

RE: 35473A 8 SERENITY - ROOF Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 35473A Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 120 mph Floor Load: N/A psf

This package includes 33 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	155884965	A1GE	12/27/2022	21	155884985	M1GE	12/27/2022
2	155884966	A2	12/27/2022	22	155884986	M2GE	12/27/2022
3	155884967	A3	12/27/2022	23	155884987	M3	12/27/2022
4	155884968	A4	12/27/2022	24	155884988	M3GE	12/27/2022
5	155884969	A5	12/27/2022	25	155884989	V1	12/27/2022
6	155884970	A6	12/27/2022	26	155884990	V2	12/27/2022
7	155884971	A7	12/27/2022	27	155884991	V3	12/27/2022
8	155884972	A8	12/27/2022	28	155884992	V4	12/27/2022
9	155884973	A9E	12/27/2022	29	155884993	V5	12/27/2022
10	155884974	B1E	12/27/2022	30	155884994	V6	12/27/2022
11	155884975	B2G	12/27/2022	31	155884995	V7	12/27/2022
12	155884976	C1E	12/27/2022	32	155884996	V8	12/27/2022
13	155884977	C2	12/27/2022	33	155884997	V9	12/27/2022
14	155884978	C3G	12/27/2022				
15	155884979	D1E	12/27/2022				
16	155884980	D2	12/27/2022				
17	155884981	E1E	12/27/2022				

12/27/2022

12/27/2022

12/27/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

E2

M1

M1A

based on the parameters provided by 84 Components - #2383.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

155884982

155884983

155884984

18

19

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

1	9-10-6	19-1-8	28-4-9	36-3-0	
F	9-10-6	9-3-2	9-3-1	7-10-7	
Plate Offsets (X,Y)	[2:0-0-0,0-0-11]				

LOADING(psf)TCLL20.0TCDL10.0BCLL0.0*	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.49 BC 0.93 WB 0.47	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 14-17 >999 240 Vert(CT) -0.33 14-17 >999 180 Horz(CT) 0.09 9 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS		Weight: 225 lb FT = 20%
			PPACING.	

TOP CHORD

BOT CHORD

WEBS

 LUMBER

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEPS
 2x4 SP No.2

WEBS 2x4 SP No.2 *Except* 8-9: 2x6 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS.	(size)	2=0-5-8, 9=Mechanical
	Max Horz	2=150(LC 14)
	Max Uplift	2=-100(LC 10), 9=-71(LC 11)
	Max Grav	2=1497(LC 1), 9=1440(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2470/412, 3-5=-1649/368, 5-7=-1646/367, 7-8=-2064/359, 8-9=-1371/260

BOT CHORD 2-14=-262/2099, 12-14=-262/2099, 10-12=-207/1767

WEBS 3-14=0/377, 3-12=-908/253, 5-12=-105/859, 7-12=-548/190, 8-10=-199/1635

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=100.

Structural wood sheathing directly applied or 4-2-7 oc purlins,

3-12, 7-12

Rigid ceiling directly applied or 2-2-0 oc bracing.

except end verticals.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	9-10-6	19-1-8	28-4-9	36-3-0	
	9-10-6	9-3-2	9-3-1	7-10-7	
Plate Offsets (X,Y)	[2:0-0-0,0-0-11]				

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.49 BC 0.93 WB 0.47 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 15-18 >999 240 Vert(CT) -0.33 15-18 >999 180 Horz(CT) 0.09 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 228 lb FT = 20%
LUMBER-			BRACING-	

WEBS

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *Except* 8-10: 2x6 SP No.2

TOP CHORD Structural wood sheathing directly applied or 4-2-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. 3-13, 7-13 1 Row at midpt

WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 2=0-5-8, 10=Mechanical Max Horz 2=142(LC 14) Max Uplift 2=-101(LC 10), 10=-89(LC 11) Max Grav 2=1495(LC 1), 10=1510(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2467/412, 3-5=-1647/369, 5-7=-1643/366, 7-8=-2060/361, 8-10=-1441/313

BOT CHORD 2-15=-230/2097, 13-15=-230/2097, 11-13=-173/1757

WEBS 3-15=0/377, 3-13=-908/253, 5-13=-104/855, 7-13=-539/188, 8-11=-158/1576

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=101.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 December 27,2022

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 33, 34, 36, 37, 38, 39, 40, 41, 31, 30, 28, 27, 26, 25, 24, 23.

ENGINEERING BY EREPACED A MITER Attiliate 818 Soundside Road Edenton, NC 27932

Max Grav All reactions 250 lb or less at joint(s) 20, 12, 16, 17, 18, 19, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 18,
- Provide mechanical connection (by others) or truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 18, 19, 15, 14, 13.

