

M2

All dimensional material, typically indicated as SP or SPF, supplied by others. LVL beams subject to availability.

	Truss	To Truss	Connector L	ist	
Supporting Mt	Location	Manuf	Product	Supported Mtl	Chord Type
Roof Truss, R12X	1' 2 1/4" Back	MiTek	JUS24	Roof Truss, R12	Bottom
Roof Truss, R11X	1' 2 1/4" Back	MiTek	JUS24	Roof Truss, R11	Bottom
Roof Truss, R7X	2' 0 3/4" Front	MiTek	HUS26	Roof Truss, R1	Bottom
Roof Truss, R8X	2' 0 3/4" Front	MiTek	HUS26	Roof Truss, R4	Bottom
Roof Truss, R11X	3' 2 1/4" Back	MiTek	JUS24	Roof Truss, R11	Bottom
Roof Truss, R12X	3' 2 1/4" Back	MiTek	JUS24	Roof Truss, R12	Bottom
Roof Truss, R8X	4' 0 3/4" Front	MiTek	HUS26	Roof Truss, R4	Bottom
Roof Truss, R7X	4' 0 3/4" Front	MiTek	HUS26	Roof Truss, R1	Bottom
Roof Truss, R12X	5' 2 1/4" Back	MiTek	JUS24	Roof Truss, R12	Bottom
Roof Truss, R11X	5' 2 1/4" Back	MiTek	JUS24	Roof Truss, R11	Bottom
Roof Truss, R7X	6' 0 3/4" Front	MiTek	HUS26	Roof Truss, R1	Bottom
Roof Truss, R8X	6' 0 3/4" Front	MiTek	HUS26	Roof Truss, R4	Bottom
Roof Truss, R11X	7' 2 1/4" Back	MiTek	JUS24	Roof Truss, R11	Bottom
Roof Truss, R12X	7' 2 1/4" Back	MiTek	JUS24	Roof Truss, R12	Bottom
Roof Truss, R8X	8' 0 3/4" Front	MiTek	HUS26	Roof Truss, R4	Bottom
Roof Truss, R7X	8' 0 3/4" Front	MiTek	HUS26	Roof Truss, R1	Bottom
Roof Truss, R10X	9' 7 1/2" Front	MiTek	HUS26	Roof Truss, R12X	Bottom
Roof Truss, R8X	10' 0 3/4" Front	MiTek	HUS26	Roof Truss, R5	Bottom
Roof Truss, R7X	10' 0 3/4" Front	MiTek	HUS26	Roof Truss, R1	Bottom
Roof Truss, R11X	11' 2 1/4" Back	MiTek	THDH28	Roof Truss, R11	Bottom
Roof Truss, R7X	12' 0 3/4" Front	MiTek	HUS26	Roof Truss, R1	Bottom
Roof Truss, R10X	12' 10" Front	MiTek	HUS26	Roof Truss, R11X	Bottom
Roof Truss, R7X	14' 0 1/4" Front	MiTek	HUS26	Roof Truss, R1	Тор
	Truss	To Beam	Connector I	List	
Supporting Mtl N	fanut Product	Qty	Supported	Mti	
Beam, BBO1 N	liTek One RT7A	3	Roof Truss	, R9,Roof Truss, R9,R	toof Truss, R9

12.53 ft²		1. The notation "BY OTHERS" shall refer to the design, purchase, fabrication, and installation of materials by someone other than Load Star® with no implied or assumed responsibility by Load Star®.
stomer: Schumacher Homes	Job Name: Capers, Carlton DU	Deams abered bb/# or not specined in a beam legend on this page are by UTHENS. Never hankings to web member bracing locations, mutt-ply truss haning patterns, maximum purific spacing, and other specific truss requirements. Maximum purific spacing, and other specific truss requirements. 2. Sheath trusses and completely nall prior to ver framing. Support over framing as required to uniformly distribute load on trusses below. 3. The Owner shall engage a Registered Design Professional(RDP)/Building Designer to prepare the Construction Documents. In the absence of a mandate to use an independent RDP/Building
ject:	Model: Charleston Classic Model #:	Designer, the Owner shall assume the role of Building Designer. The RDP/Building Designer shall review the Truss Submittal Package for compatibility with Building Design (ANS/ITPI 1-2007), 4. The method of Permanent Individual Truss Member Restrain/Batter and and and origing to restraining to prevent lateral movement of all Truss member acting together as a system shall be accomplished by methods listed in Sa.3.ANSI/TPI 1-2007. If a specific Truss member reamanent bracing design for the root and floor Framing Structural System is not provided by the
t: Jdiv.:	Elevation:	Owner or any Registered Design Professional, the method of Permanent Individual Truss Member Restraint and Diagonal Bracing for the truss Top Chord, Bottom Chord, and Web members shall be in procedured with BSC-B3 or BSS-B7. In all cases cales rapin is 60, to grader, the owner shall be notificat with any Registered Design Professional for the design of the Temporary procedured with any Registered Design Professional for the design of the Temporary
b / Quote Number: Q015240	Designer: Brandon Clay 5/22/2023	Transmont restance of the remain instruction ruse memory accuration and accurate present of a construction of the restance of

2015240-R R1 Common 7 1 Job Reference (optional) Page 1 add Stards, Laronia, GA 30553, BAC Rux 8.7 90 Mar 22 2023 Print 8 Job Mar 22 106.53 Page 1 Page 1 1 5-1-13 12-0-10 18-11-8 220-23 Print 8 Job Mar 22 106.52 Page 1 1 5-1-13 12-0-10 18-11-9 220-10 28-7.8 28-7.8 1 5-1-13 12-0-10 18-11-9 29-0-16 28-7.8 29-0-14 1 5-1-13 12-0-10 19-10 20 9 21 22.2 3 1 1-5-16 29-7.8 11 19 10 20 9 21 22 3.5= 1 1.9 10 20 9 21 22 3.5= 1 1.9 10 20 9 21 22 3.5= 2.0 3.45 11 19 10 20 9 21 22 3.5= 2.0 3.45 94.7<	Job		Truss		Truss T	уре			Qty	F	Ply	Caper	s, Car	Iton D	J-Roof	f	
Dad Stard: Larvolts, GA 30555, BAC Point: 8, 75 9 Mar 22 222 Pite 2700 9 Mar 22023 Pite 2700 9 Mar 2203 Pite 2700 9 Mar 2204 Pite 2700 Pite 270 P	Q015240-R		R1		Comm	ion			7		1	Job R	eferer	nce (opt	ional)		
Description	Load Star®, Lavor	nia, GA 30553,	BAC				Run: 8.7	' S 0 Mar 22	2 2023 P	Print: 8.70	00 S Mar 2	2 2023 M	MiTek I	ndustries	s, Inc. N	Ion May 22 15:45:3	B6 Page: 1
$\frac{1}{5 \cdot 1 \cdot 3} + \frac{1}{6 \cdot 1 \cdot 1 \cdot 4} + \frac{1}{2 \cdot 4 \cdot 3} + \frac{1}{2 \cdot 4 \cdot 4} + \frac{1}{2 \cdot 4 \cdot$				5-1-13	1	12-0-10		I	18_11	-8	.Gipwzoai		25-10	1-Aynao.	auwiisw	28-7-8	our Car dojwa i wzdwo v
505 1 10 </td <td></td> <td></td> <td></td> <td>5-1-13</td> <td>1</td> <td>6-10-14</td> <td>,</td> <td>r</td> <td>6-10-</td> <td>14</td> <td></td> <td></td> <td>6-10-</td> <td>-0 -14</td> <td></td> <td>2-9-3</td> <td></td>				5-1-13	1	6-10-14	,	r	6-10-	14			6-10-	-0 -14		2-9-3	
Image: Section of CPPP group 24-0 CSI 0.54 0.44 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5x5=</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>											5x5=	-					
4 1		<u> </u>									• •						
Bit City City <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>15</td><td></td><td></td><td></td><td>16</td><td>17</td><td></td><td></td><td></td></thc<>								1	15				16	17			
under constraining of the constraining directly applied or 2-2-00 change. 335 + 4 + 4 + 4 + 4 + 4 + 5 + 20 + 4 + 4 + 5 + 20 + 4 + 4 + 5 + 20 + 4 + 4 + 5 + 20 + 4 + 5 + 16 + 20 + 4 + 5 + 16 + 16 + 16 + 16 + 16 + 16 + 16						_12 6⊺	2 ³	x4=	12				4	3	3: \ 18	x4≈ 8c	
1 1						3x5 =	4								\searrow	2x41	
10 35 35 35 35 10 34 34 44 45 45 10 15 10 10 20 9 21 22 35 11 19 10 20 9 21 22 35 35 11 19 10 20 9 21 22 35 35 10 9 11 19 10 20 9 21 22 35 35 11 19 10 20 9 21 22 35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td>W6</td><td></td><td></td><td>/</td><td>//</td><td></td><td><u> </u></td></td<>						3					W6			/	//		<u> </u>
$\frac{1}{15 \cdot 16} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{11} + \frac{1}{19} + \frac{1}{10} + \frac{1}$		10-1			3x5 v				<u>\</u>						/		
$\frac{2}{15-1} + \frac{2}{12} + \frac{2}{12} + \frac{2}{35-5} + \frac{2}{11} + \frac{2}{12} + \frac{2}{35-5} $				13	T		VV 4		W5					XVS		WV4	
15-15 12 11 19 10 20 9 21 22 3x5= 11 19 10 20 9 21 22 3x5= 4x8= 9-7-1 18-11-8 28-7-8 9-8-0 1ate Offsets (X, Y): [2:0-2-0.0-1:0], [8:0-1-12,0-1-8], [12:0-1-12,0-1-12,0-1-8], [12:0-1-12,0-1-8], [12:0-1-12,0-12,0				2x411		W3										\\ W7	6-1-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P							$\langle \rangle$						
$\frac{111}{3x^4} = \frac{19}{3x^5} = \frac{111}{3x^4} = \frac{19}{3x^5} = \frac{19}{4x^8} = \frac{111}{22} = \frac{100}{3x^5} = \frac{111}{3x^4} = \frac{19}{3x^5} = \frac{111}{3x^4} = \frac{1111}{3x^4} $		1-5-	15 12			B1	/	0				/	B2			8	
$\frac{9.7-1}{9.7-1} + \frac{18\cdot11\cdot8}{9.4\cdot7} + \frac{28\cdot7\cdot8}{9.8\cdot0}$ $\frac{9.7-1}{9.7\cdot1} + \frac{9.4\cdot7}{9.4\cdot7} + \frac{9.8\cdot0}{9.8\cdot0}$ $\frac{9.7}{9.8\cdot0} + \frac{9.7}{9.8\cdot0} + \frac{9.7}{9.8\cdot0} + \frac{9.8\cdot0}{9.8\cdot0} + \frac{9.8\cdot0}{9.8\cdot$				3x5=		1	1 19 ⁄4=	10 3x5=	20		9 4x8=	-	2	1		22 ⊠ 3x5=	
9-7-1 18-11-8 28-7-8 9-7-1 9-4-7 9-8-0 iate Offsets (X, Y): [2:0-2-0,0-1-0], [8:0-1-12,0-1-8]. [12:0-1-12,0-1-8] DEFL in (loc) 1/defl L/d PLATES GRIP oading (psf) Spacing 2-0-0 CSI TC 0.59 Vert(LL) 0.20 PLATES GRIP now (Pf/Pg) 10.4/15.0 Lumber DOL 1.25 BC 0.94 Vert(CT) 0.48 8-9 >999 240 MT20 244/190 ODL 10.0 Rep Stress Incr YES WB 0.39 Vert(CT) 0.04 8 n/a n/a CDL 10.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 184 lb FT = 20% VIMBER 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Wind: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=4.2p5 f; BCDL=6.0p5; h=25f; Cat. Vasd=95mph; TCDL=4.2p5 f; BCDL=6.0p5; h=25f; Cat. Vasd=95mph; TCDL=4.2p5 i; Dec 2.21.0; Cat							4-	0,0-			470-						
late Offsets (X, Y): [2:0-2-0,0-1-0], [8:0-1-12,0-1-8], [12:0-1-12,0-1-8] oading CLL (roof) (ps) 2.0.0 Spacing Plate Grip DOL 2.0-0 CSI TC DEFL in (loc) I/deft L/d Oncw (Pi/Pg) 10.4/15.0 Plate Grip DOL 1.25 BC 0.94 Vert(LL) -0.29 8-9 >999 240 OLL 0.0* CL 0.0* Rep Stress Incr YES WB 0.39 Hatrix-MSH Weight: 184 lb FT = 20% UMBER Col 2x4 SP No.2 2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Weight: 184 lb FT = 20% VIMBER 2x4 SP No.2 2x4 SP No.3 * Except* B2:2x4 SP 1650F 1.7F 2x4 SP No.3 * Except* W5,W6:2x4 SP No.2 2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=96mph; TOEL=4.2pf; BCDL=0.6psf; h=25f; Cat. Vasd=96mph; TOEL=4.2pf; BCDL=6.0psf; h=25f; Cat. Vasd=96mph; TOEL=4.2pf; B				9	-7-1 -7-1			<u>18-1</u> 9-4	11-8 1-7					<u>28-7-8</u> 9-8-0	3		
oading CLL (rcof) (psf) 20.0 (LL (rcof) Spacing 20.0 (LL (rcof) Spacing 20.0 (Plate Grip DOL Lumber DOL 2.0-0 1.25 Lumber DOL CSI TC 0.59 BC DEFL in (loc) I/defl L/d PLATES GRIP MUMDER ODL 10.0 10.0 10.0 12.5 BC 0.94 Vert(CT) -0.48 8-9 >9199 240 MT20 244/190 VMBER OP CHORD 0.0* Code IRC2018/TPI2014 Mtixix-MSH Mtixix-MSH Merget Weight: 184 lb FT = 20% UMBER OP CHORD 2x4 SP No.2 *Except* B2::2x4 SP 1650F 1.7:E 2X4 SP No.2 *Except* W5,W6::2x4 SP No.2 2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf. BCDL=6.0psf, h=25ft; Cat. Weight: 184 lb FT = 20% VBER 2x4 SP No.2 *Except* W5,W6::2x4 SP No.2 2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf. BCDL=6.0psf, h=25ft; Cat. I; Exp C; Enclosed; MWFRS (preview) exterior zone and C-C Exterior(ZP) 2-0-11-8 to 23-11-8, Interior (1) 23-11-8. Interior (1)	Plate Offsets (X	(, Y): [2:0-2-0	,0-1-0],	[8:0-1-12,0-1-8], [12:	0-1-12,0)-1-8]											
CLL (roof) 20.0 Plate Grip DOL 1.25 TC 0.59 Vert(LL) -0.29 8-9 >999 240 MT20 244/190 now (Pf/Pg) 10.4/15.0 Lumber DOL 1.25 BC 0.94 Vert(CT) -0.48 8-9 >711 180 CDL 0.0* Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.48 8-9 >7711 180 UMBER 0.0* Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.48 8-9 >711 180 UMBER 0.0* Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.48 8-9 >711 180 UMBER 0.0* Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.48 8-9 >711 180 UMBER 0.0* 2x4 SP No.2 Vert(LT) -0.29 Keight Status Vert(LT) -0.21 51 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -21 -20 -21 -20 -21 -20	Loading		(psf)	Spacing	-	2-0-0	CSI			DEFL		in ((loc)	l/defl	L/d	PLATES	GRIP
CDL 10.0 CLL 0.0* Code YES Code WB 0.39 Matrix-MSH Horz(CT) 0.04 8 n/a n/a CDL 10.0 10.0 Rep Stress Incr YES Code WB 0.39 Matrix-MSH Horz(CT) 0.04 8 n/a n/a UMBER 10.0 10.0 Vind: ASCE 7-16; Vult=120mph (3-second gust) Weight: 184 lb FT = 20% UMBER 2x4 SP No.2 Vind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-12 to 5-1-12; Interior (1) 5-1-12 to 20-11-8; Exterior(2R) 20-11-8; to 23-11-8, Interior (1) CP CHORD Structural wood sheathing directly applied or 4-2-10 oc purlins, except end verticals. and C-C Exterior(2R) 2-1-12 to 5-1-12; Interior (1) CBS Structural wood sheathing directly applied or 2-2-0 oc bracing. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: um DOL=1.60 TCLL: ASCE 7-16; Ner=20.0 psf (roof LL: um DOL=1.25) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: um DOL=1.25) Pales DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: um DOL=1.25); Pg=15.0 psf; Pf=10.4 psf (Lum DOL=1.15); Pg=15.0; psf=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10 TCL: ASCE 7-16; Pulse Checked for a plus or minus 20 degree rotation design. Windk intex exector 8=	TCLL (roof) Snow (Pf/Pg)	10.4/	20.0 15.0	Plate Grip DOL Lumber DOL		1.25 1.25	TC BC		0.59 0.94	Vert(L	L) -0 CT) -0).29).48	8-9 8-9	>999 >711	240 180	MT20	244/190
CDL 10.0 Weight: 184 lb FT = 20% UMBER OP CHORD 2x4 SP No.2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; Cat. Weight: 184 lb FT = 20% UMBER OP CHORD 2x4 SP No.2 *Except* B2:2x4 SP 1650F 1.7E /EBS 2x4 SP No.3 *Except* W5,W6:2x4 SP No.2 2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; Cat. 11; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-12 to 5-1-12, Interior (1) 5-1-12 to 20-11-8, Exterior(2R) 20-11-8 to 23-3-11-8, Interior (1) 23-11-8 to 30-5-12 zone; cantilever left and right exposed; end vertical. OT CHORD OP CHORD Structural wood sheathing directly applied or 4-2-10 oc purins, except end verticals. 2 Vind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; Cat. OT CHORD OF CHORD Structural wood sheathing directly applied or 4-2-10 oc purins, except end verticals. 2 -11-8 to 30-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 2 -11-8 to 30-5-12 zone; for f=10.4 psf (Lum DOL=1.15 Plate DOL=1.25); Pg=15.0 psf; Pf=10.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Cs=1.00; Cs=1.00; Cs=1.00; Cs=1.00; Cs=0.9;	TCDL BCLL		10.0 0.0*	Rep Stress Incr Code	IRC2	YES 018/TPI2014	WB Matrix-M	ISH	0.39	Horz(CT) 0	0.04	8	n/a	n/a		
UMBER OP CHORD ICHORD2x4 SP No.2Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-12 to 5-1-12, Interior (1) 5-1-12 to 20-11-8, Exterior(2E) 20-1-18, Interior (1) 23-11-8 to 30-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60//EBS1 Row at midpt equired cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.31EACTIONS(lb/size)8=861/0-3-8, (min, 0-1-8), 12=861/12=861/	BCDL		10.0	-												Weight: 184 lb	FT = 20%
OP CHORD 2x4 SP No.2 2x4 SP No.2 x4 SP No.2 *Except* B2:2x4 SP 1650F 1.7E OT CHORD 2x4 SP No.3 *Except* W5,W6:2x4 SP No.2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone RACING OP CHORD Structural wood sheathing directly applied or 4-2-10 oc purlins, except end verticals. II; Exp C; Enclosed; MWFRS (envelope) exterior zone OT CHORD Structural wood sheathing directly applied or 4-2-10 oc purlins, except end verticals. II; Exp C; Enclosed; MWFRS for reactions shown; OT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. III bw at midpt 6-8, 2-12, 4-9 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer TCLL: ASCE 7-16; Pr=20.0 psf; Pf=10.4 psf (Lum DOL=1.25) Plate DOL=1.15); Is=1 DOL=1.10 Unbalanced snow loads have been considered for this design. Stactions (Ib/size) 8=861/0-3-8, (min. 0-1-8), 12=861/		0.4.0D.N. 0			2)	Wind: ASCE	7-16; Vul	t=120mph	ה (3-sec	cond gu	ist)						
//EBS 2x4 SP No.3 *Except* W5,W6:2x4 SP No.2 RACING OP CHORD Structural wood sheathing directly applied or 4-2-10 oc purlins, except end verticals. Structural wood sheathing directly applied or 2-2-0 oc bracing. //EBS 1 Row at midpt 6-8, 2-12, 4-9 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. Stuctural wood sheathing directly applied or 2-2-0 oc bracing. //EBS 1 Row at midpt 6-8, 2-12, 4-9 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer TCLL: ASCE 7-16; Pr=20.0 psf; Pf=10.4 psf (Lum DOL=1.25); Pg=15.0 psf; Pf=10.4 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. EACTIONS (lb/size) 8=861/0-3-8, (min. 0-1-8), 12=8617	BOT CHORD	2x4 SP No.2 2x4 SP No.2	*Excep	t* B2:2x4 SP 1650F	1.7E	II; Exp C; Er	n, TCDL-4 nclosed; M	WFRS (ei	nvelope	e) exter	ior zone	10					
OP CHORD Structural wood sheathing directly applied or 4-2-10 oc purlins, except end verticals. OT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. /EBS 1 Row at midpt 6-8, 2-12, 4-9 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer 11-8 to 30-5-12 20ne; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 30 1CLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25) 1 Row at midpt 6-8, 2-12, 4-9 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer TCLL: ASCE 7-16; Pr=20.0 psf; Pf=10.4 psf (Lum DOL=1.25); Pg=15.0 psf; Pf=10.4 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; (C==0.9; Cs==1.00; Ct=1.10) EACTIONS (Ib/size) 8=861/0-3-8, (min. 0-1-8), 12=861/	WEBS BRACING	2x4 SP No.3	*Excep	t* W5,W6:2x4 SP No	.2	to 20-11-8, E	Exterior(2E) 2	2-1-12 to 5 R) 20-11-8	b to 23-	11-8, In	(1) 5-1- iterior (1)	12					
OT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. Immbers and forces & MWFRS for reactions shown; Lumber DoL=1.60 //EBS 1 Row at midpt 6-8, 2-12, 4-9 Lumber DoL=1.60 plate grip DoL=1.60 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25) FEACTIONS (lb/size) 8=861/0-3-8, (min. 0-1-8), 12=861/	TOP CHORD	Structural we 4-2-10 oc pu	ood she rlins, e	athing directly applie xcept end verticals.	d or	exposed ; er	nd vertical	left and ri	ght exp	osed;C	C-C for						
/EBS 1 Row at midpt 6-8, 2-12, 4-9 3) 1 CLL: ASCE 7-16; Pr=20.0 pst (root LL: Lum DOL=1.25) MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. 3) 1 CLL: ASCE 7-16; Pr=20.0 pst (root LL: Lum DOL=1.25) Base 51/0-3-8, (min. 0-1-8), 12=861/ 5) Plate schecked for a plus or minus 20 degree rotation about the control	BOT CHORD	Rigid ceiling bracing.	directly	applied or 2-2-0 oc		Lumber DOI	=1.60 pla	te grip DC)L=1.60	o .	snown;	_					
EACTIONS (lb/size) 8=861/0-3-8, (min. 0-1-8), 12=861/	WEBS	1 Row at mic	dpt (6-8, 2-12, 4-9	3)	Plate DOL=	= 7-16; Pr= 1.25); Pg=	=20.0 pst (15.0 psf; I	(roof LL Pf=10.4	L: Lum I 4 psf (Li	UOL=1.2 um	5					
EACTIONS (lb/size) 8=861/0-3-8, (min. 0-1-8), 12=861/		required cro	nmends ss brac	ing be installed durin	g	DOL=1.15 P Exp.; Ce=0.9	late DOL= 9; Cs=1.00	=1.15);	=1.0; Ro	ough Ca	at C; Full	у					
EACTIONS (lb/size) 8=861/0-3-8, (min. 0-1-8), 12=861/ 5) Plates checked for a plus or minus 20 degree rotation		Installation	on, in ac guide.	cordance with Stabili	zer 4)	Unbalanced design.	snow load	ds have be	een cor	nsidered	d for this						
Machanical (min 0.4.0) about its center.	REACTIONS (lb/size) 8=	861/0-3	-8, (min. 0-1-8), 12=8	361/ ⁵⁾	Plates check about its cer	ked for a p nter.	lus or min	ius 20 d	degree	rotation						
Mechanical, (finit, 0-1-6) 6) This truss has been designed for a 10.0 psf bottom Max Horiz 12=330 (LC 13) chord live load nonconcurrent with any other live loads.	Ν	Max Horiz 12	=330 (L	.C 13)	6)	This truss ha	as been de ad noncor	esigned fo ocurrent w	r a 10.0 ith any	0 psf bo other li	ottom ve loads.						
Max Uplift 8=-227 (LC 16), 12=-271 (LC 16) 7) * This truss has been designed for a live load of 20.0psf Max Grav 8=1288 (LC 3), 12=1246 (LC 3) 7) * This truss has been designed for a live load of 20.0psf	N N	vlax Uplift 8= vlax Grav 8=	-227 (L 1288 (L	C 16), 12=-271 (LC 1 .C 3), 12=1246 (LC 3	6) 7))	* This truss	has been o m chord in	designed f all areas	for a liv where	e load o a recta	of 20.0ps ngle	f					
ORCES (lb) - Max. Comp./Max. Ten All forces 250 3-06-00 tall by 2-00-00 wide will fit between the bottom (lb) or less except when shown. chord and any other members, with BCDL = 10.0psf.	FORCES	(lb) - Max. C (lb) or less e	omp./Ma xcept wi	ax. Ten All forces 2 hen shown.	50	3-06-00 tall chord and a	by 2-00-00 nv other m) wide will nembers, v	fit betv with BC	veen the	e bottom 0.0psf.						
2P CHORD 2-3=-1606/364, 3-4=-1465/377, 4-14=-979/329, 14-15=-894/341. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to	TOP CHORD	(lb) or less except when shown. P CHORD 2-3=-1606/364, 3-4=-1465/377, 4-14=-070/329 14-15=-894/341					er(s) for tr	uss to true	ss conr	nections	S. truss to						
5-15=-892/353, 5-16=-888/334, 16-17=-894/323, 17-18=-967/318.		5-15=-892/3 16-17=-894/	53, 5-16 323, 17-	=-888/334, 18=-967/318	5)	bearing plate	e capable	of withsta	nding 2	271 lb u	plift at joi	int					
6-18=-975/308 10 OR RT7A MiTek connectors recommended to connect 01 OP D 11 12= 574/14/12 11 19= 450/1278 true to be arise well a due to UP UT at the 20 The		6-18=-975/30)8 1412 1/	10- 450/1278	10) One RT7A N	/iTek con	nectors re	comme	ended to		t					
10-19=-450/1278, 10-20=-450/1278, cruss to bearing wails due to UPLIF1 at jt(s) &. This connection is for uplift only and does not consider lateral		10-19=-450/	1278, 10)-20=-450/1278,		connection i	s for uplift	only and o	Li⊢ i at does no	ເງແຮງ 8. ot consi	i nis ider latera	al					
9-20-450/12/8, 9-21-225/421, torces. 21-22=-225/421, 8-22=-225/421 11) This truss is designed in accordance with the 2018		9-20=-450/12 21-22=-225/4	∠78, 9-2 121, 8-2	1=-225/421, 2=-225/421	11	torces. 1) This truss is	designed	in accorda	ance w	rith the 2	2018						
'EBS 6-8=-1165/436, 2-12=-1525/393, International Residential Code sections R502.11.1 and 4-11=-14/404, 4-9=-657/347, 5-9=-90/490, R802.10.2 and referenced standard ANSI/TPI 1.	WEBS	6-8=-1165/43 4-11=-14/404	36, 2-12 1, 4-9=-(=-1525/393, 657/347, 5-9=-90/490),	International R802.10.2 a	Residenti nd referer	ial Code s nced stand	ections ard AN	s R502. NSI/TPI	11.1 and 1.						
6-9=-67/590 LOAD CASE(S) Standard OTES	NOTES	6-9=-67/590			LC	DAD CASE(S)	Standard	d									
 Unbalanced roof live loads have been considered for this design. 	1) Unbalanced design.	d roof live loa	ds have	been considered for	this												

