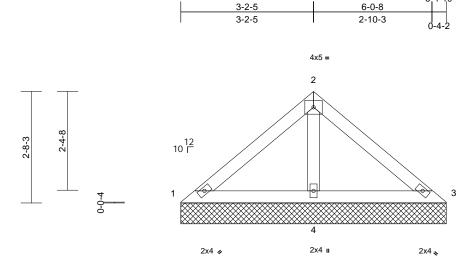
Plate Offsets (X, Y): [2:0-2-0,Edge]

	A, T). [2.0-2-0,Euge]	-										
Loading	(psf)	Spacing	2-0-0	CSI	0.44	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	20.0 10.0	Plate Grip DOL Lumber DOL	1.00 1.15	TC BC	0.11 0.16	Vert(LL) Vert(TL)	n/a n/a		n/a n/a	999 999	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP	-						Weight: 12 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-13 oc purlins. Rigid ceiling directly bracing. (size) 1=3-11-13 Max Horiz 1=27 (LC Max Uplift 1=-1 (LC	applied or 10-0-0 or 3, 3=3-11-13 11)	ed or 8) Provide bearing c 9) This trus Internatii R802.10	iss has been designe bitom chord in all are tall by 2-00-00 wide w d any other members mechanical connectio plate capable of withs uplift at joint 3. s is designed in acco onal Residential Code. 2 and referenced stat (S) Standard	as where will fit betw s. on (by oth standing 1 ordance w e sections	a rectangle veen the botto ers) of truss to Ib uplift at joi ith the 2015 5 R502.11.1 a	om o int 1					
	Max Grav 1=159 (L0											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD BOT CHORD	1-2=-215/32, 2-3=-2 1-3=-16/159	15/32										
this design 2) Wind: ASC Vasd=95m	CE 7-10; Vult=120mph hph; TCDL=6.0psf; BC	(3-second gust) DL=6.0psf; h=25ft;	r									
MWFRS (c cantilever l right expos	24ft; eave=4ft; Cat. II; directional) and C-C E left and right exposed sed;C-C for members as shown; Lumber DC	xterior (2) zone; ; end vertical left and and forces & MWFR							4	il.	OR FESS	ROUT
 Truss des only. For s see Standa or consult 	igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	l (normal to the face) d Details as applicat gner as per ANSI/TF), ble,								SEA 0363	• -
5) Gable stud	uires continuous botto Is spaced at 6-0-0 oc.	0										a / 1
	has been designed fo load nonconcurrent wi		ds.								A C	EEP. ALUNIN

- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI Ginnin September 22,2022


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V08	Valley	1	1	Job Reference (optional)	154322429

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:49 ID:B4kQBn4et3wwd1?YkVyiKTzDjSA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-4-10

6-4-10

Page: 1

Scale = 1:27.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-AS	0.12 0.20 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=6-4-10, Max Horiz 1=-45 (LC Max Uplift 4=-21 (LC Max Grav 1=67 (LC (LC 1) (lb) - Maximum Com Tension 1-2=-58/151, 2-3=-5	, 3-6-4-10, 4=6-4-10 2 10) 2 12) 2 1), 3=67 (LC 22), 4 ppression/Maximum 88/151	8 d. =417 ¹	 on the botto 3-06-00 tall chord and a Provide mec bearing plate 4. This truss is Internationa R802.10.2 a This truss de structural we 		eas where will fit betw s. on (by oth standing 2 ordance w e sections andard AN at a minim applied d	a rectangle veen the botto ers) of truss t 11 lb uplift at j ith the 2015 F R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the f	om to joint and top					

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

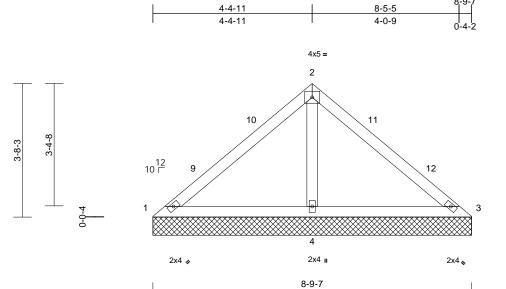
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

Gable studs spaced at 6-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Vanananan AND DUDING SEAL 036322 G 11111111 September 22,2022

