

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0223-0756 Lot 52 Liberty Meadows

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I56692999 thru I56693010

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

February 16,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

· · ·		_									<u>.</u>									
Job		Truss			Truss 1	уре				ľ	Qty	Ply	Lot 52	Liberty I	Meadow	S				156692999
J0223-0756		ET-1			GABLE						1	1								130032333
															(optiona					
Comtech, Inc,	Fayettevi	lle, NC - 2	28314,							ID:gZkl										23 Page 1 RJszkXvU
0-1-8																				0-1-8
																				Scale = 1:51.7
									3x6	5 FP =										
1 2	3	4 5	56	67	8	9	10	11	12 1	3 14 1	5 1	6 17	18	19	20	21	22	23	24	25
	0	8	9	9			8	8	<u>e</u>				<u>@</u>	9		9	8	8	8	52 -2-1
	~~~~~~		******		~~~~			~~~~~~	~~~~~~				~~~~		~~~~~	~~~~~	~~~~		******	
50 49	48	47 4	46 4	45 44	43	42	41	40	39 38	37 3	6 3	5 34	33	32	31	30	29	28	27	26
3x4 =									3x6 FP=	:										3x4 =

# $+ \frac{1.4-0}{1.4-0} + \frac{2.8-0}{1.4-0} + \frac{4.0-0}{1.4-0} + \frac{5.4-0}{1.4-0} + \frac{6.8-0}{1.4-0} + \frac{8.0-0}{1.4-0} + \frac{9.4-0}{1.4-0} + \frac{12.0-0}{1.4-0} + \frac{13.4-0}{1.4-0} + \frac{14.8-0}{1.4-0} + \frac{16-0-0}{1.4-0} + \frac{17.4-0}{1.4-0} + \frac{18.8-0}{1.4-0} + \frac{20.0-0}{1.4-0} + \frac{21.4-0}{1.4-0} + \frac{22.8-0}{1.4-0} + \frac{24.0-0}{1.4-0} + \frac{25.4-0}{1.4-0} + \frac{26.8-0}{1.4-0} + \frac{26.8-0}{1.4-0} + \frac{26.0-0}{1.4-0} + \frac{26.0-0}{1.4-0}$

1-4-	0 1-4-0	1-4-0 1-4-0 1-4-0 1-	4-0 1-4-0 1	+-0 1-+-0	1-4-0 1-4-0	5 1-4-0 1-4-0	1-4-0	1-4-0	1-4-0 1-	+-0 1-+-0	1-+-0	1-4-0	1-4-0 1-7-0
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d		PLATES	GRIP
TCLL 4	40.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	n/a	-	n/a	999		MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	26	n/a	n/a			
BCDL	5.0	Code IRC2015/T	PI2014	Matri	x-R							Weight: 127 lb	FT = 20%F, 11%E
LUMBER-		·				BRACING	-						
TOP CHOR BOT CHOR		9 No.1(flat) 9 No.1(flat)				TOP CHO	RD		iral wood end verti	0	lirectly	applied or 6-0-0 o	oc purlins,
WEBS OTHERS		9 No.3(flat) 9 No.3(flat)				BOT CHO	RD	Rigid c	eiling dire	ectly applied	or 10-	-0-0 oc bracing.	

#### REACTIONS. All bearings 30-11-0.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 26, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss 1	уре		Qty	Ply	Lot 52 Liberty	Meadows		150	
J0223-0756	ET-2	GABLE			1	1				ISt	693000
Comtech, Inc, Faye	etteville, NC - 28314,					8 430 s.J.	Job Reference		c Thu Feb 16 1	4:12:17 2023 Pa	ne 1
	2001.1,			ID:gZk	lhXMJ21ywun					NPEmQGdYOlzk	
0- <mark>1</mark> -8										0-	₩ ¹ 8
										Scale	e = 1:31. ⁻
					3x6 FP=						
1 2	3 4	5	6 7	8	9 10	11	12	13	14	15 16	-
	• • •	<u> </u>					• •		<u>o</u>		
	****	******		********				********	*****		
32 31 3x4 =	30 29	28	27 26	25 24 3x6 FP ==	23	22	21	20	19	18 17 3x4	
384 —				3X0 FF —						384	_
	-8-0   4-0-0   -4-0   1-4-0	5-4-0         6-8-           1-4-0         1-4-		9-4-0 1-4-0		2-0-0 1-4-0	13-4-0 14- 1-4-0 1-4			18-9-0 1-5-0	ł
LOADING (psf) TCLL 40.0 TCDL 10.0	<b>SPACING-</b> Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	<b>CSI.</b> TC 0.07 BC 0.01	1		in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999		PLATES MT20	<b>GRIP</b> 244/190	