 Unbalanced root live loads have been considered to design.

Job		Truss		Truss Typ	be		Qty	Ply	Capers, Carlton DU-Roo	f	
Q015240-R		R1G		Commoi	n Structural	Gable	1	1	Job Reference (optional)		
Load Star®, Lavo	onia, GA 30553,	BAC				Run: 8.7 S 0 Mar 22 2	2023 Print: 8.	700 S Mar 2	2 2023 MiTek Industries, Inc. M	/lon May 22 15:45:3	36 Page: 1
					10 1	1.0	ID:ZmyNN	lqDrZgC4Qc	lp5xJh?vzDzRE-AyKaSadwns، ۲۰۹۲	woOy?JgTzVs0JZV	92ZCwlu6jWSYWzDw0V
			<u> </u>		18-1	1-8		ł	9-8-0	ł	
								5x5=	:		
	<u> </u>							11			
						0	34 10		12 35		
					.12	2 8	19				
					5x5 4	7) 15	
	7				6			ST10		16	~-
	-11-			5	T		ST8 🕅	9 🛛	ST8		
	10			4 511		ST6			ST7	ST6	
			3x4 _{II} 3	5	ST5					W1 +	-
		<u> </u>	1 ST 2	ST3							
	1-8	5-15	BL1				h h	n			
		<u> </u>	33 32 31	30	29 28	27 205	24 23	22	21 20 19	17 -	
			3x4II			3x5=	21 20		21 20 10		
			1			28.7	Q			I	
			<u> </u>			20-7-	-0				
Plate Offsets (2	X, Y): [6:0-2-8	3,0-3-0],	[33:0-2-4,0-1-8]								
Loading		(psf) 20.0	Spacing		2-0-0	CSI	DEF	FL	in (loc) l/defl L/d	PLATES	GRIP
Snow (Pf/Pg)	10.4	/15.0	Lumber DOL		1.25	BC (0.29 Vert	(CT) (0.00 17-18 >999 180	WI120	244/190
BCLL		10.0 0.0*	Rep Stress Incr Code	IRC201	YES 18/TPI2014	Matrix-MR	0.14 Horz	z(CT) (0.00 17 n/a n/a		
BCDL		10.0				-				Weight: 236 lb	FT = 20%
	2v4 SP No 1	, ,		2)	Wind: ASCE Vasd=95mpt	7-16; Vult=120mph (TCDI =4 2psf: BCD	3-second g	gust) h=25ft [,] Ca	ł		
BOT CHORD	2x4 SP No.2 2x4 SP No.2	2			II; Exp C; En	closed; MWFRS (env prior(2E) $2-1-12$ to $4-12$	/elope) exte	erior zone or $(1) 4-11$	-8		
OTHERS	2x4 SP No.3 2x4 SP No.3	3 3 *Excep	t*		to 20-11-8, E	Exterior(2R) 20-11-8 to	o 23-11-8,	Interior (1)	-0		
BRACING	BL1,ST10,S	19,518:	2x4 SP No.2		exposed ; en	d vertical left and right	nt exposed	;C-C for			
TOP CHORD	Structural w 6-0-0 oc pur	ood she lins ex	athing directly applied	or	Lumber DOL	=1.60 plate grip DOL	er reactions	s snown;			
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc	3)	I russ desigi only. For stu	ned for wind loads in ids exposed to wind (the plane of normal to t	of the truss the face),			
WEBS	1 Row at mi	dpt	11-22, 10-23, 9-24, 12	2-21,	see Standaro or consult qu	l Industry Gable End alified building desigi	Details as ner as per .	applicable ANSI/TPI 1	, 1.		
	MiTek reco	mmends	that Stabilizers and	4)	TCLL: ASCE Plate DOL=1	7-16; Pr=20.0 psf (ro .25); Pg=15.0 psf; Pf	oof LL: Lun =10.4 psf (n DOL=1.2 Lum	5		
	required cro truss erection	oss brac on, in ac	ing be installed during cordance with Stabilized	l zer	DOL=1.15 Pl Exp.; Ce=0.9	ate DOL=1.15); ls=1 ; Cs=1.00; Ct=1.10	.0; Rough	Cat C; Full	у		
	Installation	guide.		5)	Unbalanced design	snow loads have bee	en consider	ed for this			
REACTIONS . (lb) -	All bearings 2 Max Horiz 33	28-4-0. e 3=330 (L	xcept 33= Mechanica .C 13)	6) 7)	All plates are	e 2x4 MT20 unless ot	herwise inc	dicated.			
	Max Uplift Al	l uplift 1 7. 18. 19	00 (lb) or less at joint(. 20, 21, 22, 23, 24, 2	s) '' 5. o)	about its cen	ter.	s zu degre	erotation			
	27	7, 28, 29 C 13) 3	, 30, 31 except 32=-4 3=-241 (I C 14)	97 <u>9</u>)	This truss ha	s been designed for	a 10.0 psf l	bottom			
	Max Grav Al	l reactio	ns 250 (lb) or less at j	oint 10)	chord live loa * This truss h	ad nonconcurrent with has been designed fo	n any other r a live load	d of 20.0ps	If		
	25	5, 27, 28	, 29, 30, 31 except	r,	on the bottor 3-06-00 tall b	n chord in all areas w oy 2-00-00 wide will fi	/here a rec t between t	tangle the bottom			
FORCES	(lb) - Max. C	2=276 (L comp./Ma	ax. Ten All forces 25	50 11)	chord and ar Refer to girde	iy other members. er(s) for truss to truss	connectio	ns.			
TOP CHORD	(lb) or less e 1-2=-386/26	xcept w 5, 8-9=-	hen shown. 187/263, 9-34=-208/3	, 12) 02,	Provide mecl	hanical connection (b	y others) c ding 100 lb	of truss to uplift at ioi	int		
	10-34=-198/ 11-12=-224/	306, 10- 333, 12-	·11=-224/340, ·35=-198/285.	12)	(s) except (jt	=lb) 33=241.		to coppos	t		
WEBS	13-35=-208/	281, 1-3	3=-352/236	13)	truss to bear	ing walls due to UPLI	IFT at jt(s)	17, 22, 23,	L		
NOTES	2-52-231/2				24, 25, 27, 28 connection is	8, 29, 30, 31, 32, 21, 6 for uplift only and do	∠u, 19, and bes not con	a 18. This isider later	al		
 Unbalance design. 	d roof live loa	ids have	been considered for	this 14)	torces. This truss is	designed in accordar	nce with the	e 2018			
				,	International R802.10.2 ar	Residential Code see	ctions R50 rd ANSI/TF	2.11.1 and PI 1.			
				LOA	D CASE(S)	Standard					