In to the overall permanent bracing ng the BCSI Building Component 818 Soundside Road Edenton, NC 27932

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	-0.00	11	n/r	120	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.00	11	n/r	90			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.07	Horz(CT)	-0.00	12	n/a	n/a			
BCDL	10.0	Code IRC2015/TF	912014	Matrix	k-R						Weight: 82 lb	FT = 20%	
LUMBER-						BRACING-							
TOP CHORD 2x4 SP No.2						TOP CHOP	RD	Structur	ral wood :	sheathing di	irectly applied or 6-0-0	oc purlins,	
BOT CHORD 2x4 SP No.2							except	end vertio	als.				

BOT CHORD

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 12-11-0.

Max Horz 19=-153(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 17, 14 except 19=-107(LC 6), 12=-100(LC 7), 18=-119(LC 7), 13=-113(LC 6)

Max Grav All reactions 250 lb or less at joint(s) 19, 12, 16, 17, 18, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 14 except (jt=lb) 19=107, 12=100, 18=119, 13=113.

818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	8 SERENITY - ROOF	
						155884978
35473A	C3G	Common Girder	1	2		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			3.630 s No	v 19 2022 MiTek Industries, Inc. Fri Dec 23 17:42:24 2022	Page 2

ID:nxbot3WsxISjrAw_FcBFB3yorwP-wVaFxzcpE7WhM5ppc7YVzHqfUrYCluR7Hz8ii7y606T

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-10=-20

Concentrated Loads (lb)

Vert: 11=-1419(B) 12=-1416(B) 13=-1416(B) 14=-1416(B) 15=-1416(B) 16=-1420(B)

	1					39-11-0						1
						39-11-0						
Plate Offs	sets (X,Y)	[2:0-4-1,Edge], [26:0-4-1,	Edge], [33:0-3	3-0,0-3-0], [41	:0-3-0,0-3-0]						
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	-0.00	26	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	26	n/r	90		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.01	26	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matrix	<-S						Weight: 285 lb	FT = 20%
LUMBER	-)RD 2x4 SI	P No.2				BRACING-	RD	Structu	ral wood	sheathing di	rectly applied or 6-0-0 c	oc purlins.

BOT CHORD

WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3 *Except* 14-37,13-38,12-39,11-40,10-41,15-36,16-35,17-34,18-33: 2x4 SP No.2 SLIDER Left 2x4 SP No.3 1-6-7, Right 2x4 SP No.3 1-6-7

REACTIONS. All bearings 39-11-0. (lb) -

Max Horz 2=-148(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 36, 35, 34, 33, 32, 31, 30, 29, 28

Max Grav All reactions 250 lb or less at joint(s) 2, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 13-14=-103/259, 14-15=-103/259

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 36, 35, 34, 33, 32, 31, 30, 29, 28.

14-37, 13-38, 12-39, 15-36, 16-35

10-1-8		19-11-8	29-9-8	39-11-0
1	10-1-8	9-10-0	9-10-0	10-1-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.89 BC 0.90 WB 0.43 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.36 16-18 >999 240 Vert(CT) -0.62 16-18 >771 180 Horz(CT) 0.13 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 213 lb FT = 20%

TOP CHORD	2x4 SP No.2 *Except*
	1-5,9-13: 2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0

BRACING-TOP CHORD BOT CHORD

WEBS

Structural wood sheathing directly applied or 2-2-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 8-16, 6-16

REACTIONS. (size) 2=0-5-8, 12=0-5-8 Max Horz 2=148(LC 10) Max Uplift 2=-103(LC 10), 12=-103(LC 11) Max Grav 2=1652(LC 1), 12=1652(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-2783/482, 4-6=-2554/468, 6-7=-1851/427, 7-8=-1851/427, 8-10=-2554/468, 10-12=-2783/482
- BOT CHORD 2-18=-319/2409, 16-18=-190/2035, 14-16=-190/2035, 12-14=-319/2409
- WEBS 7-16=-226/1277, 8-16=-705/233, 8-14=-14/494, 10-14=-307/183, 6-16=-705/233, 6-18=-14/494, 4-18=-307/183

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 3x6 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=103, 12=103.

0 <mark>-2-8</mark> 0-2-8			13-8-0 13-5-8						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.08 BC 0.06 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8 9 8	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-3-0. (lb) - Max Horz 2=37(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.

9) Non Standard bearing condition. Review required.

