

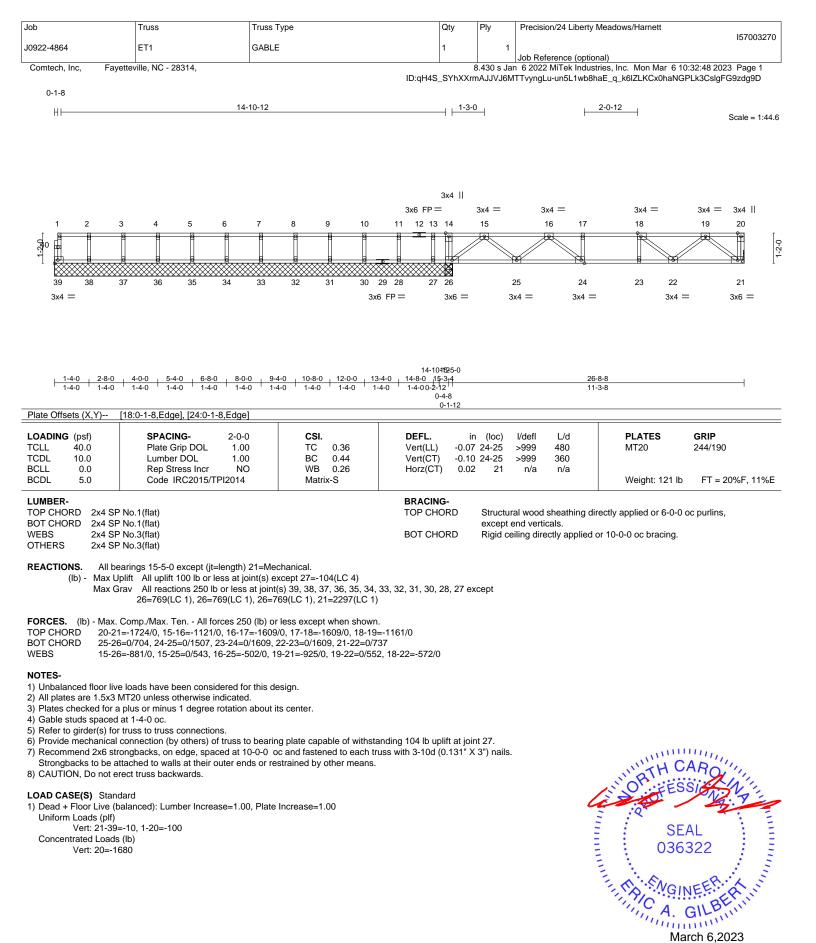
Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0922-4864 Precision/24 Liberty Meadows/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I57003270 thru I57003284

My license renewal date for the state of North Carolina is December 31, 2023.


North Carolina COA: C-0844

March 6,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	Truss	Truss Type	Qty	Ply	Precision/24 Liberty Me	eadows/Harnett	1570000
0922-4864	ET2	GABLE	1				1570032
<u> </u>					Job Reference (optional		
Comtech, Inc, Fay	etteville, NC - 28314,		ID:aH4S SYhXXI		an 62022 MiTek Industrie TvyngLu-gAD6SccODBUI		
0 ₁ 1 ₇ 8					, , , , , , , , , , , , , , , , , , , ,	· · · · · ,	0 ₁ 1 ₁ 8
Н							Н
							Scale = 1:2
1 2	3	4 5	6	7	8	9	10 11
	• •	• •	•		•	•	
22 2 ⁴ 3x4 =	1 20	19 18	17	16	15	14	13 12 3x4 =
	2-8-0	4-0-0 5-4-0 .	6-8-0 . 8-0-0		9-4-0 . 10-8-0	. 12-0-0	. 12-11-0 .
⊢ <u>1-4-0</u> ⊢ <u>1-4-0</u>	+ <u>2-8-0</u> 1-4-0	4-0-0 <u>5-4-0</u> 1-4-0 1-4-0	6-8-0 8-0-0 1-4-0 1-4-0		<u>9-4-0 10-8-0</u> 1-4-0 1-4-0	<u>12-0-0</u> 1-4-0	<u>12-11-0</u> 0-11-0

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ob	Truss	Truss Type		Qty	Ply	Precision/24 Liber	ty Meadows/Harnett	1570000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0922-4864	ET3	GABLE		1		1		1570032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comtech, Inc, Fag	vetteville, NC - 28314,							
Scale = 12 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10 = 11 $2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10 = 11$ $2 = 2 = 21 = 20 = 19 = 18 = 17 = 16 = 15 = 14 = 13 = 12$ $3x4 =$	019				10.91140_0111/		in ryynged-nymorydd		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ч								٥H٩
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									Scale = 1:2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 :	2 3	4	5	6	7	8	9	10 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	• •	•	•	•	•	•	•	• •
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43 🔲								
3x4 = 3x4 = 1 - 4 - 0 2-8-0 4-0-0 5-4-0 6-8-0 9-4-0 10-8-0 12-0-0 12-7-8 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 ADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 CDL 10.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a	4								
3x4 = 3x4 = 1 - 4 - 0 2-8-0 4-0-0 5-4-0 6-8-0 9-4-0 10-8-0 12-0-0 12-7-8 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 ADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) in (loc) V/dfl L/d DADING (psf) Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 DLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a									
3x4 = 3x4 = 1 - 4 - 0 2-8-0 4-0-0 5-4-0 6-8-0 9-4-0 10-8-0 12-0-0 12-7-8 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 1 - 4-0 ADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) in (loc) V/dfl L/d DADING (psf) Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 DLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a									
1-4-0 2-8-0 4-0-0 5-4-0 6-8-0 8-0-0 9-4-0 10-8-0 12-0-0 12-7-8 1-4-0 <t< td=""><td>22 2</td><td>21 20</td><td>19</td><td>18</td><td>17</td><td>16</td><td>15</td><td>14</td><td>13 12</td></t<>	22 2	21 20	19	18	17	16	15	14	13 12
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a	3x4 =								3x4 =
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP CDL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a	1-4-0	2.8.0 4	0.0 5.4.0	6.0	2.0 8.0	-0	9-4-0	10.9.0 12.0	12-7-8
CLL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a	1-4-0		4-0 + 1-4-0	1-4	1-0 1-4	-0	1-4-0		
CLL 40.0 Plate Grip DOL 1.00 TC 0.06 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a		SPACINC			DEEL	in (loo)	l/dofi l/d		CRIP
CDL 10.0 BC 0.01 Vert(CT) n/a - n/a 999 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 12 n/a n/a									
	CDL 10.0	Lumber DOL	1.00 BC	0.01	Vert(CT)	n/a -			
SDL 5.0 Code IRC2015/TPI2014 Matrix-R weight: 54 lb FT = 20%F, 11%					Horz(CT)	0.00 12	n/a n/a		FT 000/F 440
	JUL 5.0	Code IRC2015/1PI2	Ma	unx-K				vveight: 54 lb	FI = 20%F, 11%

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

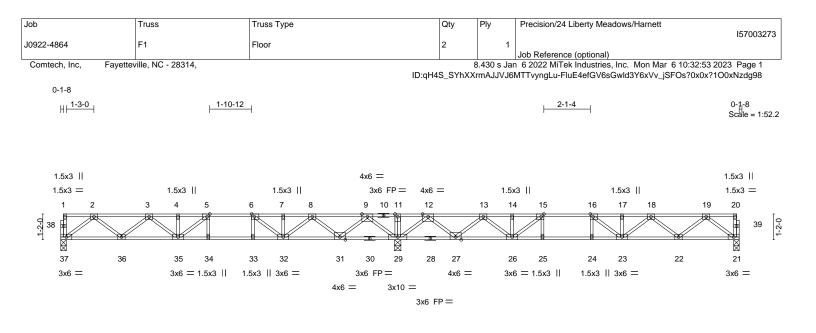
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.


4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

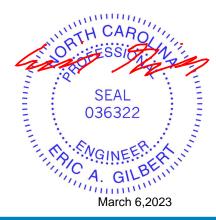
5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

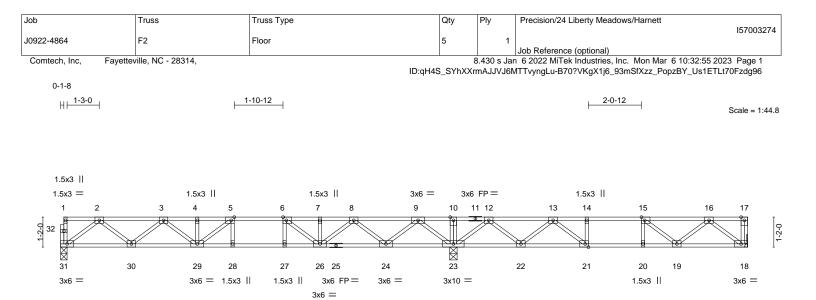
	15-3-4					30-9-0 15-5-12		
Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge], [15:0-1-4	3,Edge], [16:0-1-8,Edge]				10 0 12		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.74 BC 0.87 WB 0.54 Matrix-S	Vert(LL) -0.1	22 23-24	l/defl >999 >853 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD WEBS 2x4 SI 2x4 SI REACTIONS. (siz Max 0 FORCES. (lb) - Max. TOP CHORD 8-9= 14-1 BOT CHORD 36-3 BOT CHORD 36-3 31-3 24-2 WEBS 2-37 WEBS 2-37 8-31	BCLL 0.0 Rep Stress Incr YES WB 0.54 BCDL 5.0 Code IRC2015/TPI2014 Matrix-S LUMBER- TOP CHORD 2x4 SP No.1 (flat) BOT CHORD 2x4 SP No.3 (flat) REACTIONS. (size) 37=0-3-0, 29=0-3-8, 21=0-3-0 Max Grav 37=728(LC 3), 29=1989(LC 1), 21=739(LC 4) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 2-3=-1450/0, 3-4=-2252/0, 4-5=-2252/0, 5-6=-2276/0, 6-7=-1763/236, 7-8= 8-9=-521/736, 9-11=0/2242, 11-12=0/2242, 12-13=-518/703, 13-14=-1787 14-15=-1787/207, 15-16=-2337/0, 16-17=-2305/0, 17-18=-2305/0, 18-19= 14-35=-01969, 34-35=0/2276, 33-34=0/2276, 32-33=0/2276 31-32=-456/1270, 29-31=-1091/0, 27-29=-1110/0, 26-27=-424/1283, 25-20 24-25=0/2337, 23-24=0/2337, 22-23=0/2008, 21-22=0/915				end vertio	cals. ctly applied o	rectly applied or 6-0-0 c or 10-0-0 oc bracing, f 1,27-29,26-27.	•

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

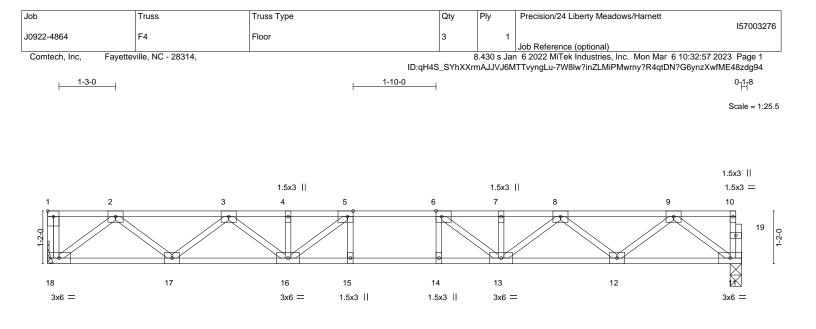

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

	<u>15-3-4</u> 15-3-4	26-8-8							
Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge], [15:0-1	-8,Edge], [21:0-1-8,Edge]						-5-4	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.83 WB 0.50 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.20 0.03	(loc) 28 28 18	l/defl >999 >909 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHOP BOT CHOP	RD	except	end vert	icals.	rectly applied or 6-0-0 o	oc purlins,
· · · · ·	ze) 31=0-3-0, 23=0-3-8, 18=Mechanic Grav 31=741(LC 3), 23=1724(LC 1), 18								
TOP CHORD 17-1 7-8=	. Comp./Max. Ten All forces 250 (lb) c 8=-1835/0, 2-3=-1483/0, 3-4=-2315/0, 4 1892/0, 8-9=-677/263, 9-10=0/1758, 16 4=-1242/104, 14-15=-1242/104, 15-16	l-5=-2315/0, 5-6=-2372/0, 0-12=0/1758, 12-13=-482/	6-7=-1892/0,						
24-2	1=0/919, 29-30=0/2017, 28-29=0/2372, 6=-29/1412, 23-24=-586/0, 22-23=-886, 0=-104/1242, 18-19=0/652								
WEBS 2-31 8-24 16-1		, 13-22=-766/0, 16-18=-81	8/0,	2,					
 2) All plates are 3x4 M 3) Plates checked for 4) Refer to girder(s) for 5) Recommend 2x6 st 	ve loads have been considered for this of IT20 unless otherwise indicated. a plus or minus 1 degree rotation about or truss to truss connections. trongbacks, on edge, spaced at 10-0-0 attached to walls at their outer ends or re erect truss backwards.	its center. oc and fastened to each tr	uss with 3-10d (0.	131" X 3	3") nails	5.		NUMERA C	AROUN
Uniform Loads (plf)	balanced): Lumber Increase=1.00, Plate I=-10, 1-17=-100 s (lb)	e Increase=1.00						SE 036	322 VEER HILLING

