

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

 \ \ \			TI R	ROC RUS eilly R Fayet Phon Fax:	DF & SES oad Ir teville e: (91(: (910)	TC & FL (& B ndustr , N.C. : 0) 864- 864-4	CH DOF EAN ial Par 28309 -8787 444	₹ ΛS
	10. 0.	All Truss Reactions are Less than 3,000 lbs. Unless Noted Otherwise. Denotes Reaction Greater than 3,000 lbs. Reaction / # of Studs	Bearing I deemed f requirem attached requirem size and reactions 15000#. / retained reactions Signatur	eactions to complete ents. The Tables (ents) to number (greater A register to design that exce a register to design that exce a greater b design that exce a greater b design to design that exce a greater b design to design that exce a greater b design to	less thar / with the contract derived fi determin f wood s than 3000 ed design the supp eds thosy eds thosy wath onat ART F(on TABLI ck STUDS) or equal) prescript or shall r rom the p e the mini ituds requ) # but not n professi oort syste e specifie port syste off. Man L DR JAC ES R502.5(1 REQUIRED	to 3000# ive Code afer to th rescriptivi inum fou- ired to s greater t ional sha m for any d in the a onal shal m for all 	are e e Code indation upport than II be y statched II be Y JDS
	<u>.</u>	All Walls Shown Are Considered Load Bearing Roof Area = 1637.8 sq.ft. Ridge Line = 59.7 ft. Hip Line = 1.32 ft. Horiz. OH = 95 ft. Raked OH = 134.32 ft. Decking = 56 sheets	NOLLOY 20 400 1700 3400 5100 6800 8500 10200 11900 13600 15300	а абартана (2) 1 абартана (2) 1 абартана (2) 1 абартана (2) 3 абартана (2) 3 абартана (2) 3 абартана (2) 3 абартана (2) 5 бо 7 абартана (2) 8 абартана (2)	2550 5100 7650 10200 15300	(GIRDER WG 2012 S1012 S102 S1012 S102 S1012 S102 S10	340 680 1020	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	31.6"	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise Box Storage Tray Ceiling Flush Beam Drop Beam Connector Information Sym Hus26 USP 7 NA 16d/3-1/2"	CITY / CO. Sanford / Harnett	ADDRESS -	MODEL Roof	DATE REV. 03/01/23	DRAWN BY Jonathan Landry	SALES REP. Lenny Norris
880	, 5. 0.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Weaver Development	Lot 2 Holly Place	Magnolia II "C" / 2GRF, CP	N/A		J0223-0919
		▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)	THIS IS THESE THE COMPORT DESIGNATION THIS IS These the comport designe see indi identified designe permanna for the of support and colo designe consult truss de	A TRUSS USSES AT TRUS	FLACEN PLACEN e incorpt coffication ssign she placemei onsible fc ng of the placemei onsible fc ng of the che respo neral guia and BCS ckade or	ENT DIA ad as indi orated into a d as indi orated into a d as indi orated into a d s indi orated into a d as indi a d as indi	# JLOOD SRAM ON b the buil uilding dr to the buil uilding dr to the buil uilding dr to the buil ary and floor syst n of the buil arding br ided with sbcindu	# BOL LLY. iliding design iliding iding russ , walls, ding racing, the strv.com

RE: J0223-0919 Lot 2 Holly Place Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development
Lot/Block: 2Project Name: J0223-0919
Model: Magnolia IIAddress:Subdivision: Holly Place
State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	156812742	A1	2/23/2023
2	156812743	A1GE	2/23/2023
3	156812744	A2	2/23/2023
4	156812745	B1	2/23/2023
5	156812746	B1-GR	2/23/2023
6	156812747	B1GE	2/23/2023
7	156812748	C1	2/23/2023
8	156812749	C1GE	2/23/2023
9	156812750	J1	2/23/2023
10	156812751	J1GE	2/23/2023
11	156812752	M1	2/23/2023
12	156812753	M1GE	2/23/2023
13	156812754	V1GE	2/23/2023
14	156812755	V2GE	2/23/2023
15	156812756	V3	2/23/2023
16	156812757	V4	2/23/2023
17	156812758	V5	2/23/2023
18	156812759	V6	2/23/2023
19	156812760	V7	2/23/2023

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

L	10-8-8	1	20-8-8	1		31-5-0					
I	10-8-8		10-0-0			10-8-8					
Plate Offsets (X,Y)	late Offsets (X,Y) [7:0-3-0,Edge], [14:0-1-12,0-1-8], [16:0-1-12,0-1-8]										
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.60	DEFL. Vert(LL) -0	in (loc) .24 12-14	l/defl L/c >999 360	PLATES MT20	S GRIP 244/190				
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.54 WB 0.40 Matrix-S	Vert(CT) -0 Horz(CT) 0 Wind(LL) 0	0.35 12-14 0.06 12 0.14 2-16	>999 240 n/a n/a >999 240) a) Weight:	223 lb FT = 20%				
LUMBER-			BRACING-								

TOP CHORD

BOT CHORD

WEBS

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

- REACTIONS. (size) 2=0-3-8, 12=0-3-8 Max Horz 2=107(LC 11) Max Uplift 2=-87(LC 12), 12=-87(LC 13) Max Grav 2=1364(LC 2), 12=1364(LC 2)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- 2-3=-2405/501, 3-5=-2109/439, 5-6=-1688/442, 6-7=0/269, 7-8=0/269, 8-9=-1688/442, TOP CHORD
- 9-11=-2109/439, 11-12=-2406/501
- BOT CHORD 2-16=-332/2114, 14-16=-171/1759, 12-14=-327/2079
- WEBS 3-16=-532/215, 5-16=-21/741, 9-14=-21/741, 11-14=-532/215, 6-8=-2012/395

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 32-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-6-8 oc purlins.