BCLL 0.0 BCDL 5.0	Rep Stress Incr Code IRC2015/	YES	WB 0.03 Matrix-R			.00 17	n/a n/a		Weight: 78 lb	FT = 20%F	, 11%E

#### LUMBER-

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

## **REACTIONS.** All bearings 18-9-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

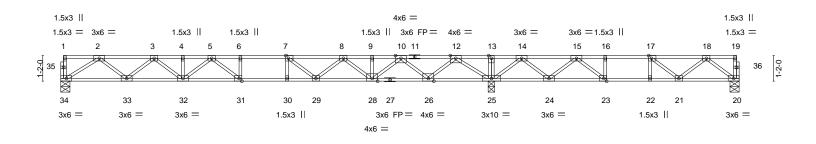
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

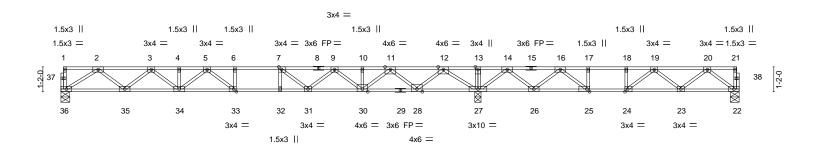


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Lot 52 Liberty Meadows	
						56693001
J0223-0756	F1	Floor	6	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,		8	.430 s Jar	6 2022 MiTek Industries, Inc. Thu Feb 16 14:12:19 2023 F	Page 1
		ID:gZkll	nXMJ21yw	ungoZg0?	AyzpENq-HX2Wf6FmgpM_SZNfbipmev3Lw0F3r9X3ua6fSdz	zkXvQ
0-1-8						
H <u>1-6-0</u> 1-3-0	F	2-0-0	1-6-	0	<u> </u>	1-8 ale = 1:52.5
	1		1		Sci	ale = 1:52.5




<b></b>	19-							30-11-0	
Plate Offsets (X.	19-7 Y) [7:0-1-8,Edge], [17:0-1-8,Edge], [23:0-1	•			1			11-3-8	'
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.78 BC 1.00 WB 0.68	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.44 0.06	(loc) 31 31 25	l/defl >732 >537 n/a	L/d 480 360 n/a	PLATES MT20	<b>GRIP</b> 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		0.00	20		n, a	Weight: 154 lb	FT = 20%F, 11%E
BOT CHORD 2	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHOF BOT CHOF	RD	except	end verti	cals.	rectly applied or 6-0-0 o	oc purlins,
	(size) 34=0-5-0, 25=0-3-8, 20=0-5-0 Max Uplift 20=-63(LC 3) Max Grav 34=935(LC 3), 25=2103(LC 1), 20=								
TOP CHORD	2-3=-2121/0, 3-4=-3348/0, 4-5=-3348/0, 5-6= 8-9=-2255/0, 9-10=-2255/0, 10-12=-386/305, 14-15=-260/1584, 15-16=-1087/650, 16-17=- 33-34=0/1357, 32-33=0/2854, 31-32=0/3681	12-13=0/2885, 13-14=0/2 1087/650, 17-18=-877/26	2884, 6	46,					
WEBS	26-28=0/1436, 25-26=-1122/0, 24-25=-1948 21-22=-650/1087, 20-21=-65/612 2-34=-1609/0, 2-33=0/994, 3-33=-953/0, 3-32 12-25=-2097/0, 12-26=0/1435, 10-26=-1407/ 7-29=-827/0, 14-25=-1324/0, 14-24=0/894, 1 18-20=-766/80, 18-21=-262/345, 17-21=-268	2=0/631, 5-32=-425/0, 5-3 0, 10-28=0/1089, 8-28=-9 5-24=-955/0, 15-23=0/960	31=-246/462, 914/0, 8-29=0/652,						
<ol> <li>All plates are</li> <li>Plates checked</li> <li>Provide mech</li> <li>Recommend 2 Strongbacks t</li> </ol>	oor live loads have been considered for this de 3x4 MT20 unless otherwise indicated. d for a plus or minus 1 degree rotation about i anical connection (by others) of truss to bearin 2x6 strongbacks, on edge, spaced at 10-0-0 o o be attached to walls at their outer ends or re o not erect truss backwards.	s center. g plate capable of withsta c and fastened to each tr				i.	C	OPTIES	AROUN



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 52 Liberty Meadows
					156693002
J0223-0756	F2	Floor	2	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ville, NC - 28314,		8	8.430 s Jar	6 2022 MiTek Industries, Inc. Thu Feb 16 14:12:20 2023 Page 1
		ID:gZklł	nXMJ21yw	ungoZg0?	AyzpENq-ljcusSGOR6Ur4jys9QL?A6bW3QguacmC6EsC?3zkXvP
0-1-8					
<u>1-6-0</u> <u>1-3-0</u>	<u>н_</u> :	2-0-0	1-6-0		1-8-0 0-1-8 Scale = 1:54.2



F			9-7-8			31-11-0 12-3-8						
Plate Offse	ets (X,Y)	[7:0-1-8,Edge], [24:0-1-8,Edge], [25	9-7-8 :0-1-8,Edge], [33:0-1-8,Edge]	]					12-3-8			