March 6,2023


ENGINEERING BY EREPACED A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/24 Liberty	Meadows/Harnett	
J0922-4864	F3	GABLE	1	1			157003275
Comtech, Inc, Fay	etteville, NC - 28314,				Job Reference (option n 6 2022 MiTek Indust	ries, Inc. Mon Mar 6	
0-1-8 H ⊢ ¹⁻³⁻⁰ ⊣	. 1-	10-12	ID:qH4S_SYhX	XrmAJJV	J6MTTvyngLu-fKaNjfh9	o1ErnCLeDEUCXdL3	zbyPDKlOi?cgYizdg95
H							Scale = 1:44.5
o	o		3x4 =				04
3x4 = 1 2	3x4 = 3x4 = 3x4 = 3x4 = 5	3x4 = 3x4 = 3x $6 7 8$	6 FP = 3x4 9 10 11	12	13 14 15	16 17	3x4 18 19 20
				8			1-2-0
38	37 36 35		32 31 30	29	28 27 26	25 24	23 22 21
3x6 = 3	3x6 =	3x6 = 3	3x4 = 3x6 FP = 3x6 =				3x4
 		1-8	16-7-4 15 ₁ 3-4	17-11-4	19-3-4 20-7-4 21		
Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge]	1-8	0-1-12 1-4-0	1-4-0	1-4-0 1-4-0 1	I-4-0 ¹ 1-4-0 ¹ 1-4-0	1-4-0 '0-9-4'
LOADING (psf)	SPACING- 2-0-1	CSI.	DEFL. ir	n (loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.0 Lumber DOL 1.0) TC 0.27	Vert(LL) -0.16	34-35 34-35	>999 480 >842 360	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	S WB 0.41	Horz(CT) 0.04		n/a n/a	Weight: 127 lt	5 FT = 20%F, 11%E
LUMBER-			BRACING-				
TOP CHORD 2x4 SP	No.1(flat) No.1(flat)		TOP CHORD		ral wood sheathing dii end verticals.	rectly applied or 6-0-0) oc purlins,
WEBS 2x4 SP	9 No.3(flat) 9 No.3(flat)		BOT CHORD		eiling directly applied	or 10-0-0 oc bracing.	
	earings 11-7-0 except (jt=length)	38=0-3-0, 30=0-3-8, 30=0-3-8,					
(lb) - Max U	plift All uplift 100 lb or less at jo	bint(s) 29 at joint(s) 21, 21, 29, 28, 27, 26,	, 25, 24, 23, 22 except 38	3=821(LC	3),		
		0 (lb) or less except when showr					
8-10=	=-1613/0	/0, 5-6=-2945/0, 6-7=-2663/0, 7-					
30-3	2=0/954	0/2945, 34-35=0/2945, 33-34=0					
	=-1281/0, 2-37=0/860, 3-37=-81; =-852/0, 8-33=0/507, 6-33=-355/	5/0, 3-36=0/487, 10-30=-1196/0, 0, 5-36=-318/0	10-32=0/860,				
NOTES-							
2) All plates are 1.5x3 I	e loads have been considered fo MT20 unless otherwise indicated	1.					
4) Gable studs spaced							111111
6) Recommend 2x6 str	ongbacks, on edge, spaced at 1	o bearing plate capable of withst 0-0-0 oc and fastened to each to	russ with 3-10d (0.131" X			TH ATH C	ARO
Strongbacks to be a 7) CAUTION, Do not e		ds or restrained by other means.			6	int	SSIGN
						2	
						SE	EAL =
						E. SNO	NEERIX
						SE 030 NG	GILBERT
							in in in it is a second s
						M	arch 6,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 6,2023

						15-4-0							
Plate Offsets (X V)	[1:Edge,0-1-8], [5:0-1-8,E	-dael [6:0-1-8	Edgel		15-4-0							
	Λ, Ι)	[1.Luge,0-1-0], [0.0-1-0,L	-ugej, [0.0-1-0	,Lugej		1							
LOADING (ps	f)	SPACING-	2-0-0	CSI.		DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.	0	Plate Grip DOL	1.00	TC	0.35	Vert(I	_L)	-0.16	14-15	>999	480	MT20	244/190
TCDL 10.	0	Lumber DOL	1.00	BC	0.66	Vert(CT)	-0.22	14-15	>839	360		
BCLL 0.	0	Rep Stress Incr	YES	WB	0.41	Horz(CŤ)	0.04	11	n/a	n/a		
BCDL 5	0	Code IRC2015/TF	PI2014	Matrix	(-S							Weight: 79 lb	FT = 20%F, 11%E
LUMBER-						BRAG							
TOP CHORD BOT CHORD		9 No.1(flat) 9 No.1(flat)				TOP	CHOF	RD		ural wood	•	irectly applied or 6-0-0	oc purlins,
WEBS		P No.3(flat)				BOT	CHOF	RD				or 10-0-0 oc bracing.	
REACTIONS.	(siz	, ,											
	Max G	irav 18=830(LC 1), 11=82	23(LC 1)										
FORCES. (It) - Max.	Comp./Max. Ten All for	rces 250 (lb) oi	r less except	when show	n.							
TOP CHORD	2-3=-	1691/0, 3-4=-2704/0, 4-5	=-2704/0, 5-6=	=-2966/0, 6-7	=-2704/0, 7-	8=-2704/0,							
	8-9=-	1691/0											
BOT CHORD		3=0/1028, 16-17=0/2320, 2=0/1027	15-16=0/2966	, 14-15=0/29	66, 13-14=0	/2966, 12-13	=0/23	20,					

NOTES-

WEBS

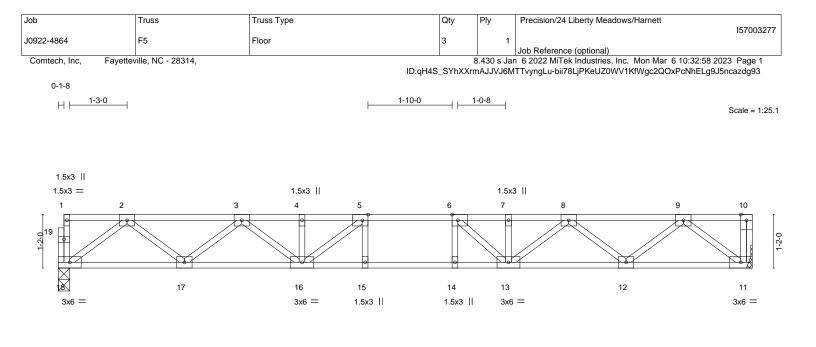
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


2-18=-1289/0, 2-17=0/864, 3-17=-818/0, 3-16=0/490, 5-16=-596/25, 9-11=-1285/0,

9-12=0/865, 8-12=-819/0, 8-13=0/490, 6-13=-596/25

6) CAUTION, Do not erect truss backwards.

Plate Offsets (X,Y)	5:0-1-8,Edge], [6:0-1-8,Edge]	1				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.36	Vert(LL) -0.15	5 15 >999 480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.66	Vert(CT) -0.2	1 14-15 >867 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.40	Horz(CT) 0.04	4 11 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 78 lb	FT = 20%F, 11%E
LUMBER-			BRACING-	·		
TOP CHORD 2x4 SP	No.1(flat)		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SP	No.1(flat)			except end verticals.		
WEBS 2x4 SP	No.3(flat)		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.	

15-1-8

Max Grav 18=812(LC 1), 11=818(LC 1)

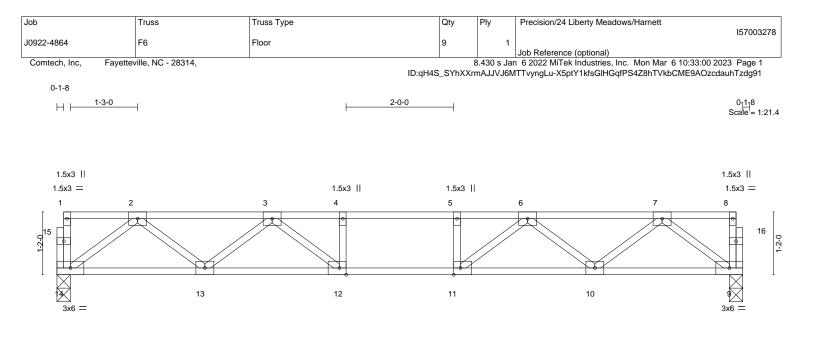
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-1662/0, 3-4=-2649/0, 4-5=-2649/0, 5-6=-2884/0, 6-7=-2641/0, 7-8=-2641/0, TOP CHORD 8-9=-1663/0 BOT CHORD 17-18=0/1012, 16-17=0/2278, 15-16=0/2884, 14-15=0/2884, 13-14=0/2884, 12-13=0/2278, 11-12=0/1012 WEBS 2-18=-1267/0, 2-17=0/846, 3-17=-802/0, 3-16=0/475, 5-16=-562/38, 9-11=-1270/0, 9-12=0/847, 8-12=-800/0, 8-13=0/464, 6-13=-587/29

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Refer to girder(s) for truss to truss connections.

Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

			12-9-0 12-9-0			
Plate Offsets (X,Y) [11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.35 BC 0.44 WB 0.30 Matrix-S	Vert(LL) -0.09	n (loc) l/defl L/d 9 12-13 >999 480 2 12-13 >999 360 3 9 n/a n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	2 11	oc purlins,

Max Grav 14=681(LC 1), 9=681(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1333/0, 3-4=-2022/0, 4-5=-2022/0, 5-6=-2022/0, 6-7=-1333/0

BOT CHORD 13-14=0/841, 12-13=0/1790, 11-12=0/2022, 10-11=0/1790, 9-10=0/841

WEBS 2-14=-1053/0, 2-13=0/640, 3-13=-595/0, 3-12=0/499, 7-9=-1053/0, 7-10=0/640,

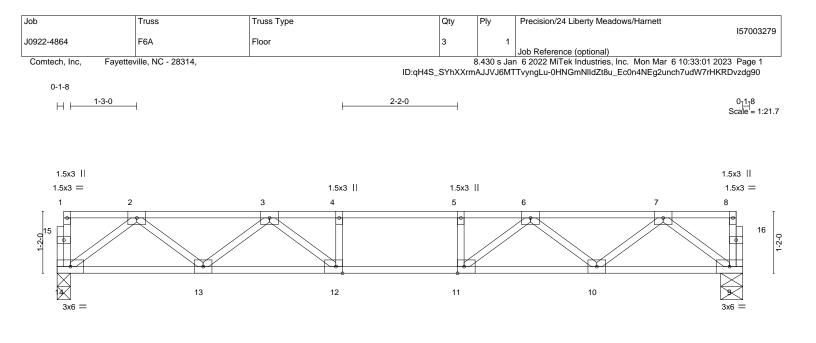
6-10=-595/0, 6-11=0/499

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

			12-11-0 12-11-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.47 WB 0.31 Matrix-S	Vert(LL) -0.10	n (loc) l/defl L/d 0 12-13 >999 480 3 12-13 >999 360 3 9 n/a n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c) oc purlins,

REACTIONS. (size) 14=0-3-0, 9=0-5-0 Max Grav 14=690(LC 1), 9=690(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1356/0, 3-4=-2072/0, 4-5=-2072/0, 5-6=-2072/0, 6-7=-1356/0