6-8

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 10-11=-111/275, 11-12=-111/275

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 32-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

February 23,2023

Plate Offs	late Offsets (X,Y) [9:0-5-0,0-6-4]											
	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP				
TCLL	20.0	Plate Grip DOL 1.15	TC 0.70	Vert(LL) -0.	07 7-9	>999	360	MT20 244/190				
TCDL	10.0	Lumber DOL 1.15	BC 0.60	Vert(CT) -0.	14 7-9	>999	240	M18AHS 186/179				
BCLL	0.0 *	Rep Stress Incr NO	WB 0.71	Horz(CT) 0.	.03 5	n/a	n/a					
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.	05 7-9	>999	240	Weight: 318 lb FT = 20%				

BRACING-

TOP CHORD

BOT CHORD

 LUMBER

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x8 SP 2400F 2.0E

 WEBS
 2x4 SP No.2

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=172(LC 5) Max Uplift 1=-215(LC 8), 5=-321(LC 9) Max Grav 1=5117(LC 2), 5=4087(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-6421/326, 2-3=-5177/432, 3-4=-5171/432, 4-5=-6561/532

BOT CHORD 1-10=-270/4984, 9-10=-270/4984, 7-9=-354/5052, 5-7=-354/5052

WEBS 3-9=-384/5375, 4-9=-1448/244, 4-7=-141/1918, 2-9=-1352/546, 2-10=-457/2057

NOTES-

WEDGE

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-2-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) All plates are MT20 plates unless otherwise indicated.

6) N/A

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 Holly Place	
						156812746
J0223-0919	B1-GR	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayet	eville, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Thu Feb 23 08:34:47 2023	Page 2
		ID:IwPC	H6hK8Jep	ott6SXqQC	DJcyzm6C-nX4GZfiNo6d611DZ00Wj5mGUUskEQu5PUjrM4	LziJBs

NOTES-

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=215, 5=321.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 419; bl down and 445 lb up at 11-9-0, 857 lb down at 0-7-12, 853 lb down at 2-7-12, 853 lb down at 4-7-12, 853 lb down at 6-7-12, and 853 lb down at 8-7-12, and 853 lb down at 10-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 8=-4142(F) 11=-215(B) 12=-212(B) 13=-212(B) 14=-212(B) 15=-212(B) 16=-212(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

SLIDER Left 2x4 SP No.2 1-7-0, Right 2x4 SP No.2 1-7-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 19-11-0.
 (lb) - Max Horz 1=218(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 20, 21, 22, 18, 17, 16 except 23=-166(LC 12), 15=-147(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 13, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 20, 21, 22, 18, 17, 16 except (jt=lb) 23=166, 15=147.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=115, 8=111

9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER- TOP CHORD 2x6 SP	No.1		BRACING- TOP CHORD		Structu	ral wood	sheathing d	irectly applied or 6-0-0	oc purlins,
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) Wind(LL)	0.00	2-0	>333 n/a ****	n/a 240	Weight: 43 lb	FT = 20%
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.36	DEFL. Vert(LL) -	in 0.04	(loc) 2-6	l/defl >999	L/d 360 240	PLATES MT20	GRIP 244/190
Plate Offsets (X,Y)	[2:0-0-13,0-1-1]								

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=70(LC 12) Max Uplift 6=-43(LC 12), 2=-49(LC 8)

Max Grav 6=312(LC 1), 2=347(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-11 to 3-10-2, Interior(1) 3-10-2 to 8-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł

LOADING TCLL TCDL BCLL	(psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.05 0.03 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code IRC2015/TPI	2014	Matrix	(-P						Weight: 46 lb	FT = 20%	
LUMBER- TOP CHOI BOT CHOI	RD 2x6 SP RD 2x6 SP	No.1 No.1				BRACING- TOP CHOR	D	Structur	ral wood end verti	sheathing d	rectly applied or 6-0-0	oc purlins,	

BOT CHORD

BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0.

Max Horz 2=100(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 9, 10 Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9 except 10=293(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 9, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.01	2-4	>999	240	Weight: 29 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS

2x6 SP No.1

REACTIONS. 2=0-3-0, 4=0-1-8 (size) Max Horz 2=59(LC 12) Max Uplift 2=-89(LC 8), 4=-82(LC 8) Max Grav 2=235(LC 1), 4=182(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.06 0.06 0.01 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.00	(loc) 8 8 6	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER-						BRACING-							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=85(LC 12) Max Uplift 2=-128(LC 8), 6=-119(LC 8) Max Grav 2=235(LC 1), 6=182(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=128, 6=119.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-4-13.