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R3	Roof Special	3	1	Job Reference (optional)

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:wTErsi3KO hnzmNWOP5tWNzDzRQ-AvKaSadwnswoOv?JdTzVs0JSG9wHCoZu6iWSYWzDw0V

LOAD CASE(S) Standard

3-15=-335/266, 5-14=-719/358, 7-14=-971/431, 7-12=-119/906, 8-12=-936/382

NOTES

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

6-14=-426/1607, 5-15=-86/618,

2-15=-722/2808, 15-29=-532/2360,

29-30=-532/2360, 14-30=-532/2360,

13-14=-578/2540, 13-31=-578/2540, 31-32=-578/2540, 12-32=-578/2540, 11-12=-959/3737, 10-11=-955/3739

⁻⁰⁻¹⁰⁻⁸ 6-5-13 12-8-10 18-11-8 25-2-6 32-11-0 39-11-0 6-2-14 6-2-14 7-8-10 7-0-0 6-5-13 6-2-14 7x8= 6 3x4 -26₂₇ 6¹² 2**4**5 3x4 👟 5 7 6-11-12 3x6-9-11-1 2x4 10-2-15 5x5= 3 12 8 3x5≈ 28 2-11-15 2-11-15 9 10 14002 1HW -15 15 29 30 14 13 31 32 12 11 3x4= 4x8= 3x4= 2x41 4x6= 5x8= MT20HS 3x8 = 9-7-4 18-11-8 28-3-12 39-11-0 33-0-12 9-4-4 9-7-4 9-4-4 4-9-0 6-10-4 Plate Offsets (X, Y): [2:Edge,0-0-12], [7:0-1-12,0-1-8], [10:Edge,0-3-4] PLATES Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d GRIP TCLL (roof) 20.0 Plate Grip DOL 1 25 TC 0.90 Vert(LL) -0.35 12-14 >999 240 MT20 244/190 Snow (Pf/Pg) 10.4/15.0 Lumber DOL 1.25 BC 0.82 Vert(CT) -0.65 12-14 >741 180 MT20HS 187/143 TCDL Rep Stress Incr YES WB 0.70 10.0 Horz(CT) 0.15 10 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 210 lb FT = 20% BCDL 10.0 Wind: ASCE 7-16; Vult=120mph (3-second gust) LUMBER 2) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP No.2 *Except* T3,T4:2x4 SP 1650F II: Exp C; Enclosed; MWFRS (envelope) exterior zone 1.7E BOT CHORD 2x4 SP 1650F 1.7E *Except* B2:2x4 SP and C-C Exterior(2E) -0-10-8 to 3-1-6, Interior (1) 3-1-6 to 18-11-8, Exterior(2R) 18-11-8 to 22-11-6, Interior (1) 2700F 2.2E or 2x4 SP M 31 WEBS 2x4 SP No.3 *Except* W4,W3:2x4 SP No.2 22-11-6 to 39-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for WEDGE Left: 2x4 SP No.3 members and forces & MWFRS for reactions shown; SLIDER Right 2x4 SP No.3 -- 2-6-0 Lumber DOL=1.60 plate grip DOL=1.60 BRACING TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) TOP CHORD Structural wood sheathing directly applied. Plate DOL=1.25); Pg=15.0 psf; Pf=10.4 psf (Lum BOT CHORD Rigid ceiling directly applied or 7-11-4 oc DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully bracing. Exp.; Ce=0.9; Cs=1.00; Ct=1.10 WFBS 1 Row at midpt 5-14, 7-14 Unbalanced snow loads have been considered for this MiTek recommends that Stabilizers and design. required cross bracing be installed during 5) This truss has been designed for greater of min roof live truss erection, in accordance with Stabilizer load of 12.0 psf or 2.00 times flat roof load of 10.4 psf on Installation guide overhangs non-concurrent with other live loads. 6) All plates are MT20 plates unless otherwise indicated. **REACTIONS** (lb/size) 2=1249/0-3-8, (min. 0-2-2) Plates checked for a plus or minus 20 degree rotation 7) 10=1213/0-3-8, (min. 0-1-8) about its center Max Horiz 2=203 (LC 16) This truss has been designed for a 10.0 psf bottom 8) Max Uplift 2=-378 (LC 16), 10=-371 (LC 17) chord live load nonconcurrent with any other live loads. Max Grav 2=1799 (LC 3), 10=1748 (LC 3) 9) * This truss has been designed for a live load of 20.0psf FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 on the bottom chord in all areas where a rectangle (lb) or less except when shown. 3-06-00 tall by 2-00-00 wide will fit between the bottom TOP CHORD 2-23=-3214/872, 3-23=-3140/893, chord and any other members, with BCDL = 10.0psf. 3-4=-2997/823, 4-5=-2930/844 10) One RT7A MiTek connectors recommended to connect 5-24=-2168/701, 24-25=-2118/707, truss to bearing walls due to UPLIFT at jt(s) 10 and 2. 6-25=-2091/722, 6-26=-2091/727, This connection is for uplift only and does not consider 26-27=-2118/713, 7-27=-2175/706 lateral forces. 7-8=-3329/917, 8-28=-3967/1086, 11) This truss is designed in accordance with the 2018 9-28=-3996/1074, 9-10=-1637/275 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

Job		Truss			Truss T	ype		Qty		Ply	Cap	ers, Ca	rlton Dl	J-Root	F		
Q015240-R		R4			Roof S	pecial		5		1	Job	Referer	nce (opt	ional)			
Load Star®, Lavo	onia, GA 30553,	BAC					Run: 8.7 S 0 Mar 2	22 2023 F	Print: 8.	700 S Mai	r 22 202	3 MiTek	ndustries	s, Inc. N	lon May 22 15:45	:36	Page: 1
	-0-10-8							IC):OfnD3	334y9lpeb	owyix7c6	62bzDzRI	P-AyKaS	adwnsw	/oOy?JgTzVs0JX	U9uFCk6u6	jWSYWzDw0V
		6	3-5-13 3-5-13	<u> </u>	<u>12-8-1</u> 6-2-14	0 1 1	<u>18-11-8</u> 6-2-14		<u>3-9-12</u> -10-4	2	<u>29</u> - 5-	-0-0 -2-4		<u>34-4</u> 5-4	<u>-1 </u> -0 1	<u>39-11-0</u> 5-6-15	
	0-10-8							7x8=									
								6									
						3x4≠				4x5	•						
					12 6		236		\sim	27 7							
				3	≪6≠	5	12						214				
7 7			2	2x4 🔨		\square	\ \	W4	/				8	3x6 •			
9-11-			3	4		, ho	Ma		N/5	B3			R	9			
10				M		///2	A En		1/			XV6		A	2x4 <i>4</i>		
			24 11	WY				//	/				ý	8		28	
0.5		THW1			/			Щ/			//				w9	\sim	<
			B1	1	7 16	29	30 B2	15 우_	_31	14 13		W7				ŧ	
·	4x	6=		3	x4=			4x8=		3x4	u			1:	2		8 -
					MT20	HS 3x8 =			7	x8=				6x	8=		4x6=
	I		8-0-10	1		18-11	-8	ı 2	3-8-0	1		31-8-	0	I	39-	11-0	1
	ł		8-0-10			10-10-	-14		4-8-8	Í		8-0-0	-	ť	8-3	3-0	†
Plate Offsets (2	X, Y): [2:Edge	e,0-0-8],	[11:Edge,0-0-	12], [12	2:0-3-1,0	-1-12], [14:0-6	-4,0-4-8]										
Loading		(psf)	Spacing			2-0-0	CSI		DEF	L	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) Snow (Pf/Pa)	10.4/	20.0 15.0	Plate Grip DC	CL		1.25 1.25	TC BC	0.63 0.95	Vert Vert	(LL) (CT)	-0.52 -0.92	15-17 15-17	>923 >520	240 180	MT20 MT20HS	244/19 187/14	0 3
TCDL		10.0	Rep Stress In	ncr		YES	WB	0.92	Horz	(CT)	0.16	11	n/a	n/a		101711	
BCDL		10.0	Code		IRC2	J18/TP12014	Matrix-MSH								Weight: 233 I	b FT = 20	0%
					2)	Wind: ASCE	7-16: Vult=120mp	oh (3-seo	cond a	iust)							
TOP CHORD	2x4 SP No.2		*Eveent* P2.0		, 10.2	Vasd=95mpl	n; TCDL=4.2psf; B	CDL=6.	0psf; ř	n=25ft; C	Cat.						
WEBS	2x4 SP 1030	8 *Excep	ot* W3,W4,W5:	2x4 SF 1	0.5	and C-C Extended to 18 11 8	erior(2E) -0-10-8 to	o 3-1-6,	Interio	or (1) 3-1	-6 1)						
WEDGE	No.2 Left: 2x4 SP	No.3				22-11-6 to 3	9-11-0 zone; cantil	ever left	and r	ight	. 1)						
BRACING	Right: 2x4 S	P No.3				members an	d forces & MWFR	S for rea	ictions	shown;							
TOP CHORD	Structural w	ood she	athing directly	applied	^{d or} 3)	TCLL: ASCE	.=1.60 plate grip D . 7-16; Pr=20.0 psf	OL=1.60 f (roof LL) _: Lum	DOL=1	.25						
BOT CHORD	Rigid ceiling	directly	applied or 2-2	-0 oc		Plate DOL=1 DOL=1.15 P	l.25); Pg=15.0 psf; late DOL=1.15); Is	; Pf=10.4 ;=1.0; Ro	1 psf (l ough (Lum Cat C; Fu	ully						
WEBS	1 Row at mi	dpt	5-15, 7-15		— 4)	Exp.; Ce=0.9 Unbalanced); Cs=1.00; Ct=1.1 snow loads have b	0 Deen cor	nsidere	ed for thi	is						
	MiTek record required cro	mmends oss brac	s that Stabilizer ing be installed	rs and d durine		design. This truss ha	is been designed f	or areat	er of n	nin roof l	live						
	truss erection	on, in ac quide	cordance with	Stabili	zer	load of 12.0	psf or 2.00 times fl	lat roof le	bad of	10.4 pst	fon						
REACTIONS	(lb/size) 2=	=1249/0	-3-8. (min. 0-2-	·2).		All plates are	MT20 plates unle	ess other	wise i	ndicated	ł.						
) Max Horiz 2=	=1213/0 218 (I	0-3-8, (min. 0-2 C 17)	2-1)	7)	about its cen	iter.	inus 20 0	legree	e rotatior	1						
	Max Uplift 2=	=-378 (L	C 16), 11=-371	1 (LC 1	7) 8)	chord live loa	is been designed f ad nonconcurrent v	or a 10.0 with any	0 psf b other	live load	ls.						
FORCES	(lb) - Max. C	omp./M	ax. Ten All fo	prces 2	9) 9) 50	* This truss h on the bottor	nas been designed n chord in all areas	l for a liv s where	e load a rect	l of 20.0p angle	psf						
TOP CHORD	(lb) or less e 2-24=-3275/	xcept w 618, 3-2	hen shown. 24=-3193/631,			3-06-00 tall t	by 2-00-00 wide wi	II fit betv	veent	he bottoi 10 0psf	m						
	3-4=-3140/6	37, 4-5= 527, 25	3077/658, -26=-2117/533		10) One RT7A M	ITek connectors re		ended	to conne	ect						
	6-26=-2090/	548, 6-2	27=-2090/554,	,		This connect	tion is for uplift only	y and do	es no	t conside	er						
	8-9=-2968/6	60, 9-10)=-2729/024,)=-3045/650,		11) This truss is	s. designed in accord	dance w	ith the	2018							
BOT CHORD	10-28=-3136 2-17=-637/2	856, 16-	1-28=-3220/68 -17=-442/2336	4		International R802.10.2 a	Residential Code nd referenced stan	sections	s R502 ISI/TP	2.11.1 an 91 1.	nd						
	16-29=-442/ 15-30=-442/	2336, 29 2336, 19	9-30=-442/233 5-31=-306/238	6, 9,	LO	AD CASE(S)	Standard										
	14-31=-305/	2395, 7. 2817	-14=-177/792,														
WEBS	3-17=-310/2	61, 5-17	/=-141/732, 5=-311/1614														
	7-15=-942/3	84, 12-1	4=-428/2422,														
NOTES	8-14=-375/2	46, 10-1	2=-272/229														
 Unbalance design. 	d roof live loa	ds have	e been conside	red for	this												

Job	Truss	S	Truss Type		Qty	Ply	Capers, Ca	rlton DU-Ro	of		
Q015240-R	R5		Common		2	1	Job Referer	nce (optional)		
Load Star®, Lave	onia, GA 30553, BAC		I	Run: 8.7 S 0 Mar 22	2 2023 Print: 8	3.700 S Mar	22 2023 MiTek I	Industries, Inc.	, Mon May 22 15:4	ł5:36	Page: 1
					ID:5aO?Al	JCDoM4EoS	SjdXDoSSizDzR	F-AyKaSadwr	IswoOy?JgTzVs0、	JW?9uiCndu6jWSY	/WzDw0V
	-0-10-8	3 12-8	-13 18-1	1-8 2	25-10-6		32-9-3		39-11-0	<u> </u>	
	0-10-8	5 0-2-	11 ' 0-2-	778=	-10-14	I	6-10-14	•	7-1-13	I	
				6							
			3x4 ≠								
		61 2	201		22	3x4 ≈					
		3x6 <i>≠</i>	5 12		43	7		2x4 🕢			
7		4x4 =		we	/		3xi	6 *			
-11		3						3			
~	19	TT TT		.	\$ 1017	W	8	79			
	4x4 II 2	14/2 W3					\mathbb{N}	vy9 r	23		
1-5-15	1										
	15		[₫] <u>B1</u> 14 24 25	13 12	26	2	······································	-B2	HM	<u>/2</u>]-0-110	-5-15
	M18AHS 5x10 =		3x4=	4x8=	20	-	3x4=			4x6=	
		40.4.40	10.11.0	MT20HS 3x	(8 =						
	ł	10-1-10	8-9-14	ł	<u> </u>)-7	1	<u>39</u> - 10	-1-1	ł	
	<u> </u>		<u>EL 0.0.401</u>								
	X, Y): [2:0-2-0,0-1-1	12], [3:0-2-0,0-1-8], [10	:Edge,0-0-12j	· · · · ·							
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25	CSI TC	0.66 Ver	FL t(LL) -	in (loc) 0.46 11-13	l/defl L/c >999 240	MT20	GRIP 244/190	
Snow (Pf/Pg)	10.4/15.0	Lumber DOL Pop Stross Iper	1.25	BC	0.92 Ver	t(CT) -	0.80 11-13	>598 180	MT20HS	187/143	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH	0.70 110	2(01)	0.12 10	11/a 11/a		100/179	
BCDL	10.0		-						Weight: 223	lb FT = 20%	
LUMBER	2x4 SP No 2		2) Wind: ASCE Vasd=95mp	7-16; Vult=120mph h; TCDL=4.2psf; BC	(3-second DL=6.0psf;	gust) h=25ft; Ca	at.				
BOT CHORD	2x4 SP 1650F 1.7		II; Exp C; En	closed; MWFRS (er	nvelope) ex 3-1-6 Inter	terior zone	e 6				
WEDS	No.2	ept vv5,vv6,vv7.2x4 5	to 18-11-8, E	Exterior(2R) 18-11-8	to 22-11-6	Interior (1)				
WEDGE BRACING	Right: 2x4 SP No.	3	exposed ; er	nd vertical left and rig	ght exposed	d;C-C for					
TOP CHORD	Structural wood sh 2-10-3 oc purlins	heathing directly applie except end verticals	d or Lumber DOL	=1.60 plate grip DO	DL=1.60	is snown;					
BOT CHORD	Rigid ceiling direct	tly applied or 10-0-0 or	3) TCLL: ASCE Plate DOL=1	E 7-16; Pr=20.0 psf (1.25); Pg=15.0 psf; F	(roof LL: Lui Pf=10.4 psf	m DOL=1.2 (Lum	25				
	2-2-0 oc bracing:	11-13.	DOL=1.15 P Exp.; Ce=0.9	late DOL=1.15); ls= 9; Cs=1.00; Ct=1.10	1.0; Rough	Cat C; Ful	lly				
VVEDO	MiTek recommen	ds that Stabilizers and	4) Unbalanced design.	snow loads have be	een conside	red for this	3				
	required cross brack truss erection, in	acing be installed durir accordance with Stabi	19 5) This truss ha	as been designed for psf or 2.00 times fla	r greater of t roof load o	min roof liv	ve on				
	Installation guide.		overhangs n	on-concurrent with on-concurrent	other live lo	ads.					
REACTIONS	(lb/size) 10=120 15=125	8/ Mechanical, (min. 0· 1/0-3-8, (min. 0-2-2)	1-8), 7) Plates check	ked for a plus or min	us 20 degre	e rotation					
	Max Horiz 15=-194 Max Uplift 10=-365	4 (LC 21) 5 (LC 17) 15=-376 (LC	8) This truss ha	as been designed for	ra 10.0 psf	bottom	_				
	Max Grav 10=175	7 (LC 3), 15=1810 (LC	3) 9) * This truss l	ad nonconcurrent wi has been designed f	in any othe	r live loads	s. sf				
FURCES	(Ib) - Max. Comp./ (Ib) or less except	when shown.	250 on the botton 3-06-00 tall l	m chord in all areas by 2-00-00 wide will	where a reo fit between	ctangle the bottom	n				
TOP CHORD	2-19=-373/139, 3- 3-4=-2484/522, 4-	19=-300/152, 5=-2416/543,	chord and a 10) Refer to aird	ny other members, v er(s) for truss to trus	with BCDL = ss connection	= 10.0psf. ons.					
	5-20=-1980/508, 2 6-21=-1905/529, 6	20-21=-1930/514, 5-22=-1905/527.	11) Provide med	hanical connection ((by others)	of truss to	oint				
	7-22=-1991/512, 7	7-8=-2920/634, 23=-3130/672	10.	ATok connectors			ot				
	10-23=-3214/660,	2-15=-364/213 14-24=-382/2051	truss to bear	ing walls due to UP	LIFT at jt(s)	15. This	vol				
	24-25=-382/2051,	13-25=-382/2051,	forces.	s for uplift only and c	uues not co	Insider latel	ıdl				
	12-13=-324/2253, 26-27=-324/2253,	12-20=-324/2253, 11-27=-324/2253,	13) This truss is International	designed in accorda Residential Code s	ance with th ections R50	ie 2018)2.11.1 and	d				
WEBS	10-11=-510/2804 5-14=-46/372, 5-1	3=-579/323,	R802.10.2 a	nd referenced stand Standard	lard ANSI/T	PI 1.					
	6-13=-258/1406, 7 7-11=-114/754, 9-	′-13=-803/400, 11=-372/295,									
NOTES	3-15=-2271/432	,									
1) Unbelance	d roof live loads be	vo boon considered fo	r thic								