BOT CHORD 13-14=0/854, 12-13=0/1823, 11-12=0/2072, 10-11=0/1823, 9-10=0/854

2-14=-1069/0, 2-13=0/654, 3-13=-609/0, 3-12=0/526, 4-12=-251/0, 5-11=-251/0, WEBS

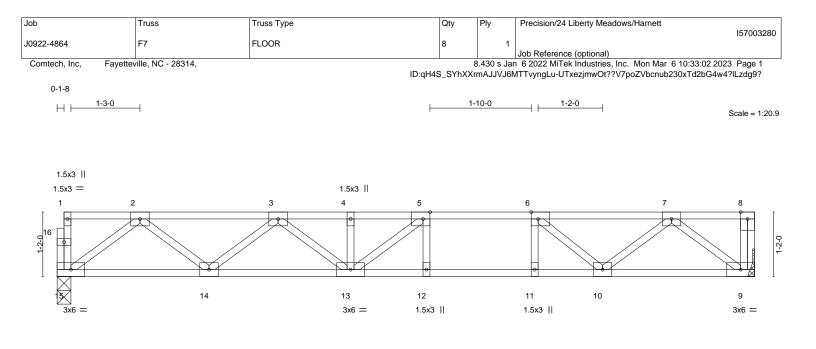
7-9=-1069/0, 7-10=0/654, 6-10=-609/0, 6-11=0/526

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Plate Offsets (X.Y)	[5:0-1-8.Edge], [6:0-1-8.Edge]		12-7-8 12-7-8			
Flate Offsets (X, f)	[5.0-1-6,Euge], [6.0-1-6,Euge]					
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.78 WB 0.32 Matrix-S	Vert(LL) -0.14	n (loc) l/defl L/d 4 12-13 >999 480 3 12-13 >821 360 2 9 n/a n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	,	oc purlins,

REACTIONS. (size) 15=0-3-0, 9=Mechanical

Max Grav 15=674(LC 1), 9=681(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1313/0, 3-4=-1995/0, 4-5=-1995/0, 5-6=-1895/0, 6-7=-1327/0

BOT CHORD 14-15=0/831, 13-14=0/1770, 12-13=0/1895, 11-12=0/1895, 10-11=0/1895, 9-10=0/807 WEBS

2-15=-1040/0, 2-14=0/628, 3-14=-594/0, 3-13=0/288, 5-13=-224/289, 7-9=-1012/0,

7-10=0/677, 6-10=-745/0

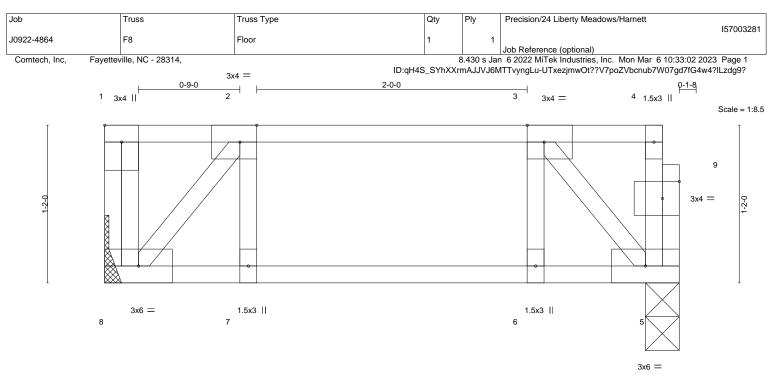
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

			4-3-0			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,	Edge], [9:0-1-8,0-1-8]	4-3-0			·
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.06 WB 0.06 Matrix-S	DEFL. i Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	0 6 >999 360	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied of		oc purlins,

REACTIONS. (size) 8=Mechanical, 5=0-3-0

Max Grav 8=220(LC 1), 5=214(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-273/0, 3-5=-272/0

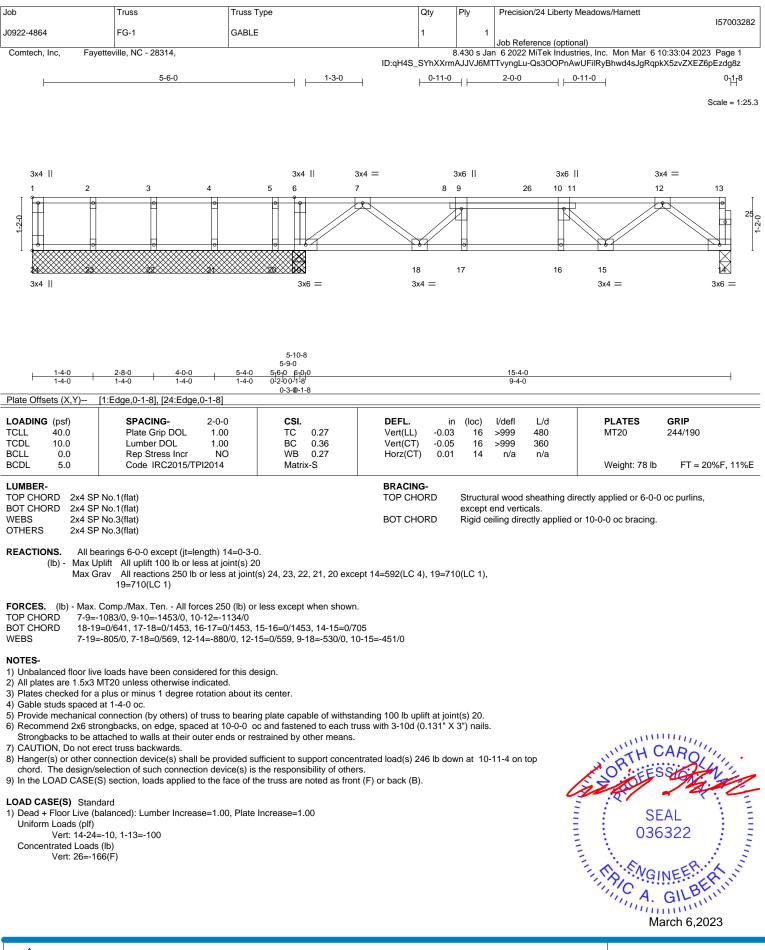
NOTES-

1) Unbalanced floor live loads have been considered for this design.

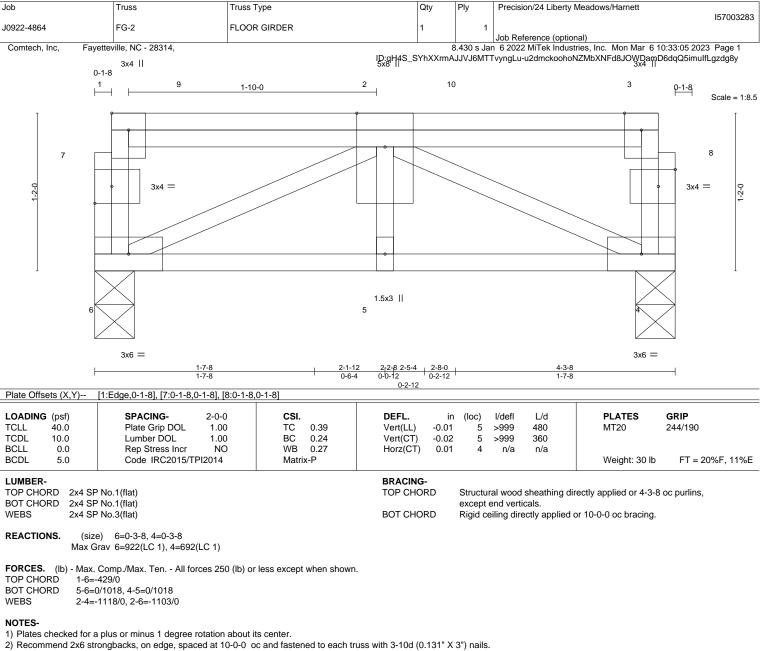
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

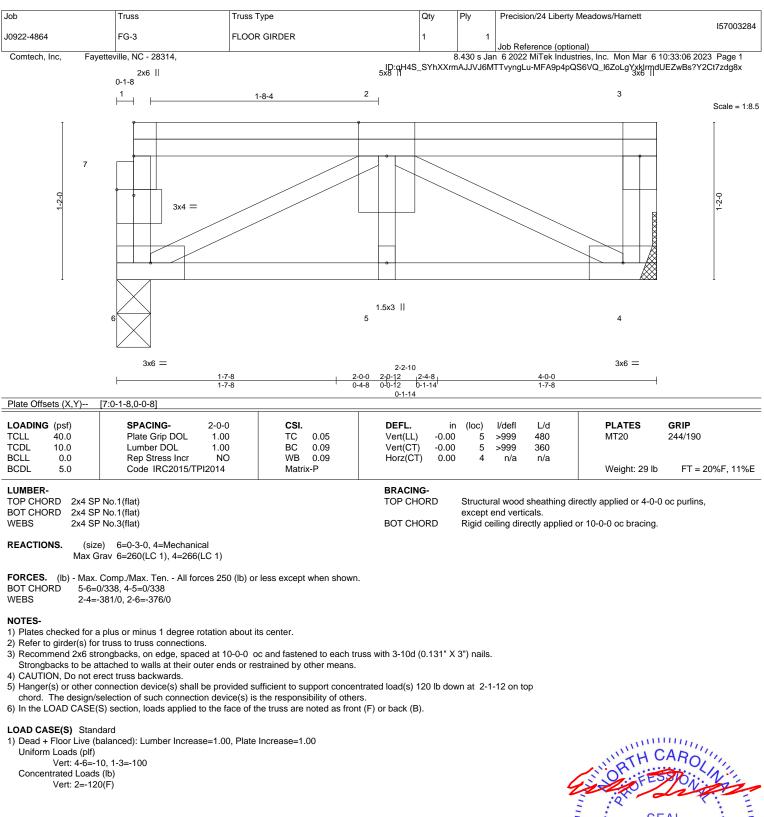
Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 601 lb down at 0-9-4, and 581

Ib down at 2-9-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

4) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

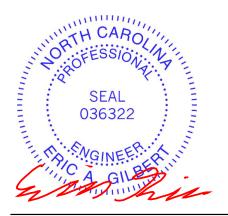
LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 4-6=-10, 1-3=-100 Concentrated Loads (lb) Vert: 9=-601(B) 10=-581(B)

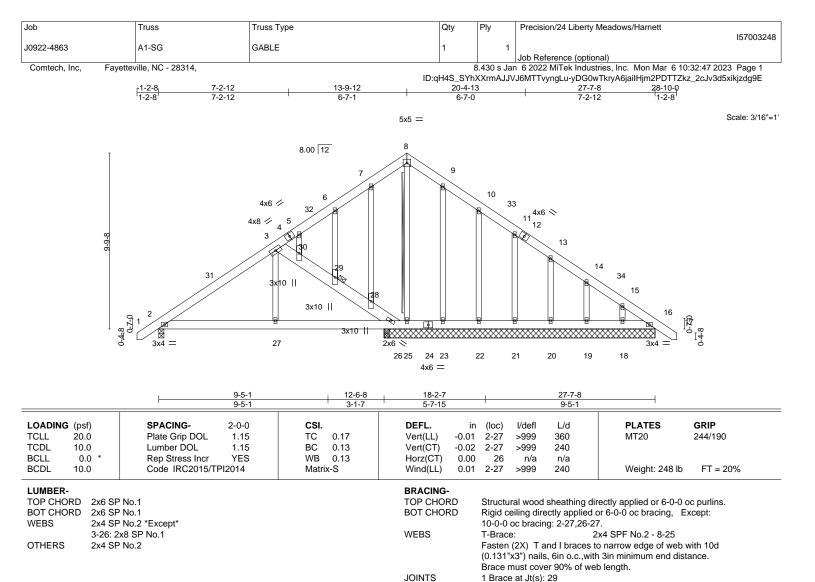
Trenco 818 Soundside Rd Edenton, NC 27932


Re: J0922-4863 Precision/24 Liberty Meadows/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I57003248 thru I57003269

My license renewal date for the state of North Carolina is December 31, 2023.