(lb) - Max Horz 1=-120(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-166(LC 12), 6=-165(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=275(LC 19), 6=275(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=166, 6=165.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 16, 10 except (jt=lb) 14=114, 15=114, 12=112, 11=115.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift 1=-22(LC 13), 3=-31(LC 13) Max Grav 1=201(LC 1), 3=201(LC 1), 4=350(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=7-8-10, 3=7-8-10, 4=7-8-10 Max Horz 1=70(LC 11) Max Uplift 1=-24(LC 13), 3=-31(LC 13) Max Grav 1=162(LC 1), 3=162(LC 1), 4=236(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. 1=5-3-13, 3=5-3-13, 4=5-3-13 (size) Max Horz 1=-46(LC 8) Max Uplift 1=-16(LC 13), 3=-20(LC 13) Max Grav 1=106(LC 1), 3=106(LC 1), 4=155(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	0-0-7	1-5-8	1-6-0	l
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.01 BC 0.01 WB 0.01 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.2

REACTIONS. 1=2-11-0, 3=2-11-0, 4=2-11-0 (size) Max Horz 1=22(LC 9) Max Uplift 1=-8(LC 13), 3=-10(LC 13) Max Grav 1=51(LC 1), 3=51(LC 1), 4=74(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 2-11-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 \bigcirc

15' 0"

20' 0"

BM1

BM2

GDH

сотесн

ROOF & FLOOR TRUSSES & BEAMS

Reilly Road Industrial Park

Fayetteville, N.C. 28309

Phone: (910) 864-8787 Fax: (910) 864-4444

comply with the prescriptive Code tts. The contractor shall refer to the ables (derived from the prescriptive C its) to determine the minimum found umber of wood studs required to supp

reater than 3000# but not greater than istered design professional shall be sign the support system for any hat exceeds those specified in the atta A registered design professional shall be d to design the support system for all ons that exceed 15000#.

Jonathan Landry

Jonathan Landry

ñ ñ

REQ'D STUDS (3) PLY HEAL NEACTI (UP TO)

BB

2550 1

5100 2

7650 3

10200 4

12750 5

15300 6

2EQ'

E 1700 1 3400 2

5100 3

6800 4

8500 5

10200 6

11900 7

13600 8 15300 9

Дa

Sanford

СІТУ / СО.

ent

Weaver Developn

BUILDER

an S

3400 1 6800 2

10200 3

13600 4

17000 5

Jonathan Landry

DRAWN BY

03/01/23

DATE REV.

Floor

СЪ

26RF,

 $\overline{}$

Magnolia II "C"

PLAN

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

N/A

SEAL DATE

#

QUOTE

Holly Place

 \sim

Lot

JOB NAME

.

ADDRESS MODEL

Lenny Norris

SALES REP.

J0223-0920

#

JOB

END

LOAD CHART FOR JACK STUDS (BASED ON TABLES R502.5(1) & (b)) NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

			Client:	Weaver Developn	nent	Da	ate:	3/1/2023		Page 2 of 6
Tic	Design		Project:	Magnolia II		Inj	put by:	Jonathan Landry		
	Design		Address.			JU	oiect #	. LOL 2 HOILY FIACE		
	Karta C	1 \ /1	4 7501	V 40 000			Ujeci #.	_evel: Level		
BINI	Kerto-S	LVL	1.750	X 16.000	2-Piy	PASSEL	ן נ			
•	• •	•	•	• •	• •	•	•	• •	• • •	$\Pi \uparrow$
										<u>5</u>
•	•	•	• •	• •	•	• •	•	• •	•	1'4"
•	• •	•	•	• •	• •	•	•	• •	• • • •	¥ []]
1 SPF									2 SPF	Λ
,					4.44.69					
					14.10"					3 1/2"
1					14'10"				1	
Multi-Ply A	nalysis									
Fasten all pl	ies usina 3	rows of 1	0d Box nails	(.128x3") at 12'	' o.c Maxim	um end dista	nce no	ot to exceed 6".		
Capacity		27.6	%	(
Load		78.0	PLF							
Yield Limit per F Yield Limit per F	-oot -astener	282.4 94 1	l PLF lb							
Yield Mode		IV								
Edge Distance		1 1/2								
Min. End Distan Load Combinati	ice ion	3" D+S								
Duration Factor	·	1.15								
Notes			chemicals		6. For flat roofs pro	vide proper drainage to	prevent	Manufacturer Info	Comtech Reilly Road	Industrial Park P.O. Box 40408, N
Calculated Structured structural adequacy	d Designs is responsible of this component ba	le only of the Hased on the 1.	Andling & Installa LVL beams must not be	tion cut or drilled	portaing			Metsä Wood 301 Merritt 7 Building, 2nd	d Floor 28309	
responsibility of the ensure the composite	d loadings shown. customer and/or the onent suitability of the	It is the 2. contractor to he intended	Refer to manufactu regarding installation	requirements, multi-ply				Norwalk, CT 06851 (800) 622-5850	910-864-878	37
application, and to ve	rify the dimensions and	d loads.	approvals Damaged Beams must	strength values, and code not be used				www.metsawood.com/us		
Dry service condit VI not to be train	tions, unless noted other	erwise 5.	Design assumes top ed Provide lateral suppor	ge is laterally restrained t at bearing points to avoid						отесн
 LVL HOL TO DE TRE 	aco war me retardant	or corrosive	lateral displacement an	d rotation	This design is	valid until 11/3/2024	1			
Version 21.80/117	Powered by iStru	setTM Datacati	220610011							