LOADING TCLL TCDL BCLL BCDL	i (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.82 BC 0.64 WB 0.68 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.39 0.05	(loc) 33 33 27	l/defl >809 >594 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 159 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHO BOT CHO WEBS	RD 2x4 SI RD 2x4 SI 22-29:	P No.1(flat) P 2400F 2.0E(flat) *Except* : 2x4 SP No.1(flat) P No.3(flat)		BRACING- TOP CHOR BOT CHOR		except	end vert	icals.	rectly applied or 6-0-0 or 6-0-0 or 6-0-0 or 6-0-0 oc bracing.	oc purlins,		
	Max U Max 0 (Ib) - Max	ze) 36=0-5-0, 27=0-3-8, 22=0-5-0 Jplift 22=-32(LC 3) Grav 36=933(LC 3), 27=2147(LC 1), . Comp./Max. Ten All forces 250 (I	b) or less except when shown									
TOP CHO	9-10 14-1 19-2	2117/0, 3-4=-3338/0, 4-5=-3338/0, )=-2232/0, 10-11=-2232/0, 11-12=-36 6=-323/1612, 16-17=-1317/711, 17- 20=-1039/150	0/357, 12-13=0/2874, 13-14= 18=-1317/711, 18-19=-1317/7	=0/2873, 711,								
ВОТ СНО	28-3	36=0/1355, 34-35=0/2848, 33-34=0/3 30=-46/1412, 27-28=-1111/0, 26-27= 24=-329/1335, 22-23=-60/682		,	26,							
WEBS	2-36 12-2 7-31	22=-852/70, 2-35=0/992, 3-35=-952/0, 27=-2096/0, 12-28=0/1435, 11-28=-1 =-847/0, 14-27=-1392/0, 14-26=0/95 22=-852/77, 20-23=-117/465, 19-23=	406/0, 11-30=0/1086, 9-30=-9 5, 16-26=-1009/0, 16-25=0/1	916/0, 9-31=0/648,	,							
<ol> <li>All plate</li> <li>Plates of</li> <li>Provide</li> <li>Recommission</li> <li>Strongb</li> </ol>	es are 3x6 M checked for e mechanica mend 2x6 st packs to be a	ve loads have been considered for th IT20 unless otherwise indicated. a plus or minus 1 degree rotation ab I connection (by others) of truss to be trongbacks, on edge, spaced at 10-0 attached to walls at their outer ends eroot true beginverde	out its center. earing plate capable of withsta 0 oc and fastened to each tr	russ with 3-10d (0.1			5.	Z	ORTH C.	ARO		

6) CAUTION, Do not erect truss backwards.

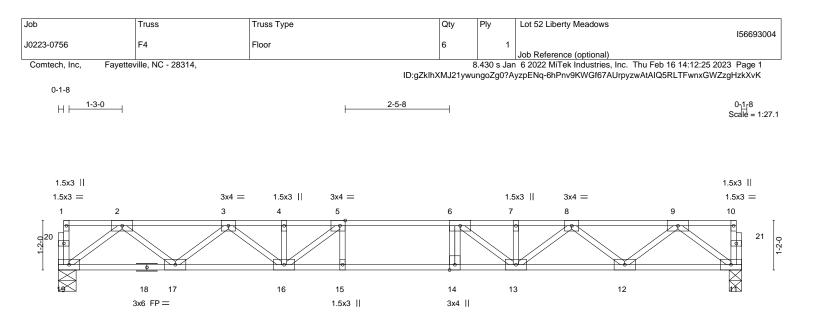


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	Lot 52 Liberty Meade	ows	
J0223-0756	F3	Floor		1	1			156693003
Comtech, Inc,	Fayetteville, NC - 28314,			s	8 430 s. la	Job Reference (optio	nal) tries, Inc. Thu Feb 16 14	1.12.24 2023 Page 1
oomeen, me,	1 dyelleville, 140 - 20014,		ID:gZklh)				HZKGdOFPxLymDx1yL	
0-1-8								
<mark> 1-3-0</mark>	┥ ┣━	2-5-4	0-8-2			1-8-1	0	0-9-0-1-8 Scale = 1:56
1.5x3		3x6 =						4x4 ==
1.5x3 =	1.5x3		P = 4x6 =			3x6 FP= 1.5x3	1.5x3	1.5x3 =
	2 3 4 5	6 7 8 9	10 11 12 13	3 14	15	16 17 18	19 20	21 22 23
$\bowtie$				Nor X	0	- Jøl	- 181 - 181	
42	41 40 39		35 34 33 32		30	29 28	27 26	25 24
3x6 =	3x6 =1.5x3 ↓		3x10 = 1.5x x6 = 1.5x3	3    3x6 =	 3x6 FP=	=		1.5x3    4x6 =
								32-11-8
		5-11-4 5-11-4	19-7-6 3-8-2			<u>31-10</u> 12-2-		<u>31-11-8</u> 0-1-8
Plate Offsets (X	(Y) [5:0-1-8 Edge] [12:0-1-	3,Edge], [13:0-1-8,Edge], [23:0	0-1-8 Edge] [27:0-1-8 Edg	e] [28·0-	1-8 Edae	<i>j</i> ]		1-0-0
								0.010
LOADING (psf) TCLL 40.0		2-0-0 <b>CSI.</b> 1.00 TC	0.76 DEFL. Vert(LL)		n (loc) ) 39-40	l/defl L/d >959 480	PLATES MT20	<b>GRIP</b> 244/190
TCDL 10.0			0.98 Vert(CT		39-40	>710 360		
BCLL 0.0 BCDL 5.0			0.52 Horz(C1 S	) 0.03	3 34	n/a n/a	Weight: 170 lb	FT = 20%F, 11%E
LUMBER-			BRACIN	G.				
