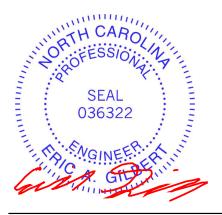


Trenco 818 Soundside Rd Edenton, NC 27932

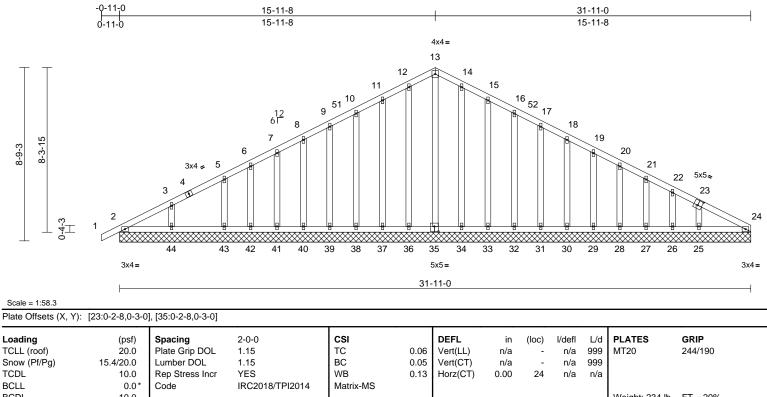

Re: P24040737 JOAN WALL

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Longleaf Truss Company.

Pages or sheets covered by this seal: I65520948 thru I65520955

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


May 14,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	T02GE	Common Supported Gable	1	1	Job Reference (optional)	165520948

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 13 07:23:33 ID:mZJoufkGBJ4I_lvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

BCDL		10.0							Weight: 234 lb FT = 20%
	6-0-0 oc Rigid ceil bracing. (size) Max Horiz		athing directly applied or applied or 10-0-0 oc 0, 24=31-11-0, 0, 26=31-11-0, 0, 28=31-11-0, 0, 30=31-11-0, 0, 30=31-11-0, 0, 30=31-11-0, 0, 34=31-11-0, 0, 34=31-11-0, 0, 40=31-11-0, 0, 42=31-11-0, 0, 44=31-11-0, 0, 44=31-11-0, 0, 44=31-11-0, 0, 44=31-11-0, 1, 45=202 (LC 12), C 12), 27=-23 (LC 12), C 12), 27=-23 (LC 12), C 12), 33=-24 (LC 12), C 12), 40=-21 (LC 12), C 12), 40=-21 (LC 12), C 12), 40=-21 (LC 12), C 12), 44=-39 (LC 12), C 12), 44=-39 (LC 12), C 12), 44=-39 (LC 12), C 12), 45=-30 (LC 12), C 12), 45=-30 (LC 12), C 12), 45=-30 (LC 12), C 1	FORCES TOP CHORD BOT CHORD WEBS	(lb) - Ma Tension 1-2=0/21 5-6=-120 8-9=-94/ 11-12=- 15-16=- 20-21= 2-44=-60 41-42=-6 38-39=-6 38-39=-6 31-32=-6 28-29=-6 25-26=-1 13-35=- 11-37=- 8-40=-8 5-43=-1 15-33=- 15-33=- 15-33=- 15-33=-	27=120 (LC 25) 29=110 (LC 25) 31=110 (LC 25) 33=135 (LC 18) 35=120 (LC 12) 37=136 (LC 17) 39=110 (LC 24) 41=113 (LC 24) 45=157 (LC 25) ximum Compressi 5, 2-3=-146/153, 3 0/107, 6-7=-111/10 82, 9-10=-86/105, 70/155, 12-13=-62 56/171, 14-15=-49 41/129, 16-17=-34 29/81, 18-19=-33/5 45/29, 21-22=-50/4 0/89, 40-41=-60/8 50/90, 30-31=-60/8 50/90, 33-34=-60/8 50/90, 30-31=-60/8 50/90, 33-34=-60/8 50/90, 27-28=-60/8 50/90, 27-28=-60/8 50/90, 24-25=-60/8 50/90, 24-25=-70/80, 24-25=-7	, 26=66 (LC 25), , 28=108 (LC 25), , 30=110 (LC 25), , 32=127 (LC 18), , 34=137 (LC 18), , 36=135 (LC 17), , 38=127 (LC 17), , 40=109 (LC 24), , 44=242 (LC 24), , 44=242 (LC 24), , 48=92 (LC 2) ion/Maximum -5=-138/130, 01, 7-8=-103/91, 10-11=-78/129, /171, /154, /105, 57, 19-20=-39/34, 40, 22-24=-79/70 0, 42-43=-60/89, 39, 36-37=-60/89, 30, 32-33=-60/90, 20, 20, 23-60/90,	 2) 3) 4) 5) 6) 7) 	Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=32ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
									Iviay 14,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSE2 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