2		Clien Proje	nt: We ect: Ma	eaver Develo Ignolia II	oment		D In	ate: put by:	3/1/2023 Jonathar	n Landry				Page 3 of 6
is	Design	Addr	ress:	5			Jo	bb Name	e: Lot 2 Ho	lly Place				
	Corto S I VI	1 75		16 000	" ว เ			roject #:	J0223-09 Level: Level	920				
		. 1.75		10.000	Z -r	- iy - P	AJJEI							
	2								3.					
				1										
•	•	• •		•	•	•	•	•	• •				M	$\overline{1}$
•	•	•	•		•	•	•	• •					XIX	1'4"
	a riter	inger .			111/11	all.			in the second				Ŵ	
1 SPF								:	2 SPF					
				11'3"					\rightarrow					1/2"
/				11'3"					\rightarrow					
Member In	formation		A 11 11				Reaction	ns UN	PATTERN	IED Ib (l	Jplift)			
Type: Plies:	Girder 2		Application: Design Met	hod: ASI	or D		Brg Dire	ection	LIVE 3555	De 12	ead 3	Snow 0	VVind 0	Const 0
Moisture Cond	dition: Dry	6	Building Co	de: IBC	/IRC 2015		2 Vert	tical	4305	1:	507	0	0	0
Deflection LL:	480	l	Load Sharir	ng: No										
Deflection TL:	360		Deck:	Not	Checked									
Temperature:	Normai - II Temp <= 100°F		Celling:	Gyp	sum 1/2"									
remperature.	1611p <= 100 1						Bearing	s						
							Bearing	Lengt	h Dir.	Cap. Re	act D/L lb	Total	Ld. Case	Ld. Comb.
							1 - SPF	4.000"	Vert	81% 12	257 / 3555	4812	L	D+L
Analysis De	a						2 - SPF	4.000"	Vert	98% 1	507 / 4305	5812	L	D+L
Analysis Ke	Actual Lo	ocation Allov	wed (Capacity	Comb	Case	1							
Moment	12309 ft-lb	5'7 1/2" 3456	65 ft-lb 0).356 (36%)	D+L	L								
Unbraced	12309 ft-lb	5'7 1/2" 1231	10 ft-lb 1	.000	D+L	L								
Shear	4527 lb	1'9" 1104	(1716 (100%)) 370 (38%)	L+L									
Snear	4527 ID 0.098 (I./1320)	18 1194 5'7 1/2" 0.268	8 (1 /480) ().379 (38%)	D+L	L								
TL Defl inch	0.132 (L/975)	5'7 1/2" 0.358	8 (L/360) 0).369 (37%)	- D+L	L								
Design Not	tes			. ,			1							
1 Provide su	pport to prevent lateral	movement and	d rotation at	the end bea	rings. Later	al support	4							
may also b 2 Fasten all r	e required at the interio	or bearings by t Id Box nails (1	the building	code. 2" o.c. Maxin	um end dis	stance not								
to exceed 6	5".	d Dox rialis (. i	2010 / 41 1	2 0.0. Maxin										
3 Refer to las 4 Concentrat	st page of calculations f red load fastener specifi	for fasteners re ication is in add	equired for s	specified load	ls. 's if a hange	er is								
present.				iger lactories	o ir a nangi									
5 Girders are 6 Top must b	e designed to be suppor e laterally braced at a r	rted on the bot maximum of 9'9	tom edge o 9 3/16" o.c.	nly.										
7 Lateral sler	nderness ratio based or	n single ply wid	dth.											
ID	Load Type	Loca	ation Trik	Width S	ide	Dead 0.9	Live	1 Sno	ow 1.15	Wind 1.6	Const. 1.2	25 Cor	nments	
1	Uniform			F	ar Face	90 PLF	269 PL	F	0 PLF	0 PLF	0 PI	LF F1		
2	Uniform			N	ear Face	121 PLF	363 PL	F	0 PLF	0 PLF	0 PI	LF F4		
3	Point	11	1-0-0	Ν	ear Face	250 lb	750 I	b	0 lb	0 lb	0	lb F4A		
	Self Weight					12 PLF								
Notes		chemicals			6. For flat	roofs provide p	roper drainage to	prevent	Manufactur	er Info		Comtech Reilly Roa	ad Industrial Park	: P.O. Box 40408, N
Calculated Structured structural adequacy	Designs is responsible only of the of this component based on the	 Handling & Ir 1. LVL beams mu 	nstallation ust not be cut or o	drilled	ponding	I			Metsä Wood 301 Merritt 7	l ' Building, 2n	d Floor	USA 28309		
design criteria and responsibility of the o ensure the component	a loadings shown. It is the customer and/or the contractor to nent suitability of the intender	e 2. Refer to m regarding in	nanufacturer's nstallation requ	product informat urements, multi-	on ply de				Norwalk, CT (800) 622-59	06851		910-864-8	787	
application, and to ver	ify the dimensions and loads.	approvals 3. Damaged Bea	ams, beam streng	un values, and co used	uc				www.metsav	vood.com/us				
1. Dry service condit 2. LVL not to be treat	ions, unless noted otherwise ated with fire retardant or corrosive	4. Design assume 5. Provide latera	es top edge is lat al support at be	terally restrained aring points to av	bid								от	есн
		iateral displace	ement and rotatio	N 1	This d	lesign is valid	until 11/3/2024	4						

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. except for regions covered by concentrated load fastening. Maximum end distance not to exceed 6".