1111111



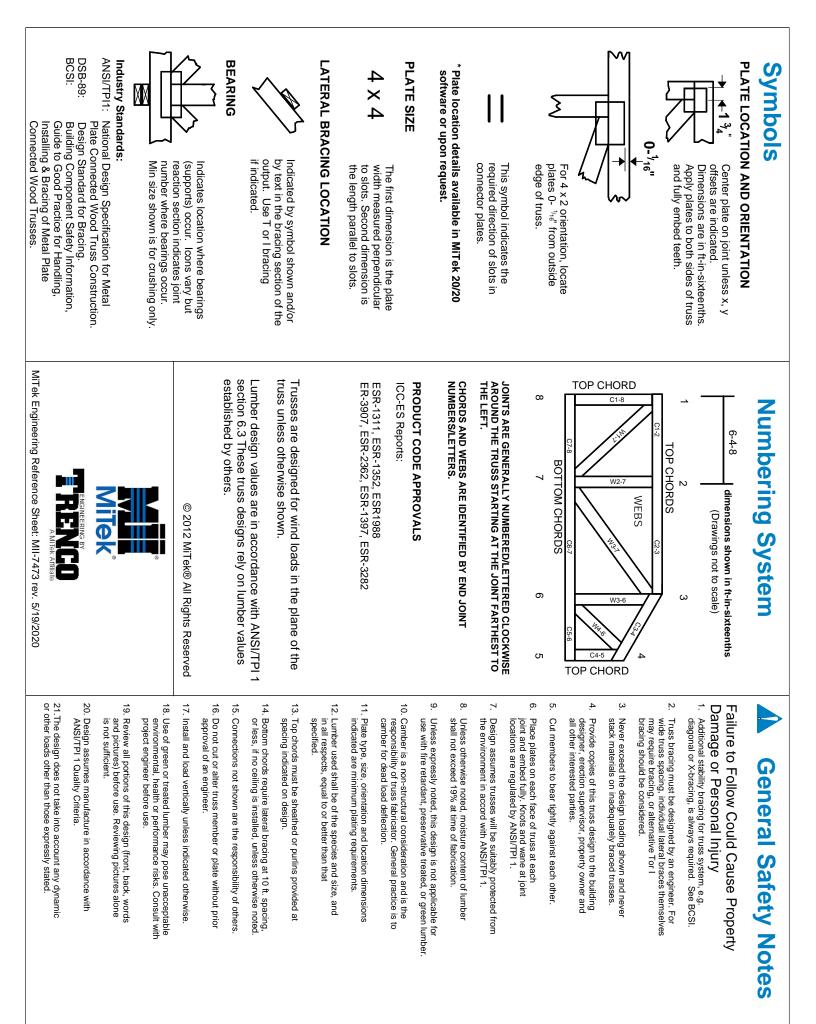
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

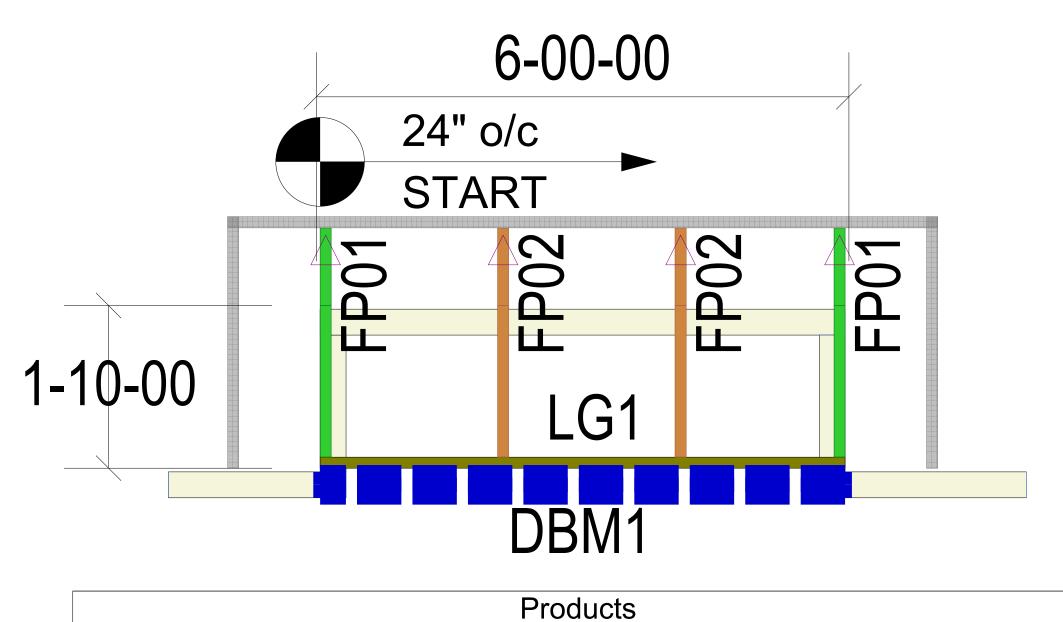
Job	Truss	Truss Type	Qty	Ply	Garman Homes - Honeysuckle B Roof	
Q2200856	V09	Valley	1	1	Job Reference (optional)	154322430