Job	Truss	Truss Type	Type Qty Ply JOAN		JOAN WALL	
P24040737	T02GE	2GE Common Supported Gable		1	Job Reference (optional)	165520948

- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 1-4-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
- 12) All bearings are assumed to be SP No.1 . 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 2, 3 lb uplift at joint 36, 27 lb uplift at joint 37, 21 lb uplift at joint 38, 21 lb uplift at joint 39, 21 lb uplift at joint 40, 21 lb uplift at joint 41, 17 lb uplift at joint 42, 35 lb uplift at joint 43, 39 lb uplift at joint 44, 3 lb uplift at joint 34, 28 lb uplift at joint 33, 21 lb uplift at joint 32, 21 lb uplift at joint 31, 21 lb uplift at joint 30, 21 lb uplift at joint 29, 21 lb uplift at joint 28, 23 lb uplift at joint 27, 12 lb uplift at joint 26, 44 lb uplift at joint 25 and 16 lb uplift at joint 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 13 07:23:33 ID:mZJoufkGBJ4I_lvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	Т03	Common	10	1	Job Reference (optional)	165520949

8-9-3 8-3Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 13 07:23:33

Page: 1 ID:mZJoufkGBJ4I_lvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 8-3-0 23-8-0 15-11-8 31-11-0 8-3-0 7-8-8 7-8-8 8-3-0 4x6= 5 1<u>2</u> 61 3x4 🚅 3x4。 3x4 🚽 20 21 3x4. 6 3 8 13 12 11 10 9 1.5x4 II 3x4= 3x8= 3x4= 1.5x4 u 3x6= 3x6=

	L	8-3-0		15-11-8		23-8-0				1	31-11-0		
0	I	8-3-0	ļ	7-8-8		1	7-8-8			1	8-3-0	I	
Scale = 1:59.5		i											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.13	9-19	>999	240	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.30	9-19	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.08	8	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS									
BCDL	10.0										Weight: 151 lb	FT = 20%	

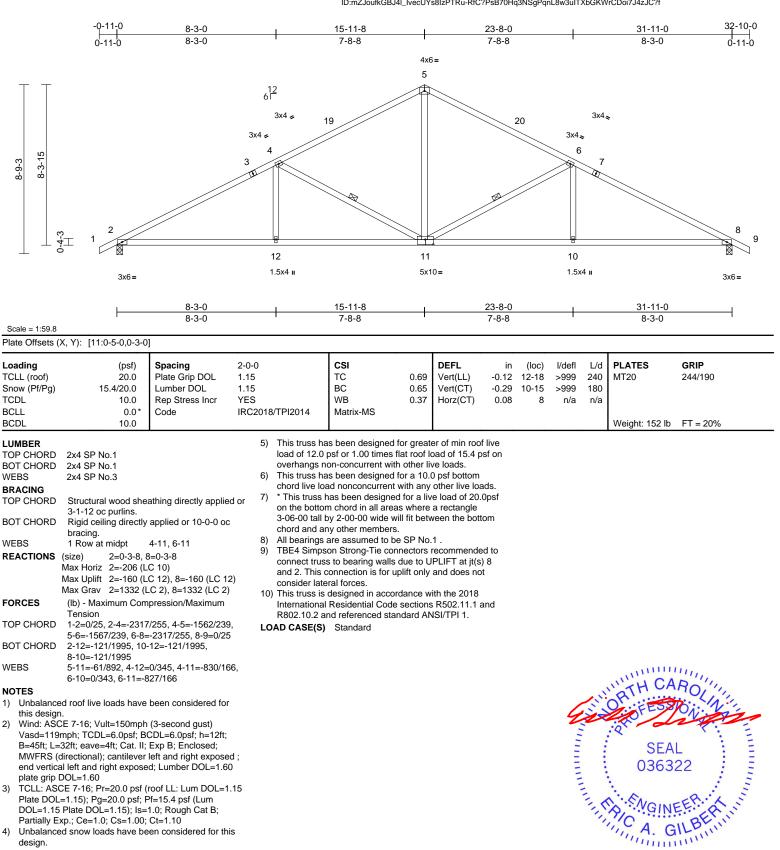
LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WFBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-1-2 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing WEBS 1 Row at midpt 7-11, 3-11 **REACTIONS** (size) 2=0-3-8, 8=0-3-8 Max Horiz 2=202 (LC 11) Max Uplift 2=-161 (LC 12), 8=-126 (LC 12) Max Grav 2=1332 (LC 2), 8=1276 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/25, 2-3=-2319/256, 3-5=-1566/240, 5-7=-1566/240, 7-8=-2323/260 BOT CHORD 2-13=-144/1997, 11-13=-144/1997, 9-11=-148/2001, 8-9=-148/2001 WEBS 5-11=-63/894, 7-11=-834/170, 7-9=0/345, 3-11=-829/166, 3-13=0/344