TOP CHORD	2x4 SP No.1(flat)		TOP CH			0	rectly applied or 6-0-0	oc purlins,
	2x4 SP No.1(flat) 2x4 SP No.3(flat)		BOT CH	OPD		end verticals. eiling directly applied	or 6-0-0 oc bracing	
WEBS	2X4 SF 110.3(IIdt)		BOTON	UKD	rigiu c	ening unectly applied	or 0-0-0 oc bracing.	
REACTIONS.	All bearings 0-5-0 except (jt= Max Grav All reactions 250 II	ength) 34=0-3-8, 31=0-3-12, 2		31-0/3	(( C 4)			
(10)	25=1997(LC 5)		100(200); 04=1410(200);	, 01=040	(LO +),			
FORCES (Ib)	- Max. Comp./Max. Ten All fo	arces 250 (lb) or less except w	vhen shown					
TOP CHORD	2-3=-1536/0, 3-4=-2425/0, 4-	5=-2425/0, 5-6=-2486/0, 6-7=-	-1852/0, 7-8=-1852/0,					
		11-12=0/1664, 12-13=0/1370 /355, 18-19=-927/355, 19-20=						
	21-22=0/1111, 22-23=0/1110		921/333, 20-21222/030	,				
BOT CHORD		39-40=0/2486, 38-39=0/2486, , 32-33=-1370/0, 31-32=-1370		322,				
		/927, 26-27=-497/687, 25-26=	, , ,					
WEBS		41=-731/0, 3-40=0/418, 5-40= 8-37=0/690, 6-37=-930/0, 13						
		4/0, 15-29=0/626, 17-29=-596						
	21-25=-1023/0, 21-26=0/640	20-26=-615/0, 20-27=0/435,	23-25=-1647/0					
NOTES-								
	floor live loads have been consi						mm	in the second se
	e 3x4 MT20 unless otherwise in ed for a plus or minus 1 degree						TH C	ARO
4) Recommend	l 2x6 strongbacks, on edge, spa	ced at 10-0-0 oc and fastened		(0.131" X	(3") nails	S.	NON EES	Sign N'
	to be attached to walls at their on on ot erect truss backwards.	buter ends or restrained by oth	ner means.			2	they ,	day 1
,							E 18 -	
LOAD CASE(S	) Standard		_				= : SE	AL : :

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 24-42=-10, 1-23=-100


Concentrated Loads (lb) Vert: 23=-1200



E

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



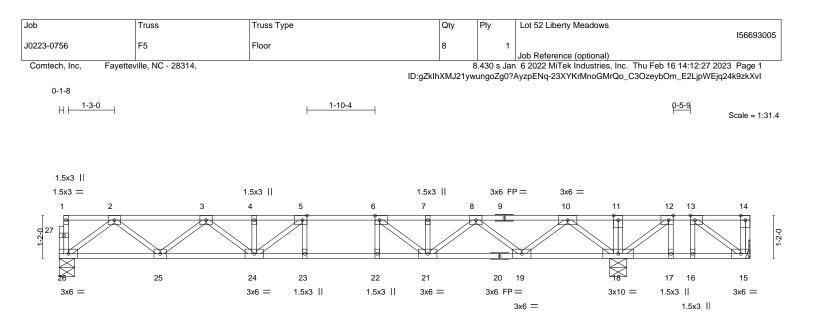
	CING- 2-0-0 Grip DOL 1.00	CSI.	DEFL. in	(1) 1/-1-4			
	Grin DOI 1.00			ı (loc) l/defl	L/d PL	ATES	GRIP
ILUMB	0110 000 1100	TC 0.61	Vert(LL) -0.20	13-14 >945	480 M	T20	244/190
	er DOL 1.00	BC 0.81	Vert(CT) -0.27	13-14 >707	360		
BCLL 0.0 Rep S	Stress Incr YES	WB 0.44	Horz(CT) 0.05	11 n/a	n/a		
BCDL 5.0 Code	IRC2015/TPI2014	Matrix-S			We	eight: 82 lb	FT = 20%F, 11%E
TOP CHORD2x4 SP No.1(flat)3OT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			TOP CHORD BOT CHORD	except end vertic	sheathing directly app als. ctly applied or 10-0-0		oc purlins,
()	), 11=0-3-8 LC 1), 11=865(LC 1)						

BOT CHORD	17-19=0/1081, 16-17=0/2473, 15-16=0/3251, 14-15=0/3251, 13-14=0/3251, 12-13=0/2473,
	11-12=0/1081

WEBS 2-19=-1353/0, 2-17=0/930, 3-17=-883/0, 3-16=0/547, 5-16=-744/0, 9-11=-1353/0, 9-12=0/929, 8-12=-884/0, 8-13=0/551, 6-13=-736/0

### NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are 3x6 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge], [12:0-1-8	15-2-12 15-2-12 5,Edge], [13:0-1-8,Edge]			<u>18-9</u>   <u>3-7</u>	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.58 BC 0.72 WB 0.49 Matrix-S	Vert(LL) -0.1	in (loc) l/defl L/d 4 23-24 >999 480 9 23-24 >931 360 3 18 n/a n/a	PLATES MT20 Weight: 100 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	<ul> <li>P No.1(flat)</li> <li>P No.1(flat)</li> <li>P No.3(flat)</li> </ul>		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of except end verticals. Rigid ceiling directly applied		oc purlins,

#### REACTIONS. (size) 26=0-5-0, 18=0-5-8, 15=Mechanical Max Uplift 15=-386(LC 3) Max Grav 26=726(LC 10), 18=1563(LC 1), 15=68(LC 4)

# FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1443/0, 3-4=-2239/0, 4-5=-2239/0, 5-6=-2260/0, 6-7=-1753/0, 7-8=-1753/0, TOP CHORD

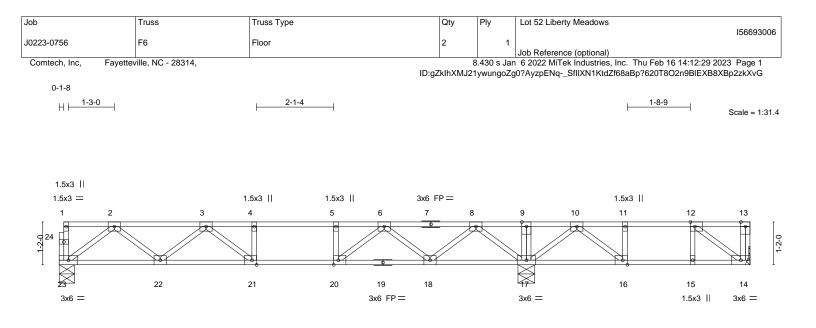
8-10=-519/0, 10-11=0/1479, 11-12=0/1479, 12-13=0/677

- BOT CHORD 25-26=0/898, 24-25=0/1959, 23-24=0/2260, 22-23=0/2260, 21-22=0/2260, 19-21=0/1263, 18-19=-324/0, 17-18=-677/0, 16-17=-677/0, 15-16=-677/0 WEBS 2-26=-1124/0, 2-25=0/709, 3-25=-671/0, 3-24=0/358, 10-18=-1464/0, 10-19=0/1030,
  - 8-19=-976/0, 8-21=0/631, 6-21=-760/0, 5-24=-317/183, 12-18=-1106/0, 12-17=0/295, 13-15=0/836, 13-16=-271/0

#### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 386 lb uplift at joint 15. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





		<u>12-8-12</u> 12-8-12					<u>18-9-13</u> 6-1-1	
Plate Offsets (X,Y)	[12:0-1-8,Edge], [16:0-1-8,Edge], [20:0-						0-1-1	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.46 BC 0.50 WB 0.35 Matrix-S	· · /	in (loc) 10 21-22 14 21-22 02 17	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 95 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	except e	end vertion	als.	rectly applied or 6-0-0 or 6-0-0 oc bracing.	
Max L Max C	te) 23=0-5-0, 14=Mechanical, 17=0-5- Jplift 14=-6(LC 3) Grav 23=642(LC 3), 14=266(LC 4), 17=1	204(LC 1)						
TOP CHORD 2-3=	. Comp./Max. Ten All forces 250 (lb) o -1240/0, 3-4=-1780/0, 4-5=-1780/0, 5-6= )=0/748. 10-11=-287/100. 11-12=-287/10	-1780/0, 6-8=-908/0, 8-9=						
16-1	3=0/790, 21-22=0/1641, 20-21=0/1780, 7=-329/68, 15-16=-100/287, 14-15=-100	/287	,					
	s=-989/0, 2-22=0/586, 3-22=-522/0, 3-21 =-720/0, 6-20=0/609, 5-20=-281/0, 12-1	, , ,	,					