North Carolina COA: C-0844

March 6,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

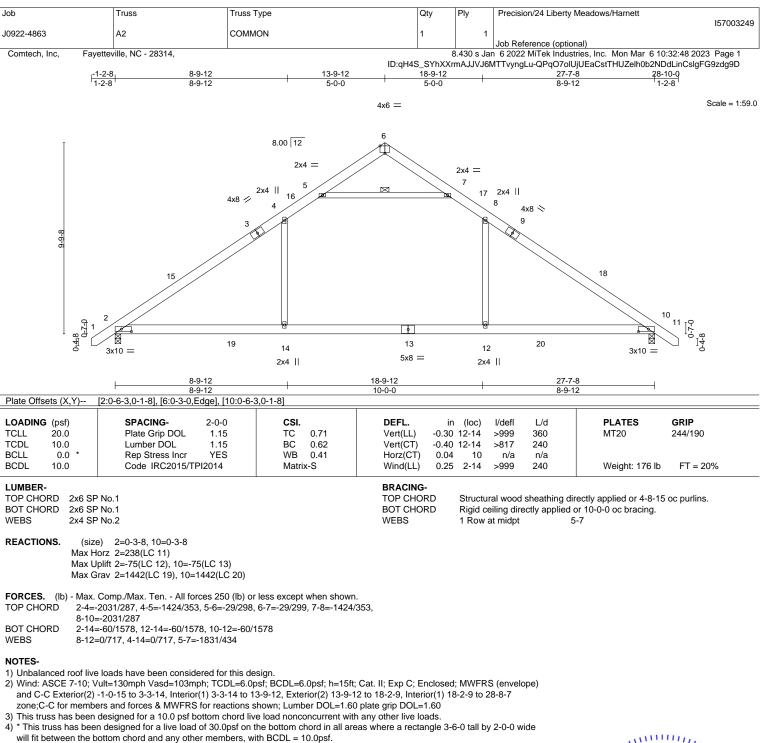
REACTIONS. All bearings 15-1-0 except (jt=length) 2=0-3-8, 26=0-3-8, 26=0-3-8. (lb) - Max Horz 2=-238(LC 10)

- (lb) Max Horz 2=-238(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 23, 22, 21, 20, 19, 18, 26
 - except 25=-103(LC 3) Max Grav All reactions 250 lb or less at joint(s) 16, 25, 23, 22, 21, 20, 19, 18 except 2=547(LC 1), 26=674(LC 3), 26=628(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-556/124, 15-16=-205/297
- BOT CHORD 2-27=-77/463, 26-27=-78/461, 25-26=-263/220, 23-25=-263/220, 22-23=-263/220,
- 21-22=-263/220, 20-21=-263/220, 19-20=-263/220, 18-19=-263/220, 16-18=-263/220
- WEBS 3-27=0/285, 3-30=-658/224, 29-30=-587/184, 28-29=-648/227, 26-28=-711/263,
 - 8-25=-271/10

NOTES-

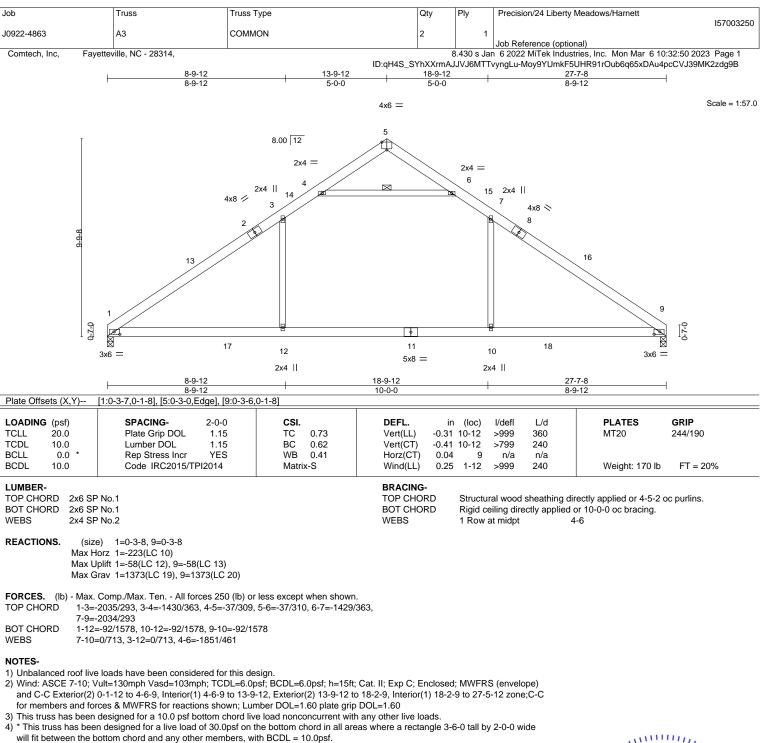
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 13-9-12, Exterior(2) 13-9-12 to 18-2-9, Interior(1) 18-2-9 to 28-8-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

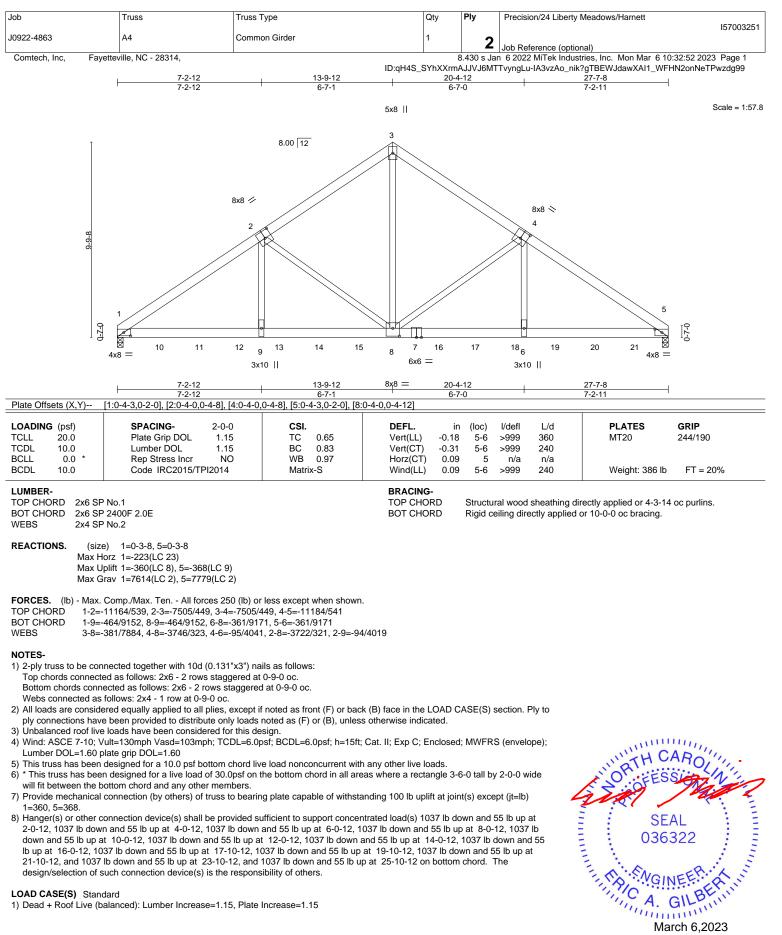

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 23, 22, 21, 20, 19, 18, 26 except (jt=lb) 25=103.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

TREERING BY AMITEK Affiliate 818 Soundside Road


Edenton, NC 27932

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.



5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

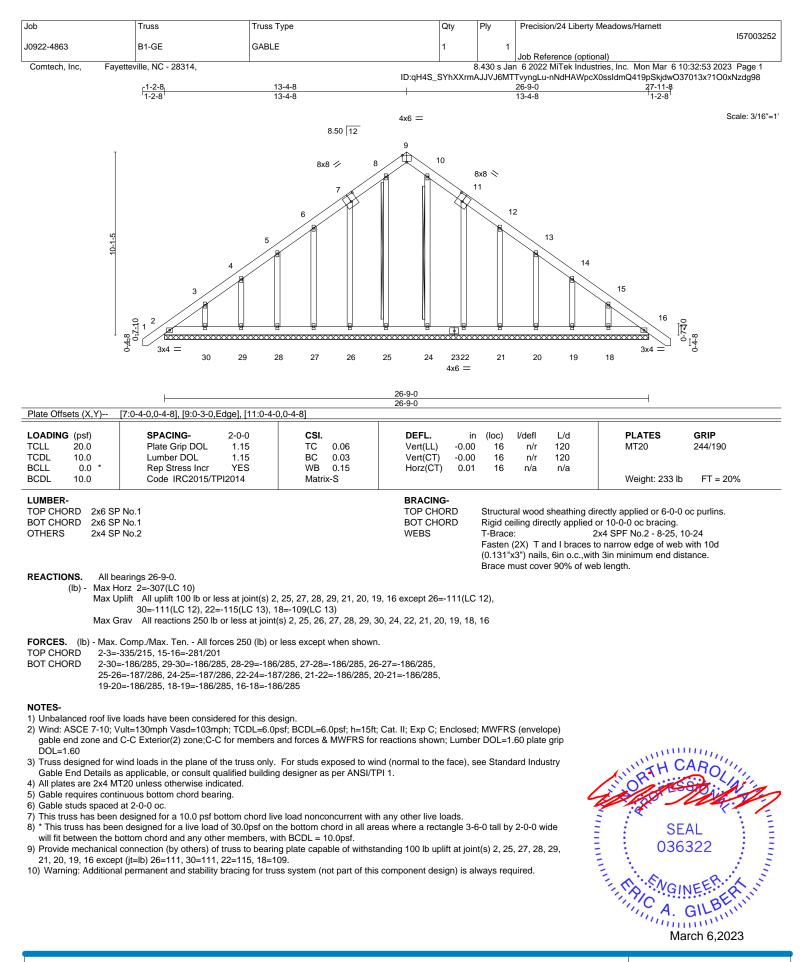
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Aff 818 Soundside Road Edenton, NC 27932

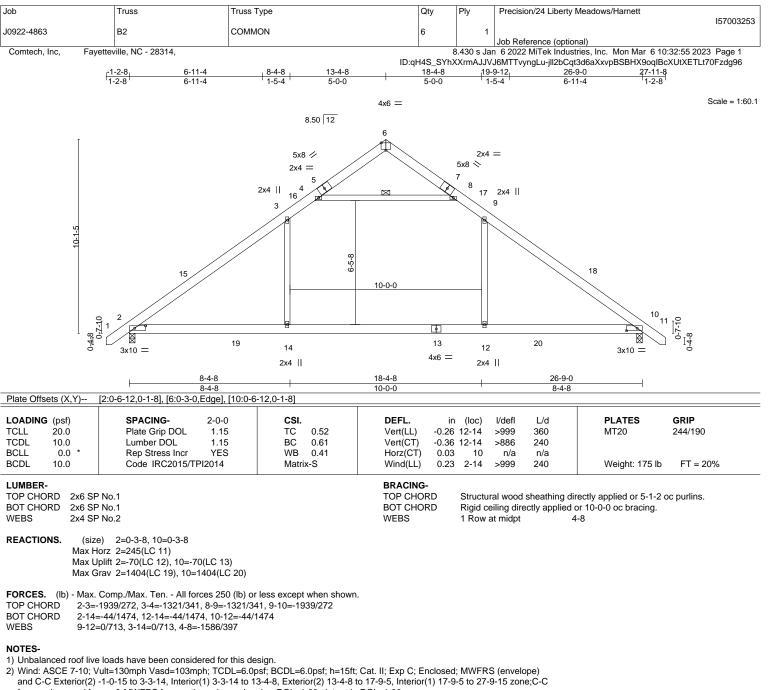
Job	Truss	Truss Type	Qty	Ply	Precision/24 Liberty Meadows/Harnett		
J0922-4863	A4	Common Girder	1		157003251		
00022 4000				2	Job Reference (optional)		
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Mon Mar 6 10:32:52 2023 Page 2		
		ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-IA3vzAo_nik?gTBEWJdawXAI1_WFHN2onNeTPwzdg99					

LOAD CASE(S) Standard

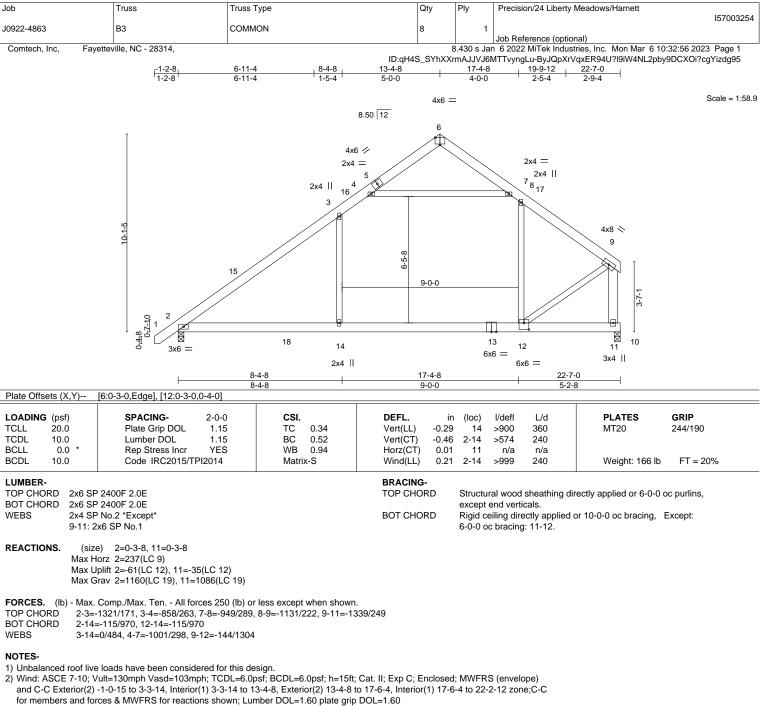

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20

Concentrated Loads (lb)


