

THIS IS A TRUSS PLACEMENT DIAGRAM ONL		SHOP DRAWING APPROVAL	<u>G</u> APPROVAL
These trusses are designed as individual building components to be incorporated into the building designer is building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof system and for the overall structure. The design of the truss support LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS responsible for temporary and permanent bracing of the roof and foor system and for the overall structure. The design of the truss support LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS structure including header, beams, walls, and colurms is the responsibility of the building designer. For general guidance regarding bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, 583 D'Onifrio Drive; Madison, WI 53179. REVIEWED BY: CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU. DOI: DATE. DAT	specification of the THIS LAYOUT IS T ilding designer is upport LAYOUTS. REVIEV design of the truss support TO INSURE AGAIN wil 53179. REVIEWED BY:	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFOR TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU. REVIEWED BY: APPROVED BY:	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS AYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU. REVIEWED BY: DATE: DATE:
Job #: GHAZABF Plar	an: AZALEA FLOOR GAR RIGHT	R RIGHT BC TWAR AUDITED BY: ANSITTY AUDITED BY: ANSITTY TABLE AND AUDITED BY: AND AUDITED BY: AND AUDITED BY:	
Customer: GARMAN HOMES Dat	Date: 2/20/2023	CAROLINA STRUCTURAL SYSTEMS, LLC SIM, NO Penet 50-437 910-891-8004	Carolina Structural Systems
Site Address: Sale	les Rep: RW	ROOF DATA	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems
City, ST, ZIP: Des	Designer: JSP	Roof Area: 2125.57 SF	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd., Star, NC 27356 910-491-9004

Trenco 818 Soundside Rd Edenton, NC 27932

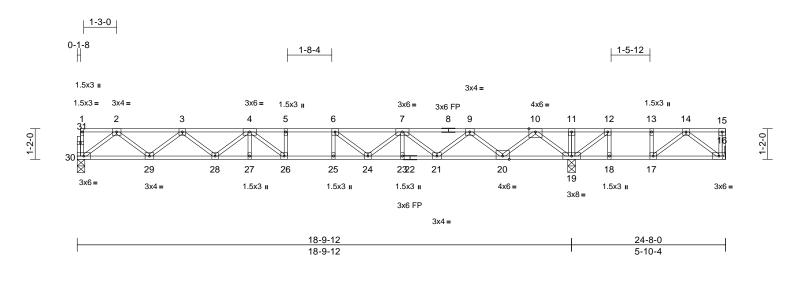
Re: GHAZABF Garman Homes - Azalea B Floor

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I56739107 thru I56739117

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844


February 21,2023

Gilbert, Eric

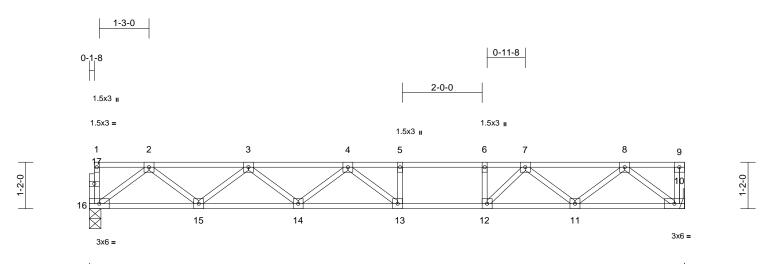
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F201	Floor	3	1	Job Reference (optional)	156739107

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:45 ID:jeRy?oGxhKyL3VdOavcfmizFTyQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:43.8
---------	--------

Scale = 1.45.0												-	
Loading	(psf)	Spacing	1-7-3		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.61	Vert(LL)	-0.25	25-26	>910	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.99	Vert(CT)	-0.34	25-26	>661	240	101120	244/100
BCLL	0.0	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.05	23-20 19	/a	n/a		
BCDL	5.0	Code		5/TPI2014	Matrix-S	0.52	11012(01)	0.05	19	n/a	n/a	Weight: 126 lb	FT = 20%F, 11%E
BCDL	5.0	Coue		J/TF12014	Matrix-0				-			Weight. 120 lb	FT = 20 /0F, TT /0E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 16= Mech 30=0-3-8 Max Uplift 16=-226 (eathing directly applie cept end verticals. applied or 2-2-0 oc nanical, 19=0-3-8, (LC 3)	5) d or 6) 7) LC	Provide mecl bearing plate joint 16. This truss is of International R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer	er(s) for truss to tr nanical connection capable of withst designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to e nails. Strongback ends or restraine o not erect truss to Standard	n (by oth anding 2 dance w sections ndard AN on edge ach truss ks to be d by othe	ers) of truss t 226 lb uplift at 3 R502.11.1 a NSI/TPI 1. 9, spaced at 5 with 3-10d attached to v er means.	t and					
FORCES	Max Grav 16=184 (I 30=732 (I (Ib) - Maximum Com	LC 10)	1),										
1011020	Tension	iprocolori/maximum											
TOP CHORD	1-30=-31/0, 15-16=- 2-3=-1540/0, 3-4=-2 5-6=-2930/0, 6-7=-2 9-10=-449/0, 10-11= 12-13=-96/887, 13-1	2482/0, 4-5=-2930/0, 2647/0, 7-9=-1796/0, =0/1674, 11-12=0/16 14=-96/887, 14-15=0,	/0										
BOT CHORD	26-27=0/2822, 25-2	,	930,								- AN	ORTH CA	ROLN
this desigr	11-19=-2/136, 2-30= 2-29=0/816, 10-20= 9-20=-1049/0, 3-28= 4-28=-435/0, 4-27=- 7-23=-10/29, 4-26=- 5-26=-153/0, 14-16= 12-19=-1205/0, 14-' 13-17=0/332, 6-24= ed floor live loads have	1144/0, 10-19=-148 0/1095, 3-29=-780/0, =0/445, 9-21=0/728, 50/80, 7-21=-727/0, 180/448, 7-24=0/412 =-215/402, 17=-722/0, 12-18=0/2 -521/0, 6-25=-96/147	2, 221,									SEA 0363	22 EER RUU


2) All plates are 3x3 MT20 unless otherwise indicated.

February 21,2023

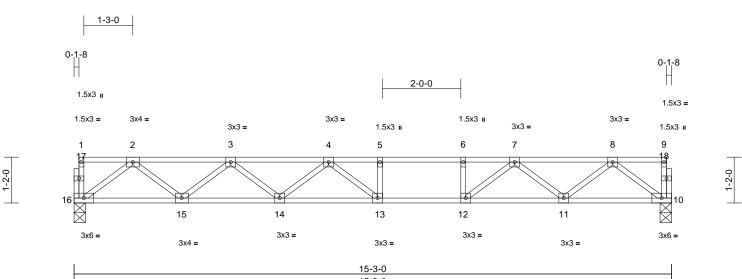
Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F202	Floor	9	1	Job Reference (optional)	156739108

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:47 ID:Ti3rugIqGew6WgbOaL4kmwzFTtD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-11-8 14-11-8

Scale = 1:29

Scale = 1:29												
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00	CSI TC BC	0.88 1.00	DEFL Vert(LL) Vert(CT)	in -0.20 -0.27	(loc) 13-14 13-14	l/defl >882 >644	L/d 480 240	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.04	10	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 75 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) Structural wood she 2-2-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 1-4-12 o	с									
REACTIONS	•	nanical, 16=0-3-8 LC 1), 16=642 (LC 1)									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD		2062/0, 4-5=-2170/0,										
BOT CHORD	15-16=0/795, 14-15 12-13=0/2170, 11-1	,	,									
WEBS	8-10=-1002/0, 2-16= 2-15=0/671, 7-11=-6 3-14=0/328, 4-14=-2 4-13=-251/221, 6-12	=-995/0, 8-11=0/645 663/0, 3-15=-649/0, 248/0, 5-13=-116/68	,								mmm	unn.
NOTES										3	"TH CA	ROUL
,	ed floor live loads have	e been considered fo	or							1	R	in Stalle
this design 2) All plates	n. are 3x3 MT20 unless o	otherwise indicated							4	22	1000	NA
	girder(s) for truss to trus								-	z	.0 -	min
	is designed in accorda										CEA	1 E
	nal Residential Code s 2 and referenced stand		ind						=	:	SEA	
5) Recomme 10-00-00 (0.131" X at their ou	end 2x6 strongbacks, c oc and fastened to eac 3") nails. Strongbacks uter ends or restrained N, Do not erect truss ba	on edge, spaced at ch truss with 3-10d s to be attached to w by other means.	alls						1100			EERA
											Eebruar	1111


February 21,2023

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F203	Floor	2	1	I56739109 Job Reference (optional)	

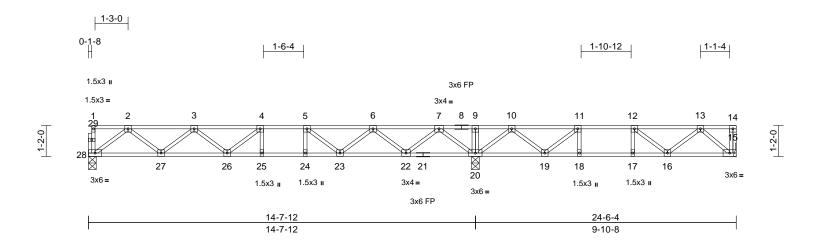
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:47 ID:B_IIq9SPuqudPGLfeoH06yzFTrk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	5	-3	-	0

Scale = 1:29.4

Scale = 1.29.4												
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00	CSI TC BC	0.78 0.74	DEFL Vert(LL) Vert(CT)	-0.27	(loc) 13-14 13-14	l/defl >924 >676	L/d 480 240	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2015/TPI2014	WB Matrix-S	0.33	Horz(CT)	0.03	10	n/a	n/a	Weight: 76 lb	FT = 20%F, 11%E
LUMBER			·									
TOP CHORD												
BOT CHORD WEBS	2x4 SP No.1(flat) 2x4 SP No.3(flat)											
OTHERS	2x4 SP No.2(flat)											
BRACING												
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or									
BOT CHORD			с									
REACTIONS	(size) 10=0-3-8, Max Grav 10=655 (I	, 16=0-3-8 ∟C 1), 16=655 (LC 1)									
FORCES	(lb) - Maximum Com		,									
	Tension											
TOP CHORD	1-16=-30/0, 9-10=-2 2-3=-1343/0, 3-4=-2											
	5-6=-2274/0, 6-7=-2											
	8-9=-2/0	,,										
BOT CHORD	15-16=0/812, 14-15	=0/1857, 13-14=0/2	328,									
	12-13=0/2274, 11-1											
WEBS	8-10=-1021/0, 2-16= 2-15=0/692, 7-11=-6		6,									
	7-12=0/676, 3-14=0											
	4-13=-231/250, 5-13		2/0								TH CA	11111
NOTES											WH CA	Rollin
1) Unbalance	ed floor live loads have	e been considered fo	or							N	R	2114
this design										5.	C FEOS	and and a
	are 3x3 MT20 unless on is designed in accordation in accordation in accordation in accordation in accordation in accordation in accord								4	Ì	K -	RAN
	nal Residential Code s		nd									1 1 1 E
	2 and referenced stand								=		SEA	∖L : =
	end 2x6 strongbacks, o								=		0363	22 : E
	oc and fastened to eac										. 0505	14 i E
	3") nails. Strongbacks		alls							-		1 3
LOAD CASE(ter ends or restrained	by other means.									N. ENG.	-ERIA S
LUAD CASE(Stanuaru									1	P. GIN	F.F. CR N
										1	A C	BEIN

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F204	Floor	8	1	Job Reference (optional)	156739110

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:47 ID:8G6VEXwJP07SQs5vEiyOWTzFTpr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