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 . 8)
- 9) TBE4 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

C Vermannon VIIIIIIIIIII SEAL 036322 G mmm


May 14,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

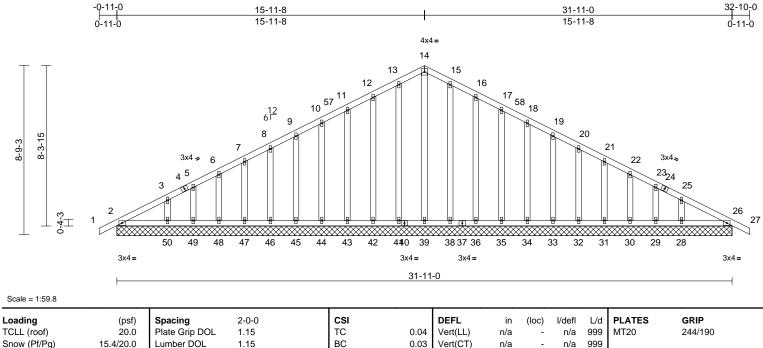
Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	T02	Common	13	1	Job Reference (optional)	165520950

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 13 07:23:33 ID:mZJoufkGBJ4L_lvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

May 14,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	T03GE	Common Supported Gable	1	1	Job Reference (optional)	165520951