1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R6	Common	5	1	Job Reference (optional)

Plate Offsets (X, Y): [3:0-1-8,0-1-12], [10:0-2-8,0-2-5], [17:Edge,0-2-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 10.4/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.93 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.50 0.07	(loc) 12-20 12-20 10	l/defl >999 >914 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 264 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt MiTek recommenda required cross brac truss erection, in ad Installation quide.	ot* B2:2x8 SP No.2 ot* W5:2x4 SP No.2 eathing directly applied or ccept end verticals. <i>y</i> applied or 2-2-0 oc <u>3-17</u> s that Stabilizers and cing be installed during ccordance with Stabilizer	 2) Wind: ASCE Vasd=95mp II; Exp C; Er and C-C Ext to 19-11-8, E 23-9-0 to 40 end vertical forces & MW DOL=1.60 p 3) TCLL: ASCE Plate DOL= DOL=1.15 P Exp.; Ce=0.9 4) Unbalanced design 	7-16; Vult=120mp h; TCDL=4.2ps; B closed; MWFRS (e erior(2E) 1-1-8 to 4 Exterior(2R) 19-11- -9-8 zone; cantileve left and right expose /FRS for reactions late grip DOL=1.60 57-16; Pr=20.0 psf; late DOL=1.15); Is 2; Cs=1.00; Ct=1.1 snow loads have b	ch (3-sec CDL=6. envelope I-11-0, I 8 to 23- er left ar sed;C-C shown; f (roof LL Pf=10.4 =1.0; Rc 0 been co	ond gust) Dpsf; h=25ft; exterior z hterior (1) 4- 3-0, Interior dright expo for member Lumber :: Lum DOL: psf (Lum hugh Cat C; hsidered for	; Cat. one -11-0 (1) osed ; s and =1.25 Fully this					
REACTIONS	(lb/size) 10=1184/ 17=1190/ Max Horiz 17=-201 (Max Uplift 10=-374 (Max Grav 10=1699	0-3-8, (min. 0-2-0), 0-3-8, (min. 0-2-0) (LC 21) (LC 17), 17=-358 (LC 16) (LC 3), 17=1712 (LC 3)	5) This truss ha load of 12.0 overhangs n 6) Plates check about its cer 7) This truss ha	as been designed fr psf or 2.00 times fl on-concurrent with ted for a plus or mi iter.	or great at roof le other li nus 20 c	er of min roc bad of 10.4 ve loads. legree rotation onst bottom	of live psf on ion					
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250	chord live lo	ad nonconcurrent v	with any	other live lo	ads.					
TOP CHORD	(iii) or less except W 2-21=-296/72, 3-4=- 4-5=-2280/490, 5-22 22-23=-2303/616, 6 6-24=-2508/687, 24 7-25=-2587/665, 7-26 8-9=-2585/503, 9-26 10-26=-2944/657 2	nen snown. -2354/477, 2=-2365/608, -23=-2285/631, -25=-2525/673, 3=-2508/526, 5=-2905/678, -17=-273/151	 8) ^ 1 his truss 1 on the bottoo 3-06-00 tall 1 chord and at 9) One RT7A N truss to bear This connec lateral forces 	has been designed in chord in all areas by 2-00-00 wide wi ny other members, fiTek connectors re ing walls due to Uf tion is for uplift only	I for a liv s where Il fit betv with BC ecomme PLIFT at y and do	e load of 20 a rectangle veen the bot DL = 10.0ps nded to con jt(s) 17 and es not cons	upst ttom sf. nect I 10. ider					
BOT CHORD	16-17=-526/1905, 1 15-27=-178/1536, 1 14-28=-179/1521, 1	5-16=-177/1543, 4-27=-177/1544, 3-28=-181/1513,	10) This truss is International R802.10.2 a	, designed in accord Residential Code nd referenced stan	dance w sections idard AN	ith the 2018 R502.11.1 ISI/TPI 1.	and					
WEBS	12-13=-177/1543, 1 3-17=-2100/488, 5- 6-16=-331/957, 3-16 7-12=-427/342, 9-12	∪-12=-498/2599 16=-440/344, δ=0/259, 6-12=-394/1292 2=-455/325	LOAD CASE(S)	Standard								
NOTES 1) Unbalance design	ed roof live loads have	e been considered for this	s									

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36
 Page: 1

 ID:oETMi56qSDBDSNhHdFApgDzDzRM-AyKaSadwnswoOy?JgTzVs0JVS9uYCjsu6jWSYWzDw0V

⁻⁰⁻¹⁰⁻⁸ <u>11-4-10</u> 6-7-0 24-6-6 6-6-14 4-9-11 17-11-8 37-11-0 31-1-3 4-9-11 6-6-14 6-6-14 6-9-13 0-10-85x5= 6 22²³ 225 6¹² 2x4 II 2x4 II 5 7 3x6≠ 2x4≉ 10-8-15 10-5-11 4 3x6**≈** 4x4 ≠ 8 3 9 21 3x4 II 26 2 10 1-5-15 <u>B2</u> --17 **B**3 K 14 Ø 1527 2813 16 12 4x5= 4x5= 4x8= 5x5= 4x8= 4x5∎ 5x8= 4x5∎ 5x5= 21-11-8 | <u>24-6-6 |</u> | 2-0-8 | 2-6-14 | 13-11-8 2-6-14 11-4-10 19-11-0 37-11-0 11-4-10 5-11-8 13-4-10

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R6G	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:GQ1kvR7SDWJ44XGTAzh2DRzDzRL-AyKaSadwnswoOy?JgTzVs0Jdj93pCwTu6jWSYWzDw0V

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 10.4/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code IF	RC20	2-0-0 1.25 1.25 YES 18/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.21 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 269 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2: BOT CHORD 2: WEBS 2: OTHERS 2: BRACING TOP CHORD S BOT CHORD F WEBS 1	x4 SP No.2 x4 SP No.2 x4 SP No.3 x4 SP No.3 *Excep Structural wood she 0-0-0 oc purlins, e Rigid ceiling directly rracing. Row at midpt MiTek recommends required cross brac	t* ST9,ST8:2x4 SP No.2 athing directly applied or xcept end verticals. applied or 6-0-0 oc 11-32, 10-33, 9-34, 12-31 13-30 s that Stabilizers and ing be installed during	2) 3) , 4)	Wind: ASCE Vasd=95mpl II; Exp C; En and C-C Cor 2-11-0 to 17- Exterior(2N) right expose for members Lumber DOL Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1	7-16; Vult=120mp n; TCDL=4.2psf; B closed; MWFRS (e ner(3E) -0-10-8 to 11-8, Corner(3R) 21-11-8 to 38-9-8 d; end vertical left and forces & MW =1.60 plate grip D ned for wind loads ids exposed to wind lindustry Gable E alified building des 7-16; Pr=20.0 psf; .25); Pg=15.0 psf;	h (3-sec CDL=6.0 envelope 2-11-0, 17-11-8 zone; cc and righ FRS for OL=1.60 in the p id (norm nd Deta signer a: (roof LL Pf=10.4	cond gust) opsf; h=25ft; exterior zo Exterior(2N) to 21-11-8, intilever left a tt exposed;C reactions shu ane of the tru al to the face ils as applica s per ANSI/T : Lum DOL= psf (Lum	Cat. ne -C own; e), bble, PI 1. 1.25					
FORCES (II TOP CHORD 7 WEBS 1 NOTES 1) Unbalanced I design.	truss erection, in ac Installation guide. bearings 37-11-0. ax Horiz 41=-201 (ax Uplift All uplift 1 25, 26, 27 35, 36, 37 23=-105 (40=-188 (ax Grav All reaction (s) 24, 25, 33, 34, 35 except 23 (LC 33) b) - Max. Comp./M: b) or less except w 8=-70/264, 8=46=- -10=-108/376, 10-1 1-12=-127/423, 12- 3-14=-89/317, 14-1 1-32=-281/53 roof live loads have	LC 21) 00 (lb) or less at joint(s) , 28, 29, 30, 31, 33, 34, , 28, 29, 30, 31, 33, 34, LC 16), 24=-121 (LC 17), LC 16) ns 250 (lb) or less at joint 26, 27, 28, 29, 30, 31, , 36, 37, 38, 39, 40, 41 =361 (LC 37), 32=266 ax. Ten All forces 250 hen shown. 89/314, 9-46=-78/318, 1=-127/424, 13=-108/375, 5=-70/262	5) 6) 7) 8) 9) 10) 11) 12) 13) 14)	DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate (s) 41, 33, 32 25 except (jt This truss is International R802.10.2 au	(12), hg-ho, hg, hg, hg, hg, hg, hg, hg, hg, hg, hg	e=1.0; Re open cor or great at roof k other lin other li	ugh Cat C; F asidered for t er of min rooi bad of 10.4 p ve loads. se indicated. legree rotatio d bearing.) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 00 lb uplift a), 29, 28, 27, 05. th the 2018 R502.11.1 a ISI/TPI 1.	Fully his f live sf on on ads. Opsf om t joint _26, and					

Job	Truss	\$	Truss Type		Qty	Ply	Capers, Carl	lton DU-F	Roof		
Q015240-R	R7G	ì	Common Supporte	d Gable	1	1	Job Referen	ce (option	al)		
Load Star®, Lavo	onia, GA 30553, BAC		•	Run: 8.7 S 0 Mar 22 2	2023 Print:	8.700 S Mar	22 2023 MiTek Ir	ndustries, In	ic. Mon May 22	15:45:36	Page: 1
		0.40.0			ID:kd	b67n84_qRx	kihrfkgCHlezDzRk	K-AyKaSadv	wnswoOy?JgTz\	Vs0JfS9	5gCxOu6jWSYWzDw0V
		-0-10-8		7-5-8		ļ		14-11-0			15-9-8
				7-5-8		1		7-5-8			
		0-10-8									0-10-0
						4x4 =					
<u> </u>						6					
				12 6			7				
				đ			Th.				
15	<u> </u>			4 11		ST4		T1 8			
4-5-	4-2		25	ST3			ST3	Th-	26	9	
		2	ond	ST2				ST2			10
							B1				11
											\mathbf{X}
			18	17 16		15	14	13	12		
			3x4 =								3x4 =
			/		1	4-11-0					-
			-								
Loading	(psf) 20.0	Spacing	2-0-0 1 25	CSI TC		FL vrt(LL)	in (loc)	l/defl L	/d PLATES		GRIP 244/190
Snow (Pf/Pg)	10.4/15.0	Lumber DOL	1.25	BC	0.09 Ve	ert(CT)	n/a -	n/a 99	99		211/100
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH	0.07	012(01)	0.00 13	n/a n	i/a		
BCDL	10.0								Weight: 7	71 lb	FT = 20%
LUMBER	2x4 SP No 2		6) This truss ha load of 12.0	as been designed for psf or 2.00 times flat	greater of roof load	f min roof li of 10.4 psf	ve on				
BOT CHORD	2x4 SP No.2		overhangs n 7) All plates are	on-concurrent with ot	ther live lo	ads. indicated.					
BRACING	2.4 01 10.0		8) Plates check about its cer	ked for a plus or minu	s 20 degr	ee rotation					
TOP CHORD	Structural wood sh 10-0-0 oc purlins.	neathing directly applie	ed or 9) Gable requir	es continuous bottom	n chord be	earing.					
BOT CHORD	Rigid ceiling direct bracing.	tly applied or 6-0-0 oc	11) This truss ha	as been designed for	a 10.0 ps	f bottom	6				
	MiTek recommen	ds that Stabilizers and	12) * This truss l	has been designed fo	r a live lo	ad of 20.0p	s. osf				
	truss erection, in	accordance with Stabi	lizer 3-06-00 tall l	by 2-00-00 wide will fi	it betweer	n the bottor	n				
REACTIONS	All bearings 14-11-	<u>.</u> ז	cnord and al 13) Provide med	hy other members. Thanical connection (b	oy others)	of truss to					
(lb) - I	Max Horiz 2=-80 (L	C 17), 19=-80 (LC 17)) bearing plate (s) 2, 16, 17	e capable of withstand , 18, 14, 13, 12, 2.	ding 100 l	b uplift at jo	oint				
	2, 12, 13	3, 14, 16, 17, 18, 19	(⁽³⁾ 14) This truss is International	designed in accordar Residential Code se	nce with t ctions R5	he 2018 02.11.1 an	d				
	(s) 2, 12	2, 13, 14, 15, 16, 17, 18	8, 19 B, 19 LOAD CASE(S)	nd referenced standa Standard	ard ANSI/	TPI 1.					
FORCES	(lb) - Max. Comp./ (lb) or less except	Max. Ten All forces 2 when shown.	250								
NOTES 1) Unbalance	d roof live loads ha	ve been considered fo	r this								
design. 2) Wind: ASC	E 7-16; Vult=120m	ph (3-second gust)									
Vasd=95m	ph; TCDL=4.2psf; E	3CDL=6.0psf; h=25ft; (Cat.								
and C-C Co	orner(3E) -0-10-8 to orner(3B) 7-5-8 to 1	2-1-8, Exterior(2N) 2- 10-5-8, Exterior(2N) 10	-1-8)-5-8								
to 15-9-8 z	one; cantilever left	and right exposed ; en	d								
forces & M	WFRS for reactions	s shown; Lumber									
3) Truss desi	igned for wind loads	s in the plane of the tru	ISS								
oniy. ⊢or s see Standa	ard Industry Gable E	nd (normal to the face) End Details as applical), ble,								
4) TCLL: ASC	qualified building de E 7-16; Pr=20.0 ps	esigner as per ANSI/TF sf (roof LL: Lum DOL=1	ฯ 1. 1.25								
Plate DOL= DOL=1.15	=1.25); Pg=15.0 pst Plate DOL=1.15); I	f; Pf=10.4 psf (Lum s=1.0; Rough Cat C; F	ully								
Exp.; Ce=0 5) Unbalance).9; Cs=1.00; Ct=1. d snow loads have	10 been considered for th	nis								

design.

staggered at 0-9-0 oc.