Vert: 8=-868(B) 10=-868(B) 11=-868(B) 12=-868(B) 13=-868(B) 14=-868(B) 15=-868(B) 16=-868(B) 17=-868(B) 18=-868(B) 19=-868(B) 20=-868(B) 21=-868(B) 20=-868(B) 20=-86

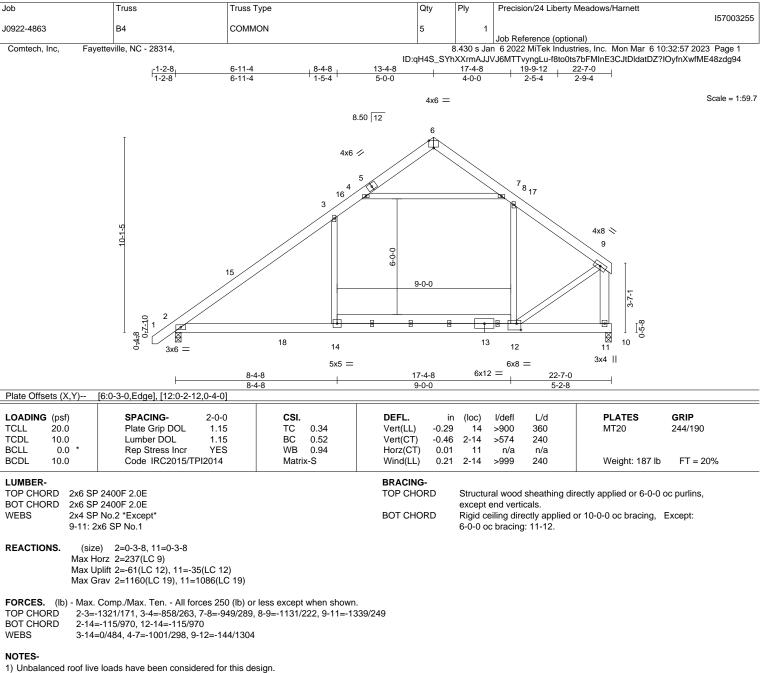
Edenton, NC 27932


for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

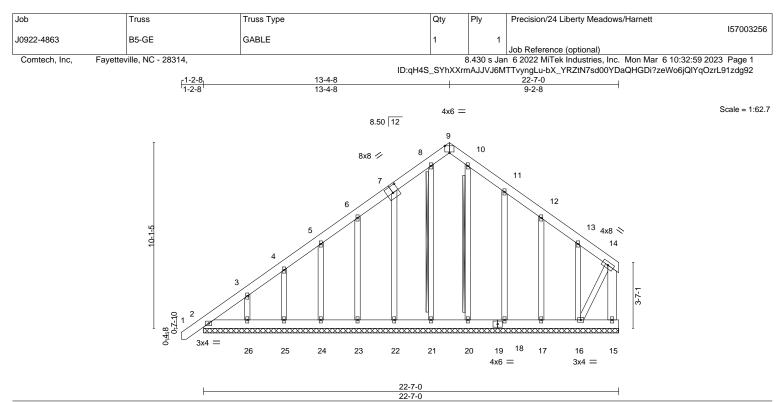

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 13-4-8, Exterior(2) 13-4-8 to 17-6-4, Interior(1) 17-6-4 to 22-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

Plate Offsets (X,Y)-- [7:0-4-0,0-4-8], [9:0-3-0,Edge]

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.05 BC 0.01 WB 0.15 Matrix-S	Vert(LL) -0.00 Vert(CT) -0.00	oc) l/defl 1 n/r 1 n/r 15 n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 216 lb FT = 20%
LUMBER-			BRACING-			

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1 *Except*
	14-16: 2x4 SP No.2
OTHERS	2x4 SP No.2

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 - 8-21, 10-20 T-Brace: Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 22-7-0. Max Horz 2=308(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 15, 21, 23, 24, 25, 17 except 22=-106(LC 12), 26=-116(LC 12), 18=-109(LC 13), 16=-290(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 15, 21, 22, 23, 24, 25, 26, 20, 18.17.16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-343/221

NOTES-

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

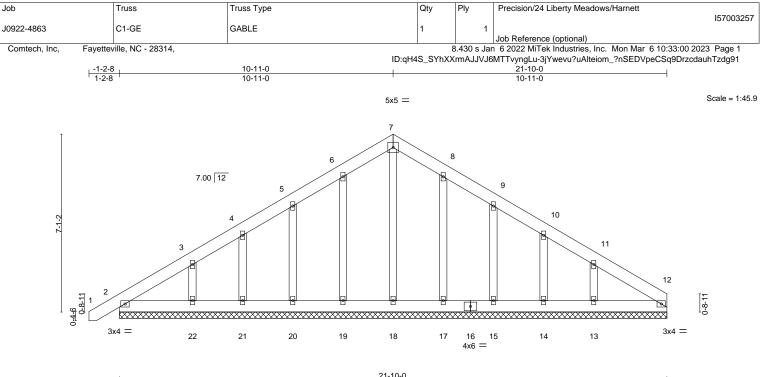
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 21, 23, 24, 25. 17 except (it=lb) 22=106. 26=116. 18=109. 16=290.

10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

			21-10-0		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00 1	n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00 1	n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00 12	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	. ,		Weight: 162 lb FT = 20%
LUMBER-			BRACING-		

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS

2x4 SP No.2

REACTIONS. All bearings 21-10-0.

Max Horz 2=206(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 17, 15, 14 except 22=-119(LC 12), 13=-127(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 18, 19, 20, 21, 22, 17, 15, 14 except 13=262(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

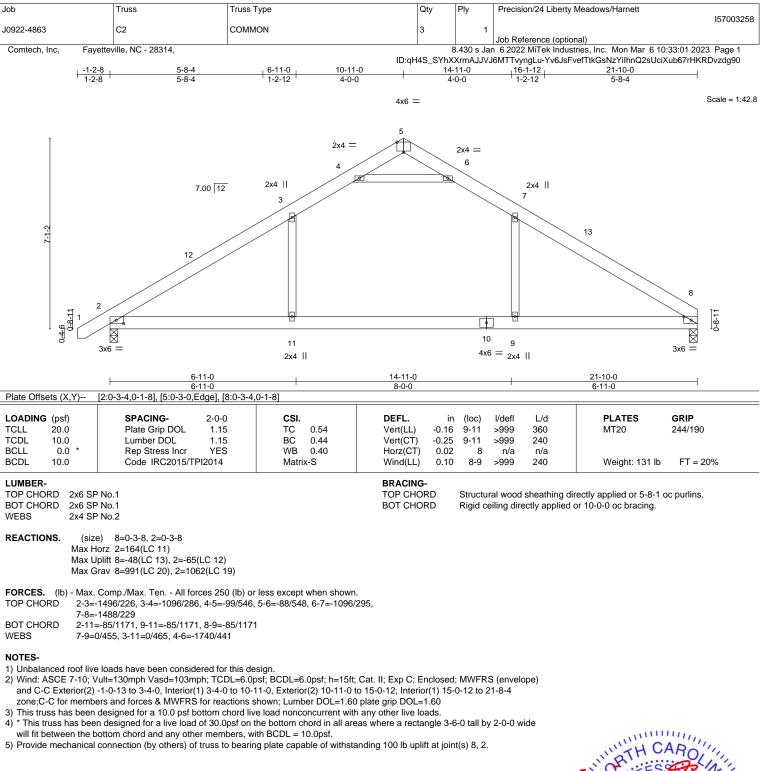
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- r) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 17, 15, 14 except (jt=lb) 22=119, 13=127.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.10 2-13

>999

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 5-11-9 oc purlins.

Weight: 135 lb

FORCES. (lb)	- Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
TOP CHORD	2-3=-1478/222, 3-4=-1089/286, 4-5=-84/493, 5-6=-77/502, 6-7=-1079/292,
	7-9=-1480/239
BOT CHORD	2-13=-82/1157 11-13=-82/1157 9-11=-82/1157

7-11=0/492, 3-13=0/449, 4-6=-1664/425 WEBS

NOTES-

BCDL

WEBS

SLIDER

LUMBER-

TOP CHORD BOT CHORD

REACTIONS.

10.0

2x6 SP No.1

2x6 SP No.1

2x4 SP No.2

Right 2x4 SP No.2 3-5-8

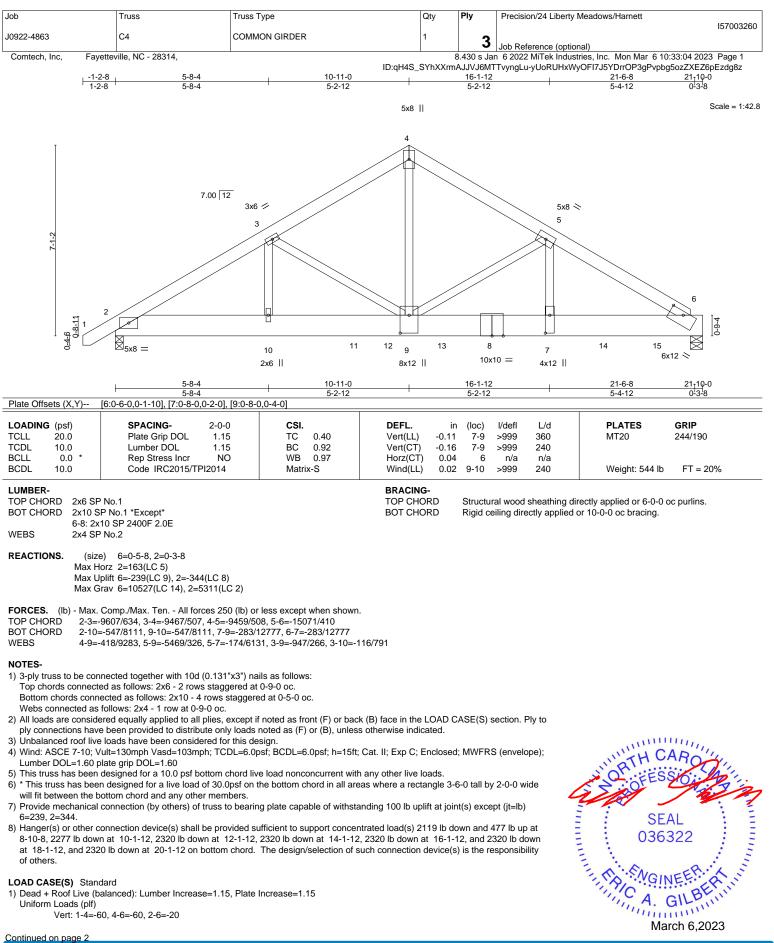
(size) 2=0-3-8, 10=0-5-8 Max Horz 2=164(LC 11)

Max Uplift 2=-65(LC 12), 10=-40(LC 13) Max Grav 2=1058(LC 19), 10=966(LC 20)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-13 to 3-4-0, Interior(1) 3-4-0 to 10-11-0, Exterior(2) 10-11-0 to 15-0-12, Interior(1) 15-0-12 to 21-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

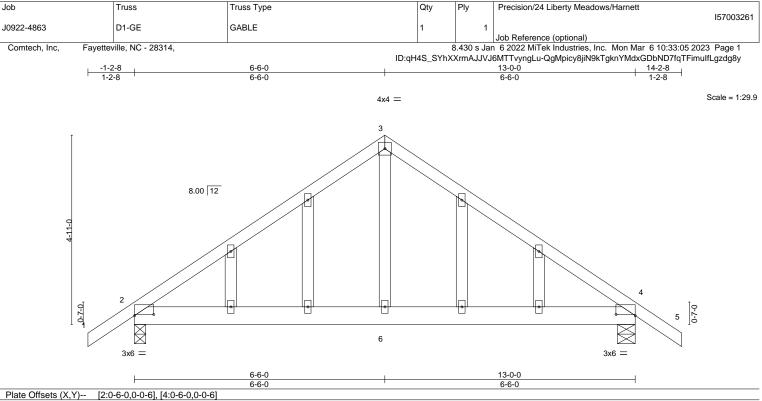
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