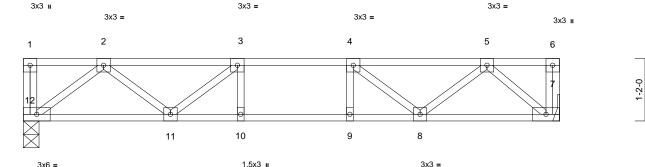
Page: 1

Scale = 1:43.6

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.51	Vert(LL)	-0.11	25-26	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.81	Vert(CT)	-0.15	25-26	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.03	15	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S		l `´´					Weight: 123 lb	FT = 20%F, 11%E
	· · ·	•	() This trues	is designed in seco	-	ith the 2015						:
LUMBER TOP CHORD	2x4 SP No.2(flat)			is designed in account nal Residential Code			nd					
BOT CHORD	()			2 and referenced sta			inu					
WEBS	2x4 SP No.2(flat) 2x4 SP No.3(flat)			end 2x6 strongbacks								
OTHERS	2x4 SP No.3(flat) 2x4 SP No.2(flat)			oc and fastened to e								
	2x4 01 10.2(lldt)			3") nails. Strongbad			alls					
BRACING TOP CHORD	Structural wood ob	eathing directly applie	ot their or	iter ends or restraine								
TOP CHORD	6-0-0 oc purlins, e			I, Do not erect truss								
BOT CHORD		y applied or 6-0-0 oc	LOAD CASE	(S) Standard								
BOT CHORD	bracing.			(-)								
REACTIONS	•	hanical, 20=0-3-8,										
	28=0-3-8											
	Max Grav 15=378	(LC 4), 20=1256 (LC 1	1),									
	28=576 ((LC 10)										
FORCES	(lb) - Maximum Cor	mpression/Maximum										
	Tension											
TOP CHORD	1-28=-34/0, 14-15=	-15/6, 1-2=-2/0,										
	,	1716/0, 4-5=-1814/0,										
	,	632/32, 7-9=0/1145,										
	9-10=0/1145, 10-11		- /-									
DOTOUDDD	,	2-13=-612/18, 13-14=0										
BOT CHORD		7=0/1570, 25-26=0/18										
	,	24=0/1814, 22-23=0/1	181,									(1 11)
	20-22=-266/60, 19-	,										1111
	18-19=-156/758, 17 16-17=-156/758, 15	,									IN TH CA	ROUL
WEBS	,	883/0, 7-20=-1103/0,								N	A	2.911's
WEBS	2-27=0/578, 7-22=0	, ,							/	32	CHERO'S	A. alla
	6-22=-751/0, 3-26=	, , ,							4	Ì		RAM
	,	=-525/0, 4-25=-149/4	8.						-		Q.	
		0=-781/0, 10-19=0/52							-		SEA	1 : 5
	11-19=-613/0, 11-1	8=0/172, 13-15=-550/	/0,						=	:		• –
	13-16=-63/250, 12-	16=-187/177,									0363	22 : =
	12-17=-148/0									6		
NOTES											·	A 1 8
1) Unbalance	ed floor live loads hav	e been considered for	r							2.0	NO ING	Ethick
this desigr	٦.									· · · ·	A CA	ET N
, ,	are 3x3 MT20 unless									1	A G	ILBUIN
Refer to gi	irder(s) for truss to tru	iss connections.									11111	in the second se
											Eebruary	21 2023

818 Soundside Road Edenton, NC 27932

February 21,2023


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F205	Floor	1	1	Job Reference (optional)	156739111

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Feb 20 12:58:47 ID:uVdMQTC4AfKi4vjr7nVTiPydUh6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-0 1-3-0

3x3 =

1.5x3 u

1-2-0

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.33	Vert(LL)	-0.06	10-11	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.58	Vert(CT)	-0.07	10-11	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	7	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%F, 11%E

10-0-4 10-0-4

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat)

BRACING

TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size) Max Grav	7= Mechanical, 12=0-3-8 7=537 (LC 1), 12=537 (LC 1)

(Ib) - Maximum Compression/Maximum FORCES

	lension
TOP CHORD	1-12=-36/0, 6-7=-27/0, 1-2=0/0, 2-3=-956/0,
	3-4=-1244/0, 4-5=-920/0, 5-6=0/0
BOT CHORD	11-12=0/647, 10-11=0/1244, 9-10=0/1244,
	8-9=0/1244, 7-8=0/589
WEBS	2-12=-811/0, 2-11=0/402, 3-11=-408/0,
	3-10=-79/93, 5-7=-772/0, 5-8=0/431,
	4-8=-442/0, 4-9=-66/106

NOTES

1) Unbalanced floor live loads have been considered for this design.

All plates are 3x3 MT20 unless otherwise indicated. 2)

3) Refer to girder(s) for truss to truss connections.

This truss is designed in accordance with the 2015 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

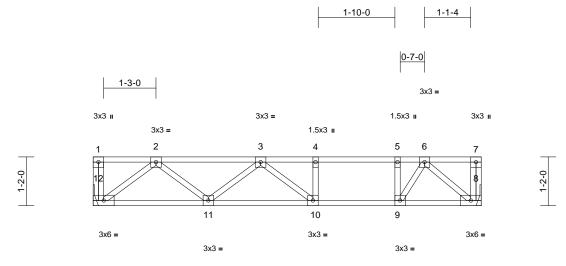
Recommend 2x6 strongbacks, on edge, spaced at 5) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

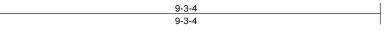
LOAD CASE(S) Standard

Page: 1

1-1-4

3x6 =




²x4 SP No.3(flat) WEBS

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F206	Floor	3	1	Job Reference (optional)	156739112

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:47 ID:pE_?ICvJzoHpcIYIuJoAGfzFTfX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.76	Vert(LL)	-0.09	10-11	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.58	Vert(CT)	-0.12	10-11	>896	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.01	8	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%F, 11%E

ГОР	CHORD	2x4

- BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.3(flat)
- WEBS

BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	ing directly applied or 10-0-0 oc	
	bracing.	
REACTIONS	(size)	8= Mechanical, 12= Mechanical
	Max Grav	8=397 (LC 1), 12=397 (LC 1)

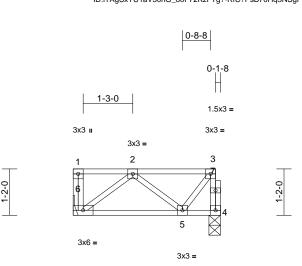
FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-12=-34/0, 7-8=-56/0, 1-2=0/0, 2-3=-700/0, 3-4=-728/0, 4-5=-728/0, 5-6=-728/0, 6-7=0/0 BOT CHORD 11-12=0/474, 10-11=0/863, 9-10=0/728, 8-9=0/429 WEBS 2-12=-595/0, 2-11=0/294, 3-11=-211/0, 6-8=-563/0, 3-10=-205/52, 4-10=-42/58,

- NOTES
- 1) Unbalanced floor live loads have been considered for this design.

5-9=-397/0, 6-9=0/594

- All plates are 3x3 MT20 unless otherwise indicated. 2)
- Refer to girder(s) for truss to truss connections. 3)
- This truss is designed in accordance with the 2015 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F207	Floor	1	1	Job Reference (optional)	156739113

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:48 ID:iTAgSxYU1aV30hG_80F72KzFTg?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.21	Vert(LL)	0.00	5-6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.09	Vert(CT)	-0.01	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	()											

0	•	• •	-	
D	Þ	۸	c	IN

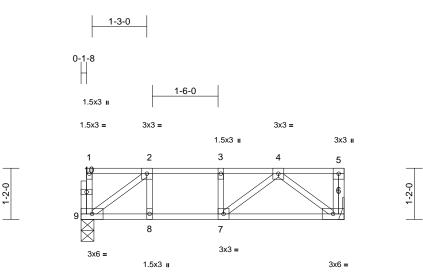
BRACING										
TOP CHORD	Structural wood sheathing directly applied or									
	3-8-8 oc purlins, except end verticals.									
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc									
	bracing.									
REACTIONS	(size) 4=0-3-8, 6= Mechanical									
	Max Grav 4=184 (LC 1), 6=190 (LC 1)									
FORCES	(lb) - Maximum Compression/Maximum									
	Tension									
TOP CHORD	1-6=-41/0, 3-4=-187/0, 1-2=0/0, 2-3=-89/0									
BOT CHORD	5-6=0/183, 4-5=0/11									
WEBS	2-6=-229/0, 2-5=-122/0, 3-5=0/130									

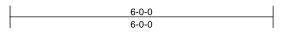
NOTES

1) Refer to girder(s) for truss to truss connections.

- 2) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard





Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	F208	Floor	7	1	Job Reference (optional)	156739114

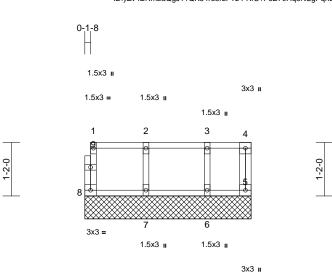
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:48 ID:SB4PQE0W9N4AM4Tk7U_2pFzFTgg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.3

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.25	Vert(LL)	-0.02	6-7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.25	Vert(CT)	-0.03	6-7	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 32 lb	FT = 20%F, 11%E

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6= Mechanical, 9=0-3-8
REACTIONS	(size) 6= Mechanical, 9=0-3-8 Max Grav 6=253 (LC 1), 9=248 (LC 1)
REACTIONS FORCES	
	Max Grav 6=253 (LC 1), 9=248 (LC 1)
	Max Grav 6=253 (LC 1), 9=248 (LC 1) (lb) - Maximum Compression/Maximum
FORCES	Max Grav 6=253 (LC 1), 9=248 (LC 1) (lb) - Maximum Compression/Maximum Tension
FORCES	Max Grav 6=253 (LC 1), 9=248 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-37/20, 5-6=-41/0, 1-2=-2/1, 2-3=-322/0,
FORCES TOP CHORD	Max Grav 6=253 (LC 1), 9=248 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-37/20, 5-6=-41/0, 1-2=-2/1, 2-3=-322/0, 3-4=-322/0, 4-5=0/0

NOTES


- 1) Unbalanced floor live loads have been considered for this design.
- 2) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Type Qty Ply		Garman Homes - Azalea B Floor	
GHAZABF	K201	Floor Supported Gable	1	1	Job Reference (optional)	156739115

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:48 ID:yZv4BRmbaQgJ11QK64ro3rzFTz4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-R							Weight: 19 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												

BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	3-7-8 oc j	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=3-7-8, 6=3-7-8, 7=3-7-8, 8=3-7-8
	Max Grav	5=41 (LC 1), 6=120 (LC 1), 7=152
		(LC 1), 8=52 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

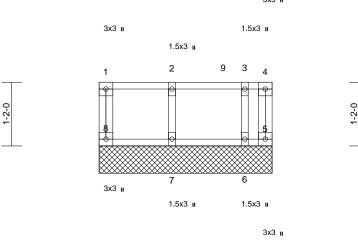
	lension
TOP CHORD	1-8=-48/0, 4-5=-34/0, 1-2=-7/0, 2-3=-7/0,
	3-4=-7/0
BOT CHORD	7-8=0/7, 6-7=0/7, 5-6=0/7
WEBS	2-7=-136/0, 3-6=-113/0

NOTES

- Gable requires continuous bottom chord bearing. 1)
- Truss to be fully sheathed from one face or securely 2)
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc. 3)
- This truss is designed in accordance with the 2015 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1



Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Floor	
GHAZABF	K202	Floor Supported Gable	1	1	Job Reference (optional)	56739116

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:48 ID:33B_wuwIWQJT51vqNJar5azFTyt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

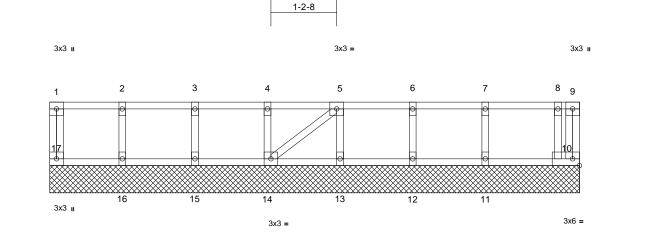
Page: 1

3x3 II

Scale = 1:21.1

-					1							1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2015	/TPI2014	Matrix-R							Weight: 18 lb	FT = 20%F, 11%E
LUMBER			7)	Hanger(s) or	other connection	n device(s) shall be						
TOP CHORD	2x4 SP No.2(flat)		,		ficient to support			91 lb					
BOT CHORD	2x4 SP No.2(flat)				-4 on top chord.								
WEBS	2x4 SP No.2(flat) *E	Except* 5-4,5-4:2x4 S			tion device(s) is t								
	No.3(flat)		8)		CASE(S) section			face					
OTHERS	2x4 SP No.3(flat)				are noted as front	t (F) or ba	ck (B).						
BRACING				AD CASE(S)		No. La come la cas		00					
TOP CHORD		eathing directly applie	ed or 1)	Plate Increa	or Live (balanced	i): Lumbe	r Increase=1	.00,					
	3-2-0 oc purlins, ex		_	Uniform Loa									
BOT CHORD	bracing.	/ applied or 10-0-0 or	ن		=-10, 1-4=-100								
REACTIONS	0	6=3-2-0, 7=3-2-0, 8=	220		ed Loads (lb)								
REACTIONS	(Size) 5=3-2-0, Max Uplift 5=-32 (L0		-0-2-0	Vert: 9=-	()								
	Max Grav 5=11 (LC		=180		. /								
		=58 (LC 2)	-100										
FORCES	(lb) - Maximum Con	npression/Maximum											
TODOLODD	Tension												
TOP CHORD	1-8=-54/0, 4-5=0/41 3-4=-7/0	, 1-2=-7/0, 2-3=-7/0,											
BOT CHORD	7-8=0/7, 6-7=0/7, 5-	-6=0/7											
WEBS	2-7=-164/0, 3-6=-21												
NOTES	,												
	uires continuous botto	m chord bearing.											
	e fully sheathed from											, in the second	11111
braced ag	ainst lateral movemen	nt (i.e. diagonal web).										IN TH CA	ROY
	ds spaced at 1-4-0 oc.										N	A	in the second second
	echanical connection										~~	C. FESS	O. S. S.
bearing pla 5.	ate capable of withsta	nding 32 lb uplift at jo	Dint							4	1)		h h
•••	is designed in accord	ance with the 2015											
	nal Residential Code s		nd								:	SEA	L : =
	2 and referenced stand									=		0363	22 =
6) Recomme	end 2x6 strongbacks, o	on edge, spaced at								-		0505	22 i E
	oc and fastened to eac										-	N	1 2
	3") nails. Strongbacks		alls								2.	N. En	Rik S
at their our	ter ends or restrained	by other means.									21	S, GIN	EFRAN
											1	C A	BEN
													allin
													1117
												Februar	y 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty Ply		Garman Homes - Azalea B Floor	
GHAZABF	K203	Floor Supported Gable	1	1	Job Reference (optional)	156739117