- Web connected as follows: 2x4 1 row at 0-9-0 oc, Except member 2-8 2x4 - 1 row at 0-3-0 oc.
- 13) Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 12-0-12 to connect truss(es) R1 (1 ply 2x4 SP) to front face of bottom chord.

Job	Truss Truss Type						Qty	1	٦ly	Cape	ers, Ca	rlton Dl	J-Root	f	
Q015240-R	F	88		Comm	on		1		1	loh F	Referen	nce (ont	ional)		
Load Star®, Lavo	onia, GA 30553, B/	AC				Run: 8.7 S 0 Mar 22	2023 P	rint: 8.70	00 S Mar 2	22 2023	MiTek	Industries	s, Inc. N	1on May 22 15:45:3	B6 Page: 1
							10	D:kdb67i	n84_qRxih	nrfkgCH	lezDzRI	K-e8uygv	veZYA2	f06ZVDBUkPErmF	IZMsxO92LNF04zzDw0U
					1	5-11-8		1		11-1	1-0		1	2-9-8	
					1	5-11-8		1		5-1	1-8				
													U	-10-8	
								4x4 =							
		<u> </u>				12		3 4							
						814	//	H							
					3)	4•			\searrow						
		4	10			16 11	١	/ V1		12	17	3x4 👟			
		+-10-	4-7.		2										
					HWY	5					<	HWI		-	
			0-7-15	<u> </u>								\sim	\geq	5	
				<u> </u>) A			7	B1					\searrow	
								, 1.5x3 u							
					3x5 II								3x	5 11	
					ļ	5-11-8		<u> </u>		11-1	1-0				
		0.01				5-11-8				5-1	1-8				
	K, Y): [5:Edge,0	-0-0]		_											
Loading	(p: 20	sf)) ()	Spacing Plate Grip DOI		2-0-0 1 25	CSI TC	0.37	DEFL Vert(I		in 0.05	(loc) 7-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	10.4/15	5.0	Lumber DOL		1.25	BC	0.35	Vert(C	CT) -(0.07	7-10	>999	180		
BCLL	C).0).0*	Code	IRC2	018/TPI2014	Matrix-MSH	0.10	Horz(CI) (J.02	1	n/a	n/a		
BCDL	10	0.0		_										Weight: 55 lb	FT = 20%
				4)	This truss ha	as been designed for	r greate	er of mi	n roof liv	/e					
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2				overhangs n	on-concurrent with c	other liv	/e load	s.	on					
WEBS SLIDER	2x4 SP No.3 Left 2x4 SP No	o.3 2	2-6-0. Right 2x4 SP I	5) No.3	Plates check about its cer	ted for a plus or mini Iter.	us 20 c	legree	rotation						
	2-6-0			6)	This truss ha	as been designed for ad nonconcurrent wi	r a 10.0 ith anv) psf bo other li	ottom ve loads						
TOP CHORD	Structural woo	d she	athing directly applie	d or 7)	* This truss	nas been designed f	or a liv	e load o a recta	of 20.0ps	sf					
BOT CHORD	6-0-0 oc purlin Rigid ceiling di	is. irectly	applied or 10-0-0 oc	;	3-06-00 tall	by 2-00-00 wide will	fit betw	veen th	e bottom	n					
	bracing.	, 	that Stabilizara and	— ⁸⁾	One RT7A N	liTek connectors rec	comme	nded to	connec	t.					
	required cross	s brac	ing be installed durin	g	truss to bear connection i	ing walls due to UPI s for uplift only and c	LI⊢ I at does no	t jt(s) 1 ot consi	and 5. I ider later	his al					
	truss erection Installation gu	, in ac iide.	cordance with Stabil	izer 9)	forces. This truss is	designed in accorda	ance wi	ith the 2	2018						
REACTIONS	(lb/size) 1=36	61/0-3	-8, (min. 0-1-8),	/	International R802 10 2 a	Residential Code send	ections	R502.	11.1 and 1.	l					
1	5=39 Max Horiz 1=-1	99/0-3 24 (L	8-8, (min. 0-1-8) C 10)	LC	DAD CASE(S)	Standard									
1	Max Uplift 1=-9 Max Gray 1=47	9 (LC	14), 5=-126 (LC 15)												
FORCES	(lb) - Max. Con	np./Ma	ax. Ten All forces 2	250											
TOP CHORD	(ID) of less exc 1-2=-325/0, 2-1	ept w 16=-4	nen snown. 65/191, 3-16=-455/2	05,											
BOT CHORD	3-17=-455/204 1-7=-241/387,	, 4-17 5-7=-4	′=-466/190, 4-5=-312 43/387	2/0											
WEBS	3-7=-1/264														
1) Unbalance	d roof live loads	have	been considered for	this											
2) Wind: ASC	E 7-16; Vult=12	20mph	(3-second gust)												
Vasd=95m II; Exp C; E	ph; TCDL=4.2p Enclosed; MWFF	sf; BC RS (er	DL=6.0psf; h=25ft; (nvelope) exterior zor	Cat. Ie											
and C-C E	xterior(2E) 0-0-0) to 3- 8 to 8-	0-0, Interior (1) 3-0-0) to 1-8											
to 12-9-8 z	one; cantilever l	left an	d right exposed ; en	d											
forces & M	WFRS for react	ions s	hown; Lumber												
3) TCLL: ASC	piate grip DOL= CE 7-16; Pr=20.0	=1.60 0 psf ((roof LL: Lum DOL=1	.25											
Plate DOL: DOL=1.15	=1.25); Pg=15.0 Plate DOL=1.1) psf;	Pf=10.4 psf (Lum 1.0; Rough Cat C: F	ully											
Exp.; Ce=0).9; Cs=1.00; Ct	=1.10													

Job Truss Truss Type						Qty	Ply		Capers, Ca	rlton Dl	U-Roo	f		
Q015240-R		R8G		Comm	on Supporte	d Gable	1	1		Job Referer	nce (opt	ional)		
Load Star®, Lavo	onia, GA 30553,	BAC				Run: 8.7 S 0 Mar 22 2	023 Prin	t: 8.700 S M	lar 22	2023 MiTek	Industries	s, Inc. N	Non May 22 15:45:3	6 Page: 1
							ID:I	kdb67n84_q	Rxihr	fkgCHlezDzR	K-e8uyg	weZYA	12 0 9	ZQDxOJ2LNF04zzDw0U
				ļ	,	5-11-8		ļ		11-11-0			12-9-0	
				1		5-11-8	,	1		5-11-8			1 1 0-10-8	
													0-10-0	
						12	4	4x4 =						
	_	<u>} </u>	<u> </u>			8		4 12						
						1.5x3 I	\square	$\left \right\rangle$	1.	5x3 II				
					1.	5x3 II 3				5				
		<u>+</u>	6			20 11	ST	3		12	1.5x3 I			
		5			2	ST2			ST	2	6			
					ST	1					ST1	$\overline{\}$		
				- 1			(-		7		$\overline{}$		
			0-7-15	- 6				- B1 ★★★★★★				×××>	× ×	
		、—		[××××××××××××××××××××××××××××××××××××××	××××××××××××××××××××××××××××××××××××××	1	<u>×××××××</u> 1	<u>×××</u> 1	. <u>xxxxxxx</u> 0	<u>(XXXX)</u> 9	<u> </u>		
					3x4 = 2	x4 II 2x4 II	2	2x4 u	2	x4 u	2x4 II		3x4 =	
					,		11-	11-0						
				1										
Loading		(psf)	Spacing	-	2-0-0	CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pa)	10.4	20.0	Plate Grip DOL		1.25 1.25	TC (0.10	/ert(LL) /ert(CT)	n	n/a -	n/a n/a	999 999	MT20	244/190
TCDL	10.4/	10.0	Rep Stress Incr		YES	WB (0.09 H	lorz(CT)	0.0	00 9	n/a	n/a		
BCLL BCDL		0.0* 10.0	Code	IRC2	018/TPI2014	Matrix-MSH							Weight: 68 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS / (lb) - 1	SCDL 10.0 Weight: 68 lb FT = 20% UMBER OP CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads. 6) Plates checked for a plus or minus 20 degree rotation about its center. STC CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins. 7) Gable erduires continuous bottom chord bearing. SOT CHORD Mirak recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. 5) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3:06-00 tall by 2:00-00 wide will fit between the bottom chord and any other members. 11 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s), 1, 2, 1, 14 except 9:=-106 (LC 15), 13=119 (LC 14) Max Grav All reactions 220 (b) or less at joint(s) 1, 40, 12, 44 except 9:=-106 (CC 15), 13=119 (LC 14) 10) This truss is designed in accordance with the 2018 Intermational Residential Code sections R502.11.1.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard													
FORCES	(lb) - Max. C (lb) or less e	omp./Ma xcept wi	ax. Ten All forces 2 hen shown.	50										
NOTES 1) Unbalance design. 2) Wind: ASC Vasd=95m II; Exp C; E and C-C C 5-11-8, Co to 12-9-8 z vertical left forces & M DOL=1.60 3) Truss desi only. Fors see Standa or consult (4) TCLL: ASC Plate DOL= DOL=1.15 Fxn - Ce=	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3R) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 5-11-8, Corner(3R) 5-11-8, to 8-11-8, Exterior(2N) 8-11-8 to 12-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf, Pf=10.4 psf (Lum DOL=1.25); Pg=15.0 psf, Pf=10.4 psf (Lum DOL=1.25); Cat. 1.0 													

Job Truss T						Гуре		Qty		Ply	Cape	ers, Ca	rlton Dl	J-Root	f	
Q)15240-R		R8X		Comm	non Girder		1		2	Job F	Referer	nce (opt	ional)		
Loa	d Star®, Lavo	onia, GA 30553,	BAC				Run: 8.7 S 0 Mar 22	2 2023 Pri	int: 8.7	700 S Mar 2	22 2023	MiTek I	ndustries	s, Inc. N	lon May 22 15:45:3	6 Page: 1
						1		ID:2	ZmyNl	NqDrZgC40	Qclp5xJ	h?vzDz	RE-e8uy	gweZY/	A2f06ZVDBUkPEri4	ZHAxFa2LNF04zzDw0U
						<u> </u>	<u> </u>				<u>11-1</u> 5-1	1-0 1-8			·	
						I		4	x5 II					I		
								2	2							
							10									
							84	\square	1	$\langle \rangle$						
							71	W.	1		TI					
				7-10							\sim	\searrow				
				4								\sim	\searrow			
					1				4					$\overline{\}$	3	
				0-7-15	_	HW1				B1			HW1			
					_		11 12	4	ļ	1	3		14			
						7.0		M184	AHS 5	ix10 u						
						/x8=								7x8	=	
						HU	S26 HUS26	HU	IS26	HU	S26	HL	JS26			
						1		1								
						<u> </u>	<u>5-11-8</u> 5-11-8		,		<u>11-1</u> 5-1	1-0 1-8			·	
Plat	te Offsets ()	X. Y): [1:Edae	2.0-2-13	1. [3:Edge.0-2-13]			0.1.0				• •					
			(nof)	Specing		2.0.0	COL		DEE			(100)	l/dofl	1 / d		CDID
TCI	LL (roof)		(psi) 20.0	Plate Grip DOL		1.25	TC	0.64	Vert(LL) -(0.08	(IOC) 4-10	>999	240	MT20	244/190
Sno TCI	ow (Pf/Pg) DL	10.4/	'15.0 10.0	Lumber DOL Rep Stress Incr		1.25 NO	BC WB	0.65 0.65	Vert(Horz	CT) -((CT) (0.14 0.01	4-10 1	>999 n/a	180 n/a	M18AHS	186/179
BC	LL		0.0*	Code	IRC	2018/TPI2014	Matrix-MSH			(-)					Waiabt 112 lb	FT - 20%
	DL	1	10.0		-										weight. The b	FT = 20%
	MBER P CHORD	2x4 SP No 2	,		5) TCLL: ASCE Plate DOL=	E 7-16; Pr=20.0 psf 1.25); Pg=15.0 psf;	(roof LL: Pf=10.4	Lum psf (L	DOL=1.2 _um	25					
BO	T CHORD	2x6 SP 2400)F 2.0E			DOL=1.15 F	Plate DOL=1.15); Is=	=1.0; Rou	ugh C	Cat C; Full	ly					
WE	DGE	Left: 2x4 SP No.2	No.3		6) All plates ar	e MT20 plates unles	ss otherw	vise i	ndicated.						
BR		Right: 2x4 S	P No.3		1	about its cer	nter.	1US 20 GE	egree	rotation						
TO	P CHORD	Structural w	ood she	athing directly applie	d or 8) This truss ha chord live lo	as been designed fo ad nonconcurrent w	or a 10.0 vith any c	pst b other	ottom live loads	i.					
BO	T CHORD	Rigid ceiling	directly	applied or 10-0-0 o	9) * This truss on the botto	has been designed m chord in all areas	for a live where a	load recta	of 20.0ps angle	sf					
PE		bracing.	-3302/0	-3-8 (min 0-1-15)		3-06-00 tall	by 2-00-00 wide will	fit betwe	een tl	ne bottom	ı					
	Actions	(10/3120) 1- 3=	=3382/0	-3-8, (min. 0-2-0)	1	0) Two RT7A N	AiTek connectors re			to connec	ct Ibio					
		Max Horiz 1=	=113 (L =-1043 (LC 10), 3=-1066 (LC	11)	connection i	s for uplift only and	does not	t cons	sider later	ral					
FOI	RCES	Max Grav 1=	=4651 (L omp /M	-C 3), 3=4786 (LC 3) ax Ten - All forces	250 1	forces. 1) This truss is	designed in accord	ance wit	h the	2018						
тоі		(lb) or less e	xcept w	hen shown.		Internationa R802.10.2 a	Residential Code s	sections l	R502 SI/TP	.11.1 and I 1.	ł					
BO	T CHORD	1-11=-991/4	204, 2-3 554, 11	-12=-991/4554,	1	2) Use MiTek I	HUS26 (With 14-160	d nails in naced at	to Gi	rder & 6-1	16d					
		4-12=-991/4 13-14=-991/	554, 4-1 4554, 3	3=-991/4554, -14=-991/4554		starting at 2-	-0.12 from the left e	nd to 10	-0-12	to conne	ct					
WE	BS TES	2-4=-1219/5	739			face of botto	m chord.	(1 piy 2x	(4 5 P) to back						
 2-ply truss to be connected together with 10d (0.131"x3" 					'x3") 1	 13) Fill all nail holes where hanger is in contact with lumber. 14) Double installations of RT7A require the two hurricane 										
That is as follows. Top chords connected as follows: 2x4 - 1 row at 0-9-0					0	ties to be installed on opposite sides of top plate to avoid nail interference in single ply truss.										
	oc. Bottom cho	ords connecte	d as fol	lows: 2x6 - 2 rows	L	OAD CASE(S)	Standard									
	staggered Web conne	at 0-6-0 oc. ected as follov	vs: 2x4	- 1 row at 0-5-0 oc.	1,	Increase=1	.15	ber incre	ease=	-1.15, Pla	ite					
2)	All loads a	re considered	equally	applied to all plies,		Uniform Lo Vert: 1-2	ads (lb/ft) =-41, 2-3=-41, 5-8=	-20								
	CASE(S) s	section. Ply to	ply con	nections have been	AD	Concentrat	ed Loads (lb)	- 1103	12-	1103						
	unless othe	erwise indicat	iy ioads ed.	noted as (F) or (B),		14=-118	8 8	1193,	13	1130,						
3)	Unbalance design.	ed roof live loa	ds have	e been considered fo	this											
4)	Wind: ASC Vasd=95m	CE 7-16; Vult= ph; TCDL=4 :	120mph 2psf: BC	n (3-second gust) CDL=6.0psf: h=25ft [.] (Cat.											
	II; Exp C; E	Enclosed; MW	/FRS (e	nvelope) exterior zor	ie;											
	right expos	sed; Lumber [)OL=1.6	60 plate grip DOL=1.	50											

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R9	Monopitch	3	1	Job Reference (optional)

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:kdb67n84_qRxihrfkgCHIezDzRK-e8uygweZYA2f06ZVDBUkPErp6ZPfxPj2LNF04zzDw0U