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 13 07:23:33 ID:mZJoufkGBJ4I_IvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TCDL	15.4/20.0	Rep Stress Incr	YES	WB		Horz(CT)	0.00	- 54	n/a n/a	999 n/a	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-			0.00	54	11/a	n/a	
BCDL	10.0	Code	11(02010/11/12014	Width A-1	NIG						Weight: 238 lb FT = 20%
	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 2=31-11 30=31-1 32=31-1 34=31-1 34=31-1 39=31-1 42=31-1 44=31-1 44=31-1 48=31-1 50=31-1 54=31-1 Max Uplift 2=-19 (L 28=-28 30=-21 32=-21 34=-21 34=-21 45=-21 45=-21 49=-19	eathing directly applied ly applied or 10-0-0 oc -0, 26=31-11-0, 1-0, 29=31-11-0, 1-0, 31=31-11-0, 1-0, 33=31-11-0, 1-0, 33=31-11-0, 1-0, 43=31-11-0, 1-0, 45=31-11-0, 1-0, 45=31-11-0, 1-0, 45=31-11-0, 1-0, 51=31-11-0, 1-0, 51=31-11-0, 1-0, 51=31-11-0, 1-0, 51=31-11-0, 1-0, 51=321-12, 1-0, 1-2, 1-2, 1-2, 1-2, 1-2, 1-2, 1-2, 1-2	FORCES TOP CHORD)) BOT CHORD	(lb) - Max Tension 1-2=0/25, 5-6=-128, 8-9=-104, 11-12=-74 13-14=-61 15-16=-56 17-18=-32 20-21=-31 23-25=-66 2-50=-62/ 48-49=-62 48-49=-63 44-45=-63 44-45=-63 44-45=-63 39-41=-63 39-41=-63 34-35=-66 32-33=-66 30-31=-67	2=161 (LC 25), 28=201 (LC 25), 30=118 (LC 25), 31=110 (LC 25), 34=110 (LC 25), 36=135 (LC 18), 39=127 (LC 12), 42=135 (LC 17), 44=110 (LC 24), 46=110 (LC 24), 46=110 (LC 24), 46=110 (LC 24), 46=110 (LC 24), 46=110 (LC 24), 46=110 (LC 24), 48=118 (LC 24), 50=203 (LC 24), 51=59 (LC 2), imum Compressi 2-3=-148/154, 3 (125, 6-7=-121/1-1), 9/138, 12-13=-71 3/160, 14-15=-57, 0/164, 16-17=-42, 5/115, 18-19=-29, 3/43, 21-22=-43/2, 0/42, 25-26=-68/6, 1/03, 49-50=-62/- 2/103, 43-44=-62, 2/103, 43-44=-62, 2/103, 31-32=-62, 2/103, 31-32=-62, 2/103, 32-36=-62, 2/103, 31-32=-62, 2/103, 29-30=-62, 2/103, 26-28=-62, 2/103, 26-28=-6	, 29=74 (LC 2, , 31=108 (LC , , 33=110 (LC , , 35=127 (LC , , 35=127 (LC , , 43=136 (LC , , 43=127 (LC , , 47=108 (LC , , 47=108 (LC , , 51=161 (LC , on/Maximum -5=-139/129, , 14, 7-8=-112/ 10-11=-87/1 /164, /180, /133, /10	25), 25), 25), 25), 18), 17), 17), 24), 24), 24), 25), 104, 15, 80/67, 3/38,	 this c Winc Vasc B=4! MWI end plate Trus only. see i or cc 	alanced design. d: ASCE d=119m 5ft; L=3 FRS (di vertical grip Dr ss desig Fror st Standa onsult q	11-43 7-47= 3-50= 16-36 18-34 22-30 14-39 d roof li E 7-16 aph; TC 2ft; ea rection left ar OL=1 gned fc ruds ex rd Ind.	=-109/18, 12-42=-109/44, =-101/37, 10-44=-83/37, 9-45=-83/37, -83/37, 6-48=-87/38, 5-49=-64/34, -136/49, 15-38=-109/18, =-109/44, 17-35=-101/37, =-83/37, 19-33=-83/37, 21-31=-83/37, =-87/38, 23-29=-65/34, 25-28=-135/49, =-111/13, 8-46=-83/37, 20-32=-83/37 ive loads have been considered for ; Vult=150mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=12ft; ve=2t; Cat. II; Exp B; Enclosed; ival); cantilever left and right exposed ; dright exposed; Lumber DOL=1.60 60 or wind loads in the plane of the truss sposed to wind (normal to the face), istry Gable End Details as applicable, d building designer as per ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

May 14,2024

Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	T03GE	Common Supported Gable	1	1	Job Reference (optional)	165520951

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

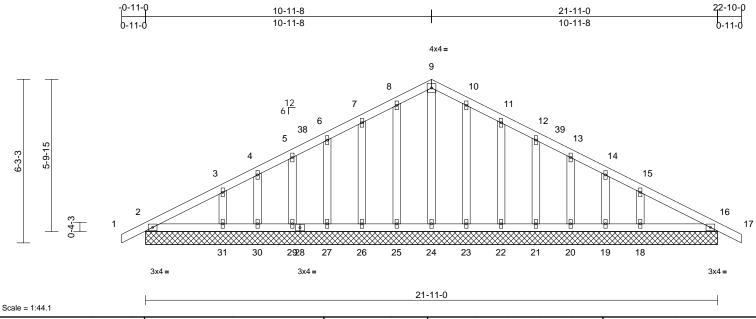
5) Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are 1.5x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 1-4-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.1 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 2, 19 lb uplift at joint 26, 2 lb uplift at joint 41, 28 lb uplift at joint 42, 21 lb uplift at joint 43, 21 lb uplift at joint 44, 21 lb uplift at joint 45, 21 lb uplift at joint 47, 21 lb uplift at joint 48, 19 lb uplift at joint 49, 28 lb uplift at joint 50, 2 lb uplift at joint 38, 28 lb uplift at joint 36, 21 lb uplift at joint 35, 21 lb uplift at joint 34, 21 lb uplift at joint 33, 21 lb uplift at joint 31, 21 lb uplift at joint 30, 19 lb uplift at joint 29, 28 lb uplift at joint 28, 21 lb uplift at joint 46, 21 lb uplift at joint 32, 19 lb uplift at joint 2 and 19 lb uplift at joint 26.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 13 07:23:33 ID:mZJoufkGBJ4I_lvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