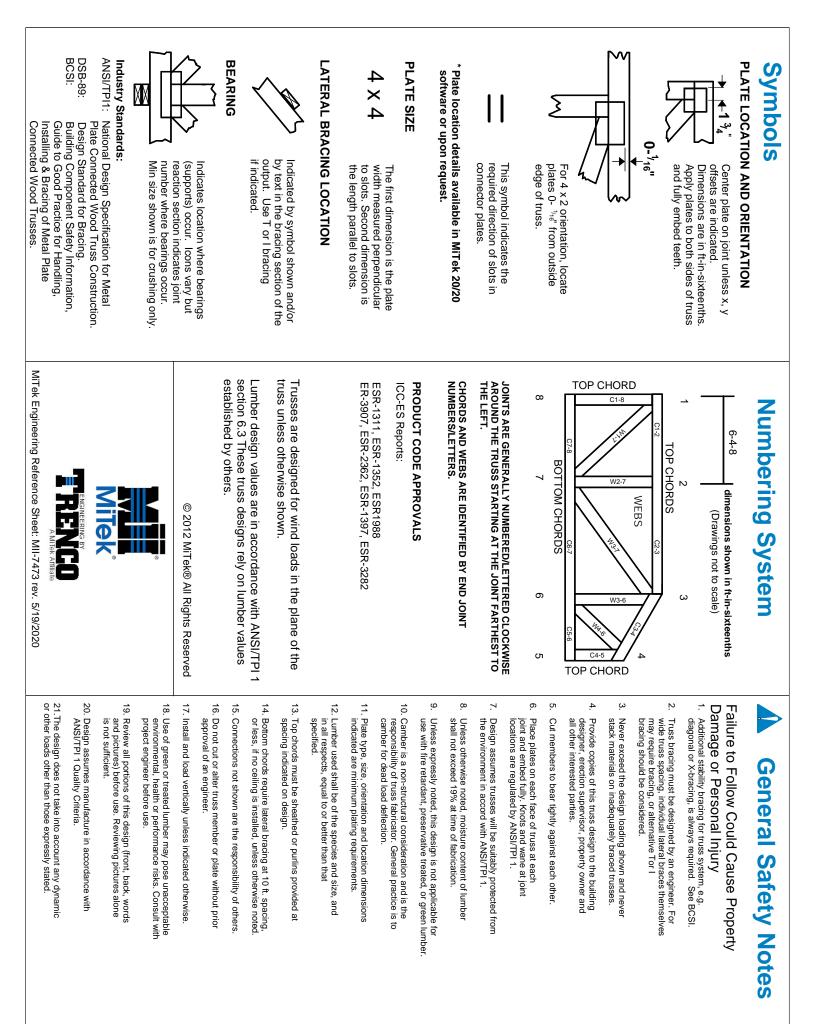
Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 12:58:48 ID:fm1Hsg5XDj3UmB_WBFq8fXzFTyf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

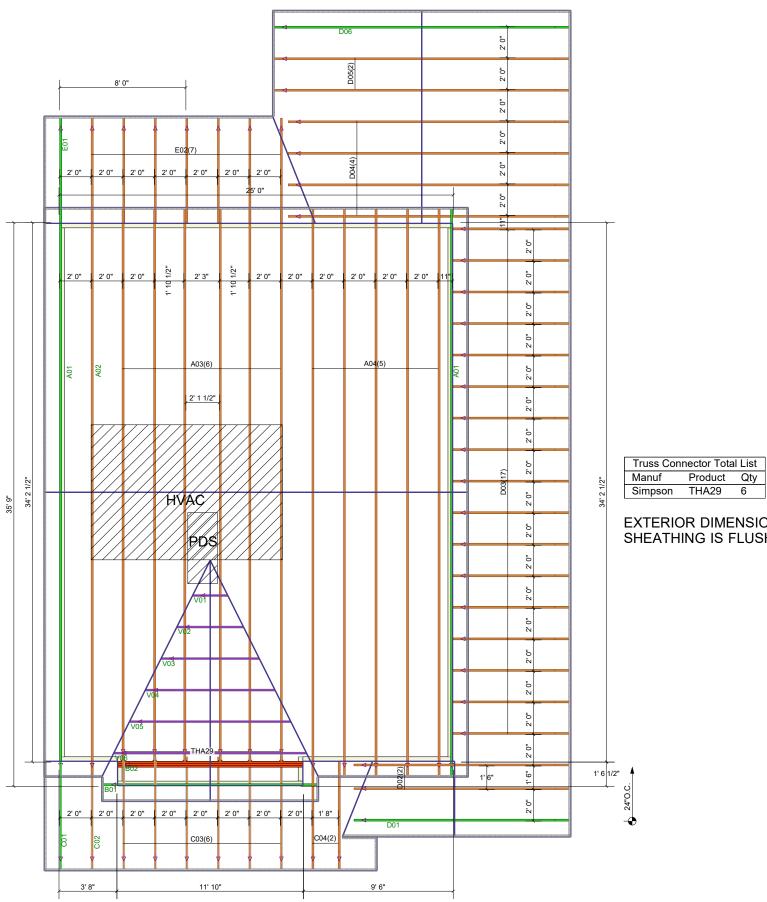
Page: 1

1-2-0

9-8-12 9-8-12

1-2-0


Scale = 1:21.2												
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	MT20	GRIP 244/190
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 46 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)		10-00-00 o (0.131" X 3	nd 2x6 strongbacks c and fastened to ") nails. Strongba er ends or restrain 5) Standard	each truss cks to be	with 3-10d attached to w	alls					
BRACING TOP CHORD	Structural wood she	eathing directly applie	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 o	с									
	13=9-8-1 16=9-8-1 Max Grav 10=95 (L 12=144 (14=163 (16=156 (LC 1), 13=131 (LC 1 LC 1), 15=145 (LC 1 LC 1), 17=52 (LC 1)	8-12, ,),									
FORCES		npression/Maximum										
TOP CHORD		/25, 1-2=0/0, 2-3=0/0 -6=-21/0, 6-7=-21/0,),									
BOT CHORD	16-17=0/0, 15-16=0 13-14=0/21, 12-13= 10-11=0/21	0/0, 14-15=0/0,									WITH CA	Della
WEBS	,	-132/0, 4-14=-134/0, -132/0, 7-11=-139/0, -26/0								- HI	ORTHOR	and the second s
NOTES										U		and the
/	are 1.5x3 MT20 unles uires continuous botto		J.								SEA	<u>г</u> : Е
-) Gable lequ		in choru bearing.									JLA	- : :


- Truss to be fully sheathed from one face or securely
- 3) braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Manuf Product Qty Simpson THA29 6

EXTERIOR DIMENSIONS ARE TO FACE OF SHEATHING. SHEATHING IS FLUSH TO FACE OF FOUNDATION.

G APPROVAL	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.	DATE:		Carolina Structural Systems	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd., Star, NC 27356 910-491-9004
SHOP DRAWING APPROVAL	I'HIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS AYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFOR TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU	APPROVED BY:	QUALITY AUDITED by: IBC 17042 ANSITT + 2002 IBC 2303.4 ANSITT + 2002 ANSITT + 2004 ANSITT + 2004	CAROLINA STRUCTURAL SYSTEMS, LLC Star, NC - Plant B0.437 S10-491-9004	ROOF DATA	Roof Area: 2125.57 SF
	ithis layout is the sole sou ayouts. Review and appro to insure against changes	REVIEWED BY:	n: AZALEA ROOF GAR RIGHT		RC	Roof /
ONLY	at the specification of the The building designer is e. The design of the truss support ¹ meral guidance regarding dison, WI 53179.	<u> </u>	Plan: AZALEA RC	Date: 2/20/2023	Sales Rep: RW	Designer: JSP
THIS IS A TRUSS PLACEMENT DIAGRAM ONL	These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer is building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support LAYOUTIS. REVIEW AND APPROVAL OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS structure including headers, beams, walls, and columms is the responsibility of the building designer. For general guidance regarding bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, 583 D'Onifrio Drive, Madison, WI 53179.		Job #: GHAZABR	Customer: GARMAN HOMES	Site Address:	City, ST, ZIP:

Trenco 818 Soundside Rd Edenton, NC 27932

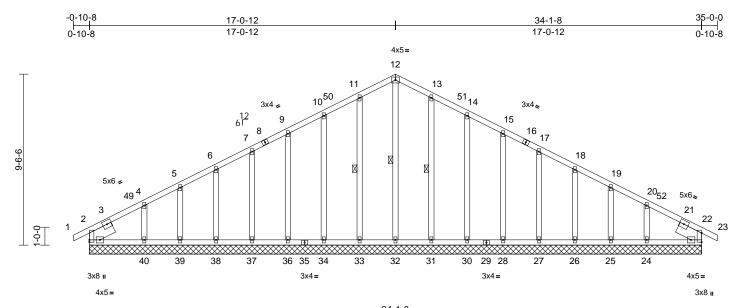
Re: GHAZABR Garman Homes - Azalea B Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I56739322 thru I56739345

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844


February 21,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	A01	Common Supported Gable	2	1	Job Reference (optional)	156739322

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:12 ID:C62DD1be73YP1J7KS27d0BzFmPN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.2

34-1-8

Scale = 1:64.2												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI201	CSI TC BC WB 4 Matrix-AS	0.08 0.08 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 SUIDER L BRACING TOP CHORD 5 BOT CHORD 5 BOT CHORD F WEBS 1 REACTIONS (si	tx4 SP No.2 tx4 SP No.2 tx4 SP No.3 .eft 2x8 SP No.2 1 - 1-6-0 Structural wood she Rigid ceiling directly Row at midpt ze) 2=34-1-8 36=34-1-5 36=34-1-5 36=34-1-5 36=34-1-5 45=34-1-6 45=34-1-6 28=-34 (L 28=-19 (L 31=-10 (L 31=-10 (L 33=-22 (L 24=226 (L 24=226 (L 26=165 (L 28=160 (L) 31=164 (L)	Li-6-0, Right 2x8 SP N athing directly applie applied. 12-32, 11-33, 13-31 22=34-1-8, 24=34-1 3, 26=34-1-8, 27=34- 3, 33=34-1-8, 31=34- 3, 33=34-1-8, 31=34- 3, 37=34-1-8, 31=34- 3, 37=34-1-8, 31=34- 3, 37=34-1-8, 41=34- 3 C 10), 41=-140 (LC 1 C 12), 25=-9 (LC 12) C 12), 36=-19 (LC 12) C 12), 27=198 (LC 1) C 18), 22=198 (LC 1) C 22), 30=160 (LC 1) C 22), 30=160 (LC 1)	TOP CHOP No.2 d. BOT CHOP -8, 1-9, 1-	 RD 1-2=0/23, 2-4=-1: 5-6=-117/94, 6-7: 9-10=-98/218, 10 11-12=-125/294, 13-14=-113/262, 15-17=-84/179, 1 18-19=-83/96, 19 22-23=0/23 RD 2-40=-26/83, 39-4 37-38=-26/83, 32 30-31=-26/83, 28 26-27=-26/83, 28 26-27=-26/84	110/137 -11=-113 12-13=-1 14-15=-9 7-18=-77 -20=-92/6 40=-26/8 -33=-26/8 -	7, 7-9=-103/177 7/260, 25/296, 8/219, 1/13	7, 40, 3, 33, 33, 33, 33, 129, 2	 7) This cho 8) * Thomage of the set o	s truss h ord live k his truss the botto 6-00 tall ord and a vide me aring pla 23 lb up fit at join 22 lb up fit at join 22 lb up fit at join veled pla face with s truss is ernationa 02.10.2 is s truss of ictural w bottom	has bee bad noo has be by 2-0 any oth chanic te capa biffat j t 37, 22 biffat j t 30, 12 t 30, 12 t 24. ate or s s design russ s design la Resi and ref lesign 1/2" gyl cchord.	ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit er members. cal connection (by able of withstandi oint 34, 19 lb upli 2 lb uplift at joint oint 40, 10 lb upli 9 lb uplift at joint oint 26, 9 lb uplift shim required to p chord at joint(s) ned in accordand dential Code sect ferenced standard requires that a mi neathing be applic psum sheetrock t	10.0 psf bottom any other live loads a live load of 20.0p lere a rectangle between the botton r others) of truss to ng 10 lb uplift at joi ft at joint 36, 19 lb 38, 9 lb uplift at joi ft at joint 31, 23 lb 28, 19 lb uplift at jo at joint 25 and 49 l rovide full bearing 22. se with the 2015 ions R502.11.1 and d ANSI/TPI 1. inimum of 7/16"
	36=160 (L 38=165 (L 40=239 (L 45=198 (L	.C 21), 34=160 (LC 1 C 21), 37=159 (LC 1 C 21), 39=140 (LC 1 C 17), 41=202 (LC 1 C 17), 41=202 (LC 1 C 1)), right ex), for rear 8), DOL=1 8), 3) Truss only. F see Sta or cons	posed;C-C for membe	rs and fo DOL=1.60 s in the p ind (norm End Deta esigner a	rces & MWFRS) plate grip lane of the trus al to the face), ils as applicabl s per ANSI/TPI	S ss le,			A A A A A A A A A A A A A A A A A A A	SEA 0363	22 EER A