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Wed Sep 21 12:20:49 ID:7fHuu1UvQ0ltFVI7MiZDr8zDjSx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.8

Scale = 1.51.0)												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-AS	0.24 0.37 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD	 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=8-9-7, Max Horiz 1=63 (LC Max Uplift 1=-25 (LC 4=-50 (LC Max Grav 1=63 (LC (LC 1) (lb) - Maximum Con Tension 1-2=-79/274, 2-3=-7 1-4=-222/118, 3-4=- 	3=8-9-7, 4=8-9-7 11) 2 22), 3=-25 (LC 21) 2 12) 2 21), 3=63 (LC 22), 4 npression/Maximum 79/274	8) ed. 9) , 10) 4=652	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 25 lb uplift This truss is International R802.10.2 ar This truss de structural wo		reas where e will fit betw ers. ttion (by oth thstanding 2 50 lb uplift a cordance w ode sections standard AN hat a minim e applied di	a rectangle veen the bottu ers) of truss t 5 lb uplift at j t joint 4. ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the f	om to oint and top					
this desig 2) Wind: AS Vasd=95 B=45ft; L	2-4=-488/140 eed roof live loads have in. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directings0, and C.	n (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed;	r									WITH CA	NRO MA


MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-5-0, Exterior (2) 4-5-0 to 7-5-0, Interior (1) 7-5-0 to 8-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 6-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

annunning Von and and the SEAL 036322 G (1111111) September 22,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PlotID	Length	Product	Plies	Net Qty
DBM1	6-00-00	1-3/4X9-1/4 LP-LVL 2900Fb-2.0E	2	2

OPTIONAL SERENITY FIREPLACE

APROVAL	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.	DATE:		Carolina Structural Systems	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd., Star, NC 27356 910-491-9004
SHOP DRAWING APPROVAL	HIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS AYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFOF TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU	APPROVED BY:	QUALITY AUDITED by: IBC 1742 AUDITED by: AMSITP1 + 2002 AMSITP1 + 2004 AMSITP1 + 2004	CAROLINA STUDIAL SYSTEMS, LLC Star, NUC - Phante0-437 910-491-9004	ROOF DATA	rrea: 23.89 SF
	THIS LAYOUT IS THE SOLE SOUR LAYOUTS. REVIEW AND APPROV TO INSURE AGAINST CHANGES T	REVIEWED BY:	Plan: OPT. SERENITY FIREPLACE		RC	Roof Area:
ONLY	at the specification of the The building designer is e. The design of the truss support adison, WI 53179.		Plan: OPT. SEREI	Date: 9/14/2022	Sales Rep: RW	Designer: JSP
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY	These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sets for each truss design identified on the placement dawing. The building designer is responsible for the root and floor system and for the overall structure. The design of the truss support structure including headers, beams, walks, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult "Bracing of Wood Trusses" available from the Truss Pate Institute, 583 D'Onifrio Drive, Madison, WI 53179.		Job #: SER FP	Customer: GARMAN HOMES	Site Address:	City, ST, ZIP:

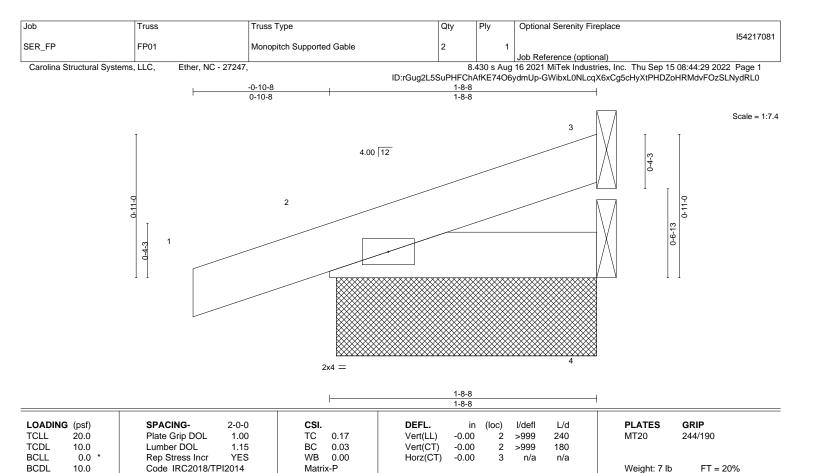
Trenco 818 Soundside Rd Edenton, NC 27932

Re: SER_FP Optional Serenity Fireplace

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54217081 thru I54217082

My license renewal date for the state of North Carolina is December 31, 2022.