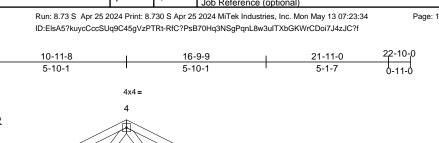
Job	Truss	Truss Type	Qty	Ply	JOAN WALL		
P24040737	T05GE	Common	1	1	Job Reference (optional)	165520952	

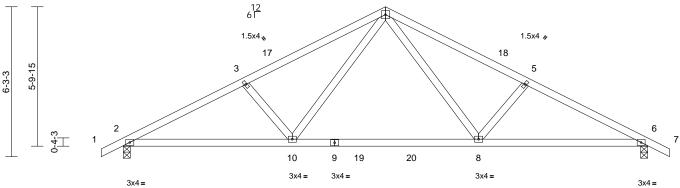
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 13 07:23:34 ID:EIsA5?kuycCccSUq9C45gVzPTRt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MS	0.05 0.04 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 35	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=21-11- 18=21-11 20=21-11	athing directly applied applied or 10-0-0 oc 0, 16=21-11-0, -0, 19=21-11-0, -0, 21=21-11-0,	BOT CHORD	1-2=0/25, 2-3=-98 4-5=-76/70, 5-6=- 7-8=-57/106, 8-9= 10-11=-38/106, 1 13-14=-32/33, 14 16-17=0/25 2-31=-37/75, 20 24-25=-37/75, 23 21-22=-37/75, 16 9-24=-73/1, 8-25= 6-27=-101/37, 5-2	70/60, 6- =-51/126, 1-12=-35, -15=-46/1 31=-37/75 -27=-37/7 -24=-37/7 -21=-37/7 -18=-37/7 =-111/27,	7=-63/81, 9-10=-45/12 /81, 12-13=-3 4, 15-16=-50 5, 29-30=-37/ 75, 22-23=-37 75, 19-20=-37 75, 19-20=-37 7-26=-108/4	31/57,)/46, 75, 7/75, 7/75, 7/75, 1,	9) Ga 10) Th chi 11) * T on 3-0 chi 12) All 13) Pro be 2,5	ble studs is truss h ord live lo his truss the botto 06-00 tall ord and a bearings ovide me aring plat 35 lb upli	s space las bee bad nor has be om choi by 2-0 any othe s are as chanica te capa ft at joi	een designed for rd in all areas wh 0-00 wide will fit er members. ssumed to be SF al connection (by able of withstand nt 16, 11 lb uplifi	chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom No.1. y others) of truss to ng 35 lb uplift at joint at joint 25, 25 lb uplif
	22=21-11 24=21-11 29=21-11 31=21-11 35=21-11 Max Horiz 2=136 (LC Max Uplift 2=-35 (LC 18=-34 (L 20=-22 (L 22=-25 (L 25=-11 (L 27=-21 (L 30=-17 (L	-0, 23=21-11-0, -0, 25=21-11-0, -0, 32=21-11-0, -0, 32=21-11-0, -0, 32=21-11-0, -0 C 11), 32=136 (LC 11) C 12), 16=-35 (LC 12) C 12), 19=-17 (LC 12) C 12), 21=-21 (LC 12) C 12), 23=-11 (LC 12) C 12), 26=-25 (LC 12) C 12), 26=-25 (LC 12) C 12), 28=-22 (LC 12) C 12), 31=-34 (LC 12) C) this design 2) Wind: ASC 2) Wind: ASC 4) Wind: ASC 4	3-31=-152/57, 10 12-21=-101/37, 1: 15-18=-151/57 d roof live loads ha E 7-16; Vult=150m mph; TCDL=6.0psf; 24ft; eave=2ft; Cat. directional); cantilev al left and right expo DOL=1.60 igned for wind load	-23=-111. 3-20=-86 pph (3-sec ; BCDL=6 II; Exp B ver left an osed; Lun s in the p	27, 11-22=-1 /38, 14-19=-5 considered fo cond gust) 6.0psf; h=12ft ; Enclosed; d right expos nber DOL=1.0 lane of the tri	108/41, 54/31, or ;; eed ; 60 uss	17 joii lb joii 14) Th Int R8	Ib uplift a nt 23, 25 uplift at jo nt 18, 35 is truss is ernationa	at joint Ib uplif bint 20, Ib uplif s desig al Resid and refe) Star	30, 34 lb uplift at t at joint 22, 21 ll 17 lb uplift at joi t at joint 2 and 3 ned in accordand dential Code sec erenced standar	tions R502.11.1 and
Max Grav 2=169 (LC 2), 16=169 (LC 2), 5 18=228 (LC 25), 19=57 (LC 2), 20=119 (LC 25), 21=126 (LC 18), 4 22=135 (LC 18), 23=137 (LC 18), 24=96 (LC 24), 25=137 (LC 18), F 26=135 (LC 17), Z=126 (LC 17), 1 29=119 (LC 24), 30=57 (LC 2), 5 31=229 (LC 24), 32=169 (LC 2), 35=169 (LC 2) 6 1 FORCES (lb) - Maximum Compression/Maximum 6 1				r studs exposed to wind (normal to the face), dard Industry Gable End Details as applicable, It qualified building designer as per ANSI/TPI 1. SCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 IL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum 5 Plate DOL=1.15); Is=1.0; Rough Cat B; Exp.; Ce=1.0; Cs=1.00; Ct=1.10 ced snow loads have been considered for this s has been designed for greater of min roof live 2.0 psf or 1.00 times flat roof load of 15.4 psf on gs non-concurrent with other live loads. are 1.5x4 MT20 unless otherwise indicated.							SEA 0363	EER. Kunner