-0-10-8 0-10-8 4-0-0

One RT7A

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 10.4/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 n/a	(loc) 4-7 4-7 -	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. MiTek recommender required cross brack truss erection, in ac Installation guide.	eathing directly applied of cept end verticals. applied or 10-0-0 oc s that Stabilizers and ing be installed during coordance with Stabilize	 7) * This truss I on the bottor 3-06-00 tall chord and at 8) Bearing at jc using ANSI/ designer sho 9) Provide mec bearing plate 10) One RT7A M truss to bear connection is forces. 11) This truss is 	has been designed in chord in all area by 2-00-00 wide w by other members int(s) 4 considers IFI 1 angle to grai build verify capacity hanical connection at joint(s) 4. ITEk connectors r ing walls due to U s for uplift only and designed in accor	d for a liv s where ill fit betv parallel f n formuli y of beari n (by oth PLIFT at d does no dance w	e load of 20. a rectangle ween the both to grain value a. Building ing surface. ers) of truss ended to con jt(s) 2 and 4 of consider la ith the 2018	.0psf tom e to nect 4. This ateral					
REACTIONS	(lb/size) 2=157/0-3 4=113/0-1 Max Horiz 2=70 (LC Max Uplift 2=-92 (LC Max Grav 2=213 (LC	3-8, (min. 0-1-8), I-8, (min. 0-1-8) 15) 212), 4=-48 (LC 16) 223), 4=149 (LC 23)	International R802.10.2 a LOAD CASE(S)	Residential Code nd referenced star Standard	sections ndard AN	s R502.11.1 ; ISI/TPI 1.	and					
FORCES NOTES 1) Wind: ASC Vasd=95n II; Exp C; and C-C E to 3-10-4 z vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss load of 12 overhangs 5) Plates che about its co	(lb) - Max. Comp./M (lb) or less except w DE 7-16; Vult=120mph TCDL=4.2psf; BC Enclosed; MWFRS (e ixterior(2E) -0-10-8 to zone; cantilever left ar t and right exposed;C WFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf; Plate DOL=1.50; psf; Plate DOL=1.15); ls= Plate DOL=1.15); ls= 0.9; Cs=1.00; Ct=1.10; ed snow loads have be has been designed fo 0 psf or 2.00 times flat is non-concurrent with ecked for a plus or mir enter.	ax. Ten All forces 250 hen shown. (3-second gust) CDL=6.0psf; h=25f; Cat nvelope) exterior zone 2-1-8, Interior (1) 2-1-8 dright exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.29 Pf=10.4 psf (Lum -1.0; Rough Cat C; Fully) een considered for this or greater of min roof live th roof load of 10.4 psf of other live loads. Bus 20 degree rotation) 5 7									

Job	Truss		Truss Type		Qty	Ply	Caper	s, Car	Iton D	J-Roo	f	
Q015240-R	R9G		Monopitch Suppor	ted Gable	1	1	Job Re	eferen	ce (opt	ional)		
Load Star®, Lavo	onia, GA 30553, BAC			Run: 8.7 S 0 Mar 2	2 2023 Pri	nt: 8.700 S Ma	r 22 2023 N	MiTek lı	ndustries	s, Inc. N	/lon May 22 15:45:3	B6 Page: 1
					10	D:Cp9UK79jl82	ZoJrQsINjW	/IszDzF	RJ-e8uyg	gweZY/	A2f06ZVDBUkPErel	KZQSxPj2LNF04zzDw0U
			-0-10-8	129	1		11 (0 0				
			0-10-8	4-3-8			6-8	0-0 3-8				
			1 1		I						ļ	
											4	
_												
								_				
				12	1.5x3 I I	9						
	3-3			4 🗖	3	1						
	4 %				- T							
				V	V1							-9-2
		1	2		- ₅							~
_		0-3-15			X ,							
					3x5 II							
			3x4 =									
				4-3-8								
			¢	100	\neg							
Plate Offsets ()	X, Y): [5:0-3-0,0-1-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in ((loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.88	Vert(LL)	-0.01	5-8	>999	240	MT20	244/190
TCDL	10.4/15.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.02	4	/999 n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 27 lb	FT = 20%
			5) This trues k	L designed for	r groato	r of min roof	livo					
TOP CHORD	2x4 SP No.2		load of 12.0) psf or 2.00 times fla	at roof loa	ad of 10.4 ps	fon					
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3		6) Plates cheo	non-concurrent with ked for a plus or mir	other live lus 20 de	e loads. egree rotatioi	n					
	Structural wood ob	oothing directly applied	about its ce d or 7) Gable stud	enter. s spaced at 2-0-0 oc.								
	2-2-0 oc purlins, e	xcept end verticals.	6 8) This truss f chord live l	nas been designed fo bad nonconcurrent w	or a 10.0 vith any o	psf bottom other live load	ls.					
BOT CHORD	bracing.	y applied or 10-0-0 oc	9) * This truss	has been designed	for a live where a	load of 20.0	psf					
	MiTek recommend required cross bra	s that Stabilizers and cing be installed during	3-06-00 tall	by 2-00-00 wide will	fit betwe	een the botto	m					
	truss erection, in a	accordance with Stabili	zer 10) Refer to gir	der(s) for truss to tru	uss conn	ections.						
REACTIONS	All bearings 4-3-8	xcent 4= Mechanical	bearing pla	chanical connection te capable of withsta	(by othe inding 10	rs) of truss to 00 lb uplift at) joint					
(lb) - 1	Max Horiz 2=146 (L	.C 12), 6=146 (LC 12)	(s) except (12) One RT7A	jt=lb) 4=113. MiTek connectors re	commen	ided to conne	ect					
I	2, 6 exce	ept 4=-114 (LC 12), $5=$	-261 truss to bea connection	aring walls due to UP is for uplift only and	LIFT at j does not	t(s) 2 and 5. consider lat	This eral					
I	(LC 16) Max Grav All reacti	ons 250 (lb) or less at	forces. joint 13) This truss is	s designed in accord	ance witl	h the 2018						
FORCES	(s) 2, 4, 6 (lb) - Max. Comp./N	ö except 5=469 (LC 2) /lax. Ten All forces 2	50 R802 10 2	al Residential Code s	sections I	R502.11.1 ar	nd					
TOP CHORD	(lb) or less except v 2-3=-414/165 3-5=	when shown. 440/842	LOAD CASE(S) Standard								
NOTES												
Vasd=95m	ph; TCDL=4.2psf; B	n (3-second gust) CDL=6.0psf; h=25ft; C	Cat.									
II; Exp C; E and C-C C	enclosed; MWFRS (orner(3E) -0-10-8 to	envelope) exterior zon 2-1-8, Exterior(2N) 2-	e 1-8									
to 10-11-4 vertical left	zone; cantilever left and right exposed;	and right exposed ; er C-C for members and	nd									
forces & M DOI =1 60	WFRS for reactions	shown; Lumber)										
2) Truss desi	igned for wind loads	in the plane of the true	SS									
see Standa	ard Industry Gable E	nd Details as applicab	, le,									
or consult of 3) TCLL: ASC	qualified building de: CE 7-16; Pr=20.0 psf	signer as per ANSI/TP (roof LL: Lum DOL=1	.25									
Plate DOL: DOL=1.15	=1.25); Pg=15.0 psf; Plate DOL=1.15); Is	Pf=10.4 psf (Lum =1.0; Rough Cat C; Fu	ılly									
Exp.; Ce=0 4) Unbalance).9; Cs=1.00; Ct=1.1 d snow loads have b	0 Deen considered for thi	is									
design.												

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof	
Q015240-R	R10	Attic	6	1	Job Reference (optional)	
oad Star®, Lavonia, GA 30553	, BAC	Run: 8.7 S 0 Mar 22 2	2023 Print: 8	.700 S Mar 2	22 2023 MiTek Industries, Inc. Mon May 22 15:45:36	Page: 1

Plate Offsets (X, Y): [2:0-3-4,0-3-8], [3:0-2-12,0-2-0], [4:0-3-14,0-1-14], [5:0-3-0,Edge], [6:0-4-3,0-2-0], [7:0-2-12,0-2-0], [8:0-3-4,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 10.4/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code If	2-0-0 1.25 1.25 YES RC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.61 0.30	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.17 -0.30 0.01 -0.09	(loc) 11-13 11-13 10 11-13	l/defl >999 >865 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 224 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP 2400F 2.0E 2x10 SP No.1 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ac Installation guide.	*Except* T2:2x6 SP No.2 t* W4:2x4 SP No.2 athing directly applied or cept end verticals. applied or 10-0-0 oc s that Stabilizers and ing be installed during cordance with Stabilizer	 3) TCLL: ASG Plate DOL DOL=1.15 Exp.; Ce=(4) This truss load of 12. overhangs 5) Plates che about its c 6) This truss chord live 7) * This truss on the bott 3-06-00 ta 	E 7-16; Pr=20.0 ps =1.25); Pg=15.0 ps Plate DOL=1.15); Is .9; Cs=1.00; Ct=1.1 as been designed 0 psf or 2.00 times to non-concurrent with cked for a plus or menter. as been designed oad nonconcurrent is has been designed on chord in all areas I by 2-00-00 wide w	f (roof Ll ; Pf=10.4 ; Pf=10.7 for great flat roof I h other I inus 20 of for a 10. with any d for a liv is where ill fit betw	:: Lum DOL= 4 psf (Lum bugh Cat C; F oad of 10.4 p ve loads. degree rotatic 0 psf bottom other live load other live load a rectangle veen the bott	1.25 Fully f live sf on on ads. Opsf om					
REACTIONS	(lb/size) 10=856/0- 14=856/0- Max Horiz 14=333 (L Max Uplift 10=-99 (L Max Grav 10=1307 (3-8, (min. 0-1-9), 3-8, (min. 0-1-9) C 13) C 15), 14=-99 (LC 14) (LC 28), 14=1307 (LC 27)	chord and 8) Ceiling dea 9) Bottom cho chord dead 10) One RT7A truss to be	any other members Id load (5.0 psf) on ord live load (40.0 p I load (10.0 psf) app MiTek connectors i aring walls due to U	member sf) and a plied only recomme	(s). 3-4, 6-7, dditional bott to room. 11- ended to conr t jt(s) 14 and	4-6 com -13 nect 10.					
TOP CHORD	(ID) - Max. Comp./Mi (Ib) or less except w 2-3=-1475/107, 3-15 4-15=-832/199, 4-5= 6-16=-832/199, 7-16 7-8=-1474/107, 2-14 8-10=-1317/127	ax. Ten All forces 250 hen shown. :=-949/189, :=-949/189, :=-949/189, :=-1316/127,	This connel lateral forc 11) This truss Internation R802.10.2 12) Attic room	ction is for uplift on es. s designed in accor al Residential Code and referenced sta checked for L/360 c) Standard	ly and do rdance w sections ndard AN deflectior	es not consid ith the 2018 8 R502.11.1 a NSI/TPI 1. 1.	der and					
BOT CHORD	13-14=-319/482, 12- 11-12=0/1034	13=0/1034,	LOAD CAGE(
WEBS	7-11=0/617, 3-13=0/ 2-13=-14/858, 8-11=	/617, 4-6=-1823/333, :-20/863										
1) Unbalance	ed roof live loads have	been considered for this										

design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 10-11-8, Exterior(2R) 10-11-8 to 13-11-8, Interior (1) 13-11-8 to 22-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R11	Roof Special	6	1	Job Reference (optional)

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:5aO?AUCDoM4EoSjdXDoSSizDzRF-e8uygweZYA2f06ZVDBUkPEreAZN5xM_2LNF04zzDw0U

Plate Offsets (X, Y): [1:0-1-0,0-1-12], [2:0-1-4,0-1-8], [3:0-1-8,0-2-0], [4:Edge,0-3-8], [5:0-4-12,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 10.4/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.27 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.06 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m II; Exp C; I and C-C E to 8-10-8 vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15	10.0 2x6 SP No.2 2x10 SP No.1 2x4 SP No.3 *Except Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt MiTek recommends required cross brac truss erection, in ad Installation guide. (lb/size) 4=265/M. 6=265/0-3 Max Horiz 6=368 (LC Max Uplift 4=-202 (L Max Grav 4=548 (LC (lb) - Max. Comp./M (lb) or less except w (lb) - Max. Comp./M (lb) or less except w 1.7=-524/312, 7-8=- 1-6=-356/165 5-6=-724/545 2-5=-287/414, 1-5=- CE 7-16; Vult=120mpt ph; TCDL=4.2psf; BC Enclosed; MWFRS (exterior(2E) 0-1-12 to 3 cone; cantilever left ar cone; cantilever left ar tand right exposed; C WFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf; Plate DOL=1.15); Is=	bt* W3:2x6 SP No.2 eathing directly applied o iccept end verticals. <i>y</i> applied or 10-0-0 oc 3-4 s that Stabilizers and ing be installed during ccordance with Stabilizer echanical, (min. 0-1-8), 3-8, (min. 0-1-8) C 11), 6=-15 (LC 14) C 26), 6=475 (LC 27) ax. Ten All forces 250 then shown. -508/313, 2-8=-500/338, 421/620 n (3-second gust) CDL=6.0psf; h=25ft; Cat. nvelope) exterior zone 3-1-12, Interior (1) 3-1-1: nd right exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.25 Pf=10.4 psf (Lum =1.0; Rough Cat C; Fully	 5) * This truss on the botto 3-06-00 tall chord and a 6) Refer to girc 7) Provide mec bearing plats 4. 8) One RT7A N truss to bear connection i forces. 9) This truss is Internationa R802.10.2 a 10) Attic room c LOAD CASE(S) 	has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr chanical connectio e capable of withs AiTek connectors i ring walls due to L s for uplift only and designed in accord I Residential Code and referenced sta hecked for L/360 of Standard	d for a liv as where rill fit betw, with BC russ com n (by oth tanding 2 recomme IPLIFT at d does no rdance w sections ndard AN Jeflection	e load of 20.0 a rectangle veen the both DL = 10.0pst ections. ers) of truss t 02 lb uplift at inded to com- it(s) 6. This ot consider la ith the 2018 R502.11.1 <i>e</i> ISI/TPI 1.	Opsf om f. to t joint nect ateral and				weight: 106 lb	F1 = 20%
Exp.; Ce= 3) Plates che about its c 4) This truss chord live	0.9; Cs=1.00; Ct=1.10 ocked for a plus or mir enter. has been designed fo load nonconcurrent w) nus 20 degree rotation or a 10.0 psf bottom /ith any other live loads.										