<ul> <li>2) All plates are 3x4 M</li> <li>3) Plates checked for a</li> <li>4) Refer to girder(s) fo</li> <li>5) Provide mechanical</li> </ul>	ve loads have been considered for this d IT20 unless otherwise indicated. a plus or minus 1 degree rotation about i or truss to truss connections. I connection (by others) of truss to bearing roundback on edge spaced at 10.000 of	ts center. ng plate capable of withstar						

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



0-1-8 H $1-3-0$ 1.5x3    1.5x3 = 4x6 = 1 2 1 2 20 20 20 20 20 20 20 20 20 2	NC - 28314, 3x6 = 1.5x 3 4	Floor 3    3x4 = 5	1-5-8 → 1-5-8	$5$ D:gZklhXMJ2 $\exists x4 = 7$		AyzpENq-SeDgy	Industries, Inc.	Thu Feb 16 14:12: /WLaD0F9S9Iw8b 4x6 = 12	
0-1-8 H   1-3-0 1.5x3    1.5x3 = 4x6 = 1 2 7 7 7 7 7 7 7 7	3x6 = 1.5x		1-5-8 3x4 =		21ywungoZg0? 3x4	6 2022 MiTek AyzpENq-SeDgy = 1.5x3    3x6 FP =	Industries, Inc. rtOf5BIQHFjnkW 3x6 =	4x6 =	gPoHkLUzkXvF 0-118 Scale = 1:34. 1.5x3    1.5x3 =
0-1-8 H 1-3-0 1.5x3    1.5x3 = 4x6 = 1 2 27 26 26	3x6 = 1.5x		1-5-8 3x4 =		21ywungoZg0? 3x4	AyzpENq-SeDgy = 1.5x3    3x6 FP=	rtOf5BIQHFjnk₩ 3x6 =	4x6 =	gPoHkLUzkXvF 0-118 Scale = 1:34. 1.5x3    1.5x3 =
H   $1-3-0$ 1.5x3    1.5x3 = 4x6 = 1 2 1 2 2 2 2 6			1-5-8 3x4 =		3x4	= 1.5x3    3x6 FP=	3x6 =	4x6 =	0- <u>1</u> г8 Scale = 1:34. 1.5x3    1.5x3 =
$H = \frac{1 \cdot 3 \cdot 0}{1 \cdot 5 \times 3} = \frac{1 \cdot 5 \times 3}{1 \cdot 5 \times 3} = \frac{4 \times 6}{4 \times 6} = \frac{1}{2} = \frac{2}{2} = \frac{1}{2} = \frac{2}{2} = \frac{1}{2} = \frac{2}{2} = \frac{1}{2} = $			3x4 =			3x6 FP=			Scale = 1:34. 1.5x3    1.5x3 =
1.5x3     1.5x3 = 4x6 =  1 2  1 2  27  26 27 27 2 26 2 2			3x4 =			3x6 FP=			Scale = 1:34. 1.5x3    1.5x3 =
1.5x3 = 4x6 = 1 2 0 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 2 2 0 2 2 0 2 2 2 2 2 2 2 2						3x6 FP=			1.5x3 =
1.5x3 = 4x6 = 1 2 27 27 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26						3x6 FP=			1.5x3 =
1.5x3 = 4x6 = 1 2 0 27 27 26 27 26 27 26 27 27 26 27 27 27 27 27 26 27 27 27 27 27 27 27 27 27 27						3x6 FP=			1.5x3 =
1.5x3 = 4x6 = 1 2 27 27 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26						3x6 FP=			1.5x3 =
					8				
	3 4	5	6	7	8	9 10	11	12	13
			La [®]	@				12	
			74						
		$\sim$	_/		_//				28
	A of the							¥	, <u></u>
	0		Ŭ	Ŭ				0	
3x6 = 4	25 24 23	2	21 20 x6    2x6		18 3x6	17 6x6 =	3×4 -	15	
		MIBAHS FP -	X0    2X0	2.00 11 0	570 11	0.00 —	3,4 — 4	x6 =	3x6 =
	6x6	5 =							
<u>2-9-0</u> 2-9-0	7-10- 5-1-	-8	12-1-0 4-2-8		-	17-2-8		19-11-8	
	5-1- 3,Edge], [7:0-1-8,Edge],				· · · · · · · · · · · · · · · · · · ·	5-1-8		2-9-0	`
	SPACING- 2-0-			EFL.	in (loc)	I/defI L/d			RIP
	Plate Grip DOL 1.0 Lumber DOL 1.0				0.35 19-20 0.48 19-20	>673 480 >489 360			44/190 36/179