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	Т06	Common	7	1	Job Reference (optional)	165520953

-0-11-0 0-11-0

5-1-7

5-1-7

		L	7-0-12			14-			_			-11-0	
Scale = 1:48.2		I	7-0-12		I	7-9	9-7		Ĩ		7-	0-12	I
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 15.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.44	DEFL Vert(LL) Vert(CT)	in -0.12 -0.21	(loc) 8-10 8-10	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.27	Horz(CT)	0.04	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018	8/TPI2014	Matrix-MS								
BCDL	10.0							-				Weight: 101 lb	FT = 20%
	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 4-7-13 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=-136 (L Max Uplift 2=-120 (L Max Grav 2=1036 (L (lb) - Maximum Com Tension 1-2=0/25, 2-3=-1732 4-5=-1568/190, 5-6= 2-10=-94/1621, 8-10 4-10=-27/697, 3-10=	applied or 10-0-0 or 6=0-3-8 C 10) C 12), 6=-120 (LC 1 _C 24), 6=1036 (LC upression/Maximum 2/188, 3-4=-1568/19/ 1732/188, 6-7=0/2: 0=0/999, 6-8=-94/152	7) ed or 8) c 9) (2) 10 (25) (25) (25) (20) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	chord live lo. * This truss l on the bottoo 3-06-00 tall chord and a All bearings TBE4 Simps connect trus and 6. This of consider late 0) This truss is International	designed in acco Residential Cod nd referenced sta	t with any ed for a liv as where will fit betw s, with BC be SP No. nnectors due to U uplift only ordance w e sections	other live loa e load of 20.0 a rectangle veen the botti DL = 10.0psi 1. recommende PLIFT at jt(s) and does no ith the 2018 i R502.11.1 a	Opsf om f. ed to) 2 t					
NOTES	5-8=-354/144												
NOTES 1) Unbalance	d roof live loads have	been considered for	r										
this design 2) Wind: ASC Vasd=119r B=45ft; L=2 MWFRS (d end vertica plate grip E 3) TCLL: ASC	I. E 7-16; Vult=150mph mph; TCDL=6.0psf; B(24ft; eave=4ft; Cat. II; directional); cantilever al left and right expose OCL=1.60 CE 7-16; Pr=20.0 psf; F =1.15); Pg=20.0 psf; F	(3-second gust) CDL=6.0psf; h=12ft; Exp B; Enclosed; left and right expose d; Lumber DOL=1.6 roof LL: Lum DOL=1	ed ; 60							40.000		SEA 0363	• –

design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Unuminitien .