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R11X	Flat Girder	1	1	Job Reference (optional)

9-2-4

4-8-0

Load Star®, Lavonia, GA 30553, BAC

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:1zWIbADTK_Kx1mt0eeqwX7zDzRD-e8uygweZYA2f06ZVDBUkPErlWZOPxDY2LNF04zzDw0U 12-4-15

Plate Offsets (X, Y): [6:0-4-12,0-1-8], [7:0-4-12,0-2-0], [8:0-4-12,0-2-0]

													I		
Loa	iding	(psf)	Spacing		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCI	L (roof)	20.0	Plate Grip DOL		1.25	TC	0.42	Vert(LL)	0.02	7-8	>999	240	MT20	244/190	
Sno	w (Pf/Pg)	15.4/15.0	Lumber DOL		1.25	BC	0.25	Vert(CT)	-0.02	7-8	>999	180			
TCI	DL	10.0	Rep Stress Incr		NO	WB	0.78	Horz(CT)	0.00	6	n/a	n/a			
BCI	_L	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCI	DL	10.0											Weight: 166 lb	FT = 20%	
_														-	
LUI	MBER			5) F	Plates check	ed for a plus or mi	inus 20 o	degree rotatio	on						
TO	P CHORD	2x6 SP No.2		a	bout its cer	iter.									
BO	T CHORD	2x10 SP No.1		6) T	his truss ha	as been designed f	for a 10.	0 psf bottom							
WE	BS	2x4 SP No.2		C 7\ *	nora live lo	ad nonconcurrent	with any	other live loa	ads.						
BR/	ACING			7) "	This truss	has been designed	a tor a liv	e load of 20.	Upst						
TO	P CHORD	2-0-0 oc purlins (6-0	0-0 max.): 1-4, except	2		n choru in all area	s where	a reclarigie	om						
		end verticals.			bord and a	by 2-00-00 wide wi	with BC	DI = 10.0 ms	f						
BO	T CHORD	Rigid ceiling directly	/ applied or 6-0-0 oc	8) F	Refer to aird	er(s) for truss to tr		ections							
		bracing.		9) F	Provide med	hanical connection	1 (by oth	ers) of truss	to						
WE	BS	1 Row at midpt	1-8, 4-5, 3-6, 2-8		earing plate	e capable of withst	anding 6	97 lb uplift a	t joint						
		MiTek recommends	s that Stabilizers and	id 8.											
		required cross brac	ed cross bracing be installed during 10) Two RT7A MiTek connectors recommended to connect												
		truss erection, in accordance with Stabilizer truss to bearing walls due to UPLIFT at jt(s) 6. This													
		Installation guide.		connection is for uplift only and does not consider lateral											
RE		(lb/size) 6=1313/0	-3-8 (min 0-2-10)	f	orces.										
	to nono	8=771/ M	echanical. (min. 0-1-8)	11) 1	his truss is	designed in accord	dance w	ith the 2018							
		Max Horiz 8=-363 (L	.C 8)		nternational	Residential Code	sections	S R502.11.1 a	and						
		Max Uplift 6=-1065 (LC 9), 8=-697 (LC 8)	10) ((802.10.2 a	nd referenced star	Idard Ar	NSI/IPI1.							
		Max Grav 6=2202 (L	_C 25), 8=1416 (LC 26)	12) (siapilical pl	nin representation	l does no	top and/or	size						
FOF	RCES	(lb) - Max Comp /M	ax Ten - All forces 250) h	ottom chore	auon or the putilit a	along the	top anu/or							
		(lb) or less except w	hen shown.	13) ĩ	13) Use MiTek JUS24 (With 4-10d nails into Girder & 2-10d										
TOF	P CHORD	2-3=-362/147		n	nalis into Truss) or equivalent space at 2-00 or max										
BO	CHORD	8-9=-295/425, 9-10=	=-295/425,	s	tarting at 1	2-4 from the left er	nd to 7-2	2-4 to connec	t						
		10-11=-295/425, 7-1	11=-295/425	t	russ(es) R1	1 (1 ply 2x10 SP) 1	to front f	ace of botton	n						
WE	BS	3-6=-1084/675, 3-7=	=-494/929, 2-7=-235/62	9, c	hord.										
		2-8=-854/482		14) L	Jse MiTek 1	HDH28 (With 36-2	16d nails	s into Girder &	&						
NO	TES			1	2-16d nails	into Truss) or equ	ivalent a	it 11-2-4 from	n the						
1)	Wind: AS(CE 7-16; Vult=120mph	n (3-second gust)	le	eft end to co	onnect truss(es) R	11 (1 ply	2x10 SP) to	front						
	Vasd=95n	nph; TCDL=4.2psf; BC	CDL=6.0pst; h=25ft; Cat	. ta	ace of botto	m chord.									
	II; Exp C;	Enclosed; MWFRS (e	nvelope) exterior zone;	15) F		les where hanger	IS IN COR		nder.						
	right ovpo	and lumber DOL = 1.6	r_{i} , end vertical tell and r_{i}	10) Double installations of R1/A require the two nurricane											
2)		CE 7 16: $Pr=20.0$ pcf	(roof $11 \cdot 1$ um DOL = 1.00	J lies to be installed on opposite sides of top plate to avoid											
2)	Plate DOI	=1.25) Pa=15.0 psf	Pf=15.4 nsf (l.um)	I OAD CASE(S) Standard											
	DOI = 1.15	5 Plate DOI =1 15). Is=	=1.0: Rough Cat C: Fully	/ 1)	Dood + Sn	(balanced). Lur	nhor Inc	rease=1 15	Plata						
	Exp.: Ce=	0.9: Cs=1.00: Ct=1.10). Lu=50-0-0: Min. flat	, ,	Increase=1	15		10000-1.10,							
	roof snow	load governs. Rain s	urcharge applied to all		Uniform Lo	ads (lb/ft)									
	exposed s	surfaces with slopes le	ess than 0.500/12 in		Vert: 1-4	=-51 5-8=-20									
	accordanc	e with IBC 1608.3.4.			Concentrat	ed Loads (lb)									
3)	Unbalance	ed snow loads have be	een considered for this		Vert: 9=-	245. 11=-245. 12=	-245. 14	=-245, 15=-2	245						
	design.					,, 12-	, in	2.0, 10-2							
4)	Provide ad	dequate drainage to p	revent water ponding.												

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof	
Q015240-R	R12	Roof Special	5	1	Job Reference (optional)	
Load Star®, Lavonia, GA 30553	, BAC	Run: 8.7 S 0 Mar 22 3	2023 Print: 8	.700 S Mar 2	2 2023 MiTek Industries, Inc. Mon May 22 15:45:36	Page: 1

Plate Offsets (X, Y): [1:0-1-0,0-1-12], [2:0-1-4,0-1-8], [6:0-2-4,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 10.4/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.29 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.07 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x10 SP No.1 2x4 SP No.3 *Excep W3:2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. <u>1 Row at midpt</u> MiTek recommends required cross brac truss erection, in ac Installation guide.	ot* W4:2x4 SP No.2, eathing directly applied cept end verticals. applied or 10-0-0 oc 4-5 s that Stabilizers and cing be installed during scordance with Stabilizer	 5) * This truss I on the botton 3-06-00 tall I chord and at 6) Refer to gird 7) Provide mediation 7) Provide mediation 8) This truss is International R802.10.2 a 9) Attic room cl LOAD CASE(S) 	has been designed m chord in all area by 2-00-00 wide winy other members, er(s) for truss to tr shanical connection e capable of withst designed in accor Residential Code nd referenced star necked for L/360 d Standard	d for a liv s where ill fit betw , with BC uss conr h (by oth anding 3 dance w sections ndard AN leflection	e load of 20. a rectangle veen the bott DL = 10.0ps lections. ers) of truss 01 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1.	Opsf tom f. to t joint and					
REACTIONS FORCES TOP CHORD	(lb/size) 5=282/ M 7=282/0-3 Max Horiz 7=343 (LC Max Uplift 5=-301 (L Max Grav 5=546 (LC (lb) - Max. Comp./M (lb) or less except w 1-8=-392/151, 8-9=-	echanical, (min. 0-1-8), 3-8, (min. 0-1-8) C 14) C 26), 7=410 (LC 26) ax. Ten All forces 250 hen shown. 376/176, 2-9=-365/177	0									
BOT CHORD WEBS NOTES	6-7=-491/283 2-6=-277/371, 1-6=-	285/498										
 Wind: AS Vasd=95r II; Exp C; and C-C I to 9-5-0 z members Lumber D TCLL: AS Plate DOI DOL=1.1(Exp.; Ce= Plates chu about its o This truss chord live 	CE 7-16; Vult=120mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (ei Exterior(2E) 0-1-12 to 3 one; cantilever left and and forces & MWFRS IOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf _=1.25); Pg=15.0 psf; _=1.25); Pg=15.0 psf; _=0.9; Cs=1.00; Ct=1.10 ecked for a plus or min zenter. has been designed for load nonconcurrent w	n (3-second gust) CDL=6.0psf; h=25ft; Cal nvelope) exterior zone 3-1-12, Interior (1) 3-1 1 right exposed ;C-C for i for reactions shown; DL=1.60 (roof LL: Lum DOL=1.2 Pf=10.4 psf (Lum et.0; Rough Cat C; Full;) nus 20 degree rotation or a 10.0 psf bottom ith any other live loads.	t. 12 5 y									

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	R12X	Flat Girder	1	1	Job Reference (optional)
Land Star® Lavania CA 20552	BAC	Dum, 0.7.0.0 Max 22.0		700 C Mar 0	2 2022 MiTek Industrias, Inc. Mar. May 22 15:45:26

4-8-0

4-8-0

Load Star®, Lavonia, GA 30553, BAC

Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:9CGFIoAzGIpWZ8aEPol_NHzDzRH-e8uygweZYA2f06ZVDBUkPErjoZO2xGu2LNF04zzDw0U 4-8-0 9-4-0

Plate Offsets (X, Y): [1:0-1-12,0-2-0], [3:Edge,0-3-8], [4:0-4-12,0-1-12], [5:0-4-12,0-2-0], [6:0-4-12,0-1-8]

												-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.53	Vert(LL)	0.02	5-6	>999	240	MT20HS	187/143
Snow (Pf/Pg) 15.4/15.0	Lumber DOL	1.25	BC	0.21	Vert(CT)	-0.03	5-6	>999	180	MT20	244/190
TCDL	, 10.0	Rep Stress Incr	NO	WB	0.63	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		(-)						
BCDL	10.0										Weight: 125 lb	FT = 20%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI	 2x6 SP No.2 2x10 SP No.1 2x4 SP No.2 2-0-0 oc purlins (6-0)-0 max.): 1-3, except	 6) Plates cheat about its ceat about its ce 7) This truss from the chord live let about the second sec	ked for a plus or m nter. as been designed bad nonconcurrent has been designed om chord in all area by 2-00-00 wide w	inus 20 (for a 10. with any d for a liv is where ill fit bety	degree rotati 0 psf bottom other live loa re load of 20. a rectangle	on ads. .0psf					
	end verticals.		chord and any other members, with BCDL = 10.0psf.									
BOT CHORI	D Rigid ceiling directly bracing	applied or 10-0-0 oc	Refer to gir	der(s) for truss to tr	uss coni	nections.						
WEBS	1 Row at midpt	1-6, 3-4, 2-4, 1-5	10) Provide me	chanical connection	n (by oth	ers) of truss	to					
iii 200	MiTek recommends required cross brac truss erection, in ac Installation guide.	s that Stabilizers and sing be installed during coordance with Stabilizer	bearing pla 6. 11) Two RT7A truss to bea connection	 bearing plate capable of withstanding 995 lb uplift at joint 6. 11) Two RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral 								
REACTIONS	(lb/size) 4=788/0-3	3-8, (min. 0-1-10), 6=899	forces.	designed in second	danaa u	ith the 2019						
	Mechanic Max Horiz 6=-382 (L Max Uplift 4=-863 (L Max Grav 4=1351 (L	al, (min. 0-1-8) C 8) C 9), 6=-995 (LC 8) LC 25), 6=1577 (LC 26)	Internationa R802.10.2 13) Graphical p or the origin	International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size								
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250	bottom cho	rd.	along are							
TOP CHORI BOT CHORI	 (Ib) or less except w 1-6=-995/694, 1-2=- 6-7=-331/298, 7-8=- 5-9=-331/298, 5-10= 10-11=-402/505, 4-1 	hen shown. 432/238 331/298, 8-9=-331/298, 402/505, I 1=-402/505	14) Use MiTek nails into T starting at truss(es) R chord.	JUS24 (With 4-10d uss) or equivalent -2-4 from the left e 12 (1 ply 2x10 SP)	l nails inf spaced a nd to 7-2 to back f	o Girder & 2 at 2-0-0 oc m 2-4 to connec ace of bottor	-10d lax. ct m					
WEBS	2-4=-1053/715, 2-5=	-457/835, 1-5=-715/105	2 15) Fill all nail h	oles where hanger	is in cor	ntact with lun	nber.					
NOTES			16) Double inst	allations of RT7A re	equire th	e two hurrica	ane					
1) Wind: AS	SCE 7-16; Vult=120mpt	n (3-second gust)	ties to be in	stalled on opposite	sides of	top plate to	avoid					
Vasu=90	: Enclosed: MW/ERS (e	DL=0.0psi; n=25ii; Cal.		Standard	uss.							
cantileve	r left and right exposed	· end vertical left and	e, LOAD CASE(S) Stalidaid 1). Dead + Snow (halanced): Lumber Increase=1 15 Plate									
right exp right exp 2) TCLL: A Plate DC DOL=1.1 Exp.; Ce roof snow exposed	IncreaseIncreas											
accordar	nce with IBC 1608.3.4.											

- 3) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
 All plates are MT20 plates unless otherwise indicated.

Job		Truss		Truss Type			Qty	Ply	Capers, C	arlton D	U-Roo	f	
Q015240-R		V1		1	1	Job Refer	ence (op	tional)					
Load Star®, Lavo	nia, GA 30553,	BAC				Run: 8.7 S 0 Mar 22 2	023 Print: 8	.700 S Mar 2	22 2023 MiTe	k Industrie	s, Inc. N	Non May 22 15:45:3	6 Page: 1
							ID:Cps	9UK79jl8ZoJ	IrQsINjWIszL	zRJ-e8uy	gweZYA	2106ZVDBUkPErol	ZO2xO02LNF04zzDw0U
				ĺ		100		1	0.44			9-4-4	
				×		<u>4-8-2</u> 4-8-2		/	<u>8-11</u> 4-2-1	- <u>1</u> 5		+	
				ļ				I				0-5-3	
								4x4 =					
								2 ক					
		ľ											
			10			_/							
		-1	-9-15		10	n	S	T1	11				
		è	5	8						\searrow			
											\searrow		
				\rightarrow 1		<u> </u>		^Ц ОЧ В1				3	
								XXXX					
					01			4 1 5x3 u			0		
					2X4 💋	•		1.0,0 1			2X	4	
				ļ			9	-4-4					
				,									
Plate Offsets (X	K, Y): [1:0-1-9	,Edge],	[3:0-1-9,Edge]										
Loading	(psf)	Spacing		2-0-0	CSI	DEF	FL	in (loc) l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	2 10 4/1	20.0	Plate Grip DOL		1.25 T	1C ().23 Vert	t(LL)	n/a n/a	∙ n/a . n/a	999 999	MT20	244/190
TCDL	10.47	10.0	Rep Stress Incr		YES V	VB (0.11 Hori	iz(TL) (0.00 3	n/a	n/a		
BCLL BCDL		0.0* 10.0	Code	IRC2018/TPI	2014 N	Matrix-MSH						Weight: 33 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD FORCES TOP CHORD WEBS NOTES 1) Unbalancea design. 2) Wind: ASC Vasd=95m II; Exp C; E and C-C Ex 4-8-8, Exte 9-4-10 zona vertical left forces & M DOL=1.60 3) TCLL: ASC	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wc 9-4-4 oc purl Rigid ceiling bracing. MiTek recon required cro truss erectio Installation c (lb/size) 1=: 3=: 4=: Max Uplift 1=: Max Uplift 1=: Max Grav 1=: (LC (lb) - Max. Cc (lb) -	bod shea ins. directly mmends ss braci 28/9-4-4 28/9-4-4 512/9-4 -84 (LC -163 (LC 75 (LC 75 (LC 75 (LC 75 (LC 22)) ds have 120mph psf; BC FRS (er -6 to 3-1 to 7-8-4 eft and r ossed;C- ctions s _=1.60 0.0 psf (athing directly applied applied or 6-0-0 oc that Stabilizers and ing be installed durin cordance with Stabili 4, (min. 0-1-8), 4, (min. 0-1-8), 4, (min. 0-1-8), 10) 32), 3=-22 (LC 10), C 14) 31), 3=75 (LC 32), 4: ax. Ten All forces 2 hen shown. 130/304 been considered for (3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zon 0-6, Interior (1) 3-0-6 8, Interior (1) 7-8-8 to ight exposed ; end C for members and hown; Lumber	e for this for the format is the format in the format is t	Uss has live load truss has bottom (00 tall by and any le mecha g plate c b uplift a uss is de ational R 10.2 and SE(S) S	been designed for a nonconcurrent with s been designed for chord in all areas w 2-00-00 wide will fi other members. anical connection (b capable of withstanc t joint 3 and 163 lb asigned in accordar esidential Code sec referenced standa Standard	a 10.0 ps1 a any other r a live load here a rec between f y others) c ling 19 lb u uplift at join ce with the ctions R50, rd ANSI/TF	Dottom · live loads d of 20.0ps tangle the bottom of truss to uplift at join nt 4. e 2018 2.11.1 and PI 1.	sf i it				
 Exp.; Ce=0 Plates cheorem about its ce 	nate DOL=1. 0.9; Cs=1.00; C cked for a plus enter.	t=1.10 t=1.10 or min	us 20 degree rotatior	uny 1									