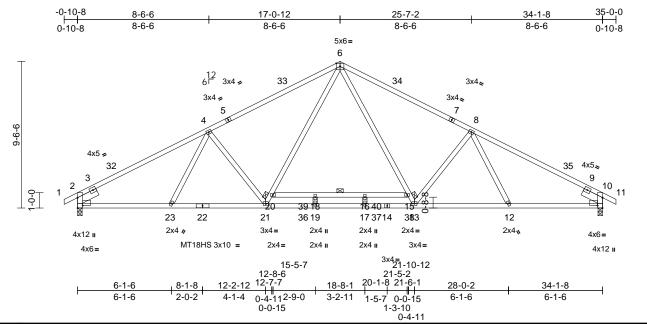
5) Gable requires continuous bottom chord bearing.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof			
GHAZABR	A01	Common Supported Gable	2	1	Job Reference (optional)	156739322		
Carolina Structural Systems (Sta	r, NC)), Ether, NC - 27247,	Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:12						

ID:C62DD1be73YP1J7KS27d0BzFmPN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	A02	Common	1	1	Job Reference (optional)	156739323

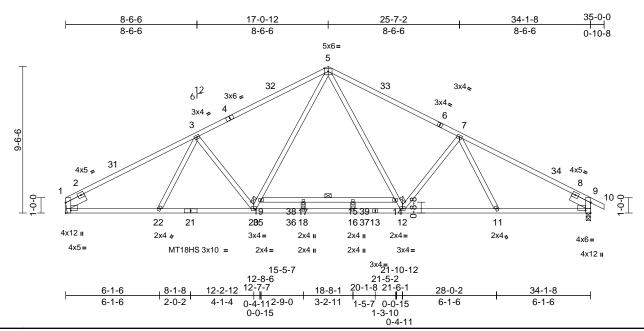
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:15 ID:tf5tYuC7FRmmyWer5P?HmIzFmM?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.9

Plate Offsets (X, Y): [2:0-4-0,0-6-1], [10:0-4-0,0-6-1]

		1	-				-			-			
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.91	Vert(LL)	-0.42	17-19	>967	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		вс	0.99	Vert(CT)	-0.80	17-19	>513	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	NO		WB	0.46	Horz(CT)	0.13	10	n/a	n/a		
BCDL	10.0	Code		5/TPI2014	Matrix-AS		- (-)					Weight: 196 lb	FT = 20%
												····	
LUMBER			2)		7-10; Vult=120mp								
TOP CHORD	2x4 SP No.1 *Excep	ot* 1-5,7-11:2x4 SP D	SS		n; TCDL=6.0psf; B								
BOT CHORD	2x4 SP DSS *Excep	t* 22-14:2x4 SP No.4	1,		ft; eave=4ft; Cat. I								
	20-15:2x4 SP No.2				ectional) and C-C I								
WEBS	2x4 SP No.3				r (1) 2-6-7 to 17-0-								
SLIDER	Left 2x6 SP No.2 7		nterior (1) 20-5-11			ilever							
	1-6-0				exposed ; end ver								
BRACING					for members and			or					
TOP CHORD	Structural wood she	athing directly applie	d.		own; Lumber DOL	=1.60 pi	ate grip						
BOT CHORD	Rigid ceiling directly		3)	DOL=1.60	MT20 plates unle	oo otho	nuine indicat	- d					
	6-0-0 oc bracing: 15	-20	3) 4)		2x4 MT20 unless								
REACTIONS	(size) 2=0-3-8, 2	10=0-3-8	4 <i>)</i> 5)		s been designed f								
	Max Horiz 2=-140 (L	.C 10)	5)		ad nonconcurrent v			ade					
	Max Uplift 2=-21 (LC	2 12), 10=-21 (LC 12)) 6)		as been designed								
	Max Grav 2=1508 (L	_C 1), 10=1508 (LC 1	1) 0,		n chord in all areas			opsi					
FORCES	(lb) - Maximum Com	pression/Maximum			y 2-00-00 wide wi			tom					
	Tension				v other members.								
TOP CHORD	1-2=0/23, 2-4=-2271	/92, 4-6=-2130/81,	7)	Provide mec	hanical connection	(by oth	ers) of truss	to					
	6-8=-2136/79, 8-10=	-2268/88, 10-11=0/2	23	bearing plate	capable of withsta	anding 2	21 lb uplift at	joint					
BOT CHORD	2-23=-68/2031, 21-2			2 and 21 lb ι	plift at joint 10.								
	19-21=0/1582, 17-1	,	, ,		designed in accord								
	12-13=0/1978, 10-12		90/0,		Residential Code			and					111.
	16-18=-90/0, 15-16=				nd referenced stan							N'LL CA	D
WEBS	6-15=0/836, 13-15=				sign requires that							"ATH UN	TOY
	8-12=-115/38, 20-21	, ,			od sheathing be a						5	ONVESS	in the second
	4-21=-418/163, 4-23	3=-105/66, 18-19=-68	3/0,		2" gypsum sheetro	ock be a	pplied directl	y to				OFLOY	A STA
	16-17=-79/0			the bottom c						2	V	let 1	1 n/h
NOTES				DAD CASE(S)	Standard					- 2			
	ed roof live loads have	been considered for								-		SEA	L : =
this desigr	٦.									=	:		• –
										1		0363	ZZ : :
													1 2
											1	· •	all S
											2.5	S. S.NGINI	ENIAS
											1	710	The second
												A G	ILBE.



G١ Thummin . February 21,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	A03	Common	6	1	Job Reference (optional)	156739324

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:15 ID:rqbcwy6gkA?jIO_z9pJZVMzFmIF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.9

Plate Offsets (X, Y): [1:0-4-0,0-6-1], [9:0-4-0,0-6-1]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.91 0.99 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.80 0.13	(loc) 16-18 16-18 9	l/defl >968 >513 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 194 lb	GRIP 244/190 244/190 FT = 20%
	2x4 SP DSS *Excep 19-14:2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 1-6-0 Structural wood shea Rigid ceiling directly 6-0-0 oc bracing: 14	-19 nical, 9=0-3-8 C 10) 12)	, o.2	Vasd=95mpl B=45ft; L=34 MWFRS (dir 3-4-15, Interi 17-0-12 to 20 cantilever lef right expose for reactions DOL=1.60 All plates are All plates are This truss ha chord live loa * This truss f	7-10; Vult=120mp n; TCDL=6.0psf; Bd ft; eave=4ft; Cat. II ectional) and C-C f or (1) 3-4-15 to 17 D-5-11, Interior (1) t and right exposed d;C-C for members shown; Lumber Dd e MT20 plates unle e 2x4 MT20 unless is been designed for ad nonconcurrent v has been designed in chord in all areas	CDL=6. I; Exp B Exterior -0-12, E 20-5-11 d; end v and for OL=1.60 ss other otherwidd oth	Dpsf; h=29ft; Enclosed; (2) 0-0 to xterior (2) to 35-0-0 zor rertical left an ccs & MWFR) plate grip wise indicate se indicated. 0 psf bottom other live loa e load of 20.0	ıd ≳S ıd. ds.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall b	by 2-00-00 wide will by other members,	l fit betv	veen the botto						
TOP CHORD	1-3=-2276/58, 3-5=-2 7-9=-2269/87, 9-10=	2132/86, 5-7=-2138/7 0/23	'9, 7) 8)	Refer to gird	er(s) for truss to tru hanical connection	iss conr	ections.						
BOT CHORD	,	3=0/1583, 12-16=0/15 =-57/1929, 17-19=-90	,	bearing plate 9. This truss is	e capable of withstandesigned in accord Residential Code	anding 2 Jance w	1 lb uplift at j	oint				, minim	1000
WEBS NOTES	5-14=0/836, 12-14=0 7-11=-115/56, 19-20	0/713, 7-12=-415/165	10	R802.10.2 at) This truss de structural wo	nd referenced stan sign requires that od sheathing be a 2" gypsum sheetro	dard AN a minim oplied d	ISI/TPI 1. um of 7/16" rectly to the t	top		4	- AL	OP OFESS	ROLL

- 1) Unbalanced roof live loads have been considered for this design.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	A04	Common	5	1	Job Reference (optional)	156739325

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:16 ID:tf5tYuC7FRmmyWer5P?HmIzFmM?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 35-0-0 8-6-6 17-0-12 25-7-2 34-1-8 0-10-8 8-6-6 8-6-6 8-6-6 8-6-6 0-10-8 5x6 =6 12 61 3x4 🚽 27 28 3x4 3x4 3x4. 5 7 л 8 9-9-6 4x5 🦻 4x5 👟 26 29 9 10 11 0-0-17 16 15 30 14 13 12 2x4 🏿 3x4= 3x4= 3x4= 2x4, 3x12 u 4x5= MT18HS 3x10 = 4x5= 3x12 " 12-2-12 21-10-12 28-0-2 34-1-8 6-1-6 -6-1-6 6-1-6 9-8-0 6-1-6 6-1-6

Scale = 1:66.2 Plate Offsets (X, Y): [2:0-3-0,0-6-9], [10:0-3-0,0-6-9]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.96	Vert(LL)	-0.37	13-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.65	13-15	>633	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.12	10	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-AS							Weight: 181 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	LUMBER 5) * This truss has been designed for a on the bottom chord in all areas whe one of the bottom chord and any other members, with the one of the bottom chord in all areas whe one of the bottom chord in all areas whe one of the bottom chord in all areas whe one of the bottom chord and any other members. State 2 and 76 lb uplift at joint 10. The true in designed in accordance of the one of						a rectangle veen the bott DL = 10.0ps ers) of truss 6 lb uplift at j ith the 2015	tom .f. to joint					
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=-140 (L Max Uplift 2=-76 (LC	0=0-3-8 C 10)	8)	This truss de structural wo	nd referenced sta sign requires that od sheathing be 2" gypsum shee	at a minim applied d	um of 7/16" rectly to the						

	Max Grav 2=1418 (LC 1), 10=1418 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/23, 2-4=-2114/131, 4-6=-1850/195,
	6-8=-1853/193, 8-10=-2110/132, 10-11=0/23
BOT CHORD	2-17=-86/1807, 15-17=-41/1827,
	13-15=0/1299, 12-13=-47/1793,
	10-12=-76/1785
WEBS	6-13=-12/692, 8-13=-446/149, 8-12=-69/111,
	6-15=-15/671, 4-15=-449/147, 4-17=-55/123

Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=120mph (3-second gust)

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft;

B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to

2-6-7, Interior (1) 2-6-7 to 17-0-12, Exterior (2) 17-0-12

All plates are MT20 plates unless otherwise indicated.

chord live load nonconcurrent with any other live loads.

This truss has been designed for a 10.0 psf bottom

to 20-5-11, Interior (1) 20-5-11 to 35-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

NOTES

this design.