May 14,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JOAN WALL	
P24040737	Т04	Common	3	1	Job Reference (optional)	165520954

Loading

TCDL

BCLL

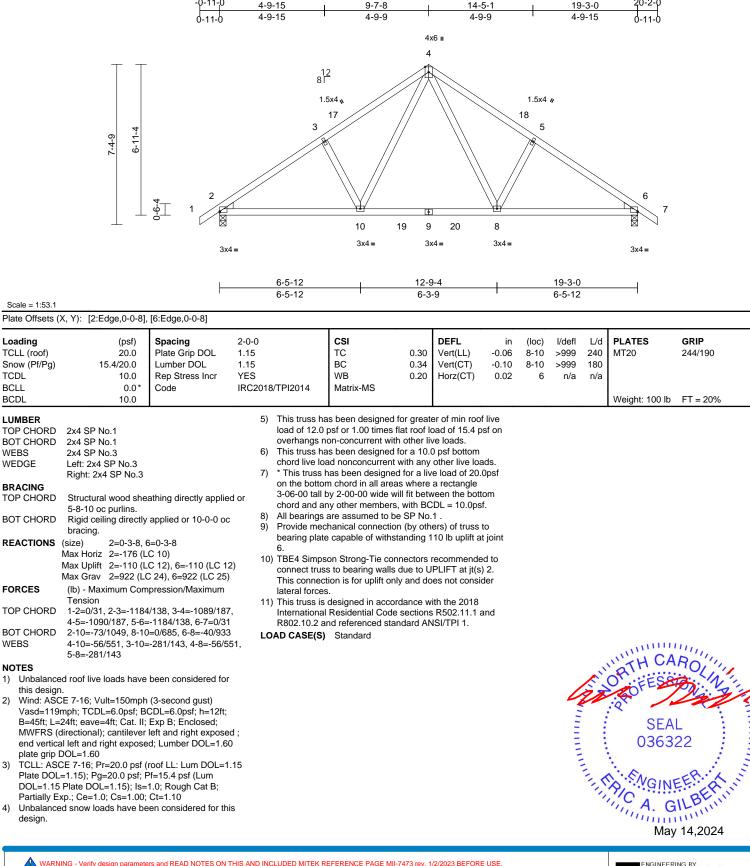
BCDL

WEBS

WEBS

NOTES

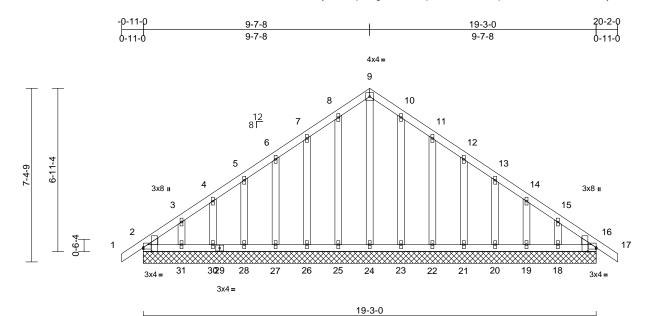
2)


3)

4)

WEDGE

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 13 07:23:33 ID:mZJoufkGBJ4I_lvecUYs8IzPTRu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		JOAN WALL	
P24040737	T01GE	Common Supported Gable	1	1	Job Reference (optional)	165520955

Run: 8.73 E Jan 17 2024 Print: 8.730 E Jan 17 2024 MiTek Industries, Inc. Mon May 13 16:42:25 ID:EIsA5?kuycCccSUq9C45gVzPTRt-b3Sq2LKub08RPR6YNNqo6tLUQ2BwOenxRID9OXzGs8y Page: 1

Scale = 1:49

Plate Offsets (X, Y): [2:Edge,0-0-12], [2:0-2-1,Edge], [16:Edge,0-0-12], [16:0-2-1,Edge]