[Job	Truss	Truss Type	Qty	Ply	Precision/24 Liberty Meadows/Harnett
						157003260
	J0922-4863	C4	COMMON GIRDER	1	2	
					<u>່</u> ວ	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Mon Mar 6 10:33:04 2023 Page 2

8.430 s Jan 6 2022 Mi Lek Industries, Inc. Mon Mar 6 10:33:04 2023 Page 2 ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-yUoRUHxWyOFI7J5YDrrOP3gPvpbg5ozZXEZ6pEzdg8z

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 8=-598(F) 7=-598(F) 11=-2119(F) 12=-606(F) 13=-598(F) 14=-598(F) 15=-598(F)

OADING (psf)	SPACING- 2-	-0-0 CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1	1.15 TC	0.35	Vert(LL)	-0.01	2-6	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1	1.15 BC	0.17	Vert(CT)	-0.03	2-6	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES WB	0.07	Horz(CT)	0.00	4	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI20	014 Matrix	-S	Wind(LL)	0.02	2-6	>999	240	Weight: 78 lb	FT = 20%

 TOP CHORD
 2x4 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

 OTHERS
 2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=0-5-8 Max Horz 2=-154(LC 10) Max Uplift 2=-136(LC 12), 4=-138(LC 13) Max Grav 2=586(LC 1), 4=592(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-605/168, 3-4=-606/168

BOT CHORD 2-6=-20/416, 4-6=-20/416 WEBS 3-6=0/323

NOTES-

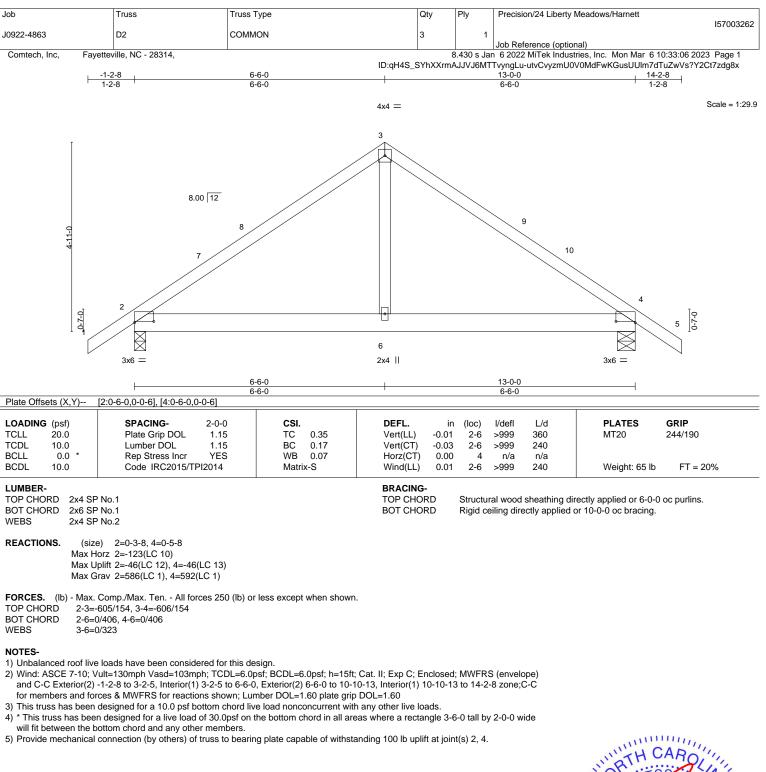
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

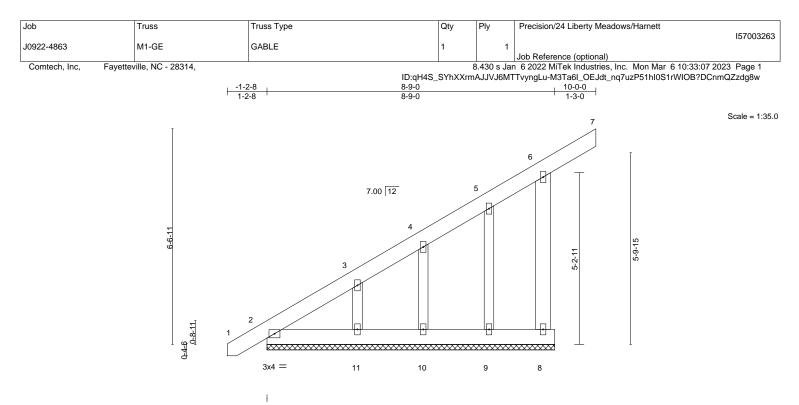
All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=136, 4=138.



LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) 0.00	7	n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	6	n/r	120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.00		n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 74 lb FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x6 SP No.1

 OTHERS
 2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-9-0.

(lb) - Max Horz 2=293(LC 12)

2-3=-333/250

Max Uplift All uplift 100 lb or less at joint(s) 9, 10 except 8=-130(LC 12), 11=-121(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

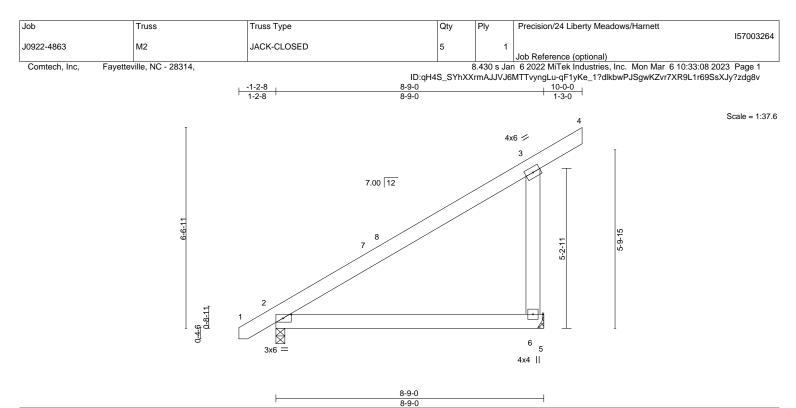
TOP CHORD

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 10 except (jt=lb) 8=130, 11=121.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/de	efl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.29	Vert(LL) -0.03	2-6 >99		MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -0.06	2-6 >99		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00		/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.02	2-6 >99	9 240	Weight: 62 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=201(LC 12)

Max Uplift 6=-122(LC 12)

Max Grav 6=456(LC 19), 2=399(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-363/312

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-13 to 3-4-0, Interior(1) 3-4-0 to 10-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

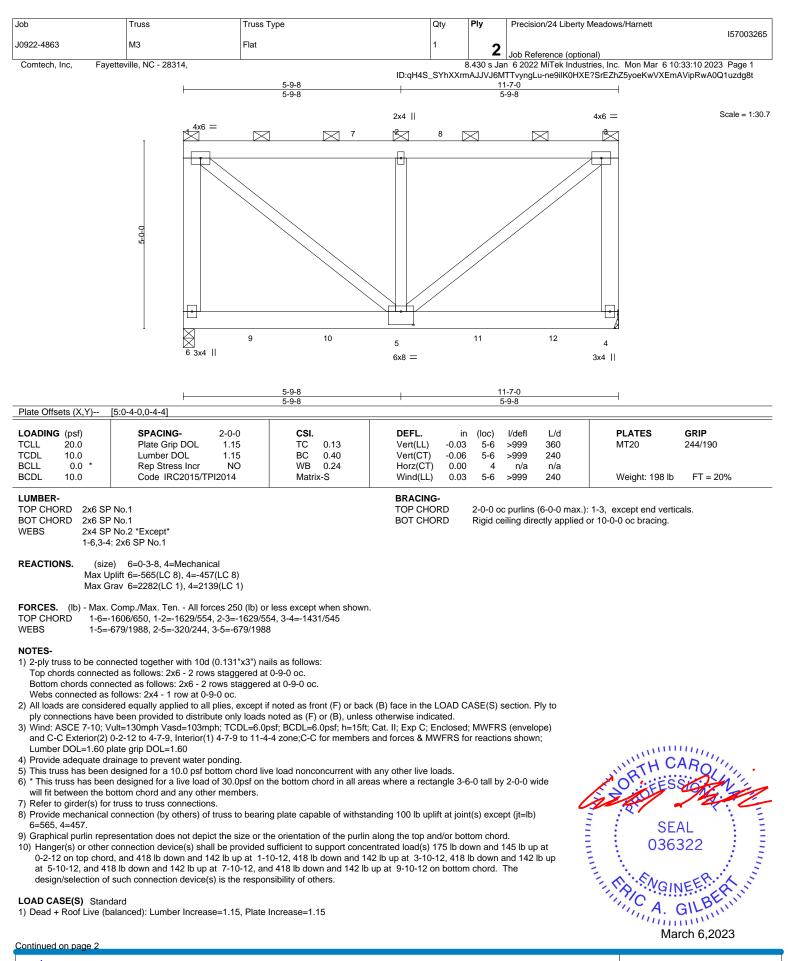
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=122.

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

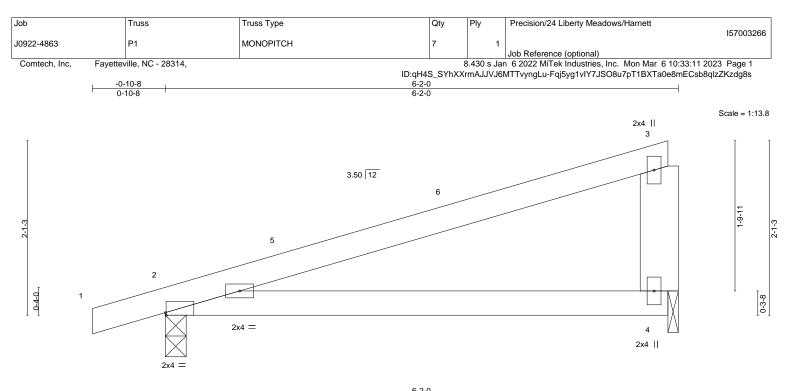
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

VIIIIIII VIIIIIIIII SEAL 036322 G mmm March 6,2023

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/24 Liberty Meadows/Harnett
					157003265
J0922-4863	M3	Flat	1	2	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Mon Mar 6 10:33:10 2023 Page 2


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Mar 6 10:33:10 2023 Page 2 ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-ne9ilK0HXE?SrEZhZ5yoeKwVXEmAVipRwA0Q1uzdg8t

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-60, 4-6=-134(F=-114) Concentrated Loads (lb) Vert: 1=-175 5=-418(B) 9=-418(B) 10=-418(B) 11=-418(B) 12=-418(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			6-2-0						
Plate Offsets (X,Y) [2	2:0-0-2,Edge]								
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.47	Vert(LL)	-0.06	2-4	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.32	Vert(CT)	-0.12	2-4	>582	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.13	2-4	>526	240	Weight: 23 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x6 SP No.1

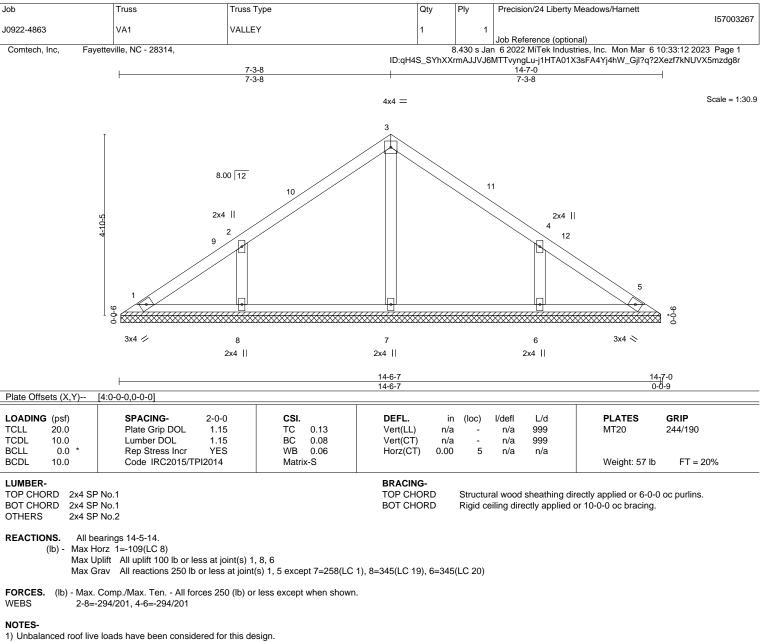
REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=68(LC 8)

Max Uplift 2=-120(LC 8), 4=-95(LC 8) Max Grav 2=298(LC 1), 4=227(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=120.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