BCLL 1	0.0	Lumber DOL 1.00 Rep Stress Incr YES	BC 0.38 WB 0.60	Vert(CT) -0.4 Horz(CT) 0.0	8 19-20 >489 6 14 n/a	360 n/a	M18AHS	186/179
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 118 lb	FT = 20%F, 11%E
LUMBER- TOP CHORI BOT CHORI WEBS	2x4 SP	2 No.1(flat) 2 2400F 2.0E(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end ver	icals.	rectly applied or 4-8-0 c or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 26=0-5-0, 14=0-5-8 Max Grav 26=1078(LC 1), 14=1078(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2315/0, 3-4=-4109/0, 4-5=-4109/0, 5-6=-5105/0, 6-7=-5395/0, 7-8=-5105/0, 8-10=-4109/0, 10-11=-4109/0, 11-12=-2315/0

 BOT CHORD
 25-26=0/1352, 23-25=0/3311, 21-23=0/4778, 20-21=0/5395, 19-20=0/5395, 18-19=0/5395, 17-18=0/4778, 15-17=0/3311, 14-15=0/1352

 WEBS
 12-14=-1693/0, 2-26=-1693/0, 12-15=0/1254, 2-25=0/1254, 11-15=-1296/0, 10-1010

3-25=-1296/0, 11-17=0/997, 3-23=0/997, 8-17=-835/0, 5-23=-835/0, 8-18=0/506,

5-21=0/506, 7-18=-679/117, 6-21=-679/117, 6-20=-269/295, 7-19=-269/295

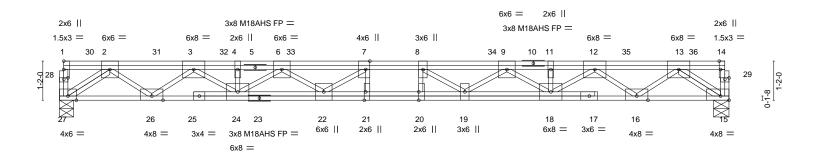
#### NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

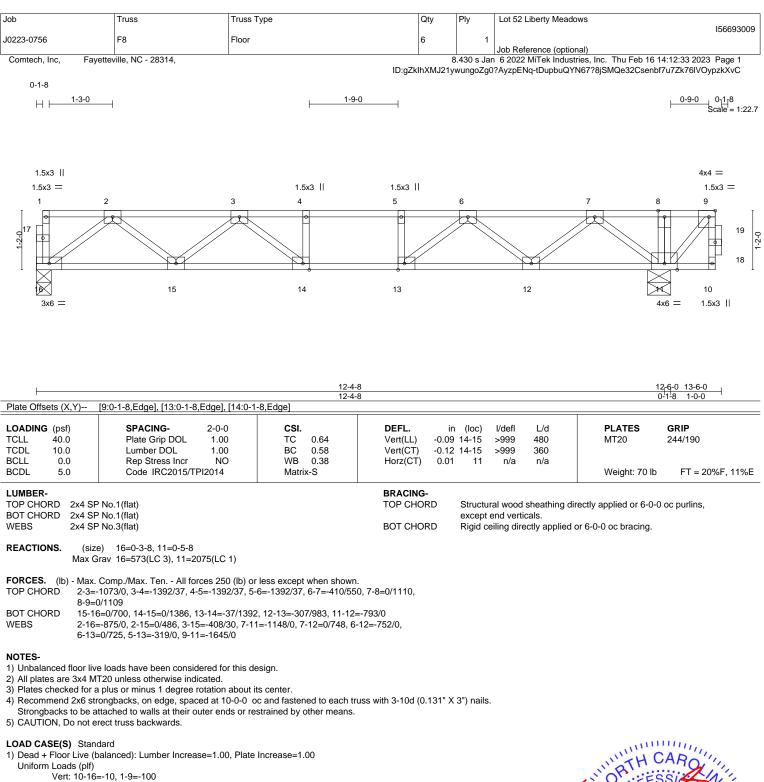
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



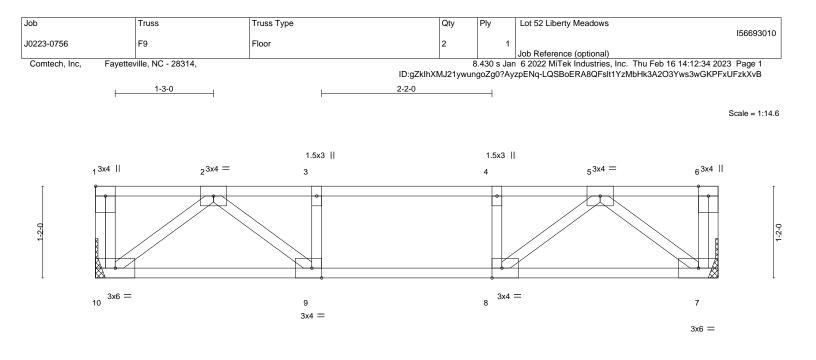

Job		Truss	Truss Type	Qty	Ply	Lot 52 Liberty Meadows	
J0223-0756		F7G	Floor	1	1	156693008	
						Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 16 14:12:32 2023 Page 1							
ID:gZkIhXMJ21ywungoZg0?AyzpENq-P1KRNZQvdo?8WZt9sxYpfe5Z9FjqO_uzt5mrQNzkXvD							



	2-9-0         7-10-8         12-1-0         17-2-8           2-9-0         5-1-8         4-2-8         5-1-8					19-11-8			
Plate Offsets (X,Y)		ge,0-1-8], [20:0-3-0,0-0-0		28:0-1	-8,0-0-8	-	-	2-3-	
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.87 BC 0.89 WB 0.87 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.48 0.51 -0.09	(loc) 20 20 15	l/defl >494 >460 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 149 lb	<b>GRIP</b> 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4 REACTIONS. (s Max	SP No.1(flat) SP No.1(flat) SP No.3(flat) size) 27=0-5-0, 15=0-5-8 Uplift 27=-942(LC 10), 15=-1535(LC 9) Grav 27=1287(LC 1), 15=962(LC 1)		BRACING- TOP CHORI BOT CHORI		except Rigid c	end verti eiling dire	cals.	rectly applied or 6-0-0 c	
TOP CHORD         2-3           BOT CHORD         26           20         15           WEBS         13           12         12	x. Comp./Max. Ten All forces 250 (lb) o 3=-2619/2540, 3-4=-4286/5264, 4-6=-4286 2=-4961/7151, 9-11=-3939/5955, 11-12=-5 -27=-1263/1617, 24-26=-3882/3625, 22-2 -21=-7243/5273, 19-20=-7243/5273, 18-1 -16=-1295/1231 -16=-1205/1819, 3-26=-1278/1705, 12-18 24=-709/1258, 9-19=-553/530, 6-22=-848	5/5264, 6-7 ⁻ =-5130/6792, 7 939/5955, 12-13=-2187/3 4=-6296/4867, 21-22=-72 9=-6891/4590, 16-18=-47 =-1683/1194, 2-26=-1595 =-1453/980, 3-24=-1686/8	7-8=-5273/7243, 3343 43/5273, 75/3136, /1252, 306, 9-18=-794/114	1,					