Job	Truss		Truss Type		Qty	P	ly	Capers, C	arlton D	U-Roof	f	
Q015240-R	V2		Valley		1	1		Job Refer	ence (op	tional)		
Load Star®, Lave	onia, GA 30553, BAC			Run: 8.7 S 0 Ma	r 22 2023 Pri	nt: 8.700) S Mar 2	2 2023 MiTe	k Industrie	s, Inc. N	Ion May 22 15:45	:36 Page: 1
					IL	СруОК	19ji8ZoJr	QSINJWISZD	zKJ-e8uyg	Wezyaz	2106ZVDBUKPErg	VZQSXPo2LNF04ZZDW00
							1	-		6	5-4-4	
				/	<u> </u>	2 2	/	5 2	<u>-11-1</u> -8-15		\sim	
							I) C)-5-3	
							4x	4 =				
							2 1					
						/						
		1-9-1	5	12 8 Г	/	И	ST1	T1				
	2-1								\frown			
				1 🥂	<u>}</u>		6	B1		-Ø	3	
			0-0-4								\bigotimes	
							4	v2		04		
				2	2x4 💋		1.5	x3		2X4 ;	*	
							6-4-	-4				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	20.0 10.4/15.0	Plate Grip DOL Lumber DOL	1.25 1.25	TC BC	0.10 0.12	Vert(LL Vert(TL	_) _)	n/a - n/a -	n/a n/a	999 999	MT20	244/190
TCDL	10.0 0.0*	Rep Stress Incr	YES	WB Matrix-MP	0.06	Horiz(1	rL) 0	.00 3	n/a	n/a		
BCDL	10.0	Code		Matrix-IVII				-			Weight: 21 lb	FT = 20%
LUMBER			7) * This truss	has been designe	ed for a live	load o	f 20.0pst	f				
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		on the botto 3-06-00 tall	by 2-00-00 wide v	eas where a will fit betwe	rectan en the	bottom					
OTHERS BRACING	2x4 SP No.3		chord and a 8) Provide med	ny other members chanical connection	s. on (by othe	rs) of tr	uss to					
TOP CHORD	Structural wood she	eathing directly applied	or 18 lb uplift a	e capable of withs t joint 3 and 94 lb	standing 8 l o uplift at joi	b uplift nt 4.	at joint	1,				
BOT CHORD	Rigid ceiling directly	y applied or 6-0-0 oc	 9) This truss is Internationa 	designed in acco Residential Code	ordance wit e sections l	n the 2 R502.1	018 1.1 and					
	MiTek recommend	s that Stabilizers and	R802.10.2 a	nd referenced sta Standard	andard ANS	SI/TPI 1	1.					
	truss erection, in a	cing be installed during accordance with Stabiliz	er									
	Installation guide.	4 (min 0 4 0)										
REACTIONS	(ID/SIZE) 1=38/6-4 3=38/6-4	-4, (min. 0-1-8), -4, (min. 0-1-8),										
	4=311/6- Max Horiz 1=56 (LC	-4-4, (min. 0-1-8) C 11)										
	Max Uplift 1=-8 (LC (LC 14)	14), 3=-18 (LC 15), 4=	-94									
	Max Grav 1=69 (LC (LC 2)	C 31), 3=69 (LC 32), 4=	409									
FORCES	(lb) - Max. Comp./M (lb) or less except v	/lax. Ten All forces 25 when shown.	60									
WEBS	2-4=-275/200											
1) Unbalance	ed roof live loads have	e been considered for	his									
2) Wind: ASC	CE 7-16; Vult=120mp	h (3-second gust)										
II; Exp C; E	Enclosed; MWFRS (e	envelope) exterior zone	11.									
exposed ;	end vertical left and r	right exposed;C-C for										
members a Lumber D0	and torces & MWFRS OL=1.60 plate grip D	5 tor reactions shown; OL=1.60										
 TCLL: ASC Plate DOL 	CE 7-16; Pr=20.0 psf =1.25); Pg=15.0 psf;	(roof LL: Lum DOL=1.) Pf=10.4 psf (Lum	25									
DOL=1.15 Exp.; Ce=0	Plate DOL=1.15); Is 0.9; Cs=1.00; Ct=1.10	=1.0; Rough Cat C; Fu 0	ly									
 Plates che about its company 	cked for a plus or mi enter.	nus 20 degree rotation										
5) Gable requ	uires continuous botto	om chord bearing.										
chord live	load nonconcurrent v	with any other live loads	s.									

LOAD CASE(S) Standard

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

pracing.	bearing plate conchine of withstanding OCC lb unlift a
MiTak recommende that Stabilizers and	bearing plate capable of withstanding 266 ib uplift a
will ek recommends that Stabilizers and	5 and 50 lb uplift at joint 6.
required cross bracing be installed during	10) This truss is designed in accordance with the 2018
truss erection, in accordance with Stabilizer	International Residential Code sections R502.11.1
Installation guide.	R802 10 2 and referenced standard ANSI/TPI 1

REACTIONS (lb/size) 1=98/7-2-8, (min. 0-1-8), 5=294/7-2-8, (min. 0-1-8), 6=172/7-2-8, (min. 0-1-8) Max Horiz 1=220 (LC 13) Max Uplift 5=-266 (LC 13), 6=-50 (LC 16) Max Grav 1=136 (LC 31), 5=445 (LC 23), 6=217 (LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-9=-310/106, 2-9=-303/124, 2-10=-294/67,

3-10=-282/92, 3-5=-424/505

- NOTES
- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 10-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 2) Plate DOL=1.25); Pg=15.0 psf; Pf=10.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.4 psf on overhangs non-concurrent with other live loads.

Job		Truss		Truss T	уре		Qty		Ply	Cape	rs, Ca	Iton Dl	J-Roof	:	
Q015240-R		V4		Valley			1		1	Job F	Referer	nce (opti	ional)		
Load Star®, Lavo	nia, GA 30553,	BAC				Run: 8.7 S 0 Mar 22 2	023 P	rint: 8.7	700 S Mar 2	22 2023	MiTek I	ndustries	s, Inc. N	lon May 22 15:45:3	6 Page: 1
					1			ID.CL	90K79J16Z	JUUQSIN	IJVVISZD	203-703	KIFIDJI	JAVUGolilu (Zykop	wzkegizba i (zurzbwu i
					/	<u>3-10-8</u> 3-10-8		/		<u>0-8</u> 2-0		\rightarrow			
	-											3			
							1.5	х3 и							
							2	TI							
		3-6-			12	7	Ā							Ĩ.	
					6		W1								
					/									<u>+</u>	
				1		B1		4							
	_		- 0-0-4				\bigotimes								
							3x!	5 11							
					3x4 ≠										
						0.40.0									
						3-10-8		/							
Plate Offsets ()	(V)· [1·0 2 1	2018	1												
	(, 1). [4.0-2-1	2,0-1-0		-											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL		2-0-0 1.25	TC (0.89	DEF	L LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	10.4/	15.0 10.0	Lumber DOL Rep Stress Incr		1.25 YES	BC (0.25	Vert(CT)	n/a 0.00	- 4	n/a n/a	999 n/a		
BCLL		0.0*	Code	IRC2	018/TPI2014	Matrix-MP		11012	(01)	5.00		n/a	n/a	M	FT 00%
BCDL		10.0		-										weight: 18 lb	F1 = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wc 2-2-0 oc purl Rigid ceiling bracing. MiTek recom required cro truss erection Installation g	ood she ins, ex directly nmends ss brac n, in ac guide.	athing directly applie cept end verticals. applied or 10-0-0 oc s that Stabilizers and ing be installed durin cordance with Stabili	8) d or 9) g izer LC	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1 and 239 lb 0) This truss is International R802.10.2 ar DAD CASE(S)	ad nonconcurrent with has been designed for m chord in all areas w by 2-00-00 wide will fir ny other members. hanical connection (b e capable of withstand uplift at joint 4. designed in accordar Residential Code sec nd referenced standa Standard	n any r a live here t betw y othe ding 1 nce wi ctions rd AN	other e load a recta veen th ers) of 6 lb up ith the R502 ISI/TP	live loads of 20.0ps angle ne bottom truss to plift at join 2018 11.1 and I 1.	sf nt					
REACTIONS ([lb/size) 1=	53/3-10	0-8, (min. 0-1-8),												
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95m II; Exp C; E	44 Max Horiz 1= Max Uplift 1= Max Grav 1= (lb) - Max. Co (lb) or less ex 1-7=-327/94, 1-4=-62/262 E 7-16; Vult= ph; TCDL=4.2 inclosed; MWI	145 (LC -16 (LC 102 (LC pmp./Ma ccept w 2-7=-2 120mph psf; BC FRS (ei	 (IIIII. 0-1-8) (213) (22), 4=-239 (LC 16) (213), 4=447 (LC 23) ax. Ten All forces 2 hen shown. 85/106, 2-4=-455/562 (3-second gust) (DL=6.0psf; h=25ft; C nvelope) exterior zon 	250 2 Cat. e											
 and C-C Ex 7-1-0 zone, vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL= 2) TCLL: ASC Plate DOL= 3) Unbalance, design. 4) This truss H load of 12.0, overhangs 5) Plates check about its ce 6) Gable required 	kterior(2E) 0-0 ; cantilever lef and right exp WFRS for rea plate grip DOI E 7-16; Pr=2(=1.25); Pg=15 Plate DOL=1. .9; Cs=1.00; (d snow loads has been desie 0 psf or 2.00 ti non-concurren cked for a plus enter. ires continuou	-8 to 3- t and rig osed;C- ctions s _=1.60 .0 psf; I 15); Is= Ct=1.10 have be gned fo mes fla nt with 6 s or min us botto	0-8, Interior (1) 3-0-8 ght exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1 Pf=10.4 psf (Lum -1.0; Rough Cat C; Fu een considered for th r greater of min roof 1 t roof load of 10.4 ps other live loads. us 20 degree rotation m chord bearing.	: to .25 ully is fon n											

000		Iruss		Truss T		Qty	F	Ply	Cape	ers, Ca	rlton D	U-Roc	f		
Q015240-R		V5		Valley			1	1		Job F	Refere	nce (op	tional)		
Load Star®, Lavo	onia, GA 30553, I	BAC				Run: 8.7 S 0 Mar 22	2 2023 Pri	int: 8.70 ID:Cp9I	0 S Mar 2 UK79jl8Zc	2 2023 JrQsIN	MiTek IjWIszD	Industrie zRJ-7KS	s, Inc. I SKtFfBJ	Mon May 22 15:45: UAVdG8inu?zvRO	B6 Page: 1 szm8gr2Ba1?ZdPzDw0T
								- 00	-,		,			<u> </u>	22
						6-2-11				7-4	-10				
						6-2-11				1-:	2-0				
			、 、						1.	5x3 II	4				
		-							3		\square				
										7				<u>, </u>	
						1.5x3	"	T							
			3-8-0		10	2	/		VV1	1			6-1		
					6 Г								'n		
						SII									
		-	0-0-4	_			B1		[5					
										<u>y</u>					
					2×4	o 1 5x3			1.	5x3 II					
					2.84 8		"			I					
					,	6-2-11				\rightarrow					
Loading	(psf)	Spacing		2-0-0	CSI		DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	2 10.4/1	20.0 15.0	Plate Grip DOL Lumber DOL		1.25 1.25	TC BC	0.19 0.09	Vert(L Vert(C	L) :T)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
TCDL BCU		10.0 0.0*	Rep Stress Incr	IRC2	YES 018/TPI2014	WB Matrix-MP	0.06	Horz(C	CT) 0	0.00	5	n/a	n/a		
BCDL		10.0	0000	11(02)	010/11 12014				_	_	_			Weight: 26 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wo 6-0-0 oc purl Rigid ceiling bracing. MiTek recom required cro truss erectio Installation c	ood shea ins, exc directly nmends ss braci n, in ac juide.	athing directly applied cept end verticals. applied or 10-0-0 oc that Stabilizers and ing be installed durin cordance with Stabili	6) 7) 8) d or 9) g zer LO	Gable requir This truss ha chord live loc * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 5 and 105 lb) This truss is International R802.10.2 a	es continuous botto as been designed fo ad nonconcurrent wi has been designed f n chord in all areas by 2-00-00 wide will ny other members. hanical connection - hanical connection - te capable of withstau uplift at joint 6. designed in accorda Residential Code s nd referenced stand Standard	m chord r a 10.0 ith any c for a live where a fit betwee (by othe nding 10 ance wit ections lard ANS	l bearin psf bo other liv load co rectar een the rrs) of t 02 lb up h the 2 R502.1 SI/TPI	ng. ttom ve loads. of 20.0ps ngle e bottom russ to olift at joi 2018 11.1 and 1.	f					
REACTIONS	(lb/size) 1= 5=	75/6-2- ⁻ 136/6-2	11, (min. 0-1-8), -11, (min. 0-1-8),												
1	6=: Max Horiz 1=	212/6-2 156 (LC	-11, (min. 0-1-8) C 13)												
1	Max Uplift 5=	-102 (L(C 13), 6=-105 (LC 16)											
	6=:	276 (LC	2) 2)												
FURCES	(Ib) - Max. Co (Ib) or less ex	omp./Ma cept wi	ax. Ten All forces 2 hen shown.	50											
TOP CHORD NOTES	1-2=-263/126	6, 3-5=- ⁻	189/252												
 Wind: ASC Vasd=95m II; Exp C; E and C-C E 7-5-2 zone vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0 Unbalance design. This truss I load of 12. overhangs Plates chea about its ce 	E 7-16; Vult=1 ph; TCDL=4.2 Enclosed; MWI xterior(2E) 0-0 y; cantilever lef and right expr WFRS for real plate grip DOI CE 7-16; Pr=20 Flate DOL=1. 0.9; Cs=1.00; C d snow loads has been desig 0 psf or 2.00 ti non-concurrer cked for a plus enter.	20mph psf; BC FRS (er -8 to 3- t and rig osed;C- ctions s _=1.60 0.0 psf; F 15); Is= Ct=1.10 have be gned fo mes fla nt with o s or min	(3-second gust) iDL=6.0psf; h=25ft; C nvelope) exterior zon 1-9, Interior (1) 3-1-9 ght exposed ; end C for members and hown; Lumber froof LL: Lum DOL=1 Pf=10.4 psf (Lum 1.0; Rough Cat C; Fu een considered for th r greater of min roof I t roof load of 10.4 ps other live loads. us 20 degree rotation	at. e to .25 .25 is ive f on											

Job	Truss	Truss Type	Qty	Ply	Capers, Carlton DU-Roof
Q015240-R	V6	Valley	1	1	Job Reference (optional)

nt: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36 Page: 1 ID:h?jsXT9LWRhfx_?2s5Elq3zDzRI-7KSKtFfBJUAVdG8inu?zyRO_ozl3gqkBa1?ZdPzDw0T Run: 8.7 S 0 Mar 22 2023 Print: 8.700 S Mar 22 2023 MiTek Industries, Inc. Mon May 22 15:45:36

4x4 =

Plate Offsets (X, Y): [1:0-3-4,Edge], [3:0-3-4,Edge]

												i	
Loading	((psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	10.4/1	15.0	Lumber DOL	1.25	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	1	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	3	n/a	n/a		
BCLL		0.0*	Code I	RC2018/TPI2014	Matrix-MP								
BCDL	1	10.0										Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wo 6-10-0 oc pur Rigid ceiling u bracing. MiTek recom required cros truss erectio	ood shear rlins. directly nmends ss bract on, in ac	athing directly applied or applied or 6-0-0 oc that Stabilizers and ing be installed during cordance with Stabilizer	 Plates check about its cer Gable requir This truss ha chord live lo. * This truss I on the bottor 3-06-00 tall 1 chord and at Provide mec bearing plate 1, 25 lb uplif This truss is 	ed for a plus or mi ter. es continuous bottu is been designed fr ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wil by other members. hanical connection e capable of withsta at joint 3 and 87 ll designed in accore	nus 20 o om chor or a 10.4 vith any l for a liv s where Il fit betw h (by oth anding 1 b uplift a dance w	degree rotation d bearing. D psf bottom other live loa e load of 200. a rectangle veen the bott ers) of truss 5 9 lb uplift at j t joint 4. ith the 2018	on ads. Opsf com to joint					
	Installation g	guide.		¹ International	Residential Code	sections	R502.11.1 a	and					
REACTIONS	(lb/size) 1= 3= 4=: Max Horiz 1=: Max Uplift 1= 4=- Max Grav 1=: (LC	44/6-10 44/6-10 328/6-1 30 (LC -19 (LC -87 (LC 78 (LC C 2)	-0, (min. 0-1-8), -0, (min. 0-1-8), 0-0, (min. 0-1-8) 20) 16), 3=-25 (LC 17), 16) 35), 3=78 (LC 36), 4=431	R802.10.2 a	nd referenced stan Standard	idard AN	ISI/TPI 1.						
FORCES	(lb) - Max. Co	omp./Ma	ax. Ten All forces 250										
WERS	(lb) or less ex	cept wi	nen shown.										
NOTES	2-4200/200	,											
1) Unbalance	ed roof live load	ds have	been considered for this										
design.													
 Wind: ASC Vasd=95m II; Exp C; and C-C E 3-5-8, Ext 6-10-8 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. 	CE 7-16; Vult=1 ph; TCDL=4.2 Enclosed; MWF ixterior(2E) 0-0 erior(2R) 3-5-8 he; cantilever let t and right expo WFRS for read plate grip DOL CE 7-16; Pr=20 =1.25); Pg=15: Plate DOL=1. ⁻ 0.9; Cs=1.00; C ed snow loads I	120mph Ppsf; BC FRS (er I-8 to 3- to 6-5-{ eft and r ossed;C- ctions s L=1.60 0.0 psf (0.0 psf; F 15); Is= Ct=1.10 have be	(3-second gust) DL=6.0psf; h=25ft; Cat. nvelope) exterior zone 0-8, Interior (1) 3-0-8 to 3, Interior (1) 6-5-8 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.25 2f=10.4 psf (Lum 1.0; Rough Cat C; Fully een considered for this										