DOL=1.60

1)

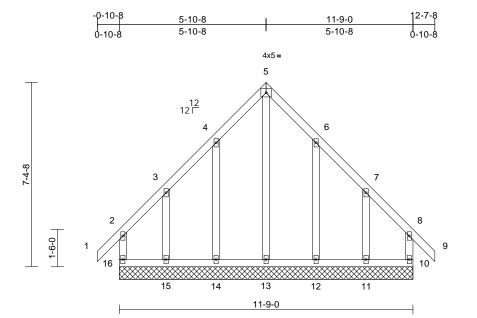
2)

3)

4)

chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


\cap "THILLING WARNERS WWWWWWWW SEAL 036322 G mmm February 21,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	B01	Common Supported Gable	1	1	Job Reference (optional)	156739326

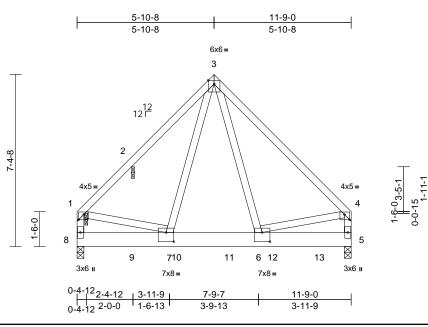
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:16 ID:dfexAsVVXpTI_8N2buA2DJzFmcP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.1

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.09 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%	
6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 10=11-9-0 13=11-9-0 16=11-9-0 Max Horiz 16=-171 (I Max Uplift 10=-74 (LI 15=-85 (LI Max Grav 10=182 (L 12=175 (L 14=174 (L 16=189 (L FORCES (Ib) - Maximum Com TOP CHORD 2-16=-148/101, 1-2= 3-4=-108/155, 4-5=- 8-10=-143/99 BOT CHORD 15-16=-88/79, 14-15	applied or 6-0-0 oc 0, 11=11-9-0, 12=11-9-(0, 14=11-9-0, 15=11-9-(10 C 9), 11=-81 (LC 8), C 12), 14=-51 (LC 12), C 9), 16=-80 (LC 8) C 17), 11=215 (LC 18), 10, 13=284 (LC 12), C 18), 13=284 (LC 12), C 17), 15=219 (LC 17), C 18), 19ression/Maximum 60/43, 2-3=-114/103, 184/244, 5-6=-184/244, 106/95, 8-9=0/43, 5=-88/79, 10-11=-88/79, 1=-147/103, 2=-147/103,	Vasd=95mpl B=45ft; L=22 MWFRS (dir 1-10-8, Ext to 8-10-8, Ext left and right exposed;C-C reactions sh DOL=1.60 3) Truss desig only. For stu see Standarn or consult qu 4) All plates are 5) Gable requir 6) Truss to be f braced agair), 7) Gable studs), 8) This truss ha chord live loo 9) * This truss ha chord live loo 9) * This truss ha chord live loo 3-06-00 tall t chord and ar 16, 74 lb upl uplift at joint joint 11. 11) This truss is International	7-10; Vult=120mp ; TCDL=6.0psf; Bu lectional) and C-C (rior (2) 1-10-8 to 5- tterior (2) 8-10-8 to exposed ; end ver C for members and pwn; Lumber DOL= med for wind loads ids exposed to wind d Industry Gable En- lailfied building des e 2x4 MT20 unless es continuous botte ully sheathed from ist lateral movement spaced at 2-0-0 oc is been designed from ad onconcurrent who hanical connection e capable of withsta ft at joint 10, 51 lb 15, 51 lb uplift at jo designed in accord Residential Code sind Standard	CDL=6.(I; Exp B; Corner (10-8, CC 10-8, CC 12-7-8 tical left forces 8 =1.60 pla in the pld (norm nd Detais in the pld (norm nd Detais isigner as otherwise or a 10.(vith any for a liv s where I fit betw (by other anding 8 uplift at pint 12 a dance wise sections	Dipsf; h=29ft; Enclosed; 3) -0-10-8 to ormer (3) 5-10- zone; cantilev and right & MWFRS for ate grip ane of the true at to the face) lis as applicab s per ANSI/TP se indicated. d bearing. e or securely iagonal web). D psf bottom other live loac e load of 20.00 a rectangle veen the botto ers) of truss to 0 bu uplift at jo joint 14, 85 lb nd 81 lb uplift th the 2015 R502.11.1 ar	er ss le, l 1. ss. osf m int at		4	23	SEA 0363	L 22 EER. H	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI minimum) February 21,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	B02	Common Girder	1	3	Job Reference (optional)	156739327

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:16 ID:9PwNHcBZWPFUzXMSZEJHrDzFmAP-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

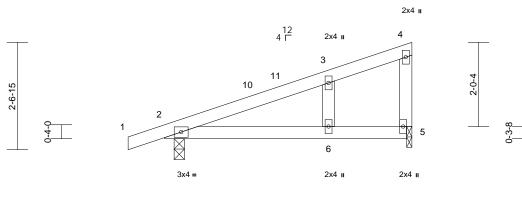
Page: 1

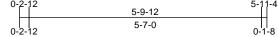
Scale = 1:49.4

Plate Offsets (X, Y): [1:0-2-12,Edge], [4:0-2-12,Edge], [6:0-4-0,0-4-12], [7:0-4-0,0-4-12]


		1										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.33	Vert(LL)	-0.02	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.03	6-7	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.34	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI	2014 Matrix-MS							Weight: 284 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SP No.2 2x4 SP No.3 *Exce Structural wood sh 6-0-0 cc purlins, e Rigid ceiling directl bracing. (size) 1=0-1-8, Max Horiz 8=-147 (Max Uplift 2=-112 (Max Grav 1=3046 5=4325 (lb) - Maximum Con Tension	pt* 8-1,5-4:2x4 SP No eathing directly applie xcept end verticals. y applied or 10-0-0 oc 2=0-1-8, 5=0-3-8, 8= LC 6) LC 8) (LC 14), 2=253 (LC 13 (LC 1), 8=1974 (LC 13) mpression/Maximum	4) Wir Vas B=2 b.2 MW enc dor plat cho 5) Thi cho 5) * Th 0-3-8 3-0 cho 3), 7) Pro bea 9 8) Pro bea 2.	d: ASCE 7-10; Vult=120 d=95mph; TCDL=6.0psf 5ft; L=24ft; eave=4ft; Ca FRS (directional); cantill vertical left and right exp e grip DOL=1.60 s truss has been designe rd live load nonconcurre is truss has been design he bottom chord in all ar 8-00 tall by 2-00-00 wide rd and any other membe vide mechanical connect ring plate at joint(s) 1, 2. vide mechanical connect ring plate capable of with	; BCDL=6. t. II; Exp E ever left ar boosed; Lur d for a 10. nt with any- led for a li- eas where will fit bet- rs. ion (by oth istanding	Opsf; h=29ft; ; Enclosed; d right expose nber DOL=1.6 0 psf bottom other live load or load of 20.0 a rectangle ween the botto ers) of truss to inters) of truss to inters) of truss to	60 ds. Dpsf om o joint					
TOP CHORD	1-8=0/0, 4-5=-3212		sur	surface with truss chord at joint(s) 1, 2.								
BOT CHORD WEBS	7-8=-58/237, 6-7=0 1-7=0/2322, 4-6=0/ 3-6=0/2480		Ínte	10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.								
 (0.131"x3" Top chords oc. Bottom chi staggered Web conni 2) All loads a except if m CASE(S) s provided tu unless oth 	ords connected as fo at 0-7-0 oc. ected as follows: 2x4 re considered equall oted as front (F) or b section. Ply to ply cor o distribute only loads erwise indicated. ed roof live loads hav	vs: 2x4 - 1 row at 0-9- llows: 2x8 - 3 rows - 1 row at 0-9-0 oc. y applied to all plies, ack (B) face in the LO unections have been	diad 12) Har 0 pro lb d at 8-4 The res AD LOAD (1) De Pl Ur Co	between inside of top c onal or vertical web sha oger(s) or other connectii vided sufficient to suppor own at 0-1-12, 1435 lb d I-3-4, 1435 lb down at 6 12, and 1435 lb down at 6 design/selection of suct onsibility of others. CASE(S) Standard ead + Roof Live (balance ate Increase=1.00 iiform Loads (lb/ft) Vert: 1-3=-60, 3-4=-60, 4 noncentrated Loads (lb) Vert: 8=-1443 (B), 9=-14 11=-1435 (B), 12=-1435	Il not exce on device(: t concentr down at 2: -6-4, and : -10-4-12 in connection d): Lumbe 5-8=-20 -35 (B), 10	ed 0.500in. s) shall be ated load(s) 1: 4-4, 1435 lb di 4-435 lb down a on bottom cho n device(s) is r Increase=1.1 =-1435 (B),	lown at rd. s the		Contraction of the second seco	The second se	SEA 0363 VGINI February	ER.K.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	C01	Monopitch Structural Gable	1	1	Job Reference (optional)	156739328

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:17 ID:YSjQsDVxfEfmeJBykVoVoRzFmIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.39	Vert(LL)	0.10	6-9	>687	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.13	6-9	>545	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-AS							Weight: 24 lb	FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.2 Structural wood shea	0 7 11	 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 										
BOT CHORD	except end verticals. Rigid ceiling directly applied.		() ()	bearing pla	e at joint(s) 5.		,						

- **REACTIONS** (size) 2=0-3-0, 5=0-1-8 Max Horiz 2=64 (LC 11) Max Uplift 2=-82 (LC 12), 5=-58 (LC 12) Max Grav 2=292 (LC 1), 5=231 (LC 1) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=0/17, 2-3=-121/83, 3-4=-62/50, 4-5=-127/110 2-6=-107/99, 5-6=-30/33 BOT CHORD WEBS 3-6=-63/26

NOTES

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable studs spaced at 2-0-0 oc. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

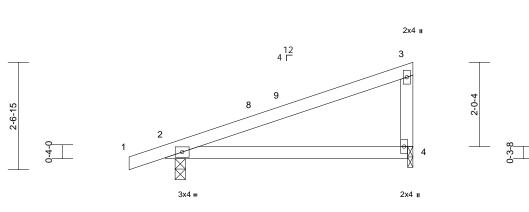
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 2 and 58 lb uplift at joint 5.
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

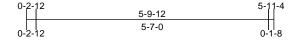
LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	C02	Monopitch	1	1	Job Reference (optional)	156739329

5-11-4

5-11-4


-0-10-8


0-10-8

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon Feb 20 13:02:17 ID:ZMPPrwxadoetQcnqC_RP6XzFmja-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1.27 7

TOP CHORD

BOT CHORD

REACTIONS

FORCES

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.46	Vert(LL)	0.10	4-7	>722	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.37	Vert(CT)	-0.11	4-7	>634	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		bearing plat 2 and 58 lb 7) This truss is Internationa	chanical connect e capable of with uplift at joint 4. s designed in acc Il Residential Coo	nstanding 8 ordance w de sections	2 lb uplift at j ith the 2015 s R502.11.1 a	joint					

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

This truss design requires that a minimum of 7/16" 8) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

(size)

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

except end verticals.

Max Horiz 2=64 (LC 11)

Rigid ceiling directly applied.

Structural wood sheathing directly applied,

2=0-3-0, 4=0-1-8

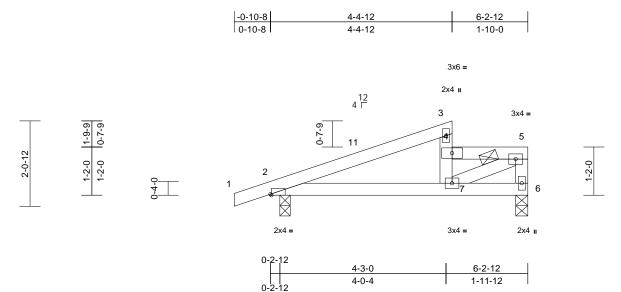
Max Uplift 2=-82 (LC 12), 4=-58 (LC 12) Max Grav 2=292 (LC 1), 4=231 (LC 1)

(Ib) - Maximum Compression/Maximum

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value 4) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

the second SEAL 036322 G mmm February 21,2023



Job	Truss	Truss Type Qty Ply Garman Homes - Azalea B Roof				
GHAZABR	C03	Half Hip	6	1	Job Reference (optional)	156739330

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:17 ID:Cd9t6qWutUZavkPtJC99SozFni5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

i ug

Scale = 1:27.9

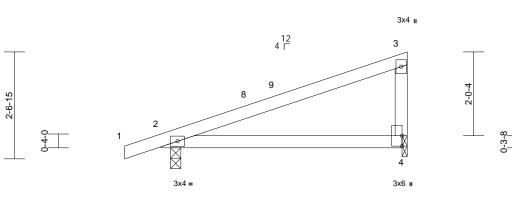
Plate Offsets (X, Y): [2:0-0-5,Edge]