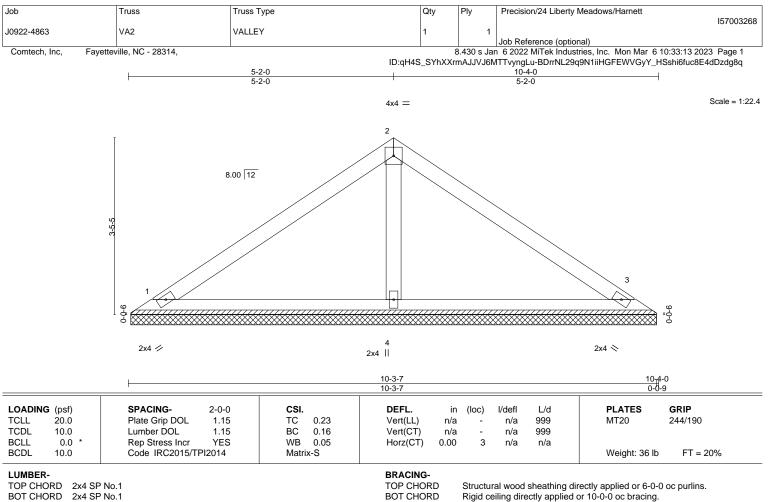
except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 7-3-8, Exterior(2) 7-3-8 to 11-8-5, Interior(1) 11-8-5 to 14-1-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 2x4 SP No.1 OTHERS

2x4 SP No.2

REACTIONS. 1=10-2-14, 3=10-2-14, 4=10-2-14 (size) Max Horz 1=-75(LC 8) Max Uplift 1=-23(LC 12), 3=-30(LC 13) Max Grav 1=186(LC 1), 3=186(LC 1), 4=377(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

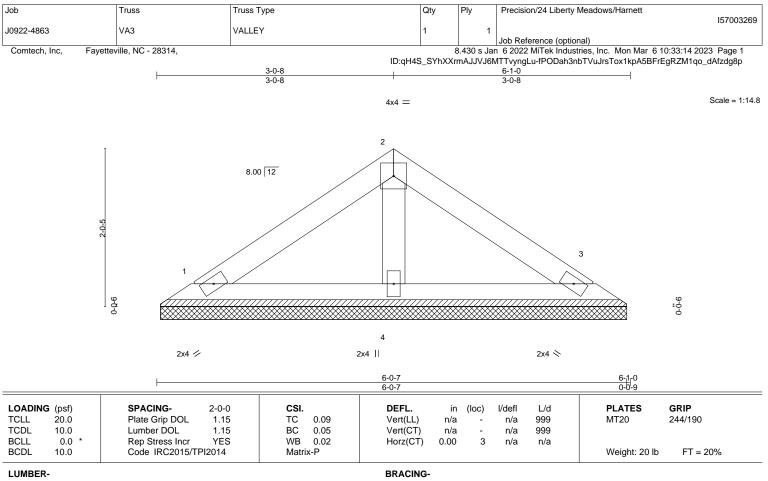
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

TOP CHORD 2x4 SP No.1

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

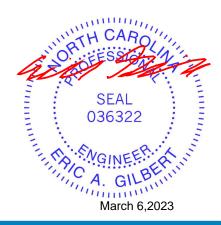
REACTIONS. (size) 1=5-11-14, 3=5-11-14, 4=5-11-14 Max Horz 1=-41(LC 10) Max Uplift 1=-17(LC 12), 3=-21(LC 13) Max Grav 1=111(LC 1), 3=111(LC 1), 4=186(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

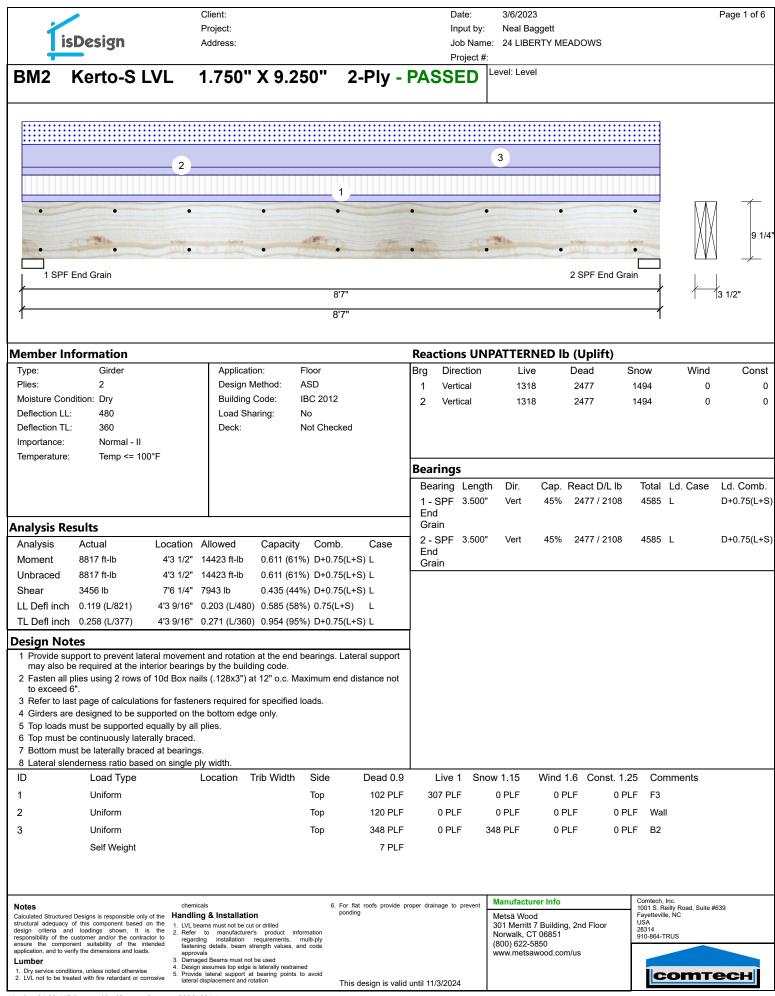
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)


and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Version 21.80.417 Powered by iStruct[™] Dataset: 22061001.1

		Client:		Date:	3/6/2023	Page 2 of 6
2		Project:		Input by:		
1	isDesign	Address:			e: 24 LIBERTY MEADOWS	
-				Project #		
BM2	Korto-SIV	/L 1.750" X 9.250	" 2_DIv _ DA	SSED	Level: Level	
		/L 1./50 A 9.250	2-FIY - FA	JJLD		
•	•	• •	• •		•	
						₩ ₩
	•	• •	• •		•	
	SPF End Grain				2 SPF End Gra	ain I I
	-		8'7"			3 1/2"
						3 1/2
			8'7"			1
Multi-Ph	y Analysis					
-			u	.P		
		of 10d Box nails (.128x3") at 12	o.c Maximum end	distance n	of to exceed 6".	
Capacity Load		0.0 % 0.0 PLF				
Yield Limit p		163.7 PLF				
Yield Limit p		81.9 lb.				
Yield Mode		IV 4.4/0"				
Edge Distan Min. End Dis		1 1/2" 3"				
Load Combi		5				
Duration Fac	ctor	1.00				
Net		chemicals	6 Ear flat safe availate and a	nogo to proved	Manufacturer Info	Comtech, Inc.
Notes Calculated Struc	ctured Designs is responsible only of the	chemicals the Handling & Installation	For flat roofs provide proper dra ponding	nage to prevent	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequ design criteria	uacy of this component based on the a and loadings shown. It is the	the 1. LVL beams must not be cut or drilled the 2. Refer to manufacturer's product information	n		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 010 864 TRUS
ensure the co	f the customer and/or the contractor omponent suitability of the intender to verify the dimensions and loads.	to regarding installation requirements, multi-pl ded fastening details, beam strength values, and code	y .		(800) 622-5850	910-864-TRUS
Lumber		approvals 3. Damaged Beams must not be used 4. Decire accuracy to a data is laterally restrained			www.metsawood.com/us	
	conditions, unless noted otherwise be treated with fire retardant or corrosi	 Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoi lateral displacement and rotation 		0.000		соттесн
		atoral displation and realitin	This design is valid until 11	13/2024		

í.	Design	P	Client: Project:					Date: Input by:		aggett				Page 3 of
	Design	A	ddress:					Job Narr Project #	ne: 24 LIB #·	ERTY ME	ADOWS			
GDH	Kerto-S L	VL 1.	750")	X 11.8	875" 2	2-Ply - F			Level: Lev	el				
						-								
		2											_	
									•••••					
					1									,
	AT ON THE R.	in in it	•		al Martin	•	•	·	- Mar	•			M	44.7/0"
•		and the second	and the second						•	•			_ W	11 7/8"
1 SPF En	id Grain										2 SPF E	nd Grain		
]					16'7								1 11:	3 1/2"
1					16'7								1	
lember In	formation						Reactio	ons UN	NPATTER		o (Uplift)			
Туре:	Girder		Applicat		Floor		Brg Di	rection	Liv	e	Dead	Snow	Wind	
Plies: Moisture Con	2 dition: Drv		Design I Building		ASD IBC 2012			ertical ertical		0 0	1154 1154	1078 1078	0	
Deflection LL:	,		Load Sh		No		2 16	ertical		0	1154	1078	0	
Deflection TL:	: 240		Deck:		Not Checke	d								
mportance:	Normal - II													
Temperature:	Temp <= 10	0°F					Deside							
							Bearing	-						
							Bearing			•	React D/L			
							1 - SPF	3.500)" Vert	22%	1154 / 107	8 223	2 L	D+S
nalysis Re	aulta		1				End Grain							
Analysis	Actual	Location A	llowed	Capaci	ty Comb.	Case	2 - SPF	3.500)" Vert	22%	1154 / 107	8 223	2 L	D+S
Moment	8751 ft-lb		2897 ft-lb	-	38%) D+S	L	End							
Unbraced	8751 ft-lb	8'3 1/2" 8		0.999	D+S	L	Grain							
				(100%)										
Shear	1897 lb	15'3 5/8" 1			19%) D+S	L								
	0.214 (L/904)	8'3 9/16" 0	`	, ,	'	L								
TL Defl inch	0.444 (L/436)	8'3 9/16" 0	.806 (L/240) 0.550 (5	55%) D+S	L	4							
esign Not							1							
	pport to prevent lat be required at the in				d bearings. La	iteral support								
2 Fasten all p	plies using 2 rows o	•		•	Maximum end	distance not								
to exceed 6	6". st page of calculatio	one for factorier	e required f	for specifie	abcol b									
	e designed to be su				d 10003.									
-	must be supported													
	be laterally braced a list be laterally brace			0.C.										
	nderness ratio base		0											
ID	Load Type	L	ocation	Trib Width	n Side	Dead 0.9	Live	e1 Sn	now 1.15	Wind	1.6 Const.	1.25 C	omments	
1	Uniform				Тор	120 PLF	0 P	LF	120 PLF	0 F	LF (PLF C	1-GE	
2	Tie-In	0-0-0 to	o 16-7-0	0-6-0	Тор	20 PSF	0 P	SF	20 PSF	0 F	SF (PSF R	AKE OH	
	Self Weight					9 PLF								
													sh loo	
lotes		chemical	s & Installation	n		flat roofs provide iding	proper drainage	to prevent	Manufact			Comtee 1001 S Favette	ch, Inc. . Reilly Road, Suite wille, NC	#639
tructural adequacy	d Designs is responsible only of this component based d loadings shown. It	on the 1. LVL bean	ns must not be cu	ut or drilled		-				t 7 Building	g, 2nd Floor	USA 28314		
esponsibility of the nsure the compor	customer and/or the contra nent suitability of the in	ictor to regarding itended fastening	o manufacture installation details, beam s	requirements,	information multi-ply and code				Norwalk, 0 (800) 622-				4-TRUS	
	rify the dimensions and load	s. approvals 3. Damageo	s d Beams must no	t be used					www.mets		m/us			
. Dry service condit	tions, unless noted otherwise ated with fire retardant or co	4. Design as 5. Provide	ssumes top edge lateral support a	is laterally rest at bearing poin	rained ts to avoid								сот	есн
		aterai dis	splacement and re	station	Th	is design is vali	a until 11/3/20	124						-