Capacity	98.6 %
Load	242.0 PLF
Yield Limit per Foot	245.6 PLF
Yield Limit per Fastener	81.9 lb.
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	D+L
Duration Factor	1.00

Concentrated Load

Fasten at concentrated side load at 11-0-0 with a minimum of (9) - 10d Box nails (.128x3") in the

pattern shown.

Min/Max fastener distances for Concentrated Side Loads

Version 21.80.417 Powered by iStruct[™] Dataset: 22061001.1

		Client:	Weaver Developm	ent	Date [.]	3/1/2023		Page 6 of 6
		Project [.]	Magnolia II	ont	Input b	ov: Jonathan Landry		r ago o or o
isDesign	n	Address			Job Na	ame: Lot 2 Holly Place		
		, (44, 666).			Project	t #		
	0.1.7	4	<u> </u>					
GDH Kerto-	SLVL	1.750"	X 11.875"	2-Ply	PASSED	Level. Level		
						•		
• • •	•	• •	• •	• •	• •	• • •	9	$\Pi \uparrow$
							~	MM L
	•						<u> </u>	- 11 7/8"
1 SPE End Grain							2 SPE End Grain	
				16'10"				3 1/2"
/				101101				
				16'10"			.	
Multi Dhy Analysia								
wulli-Piy Analysis								
Fasten all plies using	2 rows of 10	0d Box nails	(.128x3") at 12"	o.c Maxim	um end distance	not to exceed 6".		
Capacity	0.0 %	I						
Load	0.0 PI	LF						
Yield Limit per Foot	163.7	PLF						
Yield Limit per Fastener	81.91	D.						
Field Mode Edge Distance	1 1/2"							
Min. End Distance	3"							
Load Combination	Ũ							
Duration Factor	1.00							
						1		
Notes		chemicals		6. For flat roofs pro	vide proper drainage to prever	Manufacturer Info	Comtech Reilly Road Indu	ustrial Park P.O. Box 40408
Calculated Structured Designs is respo structural adequacy of this component	nsible only of the Ha	andling & Installa	tion	ponding		Metsä Wood	USA 28309	,
design criteria and loadings sho responsibility of the customer and/or	the contractor to	Refer to manufactu	urer's product information			Norwalk, CT 06851	910-864-8787	
ensure the component suitability of application, and to verify the dimensions	of the intended s and loads	fastening details, bear	n strength values, and code			(800) 622-5850		
Lumber	<u>.</u>	approvals Damaged Beams must	not be used			www.metsawood.com/u		
 Dry service conditions, unless noted LVL not to be treated with fire reter 	d otherwise 5.	Provide lateral support	ige is laterally restrained t at bearing points to avoid					тесн
be added with the feld		rateral displacement an	u rotation	This design is	valid until 11/3/2024			

RE: J0223-0920 Lot 2 Holly Place Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development
Lot/Block: 2Project Name: J0223-0920
Model: Magnolia IIAddress:Subdivision: Holly Place
State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 11 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	156812896	ET1	2/23/2023
2	156812897	ET2	2/23/2023
3	156812898	ET3	2/23/2023
4	156812899	ET4	2/23/2023
5	156812900	F1	2/23/2023
6	156812901	F2	2/23/2023
7	156812902	F3	2/23/2023
8	156812903	F4	2/23/2023
9	156812904	F4A	2/23/2023
10	156812905	F5	2/23/2023
11	156812906	F6	2/23/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job		Tru	ISS			Truss Ty	/pe				Qty	F	Ply	Lot 2 Ho	olly Place						
																			I.	56812896	ز
J0223-	0920	ET	1			GABLE					1		1								
													100 1	Job Ref	erence (optio	nal)	TI E I		- 40 0000 -		
Com	tech, Inc,	ayetteville,	NC - 283	314,								8.4	430 s Jar	1 6 2022	MITEK Indust	ries, inc	. Inu Feb	23 08:3	5:49 2023 F	age 1	
										D	IWPOH6n	iK8Jept	tosxqQU	JJCyzm6	C-UYONAHWI	AXXU9V	VGLNXZIVK	dEms1	4y6_XIMSEF	IZIJAU	
																				0 ₁ 18	
																			Scal	le = 1:22.	1
	3x4																				
	1	2		3		4		5 ^{3x4}	=	6		7		8		9		10	11		
I								1											0	I I	
1-4-0																				23	1-4-0
	H+			Ц		Ц				\sum				Ц				Ц			
		•		•		•		•				•		•		•		•		₩	
-													\times							x -	
	22	21		20		19		18		17		16		15		14		13	12	2	
	3x4									3x4 =									3x-	4 =	
	L 1-4-0	I	2-8-0	I	4-0-0	1	5-4-0		6-8-0	1	8-0-0		9-4-0)	10-8-0	I	12-0-0		13-3-8		
	1-4-0		1-4-0		1-4-0		1-4-0		1-4-0		1-4-0		1-4-0) 1	1-4-0		1-4-0		1-3-8	1	_
Plate	Offsets (X,Y)	[1:Edge	e,0-1-8],	[5:0-1-8	,Edge], [17:0-1-8,	Edge], [22:Edge	,0-1-8]												_
			-				-			-	-	-		-				-		-	_