North Carolina COA: C-0844

September 15,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-8-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=1-8-0, 3=Mechanical, 4=Mechanical

Max Horz 2=26(LC 12)

Max Uplift 2=-31(LC 12), 3=-8(LC 12)

Max Grav 2=134(LC 1), 3=37(LC 1), 4=34(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

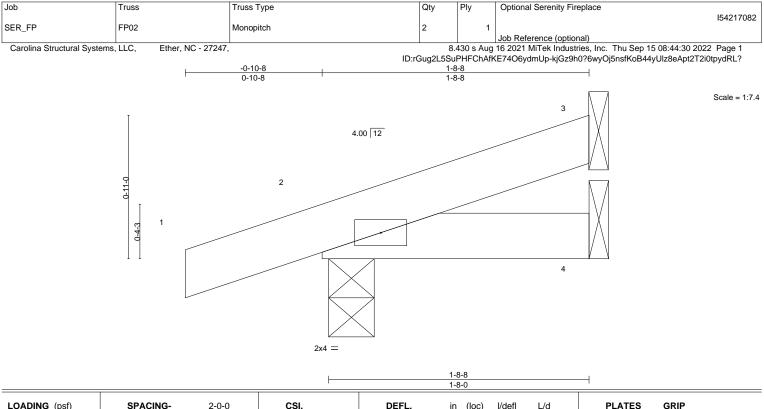
 Wind: ASCE 7-16; Vult=125mph (3-second gust) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2 and 8 lb uplift at joint 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	-0.00	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	PI2014	Matri	x-MP						Weight: 7 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-8-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=Mechanical, 3=Mechanical

Max Horz 2=27(LC 12)

Max Uplift 2=-31(LC 12), 3=-5(LC 12)

Max Grav 2=134(LC 1), 4=27(LC 3), 3=34(LC 1)

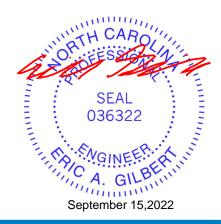
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=125mph (3-second gust) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

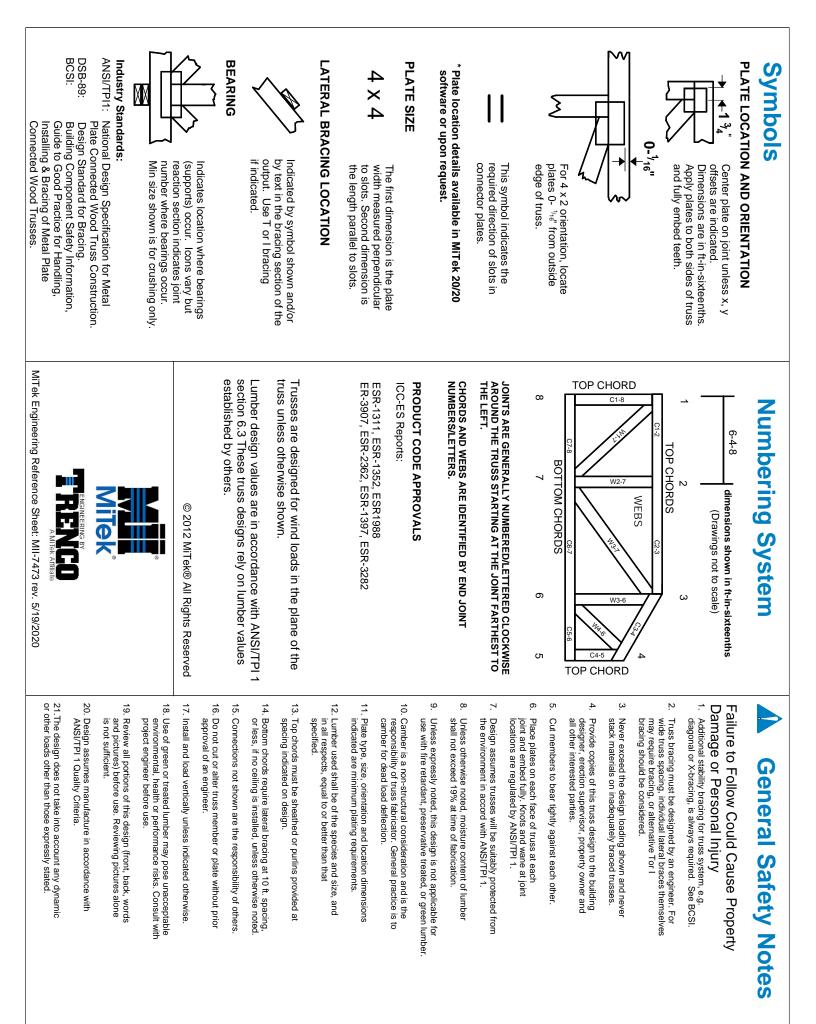
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2 and 5 lb uplift at joint 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