Project: Input by: Neal Baggett Job Name: 24 LIBERTY MEADOWS Project #: Lowel: Level GDH Kerto-S LVL 1.750" X 11.875" 2-Ply - PASSED Lowel: Level Lowel: Level Imput by: Neal Baggett Imput by: Neal Baggett Job Name: 24 LIBERTY MEADOWS Imput by: Imput b			D (0/0/000	
Index style Address Address Address Address GDH Kerto-S LVL 1.750" X 11.875" 2.Ply - PASSED aret. Levid Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style Image: Style				Page 4 of 6
New Project Project GDH Kerto-S LVL 1.750" X 11.875" 2-Ply - PASSED Interface low Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status </th <th></th> <th></th> <th></th> <th></th>				
GDH Kerto-S LVL 1.750" X 11.875" 2Ply - PASSED Index Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Image: Lond Ima				
COUNT Netro-S LVL 1//30/X 1//30/X 2-PTY - FASSED Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Multi-Ply Analysis Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and the pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and the pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and the pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and the pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and the pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and the pulse using 2 more of 10d Box nails (126x3) at 12° o.c. Maximum end distance not to exceed 5°. Image: State and th				
Net Net/Line Net/Line </th <th>GDH Kerto-S LVL 1.750 X 11.0</th> <th>3/5 2-Ply - PASSE</th> <th></th> <th></th>	GDH Kerto-S LVL 1.750 X 11.0	3/5 2-Ply - PASSE		
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td></td> <td></td> <td></td>				
Net Net/Line Net/Line </td <td></td> <td>• • • •</td> <td></td> <td></td>		• • • •		
1. SPF End Gain 2 SPF End Gain 1. SPF End Gain 2 SPF End Gain 1. SPF End Gain 167* 1. SPF End Gain 167* MULL-PLy Analysis 167* Fasten all plies using 2 rows of 10d Box nalis (128x3") at 12" o.c. Maximum end distance not to exceed 6". Operative stress of the				
Image: state all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6°. Image: state all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6°. Capering in the Food in the State				· • • • • • • • • • • • • • • • • • • •
Image: state all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6°. Image: state all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6°. Capering in the Food in the State	1 SPF End Grain		2 SPF End	$\overline{\operatorname{Grain}}$
Interview Multi-Ply Analysis Easten all plies using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6". Crauedry 0.0 % Vield Limit per Food 10.3 7 PLF Vield Limit per Food 10.0				
Multi-Dy Analysis Easten all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6°. Capacity 0.05 Nr Weid limit per food 0.05 Nr Weid limit per food 0.05 Nr Weid minger food 0.05 Nr Weid minger food 0.05 Nr Weid Monder food 0.05 Nr Weid Monder food 0.00 Nr		16'7"		3 1/2"
Multi-Dy Analysis Easten all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6°. Capacity 0.05 Nr Weid limit per food 0.05 Nr Weid limit per food 0.05 Nr Weid minger food 0.05 Nr Weid minger food 0.05 Nr Weid Monder food 0.05 Nr Weid Monder food 0.00 Nr	/	16'7"		-
Fasten all plies using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6". Capacity 0.0 % Med Linger Foot 18.3 /P.I.F. Med Linger Foot 18.3 /P.I.F. Med Domono 10" State all plies using a rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6". Wed Domono 10" Min End Delanco 3" Min End Delanco 10"				1
Fasten all plies using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6". Capacity 0.0 % Med Linger Foot 18.3 /P.I.F. Med Linger Foot 18.3 /P.I.F. Med Domono 10" State all plies using a rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6". Wed Domono 10" Min End Delanco 3" Min End Delanco 10"				
Capacity 0.0 % Load 0.0 PLF Yield Linh per Fachener 81.9 lb. Min. End Distance 3* Duald on Factor 1.00	Multi-Ply Analysis			
Capacity 0.0 % Load 0.0 PLF Yield Linh per Fachener 81.9 lb. Min. End Distance 3* Duald on Factor 1.00	Fasten all plies using 2 rows of 10d Box pails (128x3"	at 12" o.c. Maximum end dis	tance not to exceed 6"	
Load 0.0.PUF Weld Linn per Fastener 31.9 Ib. Weld Mode V Egge Dielanea 112* Load Combination U Duration Factor 100 Note the combination Sector 100 Note the combination				
Media Umper Fraiemer 81.9 lb, W Ved Mode V Edge Distance 112* Min. End Distance 31* Load Combination 10				
Yead Mode V Keide Mode 11/27 Min. End Distance 11/27 Duration Factor 11/27 Station				
Edge Diatanoe 1 /12* Mein End Diatanoe 3* Load Combination 100				
Min. End Distance 3' Ducation Factor 1.0'				
Lond Combination Duradion Factor 1.00				
Duration Factor 100 Notes Contrato financia contrato market financonte financia contrato market financia contrato market fina				
Notes Metsä Wood Metsä Wood Metsä Wood Calculated Structured Designs is responsible only of the dustioner and/or the contractor te esponsibility of the customer and/or the contractor te esponse that the simulation and to verify the dimensions noted otherwise 1. UL beams must not be used 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 USA 28314 910-864-TRUS 1. Dry service conditions, unless noted otherwise 3. Damaged Beams must not be used 3. Damaged Beams must not be used 4. Design assume to pede italrally restained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 11/3/2024 This design is valid until 11/3/2024 This design is valid until 11/3/2024				
Notes Metsä Wood Metsä Wood Metsä Wood Calculated Structured Designs is responsible only of the dustioner and/or the contractor te esponsibility of the customer and/or the contractor te esponse that the simulation and to verify the dimensions noted otherwise 1. UL beams must not be used 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 USA 28314 910-864-TRUS 1. Dry service conditions, unless noted otherwise 3. Damaged Beams must not be used 3. Damaged Beams must not be used 4. Design assume to pede italrally restained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 11/3/2024 This design is valid until 11/3/2024 This design is valid until 11/3/2024				
application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive 2. LVL not to be treated with fire retardant or corrosive 3. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 11/3/2024 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid 1. Dry service conditions, unless noted otherwise 5. Provide lateral support at bearing points to avoid 1. Dry service conditions, unless noted otherwise 5. Provide lateral support at bearing points to avoid 1. Dry service conditions, unless noted otherwise 5. Provide lateral support at bearing points to avoid 1. Dry service conditions, unless noted otherwise 5. Provide lateral support at bearing points to avoid 1. Dry service conditions, unless noted otherwise 5. Provide lateral support at bearing points to avoid 1. Dry service conditions, unless noted otherwise 5. Provide lateral support at bearing points to avoid 1. Dry service conditions of the point of the poin	Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to responsibility of the customer and/or the contractor to requirements	ponding information multi-ply	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314
1. Dry service conditions, unless noted otherwise 4. Design assumes top edge is laterally restrained 2. LVL not to be treated with fire retardant or corrosive 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 11/3/2024 This design is valid until 11/3/2024	application, and to verify the dimensions and loads. approvals	s, anu code		
2. EVEN to be realed with the relationant of consister and rotation This design is valid until 11/3/2024	1. Dry service conditions, unless noted otherwise 2. UR anticipation of the service of the serv	trained nts to avoid		Comtecul
	2. EVE not to be treated with the retardant of corrosive lateral displacement and rotation		024	Connech

	•	C	Client:				Date:	3/6/20	23				Page 5 of
1.		F	Project:				Input I	-	Baggett				
IS	Design	А	ddress:					ame: 24 LIB	ERTY MEA	DOWS			
		// /		4 000				Level: Lev	/el				
BM1 I	Kerto-S L\	/L 1.	750" X 1	4.000	2-Piy	- PAS	SED	20101.20					
	2		•••••										1'2"
1 SPF			2	SPF									
1		5'6 1/2"		1								1 1:	3 1/2"
1		5'6 1/2"		1									
/lember In	formation					Roa	ctions I	JNPATTER		(Uplift)			
Туре:	Girder		Application:	Floor		Brg	Directio			-	Snow	Wind	Cor
Plies:	2		Design Metho	od: ASD		1	Vertical	17:		604	0	0	
Moisture Con			Building Code		12	2	Vertical	17:	21	604	0	0	
Deflection LL:			Load Sharing										
Deflection TL:			Deck:	Not Che	ecked								
Importance: Temperature:	Normal - II Temp <= 100	۱°⊏											
remperature.	Temp <= Too					Bea	rings						
							aring Lei	ngth Dir.	Cap F	React D/L lb	Total	Ld. Case	Ld. Com
							SPF 3.5	-	45%	604 / 1721	2324		D+L
							SPF 3.5		45%	604 / 1721	2324		D+L
Analysis Re	sults								-		-		
Analysis	Actual	Location A	Allowed Ca	apacity Con	nb. Cas	e							
Moment	2710 ft-lb	2'9 1/4" 2	6999 ft-lb 0.1	100 (10%) D+L	L								
Unbraced	2710 ft-lb	2'9 1/4" 1	8950 ft-lb 0.1	143 (14%) D+L	L								
Shear	2080 lb	1'5 1/2" 1	0453 lb 0.1	199 (20%) D+L	L								
LL Defl inch	0.011 (L/5785)	2'9 1/4" 0	.127 (L/480) 0.0	083 (8%) L	L								
TL Defl inch	0.014 (L/4282)	2'9 1/4" 0	.169 (L/360) 0.0	084 (8%) D+L	L								
Design Not	tes												
may also b 2 Fasten all p to exceed 6 3 Refer to las 4 Girders are 5 Top must b 6 Bottom mu	st page of calculatio designed to be sup e laterally braced a st be laterally brace	erior bearings f 10d Box nails ns for fastener oported on the t end bearings d at end bearings	by the building c s (.128x3") at 12" rs required for sp bottom edge onl ngs.	ode. ' o.c. Maximum ecified loads.									
/ Lateral sier	nderness ratio base Load Type			Width Side	Dead	0.9	Live 1	Snow 1.15	Wind 1	6 Const. 1.	25 Con	nments	
1	Uniform	L		Near			15 PLF	0 PLF	0 PL				
2	Uniform			Far F			06 PLF	0 PLF	0 PL		LF F5		
~	Self Weight			Fai F		PLF 3		OT LE	UPL				
structural adequacy design criteria and responsibility of the ensure the compor	Designs is responsible only of this component based o d loadings shown. It is customer and/or the contrac nent suitability of the init ify the dimensions and loads.	n the 1. LVL bean the 2. Refer to tor to regarding ended fastening approvals	& Installation ms must not be cut or dril to manufacturer's pro- g installation require details, beam strength	led oduct information ements, multi-ply values, and code	6. For flat roofs pr ponding	vvide proper dr	ninage to preve	Metsä Wo 301 Merri Norwalk, (800) 622	ood tt 7 Building, CT 06851		Comtech, 1001 S. Re Fayetteville USA 28314 910-864-TI	illy Road, Suite ⋬ a, NC	¥639
		3 Damager	n peams must not be use	-0									
	ions, unless noted otherwise ated with fire retardant or cor	4. Design a 5. Provide	ssumes top edge is later lateral support at beari splacement and rotation	ally restrained								от	ecu

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

Pa		Client:		Date:	3/6/2023	Page 6 of 6
Í	isDesign	Project: Address:		Input by: Job Nam		
				Project #		
BM1	Kerto-S L\	VL 1.750" X 14.	000" 2-Ply	- PASSED	Level: Level	
•	• •	• •	•			$\overline{1}$
			• 1/2"			MM
	• •		$\overline{\nabla}$			1'2"
•	• •	• •				
1 SPF	F	2 SP				
		5'6 1/2"				3 1/2"
1		5'6 1/2"	\rightarrow			
Multi-Ply	/ Analysis					
asten all	plies using 3 row	s of 10d Box nails (.128x3") at 12" o.c Maxii	num end distance n	ot to exceed 6".	
Capacity .oad		85.5 % 210.0 PLF				
ield Limit pe	er Foot	245.6 PLF				
	er Fastener	81.9 lb.				
ield Mode dge Distand	ce	IV 1 1/2"				
lin. End Dis	tance	3"				
oad Combir. Ouration Fac		D+L 1.00				
		1.00				
Notes		chemicals		provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struct structural adequ	acy of this component based of		ponding		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of	and loadings shown. It is the customer and/or the contrac mponent suitability of the inte	s the 2. Refer to manufacturer's product ctor to regarding installation requirements	, multi-ply		Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and t	to verify the dimensions and loads	ended fastening details, beam strength value approvals 3. Damaged Beams must not be used	s, and code		www.metsawood.com/us	
1. Dry service o	onditions, unless noted otherwise e treated with fire retardant or cor	 Design assumes top edge is laterally res Provide lateral support at bearing po 	trained nts to avoid			сотесн
IOLIO DE		lateral displacement and rotation	This design	is valid until 11/3/2024	1	

This design is valid until 11/3/2024

Version 21.80.417 Powered by iStruct [™] Dataset: 22061001.1

CSD DESIGN