LOADING (ps TCLL 40. TCDL 10. BCLL 0. BCDL 5.	sf)).0).0).0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. ir Vert(LL) n/z Vert(CT) n/z Horz(CT) 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD	2x4 SP 2x4 SP	No.1(flat) No.1(flat)		BRACING- TOP CHORD	Structu except	ral wood end verti	sheathing dii cals.	rectly applied or 6-0-0	oc purlins,

2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3(flat)

REACTIONS. All bearings 13-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qtv	Plv	Lot 2 Holly Place	
				,		56812897
J0223-0920	ET2	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayette	rille, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Thu Feb 23 08:35:50 2023 F	Page 1

8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 23 08:35:50 2023 Page 1 ID:IwPOH6hK8Jeptt6SXqQOJcyzm6C-MkMlodWKxF3LngrXEEU_2YNPWGNJhZEh_0bBnBziJAt

0-<u>1</u>-8

Scale = 1:27.8

<u>1-4-0</u> 1-4-0	2-8-0 4-0-0 5-4-0 1-4-0 1-4-0 1-4-0	<u>6-8-0 8-0-0</u> 1-4-0 1-4-0	9-4-0 10-8	-0 <u>12-0-0</u> -0 1-4-0	13-4-0 1-4-0	14-8-0	16-0-0 16-7-8 1-4-0 0-7-8
Plate Offsets (X,Y)	[1:Edge,0-1-8], [6:0-1-8,Edge], [23:0	-1-8,Edge], [30:Edge,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDI 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code. IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	n (loc) l/defl a - n/a a - n/a 0 16 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%F 11%F
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.1(flat)		BRACING- TOP CHORD	Structural wood	sheathing dire	ectly applied or 10-0	-0 oc purlins,

WEBS 2x4 SP No.3(flat)

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 16-7-8.

2x4 SP No.3(flat)

Max Uplift All uplift 100 lb or less at joint(s) 16 (lb) -

Max Grav All reactions 250 lb or less at joint(s) 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ All plates are 1.5x3 MT20 unless otherwise indicated.

Job	Truss		Truss Type				Qty	Ply		Lot 2 Holly	Place				
10222 0020	ГТЭ						1		4					1568	12898
JUZZ3-09Z0	EIS		GADLE				1		1	Job Referer	nce (optional))			
Comtech, Inc, Fayett	eville, NC - 28314	,						8.430 s	Jan	6 2022 MiT	ek Industries	s, Inc. ⁻	Thu Feb 23 08:35	:52 2023 Page	e 1
						ID:lw	POH6hk	(8Jeptt6S	XqQ	OJcyzm6C-	I7TWCJYaTs	J20z_v	vMfWS7zSk133n	9TkzRK4Is4ziJ	lAr
0-1-8														0- <u>1</u> -8	8
														Scale =	1:29.7
					3x4 ≡		3x6 FP	=							
1 2	3	4	5	6	7	8	9 1	0	1	1	12	13	14	15 16	
	•	0	•	•	- R	•	<u> </u>	•		•	•	-	•		~
															34 C
															-
				•		<u>N</u>			~~~~	•					l
	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~			~~~~			XXXXX	××××××××××××××××××××××××××××××××××××××	*********	
32 31	30	29	28 27	26	25	24	2	23	2	2	21	20	19	18 17	
3x4 =			3x6 FP	=		3x4 =								3x4 =	=

<u>1-4-0</u> -4-0 −4-0	2-8-0 4-0-0 1-4-0 1-4-0 [7:0-1-8.Edge], [24:0-1-8.E	5-4-0 1-4-0 Edgel	6-8-0 1-4-0	8-0-0 1-4-0	9-4-0 10-8- 1-4-0 1-4-0	<u>0 1</u>	12-0-0 1-4-0	13-4-0 1-4-0	14-8-0 16-0-0 1-4-0 1-4-0	<u>17-4-0</u> <u>17-10-</u> ρ <u>1-4-0</u> 0-6-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI. TC BC WB	0.06 0.01 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 24	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI	12014	Matrix	x-S					Weight: 82 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	? No.1(flat) ? No.1(flat)				BRACING TOP CHOR	2D 5	Structura except e	al wood sheathir and verticals.	ng directly applied or 6-0-	0 oc purlins,

WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. OTHERS 2x4 SP No.3(flat)

REACTIONS.