<ol> <li>All plates are MTZ</li> <li>Plates checked fo</li> <li>Provide mechanic at joint 15.</li> <li>Recommend 2x6 Strongbacks to be</li> <li>Hanger(s) or othe 0-11-4, 246 lb dox and 486 lb up at 14-11-4, and 48 ll such connection of</li> <li>In the LOAD CASE</li> <li>LOAD CASE(S) Stt 1) Dead + Floor Live Uniform Loads (p) Vert: 15-7 Concentrated Load</li> </ol>	: (balanced): Lumber Increase=1.00, Plate f) 27=-10, 1-14=-100 ids (lb)	its center. Ing plate capable of withsta acc and fastened to each tr isstrained by other means. ufficient to support concer id 486 lb up at 4-11-4, 48 I-4, 48 lb down and 486 lt b down and 480 lb up at he truss are noted as from Increase=1.00	uss with 3-10d (0.1 Intrated load(s) 248 I b down and 486 ll o up at 12-11-4, 48 18-11-4 on top cho It (F) or back (B).	31" X Ib dow b up at Ib dov rd. Th	3") nails vn and 9 t 6-11-4 vn and 4 ne desig	:. 6 lb up a , 18 lb do 186 lb up	t own 🖌	SEA 0363	
	32(B) 8=32(B) 7=32(B) 30=-178(B) 31=-1								ry 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 ev. 5/19/2/2/2/ BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601






Concentrated Loads (lb) Vert: 9=-1200



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

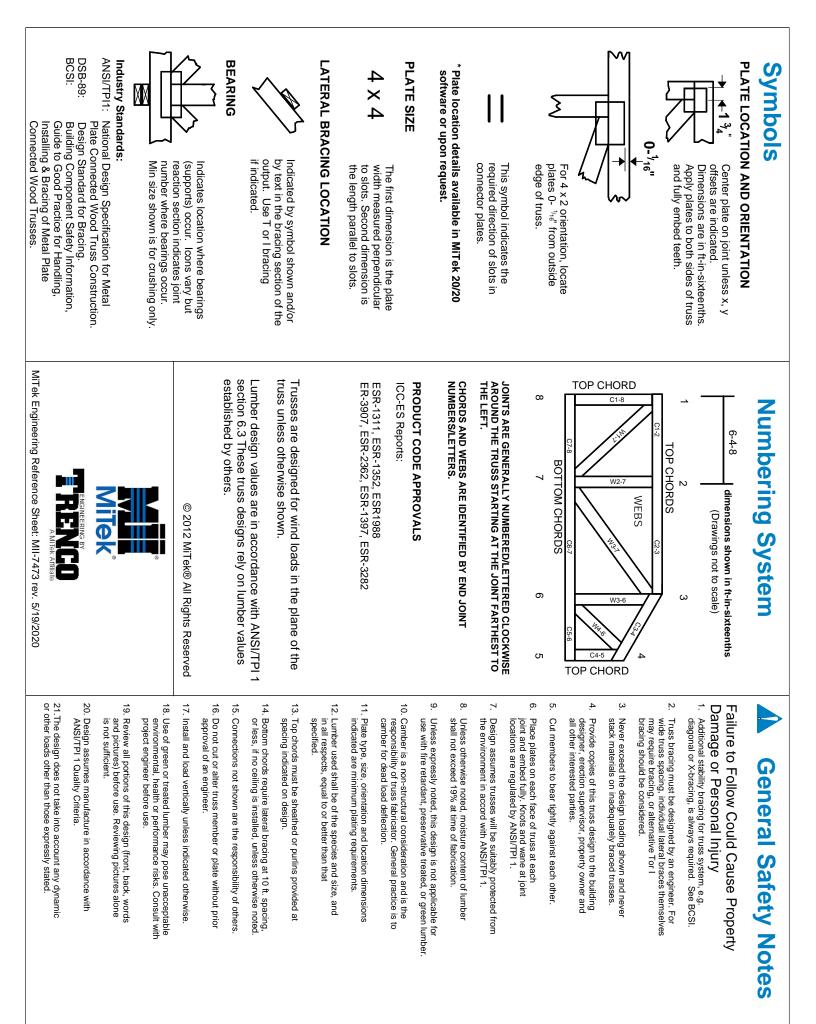




			<u>7-11-0</u> 7-11-0						
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,	Edge]							
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.25 BC 0.21 WB 0.19	<b>DEFL.</b> Vert(LL) Vert(CT) Horz(CT)	-0.03	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	<b>GRIP</b> 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S						Weight: 41 lb	FT = 20%F, 11%E
LUMBER-TOP CHORD2x4 SP No.1(flat)3OT CHORD2x4 SP No.1(flat)NEBS2x4 SP No.3(flat)			TOP CHORD Structural wood sl except end vertica			sheathing directly applied or 6-0-0 oc purlins, cals. ctly applied or 10-0-0 oc bracing.			
REACTIONS. (size Max G	e) 10=Mechanical, 7=Mechanical irav 10=422(LC 1), 7=422(LC 1)								
TOP CHORD 2-3=- BOT CHORD 9-10=	Comp./Max. Ten All forces 250 (lb) or 742/0, 3-4=-742/0, 4-5=-742/0 =0/462, 8-9=0/742, 7-8=0/462 =-579/0, 2-9=0/403, 5-7=-579/0, 5-8=0/4	·							
NOTES-									

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.


3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