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

0 <mark>-2-8</mark> 0-2-8	<u> </u>			<u>13-5-8</u> 6-7-8	13-8-0 0-2-8
Plate Offsets (X,Y)	[2:0-0-0,0-0-15], [2:0-2-6,Edge], [4:Edge	e,0-0-15], [4:0-2-6,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.52 BC 0.53 WB 0.11 Matrix-MS	DEFL. in Vert(LL) -0.07 Vert(CT) -0.13 Horz(CT) 0.01	(loc) l/defl L/d 6-12 >999 240 6-9 >999 180 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S WEDGE Left: 2x4 SP No.3 , R	SP No.2 SP No.2 SP No.3 ight: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied o	ectly applied or 5-0-10 oc purlins. r 10-0-0 oc bracing.
REACTIONS. (s Max Max Max	ize) 2=0-3-0, 4=0-3-0 Horz 2=37(LC 14) Uplift 2=-69(LC 6), 4=-69(LC 7) Grav 2=599(LC 1), 4=599(LC 1)				
FORCES.(lb) - MaTOP CHORD2-3BOT CHORD2-6WEBS3-6	x. Comp./Max. Ten All forces 250 (lb) or =-951/189, 3-4=-951/189 =-100/855, 4-6=-100/855 =0/292	less except when shown.			
NOTES-					

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Af 818 Soundside Road Edenton, NC 27932

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr VES	CSI. TC 0.14 BC 0.10 WB 0.04	DEFL. in (loc) 1/d Vert(LL) -0.00 1 Vert(CT) 0.00 1 Horz(CT) 0.00 7 7 1 1	defl L/d n/r 120 n/r 90 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	1012(01) 0.00	ina ina	Weight: 44 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI	2 No.2 2 No.2		BRACING- TOP CHORD Structural except end	wood sheathing dir d verticals.	ectly applied or 6-0-0 oc purlins,

BOT CHORD

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-8-0.

(lb) - Max Horz 2=123(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10

Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9 except 10=285(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8, 9, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 27,2022

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

			1	3-6-4	1
LOADING TCLL TCDL	G (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.17 BC 0.12	DEFL. in (loc) I/defl L/d Vert(LL) -0.01 4-7 >999 240 Vert(CT) -0.01 4-7 >999 180	PLATES GRIP MT20 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-MP	Horz(CT) 0.00 2 n/a n/a	Weight: 14 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-8-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 4=Mechanical, 2=0-4-8 (size) Max Horz 2=52(LC 9) Max Uplift 4=-18(LC 10), 2=-43(LC 6) Max Grav 4=134(LC 1), 2=200(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

0-0 <u>-10</u> 0-0-10			13-9-14 13-9-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.56 BC 0.37 WB 0.08 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a Weight: 44 lb FT = 20%	
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. 1=13-8-11, 3=13-8-11, 4=13-8-11 (size) Max Horz 1=-37(LC 15) Max Uplift 1=-29(LC 10), 3=-36(LC 11) Max Grav 1=222(LC 21), 3=222(LC 22), 4=551(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-371/147

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=7-5-1, 3=7-5-1, 4=7-5-1 Max Horz 1=46(LC 7) Max Uplift 1=-21(LC 10), 3=-27(LC 11) Max Grav 1=140(LC 1), 3=140(LC 1), 4=242(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

3x6 🥢

3x6 📎

Structural wood sheathing directly applied or 4-5-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	0-0-6 0-0-6 [2:0-3-0,Edge]		<u>4-5-13</u> <u>4-5-7</u>			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.09 BC 0.26 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) // - - 3	'defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3

REACTIONS. (size) 1=4-5-1, 3=4-5-1 Max Horz 1=25(LC 7) Max Uplift 1=-7(LC 10), 3=-7(LC 11) Max Grav 1=141(LC 1), 3=141(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

¹⁾ Unbalanced roof live loads have been considered for this design.

Max Horz 1=-50(LC 6) Max Uplift 1=-23(LC 10), 3=-29(LC 11)

Max Grav 1=154(LC 1), 3=154(LC 1), 4=266(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Max Grav 1=168(LC 1), 3=168(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

0-0-10			7-5-1			1
0-0-10			7-4-8			
Plate Offsets (X,Y)	[2:0-3-0,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.27 BC 0.46	DEFL. in Vert(LL) n/a Vert(CT) n/a	(loc) l/defl - n/a 9 - n/a 9	L/d PLATES 99 MT20 99	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	H012(C1) 0.00	3 n/a	Weight: 20 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SF	2 No.3	11	BRACING- TOP CHORD	Structural wood she	eathing directly applied or 6-0-0) oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=7-3-14, 3=7-3-14 Max Horz 1=-18(LC 15) Max Uplift 1=-14(LC 10), 3=-14(LC 11) Max Grav 1=237(LC 1), 3=237(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-256/136, 2-3=-256/136

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