All bearings 17-10-0.
 (lb) - Max Uplift All uplift 100 lb or less at joint(s) 17 Max Grav All reactions 250 lb or less at joint(s) 32, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 3-6-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-100

Concentrated Loads (lb)

Vert: 2=-72 3=-76

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

13-3-8												
1			13-3-8			1						
Plate Offsets (X,Y) [1:Edge,0-1-8], [5:0-1-8,Edge], [13:0-1-8,Edge]												
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYES	CSI. TC 0.34 BC 0.60 WB 0.31	DEFL. ir Vert(LL) -0.09 Vert(CT) -0.12 Horz(CT) 0.03	n (loc) l/defl L/d 11-12 >999 480 11-12 >999 360 11-12 >999 360 9 n/a n/a	PLATES MT20	GRIP 244/190						
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 71 lb	FT = 20%F, 11%E						
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 · 10-0-0 oc bracing.	oc purlins,						

REACTIONS. (size) 15=Mechanical, 9=0-3-8 Max Grav 15=717(LC 1), 9=711(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1210/0, 3-4=-1904/0, 4-5=-1904/0, 5-6=-1819/0, 6-7=-1220/0

BOT CHORD 14-15=0/759, 13-14=0/1646, 12-13=0/1904, 11-12=0/1904, 10-11=0/1659, 9-10=0/754

2-15=-1010/0, 2-14=0/628, 3-14=-606/0, 3-13=0/505, 7-9=-1001/0, 7-10=0/648, WEBS

6-10=-611/0, 6-11=0/305, 5-11=-304/60

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 			13-7-0 13-7-0			
Plate Offsets (X,Y)	[5:0-1-8,Edge], [13:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.65 WB 0.32 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(CT) -0.14 Horz(CT) 0.03	i (loc) I/defl L/d 11-12 >999 480 11-12 >999 360 9 n/a n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTIONS. (siz Max (e) 15=0-3-8, 9=0-3-8 Grav 15=727(LC 1), 9=727(LC 1)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1242/0, 3-4=-1987/0, 4-5=-1987/0, 5-6=-1882/0, 6-7=-1257/0

BOT CHORD 14-15=0/776, 13-14=0/1698, 12-13=0/1987, 11-12=0/1987, 10-11=0/1718, 9-10=0/770

WEBS 2-15=-1031/0, 2-14=0/649, 3-14=-634/0, 3-13=0/547, 7-9=-1022/0, 7-10=0/677,

6-10=-642/0, 6-11=0/302, 5-11=-320/48

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 Holly Place	
						156812902
J0223-0920	F3	Floor	6	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev	ville, NC - 28314,		8	.430 s Jar	6 2022 MiTek Industries, Inc. Thu Feb 23 08:35:57 20	23 Page 1
		ID:IwF	OH6hK8J	eptt6SXq0	QOJcyzm6C-f5HOG0cjHOxL6ltt9D6dq0AOb4ZRqcXjbcc	3XHziJAm
1-3-0	2	-1-4			1-6-12	0-1-8
						Н
						Scale = 1:53.3

Ļ		17-11-12				31-5-0			
1		17-11-12		l		13-5-4			
Plate Of	ffsets (X,Y)	[1:Edge,0-1-8], [17:0-1-8,Edge], [25:0-1	-8,Edge], [31:0-1-8,Edge], [3	2:0-1-8,Edge]					
	IC (nof)		681	DEEL	in (loc) /defl	/4			
LUADIN	IG (pst)	SPACING- 2-0-0	CSI.	DEFL.	In (IOC) I/defi	_/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL 1.00	TC 0.84	Vert(LL) -0.	.22 32-33 >954 4	80	MT20	244/190	
TCDL	10.0	Lumber DOL 1.00	BC 0.87	Vert(CT) -0.	.31 32-33 >698 3	60			
BCLL	0.0	Rep Stress Incr YES	WB 0.57	Horz(CT) 0.	.05 21 n/a i	n/a			
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 164 lb	FT = 20%F. 11%E	
5055		0000						20,00,002	
LUMBE	LUMBER- BRACING-								
TOP CH	ORD 2x4 SF	PNo.1(flat)		TOP CHORD	Structural wood she	Structural wood sheathing directly applied or 5-8-3 oc purlins.			
BOT CH	IORD 2x4 SF	No.1 (flat)			except end verticals.				
WEBS	2x4 SF	No 3(flat)		BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing				
LDO	241 01	No.o(nat)		DOT ONORD	rugia coming anooniy		o oo brading.		
REACT	IONS (size	e) 35=Mechanical 21=0-3-8 27=0-3-8	3						
NEAU	Mox C	25 - 872(1 - 2) - 24 - 646(1 - 4) - 27 - 2	, 022/LC 1)						
	iviax G	$5120^{-5}30^{-5}(10^{-5}), 21=040(10^{-4}), 21=2$	023(LC 1)						
FORCE	C (III-) Marca	O	less successfully an allowing						
FURCE	3. (ID) - Max.	Comp./wax. ren All forces 250 (lb) or	less except when shown.						
TOP CH	iord 2-3=-	·1552/0, 3-4=-2532/0, 4-5=-2532/0, 5-6=	-2790/0, 6-7=-2790/0, 7-8=-2	2790/0,					