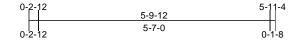
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.76	DEFL Vert(LL) Vert(CT)	in -0.02 -0.04	(loc) 7-10 7-10	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC201	5/TPI2014	WB Matrix-MP	0.25	Horz(CT)	0.00	6	n/a	n/a	Weight: 25 lb	FT = 20%
BOT CHORD Rigid ceiling bracing. REACTIONS (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2 FORCES (b) - Maxin Tension TOP CHORD 1-2=0/17, 2	2 3 wood she irlins, exurlins, (6-C g directly 2=0-3-0, (2=51 (LC 2=-16 (LC 2=-337 (L1 num Con 2-3=-369/, , 4-5=-53 5, 6-7=-1 7 ads have =120mpf .0psf; BC ft; Cat. II; nd C-C E to 6-1-0 ticoal left as s & MWF e grip DC age to p p signed fo surrent w esigned fall areas wide will	9) C 12) C 1), 6=420 (LC 1) hpression/Maximum (13, 4-7=-166/54, 19/80, 5-6=-413/50 3/15 been considered for a (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) -0-10-8 to zone; cantilever left a and right exposed;C-C RS for reactions show DL=1.60 revent water ponding. r a 10.0 psf bottom ith any other live load for a live load of 20.0p where a rectangle	d or 8) 9) L(1) nd ; vn; s. ssf	bearing plate 2. This truss is International R802.10.2 at Load case(s) designer mui correct for th Graphical pu or the orienta bottom choror DAD CASE(S) Dead + Roor Plate Increa Uniform Loa	Standard of Live (balanced) ase=1.00 ads (lb/ft) =-61, 4-5=-170, 6-	anding 1 dance w sections ndard AN modified verify tha this truss a does no along the Lumber	6 lb uplift at j ith the 2015 is R502.11.1 a ISI/TPI 1. d. Building at they are s. bt depict the s top and/or	oint Ind size				SEA 0363	22 EERER III

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	C04	Monopitch	2	1	Job Reference (optional)	156739331

5-11-4

5-11-4


-0-10-8


0-10-8

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:17 ID:pCZxbxUNvC8UfLvZCK6WsvzFmZr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ე-3-^გ

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.41	Vert(LL)	0.05	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.05	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 22 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP No.2

Scale = 1:27.8

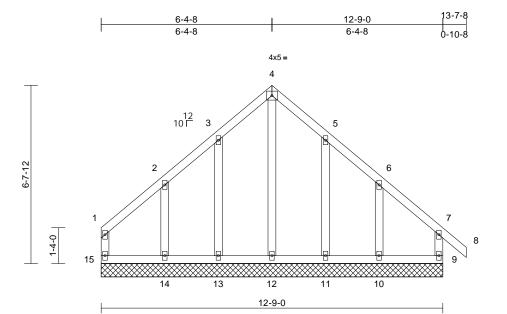
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	2=0-3-0, 4=0-1-8
	Max Horiz	2=103 (LC 12)
	Max Uplift	2=-68 (LC 12), 4=-72 (LC 12)
	Max Grav	2=292 (LC 1), 4=231 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/17,	, 2-3=-173/99, 3-4=-140/98
BOT CHORD	2-4=-147	/138
NOTES		
1) Wind: AS	CE 7-10; Vu	It=120mph (3-second gust)
Vasd=95n	nph; TCDL=	6.0psf; BCDL=6.0psf; h=29ft;
B=45ft; L=	=24ft; eave=	4ft; Cat. II; Exp B; Enclosed;
MWFRS (directional)	and C-C Exterior (2) -0-10-8 to
		8 to 5-9-8 zone; cantilever left and

- to ft and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value 4) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 2 and 72 lb uplift at joint 4.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

This truss design requires that a minimum of 7/16" 8)

structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	D01	Common Supported Gable	1	1	Job Reference (optional)	156739332

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:18 ID:zheYZKvqpfK6f4C?vLiPz4zFmWj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

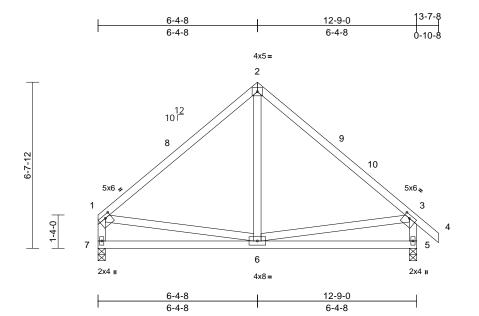
Scale = 1:43

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .00 .15 ′ES RC2015	/TPI2014	CSI TC BC WB Matrix-AS	0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
	except end verticals Rigid ceiling directly (size) 9=12-9-0, 15=12-9-0 Max Horiz 15=-141 (Max Uplift 9=-48 (LC 11=-31 (L Max Grav 9=181 (LC 11=165 (L	applied. 10=12-9-0, 11=12-9-0,), 13=12-9-0, 14=12-9-0) LC 10) C12), 10=-65 (LC 12), C 12), 13=-33 (LC 12), C 12), 15=-22 (LC 8) C 17), 10=208 (LC 18), C 22), 12=193 (LC 12), C 21), 14=229 (LC 17),	4) 5) 6) 7)	Vasd=95mpł B=45ft; L=24 MWFRS (dim 3-1-12, Exteria and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable require Truss to be f braced again Gable studs This truss ha	7-10; Vult=120mp n; TCDL=6.0psf; B ft; eave=2ft; Cat. I ectional) and C-C ior (2) 3-1-12 to 6 or (2) 9-4-8 to 13-7 posed ; end verticat for members and pown; Lumber DOL ned for wind loads ids exposed to wird d Industry Gable E alified building de e 2x4 MT20 unless es continuous bott ully sheathed from ist lateral movements spaced at 2-0-0 or is been designed fa	CDL=6.0 II; Exp B; Corner (: -4-8, Cor 7-8 zone; II left and forces & =1.60 pla in the pl ad (norm: ind Detai signer as or cherwis com chor n one fac ent (i.e. d c.	Dipsf; h=29ft; Enclosed; 3) 0-1-12 to mer (3) 6-4-8 c cantilever lef l right & MWFRS for ate grip ane of the tru: al to the face) Is as applicab s per ANSI/TP se indicated. d bearing. e or securely iagonal web).	t ss , le, l1.	prov dow of s othe 14) In th of th LOAD (1) De Pla Ur	vided su in at 0-1 uch con ers. he LOAE he truss CASE(S) ad + Ro ate Incre iform Lo	fficient 1-12 or nection O CASI are no) Star pof Live case=1 pads (II 4=-60, ted Los	n bottom chord. ⁻ n device(s) is the E(S) section, load ted as front (F) o ndard b (balanced): Lun .00 b/ft) 4-7=-60, 7-8=-60 ads (lb)	entrated load(s) 38 lt The design/selection responsibility of ds applied to the face r back (B). nber Increase=1.15,
FORCES	(lb) - Maximum Com Tension 1-15=-94/45, 1-2=-9 3-4=-170/191, 4-5=- 6-7=-103/62, 7-8=0/	9/72, 2-3=-119/129, 170/191, 5-6=-119/128,	9)	on the bottor 3-06-00 tall b chord and ar	nas been designed n chord in all area by 2-00-00 wide wi ny other members.	s where III fit betw	a rectangle veen the botto	m				NITH CA	
BOT CHORD WEBS	14-15=-67/75, 13-14 11-12=-67/75, 10-11 4-12=-187/104, 3-13	=-67/75, 12-13=-67/75, =-67/75, 9-10=-67/75	,	bearing plate 15, 48 lb upli	hanical connection capable of withst ft at joint 9, 33 lb t 14, 31 lb uplift at j	anding 2 uplift at jo	2 lb uplift at jo pint 13, 58 lb	pint		4	and the second	OR FEESS	Res International Contraction
										-			a second s

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- joint 10.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Page: 1


- ice
- 5,

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	D02	Common	2	1	Job Reference (optional)	156739333

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:18 ID:rjPUzW9?s6_7gJI2eFaKKVzFmWO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

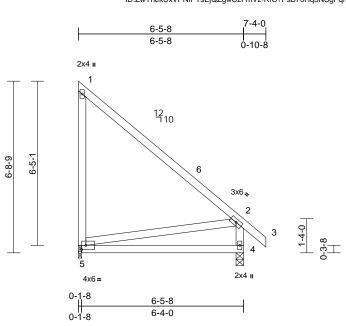
Scale = 1	:46.1
-----------	-------

Plate Offsets (X, Y): [1:0-2-12,0-1-8], [3:0-2-12,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2	CSI TC BC WB 2014 Matrix-AS	0.62 0.32 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 5=0-3-8, 7 Max Horiz 7=-141 (L Max Uplift 5=-47 (LC Max Grav 5=562 (LC	applied. 7=0-3-8 C 10) C 12), 7=-19 (LC 12)	bea 7 ar 6) This Inte R8C 7) This stru cho the	vide mechanical connect ring plate capable of wit dd 47 lb uplift at joint 5. truss is designed in ac rnational Residential CC 2.10.2 and referenced s truss design requires th ctural wood sheathing b rd and 1/2" gypsum she bottom chord. CASE(S) Standard	hstanding 1 cordance w de sections standard AN nat a minim e applied di	9 lb uplift at th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the	joint and top					
FORCES	(lb) - Maximum Com Tension 1-2=-479/79, 2-3=-4	85/82, 3-4=0/39,										
BOT CHORD WEBS	1-7=-437/78, 3-5=-5 6-7=-88/262, 5-6=-5 2-6=0/237, 1-6=-32/	4/223										
NOTES												
 Unbalance this design 	ed roof live loads have	been considered for										
2) Wind: ASC	1. CE 7-10; Vult=120mph											1111

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 6-4-8, Exterior (2) 6-4-8 to 9-4-8, Interior (1) 9-4-8 to 13-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Voundania WWWWWWWW SEAL 036322 GI 111111111 February 21,2023


Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	D03	Roof Special	17	1	Job Reference (optional)	56739334

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:18 ID:ZwYhekUxVPNIPTsEjQZgwCzFmVz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

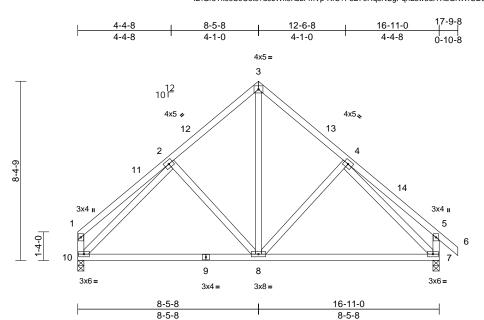
Scale = 1:45.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.66 0.49 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.17 0.00	(loc) 4-5 4-5 4	l/defl >853 >427 n/a	L/d 240 180 n/a	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 4=0-3-8, f Max Horiz 5=-202 (L Max Uplift 5=-70 (LC Max Grav 4=340 (LC	athing directly applie applied. 5=0-1-8 C 8) 2 8)	8)	bearing plat Provide mer bearing plat 5. This truss is Internationa R802.10.2 a This truss d structural w		tion (by oth hstanding 7 cordance w de sections standard AN nat a minim e applied d	ers) of truss 0 lb uplift at th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the	to joint and top				
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-226/227, 2-3=0 1-5=-283/187	0/43, 2-4=-278/100,										

4-5=-17/18 BOT CHORD WEBS 2-5=-259/285

NOTES

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-1-12 to 4-4-11, Interior (1) 4-4-11 to 7-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


 \cap Vanananan MARINE IN INTERNET SEAL 036322 GI 11111111 February 21,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	D04	Common	4	1	Job Reference (optional)	156739335

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:18 ID:Gr8Tk9cC9Uetc?d9JWk0KJzFmVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.08	8-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.17	7-8	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 109 lb	FT = 20%

- BOT CHORD 2x4 SP No.2

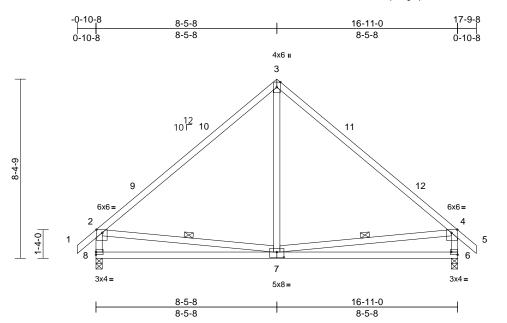
WEBS	2x4 SP N	o.3 *Except* 10-1,7-5:2x4 SP No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied,
	except en	d verticals.
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	7=0-3-8, 10=0-3-8
	Max Horiz	10=-173 (LC 10)
	Max Uplift	7=-19 (LC 12)

- Max Grav 7=785 (LC 1), 10=713 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-266/62, 2-3=-604/102, 3-4=-603/99, 4-5=-286/87, 5-6=0/43, 1-10=-248/48,
- 5-7=-313/97 BOT CHORD 8-10=0/533.7-8=0/487 3-8=-49/444, 4-8=-181/112, 2-8=-186/110, WEBS 2-10=-540/12, 4-7=-538/0