	∧, ו). [∠.∟	uge,0-0-12], [2:0-2-1,Eage], [16	Euge,0	-0-12], [10.0-2-	i,Eugej							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.04 0.02 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Left: 2x4 Right: 2x4 Structura 6-0-0 oc Rigid ceil bracing. (Ib/size)	lo.1 lo.1 lo.3 SP No.3 4 SP No.3 I wood shea purlins. ing directly 2=118/199 20=95/19- 22=95/19- 22=95/19- 24=77/19- 28=95/19- 28=25/19-	C 10) : 8), 16=-5 (LC 9), 18 9=-33 (LC 12), 20=-: !1=-29 (LC 12), 22=-: :3=-14 (LC 12), 25=-: :6=-36 (LC 12), 27=-: !8=-29 (LC 12), 30=-: !1=-28 (LC 12) :25), 16=137 (LC 2) .C 25), 19=111 (LC 2)	d or = 3=-28 36 2 36 2 33 , , 25),	BOT CHORD WEBS 1) Unbalanced this design. 2) Wind: ASC. Vasd=119n B=45ft; L=2 MWFRS (d end vertical plate grip D 3) Truss desig	E 7-16; Vult=150m nph; TCDL=6.0psf; 24ft; eave=4ft; Cat. irectional); cantilev I left and right expo IOL=1.60 gned for wind loads	91/79, 6 62/137, 1-12=-44, -15=-62/4 -31=-61/18-29=-61, 6-27=-61, 4-25=-61, 2-23=-61, 2-23=-61, 0-21=-61, 8-19=-61, 25=-116/3 3=-87/45, -20=-87/45	 3-7=-81/74, 9-10=-53/137 9-10=-53/137 9-10=-53/137 9-74, 12-13=-4; 7, 15-16=-84/ 02, (102,	5/40, 71, 71, 752, 15/52, 46, - -	loa ov 7) Al 8) Gi 9) Gi 10) Tr cr 11) * - or 3- cr 12) Al cr 13) Oi tru 26 cc fo 14) Tr In	ad of 12.C verhangs i l plates an able requi- able studs- his truss h ord live lc This truss h ord live lc This truss h ord and a l bearings apacity of ne RT4 M uss to beas 5, 27, 28, onnection rces. his truss is ternationa 802.10.2 a	a) psf or non-co re 1.5xx rires coinc as bee aad non has bee m cho by 2-0 any oth a are az 5565 ps 5565 ps 5565 ps 5565 ps 11 Tek cr uring wa 30, 31, is for u s desig al Resic and ref	n designed for g 1.00 times flat ro ncurrent with oth 4 MT20 unless of ntinuous bottom of ed at 1-4-0 oc. en designed for a nconcurrent with en designed for a rd in all areas wh 0-00 wide will fit 1 er members. ssumed to be SP i. onnectors recomr alls due to UPLIF 23, 22, 21, 20, 1 polit only and doe ned in accordance dential Code sect erenced standard SEA	reater of min roof live nof load of 15.4 psf on er live loads. therwise indicated. chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom No.1 crushing mended to connect T at jt(s) 2, 16, 25, 9, and 18. This is not consider lateral ere with the 2018 ions R502.11.1 and ANSI/TPI 1.
FORCES	 20=114 (LC 25), 21=117 (LC 18), 22=142 (LC 18), 23=143 (LC 18), 24=123 (LC 12), 25=143 (LC 17), 26=142 (LC 17), 27=117 (LC 17), 31=131 (LC 24), 31=131 (LC 24) ES (lb) - Maximum Compression/Maximum Tension 					ils as applicat s per ANSI/TP .: Lum DOL=1 l psf (Lum pugh Cat B; 10	ole, 911. .15		1116.		0363	ERA		

Continued on page 2 WARNING - Verify d

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty Ply		JOAN WALL		
P24040737	T01GE	Common Supported Gable	1	1	Job Reference (optional)	165520955	
Longleaf Truss Company, West	End, NC - 27376,	Run: 8.73 E Jan 17 2	2024 Print: 8.	730 E Jan 17	2024 MiTek Industries, Inc. Mon May 13 16:42:25	Page: 2	

Run: 8.73 E Jan 17 2024 Print: 8.730 E Jan 17 2024 MiTek Industries, Inc. Mon May 13 16:42:25 ID:EIsA5?kuycCccSUq9C45gVzPTRt-b3Sq2LKub08RPR6YNNqo6tLUQ2BwOenxRID9OXzGs8y

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