8-9=-1850/0, 9-10=-1850/0, 10-12=-425/257, 12-13=0/1945, 13-14=0/1945, 14-15=-523/956, 15-16=-1501/333, 16-17=-1501/333, 17-18=-1536/105, 18-19=-1082/0 BOT CHORD $34\text{-}35\text{=}0/935,\, 33\text{-}34\text{=}0/2147,\, 32\text{-}33\text{=}0/2772,\, 31\text{-}32\text{=}0/2790,\, 30\text{-}31\text{=}0/2337,$ 29-30=-16/1233, 27-29=-804/0, 26-27=-1227/0, 25-26=-670/1074, 24-25=-333/1501, 23-24=-333/1501, 22-23=0/1467, 21-22=0/675 WEBS 2-35=-1245/0, 2-34=0/858, 3-34=-828/0, 3-33=0/523, 12-27=-1589/0, 12-29=0/1200, 10-29=-1158/0, 10-30=0/874, 8-30=-700/0, 8-31=0/846, 5-33=-326/0, 5-32=-269/287, 7-31=-416/0, 19-21=-896/0, 19-22=0/566, 18-22=-536/30, 17-23=0/405, 17-24=-284/0, 14-27=-1267/0, 14-26=0/869, 15-26=-924/0, 15-25=0/901, 16-25=-370/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

All plates are 3x6 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			17-10-0					
Plate Offsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.49 BC 0.72 WB 0.47 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.21 17-18 -0.29 17-18 0.06 14	l/defl >996 >725 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORE BOT CHORE	0 Structu except 0 Rigid c	ral wood s end vertic eiling direc	sheathing dire als. ctly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size) 22=0-3-8, 14=Mechanical Max Grav 22=961(LC 1), 14=967(LC 1)								
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-10:	Comp./Max. Ten All forces 250 (lb) or -1757/0, 3-4=-2926/0, 4-5=-2926/0, 5-6= 2926/0, 10-11=-2926/0, 11-12=-1757/0	less except when shown. -3487/0, 6-7=-3487/0, 7-8	=-3487/0,					

BOT CHORD	21-22=0/1042, 19-21=0/2442, 18-19=0/3275, 17-18=0/3487, 16-17=0/3275, 15-16=0/2442
	14-15=0/1043
WERS	2 22- 1285/0 2 21-0/004 2 21- 052/0 2 10-0/657 12 14- 1288/0 12 15-0/004

VVEBS	2-22=-1385/0, 2-21=0/994, 3-21=-953/0, 3-19=0/657, 12-14=-1388/0, 12-15=0/994,
	11-15=-953/0, 11-16=0/658, 8-16=-474/0, 8-17=-71/583, 5-19=-474/0, 5-18=-71/583,
	6-18=-290/0, 7-17=-290/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD

WEBS

UMBER-	
OP CHORD	2x4 SP No.1(flat)
BOT CHORD	2x4 SP No.1(flat)

2x4 SP No.3(flat) (size) 23=0-3-8, 15=Mechanical

REACTIONS. (size) 23=0-3-8, 15=Mechanical Max Grav 23=1158(LC 1), 15=1008(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2158/0, 3-4=-3538/0, 4-5=-3538/0, 5-7=-3783/0, 7-8=-3783/0, 8-9=-3783/0, 9-11=-3102/0, 11-12=-3102/0, 12-13=-1847/0

 BOT CHORD
 22-23=0/1315, 20-22=0/2972, 19-20=0/3746, 18-19=0/3783, 17-18=0/3496, 16-17=0/2573, 10-1840/2000

	15-16=0/1090
WEBS	2-23=-1708/0, 2-22=0/1143, 3-22=-1104/0, 3-20=0/752, 4-20=-279/0, 13-15=-1451/0,
	13-16=0/1053, 12-16=-1010/0, 12-17=0/718, 9-17=-535/0, 9-18=0/685, 5-20=-277/0,
	5-19=-320/291, 8-18=-341/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 159 lb down at 1-1-12, and 159 lb down at 3-1-12, and 159 lb down at 5-1-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 15-23=-10, 1-14=-100 Concentrated Loads (lb)

Vert: 4=-79(F) 25=-81(F) 26=-79(F)

A MiTek Affilia B18 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1		9-4-8			9 ₁ 6 ₁ 0	12-10-0	1
			9-4-8			0-1-8	3-4-0	1
Plate 0	Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,	Edge], [9:0-1-8,Edge], [10):0-1-8,Edge]				
LOAD TCLL TCDL BCLL BCDL	ING (psf) 40.0 10.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.04 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) l/defl 13 >999 13 >999 12 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%F, 11%E
LUMB TOP C BOT C WEBS	ER- CHORD 2x4 SF CHORD 2x4 SF 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural woo except end ver Rigid ceiling di	d sheathing dir ticals. rectly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing,	oc purlins, Except:

6-0-0 oc bracing: 16-17,15-16.

REACTIONS. All bearings 9-6-0 except (jt=length) 12=0-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 16, 17, 18, 21, 20, 19 except 15=301(LC 9), 15=290(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			3-6-0			
Plate Offsets (X,Y)	- [1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,	Edge], [9:0-1-8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.04 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	i (loc) l/defl L/d 7 >999 480 7 >999 360 5 n/a n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 3-6-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 8=Mechanical, 5=0-3-8 Max Grav 8=179(LC 1), 5=173(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