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 8-5-8, Exterior (2) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 17-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 7
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" 7) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	D05	Common	2	1	Job Reference (optional)	156739336

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:19 ID:oSANEFCZNrxnchSmE0ekLszFmV1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.9

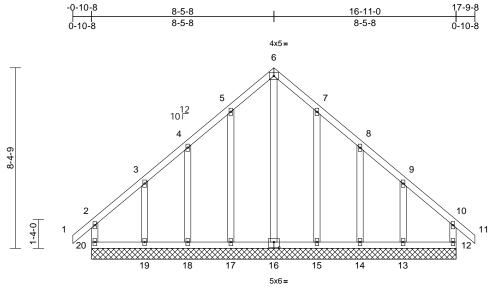
Plate Offsets (X, Y): [2:0-3-4,0-1-12], [4:0-3-4,0-1-12], [6:Edge,0-1-8], [7:0-4-0,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014 Provide mec	CSI TC BC WB Matrix-AS	0.72 0.59 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Plate Grip DOL Lumber DOL Rep Stress Incr	1.00 1.15 YES IRC201		TC BC WB	0.59	Vert(LL) Vert(CT)	-0.08 -0.17	6-7 6-7	>999 >999	240 180	MT20	244/190
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Rep Stress Incr	YES IRC201		WB		()						
BCDL LUMBER TOP CHORD BOT CHORD WEBS	10.0 2x4 SP No.2 2x4 SP No.2		IRC201			0.13	Horz(CT)	0.01	6	n/a	n/a		
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2	Code			Matrix-AS								
TOP CHORD BOT CHORD WEBS	2x4 SP No.2		5)	Provide mec								Weight: 100 lb	FT = 20%
	Structural wood shea except end verticals. Rigid ceiling directly 1 Row at midpt (size) 6=0-3-8, 8 Max Horiz 8=-178 (LC Max Uplift 6=-53 (LC	applied. 2-7, 4-7 =0-3-8 C 10) 12), 8=-53 (LC 12)	ed, 7)	bearing plate 8 and 53 lb u This truss is International R802.10.2 au This truss de structural wo		standing 5 ordance w e sections andard AN at a minim applied di	3 lb uplift at j th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the	joint and top					
FORCES	Max Grav 6=726 (LC (lb) - Maximum Com	,, , ,											
TOP CHORD	Tension 1-2=0/39, 2-3=-668/9 4-5=0/39, 2-8=-649/1												
BOT CHORD	6-8=-147/493												
WEBS	3-7=0/343, 2-7=-137	/211, 4-7=-144/212											
NOTES													
this design 2) Wind: ASC	d roof live loads have E 7-10; Vult=120mph ph; TCDL=6.0psf; BCl	(3-second gust)	r									TH CA	Rout

B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-5-8, Exterior (2) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 17-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



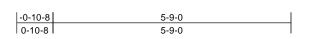
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	D06	Common Supported Gable	1	1	Job Reference (optional)	156739337

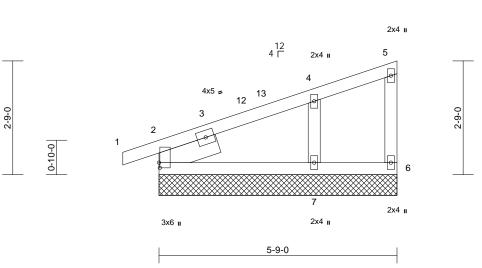
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:19 ID:d9aUdxhfy7_6PqWSaQM6zIzFmUP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-11-0

Scale = 1:53.5


Plate Offsets (X, Y): [16:0-3-0,0-3-0]

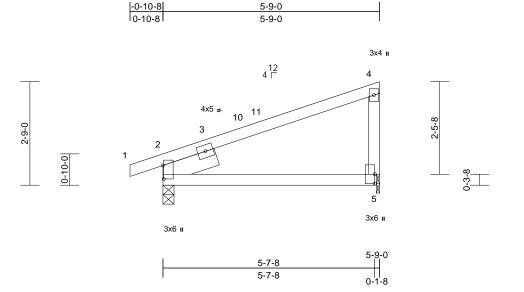
	X, 1). [10.0-3-0,0-3-0	·]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.14 0.09 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 116 lb	GRIP 244/190 FT = 20%
	except end verticals Rigid ceiling directly (size) 12=16-11 14=16-11 16=16-11 20=16-11 Max Horiz 20=-178 (L Max Uplift 12=-44 (L 17=-32 (L 19=-65 (L Max Grav 12=189 (L 14=156 (L 16=260 (L)	applied. -0, 13=16-11-0, -0, 15=16-11-0, -0, 17=16-11-0, -0, 19=16-11-0, -0 LC 10) C 12), 13=-65 (LC 12 C 12), 13=-65 (LC 12 C 12), 18=-43 (LC 12 C 12), 20=-52 (LC 8) LC 17), 13=226 (LC 1 LC 1), 15=175 (LC 18 LC 12), 17=176 (LC 1	2) i, 3)), 4)), 5)), 6) 8), 7) 7), 8)	this design. Wind: ASCE Vasd=95mph B=45ft; L=24 MWFRS (dir 2-1-8, Exterior 11-5-8, Exterior 11-5-8, Exterior 11-5-8, Exterior and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requir Truss to be f braced again Gable studs This truss ha chord live loa * This truss f	roof live loads hav 7-10; Vult=120m, r; TCDL=6.0psf; E ft; eave=2ft; Cat. ectional) and C-C or (2) 2-1-8 to 8-5 rior (2) 11-5-8 to 1 oosed ; end vertica c for members and own; Lumber DOL ned for wind loads ds exposed to wid 1 Industry Gable E alified building de 2 x4 MT20 unless es continuous bot ully sheathed from ist lateral movements paced at 2-0-0 o is been designed and nonconcurrent nas been designed	ph (3-sec 8CDL=6. II; Exp B Corner (-8, Corner (-8,	cond gust) opsf; h=29ft; ; Enclosed; 3) -0-10-8 to er (3) 8-5-8 to ne; cantilever ir (ght & MWFRS for ate grip ane of the tru al to the face) ils as applicate s per ANSI/TP se indicated. d bearing. e or securely iagonal web).) psf bottom other live load e load of 20.0	left ss , ole, Pl 1.	LOAD	CASE(S) Star	ndard	Rolling
FORCES	(lb) - Maximum Com Tension			3-06-00 tall b	n chord in all area by 2-00-00 wide w	rill fit betv		m			and the	OREESE	2. N. I
TOP CHORD	2-20=-159/80, 1-2=0 3-4=-104/118, 4-5=- 6-7=-210/246, 7-8=-	0/39, 2-3=-122/100, 160/188, 5-6=-210/24 159/187, 8-9=-105/11 1=0/39, 10-12=-150/74	l6, 9,	Provide mec bearing plate 20, 44 lb upli	ny other members hanical connectio capable of withs ft at joint 12, 32 lb	n (by oth tanding 5 o uplift at	2 lb uplift at jo joint 17, 43 lb	pint		Channel and the second se		SEA	
BOT CHORD	19-20=-83/85, 18-19)=-83/85, 17-18=-83/8 5=-83/85, 13-14=-83/8	85,	15, 43 lb upli) This truss is	18, 65 lb uplift at j ft at joint 14 and 6 designed in accor Residential Code	55 lb upli dance w	t at joint 13. ith the 2015			11110		0363	• –
WEBS	6-16=-256/154, 5-17	7=-133/69, 4-18=-127 5=-132/68, 8-14=-126	0	R802.10.2 ar) This truss de structural wo	nd referenced star sign requires that od sheathing be a 2" gypsum sheetr	ndard AN a minim applied d	ISI/TPI 1. um of 7/16" rectly to the to	р		3	in the second second	SEA 0363 NGINI	E.P. KINN
				the bottom cl		UUN DE A		10				February	21,2023



Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	E01	Monopitch Supported Gable	1	1	Job Reference (optional)	156739338

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:19 ID:Sr?c1cAIXQ0QCzZ8wp4VbjzFmTn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.8


Plate Offsets (X, Y): [2:0-1-8,0-0-4]

					· · · · ·						
Loading (psf) TCLL (roof) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.13	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	2	n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 28 lb	FT = 20%
BOT CHORD REACTIONS (size) 2=5-9-0, 6 Max Horiz 2=74 (LC Max Uplist 2=-22 (LC 8=-22 (LC Max Grav 2=183 (LC	athing directly applied. applied. 6=5-9-0, 7=5-9-0, 8=5 11), 8=74 (LC 11) 212), 7=-27 (LC 12), 21), 6=23 (LC 1), 7=2 e183 (LC 1) pression/Maximum 79, 4-5=-47/47, 749 (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; orner (3) -0-10-8 to zone; cantilever left a und right exposed;C-C RS for reactions show 0L=1.60 n the plane of the trus I (normal to the face), d Details as applicabl gner as per ANSI/TPI	chord live le 6) * This truss on the botts 3-06-00 tall chord and a 7) Provide me bearing pla 2, 27 lb upl 8) This truss of Internationa R802.10.2 9) This truss of structural w chord and a the bottom LOAD CASE(S and and and s e,		with any I for a liv s where II fit betw (by oth anding 2 b uplift a dance w sections dard AN a minim pplied d	other live load e load of 20.0p a rectangle veen the bottor ers) of truss to 22 lb uplift at jo it joint 2. ith the 2015 s R502.11.1 an ISI/TPI 1. um of 7/16" irectly to the to	osf m jint nd				SEA 0363	EER RUU

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	E02	Monopitch	7	1	Job Reference (optional)	156739339

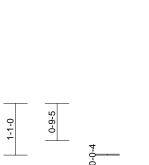
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:19 ID:Df03G9UQe6Atip_xuZ0M6?zFmTO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

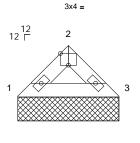
Scale = 1:30.6

Plate Offsets (X, Y): [2:0-4-5,0-0-4]

	(X, 1): [2:0-4-3;0-0-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI	CSI TC BC WB 12014 Matrix-AS	0.38 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS SLIDER BRACING TOP CHORE BOT CHORE FORCES TOP CHORE BOT CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 Structural wood she Rigid ceiling directly (size) 2=0-3-8, 5 Max Horiz 2=110 (LC Max Grav 2=281 (LC (lb) - Maximum Com Te=sion 1-2=0/17, 2-4=-149/ 	athing directly applie applied. 5=0-1-0 C 12) C 3), 5=-31 (LC 12) C 1), 5=220 (LC 1) appression/Maximum	ed. 8) Thi structure back of the change of the structure the structure change of the structure change	ovide mechanical connecti aring plate capable of with and 31 lb uplift at joint 5. is truss is designed in acc ernational Residential Coo 02.10.2 and referenced st is truss design requires th uctural wood sheathing be ord and 1/2" gypsum shee bottom chord. CASE(S) Standard	ordance w de sections andard AN at a minim applied di	2 lb uplift at th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the	joint and top					
Vasd=95 B=45ft; L MWFRS 2-1-8, Int right exp for memb Lumber I 2) This trust	SCE 7-10; Vult=120mph imph; TCDL=6.0psf; BC .=24ft; eave=4ft; Cat. II; (directional) and C-C E terior (1) 2-1-8 to 5-7-4 2 osed; end vertical left a bers and forces & MWFI DOL=1.60 plate grip DC s has been designed foi	DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) -0-10-8 to zone; cantilever left and right exposed;C- RS for reactions sho DL=1.60 r a 10.0 psf bottom	and C wn;						6		ORTH CA	ROLIN

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.





Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	V01	Valley	1	1	Job Reference (optional)	56739340

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:20 ID:X52Q0pOT_8dECLDMnqsyepzFmSD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

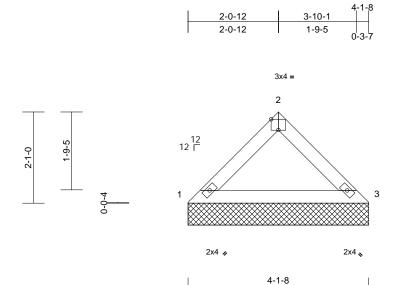
1-0-121-10-11-0-120-9-5

2x4 💊 2x4 🎣

2-1-8

Scale = 1:24.2

Plate Offsets (X, Y): [2:0-2-0,Edge]


	, .). [2.0 2 0,2030]	1		1	-	-						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-MP							Weight: 6 lb	FT = 20%
BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-1-8 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o	on the I 3-06-00 chord a ed or 8) Provide bearing and 3 lt 9) This tru	uss has been design pottom chord in all are tall by 2-00-00 wide nd any other member mechanical connecti plate capable of with u plift at joint 3. ss is designed in acc ional Residential Coc	eas where will fit betw rs. ion (by oth istanding 3 ordance w	a rectangle veen the botto ers) of truss to 8 lb uplift at join ith the 2015	nt 1					
N	size) 1=2-1-8, Max Horiz 1=-17 (LC Max Uplift 1=-3 (LC Max Grav 1=85 (LC	C 10) 12), 3=-3 (LC 12)	R802.1	0.2 and referenced st E(S) Standard								
	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=-97/15, 2-3=-97 1-3=-2/69	/15										
NOTES												
	l roof live loads have	been considered fo	or									
this design.												
Vasd=95mp B=45ft; L=24 MWFRS (dii cantilever le right expose for reactions DOL=1.60	E 7-10; Vult=120mpf h; TCDL=6.0psf; BC 4ft; eave=4ft; Cat. II; rectional) and C-C E ift and right exposed ad;C-C for members s shown; Lumber DC	DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left an and forces & MWFF DL=1.60 plate grip	RS						4	D	ORTH CA	ROLINI
only. For st	ned for wind loads i uds exposed to wind rd Industry Gable En ualified building desi	l (normal to the face d Details as applica	e), Ible,						11111		SEA 0363	• –
	res continuous botto								-			
5) Gable studs	spaced at 6-0-0 oc.								-	-		1.3
	as been designed fo ad nonconcurrent w		ads.							in the	A CA	EERA
											A. C	111111
											Februar	v 21,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	V02	Valley	1	1	I56 Job Reference (optional)	5739341

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:20 ID:Iv2sGMh95qmhiBd9lapp94zFmRq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (ro		Plate Grip DOL	1.00	тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS	-	-					Weight: 14 lb	FT = 20%
LUMBER TOP CHI BOT CHI BRACIN TOP CHI BOT CHI REACTIO	ORD 2x4 SP No.2 ORD 2x4 SP No.3 G ORD Structural wood she ORD Rigid ceiling directly	applied. 3=4-1-8 11) 12), 3=-6 (LC 12)	ed. bearing j and 6 lb 9) This trus Internatii R802.10 10) This trus structura chord an the botto		standing 6 ordance w le sections andard AN at a minim	th uplift at jo R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	int 1 and top					
FORCES		,. ,	LOAD CASE	(S) Standard								
1 011020	Tension	procolori/maximum										
TOP CH	ORD 1-2=-206/31, 2-3=-2	06/31										
BOT CH	ORD 1-3=-12/148											
NOTES												
1) Unba	alanced roof live loads have	been considered fo	r									
	lesign.											
	: ASCE 7-10; Vult=120mph											
	=95mph; TCDL=6.0psf; BC											
	<pre>ift; L=24ft; eave=4ft; Cat. II; RS (directional) and C-C E</pre>											
	lever left and right exposed		d									111
	exposed;C-C for members										N''LL CA	DIL
	actions shown; Lumber DC									15	THUR	NO CON
DOL	=1.60									SI	On the	the Aller
	s designed for wind loads in								6	Ì/	11	A Company of the second
	For studs exposed to wind								-			Val.
	Standard Industry Gable En								-	();	054	1
	nsult qualified building design		-11.						=	:	SEA	L I I
	e requires continuous botto e studs spaced at 6-0-0 oc.	in choru bearing.							11111		0363	22 E
,	truss has been designed for	r a 10.0 psf bottom									. 0000	i i
5, 1113	a doo nao boon dooigned io								-		•	•

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

ANGIN A. (A. GI A. GIL February 21,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	V03	Valley	1	1	Job Reference (optional)	156739342

3-0-12

3-0-12

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

2-9-5

3-1-0

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:20 ID:q_0wdquBKInQderEhx5ZoSzFmRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-1

2-9-5

3

2x4 💊

4x5 = 2

6-1-8

- 2x4 x 2x4 u

Scale = 1:29.3

Scale = 1.29.3													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.11 0.19 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	Max Horiz 1=57 (LC Max Uplift 4=-46 (LC Max Grav 1=68 (LC (LC 1) (Ib) - Maximum Com Tension 1-2=-55/132, 2-3=-5 1-4=-114/85, 3-4=-1	applied. 3=6-1-8, 4=6-1-8 11) 12) 21), 3=68 (LC 22), 4 pression/Maximum 5/128	9 =390	on the bottor 3-06-00 tall h chord and ar) Provide mec bearing plate 4.) This truss is International R802.10.2 a 0) This truss de structural wo		s where Il fit betw (by oth anding 4 dance w sections indard AN a minim pplied d	a rectangle veen the botto ers) of truss t 6 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	om oont oint ind					
this design	2-4=-263/88 ed roof live loads have n. CE 7-10; Vult=120mph												

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 6-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. SEAL 036322 February 21,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	V04	Valley	1	1	Job Reference (optional)	156739343

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:20 ID:UHIS8w1jVRIj3UmYOSJNI_zFmRO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

Page: 1

4-0-12 7-10-1 0-3-4-0-12 3-9-5 4x5 = 2 10 11 3-9-5 4-1-0 12 12 Г C 12 4 2x4 II 2x4 🎣 2x4 💊

Scale = 1:33.4

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 33 lb	FT = 20%
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (S M M	8-1-8 oc purlins. Rigid ceiling directly bracing. size) 1=8-2-0, 3 Max Horiz 1=-77 (LC Max Uplift 1=-22 (LC 4=-96 (LC	3=8-2-0, 4=8-2-0 \$ 10) \$ 22), 3=-22 (LC 21),	8) 9) 1(chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 1, 22 lb uplift Beveled plate surface with D) This truss is International	s been designed for a nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. hanical connection capable of withsta at joint 3 and 96 ll e or shim required truss chord at joint designed in accord Residential Code and referenced stan Standard	vith any for a liv s where l fit betw (by oth anding 2 o uplift a to provi (s) 1, 3. dance w sections	other live loz e load of 20. a rectangle veen the bott ers) of truss 2 lb uplift at j t joint 4. de full bearin ith the 2015 R502.11.1 a	Opsf om to joint g					

8-1-8

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-94/235, 2-3=-94/235 BOT CHORD 1-4=-201/131, 3-4=-201/131 2-4=-444/159 WEBS

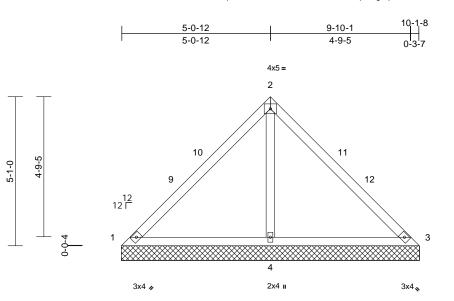

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-1-0, Exterior (2) 4-1-0 to 7-1-0, Interior (1) 7-1-0 to 8-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5)́ Gable studs spaced at 6-0-0 oc.



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	V05	Valley	1	1	Job Reference (optional)	156739344

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:20 ID:nvCXA8JmspKJxAb9oVI?G2zFmR0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-1-8

Scale = 1:39.3

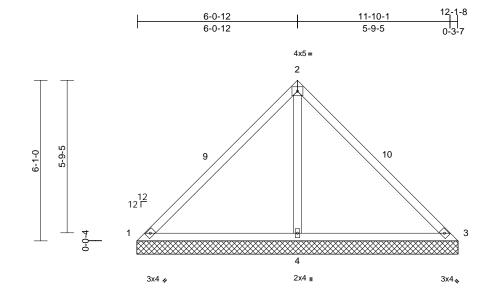
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.47	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.27	Horiz(TL)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-2-0, Max Horiz 1=-97 (LC Max Uplift 1=-39 (LC 4=-122 (L	22), 3=-39 (LC 21),	8) 9) 1(-778	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 39 lb uplift Beveled plat surface with) This truss is International	as been designed ad nonconcurrent has been designed in chord in all are by 2-00-00 wide hanical connection a capable of withs at joint 3 and 12 e or shim require truss chord at joi designed in accor Residential Codu nd referenced star Standard	t with any ed for a liv as where will fit betv s. on (by oth standing 3 22 lb uplift ed to provi nt(s) 1, 3. ordance w e sections	other live loz e load of 20. a rectangle veen the bott ers) of truss 19 lb uplift at j at joint 4. de full bearin ith the 2015 5 R502.11.1 a	Opsf com to joint g					

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-123/327, 2-3=-123/327 BOT CHORD 1-4=-246/144, 3-4=-246/144 WEBS 2-4=-602/198

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: AŠCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-1-0, Exterior (2) 5-1-0 to 8-1-0, Interior (1) 8-1-0 to 10-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 6-0-0 oc.


Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZABR	V06	Valley	1	1	Job Reference (optional)	156739345

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Feb 20 13:02:21 ID:UeNa_31UY?fmYmttoLJEvzFmQ3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

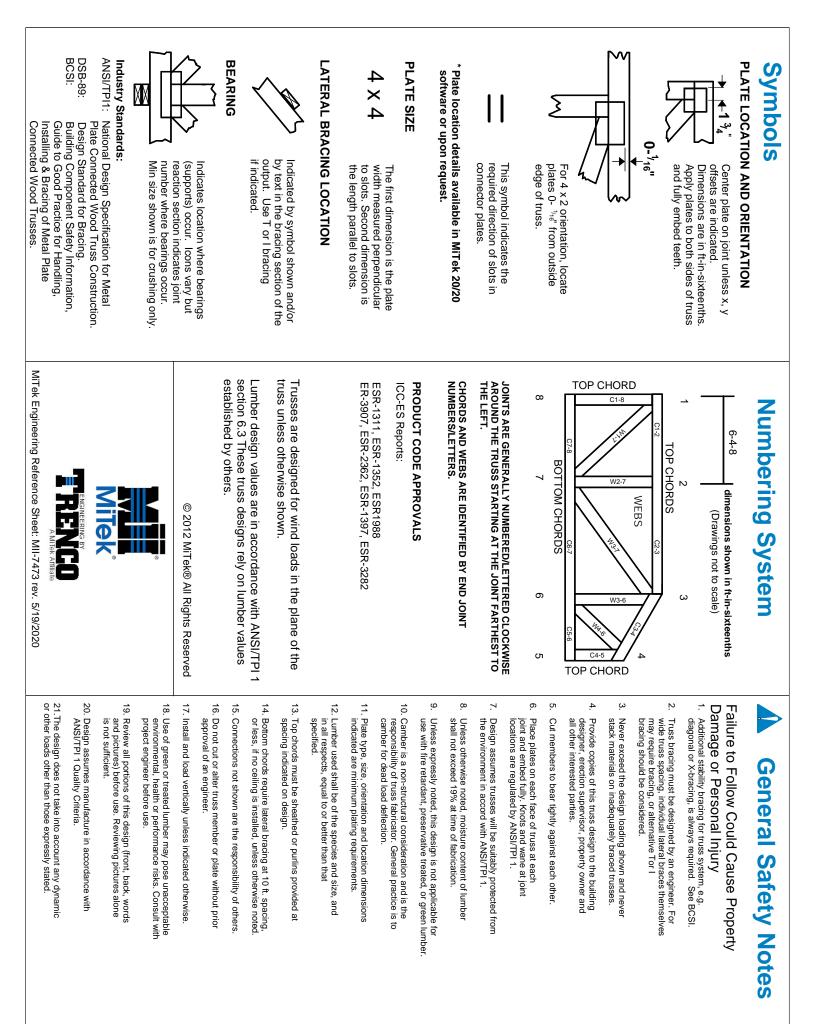
Scale = 1:43.6

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.46	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.39	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.51	Horiz(TL)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		- ()		-			Weight: 50 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-2-0, Max Horiz 1=-117 (L Max Uplift 1=-74 (LC 4=-179 (L	3=12-2-0, 4=12-2-0 C 10) C 22), 3=-74 (LC 21), C 12) 12), 3=71 (LC 12),	8) 9) 10	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 74 lb uplift Beveled platt surface with) This truss is International	s been designed ad nonconcurrent has been designe n chord in all area y 2-00-00 wide w hy other members hanical connectio e capable of withs at joint 3 and 17 e or shim requiree truss chord at join designed in acco Residential Code nd referenced sta Standard	with any d for a liv as where fill fit betw a. n (by oth tanding 7 9 lb uplift d to provi ot(s) 1, 3. rdance w a sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 4 lb uplift at j at joint 4. de full bearing th the 2015 R502.11.1 a	Opsf om to oint g					
FORCES	(lb) - Maximum Com	pression/Maximum											

12-1-8

Tension TOP CHORD 1-2=-180/445, 2-3=-179/445 BOT CHORD 1-4=-337/180, 3-4=-337/180 2-4=-797/259

WEBS


NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-1-0, Exterior (2) 6-1-0 to 9-1-0, Interior (1) 9-1-0 to 12-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 6-0-0 oc.

